]> Git Repo - linux.git/blame - mm/memory.c
KVM: SVM: Skip WRMSR fastpath on VM-Exit if next RIP isn't valid
[linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh ([email protected])
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * ([email protected])
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
1da177e4 80
b3d1411b
JFG
81#include <trace/events/kmem.h>
82
6952b61d 83#include <asm/io.h>
33a709b2 84#include <asm/mmu_context.h>
1da177e4 85#include <asm/pgalloc.h>
7c0f6ba6 86#include <linux/uaccess.h>
1da177e4
LT
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
1da177e4 89
e80d3909 90#include "pgalloc-track.h"
42b77728 91#include "internal.h"
014bb1de 92#include "swap.h"
42b77728 93
af27d940 94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
96#endif
97
a9ee6cf5 98#ifndef CONFIG_NUMA
1da177e4 99unsigned long max_mapnr;
1da177e4 100EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
101
102struct page *mem_map;
1da177e4
LT
103EXPORT_SYMBOL(mem_map);
104#endif
105
5c041f5d
PX
106static vm_fault_t do_fault(struct vm_fault *vmf);
107
1da177e4
LT
108/*
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113 * and ZONE_HIGHMEM.
114 */
166f61b9 115void *high_memory;
1da177e4 116EXPORT_SYMBOL(high_memory);
1da177e4 117
32a93233
IM
118/*
119 * Randomize the address space (stacks, mmaps, brk, etc.).
120 *
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
123 */
124int randomize_va_space __read_mostly =
125#ifdef CONFIG_COMPAT_BRK
126 1;
127#else
128 2;
129#endif
a62eaf15 130
46bdb427
WD
131#ifndef arch_wants_old_prefaulted_pte
132static inline bool arch_wants_old_prefaulted_pte(void)
133{
134 /*
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
138 */
139 return false;
140}
141#endif
142
a62eaf15
AK
143static int __init disable_randmaps(char *s)
144{
145 randomize_va_space = 0;
9b41046c 146 return 1;
a62eaf15
AK
147}
148__setup("norandmaps", disable_randmaps);
149
62eede62 150unsigned long zero_pfn __read_mostly;
0b70068e
AB
151EXPORT_SYMBOL(zero_pfn);
152
166f61b9
TH
153unsigned long highest_memmap_pfn __read_mostly;
154
a13ea5b7
HD
155/*
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157 */
158static int __init init_zero_pfn(void)
159{
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 return 0;
162}
e720e7d0 163early_initcall(init_zero_pfn);
a62eaf15 164
e4dcad20 165void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 166{
e4dcad20 167 trace_rss_stat(mm, member, count);
b3d1411b 168}
d559db08 169
34e55232
KH
170#if defined(SPLIT_RSS_COUNTING)
171
ea48cf78 172void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
173{
174 int i;
175
176 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
177 if (current->rss_stat.count[i]) {
178 add_mm_counter(mm, i, current->rss_stat.count[i]);
179 current->rss_stat.count[i] = 0;
34e55232
KH
180 }
181 }
05af2e10 182 current->rss_stat.events = 0;
34e55232
KH
183}
184
185static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
186{
187 struct task_struct *task = current;
188
189 if (likely(task->mm == mm))
190 task->rss_stat.count[member] += val;
191 else
192 add_mm_counter(mm, member, val);
193}
194#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
195#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
196
197/* sync counter once per 64 page faults */
198#define TASK_RSS_EVENTS_THRESH (64)
199static void check_sync_rss_stat(struct task_struct *task)
200{
201 if (unlikely(task != current))
202 return;
203 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 204 sync_mm_rss(task->mm);
34e55232 205}
9547d01b 206#else /* SPLIT_RSS_COUNTING */
34e55232
KH
207
208#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
209#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
210
211static void check_sync_rss_stat(struct task_struct *task)
212{
213}
214
9547d01b
PZ
215#endif /* SPLIT_RSS_COUNTING */
216
1da177e4
LT
217/*
218 * Note: this doesn't free the actual pages themselves. That
219 * has been handled earlier when unmapping all the memory regions.
220 */
9e1b32ca
BH
221static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
222 unsigned long addr)
1da177e4 223{
2f569afd 224 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 225 pmd_clear(pmd);
9e1b32ca 226 pte_free_tlb(tlb, token, addr);
c4812909 227 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
228}
229
e0da382c
HD
230static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
1da177e4
LT
233{
234 pmd_t *pmd;
235 unsigned long next;
e0da382c 236 unsigned long start;
1da177e4 237
e0da382c 238 start = addr;
1da177e4 239 pmd = pmd_offset(pud, addr);
1da177e4
LT
240 do {
241 next = pmd_addr_end(addr, end);
242 if (pmd_none_or_clear_bad(pmd))
243 continue;
9e1b32ca 244 free_pte_range(tlb, pmd, addr);
1da177e4
LT
245 } while (pmd++, addr = next, addr != end);
246
e0da382c
HD
247 start &= PUD_MASK;
248 if (start < floor)
249 return;
250 if (ceiling) {
251 ceiling &= PUD_MASK;
252 if (!ceiling)
253 return;
1da177e4 254 }
e0da382c
HD
255 if (end - 1 > ceiling - 1)
256 return;
257
258 pmd = pmd_offset(pud, start);
259 pud_clear(pud);
9e1b32ca 260 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 261 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
262}
263
c2febafc 264static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
1da177e4
LT
267{
268 pud_t *pud;
269 unsigned long next;
e0da382c 270 unsigned long start;
1da177e4 271
e0da382c 272 start = addr;
c2febafc 273 pud = pud_offset(p4d, addr);
1da177e4
LT
274 do {
275 next = pud_addr_end(addr, end);
276 if (pud_none_or_clear_bad(pud))
277 continue;
e0da382c 278 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
279 } while (pud++, addr = next, addr != end);
280
c2febafc
KS
281 start &= P4D_MASK;
282 if (start < floor)
283 return;
284 if (ceiling) {
285 ceiling &= P4D_MASK;
286 if (!ceiling)
287 return;
288 }
289 if (end - 1 > ceiling - 1)
290 return;
291
292 pud = pud_offset(p4d, start);
293 p4d_clear(p4d);
294 pud_free_tlb(tlb, pud, start);
b4e98d9a 295 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
296}
297
298static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
299 unsigned long addr, unsigned long end,
300 unsigned long floor, unsigned long ceiling)
301{
302 p4d_t *p4d;
303 unsigned long next;
304 unsigned long start;
305
306 start = addr;
307 p4d = p4d_offset(pgd, addr);
308 do {
309 next = p4d_addr_end(addr, end);
310 if (p4d_none_or_clear_bad(p4d))
311 continue;
312 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
313 } while (p4d++, addr = next, addr != end);
314
e0da382c
HD
315 start &= PGDIR_MASK;
316 if (start < floor)
317 return;
318 if (ceiling) {
319 ceiling &= PGDIR_MASK;
320 if (!ceiling)
321 return;
1da177e4 322 }
e0da382c
HD
323 if (end - 1 > ceiling - 1)
324 return;
325
c2febafc 326 p4d = p4d_offset(pgd, start);
e0da382c 327 pgd_clear(pgd);
c2febafc 328 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
329}
330
331/*
e0da382c 332 * This function frees user-level page tables of a process.
1da177e4 333 */
42b77728 334void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
335 unsigned long addr, unsigned long end,
336 unsigned long floor, unsigned long ceiling)
1da177e4
LT
337{
338 pgd_t *pgd;
339 unsigned long next;
e0da382c
HD
340
341 /*
342 * The next few lines have given us lots of grief...
343 *
344 * Why are we testing PMD* at this top level? Because often
345 * there will be no work to do at all, and we'd prefer not to
346 * go all the way down to the bottom just to discover that.
347 *
348 * Why all these "- 1"s? Because 0 represents both the bottom
349 * of the address space and the top of it (using -1 for the
350 * top wouldn't help much: the masks would do the wrong thing).
351 * The rule is that addr 0 and floor 0 refer to the bottom of
352 * the address space, but end 0 and ceiling 0 refer to the top
353 * Comparisons need to use "end - 1" and "ceiling - 1" (though
354 * that end 0 case should be mythical).
355 *
356 * Wherever addr is brought up or ceiling brought down, we must
357 * be careful to reject "the opposite 0" before it confuses the
358 * subsequent tests. But what about where end is brought down
359 * by PMD_SIZE below? no, end can't go down to 0 there.
360 *
361 * Whereas we round start (addr) and ceiling down, by different
362 * masks at different levels, in order to test whether a table
363 * now has no other vmas using it, so can be freed, we don't
364 * bother to round floor or end up - the tests don't need that.
365 */
1da177e4 366
e0da382c
HD
367 addr &= PMD_MASK;
368 if (addr < floor) {
369 addr += PMD_SIZE;
370 if (!addr)
371 return;
372 }
373 if (ceiling) {
374 ceiling &= PMD_MASK;
375 if (!ceiling)
376 return;
377 }
378 if (end - 1 > ceiling - 1)
379 end -= PMD_SIZE;
380 if (addr > end - 1)
381 return;
07e32661
AK
382 /*
383 * We add page table cache pages with PAGE_SIZE,
384 * (see pte_free_tlb()), flush the tlb if we need
385 */
ed6a7935 386 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 387 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
388 do {
389 next = pgd_addr_end(addr, end);
390 if (pgd_none_or_clear_bad(pgd))
391 continue;
c2febafc 392 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 393 } while (pgd++, addr = next, addr != end);
e0da382c
HD
394}
395
763ecb03
LH
396void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
397 struct vm_area_struct *vma, unsigned long floor,
398 unsigned long ceiling)
e0da382c 399{
763ecb03
LH
400 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
401
402 do {
e0da382c 403 unsigned long addr = vma->vm_start;
763ecb03
LH
404 struct vm_area_struct *next;
405
406 /*
407 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
408 * be 0. This will underflow and is okay.
409 */
410 next = mas_find(&mas, ceiling - 1);
e0da382c 411
8f4f8c16 412 /*
25d9e2d1
NP
413 * Hide vma from rmap and truncate_pagecache before freeing
414 * pgtables
8f4f8c16 415 */
5beb4930 416 unlink_anon_vmas(vma);
8f4f8c16
HD
417 unlink_file_vma(vma);
418
9da61aef 419 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 421 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
422 } else {
423 /*
424 * Optimization: gather nearby vmas into one call down
425 */
426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 427 && !is_vm_hugetlb_page(next)) {
3bf5ee95 428 vma = next;
763ecb03 429 next = mas_find(&mas, ceiling - 1);
5beb4930 430 unlink_anon_vmas(vma);
8f4f8c16 431 unlink_file_vma(vma);
3bf5ee95
HD
432 }
433 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 434 floor, next ? next->vm_start : ceiling);
3bf5ee95 435 }
e0da382c 436 vma = next;
763ecb03 437 } while (vma);
1da177e4
LT
438}
439
03c4f204 440void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 441{
03c4f204 442 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 443
8ac1f832 444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 445 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
446 /*
447 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 * visible before the pte is made visible to other CPUs by being
449 * put into page tables.
450 *
451 * The other side of the story is the pointer chasing in the page
452 * table walking code (when walking the page table without locking;
453 * ie. most of the time). Fortunately, these data accesses consist
454 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 * being the notable exception) will already guarantee loads are
456 * seen in-order. See the alpha page table accessors for the
457 * smp_rmb() barriers in page table walking code.
458 */
459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
460 pmd_populate(mm, pmd, *pte);
461 *pte = NULL;
4b471e88 462 }
c4088ebd 463 spin_unlock(ptl);
03c4f204
QZ
464}
465
4cf58924 466int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 467{
4cf58924 468 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
469 if (!new)
470 return -ENOMEM;
471
03c4f204 472 pmd_install(mm, pmd, &new);
2f569afd
MS
473 if (new)
474 pte_free(mm, new);
1bb3630e 475 return 0;
1da177e4
LT
476}
477
4cf58924 478int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 479{
4cf58924 480 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
481 if (!new)
482 return -ENOMEM;
483
484 spin_lock(&init_mm.page_table_lock);
8ac1f832 485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 486 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 487 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 488 new = NULL;
4b471e88 489 }
1bb3630e 490 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
491 if (new)
492 pte_free_kernel(&init_mm, new);
1bb3630e 493 return 0;
1da177e4
LT
494}
495
d559db08
KH
496static inline void init_rss_vec(int *rss)
497{
498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499}
500
501static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 502{
d559db08
KH
503 int i;
504
34e55232 505 if (current->mm == mm)
05af2e10 506 sync_mm_rss(mm);
d559db08
KH
507 for (i = 0; i < NR_MM_COUNTERS; i++)
508 if (rss[i])
509 add_mm_counter(mm, i, rss[i]);
ae859762
HD
510}
511
b5810039 512/*
6aab341e
LT
513 * This function is called to print an error when a bad pte
514 * is found. For example, we might have a PFN-mapped pte in
515 * a region that doesn't allow it.
b5810039
NP
516 *
517 * The calling function must still handle the error.
518 */
3dc14741
HD
519static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 pte_t pte, struct page *page)
b5810039 521{
3dc14741 522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
523 p4d_t *p4d = p4d_offset(pgd, addr);
524 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
525 pmd_t *pmd = pmd_offset(pud, addr);
526 struct address_space *mapping;
527 pgoff_t index;
d936cf9b
HD
528 static unsigned long resume;
529 static unsigned long nr_shown;
530 static unsigned long nr_unshown;
531
532 /*
533 * Allow a burst of 60 reports, then keep quiet for that minute;
534 * or allow a steady drip of one report per second.
535 */
536 if (nr_shown == 60) {
537 if (time_before(jiffies, resume)) {
538 nr_unshown++;
539 return;
540 }
541 if (nr_unshown) {
1170532b
JP
542 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 nr_unshown);
d936cf9b
HD
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
3dc14741
HD
550
551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 index = linear_page_index(vma, addr);
553
1170532b
JP
554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
555 current->comm,
556 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 557 if (page)
f0b791a3 558 dump_page(page, "bad pte");
6aa9b8b2 559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 561 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
562 vma->vm_file,
563 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 565 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 566 dump_stack();
373d4d09 567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
568}
569
ee498ed7 570/*
7e675137 571 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 572 *
7e675137
NP
573 * "Special" mappings do not wish to be associated with a "struct page" (either
574 * it doesn't exist, or it exists but they don't want to touch it). In this
575 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 576 *
7e675137
NP
577 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578 * pte bit, in which case this function is trivial. Secondly, an architecture
579 * may not have a spare pte bit, which requires a more complicated scheme,
580 * described below.
581 *
582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583 * special mapping (even if there are underlying and valid "struct pages").
584 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 585 *
b379d790
JH
586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589 * mapping will always honor the rule
6aab341e
LT
590 *
591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592 *
7e675137
NP
593 * And for normal mappings this is false.
594 *
595 * This restricts such mappings to be a linear translation from virtual address
596 * to pfn. To get around this restriction, we allow arbitrary mappings so long
597 * as the vma is not a COW mapping; in that case, we know that all ptes are
598 * special (because none can have been COWed).
b379d790 599 *
b379d790 600 *
7e675137 601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
602 *
603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604 * page" backing, however the difference is that _all_ pages with a struct
605 * page (that is, those where pfn_valid is true) are refcounted and considered
606 * normal pages by the VM. The disadvantage is that pages are refcounted
607 * (which can be slower and simply not an option for some PFNMAP users). The
608 * advantage is that we don't have to follow the strict linearity rule of
609 * PFNMAP mappings in order to support COWable mappings.
610 *
ee498ed7 611 */
25b2995a
CH
612struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 pte_t pte)
ee498ed7 614{
22b31eec 615 unsigned long pfn = pte_pfn(pte);
7e675137 616
00b3a331 617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 618 if (likely(!pte_special(pte)))
22b31eec 619 goto check_pfn;
667a0a06
DV
620 if (vma->vm_ops && vma->vm_ops->find_special_page)
621 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 return NULL;
df6ad698
JG
624 if (is_zero_pfn(pfn))
625 return NULL;
e1fb4a08 626 if (pte_devmap(pte))
3218f871
AS
627 /*
628 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629 * and will have refcounts incremented on their struct pages
630 * when they are inserted into PTEs, thus they are safe to
631 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632 * do not have refcounts. Example of legacy ZONE_DEVICE is
633 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634 */
e1fb4a08
DJ
635 return NULL;
636
df6ad698 637 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
638 return NULL;
639 }
640
00b3a331 641 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 642
b379d790
JH
643 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644 if (vma->vm_flags & VM_MIXEDMAP) {
645 if (!pfn_valid(pfn))
646 return NULL;
647 goto out;
648 } else {
7e675137
NP
649 unsigned long off;
650 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
651 if (pfn == vma->vm_pgoff + off)
652 return NULL;
653 if (!is_cow_mapping(vma->vm_flags))
654 return NULL;
655 }
6aab341e
LT
656 }
657
b38af472
HD
658 if (is_zero_pfn(pfn))
659 return NULL;
00b3a331 660
22b31eec
HD
661check_pfn:
662 if (unlikely(pfn > highest_memmap_pfn)) {
663 print_bad_pte(vma, addr, pte, NULL);
664 return NULL;
665 }
6aab341e
LT
666
667 /*
7e675137 668 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 669 * eg. VDSO mappings can cause them to exist.
6aab341e 670 */
b379d790 671out:
6aab341e 672 return pfn_to_page(pfn);
ee498ed7
HD
673}
674
28093f9f
GS
675#ifdef CONFIG_TRANSPARENT_HUGEPAGE
676struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677 pmd_t pmd)
678{
679 unsigned long pfn = pmd_pfn(pmd);
680
681 /*
682 * There is no pmd_special() but there may be special pmds, e.g.
683 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 684 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
685 */
686 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687 if (vma->vm_flags & VM_MIXEDMAP) {
688 if (!pfn_valid(pfn))
689 return NULL;
690 goto out;
691 } else {
692 unsigned long off;
693 off = (addr - vma->vm_start) >> PAGE_SHIFT;
694 if (pfn == vma->vm_pgoff + off)
695 return NULL;
696 if (!is_cow_mapping(vma->vm_flags))
697 return NULL;
698 }
699 }
700
e1fb4a08
DJ
701 if (pmd_devmap(pmd))
702 return NULL;
3cde287b 703 if (is_huge_zero_pmd(pmd))
28093f9f
GS
704 return NULL;
705 if (unlikely(pfn > highest_memmap_pfn))
706 return NULL;
707
708 /*
709 * NOTE! We still have PageReserved() pages in the page tables.
710 * eg. VDSO mappings can cause them to exist.
711 */
712out:
713 return pfn_to_page(pfn);
714}
715#endif
716
b756a3b5
AP
717static void restore_exclusive_pte(struct vm_area_struct *vma,
718 struct page *page, unsigned long address,
719 pte_t *ptep)
720{
721 pte_t pte;
722 swp_entry_t entry;
723
724 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725 if (pte_swp_soft_dirty(*ptep))
726 pte = pte_mksoft_dirty(pte);
727
728 entry = pte_to_swp_entry(*ptep);
729 if (pte_swp_uffd_wp(*ptep))
730 pte = pte_mkuffd_wp(pte);
731 else if (is_writable_device_exclusive_entry(entry))
732 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733
6c287605
DH
734 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735
b756a3b5
AP
736 /*
737 * No need to take a page reference as one was already
738 * created when the swap entry was made.
739 */
740 if (PageAnon(page))
f1e2db12 741 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
742 else
743 /*
744 * Currently device exclusive access only supports anonymous
745 * memory so the entry shouldn't point to a filebacked page.
746 */
4d8ff640 747 WARN_ON_ONCE(1);
b756a3b5 748
1eba86c0
PT
749 set_pte_at(vma->vm_mm, address, ptep, pte);
750
b756a3b5
AP
751 /*
752 * No need to invalidate - it was non-present before. However
753 * secondary CPUs may have mappings that need invalidating.
754 */
755 update_mmu_cache(vma, address, ptep);
756}
757
758/*
759 * Tries to restore an exclusive pte if the page lock can be acquired without
760 * sleeping.
761 */
762static int
763try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764 unsigned long addr)
765{
766 swp_entry_t entry = pte_to_swp_entry(*src_pte);
767 struct page *page = pfn_swap_entry_to_page(entry);
768
769 if (trylock_page(page)) {
770 restore_exclusive_pte(vma, page, addr, src_pte);
771 unlock_page(page);
772 return 0;
773 }
774
775 return -EBUSY;
776}
777
1da177e4
LT
778/*
779 * copy one vm_area from one task to the other. Assumes the page tables
780 * already present in the new task to be cleared in the whole range
781 * covered by this vma.
1da177e4
LT
782 */
783
df3a57d1
LT
784static unsigned long
785copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
786 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 788{
8f34f1ea 789 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
790 pte_t pte = *src_pte;
791 struct page *page;
df3a57d1
LT
792 swp_entry_t entry = pte_to_swp_entry(pte);
793
794 if (likely(!non_swap_entry(entry))) {
795 if (swap_duplicate(entry) < 0)
9a5cc85c 796 return -EIO;
df3a57d1
LT
797
798 /* make sure dst_mm is on swapoff's mmlist. */
799 if (unlikely(list_empty(&dst_mm->mmlist))) {
800 spin_lock(&mmlist_lock);
801 if (list_empty(&dst_mm->mmlist))
802 list_add(&dst_mm->mmlist,
803 &src_mm->mmlist);
804 spin_unlock(&mmlist_lock);
805 }
1493a191
DH
806 /* Mark the swap entry as shared. */
807 if (pte_swp_exclusive(*src_pte)) {
808 pte = pte_swp_clear_exclusive(*src_pte);
809 set_pte_at(src_mm, addr, src_pte, pte);
810 }
df3a57d1
LT
811 rss[MM_SWAPENTS]++;
812 } else if (is_migration_entry(entry)) {
af5cdaf8 813 page = pfn_swap_entry_to_page(entry);
1da177e4 814
df3a57d1 815 rss[mm_counter(page)]++;
5042db43 816
6c287605 817 if (!is_readable_migration_entry(entry) &&
df3a57d1 818 is_cow_mapping(vm_flags)) {
5042db43 819 /*
6c287605
DH
820 * COW mappings require pages in both parent and child
821 * to be set to read. A previously exclusive entry is
822 * now shared.
5042db43 823 */
4dd845b5
AP
824 entry = make_readable_migration_entry(
825 swp_offset(entry));
df3a57d1
LT
826 pte = swp_entry_to_pte(entry);
827 if (pte_swp_soft_dirty(*src_pte))
828 pte = pte_swp_mksoft_dirty(pte);
829 if (pte_swp_uffd_wp(*src_pte))
830 pte = pte_swp_mkuffd_wp(pte);
831 set_pte_at(src_mm, addr, src_pte, pte);
832 }
833 } else if (is_device_private_entry(entry)) {
af5cdaf8 834 page = pfn_swap_entry_to_page(entry);
5042db43 835
df3a57d1
LT
836 /*
837 * Update rss count even for unaddressable pages, as
838 * they should treated just like normal pages in this
839 * respect.
840 *
841 * We will likely want to have some new rss counters
842 * for unaddressable pages, at some point. But for now
843 * keep things as they are.
844 */
845 get_page(page);
846 rss[mm_counter(page)]++;
fb3d824d
DH
847 /* Cannot fail as these pages cannot get pinned. */
848 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
849
850 /*
851 * We do not preserve soft-dirty information, because so
852 * far, checkpoint/restore is the only feature that
853 * requires that. And checkpoint/restore does not work
854 * when a device driver is involved (you cannot easily
855 * save and restore device driver state).
