]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/sched.c | |
3 | * | |
4 | * Kernel scheduler and related syscalls | |
5 | * | |
6 | * Copyright (C) 1991-2002 Linus Torvalds | |
7 | * | |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | |
9 | * make semaphores SMP safe | |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | |
11 | * by Andrea Arcangeli | |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | |
13 | * hybrid priority-list and round-robin design with | |
14 | * an array-switch method of distributing timeslices | |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | |
c31f2e8a IM |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. | |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | |
22 | * by Peter Williams | |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | |
b9131769 IM |
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
26 | * Thomas Gleixner, Mike Kravetz | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
30 | #include <linux/module.h> | |
31 | #include <linux/nmi.h> | |
32 | #include <linux/init.h> | |
dff06c15 | 33 | #include <linux/uaccess.h> |
1da177e4 LT |
34 | #include <linux/highmem.h> |
35 | #include <linux/smp_lock.h> | |
36 | #include <asm/mmu_context.h> | |
37 | #include <linux/interrupt.h> | |
c59ede7b | 38 | #include <linux/capability.h> |
1da177e4 LT |
39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | |
9a11b49a | 41 | #include <linux/debug_locks.h> |
cdd6c482 | 42 | #include <linux/perf_event.h> |
1da177e4 LT |
43 | #include <linux/security.h> |
44 | #include <linux/notifier.h> | |
45 | #include <linux/profile.h> | |
7dfb7103 | 46 | #include <linux/freezer.h> |
198e2f18 | 47 | #include <linux/vmalloc.h> |
1da177e4 LT |
48 | #include <linux/blkdev.h> |
49 | #include <linux/delay.h> | |
b488893a | 50 | #include <linux/pid_namespace.h> |
1da177e4 LT |
51 | #include <linux/smp.h> |
52 | #include <linux/threads.h> | |
53 | #include <linux/timer.h> | |
54 | #include <linux/rcupdate.h> | |
55 | #include <linux/cpu.h> | |
56 | #include <linux/cpuset.h> | |
57 | #include <linux/percpu.h> | |
b5aadf7f | 58 | #include <linux/proc_fs.h> |
1da177e4 | 59 | #include <linux/seq_file.h> |
969c7921 | 60 | #include <linux/stop_machine.h> |
e692ab53 | 61 | #include <linux/sysctl.h> |
1da177e4 LT |
62 | #include <linux/syscalls.h> |
63 | #include <linux/times.h> | |
8f0ab514 | 64 | #include <linux/tsacct_kern.h> |
c6fd91f0 | 65 | #include <linux/kprobes.h> |
0ff92245 | 66 | #include <linux/delayacct.h> |
dff06c15 | 67 | #include <linux/unistd.h> |
f5ff8422 | 68 | #include <linux/pagemap.h> |
8f4d37ec | 69 | #include <linux/hrtimer.h> |
30914a58 | 70 | #include <linux/tick.h> |
f00b45c1 PZ |
71 | #include <linux/debugfs.h> |
72 | #include <linux/ctype.h> | |
6cd8a4bb | 73 | #include <linux/ftrace.h> |
5a0e3ad6 | 74 | #include <linux/slab.h> |
1da177e4 | 75 | |
5517d86b | 76 | #include <asm/tlb.h> |
838225b4 | 77 | #include <asm/irq_regs.h> |
1da177e4 | 78 | |
6e0534f2 | 79 | #include "sched_cpupri.h" |
21aa9af0 | 80 | #include "workqueue_sched.h" |
6e0534f2 | 81 | |
a8d154b0 | 82 | #define CREATE_TRACE_POINTS |
ad8d75ff | 83 | #include <trace/events/sched.h> |
a8d154b0 | 84 | |
1da177e4 LT |
85 | /* |
86 | * Convert user-nice values [ -20 ... 0 ... 19 ] | |
