]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
9608703e | 23 | * inode->i_rwsem (while writing or truncating, not reading or faulting) |
c1e8d7c6 | 24 | * mm->mmap_lock |
730633f0 | 25 | * mapping->invalidate_lock (in filemap_fault) |
3a47c54f | 26 | * page->flags PG_locked (lock_page) |
8d9bfb26 | 27 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) |
730633f0 | 28 | * mapping->i_mmap_rwsem |
730633f0 JK |
29 | * anon_vma->rwsem |
30 | * mm->page_table_lock or pte_lock | |
31 | * swap_lock (in swap_duplicate, swap_info_get) | |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
e621900a MWO |
33 | * mapping->private_lock (in block_dirty_folio) |
34 | * folio_lock_memcg move_lock (in block_dirty_folio) | |
730633f0 | 35 | * i_pages lock (widely used) |
e809c3fe | 36 | * lruvec->lru_lock (in folio_lruvec_lock_irq) |
730633f0 JK |
37 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
38 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
39 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
40 | * i_pages lock (widely used, in set_page_dirty, | |
41 | * in arch-dependent flush_dcache_mmap_lock, | |
42 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 43 | * |
9608703e | 44 | * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) |
9b679320 | 45 | * ->tasklist_lock |
6a46079c | 46 | * pte map lock |
c0d0381a | 47 | * |
8d9bfb26 MK |
48 | * hugetlbfs PageHuge() take locks in this order: |
49 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
50 | * vma_lock (hugetlb specific lock for pmd_sharing) | |
51 | * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) | |
52 | * page->flags PG_locked (lock_page) | |
1da177e4 LT |
53 | */ |
54 | ||
55 | #include <linux/mm.h> | |
6e84f315 | 56 | #include <linux/sched/mm.h> |
29930025 | 57 | #include <linux/sched/task.h> |
1da177e4 LT |
58 | #include <linux/pagemap.h> |
59 | #include <linux/swap.h> | |
60 | #include <linux/swapops.h> | |
61 | #include <linux/slab.h> | |
62 | #include <linux/init.h> | |
5ad64688 | 63 | #include <linux/ksm.h> |
1da177e4 LT |
64 | #include <linux/rmap.h> |
65 | #include <linux/rcupdate.h> | |
b95f1b31 | 66 | #include <linux/export.h> |
8a9f3ccd | 67 | #include <linux/memcontrol.h> |
cddb8a5c | 68 | #include <linux/mmu_notifier.h> |
64cdd548 | 69 | #include <linux/migrate.h> |
0fe6e20b | 70 | #include <linux/hugetlb.h> |
444f84fd | 71 | #include <linux/huge_mm.h> |
ef5d437f | 72 | #include <linux/backing-dev.h> |
33c3fc71 | 73 | #include <linux/page_idle.h> |
a5430dda | 74 | #include <linux/memremap.h> |
bce73e48 | 75 | #include <linux/userfaultfd_k.h> |
999dad82 | 76 | #include <linux/mm_inline.h> |
1da177e4 LT |
77 | |
78 | #include <asm/tlbflush.h> | |
79 | ||
4cc79b33 | 80 | #define CREATE_TRACE_POINTS |
72b252ae | 81 | #include <trace/events/tlb.h> |
4cc79b33 | 82 | #include <trace/events/migrate.h> |
72b252ae | 83 | |
b291f000 NP |
84 | #include "internal.h" |
85 | ||
fdd2e5f8 | 86 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 87 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
88 | |
89 | static inline struct anon_vma *anon_vma_alloc(void) | |
90 | { | |
01d8b20d PZ |
91 | struct anon_vma *anon_vma; |
92 | ||
93 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
94 | if (anon_vma) { | |
95 | atomic_set(&anon_vma->refcount, 1); | |
2555283e JH |
96 | anon_vma->num_children = 0; |
97 | anon_vma->num_active_vmas = 0; | |
7a3ef208 | 98 | anon_vma->parent = anon_vma; |
01d8b20d PZ |
99 | /* |
100 | * Initialise the anon_vma root to point to itself. If called | |
101 | * from fork, the root will be reset to the parents anon_vma. | |
102 | */ | |
103 | anon_vma->root = anon_vma; | |
104 | } | |
105 | ||
106 | return anon_vma; | |
fdd2e5f8 AB |
107 | } |
108 | ||
01d8b20d | 109 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 110 | { |
01d8b20d | 111 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
112 | |
113 | /* | |
2f031c6f | 114 | * Synchronize against folio_lock_anon_vma_read() such that |
88c22088 PZ |
115 | * we can safely hold the lock without the anon_vma getting |
116 | * freed. | |
117 | * | |
118 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
119 | * put_anon_vma() against the acquire barrier implied by | |
2f031c6f | 120 | * down_read_trylock() from folio_lock_anon_vma_read(). This orders: |
88c22088 | 121 | * |
2f031c6f | 122 | * folio_lock_anon_vma_read() VS put_anon_vma() |
4fc3f1d6 | 123 | * down_read_trylock() atomic_dec_and_test() |
88c22088 | 124 | * LOCK MB |
4fc3f1d6 | 125 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
126 | * |
127 | * LOCK should suffice since the actual taking of the lock must | |
128 | * happen _before_ what follows. | |
129 | */ | |
7f39dda9 | 130 | might_sleep(); |
5a505085 | 131 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 132 | anon_vma_lock_write(anon_vma); |
08b52706 | 133 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
134 | } |
135 | ||
fdd2e5f8 AB |
136 | kmem_cache_free(anon_vma_cachep, anon_vma); |
137 | } | |
1da177e4 | 138 | |
dd34739c | 139 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 140 | { |
dd34739c | 141 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
142 | } |
143 | ||
e574b5fd | 144 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
145 | { |
146 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
147 | } | |
148 | ||
6583a843 KC |
149 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
150 | struct anon_vma_chain *avc, | |
151 | struct anon_vma *anon_vma) | |
152 | { | |
153 | avc->vma = vma; | |
154 | avc->anon_vma = anon_vma; | |
155 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 156 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
157 | } |
158 | ||
d9d332e0 | 159 | /** |
d5a187da | 160 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
161 | * @vma: the memory region in question |
162 | * | |
163 | * This makes sure the memory mapping described by 'vma' has | |
164 | * an 'anon_vma' attached to it, so that we can associate the | |
165 | * anonymous pages mapped into it with that anon_vma. | |
166 | * | |
d5a187da VB |
167 | * The common case will be that we already have one, which |
168 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 169 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
170 | * can re-use the anon_vma from (very common when the only |
171 | * reason for splitting a vma has been mprotect()), or we | |
172 | * allocate a new one. | |
173 | * | |
174 | * Anon-vma allocations are very subtle, because we may have | |
2f031c6f | 175 | * optimistically looked up an anon_vma in folio_lock_anon_vma_read() |
aaf1f990 | 176 | * and that may actually touch the rwsem even in the newly |
d9d332e0 LT |
177 | * allocated vma (it depends on RCU to make sure that the |
178 | * anon_vma isn't actually destroyed). | |
179 | * | |
180 | * As a result, we need to do proper anon_vma locking even | |
181 | * for the new allocation. At the same time, we do not want | |
182 | * to do any locking for the common case of already having | |
183 | * an anon_vma. | |
184 | * | |
c1e8d7c6 | 185 | * This must be called with the mmap_lock held for reading. |
d9d332e0 | 186 | */ |
d5a187da | 187 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 188 | { |
d5a187da VB |
189 | struct mm_struct *mm = vma->vm_mm; |
190 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 191 | struct anon_vma_chain *avc; |
1da177e4 LT |
192 | |
193 | might_sleep(); | |
1da177e4 | 194 | |
d5a187da VB |
195 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
196 | if (!avc) | |
197 | goto out_enomem; | |
198 | ||
199 | anon_vma = find_mergeable_anon_vma(vma); | |
200 | allocated = NULL; | |
201 | if (!anon_vma) { | |
202 | anon_vma = anon_vma_alloc(); | |
203 | if (unlikely(!anon_vma)) | |
204 | goto out_enomem_free_avc; | |
2555283e | 205 | anon_vma->num_children++; /* self-parent link for new root */ |
d5a187da VB |
206 | allocated = anon_vma; |
207 | } | |
5beb4930 | 208 | |
d5a187da VB |
209 | anon_vma_lock_write(anon_vma); |
210 | /* page_table_lock to protect against threads */ | |
211 | spin_lock(&mm->page_table_lock); | |
212 | if (likely(!vma->anon_vma)) { | |
213 | vma->anon_vma = anon_vma; | |
214 | anon_vma_chain_link(vma, avc, anon_vma); | |
2555283e | 215 | anon_vma->num_active_vmas++; |
d9d332e0 | 216 | allocated = NULL; |
d5a187da VB |
217 | avc = NULL; |
218 | } | |
219 | spin_unlock(&mm->page_table_lock); | |
220 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 221 | |
d5a187da VB |
222 | if (unlikely(allocated)) |
223 | put_anon_vma(allocated); | |
224 | if (unlikely(avc)) | |
225 | anon_vma_chain_free(avc); | |
31f2b0eb | 226 | |
1da177e4 | 227 | return 0; |
5beb4930 RR |
228 | |
229 | out_enomem_free_avc: | |
230 | anon_vma_chain_free(avc); | |
231 | out_enomem: | |
232 | return -ENOMEM; | |
1da177e4 LT |
233 | } |
234 | ||
bb4aa396 LT |
235 | /* |
236 | * This is a useful helper function for locking the anon_vma root as | |
237 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
238 | * have the same vma. | |
239 | * | |
240 | * Such anon_vma's should have the same root, so you'd expect to see | |
241 | * just a single mutex_lock for the whole traversal. | |
242 | */ | |
243 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
244 | { | |
245 | struct anon_vma *new_root = anon_vma->root; | |
246 | if (new_root != root) { | |
247 | if (WARN_ON_ONCE(root)) | |
5a505085 | 248 | up_write(&root->rwsem); |
bb4aa396 | 249 | root = new_root; |
5a505085 | 250 | down_write(&root->rwsem); |
bb4aa396 LT |
251 | } |
252 | return root; | |
253 | } | |
254 | ||
255 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
256 | { | |
257 | if (root) | |
5a505085 | 258 | up_write(&root->rwsem); |
bb4aa396 LT |
259 | } |
260 | ||
5beb4930 RR |
261 | /* |
262 | * Attach the anon_vmas from src to dst. | |
263 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 | 264 | * |
cb152a1a | 265 | * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and |
47b390d2 WY |
266 | * anon_vma_fork(). The first three want an exact copy of src, while the last |
267 | * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent | |
268 | * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, | |
269 | * we can identify this case by checking (!dst->anon_vma && src->anon_vma). | |
270 | * | |
271 | * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find | |
272 | * and reuse existing anon_vma which has no vmas and only one child anon_vma. | |
273 | * This prevents degradation of anon_vma hierarchy to endless linear chain in | |
274 | * case of constantly forking task. On the other hand, an anon_vma with more | |
275 | * than one child isn't reused even if there was no alive vma, thus rmap | |
276 | * walker has a good chance of avoiding scanning the whole hierarchy when it | |
277 | * searches where page is mapped. | |
5beb4930 RR |
278 | */ |
279 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 280 | { |
5beb4930 | 281 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 282 | struct anon_vma *root = NULL; |
5beb4930 | 283 | |
646d87b4 | 284 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
285 | struct anon_vma *anon_vma; |
286 | ||
dd34739c LT |
287 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
288 | if (unlikely(!avc)) { | |
289 | unlock_anon_vma_root(root); | |
290 | root = NULL; | |
291 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
292 | if (!avc) | |
293 | goto enomem_failure; | |
294 | } | |
bb4aa396 LT |
295 | anon_vma = pavc->anon_vma; |
296 | root = lock_anon_vma_root(root, anon_vma); | |
297 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
298 | |
299 | /* | |
2555283e JH |
300 | * Reuse existing anon_vma if it has no vma and only one |
301 | * anon_vma child. | |
7a3ef208 | 302 | * |
2555283e | 303 | * Root anon_vma is never reused: |
7a3ef208 KK |
304 | * it has self-parent reference and at least one child. |
305 | */ | |
47b390d2 | 306 | if (!dst->anon_vma && src->anon_vma && |
2555283e JH |
307 | anon_vma->num_children < 2 && |
308 | anon_vma->num_active_vmas == 0) | |
7a3ef208 | 309 | dst->anon_vma = anon_vma; |
5beb4930 | 310 | } |
7a3ef208 | 311 | if (dst->anon_vma) |
2555283e | 312 | dst->anon_vma->num_active_vmas++; |
bb4aa396 | 313 | unlock_anon_vma_root(root); |
5beb4930 | 314 | return 0; |
1da177e4 | 315 | |
5beb4930 | 316 | enomem_failure: |
3fe89b3e | 317 | /* |
d8e454eb MW |
318 | * dst->anon_vma is dropped here otherwise its num_active_vmas can |
319 | * be incorrectly decremented in unlink_anon_vmas(). | |
3fe89b3e LY |
320 | * We can safely do this because callers of anon_vma_clone() don't care |
321 | * about dst->anon_vma if anon_vma_clone() failed. | |
322 | */ | |
323 | dst->anon_vma = NULL; | |
5beb4930 RR |
324 | unlink_anon_vmas(dst); |
325 | return -ENOMEM; | |
1da177e4 LT |
326 | } |
327 | ||
5beb4930 RR |
328 | /* |
329 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
330 | * the corresponding VMA in the parent process is attached to. | |
331 | * Returns 0 on success, non-zero on failure. | |
332 | */ | |
333 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 334 | { |
5beb4930 RR |
335 | struct anon_vma_chain *avc; |