856 */
4dd845b5 857 if (is_writable_device_private_entry(entry) &&
df3a57d1 858 is_cow_mapping(vm_flags)) {
4dd845b5
AP
859 entry = make_readable_device_private_entry(
860 swp_offset(entry));
df3a57d1
LT
861 pte = swp_entry_to_pte(entry);
862 if (pte_swp_uffd_wp(*src_pte))
863 pte = pte_swp_mkuffd_wp(pte);
864 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 865 }
b756a3b5
AP
866 } else if (is_device_exclusive_entry(entry)) {
867 /*
868 * Make device exclusive entries present by restoring the
869 * original entry then copying as for a present pte. Device
870 * exclusive entries currently only support private writable
871 * (ie. COW) mappings.
872 */
873 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875 return -EBUSY;
876 return -ENOENT;
c56d1b62
PX
877 } else if (is_pte_marker_entry(entry)) {
878 /*
879 * We're copying the pgtable should only because dst_vma has
880 * uffd-wp enabled, do sanity check.
881 */
882 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883 set_pte_at(dst_mm, addr, dst_pte, pte);
884 return 0;
1da177e4 885 }
8f34f1ea
PX
886 if (!userfaultfd_wp(dst_vma))
887 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
888 set_pte_at(dst_mm, addr, dst_pte, pte);
889 return 0;
890}
891
70e806e4 892/*
b51ad4f8 893 * Copy a present and normal page.
70e806e4 894 *
b51ad4f8
DH
895 * NOTE! The usual case is that this isn't required;
896 * instead, the caller can just increase the page refcount
897 * and re-use the pte the traditional way.
70e806e4
PX
898 *
899 * And if we need a pre-allocated page but don't yet have
900 * one, return a negative error to let the preallocation
901 * code know so that it can do so outside the page table
902 * lock.
903 */
904static inline int
c78f4636
PX
905copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
b51ad4f8 907 struct page **prealloc, struct page *page)
70e806e4
PX
908{
909 struct page *new_page;
b51ad4f8 910 pte_t pte;
70e806e4 911
70e806e4
PX
912 new_page = *prealloc;
913 if (!new_page)
914 return -EAGAIN;
915
916 /*
917 * We have a prealloc page, all good! Take it
918 * over and copy the page & arm it.
919 */
920 *prealloc = NULL;
c78f4636 921 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 922 __SetPageUptodate(new_page);
40f2bbf7 923 page_add_new_anon_rmap(new_page, dst_vma, addr);
c78f4636 924 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
925 rss[mm_counter(new_page)]++;
926
927 /* All done, just insert the new page copy in the child */
c78f4636
PX
928 pte = mk_pte(new_page, dst_vma->vm_page_prot);
929 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
930 if (userfaultfd_pte_wp(dst_vma, *src_pte))
931 /* Uffd-wp needs to be delivered to dest pte as well */
932 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 933 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
934 return 0;
935}
936
937/*
938 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
939 * is required to copy this pte.
940 */
941static inline int
c78f4636
PX
942copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944 struct page **prealloc)
df3a57d1 945{
c78f4636
PX
946 struct mm_struct *src_mm = src_vma->vm_mm;
947 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
948 pte_t pte = *src_pte;
949 struct page *page;
950
c78f4636 951 page = vm_normal_page(src_vma, addr, pte);
fb3d824d 952 if (page && PageAnon(page)) {
b51ad4f8
DH
953 /*
954 * If this page may have been pinned by the parent process,
955 * copy the page immediately for the child so that we'll always
956 * guarantee the pinned page won't be randomly replaced in the
957 * future.
958 */
70e806e4 959 get_page(page);
fb3d824d
DH
960 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961 /* Page maybe pinned, we have to copy. */
962 put_page(page);
963 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964 addr, rss, prealloc, page);
965 }
966 rss[mm_counter(page)]++;
b51ad4f8 967 } else if (page) {
70e806e4 968 get_page(page);
fb3d824d 969 page_dup_file_rmap(page, false);
70e806e4
PX
970 rss[mm_counter(page)]++;
971 }
972
1da177e4
LT
973 /*
974 * If it's a COW mapping, write protect it both
975 * in the parent and the child
976 */
1b2de5d0 977 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 978 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 979 pte = pte_wrprotect(pte);
1da177e4 980 }
6c287605 981 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
1da177e4
LT
982
983 /*
984 * If it's a shared mapping, mark it clean in
985 * the child
986 */
987 if (vm_flags & VM_SHARED)
988 pte = pte_mkclean(pte);
989 pte = pte_mkold(pte);
6aab341e 990
8f34f1ea 991 if (!userfaultfd_wp(dst_vma))
b569a176
PX
992 pte = pte_clear_uffd_wp(pte);
993
c78f4636 994 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
995 return 0;
996}
997
998static inline struct page *
999page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000 unsigned long addr)
1001{
1002 struct page *new_page;
1003
1004 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005 if (!new_page)
1006 return NULL;
1007
8f425e4e 1008 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
1009 put_page(new_page);
1010 return NULL;
6aab341e 1011 }
70e806e4 1012 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 1013
70e806e4 1014 return new_page;
1da177e4
LT
1015}
1016
c78f4636
PX
1017static int
1018copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 unsigned long end)
1da177e4 1021{
c78f4636
PX
1022 struct mm_struct *dst_mm = dst_vma->vm_mm;
1023 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1024 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1025 pte_t *src_pte, *dst_pte;
c74df32c 1026 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1027 int progress, ret = 0;
d559db08 1028 int rss[NR_MM_COUNTERS];
570a335b 1029 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1030 struct page *prealloc = NULL;
1da177e4
LT
1031
1032again:
70e806e4 1033 progress = 0;
d559db08
KH
1034 init_rss_vec(rss);
1035
c74df32c 1036 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1037 if (!dst_pte) {
1038 ret = -ENOMEM;
1039 goto out;
1040 }
ece0e2b6 1041 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1042 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1043 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1044 orig_src_pte = src_pte;
1045 orig_dst_pte = dst_pte;
6606c3e0 1046 arch_enter_lazy_mmu_mode();
1da177e4 1047
1da177e4
LT
1048 do {
1049 /*
1050 * We are holding two locks at this point - either of them
1051 * could generate latencies in another task on another CPU.
1052 */
e040f218
HD
1053 if (progress >= 32) {
1054 progress = 0;
1055 if (need_resched() ||
95c354fe 1056 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1057 break;
1058 }
1da177e4
LT
1059 if (pte_none(*src_pte)) {
1060 progress++;
1061 continue;
1062 }
79a1971c 1063 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1064 ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 dst_pte, src_pte,
1066 dst_vma, src_vma,
1067 addr, rss);
1068 if (ret == -EIO) {
1069 entry = pte_to_swp_entry(*src_pte);
79a1971c 1070 break;
b756a3b5
AP
1071 } else if (ret == -EBUSY) {
1072 break;
1073 } else if (!ret) {
1074 progress += 8;
1075 continue;
9a5cc85c 1076 }
b756a3b5
AP
1077
1078 /*
1079 * Device exclusive entry restored, continue by copying
1080 * the now present pte.
1081 */
1082 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1083 }
70e806e4 1084 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1085 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 addr, rss, &prealloc);
70e806e4
PX
1087 /*
1088 * If we need a pre-allocated page for this pte, drop the
1089 * locks, allocate, and try again.
1090 */
1091 if (unlikely(ret == -EAGAIN))
1092 break;
1093 if (unlikely(prealloc)) {
1094 /*
1095 * pre-alloc page cannot be reused by next time so as
1096 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 * will allocate page according to address). This
1098 * could only happen if one pinned pte changed.
1099 */
1100 put_page(prealloc);
1101 prealloc = NULL;
1102 }
1da177e4
LT
1103 progress += 8;
1104 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1105
6606c3e0 1106 arch_leave_lazy_mmu_mode();
c74df32c 1107 spin_unlock(src_ptl);
ece0e2b6 1108 pte_unmap(orig_src_pte);
d559db08 1109 add_mm_rss_vec(dst_mm, rss);
c36987e2 1110 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1111 cond_resched();
570a335b 1112
9a5cc85c
AP
1113 if (ret == -EIO) {
1114 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1115 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 ret = -ENOMEM;
1117 goto out;
1118 }
1119 entry.val = 0;
b756a3b5
AP
1120 } else if (ret == -EBUSY) {
1121 goto out;
9a5cc85c 1122 } else if (ret == -EAGAIN) {
c78f4636 1123 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1124 if (!prealloc)
570a335b 1125 return -ENOMEM;
9a5cc85c
AP
1126 } else if (ret) {
1127 VM_WARN_ON_ONCE(1);
570a335b 1128 }
9a5cc85c
AP
1129
1130 /* We've captured and resolved the error. Reset, try again. */
1131 ret = 0;
1132
1da177e4
LT
1133 if (addr != end)
1134 goto again;
70e806e4
PX
1135out:
1136 if (unlikely(prealloc))
1137 put_page(prealloc);
1138 return ret;
1da177e4
LT
1139}
1140
c78f4636
PX
1141static inline int
1142copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144 unsigned long end)
1da177e4 1145{
c78f4636
PX
1146 struct mm_struct *dst_mm = dst_vma->vm_mm;
1147 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1148 pmd_t *src_pmd, *dst_pmd;
1149 unsigned long next;
1150
1151 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152 if (!dst_pmd)
1153 return -ENOMEM;
1154 src_pmd = pmd_offset(src_pud, addr);
1155 do {
1156 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1157 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158 || pmd_devmap(*src_pmd)) {
71e3aac0 1159 int err;
c78f4636 1160 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1161 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162 addr, dst_vma, src_vma);
71e3aac0
AA
1163 if (err == -ENOMEM)
1164 return -ENOMEM;
1165 if (!err)
1166 continue;
1167 /* fall through */
1168 }
1da177e4
LT
1169 if (pmd_none_or_clear_bad(src_pmd))
1170 continue;
c78f4636
PX
1171 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172 addr, next))
1da177e4
LT
1173 return -ENOMEM;
1174 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 return 0;
1176}
1177
c78f4636
PX
1178static inline int
1179copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181 unsigned long end)
1da177e4 1182{
c78f4636
PX
1183 struct mm_struct *dst_mm = dst_vma->vm_mm;
1184 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1185 pud_t *src_pud, *dst_pud;
1186 unsigned long next;
1187
c2febafc 1188 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1189 if (!dst_pud)
1190 return -ENOMEM;
c2febafc 1191 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1192 do {
1193 next = pud_addr_end(addr, end);
a00cc7d9
MW
1194 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195 int err;
1196
c78f4636 1197 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1198 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1199 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1200 if (err == -ENOMEM)
1201 return -ENOMEM;
1202 if (!err)
1203 continue;
1204 /* fall through */
1205 }
1da177e4
LT
1206 if (pud_none_or_clear_bad(src_pud))
1207 continue;
c78f4636
PX
1208 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209 addr, next))
1da177e4
LT
1210 return -ENOMEM;
1211 } while (dst_pud++, src_pud++, addr = next, addr != end);
1212 return 0;
1213}
1214
c78f4636
PX
1215static inline int
1216copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218 unsigned long end)
c2febafc 1219{
c78f4636 1220 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1221 p4d_t *src_p4d, *dst_p4d;
1222 unsigned long next;
1223
1224 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225 if (!dst_p4d)
1226 return -ENOMEM;
1227 src_p4d = p4d_offset(src_pgd, addr);
1228 do {
1229 next = p4d_addr_end(addr, end);
1230 if (p4d_none_or_clear_bad(src_p4d))
1231 continue;
c78f4636
PX
1232 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233 addr, next))
c2febafc
KS
1234 return -ENOMEM;
1235 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 return 0;
1237}
1238
c56d1b62
PX
1239/*
1240 * Return true if the vma needs to copy the pgtable during this fork(). Return
1241 * false when we can speed up fork() by allowing lazy page faults later until
1242 * when the child accesses the memory range.
1243 */
bc70fbf2 1244static bool
c56d1b62
PX
1245vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246{
1247 /*
1248 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250 * contains uffd-wp protection information, that's something we can't
1251 * retrieve from page cache, and skip copying will lose those info.
1252 */
1253 if (userfaultfd_wp(dst_vma))
1254 return true;
1255
bcd51a3c 1256 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1257 return true;
1258
1259 if (src_vma->anon_vma)
1260 return true;
1261
1262 /*
1263 * Don't copy ptes where a page fault will fill them correctly. Fork
1264 * becomes much lighter when there are big shared or private readonly
1265 * mappings. The tradeoff is that copy_page_range is more efficient
1266 * than faulting.
1267 */
1268 return false;
1269}
1270
c78f4636
PX
1271int
1272copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1273{
1274 pgd_t *src_pgd, *dst_pgd;
1275 unsigned long next;
c78f4636
PX
1276 unsigned long addr = src_vma->vm_start;
1277 unsigned long end = src_vma->vm_end;
1278 struct mm_struct *dst_mm = dst_vma->vm_mm;
1279 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1280 struct mmu_notifier_range range;
2ec74c3e 1281 bool is_cow;
cddb8a5c 1282 int ret;
1da177e4 1283
c56d1b62 1284 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1285 return 0;
d992895b 1286
c78f4636 1287 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1288 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1289
c78f4636 1290 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1291 /*
1292 * We do not free on error cases below as remove_vma
1293 * gets called on error from higher level routine
1294 */
c78f4636 1295 ret = track_pfn_copy(src_vma);
2ab64037 1296 if (ret)
1297 return ret;
1298 }
1299
cddb8a5c
AA
1300 /*
1301 * We need to invalidate the secondary MMU mappings only when
1302 * there could be a permission downgrade on the ptes of the
1303 * parent mm. And a permission downgrade will only happen if
1304 * is_cow_mapping() returns true.
1305 */
c78f4636 1306 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1307
1308 if (is_cow) {
7269f999 1309 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1310 0, src_vma, src_mm, addr, end);
ac46d4f3 1311 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1312 /*
1313 * Disabling preemption is not needed for the write side, as
1314 * the read side doesn't spin, but goes to the mmap_lock.
1315 *
1316 * Use the raw variant of the seqcount_t write API to avoid
1317 * lockdep complaining about preemptibility.
1318 */
1319 mmap_assert_write_locked(src_mm);
1320 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1321 }
cddb8a5c
AA
1322
1323 ret = 0;
1da177e4
LT
1324 dst_pgd = pgd_offset(dst_mm, addr);
1325 src_pgd = pgd_offset(src_mm, addr);
1326 do {
1327 next = pgd_addr_end(addr, end);
1328 if (pgd_none_or_clear_bad(src_pgd))
1329 continue;
c78f4636
PX
1330 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331 addr, next))) {
cddb8a5c
AA
1332 ret = -ENOMEM;
1333 break;
1334 }
1da177e4 1335 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1336
57efa1fe
JG
1337 if (is_cow) {
1338 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1339 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1340 }
cddb8a5c 1341 return ret;
1da177e4
LT
1342}
1343
3506659e
MWO
1344/*
1345 * Parameter block passed down to zap_pte_range in exceptional cases.
1346 */
1347struct zap_details {
3506659e 1348 struct folio *single_folio; /* Locked folio to be unmapped */
2e148f1e 1349 bool even_cows; /* Zap COWed private pages too? */
999dad82 1350 zap_flags_t zap_flags; /* Extra flags for zapping */
3506659e
MWO
1351};
1352
5abfd71d
PX
1353/* Whether we should zap all COWed (private) pages too */
1354static inline bool should_zap_cows(struct zap_details *details)
1355{
1356 /* By default, zap all pages */
1357 if (!details)
1358 return true;
1359
1360 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1361 return details->even_cows;
5abfd71d
PX
1362}
1363
2e148f1e 1364/* Decides whether we should zap this page with the page pointer specified */
254ab940 1365static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1366{
5abfd71d
PX
1367 /* If we can make a decision without *page.. */
1368 if (should_zap_cows(details))
254ab940 1369 return true;
5abfd71d
PX
1370
1371 /* E.g. the caller passes NULL for the case of a zero page */
1372 if (!page)
254ab940 1373 return true;
3506659e 1374
2e148f1e
PX
1375 /* Otherwise we should only zap non-anon pages */
1376 return !PageAnon(page);
3506659e
MWO
1377}
1378
999dad82
PX
1379static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1380{
1381 if (!details)
1382 return false;
1383
1384 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1385}
1386
1387/*
1388 * This function makes sure that we'll replace the none pte with an uffd-wp
1389 * swap special pte marker when necessary. Must be with the pgtable lock held.
1390 */
1391static inline void
1392zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1393 unsigned long addr, pte_t *pte,
1394 struct zap_details *details, pte_t pteval)
1395{
515778e2 1396#ifdef CONFIG_PTE_MARKER_UFFD_WP
999dad82
PX
1397 if (zap_drop_file_uffd_wp(details))
1398 return;
1399
1400 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
515778e2 1401#endif
999dad82
PX
1402}
1403
51c6f666 1404static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1405 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1406 unsigned long addr, unsigned long end,
97a89413 1407 struct zap_details *details)
1da177e4 1408{
b5810039 1409 struct mm_struct *mm = tlb->mm;
d16dfc55 1410 int force_flush = 0;
d559db08 1411 int rss[NR_MM_COUNTERS];
97a89413 1412 spinlock_t *ptl;
5f1a1907 1413 pte_t *start_pte;
97a89413 1414 pte_t *pte;
8a5f14a2 1415 swp_entry_t entry;
d559db08 1416
ed6a7935 1417 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1418again:
e303297e 1419 init_rss_vec(rss);
5f1a1907
SR
1420 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1421 pte = start_pte;
3ea27719 1422 flush_tlb_batched_pending(mm);
6606c3e0 1423 arch_enter_lazy_mmu_mode();
1da177e4
LT
1424 do {
1425 pte_t ptent = *pte;
8018db85
PX
1426 struct page *page;
1427
166f61b9 1428 if (pte_none(ptent))
1da177e4 1429 continue;
6f5e6b9e 1430
7b167b68
MK
1431 if (need_resched())
1432 break;
1433
1da177e4 1434 if (pte_present(ptent)) {
25b2995a 1435 page = vm_normal_page(vma, addr, ptent);
254ab940 1436 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1437 continue;
b5810039 1438 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1439 tlb->fullmm);
1da177e4 1440 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1441 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1442 ptent);
1da177e4
LT
1443 if (unlikely(!page))
1444 continue;
eca56ff9
JM
1445
1446 if (!PageAnon(page)) {
1cf35d47
LT
1447 if (pte_dirty(ptent)) {
1448 force_flush = 1;
6237bcd9 1449 set_page_dirty(page);
1cf35d47 1450 }
4917e5d0 1451 if (pte_young(ptent) &&
64363aad 1452 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1453 mark_page_accessed(page);
6237bcd9 1454 }
eca56ff9 1455 rss[mm_counter(page)]--;
cea86fe2 1456 page_remove_rmap(page, vma, false);
3dc14741
HD
1457 if (unlikely(page_mapcount(page) < 0))
1458 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1459 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1460 force_flush = 1;
ce9ec37b 1461 addr += PAGE_SIZE;
d16dfc55 1462 break;
1cf35d47 1463 }
1da177e4
LT
1464 continue;
1465 }
5042db43
JG
1466
1467 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1468 if (is_device_private_entry(entry) ||
1469 is_device_exclusive_entry(entry)) {
8018db85 1470 page = pfn_swap_entry_to_page(entry);
254ab940 1471 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1472 continue;
999dad82
PX
1473 /*
1474 * Both device private/exclusive mappings should only
1475 * work with anonymous page so far, so we don't need to
1476 * consider uffd-wp bit when zap. For more information,
1477 * see zap_install_uffd_wp_if_needed().
1478 */
1479 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1480 rss[mm_counter(page)]--;
b756a3b5 1481 if (is_device_private_entry(entry))
cea86fe2 1482 page_remove_rmap(page, vma, false);
5042db43 1483 put_page(page);
8018db85 1484 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1485 /* Genuine swap entry, hence a private anon page */
1486 if (!should_zap_cows(details))
1487 continue;
8a5f14a2 1488 rss[MM_SWAPENTS]--;
8018db85
PX
1489 if (unlikely(!free_swap_and_cache(entry)))
1490 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1491 } else if (is_migration_entry(entry)) {
af5cdaf8 1492 page = pfn_swap_entry_to_page(entry);
254ab940 1493 if (!should_zap_page(details, page))
5abfd71d 1494 continue;
eca56ff9 1495 rss[mm_counter(page)]--;
999dad82
PX
1496 } else if (pte_marker_entry_uffd_wp(entry)) {
1497 /* Only drop the uffd-wp marker if explicitly requested */
1498 if (!zap_drop_file_uffd_wp(details))
1499 continue;
9f186f9e
ML
1500 } else if (is_hwpoison_entry(entry) ||
1501 is_swapin_error_entry(entry)) {
5abfd71d
PX
1502 if (!should_zap_cows(details))
1503 continue;
1504 } else {
1505 /* We should have covered all the swap entry types */
1506 WARN_ON_ONCE(1);
b084d435 1507 }
9888a1ca 1508 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1509 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1510 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1511
d559db08 1512 add_mm_rss_vec(mm, rss);
6606c3e0 1513 arch_leave_lazy_mmu_mode();
51c6f666 1514
1cf35d47 1515 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1516 if (force_flush)
1cf35d47 1517 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1518 pte_unmap_unlock(start_pte, ptl);
1519
1520 /*
1521 * If we forced a TLB flush (either due to running out of
1522 * batch buffers or because we needed to flush dirty TLB
1523 * entries before releasing the ptl), free the batched
1524 * memory too. Restart if we didn't do everything.
1525 */
1526 if (force_flush) {
1527 force_flush = 0;
fa0aafb8 1528 tlb_flush_mmu(tlb);
7b167b68
MK
1529 }
1530
1531 if (addr != end) {
1532 cond_resched();
1533 goto again;
d16dfc55
PZ
1534 }
1535
51c6f666 1536 return addr;
1da177e4
LT
1537}
1538
51c6f666 1539static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1540 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1541 unsigned long addr, unsigned long end,
97a89413 1542 struct zap_details *details)
1da177e4
LT
1543{
1544 pmd_t *pmd;
1545 unsigned long next;
1546
1547 pmd = pmd_offset(pud, addr);
1548 do {
1549 next = pmd_addr_end(addr, end);
84c3fc4e 1550 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1551 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1552 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1553 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1554 goto next;
71e3aac0 1555 /* fall through */
3506659e
MWO
1556 } else if (details && details->single_folio &&
1557 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1558 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1559 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1560 /*
1561 * Take and drop THP pmd lock so that we cannot return
1562 * prematurely, while zap_huge_pmd() has cleared *pmd,
1563 * but not yet decremented compound_mapcount().
1564 */
1565 spin_unlock(ptl);
71e3aac0 1566 }
22061a1f 1567
1a5a9906
AA
1568 /*
1569 * Here there can be other concurrent MADV_DONTNEED or
1570 * trans huge page faults running, and if the pmd is
1571 * none or trans huge it can change under us. This is
c1e8d7c6 1572 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1573 * mode.