87 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
88 | * and back. | |
89 | */ | |
90 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
91 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
92 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
93 | ||
94 | /* | |
95 | * 'User priority' is the nice value converted to something we | |
96 | * can work with better when scaling various scheduler parameters, | |
97 | * it's a [ 0 ... 39 ] range. | |
98 | */ | |
99 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
100 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
101 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
102 | ||
103 | /* | |
d7876a08 | 104 | * Helpers for converting nanosecond timing to jiffy resolution |
1da177e4 | 105 | */ |
d6322faf | 106 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
1da177e4 | 107 | |
6aa645ea IM |
108 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
109 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | |
110 | ||
1da177e4 LT |
111 | /* |
112 | * These are the 'tuning knobs' of the scheduler: | |
113 | * | |
a4ec24b4 | 114 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). |
1da177e4 LT |
115 | * Timeslices get refilled after they expire. |
116 | */ | |
1da177e4 | 117 | #define DEF_TIMESLICE (100 * HZ / 1000) |
2dd73a4f | 118 | |
d0b27fa7 PZ |
119 | /* |
120 | * single value that denotes runtime == period, ie unlimited time. | |
121 | */ | |
122 | #define RUNTIME_INF ((u64)~0ULL) | |
123 | ||
e05606d3 IM |
124 | static inline int rt_policy(int policy) |
125 | { | |
3f33a7ce | 126 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
e05606d3 IM |
127 | return 1; |
128 | return 0; | |
129 | } | |
130 | ||
131 | static inline int task_has_rt_policy(struct task_struct *p) | |
132 | { | |
133 | return rt_policy(p->policy); | |
134 | } | |
135 | ||
1da177e4 | 136 | /* |
6aa645ea | 137 | * This is the priority-queue data structure of the RT scheduling class: |
1da177e4 | 138 | */ |
6aa645ea IM |
139 | struct rt_prio_array { |
140 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
141 | struct list_head queue[MAX_RT_PRIO]; | |
142 | }; | |
143 | ||
d0b27fa7 | 144 | struct rt_bandwidth { |
ea736ed5 | 145 | /* nests inside the rq lock: */ |
0986b11b | 146 | raw_spinlock_t rt_runtime_lock; |
ea736ed5 IM |
147 | ktime_t rt_period; |
148 | u64 rt_runtime; | |
149 | struct hrtimer rt_period_timer; | |
d0b27fa7 PZ |
150 | }; |
151 | ||
152 | static struct rt_bandwidth def_rt_bandwidth; | |
153 | ||
154 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | |
155 | ||
156 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | |
157 | { | |
158 | struct rt_bandwidth *rt_b = | |
159 | container_of(timer, struct rt_bandwidth, rt_period_timer); | |
160 | ktime_t now; | |
161 | int overrun; | |
162 | int idle = 0; | |
163 | ||
164 | for (;;) { | |
165 | now = hrtimer_cb_get_time(timer); | |
166 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | |
167 | ||
168 | if (!overrun) | |
169 | break; | |
170 | ||
171 | idle = do_sched_rt_period_timer(rt_b, overrun); | |
172 | } | |
173 | ||
174 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
175 | } | |
176 | ||
177 | static | |
178 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |
179 | { | |
180 | rt_b->rt_period = ns_to_ktime(period); | |
181 | rt_b->rt_runtime = runtime; | |
182 | ||
0986b11b | 183 | raw_spin_lock_init(&rt_b->rt_runtime_lock); |
ac086bc2 | 184 | |
d0b27fa7 PZ |
185 | hrtimer_init(&rt_b->rt_period_timer, |
186 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
187 | rt_b->rt_period_timer.function = sched_rt_period_timer; | |
d0b27fa7 PZ |
188 | } |
189 | ||
c8bfff6d KH |
190 | static inline int rt_bandwidth_enabled(void) |
191 | { | |
192 | return sysctl_sched_rt_runtime >= 0; | |
d0b27fa7 PZ |
193 | } |
194 | ||
195 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |
196 | { | |
197 | ktime_t now; | |
198 | ||
cac64d00 | 199 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
d0b27fa7 PZ |
200 | return; |
201 | ||
202 | if (hrtimer_active(&rt_b->rt_period_timer)) | |
203 | return; | |
204 | ||
0986b11b | 205 | raw_spin_lock(&rt_b->rt_runtime_lock); |
d0b27fa7 | 206 | for (;;) { |
7f1e2ca9 PZ |
207 | unsigned long delta; |
208 | ktime_t soft, hard; | |
209 | ||
d0b27fa7 PZ |
210 | if (hrtimer_active(&rt_b->rt_period_timer)) |
211 | break; | |
212 | ||
213 | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | |
214 | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | |
7f1e2ca9 PZ |
215 | |
216 | soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); | |
217 | hard = hrtimer_get_expires(&rt_b->rt_period_timer); | |
218 | delta = ktime_to_ns(ktime_sub(hard, soft)); | |
219 | __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, | |
5c333864 | 220 | HRTIMER_MODE_ABS_PINNED, 0); |
d0b27fa7 | 221 | } |
0986b11b | 222 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
d0b27fa7 PZ |
223 | } |
224 | ||
225 | #ifdef CONFIG_RT_GROUP_SCHED | |
226 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |
227 | { | |
228 | hrtimer_cancel(&rt_b->rt_period_timer); | |
229 | } | |
230 | #endif | |
231 | ||
712555ee HC |
232 | /* |
233 | * sched_domains_mutex serializes calls to arch_init_sched_domains, | |
234 | * detach_destroy_domains and partition_sched_domains. | |
235 | */ | |
236 | static DEFINE_MUTEX(sched_domains_mutex); | |
237 | ||
7c941438 | 238 | #ifdef CONFIG_CGROUP_SCHED |
29f59db3 | 239 | |
68318b8e SV |
240 | #include <linux/cgroup.h> |
241 | ||
29f59db3 SV |
242 | struct cfs_rq; |
243 | ||
6f505b16 PZ |
244 | static LIST_HEAD(task_groups); |
245 | ||
29f59db3 | 246 | /* task group related information */ |
4cf86d77 | 247 | struct task_group { |
68318b8e | 248 | struct cgroup_subsys_state css; |
6c415b92 | 249 | |
052f1dc7 | 250 | #ifdef CONFIG_FAIR_GROUP_SCHED |
29f59db3 SV |
251 | /* schedulable entities of this group on each cpu */ |
252 | struct sched_entity **se; | |
253 | /* runqueue "owned" by this group on each cpu */ | |
254 | struct cfs_rq **cfs_rq; | |
255 | unsigned long shares; | |
052f1dc7 PZ |
256 | #endif |
257 | ||
258 | #ifdef CONFIG_RT_GROUP_SCHED | |
259 | struct sched_rt_entity **rt_se; | |
260 | struct rt_rq **rt_rq; | |
261 | ||
d0b27fa7 | 262 | struct rt_bandwidth rt_bandwidth; |
052f1dc7 | 263 | #endif |
6b2d7700 | 264 | |
ae8393e5 | 265 | struct rcu_head rcu; |
6f505b16 | 266 | struct list_head list; |
f473aa5e PZ |
267 | |
268 | struct task_group *parent; | |
269 | struct list_head siblings; | |