336 | struct anon_vma *anon_vma; | |
c4ea95d7 | 337 | int error; |
1da177e4 | 338 | |
5beb4930 RR |
339 | /* Don't bother if the parent process has no anon_vma here. */ |
340 | if (!pvma->anon_vma) | |
341 | return 0; | |
342 | ||
7a3ef208 KK |
343 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
344 | vma->anon_vma = NULL; | |
345 | ||
5beb4930 RR |
346 | /* |
347 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
348 | * so rmap can find non-COWed pages in child processes. | |
349 | */ | |
c4ea95d7 DF |
350 | error = anon_vma_clone(vma, pvma); |
351 | if (error) | |
352 | return error; | |
5beb4930 | 353 | |
7a3ef208 KK |
354 | /* An existing anon_vma has been reused, all done then. */ |
355 | if (vma->anon_vma) | |
356 | return 0; | |
357 | ||
5beb4930 RR |
358 | /* Then add our own anon_vma. */ |
359 | anon_vma = anon_vma_alloc(); | |
360 | if (!anon_vma) | |
361 | goto out_error; | |
2555283e | 362 | anon_vma->num_active_vmas++; |
dd34739c | 363 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
364 | if (!avc) |
365 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
366 | |
367 | /* | |
aaf1f990 | 368 | * The root anon_vma's rwsem is the lock actually used when we |
5c341ee1 RR |
369 | * lock any of the anon_vmas in this anon_vma tree. |
370 | */ | |
371 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 372 | anon_vma->parent = pvma->anon_vma; |
76545066 | 373 | /* |
01d8b20d PZ |
374 | * With refcounts, an anon_vma can stay around longer than the |
375 | * process it belongs to. The root anon_vma needs to be pinned until | |
376 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
377 | */ |
378 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
379 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
380 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 381 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 382 | anon_vma_chain_link(vma, avc, anon_vma); |
2555283e | 383 | anon_vma->parent->num_children++; |
08b52706 | 384 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
385 | |
386 | return 0; | |
387 | ||
388 | out_error_free_anon_vma: | |
01d8b20d | 389 | put_anon_vma(anon_vma); |
5beb4930 | 390 | out_error: |
4946d54c | 391 | unlink_anon_vmas(vma); |
5beb4930 | 392 | return -ENOMEM; |
1da177e4 LT |
393 | } |
394 | ||
5beb4930 RR |
395 | void unlink_anon_vmas(struct vm_area_struct *vma) |
396 | { | |
397 | struct anon_vma_chain *avc, *next; | |
eee2acba | 398 | struct anon_vma *root = NULL; |
5beb4930 | 399 | |
5c341ee1 RR |
400 | /* |
401 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
402 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
403 | */ | |
5beb4930 | 404 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
405 | struct anon_vma *anon_vma = avc->anon_vma; |
406 | ||
407 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 408 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
409 | |
410 | /* | |
411 | * Leave empty anon_vmas on the list - we'll need | |
412 | * to free them outside the lock. | |
413 | */ | |
f808c13f | 414 | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { |
2555283e | 415 | anon_vma->parent->num_children--; |
eee2acba | 416 | continue; |
7a3ef208 | 417 | } |
eee2acba PZ |
418 | |
419 | list_del(&avc->same_vma); | |
420 | anon_vma_chain_free(avc); | |
421 | } | |
ee8ab190 | 422 | if (vma->anon_vma) { |
2555283e | 423 | vma->anon_vma->num_active_vmas--; |
ee8ab190 LX |
424 | |
425 | /* | |
426 | * vma would still be needed after unlink, and anon_vma will be prepared | |
427 | * when handle fault. | |
428 | */ | |
429 | vma->anon_vma = NULL; | |
430 | } | |
eee2acba PZ |
431 | unlock_anon_vma_root(root); |
432 | ||
433 | /* | |
434 | * Iterate the list once more, it now only contains empty and unlinked | |
435 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 436 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
437 | */ |
438 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
439 | struct anon_vma *anon_vma = avc->anon_vma; | |
440 | ||
2555283e JH |
441 | VM_WARN_ON(anon_vma->num_children); |
442 | VM_WARN_ON(anon_vma->num_active_vmas); | |
eee2acba PZ |
443 | put_anon_vma(anon_vma); |
444 | ||
5beb4930 RR |
445 | list_del(&avc->same_vma); |
446 | anon_vma_chain_free(avc); | |
447 | } | |
448 | } | |
449 | ||
51cc5068 | 450 | static void anon_vma_ctor(void *data) |
1da177e4 | 451 | { |
a35afb83 | 452 | struct anon_vma *anon_vma = data; |
1da177e4 | 453 | |
5a505085 | 454 | init_rwsem(&anon_vma->rwsem); |
83813267 | 455 | atomic_set(&anon_vma->refcount, 0); |
f808c13f | 456 | anon_vma->rb_root = RB_ROOT_CACHED; |
1da177e4 LT |
457 | } |
458 | ||
459 | void __init anon_vma_init(void) | |
460 | { | |
461 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 462 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
463 | anon_vma_ctor); |
464 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
465 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
466 | } |
467 | ||
468 | /* | |
6111e4ca PZ |
469 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
470 | * | |
471 | * Since there is no serialization what so ever against page_remove_rmap() | |
ad8a20cf ML |
472 | * the best this function can do is return a refcount increased anon_vma |
473 | * that might have been relevant to this page. | |
6111e4ca PZ |
474 | * |
475 | * The page might have been remapped to a different anon_vma or the anon_vma | |
476 | * returned may already be freed (and even reused). | |
477 | * | |
bc658c96 PZ |
478 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
479 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
480 | * ensure that any anon_vma obtained from the page will still be valid for as | |
481 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
482 | * | |
6111e4ca PZ |
483 | * All users of this function must be very careful when walking the anon_vma |
484 | * chain and verify that the page in question is indeed mapped in it | |
485 | * [ something equivalent to page_mapped_in_vma() ]. | |
486 | * | |
091e4299 MC |
487 | * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from |
488 | * page_remove_rmap() that the anon_vma pointer from page->mapping is valid | |
489 | * if there is a mapcount, we can dereference the anon_vma after observing | |
490 | * those. | |
1da177e4 | 491 | */ |
29eea9b5 | 492 | struct anon_vma *folio_get_anon_vma(struct folio *folio) |
1da177e4 | 493 | { |
746b18d4 | 494 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
495 | unsigned long anon_mapping; |
496 | ||
497 | rcu_read_lock(); | |
29eea9b5 | 498 | anon_mapping = (unsigned long)READ_ONCE(folio->mapping); |
3ca7b3c5 | 499 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 | 500 | goto out; |
29eea9b5 | 501 | if (!folio_mapped(folio)) |
1da177e4 LT |
502 | goto out; |
503 | ||
504 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
505 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
506 | anon_vma = NULL; | |
507 | goto out; | |
508 | } | |
f1819427 HD |
509 | |
510 | /* | |
29eea9b5 | 511 | * If this folio is still mapped, then its anon_vma cannot have been |
746b18d4 PZ |
512 | * freed. But if it has been unmapped, we have no security against the |
513 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 514 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 515 | * above cannot corrupt). |
f1819427 | 516 | */ |
29eea9b5 | 517 | if (!folio_mapped(folio)) { |
7f39dda9 | 518 | rcu_read_unlock(); |
746b18d4 | 519 | put_anon_vma(anon_vma); |
7f39dda9 | 520 | return NULL; |
746b18d4 | 521 | } |
1da177e4 LT |
522 | out: |
523 | rcu_read_unlock(); | |
746b18d4 PZ |
524 | |
525 | return anon_vma; | |
526 | } | |
527 | ||
88c22088 | 528 | /* |
29eea9b5 | 529 | * Similar to folio_get_anon_vma() except it locks the anon_vma. |
88c22088 PZ |
530 | * |
531 | * Its a little more complex as it tries to keep the fast path to a single | |
532 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
29eea9b5 | 533 | * reference like with folio_get_anon_vma() and then block on the mutex |
6d4675e6 | 534 | * on !rwc->try_lock case. |
88c22088 | 535 | */ |
6d4675e6 MK |
536 | struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, |
537 | struct rmap_walk_control *rwc) | |
746b18d4 | 538 | { |
88c22088 | 539 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 540 | struct anon_vma *root_anon_vma; |
88c22088 | 541 | unsigned long anon_mapping; |
746b18d4 | 542 | |
88c22088 | 543 | rcu_read_lock(); |
9595d769 | 544 | anon_mapping = (unsigned long)READ_ONCE(folio->mapping); |
88c22088 PZ |
545 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
546 | goto out; | |
9595d769 | 547 | if (!folio_mapped(folio)) |
88c22088 PZ |
548 | goto out; |
549 | ||
550 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 551 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 552 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 553 | /* |
9595d769 | 554 | * If the folio is still mapped, then this anon_vma is still |
eee0f252 | 555 | * its anon_vma, and holding the mutex ensures that it will |
bc658c96 | 556 | * not go away, see anon_vma_free(). |
88c22088 | 557 | */ |
9595d769 | 558 | if (!folio_mapped(folio)) { |
4fc3f1d6 | 559 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
560 | anon_vma = NULL; |
561 | } | |
562 | goto out; | |
563 | } | |
746b18d4 | 564 | |
6d4675e6 MK |
565 | if (rwc && rwc->try_lock) { |
566 | anon_vma = NULL; | |
567 | rwc->contended = true; | |
568 | goto out; | |
569 | } | |
570 | ||
88c22088 PZ |
571 | /* trylock failed, we got to sleep */ |
572 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
573 | anon_vma = NULL; | |
574 | goto out; | |
575 | } | |
576 | ||
9595d769 | 577 | if (!folio_mapped(folio)) { |
7f39dda9 | 578 | rcu_read_unlock(); |
88c22088 | 579 | put_anon_vma(anon_vma); |
7f39dda9 | 580 | return NULL; |
88c22088 PZ |
581 | } |
582 | ||
583 | /* we pinned the anon_vma, its safe to sleep */ | |
584 | rcu_read_unlock(); | |
4fc3f1d6 | 585 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
586 | |
587 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
588 | /* | |
589 | * Oops, we held the last refcount, release the lock | |
590 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 591 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 592 | */ |
4fc3f1d6 | 593 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
594 | __put_anon_vma(anon_vma); |
595 | anon_vma = NULL; | |
596 | } | |
597 | ||
598 | return anon_vma; | |
599 | ||
600 | out: | |
601 | rcu_read_unlock(); | |
746b18d4 | 602 | return anon_vma; |
34bbd704 ON |
603 | } |
604 | ||
72b252ae | 605 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
606 | /* |
607 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
608 | * important if a PTE was dirty when it was unmapped that it's flushed | |
609 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
610 | * it must be flushed before freeing to prevent data leakage. | |
611 | */ | |
612 | void try_to_unmap_flush(void) | |
613 | { | |
614 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
615 | |
616 | if (!tlb_ubc->flush_required) | |
617 | return; | |
618 | ||
e73ad5ff | 619 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 620 | tlb_ubc->flush_required = false; |
d950c947 | 621 | tlb_ubc->writable = false; |
72b252ae MG |
622 | } |
623 | ||
d950c947 MG |
624 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
625 | void try_to_unmap_flush_dirty(void) | |
626 | { | |
627 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
628 | ||
629 | if (tlb_ubc->writable) | |
630 | try_to_unmap_flush(); | |
631 | } | |
632 | ||
5ee2fa2f YH |
633 | /* |
634 | * Bits 0-14 of mm->tlb_flush_batched record pending generations. | |
635 | * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. | |
636 | */ | |
637 | #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 | |
638 | #define TLB_FLUSH_BATCH_PENDING_MASK \ | |
639 | ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) | |
640 | #define TLB_FLUSH_BATCH_PENDING_LARGE \ | |
641 | (TLB_FLUSH_BATCH_PENDING_MASK / 2) | |
642 | ||
c7ab0d2f | 643 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
644 | { |
645 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
5ee2fa2f | 646 | int batch, nbatch; |
72b252ae | 647 | |
e73ad5ff | 648 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 649 | tlb_ubc->flush_required = true; |
d950c947 | 650 | |
3ea27719 MG |
651 | /* |
652 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
653 | * before the PTE is cleared. | |
654 | */ | |
655 | barrier(); | |
5ee2fa2f YH |
656 | batch = atomic_read(&mm->tlb_flush_batched); |
657 | retry: | |
658 | if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { | |
659 | /* | |
660 | * Prevent `pending' from catching up with `flushed' because of | |
661 | * overflow. Reset `pending' and `flushed' to be 1 and 0 if | |
662 | * `pending' becomes large. | |
663 | */ | |
664 | nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); | |
665 | if (nbatch != batch) { | |
666 | batch = nbatch; | |
667 | goto retry; | |
668 | } | |
669 | } else { | |
670 | atomic_inc(&mm->tlb_flush_batched); | |
671 | } | |