1574 */
1575 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1576 goto next;
97a89413 1577 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1578next:
97a89413
PZ
1579 cond_resched();
1580 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1581
1582 return addr;
1da177e4
LT
1583}
1584
51c6f666 1585static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1586 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1587 unsigned long addr, unsigned long end,
97a89413 1588 struct zap_details *details)
1da177e4
LT
1589{
1590 pud_t *pud;
1591 unsigned long next;
1592
c2febafc 1593 pud = pud_offset(p4d, addr);
1da177e4
LT
1594 do {
1595 next = pud_addr_end(addr, end);
a00cc7d9
MW
1596 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1597 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1598 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1599 split_huge_pud(vma, pud, addr);
1600 } else if (zap_huge_pud(tlb, vma, pud, addr))
1601 goto next;
1602 /* fall through */
1603 }
97a89413 1604 if (pud_none_or_clear_bad(pud))
1da177e4 1605 continue;
97a89413 1606 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1607next:
1608 cond_resched();
97a89413 1609 } while (pud++, addr = next, addr != end);
51c6f666
RH
1610
1611 return addr;
1da177e4
LT
1612}
1613
c2febafc
KS
1614static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1615 struct vm_area_struct *vma, pgd_t *pgd,
1616 unsigned long addr, unsigned long end,
1617 struct zap_details *details)
1618{
1619 p4d_t *p4d;
1620 unsigned long next;
1621
1622 p4d = p4d_offset(pgd, addr);
1623 do {
1624 next = p4d_addr_end(addr, end);
1625 if (p4d_none_or_clear_bad(p4d))
1626 continue;
1627 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1628 } while (p4d++, addr = next, addr != end);
1629
1630 return addr;
1631}
1632
aac45363 1633void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1634 struct vm_area_struct *vma,
1635 unsigned long addr, unsigned long end,
1636 struct zap_details *details)
1da177e4
LT
1637{
1638 pgd_t *pgd;
1639 unsigned long next;
1640
1da177e4
LT
1641 BUG_ON(addr >= end);
1642 tlb_start_vma(tlb, vma);
1643 pgd = pgd_offset(vma->vm_mm, addr);
1644 do {
1645 next = pgd_addr_end(addr, end);
97a89413 1646 if (pgd_none_or_clear_bad(pgd))
1da177e4 1647 continue;
c2febafc 1648 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1649 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1650 tlb_end_vma(tlb, vma);
1651}
51c6f666 1652
f5cc4eef
AV
1653
1654static void unmap_single_vma(struct mmu_gather *tlb,
1655 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1656 unsigned long end_addr,
f5cc4eef
AV
1657 struct zap_details *details)
1658{
1659 unsigned long start = max(vma->vm_start, start_addr);
1660 unsigned long end;
1661
1662 if (start >= vma->vm_end)
1663 return;
1664 end = min(vma->vm_end, end_addr);
1665 if (end <= vma->vm_start)
1666 return;
1667
cbc91f71
SD
1668 if (vma->vm_file)
1669 uprobe_munmap(vma, start, end);
1670
b3b9c293 1671 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1672 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1673
1674 if (start != end) {
1675 if (unlikely(is_vm_hugetlb_page(vma))) {
1676 /*
1677 * It is undesirable to test vma->vm_file as it
1678 * should be non-null for valid hugetlb area.
1679 * However, vm_file will be NULL in the error
7aa6b4ad 1680 * cleanup path of mmap_region. When
f5cc4eef 1681 * hugetlbfs ->mmap method fails,
7aa6b4ad 1682 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1683 * before calling this function to clean up.
1684 * Since no pte has actually been setup, it is
1685 * safe to do nothing in this case.
1686 */
24669e58 1687 if (vma->vm_file) {
05e90bd0
PX
1688 zap_flags_t zap_flags = details ?
1689 details->zap_flags : 0;
05e90bd0
PX
1690 __unmap_hugepage_range_final(tlb, vma, start, end,
1691 NULL, zap_flags);
24669e58 1692 }
f5cc4eef
AV
1693 } else
1694 unmap_page_range(tlb, vma, start, end, details);
1695 }
1da177e4
LT
1696}
1697
1da177e4
LT
1698/**
1699 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1700 * @tlb: address of the caller's struct mmu_gather
763ecb03 1701 * @mt: the maple tree
1da177e4
LT
1702 * @vma: the starting vma
1703 * @start_addr: virtual address at which to start unmapping
1704 * @end_addr: virtual address at which to end unmapping
1da177e4 1705 *
508034a3 1706 * Unmap all pages in the vma list.
1da177e4 1707 *
1da177e4
LT
1708 * Only addresses between `start' and `end' will be unmapped.
1709 *
1710 * The VMA list must be sorted in ascending virtual address order.
1711 *
1712 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1713 * range after unmap_vmas() returns. So the only responsibility here is to
1714 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1715 * drops the lock and schedules.
1716 */
763ecb03 1717void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1da177e4 1718 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1719 unsigned long end_addr)
1da177e4 1720{
ac46d4f3 1721 struct mmu_notifier_range range;
999dad82
PX
1722 struct zap_details details = {
1723 .zap_flags = ZAP_FLAG_DROP_MARKER,
1724 /* Careful - we need to zap private pages too! */
1725 .even_cows = true,
1726 };
763ecb03 1727 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1da177e4 1728
6f4f13e8
JG
1729 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1730 start_addr, end_addr);
ac46d4f3 1731 mmu_notifier_invalidate_range_start(&range);
763ecb03 1732 do {
999dad82 1733 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
763ecb03 1734 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
ac46d4f3 1735 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1736}
1737
1738/**
1739 * zap_page_range - remove user pages in a given range
1740 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1741 * @start: starting address of pages to zap
1da177e4 1742 * @size: number of bytes to zap
f5cc4eef
AV
1743 *
1744 * Caller must protect the VMA list
1da177e4 1745 */
7e027b14 1746void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1747 unsigned long size)
1da177e4 1748{
763ecb03
LH
1749 struct maple_tree *mt = &vma->vm_mm->mm_mt;
1750 unsigned long end = start + size;
ac46d4f3 1751 struct mmu_notifier_range range;
d16dfc55 1752 struct mmu_gather tlb;
763ecb03 1753 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1da177e4 1754
1da177e4 1755 lru_add_drain();
7269f999 1756 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1757 start, start + size);
a72afd87 1758 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1759 update_hiwater_rss(vma->vm_mm);
1760 mmu_notifier_invalidate_range_start(&range);
763ecb03 1761 do {
ac46d4f3 1762 unmap_single_vma(&tlb, vma, start, range.end, NULL);
763ecb03 1763 } while ((vma = mas_find(&mas, end - 1)) != NULL);
ac46d4f3 1764 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1765 tlb_finish_mmu(&tlb);
1da177e4
LT
1766}
1767
f5cc4eef
AV
1768/**
1769 * zap_page_range_single - remove user pages in a given range
1770 * @vma: vm_area_struct holding the applicable pages
1771 * @address: starting address of pages to zap
1772 * @size: number of bytes to zap
8a5f14a2 1773 * @details: details of shared cache invalidation
f5cc4eef
AV
1774 *
1775 * The range must fit into one VMA.
1da177e4 1776 */
f5cc4eef 1777static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1778 unsigned long size, struct zap_details *details)
1779{
ac46d4f3 1780 struct mmu_notifier_range range;
d16dfc55 1781 struct mmu_gather tlb;
1da177e4 1782
1da177e4 1783 lru_add_drain();
7269f999 1784 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1785 address, address + size);
a72afd87 1786 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1787 update_hiwater_rss(vma->vm_mm);
1788 mmu_notifier_invalidate_range_start(&range);
1789 unmap_single_vma(&tlb, vma, address, range.end, details);
1790 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1791 tlb_finish_mmu(&tlb);
1da177e4
LT
1792}
1793
c627f9cc
JS
1794/**
1795 * zap_vma_ptes - remove ptes mapping the vma
1796 * @vma: vm_area_struct holding ptes to be zapped
1797 * @address: starting address of pages to zap
1798 * @size: number of bytes to zap
1799 *
1800 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1801 *
1802 * The entire address range must be fully contained within the vma.
1803 *
c627f9cc 1804 */
27d036e3 1805void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1806 unsigned long size)
1807{
88a35912 1808 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1809 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1810 return;
1811
f5cc4eef 1812 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1813}
1814EXPORT_SYMBOL_GPL(zap_vma_ptes);
1815
8cd3984d 1816static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1817{
c2febafc
KS
1818 pgd_t *pgd;
1819 p4d_t *p4d;
1820 pud_t *pud;
1821 pmd_t *pmd;
1822
1823 pgd = pgd_offset(mm, addr);
1824 p4d = p4d_alloc(mm, pgd, addr);
1825 if (!p4d)
1826 return NULL;
1827 pud = pud_alloc(mm, p4d, addr);
1828 if (!pud)
1829 return NULL;
1830 pmd = pmd_alloc(mm, pud, addr);
1831 if (!pmd)
1832 return NULL;
1833
1834 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1835 return pmd;
1836}
1837
1838pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1839 spinlock_t **ptl)
1840{
1841 pmd_t *pmd = walk_to_pmd(mm, addr);
1842
1843 if (!pmd)
1844 return NULL;
c2febafc 1845 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1846}
1847
8efd6f5b
AR
1848static int validate_page_before_insert(struct page *page)
1849{
1850 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1851 return -EINVAL;
1852 flush_dcache_page(page);
1853 return 0;
1854}
1855
cea86fe2 1856static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1857 unsigned long addr, struct page *page, pgprot_t prot)
1858{
1859 if (!pte_none(*pte))
1860 return -EBUSY;
1861 /* Ok, finally just insert the thing.. */
1862 get_page(page);
cea86fe2
HD
1863 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1864 page_add_file_rmap(page, vma, false);
1865 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1866 return 0;
1867}
1868
238f58d8
LT
1869/*
1870 * This is the old fallback for page remapping.
1871 *
1872 * For historical reasons, it only allows reserved pages. Only
1873 * old drivers should use this, and they needed to mark their
1874 * pages reserved for the old functions anyway.
1875 */
423bad60
NP
1876static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1877 struct page *page, pgprot_t prot)
238f58d8
LT
1878{
1879 int retval;
c9cfcddf 1880 pte_t *pte;
8a9f3ccd
BS
1881 spinlock_t *ptl;
1882
8efd6f5b
AR
1883 retval = validate_page_before_insert(page);
1884 if (retval)
5b4e655e 1885 goto out;
238f58d8 1886 retval = -ENOMEM;
cea86fe2 1887 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1888 if (!pte)
5b4e655e 1889 goto out;
cea86fe2 1890 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1891 pte_unmap_unlock(pte, ptl);
1892out:
1893 return retval;
1894}
1895
8cd3984d 1896#ifdef pte_index
cea86fe2 1897static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1898 unsigned long addr, struct page *page, pgprot_t prot)
1899{
1900 int err;
1901
1902 if (!page_count(page))
1903 return -EINVAL;
1904 err = validate_page_before_insert(page);
7f70c2a6
AR
1905 if (err)
1906 return err;
cea86fe2 1907 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1908}
1909
1910/* insert_pages() amortizes the cost of spinlock operations
1911 * when inserting pages in a loop. Arch *must* define pte_index.
1912 */
1913static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1914 struct page **pages, unsigned long *num, pgprot_t prot)
1915{
1916 pmd_t *pmd = NULL;
7f70c2a6
AR
1917 pte_t *start_pte, *pte;
1918 spinlock_t *pte_lock;
8cd3984d
AR
1919 struct mm_struct *const mm = vma->vm_mm;
1920 unsigned long curr_page_idx = 0;
1921 unsigned long remaining_pages_total = *num;
1922 unsigned long pages_to_write_in_pmd;
1923 int ret;
1924more:
1925 ret = -EFAULT;
1926 pmd = walk_to_pmd(mm, addr);
1927 if (!pmd)
1928 goto out;
1929
1930 pages_to_write_in_pmd = min_t(unsigned long,
1931 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1932
1933 /* Allocate the PTE if necessary; takes PMD lock once only. */
1934 ret = -ENOMEM;
1935 if (pte_alloc(mm, pmd))
1936 goto out;
8cd3984d
AR
1937
1938 while (pages_to_write_in_pmd) {
1939 int pte_idx = 0;
1940 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1941
7f70c2a6
AR
1942 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1943 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1944 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1945 addr, pages[curr_page_idx], prot);
1946 if (unlikely(err)) {
7f70c2a6 1947 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1948 ret = err;
1949 remaining_pages_total -= pte_idx;
1950 goto out;
1951 }
1952 addr += PAGE_SIZE;
1953 ++curr_page_idx;
1954 }
7f70c2a6 1955 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1956 pages_to_write_in_pmd -= batch_size;
1957 remaining_pages_total -= batch_size;
1958 }
1959 if (remaining_pages_total)
1960 goto more;
1961 ret = 0;
1962out:
1963 *num = remaining_pages_total;
1964 return ret;
1965}
1966#endif /* ifdef pte_index */
1967
1968/**
1969 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1970 * @vma: user vma to map to
1971 * @addr: target start user address of these pages
1972 * @pages: source kernel pages
1973 * @num: in: number of pages to map. out: number of pages that were *not*
1974 * mapped. (0 means all pages were successfully mapped).
1975 *
1976 * Preferred over vm_insert_page() when inserting multiple pages.
1977 *
1978 * In case of error, we may have mapped a subset of the provided
1979 * pages. It is the caller's responsibility to account for this case.
1980 *
1981 * The same restrictions apply as in vm_insert_page().
1982 */
1983int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1984 struct page **pages, unsigned long *num)
1985{
1986#ifdef pte_index
1987 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1988
1989 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1990 return -EFAULT;
1991 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1992 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1993 BUG_ON(vma->vm_flags & VM_PFNMAP);
1994 vma->vm_flags |= VM_MIXEDMAP;
1995 }
1996 /* Defer page refcount checking till we're about to map that page. */
1997 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1998#else
1999 unsigned long idx = 0, pgcount = *num;
45779b03 2000 int err = -EINVAL;
8cd3984d
AR
2001
2002 for (; idx < pgcount; ++idx) {
2003 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
2004 if (err)
2005 break;
2006 }
2007 *num = pgcount - idx;
2008 return err;
2009#endif /* ifdef pte_index */
2010}
2011EXPORT_SYMBOL(vm_insert_pages);
2012
bfa5bf6d
REB
2013/**
2014 * vm_insert_page - insert single page into user vma
2015 * @vma: user vma to map to
2016 * @addr: target user address of this page
2017 * @page: source kernel page
2018 *
a145dd41
LT
2019 * This allows drivers to insert individual pages they've allocated
2020 * into a user vma.
2021 *
2022 * The page has to be a nice clean _individual_ kernel allocation.
2023 * If you allocate a compound page, you need to have marked it as
2024 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2025 * (see split_page()).
a145dd41
LT
2026 *
2027 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2028 * took an arbitrary page protection parameter. This doesn't allow
2029 * that. Your vma protection will have to be set up correctly, which
2030 * means that if you want a shared writable mapping, you'd better
2031 * ask for a shared writable mapping!
2032 *
2033 * The page does not need to be reserved.
4b6e1e37
KK
2034 *
2035 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2036 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2037 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2038 * function from other places, for example from page-fault handler.
a862f68a
MR
2039 *
2040 * Return: %0 on success, negative error code otherwise.
a145dd41 2041 */
423bad60
NP
2042int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2043 struct page *page)
a145dd41
LT
2044{
2045 if (addr < vma->vm_start || addr >= vma->vm_end)
2046 return -EFAULT;
2047 if (!page_count(page))
2048 return -EINVAL;
4b6e1e37 2049 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2050 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
2051 BUG_ON(vma->vm_flags & VM_PFNMAP);
2052 vma->vm_flags |= VM_MIXEDMAP;
2053 }
423bad60 2054 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2055}
e3c3374f 2056EXPORT_SYMBOL(vm_insert_page);
a145dd41 2057
a667d745
SJ
2058/*
2059 * __vm_map_pages - maps range of kernel pages into user vma
2060 * @vma: user vma to map to
2061 * @pages: pointer to array of source kernel pages
2062 * @num: number of pages in page array
2063 * @offset: user's requested vm_pgoff
2064 *
2065 * This allows drivers to map range of kernel pages into a user vma.
2066 *
2067 * Return: 0 on success and error code otherwise.
2068 */
2069static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2070 unsigned long num, unsigned long offset)
2071{
2072 unsigned long count = vma_pages(vma);
2073 unsigned long uaddr = vma->vm_start;
2074 int ret, i;
2075
2076 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2077 if (offset >= num)
a667d745
SJ
2078 return -ENXIO;
2079
2080 /* Fail if the user requested size exceeds available object size */
2081 if (count > num - offset)
2082 return -ENXIO;
2083
2084 for (i = 0; i < count; i++) {
2085 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2086 if (ret < 0)
2087 return ret;
2088 uaddr += PAGE_SIZE;
2089 }
2090
2091 return 0;
2092}
2093
2094/**
2095 * vm_map_pages - maps range of kernel pages starts with non zero offset
2096 * @vma: user vma to map to
2097 * @pages: pointer to array of source kernel pages
2098 * @num: number of pages in page array
2099 *
2100 * Maps an object consisting of @num pages, catering for the user's
2101 * requested vm_pgoff
2102 *
2103 * If we fail to insert any page into the vma, the function will return
2104 * immediately leaving any previously inserted pages present. Callers
2105 * from the mmap handler may immediately return the error as their caller
2106 * will destroy the vma, removing any successfully inserted pages. Other
2107 * callers should make their own arrangements for calling unmap_region().
2108 *
2109 * Context: Process context. Called by mmap handlers.
2110 * Return: 0 on success and error code otherwise.
2111 */
2112int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2113 unsigned long num)
2114{
2115 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2116}
2117EXPORT_SYMBOL(vm_map_pages);
2118
2119/**
2120 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2121 * @vma: user vma to map to
2122 * @pages: pointer to array of source kernel pages
2123 * @num: number of pages in page array
2124 *
2125 * Similar to vm_map_pages(), except that it explicitly sets the offset
2126 * to 0. This function is intended for the drivers that did not consider
2127 * vm_pgoff.
2128 *
2129 * Context: Process context. Called by mmap handlers.
2130 * Return: 0 on success and error code otherwise.
2131 */
2132int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2133 unsigned long num)
2134{
2135 return __vm_map_pages(vma, pages, num, 0);
2136}
2137EXPORT_SYMBOL(vm_map_pages_zero);
2138
9b5a8e00 2139static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2140 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2141{
2142 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2143 pte_t *pte, entry;
2144 spinlock_t *ptl;
2145
423bad60
NP
2146 pte = get_locked_pte(mm, addr, &ptl);
2147 if (!pte)
9b5a8e00 2148 return VM_FAULT_OOM;
b2770da6
RZ
2149 if (!pte_none(*pte)) {
2150 if (mkwrite) {
2151 /*
2152 * For read faults on private mappings the PFN passed
2153 * in may not match the PFN we have mapped if the
2154 * mapped PFN is a writeable COW page. In the mkwrite
2155 * case we are creating a writable PTE for a shared
f2c57d91
JK
2156 * mapping and we expect the PFNs to match. If they
2157 * don't match, we are likely racing with block
2158 * allocation and mapping invalidation so just skip the
2159 * update.
b2770da6 2160 */
f2c57d91
JK
2161 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2162 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2163 goto out_unlock;
f2c57d91 2164 }
cae85cb8
JK
2165 entry = pte_mkyoung(*pte);
2166 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2168 update_mmu_cache(vma, addr, pte);
2169 }
2170 goto out_unlock;
b2770da6 2171 }
423bad60
NP
2172
2173 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2174 if (pfn_t_devmap(pfn))
2175 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2176 else
2177 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2178
b2770da6
RZ
2179 if (mkwrite) {
2180 entry = pte_mkyoung(entry);
2181 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2182 }
2183
423bad60 2184 set_pte_at(mm, addr, pte, entry);
4b3073e1 2185 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2186
423bad60
NP
2187out_unlock:
2188 pte_unmap_unlock(pte, ptl);
9b5a8e00 2189 return VM_FAULT_NOPAGE;
423bad60
NP
2190}
2191
f5e6d1d5
MW
2192/**
2193 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2194 * @vma: user vma to map to
2195 * @addr: target user address of this page
2196 * @pfn: source kernel pfn
2197 * @pgprot: pgprot flags for the inserted page
2198 *
a1a0aea5 2199 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2200 * to override pgprot on a per-page basis.
2201 *
2202 * This only makes sense for IO mappings, and it makes no sense for
2203 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2204 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2205 * impractical.
2206 *
574c5b3d
TH
2207 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2208 * a value of @pgprot different from that of @vma->vm_page_prot.
2209 *
ae2b01f3 2210 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2211 * Return: vm_fault_t value.
2212 */
2213vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2214 unsigned long pfn, pgprot_t pgprot)
2215{
6d958546
MW
2216 /*
2217 * Technically, architectures with pte_special can avoid all these
2218 * restrictions (same for remap_pfn_range). However we would like
2219 * consistency in testing and feature parity among all, so we should
2220 * try to keep these invariants in place for everybody.
2221 */
2222 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2223 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2224 (VM_PFNMAP|VM_MIXEDMAP));
2225 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2226 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2227
2228 if (addr < vma->vm_start || addr >= vma->vm_end)
2229 return VM_FAULT_SIGBUS;
2230
2231 if (!pfn_modify_allowed(pfn, pgprot))
2232 return VM_FAULT_SIGBUS;
2233
2234 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2235
9b5a8e00 2236 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2237 false);
f5e6d1d5
MW
2238}
2239EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2240
ae2b01f3
MW
2241/**
2242 * vmf_insert_pfn - insert single pfn into user vma
2243 * @vma: user vma to map to
2244 * @addr: target user address of this page
2245 * @pfn: source kernel pfn
2246 *
2247 * Similar to vm_insert_page, this allows drivers to insert individual pages
2248 * they've allocated into a user vma. Same comments apply.
2249 *
2250 * This function should only be called from a vm_ops->fault handler, and
2251 * in that case the handler should return the result of this function.
2252 *
2253 * vma cannot be a COW mapping.
2254 *
2255 * As this is called only for pages that do not currently exist, we
2256 * do not need to flush old virtual caches or the TLB.
2257 *
2258 * Context: Process context. May allocate using %GFP_KERNEL.
2259 * Return: vm_fault_t value.
2260 */
2261vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2262 unsigned long pfn)
2263{
2264 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2265}
2266EXPORT_SYMBOL(vmf_insert_pfn);
2267
785a3fab
DW
2268static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2269{
2270 /* these checks mirror the abort conditions in vm_normal_page */
2271 if (vma->vm_flags & VM_MIXEDMAP)
2272 return true;
2273 if (pfn_t_devmap(pfn))
2274 return true;
2275 if (pfn_t_special(pfn))
2276 return true;
2277 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2278 return true;
2279 return false;
2280}
2281
79f3aa5b 2282static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2283 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2284 bool mkwrite)
423bad60 2285{
79f3aa5b 2286 int err;
87744ab3 2287
785a3fab 2288 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2289
423bad60 2290 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2291 return VM_FAULT_SIGBUS;
308a047c
BP
2292
2293 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2294
42e4089c 2295 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2296 return VM_FAULT_SIGBUS;
42e4089c 2297
423bad60
NP
2298 /*
2299 * If we don't have pte special, then we have to use the pfn_valid()
2300 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2301 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2302 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2303 * without pte special, it would there be refcounted as a normal page.
423bad60 2304 */
00b3a331
LD
2305 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2306 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2307 struct page *page;
2308
03fc2da6
DW
2309 /*
2310 * At this point we are committed to insert_page()
2311 * regardless of whether the caller specified flags that
2312 * result in pfn_t_has_page() == false.