270 | struct list_head children; | |
29f59db3 SV |
271 | }; |
272 | ||
eff766a6 | 273 | #define root_task_group init_task_group |
6f505b16 | 274 | |
8ed36996 | 275 | /* task_group_lock serializes add/remove of task groups and also changes to |
ec2c507f SV |
276 | * a task group's cpu shares. |
277 | */ | |
8ed36996 | 278 | static DEFINE_SPINLOCK(task_group_lock); |
ec2c507f | 279 | |
e9036b36 CG |
280 | #ifdef CONFIG_FAIR_GROUP_SCHED |
281 | ||
57310a98 PZ |
282 | #ifdef CONFIG_SMP |
283 | static int root_task_group_empty(void) | |
284 | { | |
285 | return list_empty(&root_task_group.children); | |
286 | } | |
287 | #endif | |
288 | ||
052f1dc7 | 289 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
052f1dc7 | 290 | |
cb4ad1ff | 291 | /* |
2e084786 LJ |
292 | * A weight of 0 or 1 can cause arithmetics problems. |
293 | * A weight of a cfs_rq is the sum of weights of which entities | |
294 | * are queued on this cfs_rq, so a weight of a entity should not be | |
295 | * too large, so as the shares value of a task group. | |
cb4ad1ff MX |
296 | * (The default weight is 1024 - so there's no practical |
297 | * limitation from this.) | |
298 | */ | |
18d95a28 | 299 | #define MIN_SHARES 2 |
2e084786 | 300 | #define MAX_SHARES (1UL << 18) |
18d95a28 | 301 | |
052f1dc7 PZ |
302 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; |
303 | #endif | |
304 | ||
29f59db3 | 305 | /* Default task group. |
3a252015 | 306 | * Every task in system belong to this group at bootup. |
29f59db3 | 307 | */ |
434d53b0 | 308 | struct task_group init_task_group; |
29f59db3 | 309 | |
7c941438 | 310 | #endif /* CONFIG_CGROUP_SCHED */ |
29f59db3 | 311 | |
6aa645ea IM |
312 | /* CFS-related fields in a runqueue */ |
313 | struct cfs_rq { | |
314 | struct load_weight load; | |
315 | unsigned long nr_running; | |
316 | ||
6aa645ea | 317 | u64 exec_clock; |
e9acbff6 | 318 | u64 min_vruntime; |
6aa645ea IM |
319 | |
320 | struct rb_root tasks_timeline; | |
321 | struct rb_node *rb_leftmost; | |
4a55bd5e PZ |
322 | |
323 | struct list_head tasks; | |
324 | struct list_head *balance_iterator; | |
325 | ||
326 | /* | |
327 | * 'curr' points to currently running entity on this cfs_rq. | |
6aa645ea IM |
328 | * It is set to NULL otherwise (i.e when none are currently running). |
329 | */ | |
4793241b | 330 | struct sched_entity *curr, *next, *last; |
ddc97297 | 331 | |
5ac5c4d6 | 332 | unsigned int nr_spread_over; |
ddc97297 | 333 | |
62160e3f | 334 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6aa645ea IM |
335 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
336 | ||
41a2d6cf IM |
337 | /* |
338 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
6aa645ea IM |
339 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
340 | * (like users, containers etc.) | |
341 | * | |
342 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | |
343 | * list is used during load balance. | |
344 | */ | |
41a2d6cf IM |
345 | struct list_head leaf_cfs_rq_list; |
346 | struct task_group *tg; /* group that "owns" this runqueue */ | |
c09595f6 PZ |
347 | |
348 | #ifdef CONFIG_SMP | |
c09595f6 | 349 | /* |
c8cba857 | 350 | * the part of load.weight contributed by tasks |
c09595f6 | 351 | */ |
c8cba857 | 352 | unsigned long task_weight; |