3ea27719 | 672 | |
d950c947 MG |
673 | /* |
674 | * If the PTE was dirty then it's best to assume it's writable. The | |
675 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
676 | * before the page is queued for IO. | |
677 | */ | |
678 | if (writable) | |
679 | tlb_ubc->writable = true; | |
72b252ae MG |
680 | } |
681 | ||
682 | /* | |
683 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
684 | * unmap operations to reduce IPIs. | |
685 | */ | |
686 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
687 | { | |
688 | bool should_defer = false; | |
689 | ||
690 | if (!(flags & TTU_BATCH_FLUSH)) | |
691 | return false; | |
692 | ||
693 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
694 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
695 | should_defer = true; | |
696 | put_cpu(); | |
697 | ||
698 | return should_defer; | |
699 | } | |
3ea27719 MG |
700 | |
701 | /* | |
702 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
703 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
704 | * operation such as mprotect or munmap to race between reclaim unmapping | |
705 | * the page and flushing the page. If this race occurs, it potentially allows | |
706 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
707 | * batching in flight would be expensive during reclaim so instead track | |
708 | * whether TLB batching occurred in the past and if so then do a flush here | |
709 | * if required. This will cost one additional flush per reclaim cycle paid | |
710 | * by the first operation at risk such as mprotect and mumap. | |
711 | * | |
712 | * This must be called under the PTL so that an access to tlb_flush_batched | |
713 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
714 | * via the PTL. | |
715 | */ | |
716 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
717 | { | |
5ee2fa2f YH |
718 | int batch = atomic_read(&mm->tlb_flush_batched); |
719 | int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; | |
720 | int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; | |
3ea27719 | 721 | |
5ee2fa2f YH |
722 | if (pending != flushed) { |
723 | flush_tlb_mm(mm); | |
3ea27719 | 724 | /* |
5ee2fa2f YH |
725 | * If the new TLB flushing is pending during flushing, leave |
726 | * mm->tlb_flush_batched as is, to avoid losing flushing. | |
3ea27719 | 727 | */ |
5ee2fa2f YH |
728 | atomic_cmpxchg(&mm->tlb_flush_batched, batch, |
729 | pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); | |
3ea27719 MG |
730 | } |
731 | } | |
72b252ae | 732 | #else |
c7ab0d2f | 733 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
734 | { |
735 | } | |
736 | ||
737 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
738 | { | |
739 | return false; | |
740 | } | |
741 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
742 | ||
1da177e4 | 743 | /* |
bf89c8c8 | 744 | * At what user virtual address is page expected in vma? |
ab941e0f | 745 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
746 | */ |
747 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
748 | { | |
e05b3453 MWO |
749 | struct folio *folio = page_folio(page); |
750 | if (folio_test_anon(folio)) { | |
751 | struct anon_vma *page__anon_vma = folio_anon_vma(folio); | |
4829b906 HD |
752 | /* |
753 | * Note: swapoff's unuse_vma() is more efficient with this | |
754 | * check, and needs it to match anon_vma when KSM is active. | |
755 | */ | |
756 | if (!vma->anon_vma || !page__anon_vma || | |
757 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 758 | return -EFAULT; |
31657170 JW |
759 | } else if (!vma->vm_file) { |
760 | return -EFAULT; | |
e05b3453 | 761 | } else if (vma->vm_file->f_mapping != folio->mapping) { |
1da177e4 | 762 | return -EFAULT; |
31657170 | 763 | } |
494334e4 HD |
764 | |
765 | return vma_address(page, vma); | |
1da177e4 LT |
766 | } |
767 | ||
50722804 ZK |
768 | /* |
769 | * Returns the actual pmd_t* where we expect 'address' to be mapped from, or | |
770 | * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* | |
771 | * represents. | |
772 | */ | |
6219049a BL |
773 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
774 | { | |
775 | pgd_t *pgd; | |
c2febafc | 776 | p4d_t *p4d; |
6219049a BL |
777 | pud_t *pud; |
778 | pmd_t *pmd = NULL; | |
779 | ||
780 | pgd = pgd_offset(mm, address); | |
781 | if (!pgd_present(*pgd)) | |
782 | goto out; | |
783 | ||
c2febafc KS |
784 | p4d = p4d_offset(pgd, address); |
785 | if (!p4d_present(*p4d)) | |
786 | goto out; | |
787 | ||
788 | pud = pud_offset(p4d, address); | |
6219049a BL |
789 | if (!pud_present(*pud)) |
790 | goto out; | |
791 | ||
792 | pmd = pmd_offset(pud, address); | |
6219049a BL |
793 | out: |
794 | return pmd; | |
795 | } | |
796 | ||
b3ac0413 | 797 | struct folio_referenced_arg { |
8749cfea VD |
798 | int mapcount; |
799 | int referenced; | |
800 | unsigned long vm_flags; | |
801 | struct mem_cgroup *memcg; | |
802 | }; | |
803 | /* | |
b3ac0413 | 804 | * arg: folio_referenced_arg will be passed |
8749cfea | 805 | */ |
2f031c6f MWO |
806 | static bool folio_referenced_one(struct folio *folio, |
807 | struct vm_area_struct *vma, unsigned long address, void *arg) | |
8749cfea | 808 | { |
b3ac0413 MWO |
809 | struct folio_referenced_arg *pra = arg; |
810 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | |
8749cfea VD |
811 | int referenced = 0; |
812 | ||
8eaedede KS |
813 | while (page_vma_mapped_walk(&pvmw)) { |
814 | address = pvmw.address; | |
b20ce5e0 | 815 | |
47d4f3ee | 816 | if ((vma->vm_flags & VM_LOCKED) && |
b3ac0413 | 817 | (!folio_test_large(folio) || !pvmw.pte)) { |
47d4f3ee | 818 | /* Restore the mlock which got missed */ |
b3ac0413 | 819 | mlock_vma_folio(folio, vma, !pvmw.pte); |
8eaedede KS |
820 | page_vma_mapped_walk_done(&pvmw); |
821 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 822 | return false; /* To break the loop */ |
8eaedede | 823 | } |
71e3aac0 | 824 | |
8eaedede | 825 | if (pvmw.pte) { |
018ee47f YZ |
826 | if (lru_gen_enabled() && pte_young(*pvmw.pte) && |
827 | !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) { | |
828 | lru_gen_look_around(&pvmw); | |
829 | referenced++; | |
830 | } | |
831 | ||
8eaedede KS |
832 | if (ptep_clear_flush_young_notify(vma, address, |
833 | pvmw.pte)) { | |
834 | /* | |
835 | * Don't treat a reference through | |
836 | * a sequentially read mapping as such. | |
b3ac0413 | 837 | * If the folio has been used in another mapping, |
8eaedede KS |
838 | * we will catch it; if this other mapping is |
839 | * already gone, the unmap path will have set | |
b3ac0413 | 840 | * the referenced flag or activated the folio. |
8eaedede KS |
841 | */ |
842 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
843 | referenced++; | |
844 | } | |
845 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
846 | if (pmdp_clear_flush_young_notify(vma, address, | |
847 | pvmw.pmd)) | |
8749cfea | 848 | referenced++; |
8eaedede | 849 | } else { |
b3ac0413 | 850 | /* unexpected pmd-mapped folio? */ |
8eaedede | 851 | WARN_ON_ONCE(1); |
8749cfea | 852 | } |
8eaedede KS |
853 | |
854 | pra->mapcount--; | |
b20ce5e0 | 855 | } |
b20ce5e0 | 856 | |
33c3fc71 | 857 | if (referenced) |
b3ac0413 MWO |
858 | folio_clear_idle(folio); |
859 | if (folio_test_clear_young(folio)) | |
33c3fc71 VD |
860 | referenced++; |
861 | ||
9f32624b JK |
862 | if (referenced) { |
863 | pra->referenced++; | |
47d4f3ee | 864 | pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; |
1da177e4 | 865 | } |
34bbd704 | 866 | |
9f32624b | 867 | if (!pra->mapcount) |
e4b82222 | 868 | return false; /* To break the loop */ |
9f32624b | 869 | |
e4b82222 | 870 | return true; |
1da177e4 LT |
871 | } |
872 | ||
b3ac0413 | 873 | static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 874 | { |
b3ac0413 | 875 | struct folio_referenced_arg *pra = arg; |
9f32624b | 876 | struct mem_cgroup *memcg = pra->memcg; |
1da177e4 | 877 | |
9f32624b JK |
878 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
879 | return true; | |
1da177e4 | 880 | |
9f32624b | 881 | return false; |
1da177e4 LT |
882 | } |
883 | ||
884 | /** | |
b3ac0413 MWO |
885 | * folio_referenced() - Test if the folio was referenced. |
886 | * @folio: The folio to test. | |
887 | * @is_locked: Caller holds lock on the folio. | |
72835c86 | 888 | * @memcg: target memory cgroup |
b3ac0413 | 889 | * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. |
1da177e4 | 890 | * |
b3ac0413 MWO |
891 | * Quick test_and_clear_referenced for all mappings of a folio, |
892 | * | |
6d4675e6 MK |
893 | * Return: The number of mappings which referenced the folio. Return -1 if |
894 | * the function bailed out due to rmap lock contention. | |
1da177e4 | 895 | */ |
b3ac0413 MWO |
896 | int folio_referenced(struct folio *folio, int is_locked, |
897 | struct mem_cgroup *memcg, unsigned long *vm_flags) | |
1da177e4 | 898 | { |
5ad64688 | 899 | int we_locked = 0; |
b3ac0413 MWO |
900 | struct folio_referenced_arg pra = { |
901 | .mapcount = folio_mapcount(folio), | |
9f32624b JK |
902 | .memcg = memcg, |
903 | }; | |
904 | struct rmap_walk_control rwc = { | |
b3ac0413 | 905 | .rmap_one = folio_referenced_one, |
9f32624b | 906 | .arg = (void *)&pra, |
2f031c6f | 907 | .anon_lock = folio_lock_anon_vma_read, |
6d4675e6 | 908 | .try_lock = true, |
9f32624b | 909 | }; |
1da177e4 | 910 | |
6fe6b7e3 | 911 | *vm_flags = 0; |
059d8442 | 912 | if (!pra.mapcount) |
9f32624b JK |
913 | return 0; |
914 | ||
b3ac0413 | 915 | if (!folio_raw_mapping(folio)) |
9f32624b JK |
916 | return 0; |
917 | ||
b3ac0413 MWO |
918 | if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { |
919 | we_locked = folio_trylock(folio); | |
9f32624b JK |
920 | if (!we_locked) |
921 | return 1; | |
1da177e4 | 922 | } |
9f32624b JK |
923 | |
924 | /* | |
925 | * If we are reclaiming on behalf of a cgroup, skip | |
926 | * counting on behalf of references from different | |
927 | * cgroups | |
928 | */ | |
929 | if (memcg) { | |
b3ac0413 | 930 | rwc.invalid_vma = invalid_folio_referenced_vma; |
9f32624b JK |
931 | } |
932 | ||
2f031c6f | 933 | rmap_walk(folio, &rwc); |
9f32624b JK |
934 | *vm_flags = pra.vm_flags; |
935 | ||
936 | if (we_locked) | |
b3ac0413 | 937 | folio_unlock(folio); |
9f32624b | 938 | |
6d4675e6 | 939 | return rwc.contended ? -1 : pra.referenced; |
1da177e4 LT |
940 | } |
941 | ||
6a8e0596 | 942 | static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) |
d08b3851 | 943 | { |
6a8e0596 MS |
944 | int cleaned = 0; |
945 | struct vm_area_struct *vma = pvmw->vma; | |
ac46d4f3 | 946 | struct mmu_notifier_range range; |
6a8e0596 | 947 | unsigned long address = pvmw->address; |
d08b3851 | 948 | |
369ea824 JG |
949 | /* |
950 | * We have to assume the worse case ie pmd for invalidation. Note that | |
e83c09a2 | 951 | * the folio can not be freed from this function. |
369ea824 | 952 | */ |
7269f999 JG |
953 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
954 | 0, vma, vma->vm_mm, address, | |
6a8e0596 | 955 | vma_address_end(pvmw)); |
ac46d4f3 | 956 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 957 | |
6a8e0596 | 958 | while (page_vma_mapped_walk(pvmw)) { |
f27176cf | 959 | int ret = 0; |
369ea824 | 960 | |
6a8e0596 MS |
961 | address = pvmw->address; |
962 | if (pvmw->pte) { | |
f27176cf | 963 | pte_t entry; |
6a8e0596 | 964 | pte_t *pte = pvmw->pte; |
f27176cf KS |
965 | |
966 | if (!pte_dirty(*pte) && !pte_write(*pte)) | |
967 | continue; | |
968 | ||
785373b4 LT |
969 | flush_cache_page(vma, address, pte_pfn(*pte)); |
970 | entry = ptep_clear_flush(vma, address, pte); | |
f27176cf KS |
971 | entry = pte_wrprotect(entry); |
972 | entry = pte_mkclean(entry); | |
785373b4 | 973 | set_pte_at(vma->vm_mm, address, pte, entry); |
f27176cf KS |
974 | ret = 1; |
975 | } else { | |
396bcc52 | 976 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6a8e0596 | 977 | pmd_t *pmd = pvmw->pmd; |
f27176cf KS |
978 | pmd_t entry; |
979 | ||
980 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
981 | continue; | |
982 | ||
7f9c9b60 MS |
983 | flush_cache_range(vma, address, |
984 | address + HPAGE_PMD_SIZE); | |
024eee0e | 985 | entry = pmdp_invalidate(vma, address, pmd); |
f27176cf KS |
986 | entry = pmd_wrprotect(entry); |
987 | entry = pmd_mkclean(entry); | |
785373b4 | 988 | set_pmd_at(vma->vm_mm, address, pmd, entry); |
f27176cf KS |
989 | ret = 1; |
990 | #else | |
e83c09a2 | 991 | /* unexpected pmd-mapped folio? */ |
f27176cf KS |
992 | WARN_ON_ONCE(1); |
993 | #endif | |
994 | } | |
d08b3851 | 995 | |
0f10851e JG |
996 | /* |
997 | * No need to call mmu_notifier_invalidate_range() as we are | |
998 | * downgrading page table protection not changing it to point | |
999 | * to a new page. | |
1000 | * | |
ee65728e | 1001 | * See Documentation/mm/mmu_notifier.rst |
0f10851e JG |
1002 | */ |
1003 | if (ret) | |
6a8e0596 | 1004 | cleaned++; |
c2fda5fe | 1005 | } |
d08b3851 | 1006 | |
ac46d4f3 | 1007 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1008 | |
6a8e0596 MS |
1009 | return cleaned; |
1010 | } | |
1011 | ||
1012 | static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, | |
1013 | unsigned long address, void *arg) | |
1014 | { | |
1015 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); | |