2313 */
2314 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2315 err = insert_page(vma, addr, page, pgprot);
2316 } else {
9b5a8e00 2317 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2318 }
b2770da6 2319
5d747637
MW
2320 if (err == -ENOMEM)
2321 return VM_FAULT_OOM;
2322 if (err < 0 && err != -EBUSY)
2323 return VM_FAULT_SIGBUS;
2324
2325 return VM_FAULT_NOPAGE;
e0dc0d8f 2326}
79f3aa5b 2327
574c5b3d
TH
2328/**
2329 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2330 * @vma: user vma to map to
2331 * @addr: target user address of this page
2332 * @pfn: source kernel pfn
2333 * @pgprot: pgprot flags for the inserted page
2334 *
a1a0aea5 2335 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2336 * to override pgprot on a per-page basis.
2337 *
2338 * Typically this function should be used by drivers to set caching- and
2339 * encryption bits different than those of @vma->vm_page_prot, because
2340 * the caching- or encryption mode may not be known at mmap() time.
2341 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2342 * to set caching and encryption bits for those vmas (except for COW pages).
2343 * This is ensured by core vm only modifying these page table entries using
2344 * functions that don't touch caching- or encryption bits, using pte_modify()
2345 * if needed. (See for example mprotect()).
2346 * Also when new page-table entries are created, this is only done using the
2347 * fault() callback, and never using the value of vma->vm_page_prot,
2348 * except for page-table entries that point to anonymous pages as the result
2349 * of COW.
2350 *
2351 * Context: Process context. May allocate using %GFP_KERNEL.
2352 * Return: vm_fault_t value.
2353 */
2354vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2355 pfn_t pfn, pgprot_t pgprot)
2356{
2357 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2358}
5379e4dd 2359EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2360
79f3aa5b
MW
2361vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2362 pfn_t pfn)
2363{
574c5b3d 2364 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2365}
5d747637 2366EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2367
ab77dab4
SJ
2368/*
2369 * If the insertion of PTE failed because someone else already added a
2370 * different entry in the mean time, we treat that as success as we assume
2371 * the same entry was actually inserted.
2372 */
ab77dab4
SJ
2373vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2374 unsigned long addr, pfn_t pfn)
b2770da6 2375{
574c5b3d 2376 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2377}
ab77dab4 2378EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2379
1da177e4
LT
2380/*
2381 * maps a range of physical memory into the requested pages. the old
2382 * mappings are removed. any references to nonexistent pages results
2383 * in null mappings (currently treated as "copy-on-access")
2384 */
2385static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2386 unsigned long addr, unsigned long end,
2387 unsigned long pfn, pgprot_t prot)
2388{
90a3e375 2389 pte_t *pte, *mapped_pte;
c74df32c 2390 spinlock_t *ptl;
42e4089c 2391 int err = 0;
1da177e4 2392
90a3e375 2393 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2394 if (!pte)
2395 return -ENOMEM;
6606c3e0 2396 arch_enter_lazy_mmu_mode();
1da177e4
LT
2397 do {
2398 BUG_ON(!pte_none(*pte));
42e4089c
AK
2399 if (!pfn_modify_allowed(pfn, prot)) {
2400 err = -EACCES;
2401 break;
2402 }
7e675137 2403 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2404 pfn++;
2405 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2406 arch_leave_lazy_mmu_mode();
90a3e375 2407 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2408 return err;
1da177e4
LT
2409}
2410
2411static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2412 unsigned long addr, unsigned long end,
2413 unsigned long pfn, pgprot_t prot)
2414{
2415 pmd_t *pmd;
2416 unsigned long next;
42e4089c 2417 int err;
1da177e4
LT
2418
2419 pfn -= addr >> PAGE_SHIFT;
2420 pmd = pmd_alloc(mm, pud, addr);
2421 if (!pmd)
2422 return -ENOMEM;
f66055ab 2423 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2424 do {
2425 next = pmd_addr_end(addr, end);
42e4089c
AK
2426 err = remap_pte_range(mm, pmd, addr, next,
2427 pfn + (addr >> PAGE_SHIFT), prot);
2428 if (err)
2429 return err;
1da177e4
LT
2430 } while (pmd++, addr = next, addr != end);
2431 return 0;
2432}
2433
c2febafc 2434static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2435 unsigned long addr, unsigned long end,
2436 unsigned long pfn, pgprot_t prot)
2437{
2438 pud_t *pud;
2439 unsigned long next;
42e4089c 2440 int err;
1da177e4
LT
2441
2442 pfn -= addr >> PAGE_SHIFT;
c2febafc 2443 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2444 if (!pud)
2445 return -ENOMEM;
2446 do {
2447 next = pud_addr_end(addr, end);
42e4089c
AK
2448 err = remap_pmd_range(mm, pud, addr, next,
2449 pfn + (addr >> PAGE_SHIFT), prot);
2450 if (err)
2451 return err;
1da177e4
LT
2452 } while (pud++, addr = next, addr != end);
2453 return 0;
2454}
2455
c2febafc
KS
2456static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2457 unsigned long addr, unsigned long end,
2458 unsigned long pfn, pgprot_t prot)
2459{
2460 p4d_t *p4d;
2461 unsigned long next;
42e4089c 2462 int err;
c2febafc
KS
2463
2464 pfn -= addr >> PAGE_SHIFT;
2465 p4d = p4d_alloc(mm, pgd, addr);
2466 if (!p4d)
2467 return -ENOMEM;
2468 do {
2469 next = p4d_addr_end(addr, end);
42e4089c
AK
2470 err = remap_pud_range(mm, p4d, addr, next,
2471 pfn + (addr >> PAGE_SHIFT), prot);
2472 if (err)
2473 return err;
c2febafc
KS
2474 } while (p4d++, addr = next, addr != end);
2475 return 0;
2476}
2477
74ffa5a3
CH
2478/*
2479 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2480 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2481 */
74ffa5a3
CH
2482int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2483 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2484{
2485 pgd_t *pgd;
2486 unsigned long next;
2d15cab8 2487 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2488 struct mm_struct *mm = vma->vm_mm;
2489 int err;
2490
0c4123e3
AZ
2491 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2492 return -EINVAL;
2493
1da177e4
LT
2494 /*
2495 * Physically remapped pages are special. Tell the
2496 * rest of the world about it:
2497 * VM_IO tells people not to look at these pages
2498 * (accesses can have side effects).
6aab341e
LT
2499 * VM_PFNMAP tells the core MM that the base pages are just
2500 * raw PFN mappings, and do not have a "struct page" associated
2501 * with them.
314e51b9
KK
2502 * VM_DONTEXPAND
2503 * Disable vma merging and expanding with mremap().
2504 * VM_DONTDUMP
2505 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2506 *
2507 * There's a horrible special case to handle copy-on-write
2508 * behaviour that some programs depend on. We mark the "original"
2509 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2510 * See vm_normal_page() for details.
1da177e4 2511 */
b3b9c293
KK
2512 if (is_cow_mapping(vma->vm_flags)) {
2513 if (addr != vma->vm_start || end != vma->vm_end)
2514 return -EINVAL;
fb155c16 2515 vma->vm_pgoff = pfn;
b3b9c293
KK
2516 }
2517
314e51b9 2518 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2519
2520 BUG_ON(addr >= end);
2521 pfn -= addr >> PAGE_SHIFT;
2522 pgd = pgd_offset(mm, addr);
2523 flush_cache_range(vma, addr, end);
1da177e4
LT
2524 do {
2525 next = pgd_addr_end(addr, end);
c2febafc 2526 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2527 pfn + (addr >> PAGE_SHIFT), prot);
2528 if (err)
74ffa5a3 2529 return err;
1da177e4 2530 } while (pgd++, addr = next, addr != end);
2ab64037 2531
74ffa5a3
CH
2532 return 0;
2533}
2534
2535/**
2536 * remap_pfn_range - remap kernel memory to userspace
2537 * @vma: user vma to map to
2538 * @addr: target page aligned user address to start at
2539 * @pfn: page frame number of kernel physical memory address
2540 * @size: size of mapping area
2541 * @prot: page protection flags for this mapping
2542 *
2543 * Note: this is only safe if the mm semaphore is held when called.
2544 *
2545 * Return: %0 on success, negative error code otherwise.
2546 */
2547int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2548 unsigned long pfn, unsigned long size, pgprot_t prot)
2549{
2550 int err;
2551
2552 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2553 if (err)
74ffa5a3 2554 return -EINVAL;
2ab64037 2555
74ffa5a3
CH
2556 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2557 if (err)
2558 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2559 return err;
2560}
2561EXPORT_SYMBOL(remap_pfn_range);
2562
b4cbb197
LT
2563/**
2564 * vm_iomap_memory - remap memory to userspace
2565 * @vma: user vma to map to
abd69b9e 2566 * @start: start of the physical memory to be mapped
b4cbb197
LT
2567 * @len: size of area
2568 *
2569 * This is a simplified io_remap_pfn_range() for common driver use. The
2570 * driver just needs to give us the physical memory range to be mapped,
2571 * we'll figure out the rest from the vma information.
2572 *
2573 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2574 * whatever write-combining details or similar.
a862f68a
MR
2575 *
2576 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2577 */
2578int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2579{
2580 unsigned long vm_len, pfn, pages;
2581
2582 /* Check that the physical memory area passed in looks valid */
2583 if (start + len < start)
2584 return -EINVAL;
2585 /*
2586 * You *really* shouldn't map things that aren't page-aligned,
2587 * but we've historically allowed it because IO memory might
2588 * just have smaller alignment.
2589 */
2590 len += start & ~PAGE_MASK;
2591 pfn = start >> PAGE_SHIFT;
2592 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2593 if (pfn + pages < pfn)
2594 return -EINVAL;
2595
2596 /* We start the mapping 'vm_pgoff' pages into the area */
2597 if (vma->vm_pgoff > pages)
2598 return -EINVAL;
2599 pfn += vma->vm_pgoff;
2600 pages -= vma->vm_pgoff;
2601
2602 /* Can we fit all of the mapping? */
2603 vm_len = vma->vm_end - vma->vm_start;
2604 if (vm_len >> PAGE_SHIFT > pages)
2605 return -EINVAL;
2606
2607 /* Ok, let it rip */
2608 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2609}
2610EXPORT_SYMBOL(vm_iomap_memory);
2611
aee16b3c
JF
2612static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2613 unsigned long addr, unsigned long end,
e80d3909
JR
2614 pte_fn_t fn, void *data, bool create,
2615 pgtbl_mod_mask *mask)
aee16b3c 2616{
8abb50c7 2617 pte_t *pte, *mapped_pte;
be1db475 2618 int err = 0;
3f649ab7 2619 spinlock_t *ptl;
aee16b3c 2620
be1db475 2621 if (create) {
8abb50c7 2622 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2623 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2624 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2625 if (!pte)
2626 return -ENOMEM;
2627 } else {
8abb50c7 2628 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2629 pte_offset_kernel(pmd, addr) :
2630 pte_offset_map_lock(mm, pmd, addr, &ptl);
2631 }
aee16b3c
JF
2632
2633 BUG_ON(pmd_huge(*pmd));
2634
38e0edb1
JF
2635 arch_enter_lazy_mmu_mode();
2636
eeb4a05f
CH
2637 if (fn) {
2638 do {
2639 if (create || !pte_none(*pte)) {
2640 err = fn(pte++, addr, data);
2641 if (err)
2642 break;
2643 }
2644 } while (addr += PAGE_SIZE, addr != end);
2645 }
e80d3909 2646 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2647
38e0edb1
JF
2648 arch_leave_lazy_mmu_mode();
2649
aee16b3c 2650 if (mm != &init_mm)
8abb50c7 2651 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2652 return err;
2653}
2654
2655static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2656 unsigned long addr, unsigned long end,
e80d3909
JR
2657 pte_fn_t fn, void *data, bool create,
2658 pgtbl_mod_mask *mask)
aee16b3c
JF
2659{
2660 pmd_t *pmd;
2661 unsigned long next;
be1db475 2662 int err = 0;
aee16b3c 2663
ceb86879
AK
2664 BUG_ON(pud_huge(*pud));
2665
be1db475 2666 if (create) {
e80d3909 2667 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2668 if (!pmd)
2669 return -ENOMEM;
2670 } else {
2671 pmd = pmd_offset(pud, addr);
2672 }
aee16b3c
JF
2673 do {
2674 next = pmd_addr_end(addr, end);
0c95cba4
NP
2675 if (pmd_none(*pmd) && !create)
2676 continue;
2677 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2678 return -EINVAL;
2679 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2680 if (!create)
2681 continue;
2682 pmd_clear_bad(pmd);
be1db475 2683 }
0c95cba4
NP
2684 err = apply_to_pte_range(mm, pmd, addr, next,
2685 fn, data, create, mask);
2686 if (err)
2687 break;
aee16b3c 2688 } while (pmd++, addr = next, addr != end);
0c95cba4 2689
aee16b3c
JF
2690 return err;
2691}
2692
c2febafc 2693static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2694 unsigned long addr, unsigned long end,
e80d3909
JR
2695 pte_fn_t fn, void *data, bool create,
2696 pgtbl_mod_mask *mask)
aee16b3c
JF
2697{
2698 pud_t *pud;
2699 unsigned long next;
be1db475 2700 int err = 0;
aee16b3c 2701
be1db475 2702 if (create) {
e80d3909 2703 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2704 if (!pud)
2705 return -ENOMEM;
2706 } else {
2707 pud = pud_offset(p4d, addr);
2708 }
aee16b3c
JF
2709 do {
2710 next = pud_addr_end(addr, end);
0c95cba4
NP
2711 if (pud_none(*pud) && !create)
2712 continue;
2713 if (WARN_ON_ONCE(pud_leaf(*pud)))
2714 return -EINVAL;
2715 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2716 if (!create)
2717 continue;
2718 pud_clear_bad(pud);
be1db475 2719 }
0c95cba4
NP
2720 err = apply_to_pmd_range(mm, pud, addr, next,
2721 fn, data, create, mask);
2722 if (err)
2723 break;
aee16b3c 2724 } while (pud++, addr = next, addr != end);
0c95cba4 2725
aee16b3c
JF
2726 return err;
2727}
2728
c2febafc
KS
2729static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2730 unsigned long addr, unsigned long end,
e80d3909
JR
2731 pte_fn_t fn, void *data, bool create,
2732 pgtbl_mod_mask *mask)
c2febafc
KS
2733{
2734 p4d_t *p4d;
2735 unsigned long next;
be1db475 2736 int err = 0;
c2febafc 2737
be1db475 2738 if (create) {
e80d3909 2739 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2740 if (!p4d)
2741 return -ENOMEM;
2742 } else {
2743 p4d = p4d_offset(pgd, addr);
2744 }
c2febafc
KS
2745 do {
2746 next = p4d_addr_end(addr, end);
0c95cba4
NP
2747 if (p4d_none(*p4d) && !create)
2748 continue;
2749 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2750 return -EINVAL;
2751 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2752 if (!create)
2753 continue;
2754 p4d_clear_bad(p4d);
be1db475 2755 }
0c95cba4
NP
2756 err = apply_to_pud_range(mm, p4d, addr, next,
2757 fn, data, create, mask);
2758 if (err)
2759 break;
c2febafc 2760 } while (p4d++, addr = next, addr != end);
0c95cba4 2761
c2febafc
KS
2762 return err;
2763}
2764
be1db475
DA
2765static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2766 unsigned long size, pte_fn_t fn,
2767 void *data, bool create)
aee16b3c
JF
2768{
2769 pgd_t *pgd;
e80d3909 2770 unsigned long start = addr, next;
57250a5b 2771 unsigned long end = addr + size;
e80d3909 2772 pgtbl_mod_mask mask = 0;
be1db475 2773 int err = 0;
aee16b3c 2774
9cb65bc3
MP
2775 if (WARN_ON(addr >= end))
2776 return -EINVAL;
2777
aee16b3c
JF
2778 pgd = pgd_offset(mm, addr);
2779 do {
2780 next = pgd_addr_end(addr, end);
0c95cba4 2781 if (pgd_none(*pgd) && !create)
be1db475 2782 continue;
0c95cba4
NP
2783 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2784 return -EINVAL;
2785 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2786 if (!create)
2787 continue;
2788 pgd_clear_bad(pgd);
2789 }
2790 err = apply_to_p4d_range(mm, pgd, addr, next,
2791 fn, data, create, &mask);
aee16b3c
JF
2792 if (err)
2793 break;
2794 } while (pgd++, addr = next, addr != end);
57250a5b 2795
e80d3909
JR
2796 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2797 arch_sync_kernel_mappings(start, start + size);
2798
aee16b3c
JF
2799 return err;
2800}
be1db475
DA
2801
2802/*
2803 * Scan a region of virtual memory, filling in page tables as necessary
2804 * and calling a provided function on each leaf page table.
2805 */
2806int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2807 unsigned long size, pte_fn_t fn, void *data)
2808{
2809 return __apply_to_page_range(mm, addr, size, fn, data, true);
2810}
aee16b3c
JF
2811EXPORT_SYMBOL_GPL(apply_to_page_range);
2812
be1db475
DA
2813/*
2814 * Scan a region of virtual memory, calling a provided function on
2815 * each leaf page table where it exists.
2816 *
2817 * Unlike apply_to_page_range, this does _not_ fill in page tables
2818 * where they are absent.
2819 */
2820int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2821 unsigned long size, pte_fn_t fn, void *data)
2822{
2823 return __apply_to_page_range(mm, addr, size, fn, data, false);
2824}
2825EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2826
8f4e2101 2827/*
9b4bdd2f
KS
2828 * handle_pte_fault chooses page fault handler according to an entry which was
2829 * read non-atomically. Before making any commitment, on those architectures
2830 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2831 * parts, do_swap_page must check under lock before unmapping the pte and
2832 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2833 * and do_anonymous_page can safely check later on).
8f4e2101 2834 */
2ca99358 2835static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2836{
2837 int same = 1;
923717cb 2838#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2839 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2840 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2841 spin_lock(ptl);
2ca99358 2842 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2843 spin_unlock(ptl);
8f4e2101
HD
2844 }
2845#endif
2ca99358
PX
2846 pte_unmap(vmf->pte);
2847 vmf->pte = NULL;
8f4e2101
HD
2848 return same;
2849}
2850
c89357e2
DH
2851static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2852 struct vm_fault *vmf)
6aab341e 2853{
83d116c5
JH
2854 bool ret;
2855 void *kaddr;
2856 void __user *uaddr;
c3e5ea6e 2857 bool locked = false;
83d116c5
JH
2858 struct vm_area_struct *vma = vmf->vma;
2859 struct mm_struct *mm = vma->vm_mm;
2860 unsigned long addr = vmf->address;
2861
83d116c5
JH
2862 if (likely(src)) {
2863 copy_user_highpage(dst, src, addr, vma);
2864 return true;
2865 }
2866
6aab341e
LT
2867 /*
2868 * If the source page was a PFN mapping, we don't have
2869 * a "struct page" for it. We do a best-effort copy by
2870 * just copying from the original user address. If that
2871 * fails, we just zero-fill it. Live with it.
2872 */
83d116c5
JH
2873 kaddr = kmap_atomic(dst);
2874 uaddr = (void __user *)(addr & PAGE_MASK);
2875
2876 /*
2877 * On architectures with software "accessed" bits, we would
2878 * take a double page fault, so mark it accessed here.
2879 */
e1fd09e3 2880 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2881 pte_t entry;
5d2a2dbb 2882
83d116c5 2883 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2884 locked = true;
83d116c5
JH
2885 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2886 /*
2887 * Other thread has already handled the fault
7df67697 2888 * and update local tlb only
83d116c5 2889 */
7df67697 2890 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2891 ret = false;
2892 goto pte_unlock;
2893 }
2894
2895 entry = pte_mkyoung(vmf->orig_pte);
2896 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2897 update_mmu_cache(vma, addr, vmf->pte);
2898 }
2899
2900 /*
2901 * This really shouldn't fail, because the page is there
2902 * in the page tables. But it might just be unreadable,
2903 * in which case we just give up and fill the result with
2904 * zeroes.
2905 */
2906 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2907 if (locked)
2908 goto warn;
2909
2910 /* Re-validate under PTL if the page is still mapped */
2911 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2912 locked = true;
2913 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2914 /* The PTE changed under us, update local tlb */
2915 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2916 ret = false;
2917 goto pte_unlock;
2918 }
2919
5d2a2dbb 2920 /*
985ba004 2921 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2922 * Try to copy again under PTL.
5d2a2dbb 2923 */
c3e5ea6e
KS
2924 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2925 /*
2926 * Give a warn in case there can be some obscure
2927 * use-case
2928 */
2929warn:
2930 WARN_ON_ONCE(1);
2931 clear_page(kaddr);
2932 }
83d116c5
JH
2933 }
2934
2935 ret = true;
2936
2937pte_unlock:
c3e5ea6e 2938 if (locked)
83d116c5
JH
2939 pte_unmap_unlock(vmf->pte, vmf->ptl);
2940 kunmap_atomic(kaddr);
2941 flush_dcache_page(dst);
2942
2943 return ret;
6aab341e
LT
2944}
2945
c20cd45e
MH
2946static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2947{
2948 struct file *vm_file = vma->vm_file;
2949
2950 if (vm_file)
2951 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2952
2953 /*
2954 * Special mappings (e.g. VDSO) do not have any file so fake
2955 * a default GFP_KERNEL for them.
2956 */
2957 return GFP_KERNEL;
2958}
2959
fb09a464
KS
2960/*
2961 * Notify the address space that the page is about to become writable so that
2962 * it can prohibit this or wait for the page to get into an appropriate state.
2963 *
2964 * We do this without the lock held, so that it can sleep if it needs to.
2965 */
2b740303 2966static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2967{
2b740303 2968 vm_fault_t ret;
38b8cb7f
JK
2969 struct page *page = vmf->page;
2970 unsigned int old_flags = vmf->flags;
fb09a464 2971
38b8cb7f 2972 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2973
dc617f29
DW
2974 if (vmf->vma->vm_file &&
2975 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2976 return VM_FAULT_SIGBUS;
2977
11bac800 2978 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2979 /* Restore original flags so that caller is not surprised */
2980 vmf->flags = old_flags;
fb09a464
KS
2981 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2982 return ret;
2983 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2984 lock_page(page);
2985 if (!page->mapping) {
2986 unlock_page(page);
2987 return 0; /* retry */
2988 }
2989 ret |= VM_FAULT_LOCKED;
2990 } else
2991 VM_BUG_ON_PAGE(!PageLocked(page), page);
2992 return ret;
2993}
2994
97ba0c2b
JK
2995/*
2996 * Handle dirtying of a page in shared file mapping on a write fault.
2997 *
2998 * The function expects the page to be locked and unlocks it.
2999 */
89b15332 3000static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 3001{
89b15332 3002 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 3003 struct address_space *mapping;
89b15332 3004 struct page *page = vmf->page;
97ba0c2b
JK
3005 bool dirtied;
3006 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3007
3008 dirtied = set_page_dirty(page);
3009 VM_BUG_ON_PAGE(PageAnon(page), page);
3010 /*
3011 * Take a local copy of the address_space - page.mapping may be zeroed
3012 * by truncate after unlock_page(). The address_space itself remains
3013 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3014 * release semantics to prevent the compiler from undoing this copying.
3015 */
3016 mapping = page_rmapping(page);
3017 unlock_page(page);
3018
89b15332
JW
3019 if (!page_mkwrite)
3020 file_update_time(vma->vm_file);
3021
3022 /*
3023 * Throttle page dirtying rate down to writeback speed.