c09595f6 | 353 | |
c8cba857 PZ |
354 | /* |
355 | * h_load = weight * f(tg) | |
356 | * | |
357 | * Where f(tg) is the recursive weight fraction assigned to | |
358 | * this group. | |
359 | */ | |
360 | unsigned long h_load; | |
c09595f6 | 361 | |
c8cba857 PZ |
362 | /* |
363 | * this cpu's part of tg->shares | |
364 | */ | |
365 | unsigned long shares; | |
f1d239f7 PZ |
366 | |
367 | /* | |
368 | * load.weight at the time we set shares | |
369 | */ | |
370 | unsigned long rq_weight; | |
c09595f6 | 371 | #endif |
6aa645ea IM |
372 | #endif |
373 | }; | |
1da177e4 | 374 | |
6aa645ea IM |
375 | /* Real-Time classes' related field in a runqueue: */ |
376 | struct rt_rq { | |
377 | struct rt_prio_array active; | |
63489e45 | 378 | unsigned long rt_nr_running; |
052f1dc7 | 379 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
e864c499 GH |
380 | struct { |
381 | int curr; /* highest queued rt task prio */ | |
398a153b | 382 | #ifdef CONFIG_SMP |
e864c499 | 383 | int next; /* next highest */ |
398a153b | 384 | #endif |
e864c499 | 385 | } highest_prio; |
6f505b16 | 386 | #endif |
fa85ae24 | 387 | #ifdef CONFIG_SMP |
73fe6aae | 388 | unsigned long rt_nr_migratory; |
a1ba4d8b | 389 | unsigned long rt_nr_total; |
a22d7fc1 | 390 | int overloaded; |
917b627d | 391 | struct plist_head pushable_tasks; |
fa85ae24 | 392 | #endif |
6f505b16 | 393 | int rt_throttled; |
fa85ae24 | 394 | u64 rt_time; |
ac086bc2 | 395 | u64 rt_runtime; |
ea736ed5 | 396 | /* Nests inside the rq lock: */ |
0986b11b | 397 | raw_spinlock_t rt_runtime_lock; |
6f505b16 | 398 | |
052f1dc7 | 399 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc PZ |
400 | unsigned long rt_nr_boosted; |
401 | ||
6f505b16 PZ |
402 | struct rq *rq; |
403 | struct list_head leaf_rt_rq_list; | |
404 | struct task_group *tg; | |
6f505b16 | 405 | #endif |
6aa645ea IM |
406 | }; |
407 | ||
57d885fe GH |
408 | #ifdef CONFIG_SMP |
409 | ||
410 | /* | |
411 | * We add the notion of a root-domain which will be used to define per-domain | |
0eab9146 IM |
412 | * variables. Each exclusive cpuset essentially defines an island domain by |
413 | * fully partitioning the member cpus from any other cpuset. Whenever a new | |
57d885fe GH |
414 | * exclusive cpuset is created, we also create and attach a new root-domain |
415 | * object. | |
416 | * | |
57d885fe GH |
417 | */ |
418 | struct root_domain { | |
419 | atomic_t refcount; | |
c6c4927b RR |
420 | cpumask_var_t span; |
421 | cpumask_var_t online; | |
637f5085 | 422 | |
0eab9146 | 423 | /* |
637f5085 GH |
424 | * The "RT overload" flag: it gets set if a CPU has more than |
425 | * one runnable RT task. | |
426 | */ | |
c6c4927b | 427 | cpumask_var_t rto_mask; |
0eab9146 | 428 | atomic_t rto_count; |
6e0534f2 GH |
429 | #ifdef CONFIG_SMP |
430 | struct cpupri cpupri; | |
431 | #endif | |
57d885fe GH |
432 | }; |
433 | ||
dc938520 GH |
434 | /* |
435 | * By default the system creates a single root-domain with all cpus as | |
436 | * members (mimicking the global state we have today). | |
437 | */ | |
57d885fe GH |
438 | static struct root_domain def_root_domain; |
439 | ||
440 | #endif | |
441 | ||
1da177e4 LT |
442 | /* |
443 | * This is the main, per-CPU runqueue data structure. | |
444 | * | |