1016 | int *cleaned = arg; | |
1017 | ||
1018 | *cleaned += page_vma_mkclean_one(&pvmw); | |
1019 | ||
e4b82222 | 1020 | return true; |
d08b3851 PZ |
1021 | } |
1022 | ||
9853a407 | 1023 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 1024 | { |
9853a407 | 1025 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 1026 | return false; |
d08b3851 | 1027 | |
871beb8c | 1028 | return true; |
d08b3851 PZ |
1029 | } |
1030 | ||
d9c08e22 | 1031 | int folio_mkclean(struct folio *folio) |
d08b3851 | 1032 | { |
9853a407 JK |
1033 | int cleaned = 0; |
1034 | struct address_space *mapping; | |
1035 | struct rmap_walk_control rwc = { | |
1036 | .arg = (void *)&cleaned, | |
1037 | .rmap_one = page_mkclean_one, | |
1038 | .invalid_vma = invalid_mkclean_vma, | |
1039 | }; | |
d08b3851 | 1040 | |
d9c08e22 | 1041 | BUG_ON(!folio_test_locked(folio)); |
d08b3851 | 1042 | |
d9c08e22 | 1043 | if (!folio_mapped(folio)) |
9853a407 JK |
1044 | return 0; |
1045 | ||
d9c08e22 | 1046 | mapping = folio_mapping(folio); |
9853a407 JK |
1047 | if (!mapping) |
1048 | return 0; | |
1049 | ||
2f031c6f | 1050 | rmap_walk(folio, &rwc); |
d08b3851 | 1051 | |
9853a407 | 1052 | return cleaned; |
d08b3851 | 1053 | } |
d9c08e22 | 1054 | EXPORT_SYMBOL_GPL(folio_mkclean); |
d08b3851 | 1055 | |
6a8e0596 MS |
1056 | /** |
1057 | * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of | |
1058 | * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) | |
1059 | * within the @vma of shared mappings. And since clean PTEs | |
1060 | * should also be readonly, write protects them too. | |
1061 | * @pfn: start pfn. | |
1062 | * @nr_pages: number of physically contiguous pages srarting with @pfn. | |
1063 | * @pgoff: page offset that the @pfn mapped with. | |
1064 | * @vma: vma that @pfn mapped within. | |
1065 | * | |
1066 | * Returns the number of cleaned PTEs (including PMDs). | |
1067 | */ | |
1068 | int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, | |
1069 | struct vm_area_struct *vma) | |
1070 | { | |
1071 | struct page_vma_mapped_walk pvmw = { | |
1072 | .pfn = pfn, | |
1073 | .nr_pages = nr_pages, | |
1074 | .pgoff = pgoff, | |
1075 | .vma = vma, | |
1076 | .flags = PVMW_SYNC, | |
1077 | }; | |
1078 | ||
1079 | if (invalid_mkclean_vma(vma, NULL)) | |
1080 | return 0; | |
1081 | ||
1082 | pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); | |
1083 | VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); | |
1084 | ||
1085 | return page_vma_mkclean_one(&pvmw); | |
1086 | } | |
1087 | ||
c44b6743 RR |
1088 | /** |
1089 | * page_move_anon_rmap - move a page to our anon_vma | |
1090 | * @page: the page to move to our anon_vma | |
1091 | * @vma: the vma the page belongs to | |
c44b6743 RR |
1092 | * |
1093 | * When a page belongs exclusively to one process after a COW event, | |
1094 | * that page can be moved into the anon_vma that belongs to just that | |
1095 | * process, so the rmap code will not search the parent or sibling | |
1096 | * processes. | |
1097 | */ | |
5a49973d | 1098 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 | 1099 | { |
595af4c9 MWO |
1100 | void *anon_vma = vma->anon_vma; |
1101 | struct folio *folio = page_folio(page); | |
5a49973d | 1102 | |
595af4c9 | 1103 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
81d1b09c | 1104 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 | 1105 | |
595af4c9 | 1106 | anon_vma += PAGE_MAPPING_ANON; |
414e2fb8 VD |
1107 | /* |
1108 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
b3ac0413 MWO |
1109 | * simultaneously, so a concurrent reader (eg folio_referenced()'s |
1110 | * folio_test_anon()) will not see one without the other. | |
414e2fb8 | 1111 | */ |
595af4c9 MWO |
1112 | WRITE_ONCE(folio->mapping, anon_vma); |
1113 | SetPageAnonExclusive(page); | |
c44b6743 RR |
1114 | } |
1115 | ||
9617d95e | 1116 | /** |
4e1c1975 | 1117 | * __page_set_anon_rmap - set up new anonymous rmap |
451b9514 | 1118 | * @page: Page or Hugepage to add to rmap |
4e1c1975 AK |
1119 | * @vma: VM area to add page to. |
1120 | * @address: User virtual address of the mapping | |
e8a03feb | 1121 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1122 | */ |
1123 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1124 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1125 | { |
e8a03feb | 1126 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1127 | |
e8a03feb | 1128 | BUG_ON(!anon_vma); |
ea90002b | 1129 | |
4e1c1975 | 1130 | if (PageAnon(page)) |
6c287605 | 1131 | goto out; |
4e1c1975 | 1132 | |
ea90002b | 1133 | /* |
e8a03feb RR |
1134 | * If the page isn't exclusively mapped into this vma, |
1135 | * we must use the _oldest_ possible anon_vma for the | |
1136 | * page mapping! | |
ea90002b | 1137 | */ |
4e1c1975 | 1138 | if (!exclusive) |
288468c3 | 1139 | anon_vma = anon_vma->root; |
9617d95e | 1140 | |
16f5e707 AS |
1141 | /* |
1142 | * page_idle does a lockless/optimistic rmap scan on page->mapping. | |
1143 | * Make sure the compiler doesn't split the stores of anon_vma and | |
1144 | * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code | |
1145 | * could mistake the mapping for a struct address_space and crash. | |
1146 | */ | |
9617d95e | 1147 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
16f5e707 | 1148 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); |
9617d95e | 1149 | page->index = linear_page_index(vma, address); |
6c287605 DH |
1150 | out: |
1151 | if (exclusive) | |
1152 | SetPageAnonExclusive(page); | |
9617d95e NP |
1153 | } |
1154 | ||
c97a9e10 | 1155 | /** |
43d8eac4 | 1156 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1157 | * @page: the page to add the mapping to |
1158 | * @vma: the vm area in which the mapping is added | |
1159 | * @address: the user virtual address mapped | |
1160 | */ | |
1161 | static void __page_check_anon_rmap(struct page *page, | |
1162 | struct vm_area_struct *vma, unsigned long address) | |
1163 | { | |
e05b3453 | 1164 | struct folio *folio = page_folio(page); |
c97a9e10 NP |
1165 | /* |
1166 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1167 | * be set up correctly at this point. | |
1168 | * | |
1169 | * We have exclusion against page_add_anon_rmap because the caller | |
90aaca85 | 1170 | * always holds the page locked. |
c97a9e10 NP |
1171 | * |
1172 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1173 | * are initially only visible via the pagetables, and the pte is locked | |
1174 | * over the call to page_add_new_anon_rmap. | |
1175 | */ | |
e05b3453 MWO |
1176 | VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, |
1177 | folio); | |
30c46382 YS |
1178 | VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), |
1179 | page); | |
c97a9e10 NP |
1180 | } |
1181 | ||
1da177e4 LT |
1182 | /** |
1183 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1184 | * @page: the page to add the mapping to | |
1185 | * @vma: the vm area in which the mapping is added | |
1186 | * @address: the user virtual address mapped | |
f1e2db12 | 1187 | * @flags: the rmap flags |
1da177e4 | 1188 | * |
5ad64688 | 1189 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1190 | * the anon_vma case: to serialize mapping,index checking after setting, |
1191 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1192 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1193 | */ |
1194 | void page_add_anon_rmap(struct page *page, | |
14f9135d | 1195 | struct vm_area_struct *vma, unsigned long address, rmap_t flags) |
1da177e4 | 1196 | { |
53f9263b KS |
1197 | bool compound = flags & RMAP_COMPOUND; |
1198 | bool first; | |
1199 | ||
be5d0a74 JW |
1200 | if (unlikely(PageKsm(page))) |
1201 | lock_page_memcg(page); | |
1202 | else | |
1203 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
1204 | ||
e9b61f19 KS |
1205 | if (compound) { |
1206 | atomic_t *mapcount; | |
53f9263b | 1207 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1208 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1209 | mapcount = compound_mapcount_ptr(page); | |
1210 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1211 | } else { |
1212 | first = atomic_inc_and_test(&page->_mapcount); | |
1213 | } | |
6c287605 DH |
1214 | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); |
1215 | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | |
53f9263b | 1216 | |
79134171 | 1217 | if (first) { |
6c357848 | 1218 | int nr = compound ? thp_nr_pages(page) : 1; |
bea04b07 JZ |
1219 | /* |
1220 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1221 | * these counters are not modified in interrupt context, and | |
1222 | * pte lock(a spinlock) is held, which implies preemption | |
1223 | * disabled. | |
1224 | */ | |
65c45377 | 1225 | if (compound) |
69473e5d | 1226 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
be5d0a74 | 1227 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
79134171 | 1228 | } |
5ad64688 | 1229 | |
cea86fe2 | 1230 | if (unlikely(PageKsm(page))) |
be5d0a74 | 1231 | unlock_page_memcg(page); |
53f9263b | 1232 | |
5dbe0af4 | 1233 | /* address might be in next vma when migration races vma_adjust */ |
cea86fe2 | 1234 | else if (first) |
d281ee61 | 1235 | __page_set_anon_rmap(page, vma, address, |
14f9135d | 1236 | !!(flags & RMAP_EXCLUSIVE)); |
69029cd5 | 1237 | else |
c97a9e10 | 1238 | __page_check_anon_rmap(page, vma, address); |
cea86fe2 HD |
1239 | |
1240 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1241 | } |
1242 | ||
43d8eac4 | 1243 | /** |
40f2bbf7 | 1244 | * page_add_new_anon_rmap - add mapping to a new anonymous page |
9617d95e NP |
1245 | * @page: the page to add the mapping to |
1246 | * @vma: the vm area in which the mapping is added | |
1247 | * @address: the user virtual address mapped | |
40f2bbf7 DH |
1248 | * |
1249 | * If it's a compound page, it is accounted as a compound page. As the page | |
1250 | * is new, it's assume to get mapped exclusively by a single process. | |
9617d95e NP |
1251 | * |
1252 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1253 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1254 | * Page does not have to be locked. |
9617d95e NP |
1255 | */ |
1256 | void page_add_new_anon_rmap(struct page *page, | |
40f2bbf7 | 1257 | struct vm_area_struct *vma, unsigned long address) |
9617d95e | 1258 | { |
40f2bbf7 | 1259 | const bool compound = PageCompound(page); |
6c357848 | 1260 | int nr = compound ? thp_nr_pages(page) : 1; |
d281ee61 | 1261 | |
81d1b09c | 1262 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1263 | __SetPageSwapBacked(page); |
d281ee61 KS |
1264 | if (compound) { |
1265 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1266 | /* increment count (starts at -1) */ |
1267 | atomic_set(compound_mapcount_ptr(page), 0); | |
5232c63f | 1268 | atomic_set(compound_pincount_ptr(page), 0); |
47e29d32 | 1269 | |
69473e5d | 1270 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
53f9263b | 1271 | } else { |
53f9263b KS |
1272 | /* increment count (starts at -1) */ |
1273 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1274 | } |
be5d0a74 | 1275 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
e8a03feb | 1276 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1277 | } |
1278 | ||
1da177e4 LT |
1279 | /** |
1280 | * page_add_file_rmap - add pte mapping to a file page | |
cea86fe2 HD |
1281 | * @page: the page to add the mapping to |
1282 | * @vma: the vm area in which the mapping is added | |
1283 | * @compound: charge the page as compound or small page | |
1da177e4 | 1284 | * |
b8072f09 | 1285 | * The caller needs to hold the pte lock. |
1da177e4 | 1286 | */ |
cea86fe2 HD |
1287 | void page_add_file_rmap(struct page *page, |
1288 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1289 | { |
5d543f13 | 1290 | int i, nr = 0; |
dd78fedd KS |
1291 | |
1292 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1293 | lock_page_memcg(page); |
dd78fedd | 1294 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1295 | int nr_pages = thp_nr_pages(page); |
1296 | ||
5d543f13 | 1297 | for (i = 0; i < nr_pages; i++) { |
dd78fedd KS |
1298 | if (atomic_inc_and_test(&page[i]._mapcount)) |
1299 | nr++; | |
1300 | } | |
1301 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1302 | goto out; | |
bd55b0c2 HD |
1303 | |
1304 | /* | |
1305 | * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); | |
1306 | * but page lock is held by all page_add_file_rmap() compound | |
1307 | * callers, and SetPageDoubleMap below warns if !PageLocked: | |
1308 | * so here is a place that DoubleMap can be safely cleared. | |
1309 | */ | |
1310 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
1311 | if (nr == nr_pages && PageDoubleMap(page)) | |
1312 | ClearPageDoubleMap(page); | |
1313 | ||
99cb0dbd | 1314 | if (PageSwapBacked(page)) |
a1528e21 MS |
1315 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1316 | nr_pages); | |
99cb0dbd | 1317 | else |
380780e7 MS |
1318 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1319 | nr_pages); | |
dd78fedd | 1320 | } else { |
c8efc390 KS |
1321 | if (PageTransCompound(page) && page_mapping(page)) { |
1322 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