3024 *
3025 * mapping may be NULL here because some device drivers do not
3026 * set page.mapping but still dirty their pages
3027 *
c1e8d7c6 3028 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
3029 * is pinning the mapping, as per above.
3030 */
97ba0c2b 3031 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
3032 struct file *fpin;
3033
3034 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3035 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3036 if (fpin) {
3037 fput(fpin);
d9272525 3038 return VM_FAULT_COMPLETED;
89b15332 3039 }
97ba0c2b
JK
3040 }
3041
89b15332 3042 return 0;
97ba0c2b
JK
3043}
3044
4e047f89
SR
3045/*
3046 * Handle write page faults for pages that can be reused in the current vma
3047 *
3048 * This can happen either due to the mapping being with the VM_SHARED flag,
3049 * or due to us being the last reference standing to the page. In either
3050 * case, all we need to do here is to mark the page as writable and update
3051 * any related book-keeping.
3052 */
997dd98d 3053static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3054 __releases(vmf->ptl)
4e047f89 3055{
82b0f8c3 3056 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3057 struct page *page = vmf->page;
4e047f89 3058 pte_t entry;
6c287605 3059
c89357e2 3060 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3061 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3062
4e047f89
SR
3063 /*
3064 * Clear the pages cpupid information as the existing
3065 * information potentially belongs to a now completely
3066 * unrelated process.
3067 */
3068 if (page)
3069 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3070
2994302b
JK
3071 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3072 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3073 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3074 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3075 update_mmu_cache(vma, vmf->address, vmf->pte);
3076 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3077 count_vm_event(PGREUSE);
4e047f89
SR
3078}
3079
2f38ab2c 3080/*
c89357e2
DH
3081 * Handle the case of a page which we actually need to copy to a new page,
3082 * either due to COW or unsharing.
2f38ab2c 3083 *
c1e8d7c6 3084 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3085 * without the ptl held.
3086 *
3087 * High level logic flow:
3088 *
3089 * - Allocate a page, copy the content of the old page to the new one.
3090 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3091 * - Take the PTL. If the pte changed, bail out and release the allocated page
3092 * - If the pte is still the way we remember it, update the page table and all
3093 * relevant references. This includes dropping the reference the page-table
3094 * held to the old page, as well as updating the rmap.
3095 * - In any case, unlock the PTL and drop the reference we took to the old page.
3096 */
2b740303 3097static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3098{
c89357e2 3099 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3100 struct vm_area_struct *vma = vmf->vma;
bae473a4 3101 struct mm_struct *mm = vma->vm_mm;
a41b70d6 3102 struct page *old_page = vmf->page;
2f38ab2c 3103 struct page *new_page = NULL;
2f38ab2c
SR
3104 pte_t entry;
3105 int page_copied = 0;
ac46d4f3 3106 struct mmu_notifier_range range;
2f38ab2c 3107
662ce1dc
YY
3108 delayacct_wpcopy_start();
3109
2f38ab2c
SR
3110 if (unlikely(anon_vma_prepare(vma)))
3111 goto oom;
3112
2994302b 3113 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
3114 new_page = alloc_zeroed_user_highpage_movable(vma,
3115 vmf->address);
2f38ab2c
SR
3116 if (!new_page)
3117 goto oom;
3118 } else {
bae473a4 3119 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3120 vmf->address);
2f38ab2c
SR
3121 if (!new_page)
3122 goto oom;
83d116c5 3123
c89357e2 3124 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
83d116c5
JH
3125 /*
3126 * COW failed, if the fault was solved by other,
3127 * it's fine. If not, userspace would re-fault on
3128 * the same address and we will handle the fault
3129 * from the second attempt.
3130 */
3131 put_page(new_page);
3132 if (old_page)
3133 put_page(old_page);
662ce1dc
YY
3134
3135 delayacct_wpcopy_end();
83d116c5
JH
3136 return 0;
3137 }
b073d7f8 3138 kmsan_copy_page_meta(new_page, old_page);
2f38ab2c 3139 }
2f38ab2c 3140
8f425e4e 3141 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3142 goto oom_free_new;
9d82c694 3143 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3144
eb3c24f3
MG
3145 __SetPageUptodate(new_page);
3146
7269f999 3147 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3148 vmf->address & PAGE_MASK,
ac46d4f3
JG
3149 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3150 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3151
3152 /*
3153 * Re-check the pte - we dropped the lock
3154 */
82b0f8c3 3155 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3156 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3157 if (old_page) {
3158 if (!PageAnon(old_page)) {
eca56ff9
JM
3159 dec_mm_counter_fast(mm,
3160 mm_counter_file(old_page));
2f38ab2c
SR
3161 inc_mm_counter_fast(mm, MM_ANONPAGES);
3162 }
3163 } else {
3164 inc_mm_counter_fast(mm, MM_ANONPAGES);
3165 }
2994302b 3166 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3167 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3168 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3169 if (unlikely(unshare)) {
3170 if (pte_soft_dirty(vmf->orig_pte))
3171 entry = pte_mksoft_dirty(entry);
3172 if (pte_uffd_wp(vmf->orig_pte))
3173 entry = pte_mkuffd_wp(entry);
3174 } else {
3175 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3176 }
111fe718 3177
2f38ab2c
SR
3178 /*
3179 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3180 * pte with the new entry, to keep TLBs on different CPUs in
3181 * sync. This code used to set the new PTE then flush TLBs, but
3182 * that left a window where the new PTE could be loaded into
3183 * some TLBs while the old PTE remains in others.
2f38ab2c 3184 */
82b0f8c3 3185 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
40f2bbf7 3186 page_add_new_anon_rmap(new_page, vma, vmf->address);
b518154e 3187 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3188 /*
3189 * We call the notify macro here because, when using secondary
3190 * mmu page tables (such as kvm shadow page tables), we want the
3191 * new page to be mapped directly into the secondary page table.
3192 */
c89357e2 3193 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3194 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3195 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3196 if (old_page) {
3197 /*
3198 * Only after switching the pte to the new page may
3199 * we remove the mapcount here. Otherwise another
3200 * process may come and find the rmap count decremented
3201 * before the pte is switched to the new page, and
3202 * "reuse" the old page writing into it while our pte
3203 * here still points into it and can be read by other
3204 * threads.
3205 *
3206 * The critical issue is to order this
3207 * page_remove_rmap with the ptp_clear_flush above.
3208 * Those stores are ordered by (if nothing else,)
3209 * the barrier present in the atomic_add_negative
3210 * in page_remove_rmap.
3211 *
3212 * Then the TLB flush in ptep_clear_flush ensures that
3213 * no process can access the old page before the
3214 * decremented mapcount is visible. And the old page
3215 * cannot be reused until after the decremented
3216 * mapcount is visible. So transitively, TLBs to
3217 * old page will be flushed before it can be reused.
3218 */
cea86fe2 3219 page_remove_rmap(old_page, vma, false);
2f38ab2c
SR
3220 }
3221
3222 /* Free the old page.. */
3223 new_page = old_page;
3224 page_copied = 1;
3225 } else {
7df67697 3226 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3227 }
3228
3229 if (new_page)
09cbfeaf 3230 put_page(new_page);
2f38ab2c 3231
82b0f8c3 3232 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3233 /*
3234 * No need to double call mmu_notifier->invalidate_range() callback as
3235 * the above ptep_clear_flush_notify() did already call it.
3236 */
ac46d4f3 3237 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c 3238 if (old_page) {
f4c4a3f4
YH
3239 if (page_copied)
3240 free_swap_cache(old_page);
09cbfeaf 3241 put_page(old_page);
2f38ab2c 3242 }
662ce1dc
YY
3243
3244 delayacct_wpcopy_end();
c89357e2 3245 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
2f38ab2c 3246oom_free_new:
09cbfeaf 3247 put_page(new_page);
2f38ab2c
SR
3248oom:
3249 if (old_page)
09cbfeaf 3250 put_page(old_page);
662ce1dc
YY
3251
3252 delayacct_wpcopy_end();
2f38ab2c
SR
3253 return VM_FAULT_OOM;
3254}
3255
66a6197c
JK
3256/**
3257 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3258 * writeable once the page is prepared
3259 *
3260 * @vmf: structure describing the fault
3261 *
3262 * This function handles all that is needed to finish a write page fault in a
3263 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3264 * It handles locking of PTE and modifying it.
66a6197c
JK
3265 *
3266 * The function expects the page to be locked or other protection against
3267 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3268 *
2797e79f 3269 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3270 * we acquired PTE lock.
66a6197c 3271 */
2b740303 3272vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3273{
3274 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3275 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3276 &vmf->ptl);
3277 /*
3278 * We might have raced with another page fault while we released the
3279 * pte_offset_map_lock.
3280 */
3281 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3282 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3283 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3284 return VM_FAULT_NOPAGE;
66a6197c
JK
3285 }
3286 wp_page_reuse(vmf);
a19e2553 3287 return 0;
66a6197c
JK
3288}
3289
dd906184
BH
3290/*
3291 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3292 * mapping
3293 */
2b740303 3294static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3295{
82b0f8c3 3296 struct vm_area_struct *vma = vmf->vma;
bae473a4 3297
dd906184 3298 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3299 vm_fault_t ret;
dd906184 3300
82b0f8c3 3301 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3302 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3303 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3304 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3305 return ret;
66a6197c 3306 return finish_mkwrite_fault(vmf);
dd906184 3307 }
997dd98d
JK
3308 wp_page_reuse(vmf);
3309 return VM_FAULT_WRITE;
dd906184
BH
3310}
3311
2b740303 3312static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3313 __releases(vmf->ptl)
93e478d4 3314{
82b0f8c3 3315 struct vm_area_struct *vma = vmf->vma;
89b15332 3316 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3317
a41b70d6 3318 get_page(vmf->page);
93e478d4 3319
93e478d4 3320 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3321 vm_fault_t tmp;
93e478d4 3322
82b0f8c3 3323 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3324 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3325 if (unlikely(!tmp || (tmp &
3326 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3327 put_page(vmf->page);
93e478d4
SR
3328 return tmp;
3329 }
66a6197c 3330 tmp = finish_mkwrite_fault(vmf);
a19e2553 3331 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3332 unlock_page(vmf->page);
a41b70d6 3333 put_page(vmf->page);
66a6197c 3334 return tmp;
93e478d4 3335 }
66a6197c
JK
3336 } else {
3337 wp_page_reuse(vmf);
997dd98d 3338 lock_page(vmf->page);
93e478d4 3339 }
89b15332 3340 ret |= fault_dirty_shared_page(vmf);
997dd98d 3341 put_page(vmf->page);
93e478d4 3342
89b15332 3343 return ret;
93e478d4
SR
3344}
3345
1da177e4 3346/*
c89357e2
DH
3347 * This routine handles present pages, when
3348 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3349 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3350 * (FAULT_FLAG_UNSHARE)
3351 *
3352 * It is done by copying the page to a new address and decrementing the
3353 * shared-page counter for the old page.
1da177e4 3354 *
1da177e4
LT
3355 * Note that this routine assumes that the protection checks have been
3356 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3357 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3358 * done any necessary COW.
1da177e4 3359 *
c89357e2
DH
3360 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3361 * though the page will change only once the write actually happens. This
3362 * avoids a few races, and potentially makes it more efficient.
1da177e4 3363 *
c1e8d7c6 3364 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3365 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3366 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3367 */
2b740303 3368static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3369 __releases(vmf->ptl)
1da177e4 3370{
c89357e2 3371 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3372 struct vm_area_struct *vma = vmf->vma;
e4a2ed94 3373 struct folio *folio;
1da177e4 3374
c89357e2
DH
3375 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3376 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
529b930b 3377
c89357e2
DH
3378 if (likely(!unshare)) {
3379 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3380 pte_unmap_unlock(vmf->pte, vmf->ptl);
3381 return handle_userfault(vmf, VM_UFFD_WP);
3382 }
3383
3384 /*
3385 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3386 * is flushed in this case before copying.
3387 */
3388 if (unlikely(userfaultfd_wp(vmf->vma) &&
3389 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3390 flush_tlb_page(vmf->vma, vmf->address);
3391 }
6ce64428 3392
a41b70d6
JK
3393 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3394 if (!vmf->page) {
c89357e2
DH
3395 if (unlikely(unshare)) {
3396 /* No anonymous page -> nothing to do. */
3397 pte_unmap_unlock(vmf->pte, vmf->ptl);
3398 return 0;
3399 }
3400
251b97f5 3401 /*
64e45507
PF
3402 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3403 * VM_PFNMAP VMA.
251b97f5
PZ
3404 *
3405 * We should not cow pages in a shared writeable mapping.
dd906184 3406 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3407 */
3408 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3409 (VM_WRITE|VM_SHARED))
2994302b 3410 return wp_pfn_shared(vmf);
2f38ab2c 3411
82b0f8c3 3412 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3413 return wp_page_copy(vmf);
251b97f5 3414 }
1da177e4 3415
d08b3851 3416 /*
ee6a6457
PZ
3417 * Take out anonymous pages first, anonymous shared vmas are
3418 * not dirty accountable.
d08b3851 3419 */
e4a2ed94
MWO
3420 folio = page_folio(vmf->page);
3421 if (folio_test_anon(folio)) {
6c287605
DH
3422 /*
3423 * If the page is exclusive to this process we must reuse the
3424 * page without further checks.
3425 */
e4a2ed94 3426 if (PageAnonExclusive(vmf->page))
6c287605
DH
3427 goto reuse;
3428
53a05ad9 3429 /*
e4a2ed94
MWO
3430 * We have to verify under folio lock: these early checks are
3431 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3432 * the swapcache if there is little hope that we can reuse.
3433 *
e4a2ed94 3434 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3435 */
e4a2ed94 3436 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3437 goto copy;
e4a2ed94 3438 if (!folio_test_lru(folio))
d4c47097
DH
3439 /*
3440 * Note: We cannot easily detect+handle references from
e4a2ed94 3441 * remote LRU pagevecs or references to LRU folios.
d4c47097
DH
3442 */
3443 lru_add_drain();
e4a2ed94 3444 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3445 goto copy;
e4a2ed94 3446 if (!folio_trylock(folio))
09854ba9 3447 goto copy;
e4a2ed94
MWO
3448 if (folio_test_swapcache(folio))
3449 folio_free_swap(folio);
3450 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3451 folio_unlock(folio);
52d1e606 3452 goto copy;
b009c024 3453 }
09854ba9 3454 /*
e4a2ed94
MWO
3455 * Ok, we've got the only folio reference from our mapping
3456 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3457 * sunglasses. Hit it.
09854ba9 3458 */
e4a2ed94
MWO
3459 page_move_anon_rmap(vmf->page, vma);
3460 folio_unlock(folio);
6c287605 3461reuse:
c89357e2
DH
3462 if (unlikely(unshare)) {
3463 pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 return 0;
3465 }
be068f29 3466 wp_page_reuse(vmf);
09854ba9 3467 return VM_FAULT_WRITE;
c89357e2
DH
3468 } else if (unshare) {
3469 /* No anonymous page -> nothing to do. */
3470 pte_unmap_unlock(vmf->pte, vmf->ptl);
3471 return 0;
ee6a6457 3472 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3473 (VM_WRITE|VM_SHARED))) {
a41b70d6 3474 return wp_page_shared(vmf);
1da177e4 3475 }
52d1e606 3476copy:
1da177e4
LT
3477 /*
3478 * Ok, we need to copy. Oh, well..
3479 */
a41b70d6 3480 get_page(vmf->page);
28766805 3481
82b0f8c3 3482 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b
YY
3483#ifdef CONFIG_KSM
3484 if (PageKsm(vmf->page))
3485 count_vm_event(COW_KSM);
3486#endif
a41b70d6 3487 return wp_page_copy(vmf);
1da177e4
LT
3488}
3489
97a89413 3490static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3491 unsigned long start_addr, unsigned long end_addr,
3492 struct zap_details *details)
3493{
f5cc4eef 3494 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3495}
3496
f808c13f 3497static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3498 pgoff_t first_index,
3499 pgoff_t last_index,
1da177e4
LT
3500 struct zap_details *details)
3501{
3502 struct vm_area_struct *vma;
1da177e4
LT
3503 pgoff_t vba, vea, zba, zea;
3504
232a6a1c 3505 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3506 vba = vma->vm_pgoff;
d6e93217 3507 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3508 zba = max(first_index, vba);
3509 zea = min(last_index, vea);
1da177e4 3510
97a89413 3511 unmap_mapping_range_vma(vma,
1da177e4
LT
3512 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3513 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3514 details);
1da177e4
LT
3515 }
3516}
3517
22061a1f 3518/**
3506659e
MWO
3519 * unmap_mapping_folio() - Unmap single folio from processes.
3520 * @folio: The locked folio to be unmapped.
22061a1f 3521 *
3506659e 3522 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3523 * Typically, for efficiency, the range of nearby pages has already been
3524 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3525 * truncation or invalidation holds the lock on a folio, it may find that
3526 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3527 * to unmap it finally.
3528 */
3506659e 3529void unmap_mapping_folio(struct folio *folio)
22061a1f 3530{
3506659e 3531 struct address_space *mapping = folio->mapping;
22061a1f 3532 struct zap_details details = { };
232a6a1c
PX
3533 pgoff_t first_index;
3534 pgoff_t last_index;
22061a1f 3535
3506659e 3536 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3537
3506659e
MWO
3538 first_index = folio->index;
3539 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3540
2e148f1e 3541 details.even_cows = false;
3506659e 3542 details.single_folio = folio;
999dad82 3543 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3544
2c865995 3545 i_mmap_lock_read(mapping);
22061a1f 3546 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3547 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3548 last_index, &details);
2c865995 3549 i_mmap_unlock_read(mapping);
22061a1f
HD
3550}
3551
977fbdcd
MW
3552/**
3553 * unmap_mapping_pages() - Unmap pages from processes.
3554 * @mapping: The address space containing pages to be unmapped.
3555 * @start: Index of first page to be unmapped.
3556 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3557 * @even_cows: Whether to unmap even private COWed pages.
3558 *
3559 * Unmap the pages in this address space from any userspace process which
3560 * has them mmaped. Generally, you want to remove COWed pages as well when
3561 * a file is being truncated, but not when invalidating pages from the page
3562 * cache.
3563 */
3564void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3565 pgoff_t nr, bool even_cows)
3566{
3567 struct zap_details details = { };
232a6a1c
PX
3568 pgoff_t first_index = start;
3569 pgoff_t last_index = start + nr - 1;
977fbdcd 3570
2e148f1e 3571 details.even_cows = even_cows;
232a6a1c
PX
3572 if (last_index < first_index)
3573 last_index = ULONG_MAX;
977fbdcd 3574
2c865995 3575 i_mmap_lock_read(mapping);
977fbdcd 3576 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3577 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3578 last_index, &details);
2c865995 3579 i_mmap_unlock_read(mapping);
977fbdcd 3580}
6e0e99d5 3581EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3582
1da177e4 3583/**
8a5f14a2 3584 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3585 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3586 * file.
3587 *
3d41088f 3588 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3589 * @holebegin: byte in first page to unmap, relative to the start of
3590 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3591 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3592 * must keep the partial page. In contrast, we must get rid of
3593 * partial pages.
3594 * @holelen: size of prospective hole in bytes. This will be rounded
3595 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3596 * end of the file.
3597 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3598 * but 0 when invalidating pagecache, don't throw away private data.
3599 */
3600void unmap_mapping_range(struct address_space *mapping,
3601 loff_t const holebegin, loff_t const holelen, int even_cows)
3602{
1da177e4
LT
3603 pgoff_t hba = holebegin >> PAGE_SHIFT;
3604 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3605
3606 /* Check for overflow. */
3607 if (sizeof(holelen) > sizeof(hlen)) {
3608 long long holeend =
3609 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3610 if (holeend & ~(long long)ULONG_MAX)
3611 hlen = ULONG_MAX - hba + 1;
3612 }
3613
977fbdcd 3614 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3615}
3616EXPORT_SYMBOL(unmap_mapping_range);
3617
b756a3b5
AP
3618/*
3619 * Restore a potential device exclusive pte to a working pte entry
3620 */
3621static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3622{
19672a9e 3623 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3624 struct vm_area_struct *vma = vmf->vma;
3625 struct mmu_notifier_range range;
3626
19672a9e 3627 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
b756a3b5
AP
3628 return VM_FAULT_RETRY;
3629 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3630 vma->vm_mm, vmf->address & PAGE_MASK,
3631 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3632 mmu_notifier_invalidate_range_start(&range);
3633
3634 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3635 &vmf->ptl);
3636 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
19672a9e 3637 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5
AP
3638
3639 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3640 folio_unlock(folio);
b756a3b5
AP
3641
3642 mmu_notifier_invalidate_range_end(&range);
3643 return 0;
3644}
3645
a160e537 3646static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3647 struct vm_area_struct *vma,
3648 unsigned int fault_flags)
3649{
a160e537 3650 if (!folio_test_swapcache(folio))
c145e0b4 3651 return false;
9202d527 3652 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3653 folio_test_mlocked(folio))
c145e0b4
DH
3654 return true;
3655 /*
3656 * If we want to map a page that's in the swapcache writable, we
3657 * have to detect via the refcount if we're really the exclusive
3658 * user. Try freeing the swapcache to get rid of the swapcache
3659 * reference only in case it's likely that we'll be the exlusive user.
3660 */
a160e537
MWO
3661 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3662 folio_ref_count(folio) == 2;
c145e0b4
DH
3663}
3664
9c28a205
PX
3665static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3666{
3667 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3668 vmf->address, &vmf->ptl);
3669 /*
3670 * Be careful so that we will only recover a special uffd-wp pte into a
3671 * none pte. Otherwise it means the pte could have changed, so retry.
3672 */
3673 if (is_pte_marker(*vmf->pte))
3674 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3675 pte_unmap_unlock(vmf->pte, vmf->ptl);
3676 return 0;
3677}
3678
3679/*
3680 * This is actually a page-missing access, but with uffd-wp special pte
3681 * installed. It means this pte was wr-protected before being unmapped.
3682 */
3683static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3684{
3685 /*
3686 * Just in case there're leftover special ptes even after the region
3687 * got unregistered - we can simply clear them. We can also do that
3688 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3689 * ranges, but it should be more efficient to be done lazily here.
3690 */
3691 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3692 return pte_marker_clear(vmf);
3693
3694 /* do_fault() can handle pte markers too like none pte */
3695 return do_fault(vmf);
3696}
3697
5c041f5d
PX
3698static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3699{
3700 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3701 unsigned long marker = pte_marker_get(entry);
3702
3703 /*
3704 * PTE markers should always be with file-backed memories, and the
3705 * marker should never be empty. If anything weird happened, the best
3706 * thing to do is to kill the process along with its mm.
3707 */
3708 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3709 return VM_FAULT_SIGBUS;
3710
9c28a205
PX
3711 if (pte_marker_entry_uffd_wp(entry))
3712 return pte_marker_handle_uffd_wp(vmf);
3713
3714 /* This is an unknown pte marker */
3715 return VM_FAULT_SIGBUS;
5c041f5d
PX
3716}
3717
1da177e4 3718/*
c1e8d7c6 3719 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3720 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3721 * We return with pte unmapped and unlocked.
3722 *
c1e8d7c6 3723 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3724 * as does filemap_fault().