445 | * Locking rule: those places that want to lock multiple runqueues | |
446 | * (such as the load balancing or the thread migration code), lock | |
447 | * acquire operations must be ordered by ascending &runqueue. | |
448 | */ | |
70b97a7f | 449 | struct rq { |
d8016491 | 450 | /* runqueue lock: */ |
05fa785c | 451 | raw_spinlock_t lock; |
1da177e4 LT |
452 | |
453 | /* | |
454 | * nr_running and cpu_load should be in the same cacheline because | |
455 | * remote CPUs use both these fields when doing load calculation. | |
456 | */ | |
457 | unsigned long nr_running; | |
6aa645ea IM |
458 | #define CPU_LOAD_IDX_MAX 5 |
459 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | |
fdf3e95d | 460 | unsigned long last_load_update_tick; |
46cb4b7c | 461 | #ifdef CONFIG_NO_HZ |
39c0cbe2 | 462 | u64 nohz_stamp; |
83cd4fe2 | 463 | unsigned char nohz_balance_kick; |
46cb4b7c | 464 | #endif |
a64692a3 MG |
465 | unsigned int skip_clock_update; |
466 | ||
d8016491 IM |
467 | /* capture load from *all* tasks on this cpu: */ |
468 | struct load_weight load; | |
6aa645ea IM |
469 | unsigned long nr_load_updates; |
470 | u64 nr_switches; | |
471 | ||
472 | struct cfs_rq cfs; | |
6f505b16 | 473 | struct rt_rq rt; |
6f505b16 | 474 | |
6aa645ea | 475 | #ifdef CONFIG_FAIR_GROUP_SCHED |
d8016491 IM |
476 | /* list of leaf cfs_rq on this cpu: */ |
477 | struct list_head leaf_cfs_rq_list; | |
052f1dc7 PZ |
478 | #endif |
479 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 480 | struct list_head leaf_rt_rq_list; |
1da177e4 | 481 | #endif |
1da177e4 LT |
482 | |
483 | /* | |
484 | * This is part of a global counter where only the total sum | |
485 | * over all CPUs matters. A task can increase this counter on | |
486 | * one CPU and if it got migrated afterwards it may decrease | |
487 | * it on another CPU. Always updated under the runqueue lock: | |
488 | */ | |
489 | unsigned long nr_uninterruptible; | |
490 | ||
36c8b586 | 491 | struct task_struct *curr, *idle; |
c9819f45 | 492 | unsigned long next_balance; |
1da177e4 | 493 | struct mm_struct *prev_mm; |
6aa645ea | 494 | |
3e51f33f | 495 | u64 clock; |
6aa645ea | 496 | |
1da177e4 LT |
497 | atomic_t nr_iowait; |
498 | ||
499 | #ifdef CONFIG_SMP | |
0eab9146 | 500 | struct root_domain *rd; |
1da177e4 LT |
501 | struct sched_domain *sd; |
502 | ||
e51fd5e2 PZ |
503 | unsigned long cpu_power; |
504 | ||
a0a522ce | 505 | unsigned char idle_at_tick; |
1da177e4 | 506 | /* For active balancing */ |
3f029d3c | 507 | int post_schedule; |
1da177e4 LT |
508 | int active_balance; |
509 | int push_cpu; | |
969c7921 | 510 | struct cpu_stop_work active_balance_work; |
d8016491 IM |
511 | /* cpu of this runqueue: */ |
512 | int cpu; | |
1f11eb6a | 513 | int online; |
1da177e4 | 514 | |
a8a51d5e | 515 | unsigned long avg_load_per_task; |
1da177e4 | 516 | |
e9e9250b PZ |
517 | u64 rt_avg; |
518 | u64 age_stamp; | |
1b9508f6 MG |
519 | u64 idle_stamp; |
520 | u64 avg_idle; | |
1da177e4 LT |
521 | #endif |
522 | ||
dce48a84 TG |
523 | /* calc_load related fields */ |
524 | unsigned long calc_load_update; | |
525 | long calc_load_active; | |
526 | ||
8f4d37ec | 527 | #ifdef CONFIG_SCHED_HRTICK |
31656519 PZ |
528 | #ifdef CONFIG_SMP |
529 | int hrtick_csd_pending; | |
530 | struct call_single_data hrtick_csd; | |