cea86fe2 | 1323 | SetPageDoubleMap(compound_head(page)); |
9a73f61b | 1324 | } |
5d543f13 HD |
1325 | if (atomic_inc_and_test(&page->_mapcount)) |
1326 | nr++; | |
d69b042f | 1327 | } |
dd78fedd | 1328 | out: |
5d543f13 HD |
1329 | if (nr) |
1330 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); | |
62cccb8c | 1331 | unlock_page_memcg(page); |
cea86fe2 HD |
1332 | |
1333 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1334 | } |
1335 | ||
dd78fedd | 1336 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1337 | { |
5d543f13 | 1338 | int i, nr = 0; |
dd78fedd | 1339 | |
57dea93a | 1340 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
8186eb6a | 1341 | |
53f9263b KS |
1342 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1343 | if (unlikely(PageHuge(page))) { | |
1344 | /* hugetlb pages are always mapped with pmds */ | |
1345 | atomic_dec(compound_mapcount_ptr(page)); | |
be5d0a74 | 1346 | return; |
53f9263b | 1347 | } |
8186eb6a | 1348 | |
53f9263b | 1349 | /* page still mapped by someone else? */ |
dd78fedd | 1350 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1351 | int nr_pages = thp_nr_pages(page); |
1352 | ||
5d543f13 | 1353 | for (i = 0; i < nr_pages; i++) { |
dd78fedd KS |
1354 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1355 | nr++; | |
1356 | } | |
1357 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
5d543f13 | 1358 | goto out; |
99cb0dbd | 1359 | if (PageSwapBacked(page)) |
a1528e21 MS |
1360 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1361 | -nr_pages); | |
99cb0dbd | 1362 | else |
380780e7 MS |
1363 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1364 | -nr_pages); | |
dd78fedd | 1365 | } else { |
5d543f13 HD |
1366 | if (atomic_add_negative(-1, &page->_mapcount)) |
1367 | nr++; | |
dd78fedd | 1368 | } |
5d543f13 HD |
1369 | out: |
1370 | if (nr) | |
1371 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); | |
8186eb6a JW |
1372 | } |
1373 | ||
53f9263b KS |
1374 | static void page_remove_anon_compound_rmap(struct page *page) |
1375 | { | |
1376 | int i, nr; | |
1377 | ||
1378 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1379 | return; | |
1380 | ||
1381 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1382 | if (unlikely(PageHuge(page))) | |
1383 | return; | |
1384 | ||
1385 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1386 | return; | |
1387 | ||
69473e5d | 1388 | __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); |
53f9263b KS |
1389 | |
1390 | if (TestClearPageDoubleMap(page)) { | |
1391 | /* | |
1392 | * Subpages can be mapped with PTEs too. Check how many of | |
f1fe80d4 | 1393 | * them are still mapped. |
53f9263b | 1394 | */ |
5eaf35ab | 1395 | for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { |
53f9263b KS |
1396 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1397 | nr++; | |
1398 | } | |
f1fe80d4 KS |
1399 | |
1400 | /* | |
1401 | * Queue the page for deferred split if at least one small | |
1402 | * page of the compound page is unmapped, but at least one | |
1403 | * small page is still mapped. | |
1404 | */ | |
5eaf35ab | 1405 | if (nr && nr < thp_nr_pages(page)) |
f1fe80d4 | 1406 | deferred_split_huge_page(page); |
53f9263b | 1407 | } else { |
5eaf35ab | 1408 | nr = thp_nr_pages(page); |
53f9263b KS |
1409 | } |
1410 | ||
f1fe80d4 | 1411 | if (nr) |
be5d0a74 | 1412 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); |
53f9263b KS |
1413 | } |
1414 | ||
1da177e4 LT |
1415 | /** |
1416 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 | 1417 | * @page: page to remove mapping from |
cea86fe2 | 1418 | * @vma: the vm area from which the mapping is removed |
d281ee61 | 1419 | * @compound: uncharge the page as compound or small page |
1da177e4 | 1420 | * |
b8072f09 | 1421 | * The caller needs to hold the pte lock. |
1da177e4 | 1422 | */ |
cea86fe2 HD |
1423 | void page_remove_rmap(struct page *page, |
1424 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1425 | { |
be5d0a74 | 1426 | lock_page_memcg(page); |
89c06bd5 | 1427 | |
be5d0a74 JW |
1428 | if (!PageAnon(page)) { |
1429 | page_remove_file_rmap(page, compound); | |
1430 | goto out; | |
1431 | } | |
1432 | ||
1433 | if (compound) { | |
1434 | page_remove_anon_compound_rmap(page); | |
1435 | goto out; | |
1436 | } | |
53f9263b | 1437 | |
b904dcfe KM |
1438 | /* page still mapped by someone else? */ |
1439 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
be5d0a74 | 1440 | goto out; |
8186eb6a | 1441 | |
0fe6e20b | 1442 | /* |
bea04b07 JZ |
1443 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1444 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1445 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1446 | */ |
be5d0a74 | 1447 | __dec_lruvec_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1448 | |
9a982250 KS |
1449 | if (PageTransCompound(page)) |
1450 | deferred_split_huge_page(compound_head(page)); | |
1451 | ||
b904dcfe KM |
1452 | /* |
1453 | * It would be tidy to reset the PageAnon mapping here, | |
1454 | * but that might overwrite a racing page_add_anon_rmap | |
1455 | * which increments mapcount after us but sets mapping | |
2d4894b5 | 1456 | * before us: so leave the reset to free_unref_page, |
b904dcfe KM |
1457 | * and remember that it's only reliable while mapped. |
1458 | * Leaving it set also helps swapoff to reinstate ptes | |
1459 | * faster for those pages still in swapcache. | |
1460 | */ | |
be5d0a74 JW |
1461 | out: |
1462 | unlock_page_memcg(page); | |
cea86fe2 HD |
1463 | |
1464 | munlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1465 | } |
1466 | ||
1467 | /* | |
52629506 | 1468 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1469 | */ |
2f031c6f | 1470 | static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, |
52629506 | 1471 | unsigned long address, void *arg) |
1da177e4 LT |
1472 | { |
1473 | struct mm_struct *mm = vma->vm_mm; | |
869f7ee6 | 1474 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
1da177e4 | 1475 | pte_t pteval; |
c7ab0d2f | 1476 | struct page *subpage; |
6c287605 | 1477 | bool anon_exclusive, ret = true; |
ac46d4f3 | 1478 | struct mmu_notifier_range range; |
4708f318 | 1479 | enum ttu_flags flags = (enum ttu_flags)(long)arg; |
1da177e4 | 1480 | |
732ed558 HD |
1481 | /* |
1482 | * When racing against e.g. zap_pte_range() on another cpu, | |
1483 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1fb08ac6 | 1484 | * try_to_unmap() may return before page_mapped() has become false, |
732ed558 HD |
1485 | * if page table locking is skipped: use TTU_SYNC to wait for that. |
1486 | */ | |
1487 | if (flags & TTU_SYNC) | |
1488 | pvmw.flags = PVMW_SYNC; | |
1489 | ||
a98a2f0c | 1490 | if (flags & TTU_SPLIT_HUGE_PMD) |
af28a988 | 1491 | split_huge_pmd_address(vma, address, false, folio); |
fec89c10 | 1492 | |
369ea824 | 1493 | /* |
017b1660 MK |
1494 | * For THP, we have to assume the worse case ie pmd for invalidation. |
1495 | * For hugetlb, it could be much worse if we need to do pud | |
1496 | * invalidation in the case of pmd sharing. | |
1497 | * | |
869f7ee6 MWO |
1498 | * Note that the folio can not be freed in this function as call of |
1499 | * try_to_unmap() must hold a reference on the folio. | |
369ea824 | 1500 | */ |
2aff7a47 | 1501 | range.end = vma_address_end(&pvmw); |
7269f999 | 1502 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
494334e4 | 1503 | address, range.end); |
869f7ee6 | 1504 | if (folio_test_hugetlb(folio)) { |
017b1660 MK |
1505 | /* |
1506 | * If sharing is possible, start and end will be adjusted | |
1507 | * accordingly. | |
1508 | */ | |
ac46d4f3 JG |
1509 | adjust_range_if_pmd_sharing_possible(vma, &range.start, |
1510 | &range.end); | |
017b1660 | 1511 | } |
ac46d4f3 | 1512 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 1513 | |
c7ab0d2f | 1514 | while (page_vma_mapped_walk(&pvmw)) { |
cea86fe2 | 1515 | /* Unexpected PMD-mapped THP? */ |
869f7ee6 | 1516 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
cea86fe2 | 1517 | |
c7ab0d2f | 1518 | /* |
869f7ee6 | 1519 | * If the folio is in an mlock()d vma, we must not swap it out. |
c7ab0d2f | 1520 | */ |
efdb6720 HD |
1521 | if (!(flags & TTU_IGNORE_MLOCK) && |
1522 | (vma->vm_flags & VM_LOCKED)) { | |
cea86fe2 | 1523 | /* Restore the mlock which got missed */ |
869f7ee6 | 1524 | mlock_vma_folio(folio, vma, false); |
efdb6720 HD |
1525 | page_vma_mapped_walk_done(&pvmw); |
1526 | ret = false; | |
1527 | break; | |
b87537d9 | 1528 | } |
c7ab0d2f | 1529 | |
869f7ee6 MWO |
1530 | subpage = folio_page(folio, |
1531 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
785373b4 | 1532 | address = pvmw.address; |
6c287605 DH |
1533 | anon_exclusive = folio_test_anon(folio) && |
1534 | PageAnonExclusive(subpage); | |
785373b4 | 1535 | |
dfc7ab57 | 1536 | if (folio_test_hugetlb(folio)) { |
0506c31d BW |
1537 | bool anon = folio_test_anon(folio); |
1538 | ||
a00a8759 BW |
1539 | /* |
1540 | * The try_to_unmap() is only passed a hugetlb page | |
1541 | * in the case where the hugetlb page is poisoned. | |
1542 | */ | |
1543 | VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); | |
54205e9c BW |
1544 | /* |
1545 | * huge_pmd_unshare may unmap an entire PMD page. | |
1546 | * There is no way of knowing exactly which PMDs may | |
1547 | * be cached for this mm, so we must flush them all. | |
1548 | * start/end were already adjusted above to cover this | |
1549 | * range. | |
1550 | */ | |
1551 | flush_cache_range(vma, range.start, range.end); | |
1552 | ||
0506c31d BW |
1553 | /* |
1554 | * To call huge_pmd_unshare, i_mmap_rwsem must be | |
1555 | * held in write mode. Caller needs to explicitly | |
1556 | * do this outside rmap routines. | |
40549ba8 MK |
1557 | * |
1558 | * We also must hold hugetlb vma_lock in write mode. | |
1559 | * Lock order dictates acquiring vma_lock BEFORE | |
1560 | * i_mmap_rwsem. We can only try lock here and fail | |
1561 | * if unsuccessful. | |
0506c31d | 1562 | */ |
40549ba8 MK |
1563 | if (!anon) { |
1564 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | |
1565 | if (!hugetlb_vma_trylock_write(vma)) { | |
1566 | page_vma_mapped_walk_done(&pvmw); | |
1567 | ret = false; | |
1568 | break; | |
1569 | } | |
1570 | if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { | |
1571 | hugetlb_vma_unlock_write(vma); | |
1572 | flush_tlb_range(vma, | |
1573 | range.start, range.end); | |
1574 | mmu_notifier_invalidate_range(mm, | |
1575 | range.start, range.end); | |
1576 | /* | |
1577 | * The ref count of the PMD page was | |
1578 | * dropped which is part of the way map | |
1579 | * counting is done for shared PMDs. | |
1580 | * Return 'true' here. When there is | |
1581 | * no other sharing, huge_pmd_unshare | |
1582 | * returns false and we will unmap the | |
1583 | * actual page and drop map count | |
1584 | * to zero. | |
1585 | */ | |
1586 | page_vma_mapped_walk_done(&pvmw); | |
1587 | break; | |
1588 | } | |
1589 | hugetlb_vma_unlock_write(vma); | |
017b1660 | 1590 | } |
a00a8759 | 1591 | pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); |
54205e9c BW |
1592 | } else { |
1593 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
088b8aa5 DH |
1594 | /* Nuke the page table entry. */ |
1595 | if (should_defer_flush(mm, flags)) { | |
a00a8759 BW |
1596 | /* |
1597 | * We clear the PTE but do not flush so potentially | |
1598 | * a remote CPU could still be writing to the folio. | |
1599 | * If the entry was previously clean then the | |
1600 | * architecture must guarantee that a clear->dirty | |
1601 | * transition on a cached TLB entry is written through | |
1602 | * and traps if the PTE is unmapped. | |
1603 | */ | |
1604 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); | |
c7ab0d2f | 1605 | |
a00a8759 BW |
1606 | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); |
1607 | } else { | |
1608 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
1609 | } | |
c7ab0d2f | 1610 | } |
72b252ae | 1611 | |
999dad82 PX |
1612 | /* |
1613 | * Now the pte is cleared. If this pte was uffd-wp armed, | |
1614 | * we may want to replace a none pte with a marker pte if | |
1615 | * it's file-backed, so we don't lose the tracking info. | |
1616 | */ | |
1617 | pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); | |
1618 | ||
869f7ee6 | 1619 | /* Set the dirty flag on the folio now the pte is gone. */ |
c7ab0d2f | 1620 | if (pte_dirty(pteval)) |
869f7ee6 | 1621 | folio_mark_dirty(folio); |
1da177e4 | 1622 | |
c7ab0d2f KS |
1623 | /* Update high watermark before we lower rss */ |
1624 | update_hiwater_rss(mm); | |
1da177e4 | 1625 | |
da358d5c | 1626 | if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { |
5fd27b8e | 1627 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
869f7ee6 MWO |
1628 | if (folio_test_hugetlb(folio)) { |
1629 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
18f39629 | 1630 | set_huge_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1631 | } else { |
869f7ee6 | 1632 | dec_mm_counter(mm, mm_counter(&folio->page)); |
785373b4 | 1633 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1634 | } |
365e9c87 | 1635 | |
bce73e48 | 1636 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { |
c7ab0d2f KS |
1637 | /* |
1638 | * The guest indicated that the page content is of no | |
1639 | * interest anymore. Simply discard the pte, vmscan | |
1640 | * will take care of the rest. | |
bce73e48 CB |
1641 | * A future reference will then fault in a new zero |
1642 | * page. When userfaultfd is active, we must not drop | |
1643 | * this page though, as its main user (postcopy | |
1644 | * migration) will not expect userfaults on already | |
1645 | * copied pages. | |
c7ab0d2f | 1646 | */ |
869f7ee6 | 1647 | dec_mm_counter(mm, mm_counter(&folio->page)); |
0f10851e JG |
1648 | /* We have to invalidate as we cleared the pte */ |
1649 | mmu_notifier_invalidate_range(mm, address, | |
1650 | address + PAGE_SIZE); | |
869f7ee6 | 1651 | } else if (folio_test_anon(folio)) { |
c7ab0d2f KS |
1652 | swp_entry_t entry = { .val = page_private(subpage) }; |
1653 | pte_t swp_pte; | |
1654 | /* | |
1655 | * Store the swap location in the pte. | |
1656 | * See handle_pte_fault() ... | |
1657 | */ | |
869f7ee6 MWO |
1658 | if (unlikely(folio_test_swapbacked(folio) != |
1659 | folio_test_swapcache(folio))) { | |
eb94a878 | 1660 | WARN_ON_ONCE(1); |
83612a94 | 1661 | ret = false; |
369ea824 | 1662 | /* We have to invalidate as we cleared the pte */ |
0f10851e JG |
1663 | mmu_notifier_invalidate_range(mm, address, |
1664 | address + PAGE_SIZE); | |
eb94a878 MK |
1665 | page_vma_mapped_walk_done(&pvmw); |
1666 | break; | |
1667 | } | |
c7ab0d2f | 1668 | |
802a3a92 | 1669 | /* MADV_FREE page check */ |
869f7ee6 | 1670 | if (!folio_test_swapbacked(folio)) { |
6c8e2a25 MFO |
1671 | int ref_count, map_count; |
1672 | ||
1673 | /* | |
1674 | * Synchronize with gup_pte_range(): | |
1675 | * - clear PTE; barrier; read refcount | |
1676 | * - inc refcount; barrier; read PTE | |
1677 | */ | |
1678 | smp_mb(); | |
1679 | ||
1680 | ref_count = folio_ref_count(folio); | |
1681 | map_count = folio_mapcount(folio); | |
1682 | ||
1683 | /* | |
1684 | * Order reads for page refcount and dirty flag | |
1685 | * (see comments in __remove_mapping()). | |
1686 | */ | |
1687 | smp_rmb(); | |
1688 | ||
1689 | /* | |
1690 | * The only page refs must be one from isolation | |
1691 | * plus the rmap(s) (dropped by discard:). | |
1692 | */ | |
1693 | if (ref_count == 1 + map_count && | |
1694 | !folio_test_dirty(folio)) { | |
0f10851e JG |
1695 | /* Invalidate as we cleared the pte */ |
1696 | mmu_notifier_invalidate_range(mm, | |
1697 | address, address + PAGE_SIZE); | |
802a3a92 SL |
1698 | dec_mm_counter(mm, MM_ANONPAGES); |
1699 | goto discard; | |
1700 | } | |
1701 | ||
1702 | /* | |
869f7ee6 | 1703 | * If the folio was redirtied, it cannot be |
802a3a92 SL |
1704 | * discarded. Remap the page to page table. |
1705 | */ | |
785373b4 | 1706 | set_pte_at(mm, address, pvmw.pte, pteval); |
869f7ee6 | 1707 | folio_set_swapbacked(folio); |
e4b82222 | 1708 | ret = false; |
802a3a92 SL |
1709 | page_vma_mapped_walk_done(&pvmw); |
1710 | break; | |
c7ab0d2f | 1711 | } |
854e9ed0 | 1712 | |
c7ab0d2f | 1713 | if (swap_duplicate(entry) < 0) { |
785373b4 | 1714 | set_pte_at(mm, address, pvmw.pte, pteval); |
e4b82222 | 1715 | ret = false; |
c7ab0d2f KS |
1716 | page_vma_mapped_walk_done(&pvmw); |
1717 | break; | |
1718 | } | |
ca827d55 | 1719 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { |
322842ea | 1720 | swap_free(entry); |
ca827d55 KA |
1721 | set_pte_at(mm, address, pvmw.pte, pteval); |
1722 | ret = false; | |
1723 | page_vma_mapped_walk_done(&pvmw); | |
1724 | break; | |
1725 | } | |
088b8aa5 DH |
1726 | |
1727 | /* See page_try_share_anon_rmap(): clear PTE first. */ | |
6c287605 DH |
1728 | if (anon_exclusive && |
1729 | page_try_share_anon_rmap(subpage)) { | |
1730 | swap_free(entry); | |
1731 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1732 | ret = false; | |
1733 | page_vma_mapped_walk_done(&pvmw); | |
1734 | break; | |
1735 | } | |
1736 | /* | |
1493a191 DH |
1737 | * Note: We *don't* remember if the page was mapped |
1738 | * exclusively in the swap pte if the architecture | |
1739 | * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In | |
1740 | * that case, swapin code has to re-determine that | |
1741 | * manually and might detect the page as possibly | |
1742 | * shared, for example, if there are other references on | |
1743 | * the page or if the page is under writeback. We made | |
1744 | * sure that there are no GUP pins on the page that | |
1745 | * would rely on it, so for GUP pins this is fine. | |
6c287605 | 1746 | */ |
c7ab0d2f KS |
1747 | if (list_empty(&mm->mmlist)) { |
1748 | spin_lock(&mmlist_lock); | |
1749 | if (list_empty(&mm->mmlist)) | |
1750 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1751 | spin_unlock(&mmlist_lock); | |
1752 | } | |
854e9ed0 | 1753 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1754 | inc_mm_counter(mm, MM_SWAPENTS); |
1755 | swp_pte = swp_entry_to_pte(entry); | |
1493a191 DH |
1756 | if (anon_exclusive) |
1757 | swp_pte = pte_swp_mkexclusive(swp_pte); | |
c7ab0d2f KS |
1758 | if (pte_soft_dirty(pteval)) |
1759 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
1760 | if (pte_uffd_wp(pteval)) |
1761 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
785373b4 | 1762 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1763 | /* Invalidate as we cleared the pte */ |
1764 | mmu_notifier_invalidate_range(mm, address, | |
1765 | address + PAGE_SIZE); | |
1766 | } else { | |
1767 | /* | |
869f7ee6 MWO |
1768 | * This is a locked file-backed folio, |
1769 | * so it cannot be removed from the page | |
1770 | * cache and replaced by a new folio before | |
1771 | * mmu_notifier_invalidate_range_end, so no | |
1772 | * concurrent thread might update its page table | |
1773 | * to point at a new folio while a device is | |
1774 | * still using this folio. | |
0f10851e | 1775 | * |
ee65728e | 1776 | * See Documentation/mm/mmu_notifier.rst |
0f10851e | 1777 | */ |
869f7ee6 | 1778 | dec_mm_counter(mm, mm_counter_file(&folio->page)); |
0f10851e | 1779 | } |
854e9ed0 | 1780 | discard: |
0f10851e JG |
1781 | /* |
1782 | * No need to call mmu_notifier_invalidate_range() it has be | |
1783 | * done above for all cases requiring it to happen under page | |
1784 | * table lock before mmu_notifier_invalidate_range_end() | |
1785 | * | |
ee65728e | 1786 | * See Documentation/mm/mmu_notifier.rst |
0f10851e | 1787 | */ |
869f7ee6 | 1788 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 1789 | if (vma->vm_flags & VM_LOCKED) |
adb11e78 | 1790 | mlock_page_drain_local(); |
869f7ee6 | 1791 | folio_put(folio); |
c7ab0d2f | 1792 | } |
369ea824 | 1793 | |
ac46d4f3 | 1794 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1795 | |
caed0f48 | 1796 | return ret; |
1da177e4 LT |
1797 | } |
1798 | ||
52629506 JK |
1799 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1800 | { | |
222100ee | 1801 | return vma_is_temporary_stack(vma); |
52629506 JK |
1802 | } |
1803 | ||
f3ad032c | 1804 | static int folio_not_mapped(struct folio *folio) |
52629506 | 1805 | { |
2f031c6f | 1806 | return !folio_mapped(folio); |
2a52bcbc | 1807 | } |
52629506 | 1808 | |
1da177e4 | 1809 | /** |
869f7ee6 MWO |
1810 | * try_to_unmap - Try to remove all page table mappings to a folio. |
1811 | * @folio: The folio to unmap. | |
14fa31b8 | 1812 | * @flags: action and flags |
1da177e4 LT |
1813 | * |
1814 | * Tries to remove all the page table entries which are mapping this | |
869f7ee6 MWO |
1815 | * folio. It is the caller's responsibility to check if the folio is |
1816 | * still mapped if needed (use TTU_SYNC to prevent accounting races). | |
1da177e4 | 1817 | * |
869f7ee6 | 1818 | * Context: Caller must hold the folio lock. |
1da177e4 | 1819 | */ |
869f7ee6 | 1820 | void try_to_unmap(struct folio *folio, enum ttu_flags flags) |
1da177e4 | 1821 | { |
52629506 JK |
1822 | struct rmap_walk_control rwc = { |
1823 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1824 | .arg = (void *)flags, |
f3ad032c | 1825 | .done = folio_not_mapped, |
2f031c6f | 1826 | .anon_lock = folio_lock_anon_vma_read, |
52629506 | 1827 | }; |
1da177e4 | 1828 | |
a98a2f0c | 1829 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 1830 | rmap_walk_locked(folio, &rwc); |
a98a2f0c | 1831 | else |
2f031c6f | 1832 | rmap_walk(folio, &rwc); |
a98a2f0c AP |
1833 | } |
1834 | ||
1835 | /* | |
1836 | * @arg: enum ttu_flags will be passed to this argument. | |
1837 | * | |
1838 | * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs | |
64b586d1 | 1839 | * containing migration entries. |
a98a2f0c | 1840 | */ |
2f031c6f | 1841 | static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, |
a98a2f0c AP |
1842 | unsigned long address, void *arg) |
1843 | { | |
1844 | struct mm_struct *mm = vma->vm_mm; | |
4b8554c5 | 1845 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
a98a2f0c AP |
1846 | pte_t pteval; |
1847 | struct page *subpage; | |
6c287605 | 1848 | bool anon_exclusive, ret = true; |
a98a2f0c AP |
1849 | struct mmu_notifier_range range; |
1850 | enum ttu_flags flags = (enum ttu_flags)(long)arg; | |
1851 | ||
a98a2f0c AP |
1852 | /* |
1853 | * When racing against e.g. zap_pte_range() on another cpu, | |
1854 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1855 | * try_to_migrate() may return before page_mapped() has become false, | |
1856 | * if page table locking is skipped: use TTU_SYNC to wait for that. | |
1857 | */ | |
1858 | if (flags & TTU_SYNC) | |
1859 | pvmw.flags = PVMW_SYNC; | |
1860 | ||
1861 | /* | |
1862 | * unmap_page() in mm/huge_memory.c is the only user of migration with | |
1863 | * TTU_SPLIT_HUGE_PMD and it wants to freeze. | |
1864 | */ | |
1865 | if (flags & TTU_SPLIT_HUGE_PMD) | |
af28a988 | 1866 | split_huge_pmd_address(vma, address, true, folio); |
a98a2f0c AP |
1867 | |
1868 | /* | |
1869 | * For THP, we have to assume the worse case ie pmd for invalidation. | |
1870 | * For hugetlb, it could be much worse if we need to do pud | |
1871 | * invalidation in the case of pmd sharing. | |
1872 | * | |
1873 | * Note that the page can not be free in this function as call of | |
1874 | * try_to_unmap() must hold a reference on the page. | |
1875 | */ | |
2aff7a47 | 1876 | range.end = vma_address_end(&pvmw); |
a98a2f0c AP |
1877 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
1878 | address, range.end); | |
4b8554c5 | 1879 | if (folio_test_hugetlb(folio)) { |
a98a2f0c AP |
1880 | /* |
1881 | * If sharing is possible, start and end will be adjusted | |
1882 | * accordingly. | |
1883 | */ | |
1884 | adjust_range_if_pmd_sharing_possible(vma, &range.start, | |
1885 | &range.end); | |
1886 | } | |
1887 | mmu_notifier_invalidate_range_start(&range); | |
1888 | ||
1889 | while (page_vma_mapped_walk(&pvmw)) { | |
1890 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | |
1891 | /* PMD-mapped THP migration entry */ | |
1892 | if (!pvmw.pte) { | |
4b8554c5 MWO |
1893 | subpage = folio_page(folio, |
1894 | pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); | |
1895 | VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || | |
1896 | !folio_test_pmd_mappable(folio), folio); | |
a98a2f0c | 1897 | |
7f5abe60 DH |
1898 | if (set_pmd_migration_entry(&pvmw, subpage)) { |
1899 | ret = false; | |
1900 | page_vma_mapped_walk_done(&pvmw); | |
1901 | break; | |
1902 | } | |
a98a2f0c AP |
1903 | continue; |
1904 | } | |
1905 | #endif | |
1906 | ||
1907 | /* Unexpected PMD-mapped THP? */ | |
4b8554c5 | 1908 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
a98a2f0c | 1909 | |
1118234e DH |
1910 | if (folio_is_zone_device(folio)) { |
1911 | /* | |
1912 | * Our PTE is a non-present device exclusive entry and | |
1913 | * calculating the subpage as for the common case would | |
1914 | * result in an invalid pointer. | |
1915 | * | |
1916 | * Since only PAGE_SIZE pages can currently be | |
1917 | * migrated, just set it to page. This will need to be | |
1918 | * changed when hugepage migrations to device private | |
1919 | * memory are supported. | |
1920 | */ | |
1921 | VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); | |
1922 | subpage = &folio->page; | |
1923 | } else { | |
1924 | subpage = folio_page(folio, | |
1925 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
1926 | } | |
a98a2f0c | 1927 | address = pvmw.address; |
6c287605 DH |
1928 | anon_exclusive = folio_test_anon(folio) && |
1929 | PageAnonExclusive(subpage); | |
a98a2f0c | 1930 | |
dfc7ab57 | 1931 | if (folio_test_hugetlb(folio)) { |
0506c31d BW |
1932 | bool anon = folio_test_anon(folio); |
1933 | ||
54205e9c BW |
1934 | /* |
1935 | * huge_pmd_unshare may unmap an entire PMD page. | |
1936 | * There is no way of knowing exactly which PMDs may | |
1937 | * be cached for this mm, so we must flush them all. | |
1938 | * start/end were already adjusted above to cover this | |
1939 | * range. | |
1940 | */ | |
1941 | flush_cache_range(vma, range.start, range.end); | |
1942 | ||
0506c31d BW |
1943 | /* |
1944 | * To call huge_pmd_unshare, i_mmap_rwsem must be | |
1945 | * held in write mode. Caller needs to explicitly | |
1946 | * do this outside rmap routines. | |
40549ba8 MK |
1947 | * |
1948 | * We also must hold hugetlb vma_lock in write mode. | |