1da177e4 3725 */
2b740303 3726vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3727{
82b0f8c3 3728 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3729 struct folio *swapcache, *folio = NULL;
3730 struct page *page;
2799e775 3731 struct swap_info_struct *si = NULL;
14f9135d 3732 rmap_t rmap_flags = RMAP_NONE;
1493a191 3733 bool exclusive = false;
65500d23 3734 swp_entry_t entry;
1da177e4 3735 pte_t pte;
d065bd81 3736 int locked;
2b740303 3737 vm_fault_t ret = 0;
aae466b0 3738 void *shadow = NULL;
1da177e4 3739
2ca99358 3740 if (!pte_unmap_same(vmf))
8f4e2101 3741 goto out;
65500d23 3742
2994302b 3743 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3744 if (unlikely(non_swap_entry(entry))) {
3745 if (is_migration_entry(entry)) {
82b0f8c3
JK
3746 migration_entry_wait(vma->vm_mm, vmf->pmd,
3747 vmf->address);
b756a3b5
AP
3748 } else if (is_device_exclusive_entry(entry)) {
3749 vmf->page = pfn_swap_entry_to_page(entry);
3750 ret = remove_device_exclusive_entry(vmf);
5042db43 3751 } else if (is_device_private_entry(entry)) {
af5cdaf8 3752 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3753 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3754 vmf->address, &vmf->ptl);
3755 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3756 spin_unlock(vmf->ptl);
3757 goto out;
3758 }
3759
3760 /*
3761 * Get a page reference while we know the page can't be
3762 * freed.
3763 */
3764 get_page(vmf->page);
3765 pte_unmap_unlock(vmf->pte, vmf->ptl);
3766 vmf->page->pgmap->ops->migrate_to_ram(vmf);
3767 put_page(vmf->page);
d1737fdb
AK
3768 } else if (is_hwpoison_entry(entry)) {
3769 ret = VM_FAULT_HWPOISON;
9f186f9e
ML
3770 } else if (is_swapin_error_entry(entry)) {
3771 ret = VM_FAULT_SIGBUS;
5c041f5d
PX
3772 } else if (is_pte_marker_entry(entry)) {
3773 ret = handle_pte_marker(vmf);
d1737fdb 3774 } else {
2994302b 3775 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3776 ret = VM_FAULT_SIGBUS;
d1737fdb 3777 }
0697212a
CL
3778 goto out;
3779 }
0bcac06f 3780
2799e775
ML
3781 /* Prevent swapoff from happening to us. */
3782 si = get_swap_device(entry);
3783 if (unlikely(!si))
3784 goto out;
0bcac06f 3785
5a423081
MWO
3786 folio = swap_cache_get_folio(entry, vma, vmf->address);
3787 if (folio)
3788 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3789 swapcache = folio;
f8020772 3790
d4f9565a 3791 if (!folio) {
a449bf58
QC
3792 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3793 __swap_count(entry) == 1) {
0bcac06f 3794 /* skip swapcache */
63ad4add
MWO
3795 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3796 vma, vmf->address, false);
3797 page = &folio->page;
3798 if (folio) {
3799 __folio_set_locked(folio);
3800 __folio_set_swapbacked(folio);
4c6355b2 3801
65995918 3802 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3803 vma->vm_mm, GFP_KERNEL,
3804 entry)) {
545b1b07 3805 ret = VM_FAULT_OOM;
4c6355b2 3806 goto out_page;
545b1b07 3807 }
0add0c77 3808 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3809
aae466b0
JK
3810 shadow = get_shadow_from_swap_cache(entry);
3811 if (shadow)
63ad4add 3812 workingset_refault(folio, shadow);
0076f029 3813
63ad4add 3814 folio_add_lru(folio);
0add0c77
SB
3815
3816 /* To provide entry to swap_readpage() */
63ad4add 3817 folio_set_swap_entry(folio, entry);
5169b844 3818 swap_readpage(page, true, NULL);
63ad4add 3819 folio->private = NULL;
0bcac06f 3820 }
aa8d22a1 3821 } else {
e9e9b7ec
MK
3822 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3823 vmf);
63ad4add
MWO
3824 if (page)
3825 folio = page_folio(page);
d4f9565a 3826 swapcache = folio;
0bcac06f
MK
3827 }
3828
d4f9565a 3829 if (!folio) {
1da177e4 3830 /*
8f4e2101
HD
3831 * Back out if somebody else faulted in this pte
3832 * while we released the pte lock.
1da177e4 3833 */
82b0f8c3
JK
3834 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3835 vmf->address, &vmf->ptl);
2994302b 3836 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3837 ret = VM_FAULT_OOM;
65500d23 3838 goto unlock;
1da177e4
LT
3839 }
3840
3841 /* Had to read the page from swap area: Major fault */
3842 ret = VM_FAULT_MAJOR;
f8891e5e 3843 count_vm_event(PGMAJFAULT);
2262185c 3844 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3845 } else if (PageHWPoison(page)) {
71f72525
WF
3846 /*
3847 * hwpoisoned dirty swapcache pages are kept for killing
3848 * owner processes (which may be unknown at hwpoison time)
3849 */
d1737fdb 3850 ret = VM_FAULT_HWPOISON;
4779cb31 3851 goto out_release;
1da177e4
LT
3852 }
3853
19672a9e 3854 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
e709ffd6 3855
d065bd81
ML
3856 if (!locked) {
3857 ret |= VM_FAULT_RETRY;
3858 goto out_release;
3859 }
073e587e 3860
84d60fdd
DH
3861 if (swapcache) {
3862 /*
3b344157 3863 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3864 * swapcache from under us. The page pin, and pte_same test
3865 * below, are not enough to exclude that. Even if it is still
3866 * swapcache, we need to check that the page's swap has not
3867 * changed.
3868 */
63ad4add 3869 if (unlikely(!folio_test_swapcache(folio) ||
84d60fdd
DH
3870 page_private(page) != entry.val))
3871 goto out_page;
3872
3873 /*
3874 * KSM sometimes has to copy on read faults, for example, if
3875 * page->index of !PageKSM() pages would be nonlinear inside the
3876 * anon VMA -- PageKSM() is lost on actual swapout.
3877 */
3878 page = ksm_might_need_to_copy(page, vma, vmf->address);
3879 if (unlikely(!page)) {
3880 ret = VM_FAULT_OOM;
84d60fdd
DH
3881 goto out_page;
3882 }
63ad4add 3883 folio = page_folio(page);
c145e0b4
DH
3884
3885 /*
3886 * If we want to map a page that's in the swapcache writable, we
3887 * have to detect via the refcount if we're really the exclusive
3888 * owner. Try removing the extra reference from the local LRU
3889 * pagevecs if required.
3890 */
d4f9565a 3891 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3892 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3893 lru_add_drain();
5ad64688
HD
3894 }
3895
9d82c694 3896 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3897
1da177e4 3898 /*
8f4e2101 3899 * Back out if somebody else already faulted in this pte.
1da177e4 3900 */
82b0f8c3
JK
3901 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3902 &vmf->ptl);
2994302b 3903 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3904 goto out_nomap;
b8107480 3905
63ad4add 3906 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3907 ret = VM_FAULT_SIGBUS;
3908 goto out_nomap;
1da177e4
LT
3909 }
3910
78fbe906
DH
3911 /*
3912 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3913 * must never point at an anonymous page in the swapcache that is
3914 * PG_anon_exclusive. Sanity check that this holds and especially, that
3915 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3916 * check after taking the PT lock and making sure that nobody
3917 * concurrently faulted in this page and set PG_anon_exclusive.
3918 */
63ad4add
MWO
3919 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3920 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3921
1493a191
DH
3922 /*
3923 * Check under PT lock (to protect against concurrent fork() sharing
3924 * the swap entry concurrently) for certainly exclusive pages.
3925 */
63ad4add 3926 if (!folio_test_ksm(folio)) {
1493a191
DH
3927 /*
3928 * Note that pte_swp_exclusive() == false for architectures
3929 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3930 */
3931 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3932 if (folio != swapcache) {
1493a191
DH
3933 /*
3934 * We have a fresh page that is not exposed to the
3935 * swapcache -> certainly exclusive.
3936 */
3937 exclusive = true;
63ad4add 3938 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3939 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3940 /*
3941 * This is tricky: not all swap backends support
3942 * concurrent page modifications while under writeback.
3943 *
3944 * So if we stumble over such a page in the swapcache
3945 * we must not set the page exclusive, otherwise we can
3946 * map it writable without further checks and modify it
3947 * while still under writeback.
3948 *
3949 * For these problematic swap backends, simply drop the
3950 * exclusive marker: this is perfectly fine as we start
3951 * writeback only if we fully unmapped the page and
3952 * there are no unexpected references on the page after
3953 * unmapping succeeded. After fully unmapped, no
3954 * further GUP references (FOLL_GET and FOLL_PIN) can
3955 * appear, so dropping the exclusive marker and mapping
3956 * it only R/O is fine.
3957 */
3958 exclusive = false;
3959 }
3960 }
3961
8c7c6e34 3962 /*
c145e0b4
DH
3963 * Remove the swap entry and conditionally try to free up the swapcache.
3964 * We're already holding a reference on the page but haven't mapped it
3965 * yet.
8c7c6e34 3966 */
c145e0b4 3967 swap_free(entry);
a160e537
MWO
3968 if (should_try_to_free_swap(folio, vma, vmf->flags))
3969 folio_free_swap(folio);
1da177e4 3970
bae473a4
KS
3971 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3972 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3973 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3974
3975 /*
1493a191
DH
3976 * Same logic as in do_wp_page(); however, optimize for pages that are
3977 * certainly not shared either because we just allocated them without
3978 * exposing them to the swapcache or because the swap entry indicates
3979 * exclusivity.
c145e0b4 3980 */
63ad4add
MWO
3981 if (!folio_test_ksm(folio) &&
3982 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
3983 if (vmf->flags & FAULT_FLAG_WRITE) {
3984 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3985 vmf->flags &= ~FAULT_FLAG_WRITE;
3986 ret |= VM_FAULT_WRITE;
3987 }
14f9135d 3988 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3989 }
1da177e4 3990 flush_icache_page(vma, page);
2994302b 3991 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3992 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3993 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3994 pte = pte_mkuffd_wp(pte);
3995 pte = pte_wrprotect(pte);
3996 }
2994302b 3997 vmf->orig_pte = pte;
0bcac06f
MK
3998
3999 /* ksm created a completely new copy */
d4f9565a 4000 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 4001 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 4002 folio_add_lru_vma(folio, vma);
0bcac06f 4003 } else {
f1e2db12 4004 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 4005 }
1da177e4 4006
63ad4add
MWO
4007 VM_BUG_ON(!folio_test_anon(folio) ||
4008 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
4009 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4010 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4011
63ad4add 4012 folio_unlock(folio);
d4f9565a 4013 if (folio != swapcache && swapcache) {
4969c119
AA
4014 /*
4015 * Hold the lock to avoid the swap entry to be reused
4016 * until we take the PT lock for the pte_same() check
4017 * (to avoid false positives from pte_same). For
4018 * further safety release the lock after the swap_free
4019 * so that the swap count won't change under a
4020 * parallel locked swapcache.
4021 */
d4f9565a
MWO
4022 folio_unlock(swapcache);
4023 folio_put(swapcache);
4969c119 4024 }
c475a8ab 4025
82b0f8c3 4026 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 4027 ret |= do_wp_page(vmf);
61469f1d
HD
4028 if (ret & VM_FAULT_ERROR)
4029 ret &= VM_FAULT_ERROR;
1da177e4
LT
4030 goto out;
4031 }
4032
4033 /* No need to invalidate - it was non-present before */
82b0f8c3 4034 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4035unlock:
82b0f8c3 4036 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4037out:
2799e775
ML
4038 if (si)
4039 put_swap_device(si);
1da177e4 4040 return ret;
b8107480 4041out_nomap:
82b0f8c3 4042 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4043out_page:
63ad4add 4044 folio_unlock(folio);
4779cb31 4045out_release:
63ad4add 4046 folio_put(folio);
d4f9565a
MWO
4047 if (folio != swapcache && swapcache) {
4048 folio_unlock(swapcache);
4049 folio_put(swapcache);
4969c119 4050 }
2799e775
ML
4051 if (si)
4052 put_swap_device(si);
65500d23 4053 return ret;
1da177e4
LT
4054}
4055
4056/*
c1e8d7c6 4057 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4058 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4059 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4060 */
2b740303 4061static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4062{
82b0f8c3 4063 struct vm_area_struct *vma = vmf->vma;
8f4e2101 4064 struct page *page;
2b740303 4065 vm_fault_t ret = 0;
1da177e4 4066 pte_t entry;
1da177e4 4067
6b7339f4
KS
4068 /* File mapping without ->vm_ops ? */
4069 if (vma->vm_flags & VM_SHARED)
4070 return VM_FAULT_SIGBUS;
4071
7267ec00
KS
4072 /*
4073 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4074 * pte_offset_map() on pmds where a huge pmd might be created
4075 * from a different thread.
4076 *
3e4e28c5 4077 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4078 * parallel threads are excluded by other means.
4079 *
3e4e28c5 4080 * Here we only have mmap_read_lock(mm).
7267ec00 4081 */
4cf58924 4082 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4083 return VM_FAULT_OOM;
4084
f9ce0be7 4085 /* See comment in handle_pte_fault() */
82b0f8c3 4086 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4087 return 0;
4088
11ac5524 4089 /* Use the zero-page for reads */
82b0f8c3 4090 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4091 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4092 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4093 vma->vm_page_prot));
82b0f8c3
JK
4094 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4095 vmf->address, &vmf->ptl);
7df67697
BM
4096 if (!pte_none(*vmf->pte)) {
4097 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4098 goto unlock;
7df67697 4099 }
6b31d595
MH
4100 ret = check_stable_address_space(vma->vm_mm);
4101 if (ret)
4102 goto unlock;
6b251fc9
AA
4103 /* Deliver the page fault to userland, check inside PT lock */
4104 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4105 pte_unmap_unlock(vmf->pte, vmf->ptl);
4106 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4107 }
a13ea5b7
HD
4108 goto setpte;
4109 }
4110
557ed1fa 4111 /* Allocate our own private page. */
557ed1fa
NP
4112 if (unlikely(anon_vma_prepare(vma)))
4113 goto oom;
82b0f8c3 4114 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
4115 if (!page)
4116 goto oom;
eb3c24f3 4117
8f425e4e 4118 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 4119 goto oom_free_page;
9d82c694 4120 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 4121
52f37629
MK
4122 /*
4123 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 4124 * preceding stores to the page contents become visible before
52f37629
MK
4125 * the set_pte_at() write.
4126 */
0ed361de 4127 __SetPageUptodate(page);
8f4e2101 4128
557ed1fa 4129 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 4130 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4131 if (vma->vm_flags & VM_WRITE)
4132 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4133
82b0f8c3
JK
4134 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4135 &vmf->ptl);
7df67697 4136 if (!pte_none(*vmf->pte)) {
bce8cb3c 4137 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4138 goto release;
7df67697 4139 }
9ba69294 4140
6b31d595
MH
4141 ret = check_stable_address_space(vma->vm_mm);
4142 if (ret)
4143 goto release;
4144
6b251fc9
AA
4145 /* Deliver the page fault to userland, check inside PT lock */
4146 if (userfaultfd_missing(vma)) {
82b0f8c3 4147 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 4148 put_page(page);
82b0f8c3 4149 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4150 }
4151
bae473a4 4152 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4153 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 4154 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 4155setpte:
82b0f8c3 4156 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4157
4158 /* No need to invalidate - it was non-present before */
82b0f8c3 4159 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4160unlock:
82b0f8c3 4161 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4162 return ret;
8f4e2101 4163release:
09cbfeaf 4164 put_page(page);
8f4e2101 4165 goto unlock;
8a9f3ccd 4166oom_free_page:
09cbfeaf 4167 put_page(page);
65500d23 4168oom:
1da177e4
LT
4169 return VM_FAULT_OOM;
4170}
4171
9a95f3cf 4172/*
c1e8d7c6 4173 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4174 * released depending on flags and vma->vm_ops->fault() return value.
4175 * See filemap_fault() and __lock_page_retry().
4176 */
2b740303 4177static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4178{
82b0f8c3 4179 struct vm_area_struct *vma = vmf->vma;
2b740303 4180 vm_fault_t ret;
7eae74af 4181
63f3655f
MH
4182 /*
4183 * Preallocate pte before we take page_lock because this might lead to
4184 * deadlocks for memcg reclaim which waits for pages under writeback:
4185 * lock_page(A)
4186 * SetPageWriteback(A)
4187 * unlock_page(A)
4188 * lock_page(B)
4189 * lock_page(B)
d383807a 4190 * pte_alloc_one
63f3655f
MH
4191 * shrink_page_list
4192 * wait_on_page_writeback(A)
4193 * SetPageWriteback(B)
4194 * unlock_page(B)
4195 * # flush A, B to clear the writeback
4196 */
4197 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4198 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4199 if (!vmf->prealloc_pte)
4200 return VM_FAULT_OOM;
63f3655f
MH
4201 }
4202
11bac800 4203 ret = vma->vm_ops->fault(vmf);
3917048d 4204 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4205 VM_FAULT_DONE_COW)))
bc2466e4 4206 return ret;
7eae74af 4207
667240e0 4208 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4209 struct page *page = vmf->page;
e53ac737
RR
4210 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4211 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4212 if (page_mapped(page))
4213 unmap_mapping_pages(page_mapping(page),
4214 page->index, 1, false);
e53ac737 4215 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4216 if (invalidate_inode_page(page))
4217 poisonret = VM_FAULT_NOPAGE;
4218 unlock_page(page);
e53ac737 4219 }
3149c79f 4220 put_page(page);
936ca80d 4221 vmf->page = NULL;
e53ac737 4222 return poisonret;
7eae74af
KS
4223 }
4224
4225 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4226 lock_page(vmf->page);
7eae74af 4227 else
667240e0 4228 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4229
7eae74af
KS
4230 return ret;
4231}
4232
396bcc52 4233#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4234static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4235{
82b0f8c3 4236 struct vm_area_struct *vma = vmf->vma;
953c66c2 4237
82b0f8c3 4238 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4239 /*
4240 * We are going to consume the prealloc table,
4241 * count that as nr_ptes.
4242 */
c4812909 4243 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4244 vmf->prealloc_pte = NULL;
953c66c2
AK
4245}
4246
f9ce0be7 4247vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4248{
82b0f8c3
JK
4249 struct vm_area_struct *vma = vmf->vma;
4250 bool write = vmf->flags & FAULT_FLAG_WRITE;
4251 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4252 pmd_t entry;
2b740303 4253 int i;
d01ac3c3 4254 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4255
4256 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4257 return ret;
10102459 4258
10102459 4259 page = compound_head(page);
d01ac3c3
MWO
4260 if (compound_order(page) != HPAGE_PMD_ORDER)
4261 return ret;
10102459 4262
eac96c3e
YS
4263 /*
4264 * Just backoff if any subpage of a THP is corrupted otherwise
4265 * the corrupted page may mapped by PMD silently to escape the
4266 * check. This kind of THP just can be PTE mapped. Access to
4267 * the corrupted subpage should trigger SIGBUS as expected.
4268 */
4269 if (unlikely(PageHasHWPoisoned(page)))
4270 return ret;
4271
953c66c2 4272 /*
f0953a1b 4273 * Archs like ppc64 need additional space to store information
953c66c2
AK
4274 * related to pte entry. Use the preallocated table for that.
4275 */
82b0f8c3 4276 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4277 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4278 if (!vmf->prealloc_pte)
953c66c2 4279 return VM_FAULT_OOM;
953c66c2
AK
4280 }
4281
82b0f8c3
JK
4282 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4283 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4284 goto out;
4285
4286 for (i = 0; i < HPAGE_PMD_NR; i++)
4287 flush_icache_page(vma, page + i);
4288
4289 entry = mk_huge_pmd(page, vma->vm_page_prot);
4290 if (write)
f55e1014 4291 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4292
fadae295 4293 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4294 page_add_file_rmap(page, vma, true);
4295
953c66c2
AK
4296 /*
4297 * deposit and withdraw with pmd lock held
4298 */
4299 if (arch_needs_pgtable_deposit())
82b0f8c3 4300 deposit_prealloc_pte(vmf);
10102459 4301
82b0f8c3 4302 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4303
82b0f8c3 4304 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4305
4306 /* fault is handled */
4307 ret = 0;
95ecedcd 4308 count_vm_event(THP_FILE_MAPPED);
10102459 4309out:
82b0f8c3 4310 spin_unlock(vmf->ptl);
10102459
KS
4311 return ret;
4312}
4313#else
f9ce0be7 4314vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4315{
f9ce0be7 4316 return VM_FAULT_FALLBACK;
10102459
KS
4317}
4318#endif
4319
9d3af4b4 4320void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4321{
82b0f8c3 4322 struct vm_area_struct *vma = vmf->vma;
9c28a205 4323 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
82b0f8c3 4324 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4325 bool prefault = vmf->address != addr;
3bb97794 4326 pte_t entry;
7267ec00 4327
3bb97794
KS
4328 flush_icache_page(vma, page);
4329 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4330
4331 if (prefault && arch_wants_old_prefaulted_pte())
4332 entry = pte_mkold(entry);
50c25ee9
TB
4333 else
4334 entry = pte_sw_mkyoung(entry);
46bdb427 4335
3bb97794
KS
4336 if (write)
4337 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205
PX
4338 if (unlikely(uffd_wp))
4339 entry = pte_mkuffd_wp(pte_wrprotect(entry));
bae473a4
KS
4340 /* copy-on-write page */
4341 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 4342 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4343 page_add_new_anon_rmap(page, vma, addr);
b518154e 4344 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4345 } else {
eca56ff9 4346 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
cea86fe2 4347 page_add_file_rmap(page, vma, false);
3bb97794 4348 }
9d3af4b4 4349 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4350}
4351
f46f2ade
PX
4352static bool vmf_pte_changed(struct vm_fault *vmf)
4353{
4354 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4355 return !pte_same(*vmf->pte, vmf->orig_pte);
4356
4357 return !pte_none(*vmf->pte);
4358}
4359
9118c0cb
JK
4360/**
4361 * finish_fault - finish page fault once we have prepared the page to fault
4362 *
4363 * @vmf: structure describing the fault
4364 *
4365 * This function handles all that is needed to finish a page fault once the
4366 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4367 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4368 * addition.
9118c0cb
JK
4369 *
4370 * The function expects the page to be locked and on success it consumes a
4371 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4372 *
4373 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4374 */
2b740303 4375vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4376{
f9ce0be7 4377 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4378 struct page *page;
f9ce0be7 4379 vm_fault_t ret;
9118c0cb
JK
4380
4381 /* Did we COW the page? */
f9ce0be7 4382 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4383 page = vmf->cow_page;
4384 else
4385 page = vmf->page;
6b31d595
MH
4386
4387 /*
4388 * check even for read faults because we might have lost our CoWed
4389 * page
4390 */
f9ce0be7
KS
4391 if (!(vma->vm_flags & VM_SHARED)) {
4392 ret = check_stable_address_space(vma->vm_mm);
4393 if (ret)
4394 return ret;
4395 }
4396
4397 if (pmd_none(*vmf->pmd)) {
4398 if (PageTransCompound(page)) {
4399 ret = do_set_pmd(vmf, page);
4400 if (ret != VM_FAULT_FALLBACK)
4401 return ret;
4402 }
4403
03c4f204
QZ
4404 if (vmf->prealloc_pte)
4405 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4406 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4407 return VM_FAULT_OOM;
4408 }
4409
3fe2895c
JB
4410 /*
4411 * See comment in handle_pte_fault() for how this scenario happens, we
4412 * need to return NOPAGE so that we drop this page.