531 | #endif | |
8f4d37ec PZ |
532 | struct hrtimer hrtick_timer; |
533 | #endif | |
534 | ||
1da177e4 LT |
535 | #ifdef CONFIG_SCHEDSTATS |
536 | /* latency stats */ | |
537 | struct sched_info rq_sched_info; | |
9c2c4802 KC |
538 | unsigned long long rq_cpu_time; |
539 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | |
1da177e4 LT |
540 | |
541 | /* sys_sched_yield() stats */ | |
480b9434 | 542 | unsigned int yld_count; |
1da177e4 LT |
543 | |
544 | /* schedule() stats */ | |
480b9434 KC |
545 | unsigned int sched_switch; |
546 | unsigned int sched_count; | |
547 | unsigned int sched_goidle; | |
1da177e4 LT |
548 | |
549 | /* try_to_wake_up() stats */ | |
480b9434 KC |
550 | unsigned int ttwu_count; |
551 | unsigned int ttwu_local; | |
b8efb561 IM |
552 | |
553 | /* BKL stats */ | |
480b9434 | 554 | unsigned int bkl_count; |
1da177e4 LT |
555 | #endif |
556 | }; | |
557 | ||
f34e3b61 | 558 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
1da177e4 | 559 | |
7d478721 PZ |
560 | static inline |
561 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | |
dd41f596 | 562 | { |
7d478721 | 563 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
a64692a3 MG |
564 | |
565 | /* | |
566 | * A queue event has occurred, and we're going to schedule. In | |
567 | * this case, we can save a useless back to back clock update. | |
568 | */ | |
569 | if (test_tsk_need_resched(p)) | |
570 | rq->skip_clock_update = 1; | |
dd41f596 IM |
571 | } |
572 | ||
0a2966b4 CL |
573 | static inline int cpu_of(struct rq *rq) |
574 | { | |
575 | #ifdef CONFIG_SMP | |
576 | return rq->cpu; | |
577 | #else | |
578 | return 0; | |
579 | #endif | |
580 | } | |
581 | ||
497f0ab3 | 582 | #define rcu_dereference_check_sched_domain(p) \ |
d11c563d PM |
583 | rcu_dereference_check((p), \ |
584 | rcu_read_lock_sched_held() || \ | |
585 | lockdep_is_held(&sched_domains_mutex)) | |
586 | ||
674311d5 NP |
587 | /* |
588 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
1a20ff27 | 589 | * See detach_destroy_domains: synchronize_sched for details. |
674311d5 NP |
590 | * |
591 | * The domain tree of any CPU may only be accessed from within | |
592 | * preempt-disabled sections. | |
593 | */ | |
48f24c4d | 594 | #define for_each_domain(cpu, __sd) \ |
497f0ab3 | 595 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
1da177e4 LT |
596 | |
597 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
598 | #define this_rq() (&__get_cpu_var(runqueues)) | |
599 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
600 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
54d35f29 | 601 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) |
1da177e4 | 602 | |
dc61b1d6 PZ |
603 | #ifdef CONFIG_CGROUP_SCHED |
604 | ||
605 | /* | |
606 | * Return the group to which this tasks belongs. | |
607 | * | |
608 | * We use task_subsys_state_check() and extend the RCU verification | |
609 | * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach() | |
610 | * holds that lock for each task it moves into the cgroup. Therefore | |
611 | * by holding that lock, we pin the task to the current cgroup. | |
612 | */ | |
613 | static inline struct task_group *task_group(struct task_struct *p) | |
614 | { | |
615 | struct cgroup_subsys_state *css; | |