1949 | * Lock order dictates acquiring vma_lock BEFORE | |
1950 | * i_mmap_rwsem. We can only try lock here and | |
1951 | * fail if unsuccessful. | |
0506c31d | 1952 | */ |
40549ba8 MK |
1953 | if (!anon) { |
1954 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | |
1955 | if (!hugetlb_vma_trylock_write(vma)) { | |
1956 | page_vma_mapped_walk_done(&pvmw); | |
1957 | ret = false; | |
1958 | break; | |
1959 | } | |
1960 | if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { | |
1961 | hugetlb_vma_unlock_write(vma); | |
1962 | flush_tlb_range(vma, | |
1963 | range.start, range.end); | |
1964 | mmu_notifier_invalidate_range(mm, | |
1965 | range.start, range.end); | |
1966 | ||
1967 | /* | |
1968 | * The ref count of the PMD page was | |
1969 | * dropped which is part of the way map | |
1970 | * counting is done for shared PMDs. | |
1971 | * Return 'true' here. When there is | |
1972 | * no other sharing, huge_pmd_unshare | |
1973 | * returns false and we will unmap the | |
1974 | * actual page and drop map count | |
1975 | * to zero. | |
1976 | */ | |
1977 | page_vma_mapped_walk_done(&pvmw); | |
1978 | break; | |
1979 | } | |
1980 | hugetlb_vma_unlock_write(vma); | |
a98a2f0c | 1981 | } |
5d4af619 BW |
1982 | /* Nuke the hugetlb page table entry */ |
1983 | pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); | |
54205e9c BW |
1984 | } else { |
1985 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
5d4af619 BW |
1986 | /* Nuke the page table entry. */ |
1987 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
a98a2f0c AP |
1988 | } |
1989 | ||
4b8554c5 | 1990 | /* Set the dirty flag on the folio now the pte is gone. */ |
a98a2f0c | 1991 | if (pte_dirty(pteval)) |
4b8554c5 | 1992 | folio_mark_dirty(folio); |
a98a2f0c AP |
1993 | |
1994 | /* Update high watermark before we lower rss */ | |
1995 | update_hiwater_rss(mm); | |
1996 | ||
f25cbb7a | 1997 | if (folio_is_device_private(folio)) { |
4b8554c5 | 1998 | unsigned long pfn = folio_pfn(folio); |
a98a2f0c AP |
1999 | swp_entry_t entry; |
2000 | pte_t swp_pte; | |
2001 | ||
6c287605 DH |
2002 | if (anon_exclusive) |
2003 | BUG_ON(page_try_share_anon_rmap(subpage)); | |
2004 | ||
a98a2f0c AP |
2005 | /* |
2006 | * Store the pfn of the page in a special migration | |
2007 | * pte. do_swap_page() will wait until the migration | |
2008 | * pte is removed and then restart fault handling. | |
2009 | */ | |
3d88705c AP |
2010 | entry = pte_to_swp_entry(pteval); |
2011 | if (is_writable_device_private_entry(entry)) | |
2012 | entry = make_writable_migration_entry(pfn); | |
6c287605 DH |
2013 | else if (anon_exclusive) |
2014 | entry = make_readable_exclusive_migration_entry(pfn); | |
3d88705c AP |
2015 | else |
2016 | entry = make_readable_migration_entry(pfn); | |
a98a2f0c AP |
2017 | swp_pte = swp_entry_to_pte(entry); |
2018 | ||
2019 | /* | |
2020 | * pteval maps a zone device page and is therefore | |
2021 | * a swap pte. | |
2022 | */ | |
2023 | if (pte_swp_soft_dirty(pteval)) | |
2024 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2025 | if (pte_swp_uffd_wp(pteval)) | |
2026 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2027 | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
2028 | trace_set_migration_pte(pvmw.address, pte_val(swp_pte), |
2029 | compound_order(&folio->page)); | |
a98a2f0c AP |
2030 | /* |
2031 | * No need to invalidate here it will synchronize on | |
2032 | * against the special swap migration pte. | |
a98a2f0c | 2033 | */ |
da358d5c | 2034 | } else if (PageHWPoison(subpage)) { |
a98a2f0c | 2035 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
4b8554c5 MWO |
2036 | if (folio_test_hugetlb(folio)) { |
2037 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
18f39629 | 2038 | set_huge_pte_at(mm, address, pvmw.pte, pteval); |
a98a2f0c | 2039 | } else { |
4b8554c5 | 2040 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
2041 | set_pte_at(mm, address, pvmw.pte, pteval); |
2042 | } | |
2043 | ||
2044 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { | |
2045 | /* | |
2046 | * The guest indicated that the page content is of no | |
2047 | * interest anymore. Simply discard the pte, vmscan | |
2048 | * will take care of the rest. | |
2049 | * A future reference will then fault in a new zero | |
2050 | * page. When userfaultfd is active, we must not drop | |
2051 | * this page though, as its main user (postcopy | |
2052 | * migration) will not expect userfaults on already | |
2053 | * copied pages. | |
2054 | */ | |
4b8554c5 | 2055 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
2056 | /* We have to invalidate as we cleared the pte */ |
2057 | mmu_notifier_invalidate_range(mm, address, | |
2058 | address + PAGE_SIZE); | |
2059 | } else { | |
2060 | swp_entry_t entry; | |
2061 | pte_t swp_pte; | |
2062 | ||
2063 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | |
5d4af619 BW |
2064 | if (folio_test_hugetlb(folio)) |
2065 | set_huge_pte_at(mm, address, pvmw.pte, pteval); | |
2066 | else | |
2067 | set_pte_at(mm, address, pvmw.pte, pteval); | |
a98a2f0c AP |
2068 | ret = false; |
2069 | page_vma_mapped_walk_done(&pvmw); | |
2070 | break; | |
2071 | } | |
6c287605 DH |
2072 | VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && |
2073 | !anon_exclusive, subpage); | |
088b8aa5 DH |
2074 | |
2075 | /* See page_try_share_anon_rmap(): clear PTE first. */ | |
6c287605 DH |
2076 | if (anon_exclusive && |
2077 | page_try_share_anon_rmap(subpage)) { | |
5d4af619 BW |
2078 | if (folio_test_hugetlb(folio)) |
2079 | set_huge_pte_at(mm, address, pvmw.pte, pteval); | |
2080 | else | |
2081 | set_pte_at(mm, address, pvmw.pte, pteval); | |
6c287605 DH |
2082 | ret = false; |
2083 | page_vma_mapped_walk_done(&pvmw); | |
2084 | break; | |
2085 | } | |
a98a2f0c AP |
2086 | |
2087 | /* | |
2088 | * Store the pfn of the page in a special migration | |
2089 | * pte. do_swap_page() will wait until the migration | |
2090 | * pte is removed and then restart fault handling. | |
2091 | */ | |
2092 | if (pte_write(pteval)) | |
2093 | entry = make_writable_migration_entry( | |
2094 | page_to_pfn(subpage)); | |
6c287605 DH |
2095 | else if (anon_exclusive) |
2096 | entry = make_readable_exclusive_migration_entry( | |
2097 | page_to_pfn(subpage)); | |
a98a2f0c AP |
2098 | else |
2099 | entry = make_readable_migration_entry( | |
2100 | page_to_pfn(subpage)); | |
2e346877 PX |
2101 | if (pte_young(pteval)) |
2102 | entry = make_migration_entry_young(entry); | |
2103 | if (pte_dirty(pteval)) | |
2104 | entry = make_migration_entry_dirty(entry); | |
a98a2f0c AP |
2105 | swp_pte = swp_entry_to_pte(entry); |
2106 | if (pte_soft_dirty(pteval)) | |
2107 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2108 | if (pte_uffd_wp(pteval)) | |
2109 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
5d4af619 | 2110 | if (folio_test_hugetlb(folio)) |
18f39629 | 2111 | set_huge_pte_at(mm, address, pvmw.pte, swp_pte); |
5d4af619 BW |
2112 | else |
2113 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
2114 | trace_set_migration_pte(address, pte_val(swp_pte), |
2115 | compound_order(&folio->page)); | |
a98a2f0c AP |
2116 | /* |
2117 | * No need to invalidate here it will synchronize on | |
2118 | * against the special swap migration pte. | |
2119 | */ | |
2120 | } | |
2121 | ||
2122 | /* | |
2123 | * No need to call mmu_notifier_invalidate_range() it has be | |
2124 | * done above for all cases requiring it to happen under page | |
2125 | * table lock before mmu_notifier_invalidate_range_end() | |
2126 | * | |
ee65728e | 2127 | * See Documentation/mm/mmu_notifier.rst |
a98a2f0c | 2128 | */ |
4b8554c5 | 2129 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 2130 | if (vma->vm_flags & VM_LOCKED) |
adb11e78 | 2131 | mlock_page_drain_local(); |
4b8554c5 | 2132 | folio_put(folio); |
a98a2f0c AP |
2133 | } |
2134 | ||
2135 | mmu_notifier_invalidate_range_end(&range); | |
2136 | ||
2137 | return ret; | |
2138 | } | |
2139 | ||
2140 | /** | |
2141 | * try_to_migrate - try to replace all page table mappings with swap entries | |
4b8554c5 | 2142 | * @folio: the folio to replace page table entries for |
a98a2f0c AP |
2143 | * @flags: action and flags |
2144 | * | |
4b8554c5 MWO |
2145 | * Tries to remove all the page table entries which are mapping this folio and |
2146 | * replace them with special swap entries. Caller must hold the folio lock. | |
a98a2f0c | 2147 | */ |
4b8554c5 | 2148 | void try_to_migrate(struct folio *folio, enum ttu_flags flags) |
a98a2f0c AP |
2149 | { |
2150 | struct rmap_walk_control rwc = { | |
2151 | .rmap_one = try_to_migrate_one, | |
2152 | .arg = (void *)flags, | |
f3ad032c | 2153 | .done = folio_not_mapped, |
2f031c6f | 2154 | .anon_lock = folio_lock_anon_vma_read, |
a98a2f0c AP |
2155 | }; |
2156 | ||
2157 | /* | |
2158 | * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and | |
2159 | * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. | |
2160 | */ | |
2161 | if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | | |
2162 | TTU_SYNC))) | |
2163 | return; | |
2164 | ||
f25cbb7a AS |
2165 | if (folio_is_zone_device(folio) && |
2166 | (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) | |
6c855fce HD |
2167 | return; |
2168 | ||
52629506 JK |
2169 | /* |
2170 | * During exec, a temporary VMA is setup and later moved. | |
2171 | * The VMA is moved under the anon_vma lock but not the | |
2172 | * page tables leading to a race where migration cannot | |
2173 | * find the migration ptes. Rather than increasing the | |
2174 | * locking requirements of exec(), migration skips | |
2175 | * temporary VMAs until after exec() completes. | |
2176 | */ | |
4b8554c5 | 2177 | if (!folio_test_ksm(folio) && folio_test_anon(folio)) |
52629506 JK |
2178 | rwc.invalid_vma = invalid_migration_vma; |
2179 | ||
2a52bcbc | 2180 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 2181 | rmap_walk_locked(folio, &rwc); |
2a52bcbc | 2182 | else |
2f031c6f | 2183 | rmap_walk(folio, &rwc); |
b291f000 | 2184 | } |
e9995ef9 | 2185 | |
b756a3b5 AP |
2186 | #ifdef CONFIG_DEVICE_PRIVATE |
2187 | struct make_exclusive_args { | |
2188 | struct mm_struct *mm; | |
2189 | unsigned long address; | |
2190 | void *owner; | |
2191 | bool valid; | |
2192 | }; | |
2193 | ||
2f031c6f | 2194 | static bool page_make_device_exclusive_one(struct folio *folio, |
b756a3b5 AP |
2195 | struct vm_area_struct *vma, unsigned long address, void *priv) |
2196 | { | |
2197 | struct mm_struct *mm = vma->vm_mm; | |
0d251485 | 2198 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
b756a3b5 AP |
2199 | struct make_exclusive_args *args = priv; |
2200 | pte_t pteval; | |
2201 | struct page *subpage; | |
2202 | bool ret = true; | |
2203 | struct mmu_notifier_range range; | |
2204 | swp_entry_t entry; | |
2205 | pte_t swp_pte; | |
2206 | ||
2207 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, | |
2208 | vma->vm_mm, address, min(vma->vm_end, | |
0d251485 MWO |
2209 | address + folio_size(folio)), |
2210 | args->owner); | |
b756a3b5 AP |
2211 | mmu_notifier_invalidate_range_start(&range); |
2212 | ||
2213 | while (page_vma_mapped_walk(&pvmw)) { | |
2214 | /* Unexpected PMD-mapped THP? */ | |
0d251485 | 2215 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
b756a3b5 AP |
2216 | |
2217 | if (!pte_present(*pvmw.pte)) { | |
2218 | ret = false; | |
2219 | page_vma_mapped_walk_done(&pvmw); | |
2220 | break; | |
2221 | } | |
2222 | ||
0d251485 MWO |
2223 | subpage = folio_page(folio, |
2224 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
b756a3b5 AP |
2225 | address = pvmw.address; |
2226 | ||
2227 | /* Nuke the page table entry. */ | |
2228 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
2229 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
2230 | ||
0d251485 | 2231 | /* Set the dirty flag on the folio now the pte is gone. */ |
b756a3b5 | 2232 | if (pte_dirty(pteval)) |
0d251485 | 2233 | folio_mark_dirty(folio); |
b756a3b5 AP |
2234 | |
2235 | /* | |
2236 | * Check that our target page is still mapped at the expected | |
2237 | * address. | |
2238 | */ | |
2239 | if (args->mm == mm && args->address == address && | |
2240 | pte_write(pteval)) | |
2241 | args->valid = true; | |
2242 | ||
2243 | /* | |
2244 | * Store the pfn of the page in a special migration | |
2245 | * pte. do_swap_page() will wait until the migration | |
2246 | * pte is removed and then restart fault handling. | |
2247 | */ | |
2248 | if (pte_write(pteval)) | |
2249 | entry = make_writable_device_exclusive_entry( | |
2250 | page_to_pfn(subpage)); | |
2251 | else | |
2252 | entry = make_readable_device_exclusive_entry( | |
2253 | page_to_pfn(subpage)); | |
2254 | swp_pte = swp_entry_to_pte(entry); | |
2255 | if (pte_soft_dirty(pteval)) | |
2256 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2257 | if (pte_uffd_wp(pteval)) | |
2258 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2259 | ||
2260 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
2261 | ||
2262 | /* | |
2263 | * There is a reference on the page for the swap entry which has | |
2264 | * been removed, so shouldn't take another. | |
2265 | */ | |