4413 */
f9ce0be7 4414 if (pmd_devmap_trans_unstable(vmf->pmd))
3fe2895c 4415 return VM_FAULT_NOPAGE;
f9ce0be7
KS
4416
4417 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4418 vmf->address, &vmf->ptl);
70427f6e 4419
f9ce0be7 4420 /* Re-check under ptl */
70427f6e 4421 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4422 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4423
4424 /* no need to invalidate: a not-present page won't be cached */
4425 update_mmu_cache(vma, vmf->address, vmf->pte);
4426
4427 ret = 0;
4428 } else {
4429 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4430 ret = VM_FAULT_NOPAGE;
70427f6e 4431 }
f9ce0be7 4432
f9ce0be7 4433 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4434 return ret;
4435}
4436
3a91053a
KS
4437static unsigned long fault_around_bytes __read_mostly =
4438 rounddown_pow_of_two(65536);
a9b0f861 4439
a9b0f861
KS
4440#ifdef CONFIG_DEBUG_FS
4441static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4442{
a9b0f861 4443 *val = fault_around_bytes;
1592eef0
KS
4444 return 0;
4445}
4446
b4903d6e 4447/*
da391d64
WK
4448 * fault_around_bytes must be rounded down to the nearest page order as it's
4449 * what do_fault_around() expects to see.
b4903d6e 4450 */
a9b0f861 4451static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4452{
a9b0f861 4453 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4454 return -EINVAL;
b4903d6e
AR
4455 if (val > PAGE_SIZE)
4456 fault_around_bytes = rounddown_pow_of_two(val);
4457 else
4458 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4459 return 0;
4460}
0a1345f8 4461DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4462 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4463
4464static int __init fault_around_debugfs(void)
4465{
d9f7979c
GKH
4466 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4467 &fault_around_bytes_fops);
1592eef0
KS
4468 return 0;
4469}
4470late_initcall(fault_around_debugfs);
1592eef0 4471#endif
8c6e50b0 4472
1fdb412b
KS
4473/*
4474 * do_fault_around() tries to map few pages around the fault address. The hope
4475 * is that the pages will be needed soon and this will lower the number of
4476 * faults to handle.
4477 *
4478 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4479 * not ready to be mapped: not up-to-date, locked, etc.
4480 *
1fdb412b
KS
4481 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4482 * only once.
4483 *
da391d64
WK
4484 * fault_around_bytes defines how many bytes we'll try to map.
4485 * do_fault_around() expects it to be set to a power of two less than or equal
4486 * to PTRS_PER_PTE.
1fdb412b 4487 *
da391d64
WK
4488 * The virtual address of the area that we map is naturally aligned to
4489 * fault_around_bytes rounded down to the machine page size
4490 * (and therefore to page order). This way it's easier to guarantee
4491 * that we don't cross page table boundaries.
1fdb412b 4492 */
2b740303 4493static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4494{
82b0f8c3 4495 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4496 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4497 pgoff_t end_pgoff;
2b740303 4498 int off;
8c6e50b0 4499
4db0c3c2 4500 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4501 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4502
f9ce0be7
KS
4503 address = max(address & mask, vmf->vma->vm_start);
4504 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4505 start_pgoff -= off;
8c6e50b0
KS
4506
4507 /*
da391d64
WK
4508 * end_pgoff is either the end of the page table, the end of
4509 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4510 */
bae473a4 4511 end_pgoff = start_pgoff -
f9ce0be7 4512 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4513 PTRS_PER_PTE - 1;
82b0f8c3 4514 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4515 start_pgoff + nr_pages - 1);
8c6e50b0 4516
82b0f8c3 4517 if (pmd_none(*vmf->pmd)) {
4cf58924 4518 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4519 if (!vmf->prealloc_pte)
f9ce0be7 4520 return VM_FAULT_OOM;
8c6e50b0
KS
4521 }
4522
f9ce0be7 4523 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4524}
4525
9c28a205
PX
4526/* Return true if we should do read fault-around, false otherwise */
4527static inline bool should_fault_around(struct vm_fault *vmf)
4528{
4529 /* No ->map_pages? No way to fault around... */
4530 if (!vmf->vma->vm_ops->map_pages)
4531 return false;
4532
4533 if (uffd_disable_fault_around(vmf->vma))
4534 return false;
4535
4536 return fault_around_bytes >> PAGE_SHIFT > 1;
4537}
4538
2b740303 4539static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4540{
2b740303 4541 vm_fault_t ret = 0;
8c6e50b0
KS
4542
4543 /*
4544 * Let's call ->map_pages() first and use ->fault() as fallback
4545 * if page by the offset is not ready to be mapped (cold cache or
4546 * something).
4547 */
9c28a205
PX
4548 if (should_fault_around(vmf)) {
4549 ret = do_fault_around(vmf);
4550 if (ret)
4551 return ret;
8c6e50b0 4552 }
e655fb29 4553
936ca80d 4554 ret = __do_fault(vmf);
e655fb29
KS
4555 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4556 return ret;
4557
9118c0cb 4558 ret |= finish_fault(vmf);
936ca80d 4559 unlock_page(vmf->page);
7267ec00 4560 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4561 put_page(vmf->page);
e655fb29
KS
4562 return ret;
4563}
4564
2b740303 4565static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4566{
82b0f8c3 4567 struct vm_area_struct *vma = vmf->vma;
2b740303 4568 vm_fault_t ret;
ec47c3b9
KS
4569
4570 if (unlikely(anon_vma_prepare(vma)))
4571 return VM_FAULT_OOM;
4572
936ca80d
JK
4573 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4574 if (!vmf->cow_page)
ec47c3b9
KS
4575 return VM_FAULT_OOM;
4576
8f425e4e
MWO
4577 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4578 GFP_KERNEL)) {
936ca80d 4579 put_page(vmf->cow_page);
ec47c3b9
KS
4580 return VM_FAULT_OOM;
4581 }
9d82c694 4582 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4583
936ca80d 4584 ret = __do_fault(vmf);
ec47c3b9
KS
4585 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4586 goto uncharge_out;
3917048d
JK
4587 if (ret & VM_FAULT_DONE_COW)
4588 return ret;
ec47c3b9 4589
b1aa812b 4590 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4591 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4592
9118c0cb 4593 ret |= finish_fault(vmf);
b1aa812b
JK
4594 unlock_page(vmf->page);
4595 put_page(vmf->page);
7267ec00
KS
4596 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4597 goto uncharge_out;
ec47c3b9
KS
4598 return ret;
4599uncharge_out:
936ca80d 4600 put_page(vmf->cow_page);
ec47c3b9
KS
4601 return ret;
4602}
4603
2b740303 4604static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4605{
82b0f8c3 4606 struct vm_area_struct *vma = vmf->vma;
2b740303 4607 vm_fault_t ret, tmp;
1d65f86d 4608
936ca80d 4609 ret = __do_fault(vmf);
7eae74af 4610 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4611 return ret;
1da177e4
LT
4612
4613 /*
f0c6d4d2
KS
4614 * Check if the backing address space wants to know that the page is
4615 * about to become writable
1da177e4 4616 */
fb09a464 4617 if (vma->vm_ops->page_mkwrite) {
936ca80d 4618 unlock_page(vmf->page);
38b8cb7f 4619 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4620 if (unlikely(!tmp ||
4621 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4622 put_page(vmf->page);
fb09a464 4623 return tmp;
4294621f 4624 }
fb09a464
KS
4625 }
4626
9118c0cb 4627 ret |= finish_fault(vmf);
7267ec00
KS
4628 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4629 VM_FAULT_RETRY))) {
936ca80d
JK
4630 unlock_page(vmf->page);
4631 put_page(vmf->page);
f0c6d4d2 4632 return ret;
1da177e4 4633 }
b827e496 4634
89b15332 4635 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4636 return ret;
54cb8821 4637}
d00806b1 4638
9a95f3cf 4639/*
c1e8d7c6 4640 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4641 * but allow concurrent faults).
c1e8d7c6 4642 * The mmap_lock may have been released depending on flags and our
9138e47e 4643 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4644 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4645 * by other thread calling munmap()).
9a95f3cf 4646 */
2b740303 4647static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4648{
82b0f8c3 4649 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4650 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4651 vm_fault_t ret;
54cb8821 4652
ff09d7ec
AK
4653 /*
4654 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4655 */
4656 if (!vma->vm_ops->fault) {
4657 /*
4658 * If we find a migration pmd entry or a none pmd entry, which
4659 * should never happen, return SIGBUS
4660 */
4661 if (unlikely(!pmd_present(*vmf->pmd)))
4662 ret = VM_FAULT_SIGBUS;
4663 else {
4664 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4665 vmf->pmd,
4666 vmf->address,
4667 &vmf->ptl);
4668 /*
4669 * Make sure this is not a temporary clearing of pte
4670 * by holding ptl and checking again. A R/M/W update
4671 * of pte involves: take ptl, clearing the pte so that
4672 * we don't have concurrent modification by hardware
4673 * followed by an update.
4674 */
4675 if (unlikely(pte_none(*vmf->pte)))
4676 ret = VM_FAULT_SIGBUS;
4677 else
4678 ret = VM_FAULT_NOPAGE;
4679
4680 pte_unmap_unlock(vmf->pte, vmf->ptl);
4681 }
4682 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4683 ret = do_read_fault(vmf);
4684 else if (!(vma->vm_flags & VM_SHARED))
4685 ret = do_cow_fault(vmf);
4686 else
4687 ret = do_shared_fault(vmf);
4688
4689 /* preallocated pagetable is unused: free it */
4690 if (vmf->prealloc_pte) {
fc8efd2d 4691 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4692 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4693 }
4694 return ret;
54cb8821
NP
4695}
4696
f4c0d836
YS
4697int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4698 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4699{
4700 get_page(page);
4701
4702 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4703 if (page_nid == numa_node_id()) {
9532fec1 4704 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4705 *flags |= TNF_FAULT_LOCAL;
4706 }
9532fec1
MG
4707
4708 return mpol_misplaced(page, vma, addr);
4709}
4710
2b740303 4711static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4712{
82b0f8c3 4713 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4714 struct page *page = NULL;
98fa15f3 4715 int page_nid = NUMA_NO_NODE;
90572890 4716 int last_cpupid;
cbee9f88 4717 int target_nid;
04a86453 4718 pte_t pte, old_pte;
288bc549 4719 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4720 int flags = 0;
d10e63f2
MG
4721
4722 /*
166f61b9
TH
4723 * The "pte" at this point cannot be used safely without
4724 * validation through pte_unmap_same(). It's of NUMA type but
4725 * the pfn may be screwed if the read is non atomic.
166f61b9 4726 */
82b0f8c3
JK
4727 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4728 spin_lock(vmf->ptl);
cee216a6 4729 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4730 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4731 goto out;
4732 }
4733
b99a342d
YH
4734 /* Get the normal PTE */
4735 old_pte = ptep_get(vmf->pte);
04a86453 4736 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4737
82b0f8c3 4738 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4739 if (!page || is_zone_device_page(page))
b99a342d 4740 goto out_map;
d10e63f2 4741
e81c4802 4742 /* TODO: handle PTE-mapped THP */
b99a342d
YH
4743 if (PageCompound(page))
4744 goto out_map;
e81c4802 4745
6688cc05 4746 /*
bea66fbd
MG
4747 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4748 * much anyway since they can be in shared cache state. This misses
4749 * the case where a mapping is writable but the process never writes
4750 * to it but pte_write gets cleared during protection updates and
4751 * pte_dirty has unpredictable behaviour between PTE scan updates,
4752 * background writeback, dirty balancing and application behaviour.
6688cc05 4753 */
b99a342d 4754 if (!was_writable)
6688cc05
PZ
4755 flags |= TNF_NO_GROUP;
4756
dabe1d99
RR
4757 /*
4758 * Flag if the page is shared between multiple address spaces. This
4759 * is later used when determining whether to group tasks together
4760 */
4761 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4762 flags |= TNF_SHARED;
4763
8191acbd 4764 page_nid = page_to_nid(page);
33024536
YH
4765 /*
4766 * For memory tiering mode, cpupid of slow memory page is used
4767 * to record page access time. So use default value.
4768 */
4769 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4770 !node_is_toptier(page_nid))
4771 last_cpupid = (-1 & LAST_CPUPID_MASK);
4772 else
4773 last_cpupid = page_cpupid_last(page);
82b0f8c3 4774 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4775 &flags);
98fa15f3 4776 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4777 put_page(page);
b99a342d 4778 goto out_map;
4daae3b4 4779 }
b99a342d 4780 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4781
4782 /* Migrate to the requested node */
bf90ac19 4783 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4784 page_nid = target_nid;
6688cc05 4785 flags |= TNF_MIGRATED;
b99a342d 4786 } else {
074c2381 4787 flags |= TNF_MIGRATE_FAIL;
b99a342d
YH
4788 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4789 spin_lock(vmf->ptl);
4790 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4791 pte_unmap_unlock(vmf->pte, vmf->ptl);
4792 goto out;
4793 }
4794 goto out_map;
4795 }
4daae3b4
MG
4796
4797out:
98fa15f3 4798 if (page_nid != NUMA_NO_NODE)
6688cc05 4799 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4800 return 0;
b99a342d
YH
4801out_map:
4802 /*
4803 * Make it present again, depending on how arch implements
4804 * non-accessible ptes, some can allow access by kernel mode.
4805 */
4806 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4807 pte = pte_modify(old_pte, vma->vm_page_prot);
4808 pte = pte_mkyoung(pte);
4809 if (was_writable)
4810 pte = pte_mkwrite(pte);
4811 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4812 update_mmu_cache(vma, vmf->address, vmf->pte);
4813 pte_unmap_unlock(vmf->pte, vmf->ptl);
4814 goto out;
d10e63f2
MG
4815}
4816
2b740303 4817static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4818{
f4200391 4819 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4820 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4821 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4822 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4823 return VM_FAULT_FALLBACK;
4824}
4825
183f24aa 4826/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4827static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4828{
c89357e2
DH
4829 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4830
529b930b 4831 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4832 if (likely(!unshare) &&
4833 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4834 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4835 return do_huge_pmd_wp_page(vmf);
529b930b 4836 }
327e9fd4
THV
4837 if (vmf->vma->vm_ops->huge_fault) {
4838 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4839
4840 if (!(ret & VM_FAULT_FALLBACK))
4841 return ret;
4842 }
af9e4d5f 4843
327e9fd4 4844 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4845 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4846
b96375f7
MW
4847 return VM_FAULT_FALLBACK;
4848}
4849
2b740303 4850static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4851{
14c99d65
GJ
4852#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4853 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4854 /* No support for anonymous transparent PUD pages yet */
4855 if (vma_is_anonymous(vmf->vma))
4856 return VM_FAULT_FALLBACK;
4857 if (vmf->vma->vm_ops->huge_fault)
4858 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4859#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4860 return VM_FAULT_FALLBACK;
4861}
4862
4863static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4864{
327e9fd4
THV
4865#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4866 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4867 /* No support for anonymous transparent PUD pages yet */
4868 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4869 goto split;
4870 if (vmf->vma->vm_ops->huge_fault) {
4871 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4872
4873 if (!(ret & VM_FAULT_FALLBACK))
4874 return ret;
4875 }
4876split:
4877 /* COW or write-notify not handled on PUD level: split pud.*/
4878 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
14c99d65 4879#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4880 return VM_FAULT_FALLBACK;
4881}
4882
1da177e4
LT
4883/*
4884 * These routines also need to handle stuff like marking pages dirty
4885 * and/or accessed for architectures that don't do it in hardware (most
4886 * RISC architectures). The early dirtying is also good on the i386.
4887 *
4888 * There is also a hook called "update_mmu_cache()" that architectures
4889 * with external mmu caches can use to update those (ie the Sparc or
4890 * PowerPC hashed page tables that act as extended TLBs).
4891 *
c1e8d7c6 4892 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4893 * concurrent faults).
9a95f3cf 4894 *
c1e8d7c6 4895 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4896 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4897 */
2b740303 4898static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4899{
4900 pte_t entry;
4901
82b0f8c3 4902 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4903 /*
4904 * Leave __pte_alloc() until later: because vm_ops->fault may
4905 * want to allocate huge page, and if we expose page table
4906 * for an instant, it will be difficult to retract from
4907 * concurrent faults and from rmap lookups.
4908 */
82b0f8c3 4909 vmf->pte = NULL;
f46f2ade 4910 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4911 } else {
f9ce0be7
KS
4912 /*
4913 * If a huge pmd materialized under us just retry later. Use
4914 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4915 * of pmd_trans_huge() to ensure the pmd didn't become
4916 * pmd_trans_huge under us and then back to pmd_none, as a
4917 * result of MADV_DONTNEED running immediately after a huge pmd
4918 * fault in a different thread of this mm, in turn leading to a
4919 * misleading pmd_trans_huge() retval. All we have to ensure is
4920 * that it is a regular pmd that we can walk with
4921 * pte_offset_map() and we can do that through an atomic read
4922 * in C, which is what pmd_trans_unstable() provides.
4923 */
d0f0931d 4924 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4925 return 0;
4926 /*
4927 * A regular pmd is established and it can't morph into a huge
4928 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4929 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4930 * So now it's safe to run pte_offset_map().
4931 */
82b0f8c3 4932 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4933 vmf->orig_pte = *vmf->pte;
f46f2ade 4934 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4935
4936 /*
4937 * some architectures can have larger ptes than wordsize,
4938 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4939 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4940 * accesses. The code below just needs a consistent view
4941 * for the ifs and we later double check anyway with the
7267ec00
KS
4942 * ptl lock held. So here a barrier will do.
4943 */
4944 barrier();
2994302b 4945 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4946 pte_unmap(vmf->pte);
4947 vmf->pte = NULL;
65500d23 4948 }
1da177e4
LT
4949 }
4950
82b0f8c3
JK
4951 if (!vmf->pte) {
4952 if (vma_is_anonymous(vmf->vma))
4953 return do_anonymous_page(vmf);
7267ec00 4954 else
82b0f8c3 4955 return do_fault(vmf);
7267ec00
KS
4956 }
4957
2994302b
JK
4958 if (!pte_present(vmf->orig_pte))
4959 return do_swap_page(vmf);
7267ec00 4960
2994302b
JK
4961 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4962 return do_numa_page(vmf);
d10e63f2 4963
82b0f8c3
JK
4964 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4965 spin_lock(vmf->ptl);
2994302b 4966 entry = vmf->orig_pte;
7df67697
BM
4967 if (unlikely(!pte_same(*vmf->pte, entry))) {
4968 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4969 goto unlock;
7df67697 4970 }
c89357e2 4971 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4972 if (!pte_write(entry))
2994302b 4973 return do_wp_page(vmf);
c89357e2
DH
4974 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4975 entry = pte_mkdirty(entry);
1da177e4
LT
4976 }
4977 entry = pte_mkyoung(entry);
82b0f8c3
JK
4978 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4979 vmf->flags & FAULT_FLAG_WRITE)) {
4980 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4981 } else {
b7333b58
YS
4982 /* Skip spurious TLB flush for retried page fault */
4983 if (vmf->flags & FAULT_FLAG_TRIED)
4984 goto unlock;
1a44e149
AA
4985 /*
4986 * This is needed only for protection faults but the arch code
4987 * is not yet telling us if this is a protection fault or not.
4988 * This still avoids useless tlb flushes for .text page faults
4989 * with threads.
4990 */
82b0f8c3
JK
4991 if (vmf->flags & FAULT_FLAG_WRITE)
4992 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4993 }
8f4e2101 4994unlock:
82b0f8c3 4995 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4996 return 0;
1da177e4
LT
4997}
4998
4999/*
5000 * By the time we get here, we already hold the mm semaphore
9a95f3cf 5001 *
c1e8d7c6 5002 * The mmap_lock may have been released depending on flags and our
9138e47e 5003 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 5004 */
2b740303
SJ
5005static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5006 unsigned long address, unsigned int flags)
1da177e4 5007{
82b0f8c3 5008 struct vm_fault vmf = {
bae473a4 5009 .vma = vma,
1a29d85e 5010 .address = address & PAGE_MASK,
824ddc60 5011 .real_address = address,
bae473a4 5012 .flags = flags,
0721ec8b 5013 .pgoff = linear_page_index(vma, address),
667240e0 5014 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5015 };
dcddffd4 5016 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5017 unsigned long vm_flags = vma->vm_flags;
1da177e4 5018 pgd_t *pgd;
c2febafc 5019 p4d_t *p4d;
2b740303 5020 vm_fault_t ret;
1da177e4 5021
1da177e4 5022 pgd = pgd_offset(mm, address);
c2febafc
KS
5023 p4d = p4d_alloc(mm, pgd, address);
5024 if (!p4d)
5025 return VM_FAULT_OOM;
a00cc7d9 5026
c2febafc 5027 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5028 if (!vmf.pud)
c74df32c 5029 return VM_FAULT_OOM;
625110b5 5030retry_pud:
7da4e2cb 5031 if (pud_none(*vmf.pud) &&
a7f4e6e4 5032 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
5033 ret = create_huge_pud(&vmf);
5034 if (!(ret & VM_FAULT_FALLBACK))
5035 return ret;
5036 } else {
5037 pud_t orig_pud = *vmf.pud;
5038
5039 barrier();
5040 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5041
c89357e2
DH
5042 /*
5043 * TODO once we support anonymous PUDs: NUMA case and
5044 * FAULT_FLAG_UNSHARE handling.
5045 */
5046 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5047 ret = wp_huge_pud(&vmf, orig_pud);
5048 if (!(ret & VM_FAULT_FALLBACK))
5049 return ret;
5050 } else {
5051 huge_pud_set_accessed(&vmf, orig_pud);
5052 return 0;
5053 }
5054 }
5055 }
5056
5057 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5058 if (!vmf.pmd)
c74df32c 5059 return VM_FAULT_OOM;
625110b5
TH
5060
5061 /* Huge pud page fault raced with pmd_alloc? */
5062 if (pud_trans_unstable(vmf.pud))
5063 goto retry_pud;
5064
7da4e2cb 5065 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5066 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5067 ret = create_huge_pmd(&vmf);
c0292554
KS
5068 if (!(ret & VM_FAULT_FALLBACK))
5069 return ret;
71e3aac0 5070 } else {
5db4f15c 5071 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5072
71e3aac0 5073 barrier();
5db4f15c 5074 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5075 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5076 !is_pmd_migration_entry(vmf.orig_pmd));
5077 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5078 pmd_migration_entry_wait(mm, vmf.pmd);
5079 return 0;
5080 }
5db4f15c
YS
5081 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5082 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5083 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5084
c89357e2
DH
5085 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5086 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5087 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5088 if (!(ret & VM_FAULT_FALLBACK))
5089 return ret;
a1dd450b 5090 } else {
5db4f15c 5091 huge_pmd_set_accessed(&vmf);
9845cbbd 5092 return 0;
1f1d06c3 5093 }
71e3aac0
AA
5094 }
5095 }
5096
82b0f8c3 5097 return handle_pte_fault(&vmf);
1da177e4
LT
5098}
5099
bce617ed 5100/**
f0953a1b 5101 * mm_account_fault - Do page fault accounting
bce617ed
PX
5102 *
5103 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5104 * of perf event counters, but we'll still do the per-task accounting to
5105 * the task who triggered this page fault.
5106 * @address: the faulted address.
5107 * @flags: the fault flags.
5108 * @ret: the fault retcode.
5109 *
f0953a1b 5110 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5111 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5112 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5113 * still be in per-arch page fault handlers at the entry of page fault.
5114 */
5115static inline void mm_account_fault(struct pt_regs *regs,
5116 unsigned long address, unsigned int flags,
5117 vm_fault_t ret)
5118{
5119 bool major;
5120
5121 /*
5122 * We don't do accounting for some specific faults:
5123 *
5124 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5125 * includes arch_vma_access_permitted() failing before reaching here.
5126 * So this is not a "this many hardware page faults" counter. We
5127 * should use the hw profiling for that.
5128 *
5129 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5130 * once they're completed.
5131 */
5132 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5133 return;
5134
5135 /*
5136 * We define the fault as a major fault when the final successful fault
5137 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5138 * handle it immediately previously).
5139 */
5140 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5141
a2beb5f1
PX
5142 if (major)
5143 current->maj_flt++;
5144 else
5145 current->min_flt++;
5146
bce617ed 5147 /*
a2beb5f1
PX
5148 * If the fault is done for GUP, regs will be NULL. We only do the
5149 * accounting for the per thread fault counters who triggered the
5150 * fault, and we skip the perf event updates.
bce617ed
PX
5151 */
5152 if (!regs)
5153 return;
5154
a2beb5f1 5155 if (major)
bce617ed 5156 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5157 else
bce617ed 5158 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5159}
5160
ec1c86b2
YZ
5161#ifdef CONFIG_LRU_GEN
5162static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163{
5164 /* the LRU algorithm doesn't apply to sequential or random reads */
5165 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5166}
5167
5168static void lru_gen_exit_fault(void)
5169{
5170 current->in_lru_fault = false;
5171}
5172#else
5173static void lru_gen_enter_fault(struct vm_area_struct *vma)
5174{
5175}
5176
5177static void lru_gen_exit_fault(void)
5178{
5179}
5180#endif /* CONFIG_LRU_GEN */
5181
9a95f3cf
PC
5182/*
5183 * By the time we get here, we already hold the mm semaphore
5184 *
c1e8d7c6 5185 * The mmap_lock may have been released depending on flags and our
9138e47e 5186 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5187 */
2b740303 5188vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5189 unsigned int flags, struct pt_regs *regs)
519e5247 5190{
2b740303 5191 vm_fault_t ret;
519e5247
JW
5192
5193 __set_current_state(TASK_RUNNING);
5194
5195 count_vm_event(PGFAULT);
2262185c 5196 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
5197
5198 /* do counter updates before entering really critical section. */
5199 check_sync_rss_stat(current);
5200
de0c799b
LD
5201 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5202 flags & FAULT_FLAG_INSTRUCTION,
5203 flags & FAULT_FLAG_REMOTE))
5204 return VM_FAULT_SIGSEGV;
5205
519e5247
JW
5206 /*
5207 * Enable the memcg OOM handling for faults triggered in user
5208 * space. Kernel faults are handled more gracefully.
5209 */
5210 if (flags & FAULT_FLAG_USER)
29ef680a 5211 mem_cgroup_enter_user_fault();
519e5247 5212
ec1c86b2
YZ
5213 lru_gen_enter_fault(vma);
5214
bae473a4
KS
5215 if (unlikely(is_vm_hugetlb_page(vma)))
5216 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5217 else
5218 ret = __handle_mm_fault(vma, address, flags);
519e5247 5219
ec1c86b2
YZ
5220 lru_gen_exit_fault();
5221
49426420 5222 if (flags & FAULT_FLAG_USER) {
29ef680a 5223 mem_cgroup_exit_user_fault();
166f61b9
TH
5224 /*
5225 * The task may have entered a memcg OOM situation but
5226 * if the allocation error was handled gracefully (no
5227 * VM_FAULT_OOM), there is no need to kill anything.
5228 * Just clean up the OOM state peacefully.
5229 */
5230 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5231 mem_cgroup_oom_synchronize(false);
49426420 5232 }
3812c8c8 5233
bce617ed
PX
5234 mm_account_fault(regs, address, flags, ret);
5235
519e5247
JW
5236 return ret;
5237}
e1d6d01a 5238EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5239
90eceff1
KS
5240#ifndef __PAGETABLE_P4D_FOLDED
5241/*
5242 * Allocate p4d page table.
5243 * We've already handled the fast-path in-line.
5244 */
5245int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5246{
5247 p4d_t *new = p4d_alloc_one(mm, address);
5248 if (!new)
5249 return -ENOMEM;
5250
90eceff1 5251 spin_lock(&mm->page_table_lock);
ed33b5a6 5252 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5253 p4d_free(mm, new);
ed33b5a6
QZ
5254 } else {
5255 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5256 pgd_populate(mm, pgd, new);
ed33b5a6 5257 }
90eceff1
KS
5258 spin_unlock(&mm->page_table_lock);
5259 return 0;
5260}
5261#endif /* __PAGETABLE_P4D_FOLDED */
5262
1da177e4
LT
5263#ifndef __PAGETABLE_PUD_FOLDED
5264/*
5265 * Allocate page upper directory.
872fec16 5266 * We've already handled the fast-path in-line.
1da177e4 5267 */
c2febafc 5268int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5269{
c74df32c
HD
5270 pud_t *new = pud_alloc_one(mm, address);
5271 if (!new)
1bb3630e 5272 return -ENOMEM;
1da177e4 5273
872fec16 5274 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5275 if (!p4d_present(*p4d)) {
5276 mm_inc_nr_puds(mm);
ed33b5a6 5277 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5278 p4d_populate(mm, p4d, new);
b4e98d9a 5279 } else /* Another has populated it */
5e541973 5280 pud_free(mm, new);
c74df32c 5281 spin_unlock(&mm->page_table_lock);
1bb3630e 5282 return 0;
1da177e4
LT
5283}
5284#endif /* __PAGETABLE_PUD_FOLDED */
5285
5286#ifndef __PAGETABLE_PMD_FOLDED
5287/*
5288 * Allocate page middle directory.
872fec16 5289 * We've already handled the fast-path in-line.
1da177e4 5290 */
1bb3630e 5291int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5292{
a00cc7d9 5293 spinlock_t *ptl;
c74df32c
HD
5294 pmd_t *new = pmd_alloc_one(mm, address);
5295 if (!new)
1bb3630e 5296 return -ENOMEM;
1da177e4 5297
a00cc7d9 5298 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5299 if (!pud_present(*pud)) {
5300 mm_inc_nr_pmds(mm);
ed33b5a6 5301 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5302 pud_populate(mm, pud, new);
ed33b5a6 5303 } else { /* Another has populated it */
5e541973 5304 pmd_free(mm, new);
ed33b5a6 5305 }
a00cc7d9 5306 spin_unlock(ptl);
1bb3630e 5307 return 0;
e0f39591 5308}
1da177e4
LT
5309#endif /* __PAGETABLE_PMD_FOLDED */
5310
0e5e64c0
MS
5311/**
5312 * follow_pte - look up PTE at a user virtual address
5313 * @mm: the mm_struct of the target address space
5314 * @address: user virtual address
5315 * @ptepp: location to store found PTE
5316 * @ptlp: location to store the lock for the PTE
5317 *
5318 * On a successful return, the pointer to the PTE is stored in @ptepp;
5319 * the corresponding lock is taken and its location is stored in @ptlp.
5320 * The contents of the PTE are only stable until @ptlp is released;
5321 * any further use, if any, must be protected against invalidation
5322 * with MMU notifiers.
5323 *
5324 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5325 * should be taken for read.
5326 *
5327 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5328 * it is not a good general-purpose API.
5329 *
5330 * Return: zero on success, -ve otherwise.
5331 */
5332int follow_pte(struct mm_struct *mm, unsigned long address,
5333 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5334{
5335 pgd_t *pgd;
c2febafc 5336 p4d_t *p4d;
f8ad0f49
JW
5337 pud_t *pud;
5338 pmd_t *pmd;
5339 pte_t *ptep;
5340
5341 pgd = pgd_offset(mm, address);
5342 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5343 goto out;
5344
c2febafc
KS
5345 p4d = p4d_offset(pgd, address);
5346 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5347 goto out;
5348
5349 pud = pud_offset(p4d, address);
f8ad0f49
JW
5350 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5351 goto out;
5352
5353 pmd = pmd_offset(pud, address);
f66055ab 5354 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5355
09796395 5356 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5357 goto out;
5358
5359 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5360 if (!pte_present(*ptep))
5361 goto unlock;
5362 *ptepp = ptep;
5363 return 0;
5364unlock:
5365 pte_unmap_unlock(ptep, *ptlp);
5366out:
5367 return -EINVAL;
5368}
9fd6dad1
PB
5369EXPORT_SYMBOL_GPL(follow_pte);
5370
3b6748e2
JW
5371/**
5372 * follow_pfn - look up PFN at a user virtual address
5373 * @vma: memory mapping
5374 * @address: user virtual address
5375 * @pfn: location to store found PFN
5376 *
5377 * Only IO mappings and raw PFN mappings are allowed.
5378 *
9fd6dad1
PB
5379 * This function does not allow the caller to read the permissions
5380 * of the PTE. Do not use it.
5381 *
a862f68a 5382 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5383 */
5384int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5385 unsigned long *pfn)
5386{
5387 int ret = -EINVAL;
5388 spinlock_t *ptl;
5389 pte_t *ptep;
5390
5391 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5392 return ret;
5393
9fd6dad1 5394 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5395 if (ret)
5396 return ret;
5397 *pfn = pte_pfn(*ptep);
5398 pte_unmap_unlock(ptep, ptl);
5399 return 0;
5400}
5401EXPORT_SYMBOL(follow_pfn);
5402
28b2ee20 5403#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5404int follow_phys(struct vm_area_struct *vma,
5405 unsigned long address, unsigned int flags,
5406 unsigned long *prot, resource_size_t *phys)
28b2ee20 5407{
03668a4d 5408 int ret = -EINVAL;
28b2ee20
RR
5409 pte_t *ptep, pte;
5410 spinlock_t *ptl;
28b2ee20 5411
d87fe660 5412 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5413 goto out;
28b2ee20 5414
9fd6dad1 5415 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5416 goto out;
28b2ee20 5417 pte = *ptep;
03668a4d 5418
f6f37321 5419 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5420 goto unlock;
28b2ee20
RR
5421
5422 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5423 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5424
03668a4d 5425 ret = 0;
28b2ee20
RR
5426unlock:
5427 pte_unmap_unlock(ptep, ptl);
5428out:
d87fe660 5429 return ret;
28b2ee20
RR
5430}
5431
96667f8a
SV
5432/**
5433 * generic_access_phys - generic implementation for iomem mmap access
5434 * @vma: the vma to access
f0953a1b 5435 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5436 * @buf: buffer to read/write
5437 * @len: length of transfer
5438 * @write: set to FOLL_WRITE when writing, otherwise reading
5439 *
5440 * This is a generic implementation for &vm_operations_struct.access for an
5441 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5442 * not page based.
5443 */
28b2ee20
RR
5444int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5445 void *buf, int len, int write)
5446{
5447 resource_size_t phys_addr;
5448 unsigned long prot = 0;
2bc7273b 5449 void __iomem *maddr;
96667f8a
SV
5450 pte_t *ptep, pte;
5451 spinlock_t *ptl;
5452 int offset = offset_in_page(addr);
5453 int ret = -EINVAL;
5454
5455 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5456 return -EINVAL;
5457
5458retry:
e913a8cd 5459 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5460 return -EINVAL;
5461 pte = *ptep;
5462 pte_unmap_unlock(ptep, ptl);
28b2ee20 5463
96667f8a
SV
5464 prot = pgprot_val(pte_pgprot(pte));
5465 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5466
5467 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5468 return -EINVAL;
5469
9cb12d7b 5470 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5471 if (!maddr)
5472 return -ENOMEM;
5473
e913a8cd 5474 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5475 goto out_unmap;
5476
5477 if (!pte_same(pte, *ptep)) {
5478 pte_unmap_unlock(ptep, ptl);
5479 iounmap(maddr);
5480
5481 goto retry;
5482 }
5483
28b2ee20
RR
5484 if (write)
5485 memcpy_toio(maddr + offset, buf, len);
5486 else
5487 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5488 ret = len;
5489 pte_unmap_unlock(ptep, ptl);
5490out_unmap:
28b2ee20
RR
5491 iounmap(maddr);
5492
96667f8a 5493 return ret;
28b2ee20 5494}
5a73633e 5495EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5496#endif
5497
0ec76a11 5498/*
d3f5ffca 5499 * Access another process' address space as given in mm.
0ec76a11 5500 */
d3f5ffca
JH
5501int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5502 int len, unsigned int gup_flags)
0ec76a11 5503{
0ec76a11 5504 struct vm_area_struct *vma;
0ec76a11 5505 void *old_buf = buf;
442486ec 5506 int write = gup_flags & FOLL_WRITE;
0ec76a11 5507
d8ed45c5 5508 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5509 return 0;
5510
183ff22b 5511 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5512 while (len) {
5513 int bytes, ret, offset;
5514 void *maddr;
28b2ee20 5515 struct page *page = NULL;
0ec76a11 5516
64019a2e 5517 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5518 gup_flags, &page, &vma, NULL);
28b2ee20 5519 if (ret <= 0) {
dbffcd03
RR
5520#ifndef CONFIG_HAVE_IOREMAP_PROT
5521 break;
5522#else
28b2ee20
RR
5523 /*
5524 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5525 * we can access using slightly different code.
5526 */
3e418f98
LH
5527 vma = vma_lookup(mm, addr);
5528 if (!vma)
28b2ee20
RR
5529 break;
5530 if (vma->vm_ops && vma->vm_ops->access)
5531 ret = vma->vm_ops->access(vma, addr, buf,
5532 len, write);
5533 if (ret <= 0)
28b2ee20
RR
5534 break;
5535 bytes = ret;
dbffcd03 5536#endif
0ec76a11 5537 } else {
28b2ee20
RR
5538 bytes = len;
5539 offset = addr & (PAGE_SIZE-1);
5540 if (bytes > PAGE_SIZE-offset)
5541 bytes = PAGE_SIZE-offset;
5542
5543 maddr = kmap(page);
5544 if (write) {
5545 copy_to_user_page(vma, page, addr,
5546 maddr + offset, buf, bytes);
5547 set_page_dirty_lock(page);
5548 } else {
5549 copy_from_user_page(vma, page, addr,
5550 buf, maddr + offset, bytes);
5551 }
5552 kunmap(page);
09cbfeaf 5553 put_page(page);
0ec76a11 5554 }
0ec76a11
DH
5555 len -= bytes;
5556 buf += bytes;
5557 addr += bytes;
5558 }
d8ed45c5 5559 mmap_read_unlock(mm);
0ec76a11
DH
5560
5561 return buf - old_buf;
5562}
03252919 5563
5ddd36b9 5564/**
ae91dbfc 5565 * access_remote_vm - access another process' address space
5ddd36b9
SW
5566 * @mm: the mm_struct of the target address space
5567 * @addr: start address to access
5568 * @buf: source or destination buffer
5569 * @len: number of bytes to transfer
6347e8d5 5570 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5571 *
5572 * The caller must hold a reference on @mm.
a862f68a
MR
5573 *
5574 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5575 */
5576int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5577 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5578{
d3f5ffca 5579 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5580}
5581
206cb636
SW
5582/*
5583 * Access another process' address space.
5584 * Source/target buffer must be kernel space,
5585 * Do not walk the page table directly, use get_user_pages
5586 */
5587int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5588 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5589{
5590 struct mm_struct *mm;
5591 int ret;
5592
5593 mm = get_task_mm(tsk);
5594 if (!mm)
5595 return 0;
5596
d3f5ffca 5597 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5598
206cb636
SW
5599 mmput(mm);
5600
5601 return ret;
5602}
fcd35857 5603EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5604
03252919
AK
5605/*
5606 * Print the name of a VMA.
5607 */
5608void print_vma_addr(char *prefix, unsigned long ip)
5609{
5610 struct mm_struct *mm = current->mm;
5611 struct vm_area_struct *vma;
5612
e8bff74a 5613 /*
0a7f682d 5614 * we might be running from an atomic context so we cannot sleep
e8bff74a 5615 */
d8ed45c5 5616 if (!mmap_read_trylock(mm))
e8bff74a
IM
5617 return;
5618
03252919
AK
5619 vma = find_vma(mm, ip);
5620 if (vma && vma->vm_file) {
5621 struct file *f = vma->vm_file;
0a7f682d 5622 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5623 if (buf) {
2fbc57c5 5624 char *p;
03252919 5625
9bf39ab2 5626 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5627 if (IS_ERR(p))
5628 p = "?";
2fbc57c5 5629 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5630 vma->vm_start,
5631 vma->vm_end - vma->vm_start);
5632 free_page((unsigned long)buf);
5633 }
5634 }
d8ed45c5 5635 mmap_read_unlock(mm);
03252919 5636}
3ee1afa3 5637
662bbcb2 5638#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5639void __might_fault(const char *file, int line)
3ee1afa3 5640{
9ec23531 5641 if (pagefault_disabled())
662bbcb2 5642 return;
42a38756 5643 __might_sleep(file, line);
9ec23531 5644#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5645 if (current->mm)
da1c55f1 5646 might_lock_read(&current->mm->mmap_lock);
9ec23531 5647#endif
3ee1afa3 5648}
9ec23531 5649EXPORT_SYMBOL(__might_fault);
3ee1afa3 5650#endif
47ad8475
AA
5651
5652#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
YH
5653/*
5654 * Process all subpages of the specified huge page with the specified
5655 * operation. The target subpage will be processed last to keep its
5656 * cache lines hot.
5657 */
5658static inline void process_huge_page(
5659 unsigned long addr_hint, unsigned int pages_per_huge_page,
5660 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5661 void *arg)
47ad8475 5662{
c79b57e4
YH
5663 int i, n, base, l;
5664 unsigned long addr = addr_hint &
5665 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5666
c6ddfb6c 5667 /* Process target subpage last to keep its cache lines hot */
47ad8475 5668 might_sleep();
c79b57e4
YH
5669 n = (addr_hint - addr) / PAGE_SIZE;
5670 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5671 /* If target subpage in first half of huge page */
c79b57e4
YH
5672 base = 0;
5673 l = n;
c6ddfb6c 5674 /* Process subpages at the end of huge page */
c79b57e4
YH
5675 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5676 cond_resched();
c6ddfb6c 5677 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
5678 }
5679 } else {
c6ddfb6c 5680 /* If target subpage in second half of huge page */
c79b57e4
YH
5681 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5682 l = pages_per_huge_page - n;
c6ddfb6c 5683 /* Process subpages at the begin of huge page */
c79b57e4
YH
5684 for (i = 0; i < base; i++) {
5685 cond_resched();
c6ddfb6c 5686 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
5687 }
5688 }
5689 /*
c6ddfb6c
YH
5690 * Process remaining subpages in left-right-left-right pattern
5691 * towards the target subpage
c79b57e4
YH
5692 */
5693 for (i = 0; i < l; i++) {
5694 int left_idx = base + i;
5695 int right_idx = base + 2 * l - 1 - i;
5696
5697 cond_resched();
c6ddfb6c 5698 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5699 cond_resched();
c6ddfb6c 5700 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5701 }
5702}
5703
c6ddfb6c
YH
5704static void clear_gigantic_page(struct page *page,
5705 unsigned long addr,
5706 unsigned int pages_per_huge_page)
5707{
5708 int i;
14455eab 5709 struct page *p;
c6ddfb6c
YH
5710
5711 might_sleep();
14455eab
CL
5712 for (i = 0; i < pages_per_huge_page; i++) {
5713 p = nth_page(page, i);
c6ddfb6c
YH
5714 cond_resched();
5715 clear_user_highpage(p, addr + i * PAGE_SIZE);
5716 }
5717}
5718
5719static void clear_subpage(unsigned long addr, int idx, void *arg)
5720{
5721 struct page *page = arg;
5722
5723 clear_user_highpage(page + idx, addr);
5724}
5725
5726void clear_huge_page(struct page *page,
5727 unsigned long addr_hint, unsigned int pages_per_huge_page)
5728{
5729 unsigned long addr = addr_hint &
5730 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5731
5732 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5733 clear_gigantic_page(page, addr, pages_per_huge_page);
5734 return;
5735 }
5736
5737 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5738}
5739
47ad8475
AA
5740static void copy_user_gigantic_page(struct page *dst, struct page *src,
5741 unsigned long addr,
5742 struct vm_area_struct *vma,
5743 unsigned int pages_per_huge_page)
5744{
5745 int i;
5746 struct page *dst_base = dst;
5747 struct page *src_base = src;
5748
14455eab
CL
5749 for (i = 0; i < pages_per_huge_page; i++) {
5750 dst = nth_page(dst_base, i);
5751 src = nth_page(src_base, i);
5752
47ad8475
AA
5753 cond_resched();
5754 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
47ad8475
AA
5755 }
5756}
5757
c9f4cd71
YH
5758struct copy_subpage_arg {
5759 struct page *dst;
5760 struct page *src;
5761 struct vm_area_struct *vma;
5762};
5763
5764static void copy_subpage(unsigned long addr, int idx, void *arg)
5765{
5766 struct copy_subpage_arg *copy_arg = arg;
5767
5768 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5769 addr, copy_arg->vma);
5770}
5771
47ad8475 5772void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5773 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5774 unsigned int pages_per_huge_page)
5775{
c9f4cd71
YH
5776 unsigned long addr = addr_hint &
5777 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5778 struct copy_subpage_arg arg = {
5779 .dst = dst,
5780 .src = src,
5781 .vma = vma,
5782 };
47ad8475
AA
5783
5784 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5785 copy_user_gigantic_page(dst, src, addr, vma,
5786 pages_per_huge_page);
5787 return;
5788 }
5789
c9f4cd71 5790 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5791}
fa4d75c1
MK
5792
5793long copy_huge_page_from_user(struct page *dst_page,
5794 const void __user *usr_src,
810a56b9
MK
5795 unsigned int pages_per_huge_page,
5796 bool allow_pagefault)
fa4d75c1 5797{
fa4d75c1
MK
5798 void *page_kaddr;
5799 unsigned long i, rc = 0;
5800 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
14455eab 5801 struct page *subpage;
fa4d75c1 5802
14455eab
CL
5803 for (i = 0; i < pages_per_huge_page; i++) {
5804 subpage = nth_page(dst_page, i);
810a56b9 5805 if (allow_pagefault)
3272cfc2 5806 page_kaddr = kmap(subpage);
810a56b9 5807 else
3272cfc2 5808 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5809 rc = copy_from_user(page_kaddr,
b063e374 5810 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5811 if (allow_pagefault)
3272cfc2 5812 kunmap(subpage);
810a56b9
MK
5813 else
5814 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5815
5816 ret_val -= (PAGE_SIZE - rc);
5817 if (rc)
5818 break;
5819
e763243c
MS
5820 flush_dcache_page(subpage);
5821
fa4d75c1
MK
5822 cond_resched();
5823 }
5824 return ret_val;
5825}
47ad8475 5826#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5827
40b64acd 5828#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5829
5830static struct kmem_cache *page_ptl_cachep;
5831
5832void __init ptlock_cache_init(void)
5833{
5834 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5835 SLAB_PANIC, NULL);
5836}
5837
539edb58 5838bool ptlock_alloc(struct page *page)
49076ec2
KS
5839{
5840 spinlock_t *ptl;
5841
b35f1819 5842 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5843 if (!ptl)
5844 return false;
539edb58 5845 page->ptl = ptl;
49076ec2
KS
5846 return true;
5847}
5848
539edb58 5849void ptlock_free(struct page *page)
49076ec2 5850{
b35f1819 5851 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5852}
5853#endif
This page took 2.879158 seconds and 4 git commands to generate.