cea86fe2 | 2266 | page_remove_rmap(subpage, vma, false); |
b756a3b5 AP |
2267 | } |
2268 | ||
2269 | mmu_notifier_invalidate_range_end(&range); | |
2270 | ||
2271 | return ret; | |
2272 | } | |
2273 | ||
2274 | /** | |
0d251485 MWO |
2275 | * folio_make_device_exclusive - Mark the folio exclusively owned by a device. |
2276 | * @folio: The folio to replace page table entries for. | |
2277 | * @mm: The mm_struct where the folio is expected to be mapped. | |
2278 | * @address: Address where the folio is expected to be mapped. | |
b756a3b5 AP |
2279 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks |
2280 | * | |
0d251485 MWO |
2281 | * Tries to remove all the page table entries which are mapping this |
2282 | * folio and replace them with special device exclusive swap entries to | |
2283 | * grant a device exclusive access to the folio. | |
b756a3b5 | 2284 | * |
0d251485 MWO |
2285 | * Context: Caller must hold the folio lock. |
2286 | * Return: false if the page is still mapped, or if it could not be unmapped | |
b756a3b5 AP |
2287 | * from the expected address. Otherwise returns true (success). |
2288 | */ | |
0d251485 MWO |
2289 | static bool folio_make_device_exclusive(struct folio *folio, |
2290 | struct mm_struct *mm, unsigned long address, void *owner) | |
b756a3b5 AP |
2291 | { |
2292 | struct make_exclusive_args args = { | |
2293 | .mm = mm, | |
2294 | .address = address, | |
2295 | .owner = owner, | |
2296 | .valid = false, | |
2297 | }; | |
2298 | struct rmap_walk_control rwc = { | |
2299 | .rmap_one = page_make_device_exclusive_one, | |
f3ad032c | 2300 | .done = folio_not_mapped, |
2f031c6f | 2301 | .anon_lock = folio_lock_anon_vma_read, |
b756a3b5 AP |
2302 | .arg = &args, |
2303 | }; | |
2304 | ||
2305 | /* | |
0d251485 MWO |
2306 | * Restrict to anonymous folios for now to avoid potential writeback |
2307 | * issues. | |
b756a3b5 | 2308 | */ |
0d251485 | 2309 | if (!folio_test_anon(folio)) |
b756a3b5 AP |
2310 | return false; |
2311 | ||
2f031c6f | 2312 | rmap_walk(folio, &rwc); |
b756a3b5 | 2313 | |
0d251485 | 2314 | return args.valid && !folio_mapcount(folio); |
b756a3b5 AP |
2315 | } |
2316 | ||
2317 | /** | |
2318 | * make_device_exclusive_range() - Mark a range for exclusive use by a device | |
dd062302 | 2319 | * @mm: mm_struct of associated target process |
b756a3b5 AP |
2320 | * @start: start of the region to mark for exclusive device access |
2321 | * @end: end address of region | |
2322 | * @pages: returns the pages which were successfully marked for exclusive access | |
2323 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering | |
2324 | * | |
2325 | * Returns: number of pages found in the range by GUP. A page is marked for | |
2326 | * exclusive access only if the page pointer is non-NULL. | |
2327 | * | |
2328 | * This function finds ptes mapping page(s) to the given address range, locks | |
2329 | * them and replaces mappings with special swap entries preventing userspace CPU | |
2330 | * access. On fault these entries are replaced with the original mapping after | |
2331 | * calling MMU notifiers. | |
2332 | * | |
2333 | * A driver using this to program access from a device must use a mmu notifier | |
2334 | * critical section to hold a device specific lock during programming. Once | |
2335 | * programming is complete it should drop the page lock and reference after | |
2336 | * which point CPU access to the page will revoke the exclusive access. | |
2337 | */ | |
2338 | int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, | |
2339 | unsigned long end, struct page **pages, | |
2340 | void *owner) | |
2341 | { | |
2342 | long npages = (end - start) >> PAGE_SHIFT; | |
2343 | long i; | |
2344 | ||
2345 | npages = get_user_pages_remote(mm, start, npages, | |
2346 | FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, | |
2347 | pages, NULL, NULL); | |
2348 | if (npages < 0) | |
2349 | return npages; | |
2350 | ||
2351 | for (i = 0; i < npages; i++, start += PAGE_SIZE) { | |
0d251485 MWO |
2352 | struct folio *folio = page_folio(pages[i]); |
2353 | if (PageTail(pages[i]) || !folio_trylock(folio)) { | |
2354 | folio_put(folio); | |
b756a3b5 AP |
2355 | pages[i] = NULL; |
2356 | continue; | |
2357 | } | |
2358 | ||
0d251485 MWO |
2359 | if (!folio_make_device_exclusive(folio, mm, start, owner)) { |
2360 | folio_unlock(folio); | |
2361 | folio_put(folio); | |
b756a3b5 AP |
2362 | pages[i] = NULL; |
2363 | } | |
2364 | } | |
2365 | ||
2366 | return npages; | |
2367 | } | |
2368 | EXPORT_SYMBOL_GPL(make_device_exclusive_range); | |
2369 | #endif | |
2370 | ||
01d8b20d | 2371 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 2372 | { |
01d8b20d | 2373 | struct anon_vma *root = anon_vma->root; |
76545066 | 2374 | |
624483f3 | 2375 | anon_vma_free(anon_vma); |
01d8b20d PZ |
2376 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
2377 | anon_vma_free(root); | |
76545066 | 2378 | } |
76545066 | 2379 | |
2f031c6f | 2380 | static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, |
6d4675e6 | 2381 | struct rmap_walk_control *rwc) |
faecd8dd JK |
2382 | { |
2383 | struct anon_vma *anon_vma; | |
2384 | ||
0dd1c7bb | 2385 | if (rwc->anon_lock) |
6d4675e6 | 2386 | return rwc->anon_lock(folio, rwc); |
0dd1c7bb | 2387 | |
faecd8dd | 2388 | /* |
2f031c6f | 2389 | * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() |
faecd8dd | 2390 | * because that depends on page_mapped(); but not all its usages |
c1e8d7c6 | 2391 | * are holding mmap_lock. Users without mmap_lock are required to |
faecd8dd JK |
2392 | * take a reference count to prevent the anon_vma disappearing |
2393 | */ | |
e05b3453 | 2394 | anon_vma = folio_anon_vma(folio); |
faecd8dd JK |
2395 | if (!anon_vma) |
2396 | return NULL; | |
2397 | ||
6d4675e6 MK |
2398 | if (anon_vma_trylock_read(anon_vma)) |
2399 | goto out; | |
2400 | ||
2401 | if (rwc->try_lock) { | |
2402 | anon_vma = NULL; | |
2403 | rwc->contended = true; | |
2404 | goto out; | |
2405 | } | |
2406 | ||
faecd8dd | 2407 | anon_vma_lock_read(anon_vma); |
6d4675e6 | 2408 | out: |
faecd8dd JK |
2409 | return anon_vma; |
2410 | } | |
2411 | ||
e9995ef9 | 2412 | /* |
e8351ac9 JK |
2413 | * rmap_walk_anon - do something to anonymous page using the object-based |
2414 | * rmap method | |
2415 | * @page: the page to be handled | |
2416 | * @rwc: control variable according to each walk type | |
2417 | * | |
2418 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2419 | * contained in the anon_vma struct it points to. | |
e9995ef9 | 2420 | */ |
84fbbe21 | 2421 | static void rmap_walk_anon(struct folio *folio, |
6d4675e6 | 2422 | struct rmap_walk_control *rwc, bool locked) |
e9995ef9 HD |
2423 | { |
2424 | struct anon_vma *anon_vma; | |
a8fa41ad | 2425 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 2426 | struct anon_vma_chain *avc; |
e9995ef9 | 2427 | |
b9773199 | 2428 | if (locked) { |
e05b3453 | 2429 | anon_vma = folio_anon_vma(folio); |
b9773199 | 2430 | /* anon_vma disappear under us? */ |
e05b3453 | 2431 | VM_BUG_ON_FOLIO(!anon_vma, folio); |
b9773199 | 2432 | } else { |
2f031c6f | 2433 | anon_vma = rmap_walk_anon_lock(folio, rwc); |
b9773199 | 2434 | } |
e9995ef9 | 2435 | if (!anon_vma) |
1df631ae | 2436 | return; |
faecd8dd | 2437 | |
2f031c6f MWO |
2438 | pgoff_start = folio_pgoff(folio); |
2439 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
a8fa41ad KS |
2440 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, |
2441 | pgoff_start, pgoff_end) { | |
5beb4930 | 2442 | struct vm_area_struct *vma = avc->vma; |
2f031c6f | 2443 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2444 | |
494334e4 | 2445 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2446 | cond_resched(); |
2447 | ||
0dd1c7bb JK |
2448 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2449 | continue; | |
2450 | ||
2f031c6f | 2451 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
e9995ef9 | 2452 | break; |
2f031c6f | 2453 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2454 | break; |
e9995ef9 | 2455 | } |
b9773199 KS |
2456 | |
2457 | if (!locked) | |
2458 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
2459 | } |
2460 | ||
e8351ac9 JK |
2461 | /* |
2462 | * rmap_walk_file - do something to file page using the object-based rmap method | |
2463 | * @page: the page to be handled | |
2464 | * @rwc: control variable according to each walk type | |
2465 | * | |
2466 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2467 | * contained in the address_space struct it points to. | |
e8351ac9 | 2468 | */ |
84fbbe21 | 2469 | static void rmap_walk_file(struct folio *folio, |
6d4675e6 | 2470 | struct rmap_walk_control *rwc, bool locked) |
e9995ef9 | 2471 | { |
2f031c6f | 2472 | struct address_space *mapping = folio_mapping(folio); |
a8fa41ad | 2473 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 2474 | struct vm_area_struct *vma; |
e9995ef9 | 2475 | |
9f32624b JK |
2476 | /* |
2477 | * The page lock not only makes sure that page->mapping cannot | |
2478 | * suddenly be NULLified by truncation, it makes sure that the | |
2479 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 2480 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 2481 | */ |
2f031c6f | 2482 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
9f32624b | 2483 | |
e9995ef9 | 2484 | if (!mapping) |
1df631ae | 2485 | return; |
3dec0ba0 | 2486 | |
2f031c6f MWO |
2487 | pgoff_start = folio_pgoff(folio); |
2488 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
6d4675e6 MK |
2489 | if (!locked) { |
2490 | if (i_mmap_trylock_read(mapping)) | |
2491 | goto lookup; | |
2492 | ||
2493 | if (rwc->try_lock) { | |
2494 | rwc->contended = true; | |
2495 | return; | |
2496 | } | |
2497 | ||
b9773199 | 2498 | i_mmap_lock_read(mapping); |
6d4675e6 MK |
2499 | } |
2500 | lookup: | |
a8fa41ad KS |
2501 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
2502 | pgoff_start, pgoff_end) { | |
2f031c6f | 2503 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2504 | |
494334e4 | 2505 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2506 | cond_resched(); |
2507 | ||
0dd1c7bb JK |
2508 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2509 | continue; | |
2510 | ||
2f031c6f | 2511 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
0dd1c7bb | 2512 | goto done; |
2f031c6f | 2513 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2514 | goto done; |
e9995ef9 | 2515 | } |
0dd1c7bb | 2516 | |
0dd1c7bb | 2517 | done: |
b9773199 KS |
2518 | if (!locked) |
2519 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
2520 | } |
2521 | ||
6d4675e6 | 2522 | void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) |
e9995ef9 | 2523 | { |
2f031c6f MWO |
2524 | if (unlikely(folio_test_ksm(folio))) |
2525 | rmap_walk_ksm(folio, rwc); | |
2526 | else if (folio_test_anon(folio)) | |
2527 | rmap_walk_anon(folio, rwc, false); | |
b9773199 | 2528 | else |
2f031c6f | 2529 | rmap_walk_file(folio, rwc, false); |
b9773199 KS |
2530 | } |
2531 | ||
2532 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
6d4675e6 | 2533 | void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) |
b9773199 KS |
2534 | { |
2535 | /* no ksm support for now */ | |
2f031c6f MWO |
2536 | VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); |
2537 | if (folio_test_anon(folio)) | |
2538 | rmap_walk_anon(folio, rwc, true); | |
e9995ef9 | 2539 | else |
2f031c6f | 2540 | rmap_walk_file(folio, rwc, true); |
e9995ef9 | 2541 | } |
0fe6e20b | 2542 | |
e3390f67 | 2543 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b | 2544 | /* |
451b9514 | 2545 | * The following two functions are for anonymous (private mapped) hugepages. |
0fe6e20b NH |
2546 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
2547 | * and no lru code, because we handle hugepages differently from common pages. | |
28c5209d DH |
2548 | * |
2549 | * RMAP_COMPOUND is ignored. | |
0fe6e20b | 2550 | */ |
28c5209d DH |
2551 | void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, |
2552 | unsigned long address, rmap_t flags) | |
0fe6e20b NH |
2553 | { |
2554 | struct anon_vma *anon_vma = vma->anon_vma; | |
2555 | int first; | |
a850ea30 NH |
2556 | |
2557 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 2558 | BUG_ON(!anon_vma); |
5dbe0af4 | 2559 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 2560 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
6c287605 DH |
2561 | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); |
2562 | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | |
0fe6e20b | 2563 | if (first) |
28c5209d DH |
2564 | __page_set_anon_rmap(page, vma, address, |
2565 | !!(flags & RMAP_EXCLUSIVE)); | |
0fe6e20b NH |
2566 | } |
2567 | ||
2568 | void hugepage_add_new_anon_rmap(struct page *page, | |
2569 | struct vm_area_struct *vma, unsigned long address) | |
2570 | { | |
2571 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 2572 | atomic_set(compound_mapcount_ptr(page), 0); |
5232c63f | 2573 | atomic_set(compound_pincount_ptr(page), 0); |
4781593d | 2574 | ClearHPageRestoreReserve(page); |
451b9514 | 2575 | __page_set_anon_rmap(page, vma, address, 1); |
0fe6e20b | 2576 | } |
e3390f67 | 2577 | #endif /* CONFIG_HUGETLB_PAGE */ |