616 | ||
617 | css = task_subsys_state_check(p, cpu_cgroup_subsys_id, | |
618 | lockdep_is_held(&task_rq(p)->lock)); | |
619 | return container_of(css, struct task_group, css); | |
620 | } | |
621 | ||
622 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
623 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |
624 | { | |
625 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
626 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; | |
627 | p->se.parent = task_group(p)->se[cpu]; | |
628 | #endif | |
629 | ||
630 | #ifdef CONFIG_RT_GROUP_SCHED | |
631 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; | |
632 | p->rt.parent = task_group(p)->rt_se[cpu]; | |
633 | #endif | |
634 | } | |
635 | ||
636 | #else /* CONFIG_CGROUP_SCHED */ | |
637 | ||
638 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | |
639 | static inline struct task_group *task_group(struct task_struct *p) | |
640 | { | |
641 | return NULL; | |
642 | } | |
643 | ||
644 | #endif /* CONFIG_CGROUP_SCHED */ | |
645 | ||
aa9c4c0f | 646 | inline void update_rq_clock(struct rq *rq) |
3e51f33f | 647 | { |
a64692a3 MG |
648 | if (!rq->skip_clock_update) |
649 | rq->clock = sched_clock_cpu(cpu_of(rq)); | |
3e51f33f PZ |
650 | } |
651 | ||
bf5c91ba IM |
652 | /* |
653 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
654 | */ | |
655 | #ifdef CONFIG_SCHED_DEBUG | |
656 | # define const_debug __read_mostly | |
657 | #else | |
658 | # define const_debug static const | |
659 | #endif | |
660 | ||
017730c1 IM |
661 | /** |
662 | * runqueue_is_locked | |
e17b38bf | 663 | * @cpu: the processor in question. |
017730c1 IM |
664 | * |
665 | * Returns true if the current cpu runqueue is locked. | |
666 | * This interface allows printk to be called with the runqueue lock | |
667 | * held and know whether or not it is OK to wake up the klogd. | |
668 | */ | |
89f19f04 | 669 | int runqueue_is_locked(int cpu) |
017730c1 | 670 | { |
05fa785c | 671 | return raw_spin_is_locked(&cpu_rq(cpu)->lock); |
017730c1 IM |
672 | } |
673 | ||
bf5c91ba IM |
674 | /* |
675 | * Debugging: various feature bits | |
676 | */ | |
f00b45c1 PZ |
677 | |
678 | #define SCHED_FEAT(name, enabled) \ | |
679 | __SCHED_FEAT_##name , | |
680 | ||
bf5c91ba | 681 | enum { |
f00b45c1 | 682 | #include "sched_features.h" |
bf5c91ba IM |
683 | }; |
684 | ||
f00b45c1 PZ |
685 | #undef SCHED_FEAT |
686 | ||
687 | #define SCHED_FEAT(name, enabled) \ | |
688 | (1UL << __SCHED_FEAT_##name) * enabled | | |
689 | ||
bf5c91ba | 690 | const_debug unsigned int sysctl_sched_features = |
f00b45c1 PZ |
691 | #include "sched_features.h" |
692 | 0; | |
693 | ||
694 | #undef SCHED_FEAT | |
695 | ||
696 | #ifdef CONFIG_SCHED_DEBUG | |
697 | #define SCHED_FEAT(name, enabled) \ | |
698 | #name , | |
699 | ||
983ed7a6 | 700 | static __read_mostly char *sched_feat_names[] = { |
f00b45c1 PZ |
701 | #include "sched_features.h" |
702 | NULL | |
703 | }; | |
704 | ||
705 | #undef SCHED_FEAT | |
706 | ||
34f3a814 | 707 | static int sched_feat_show(struct seq_file *m, void *v) |
f00b45c1 | 708 | { |
f00b45c1 PZ |
709 | int i; |
710 | ||
711 | for (i = 0; sched_feat_names[i]; i++) { | |
34f3a814 LZ |
712 | if (!(sysctl_sched_features & (1UL << i))) |
713 | seq_puts(m, "NO_"); | |
714 | seq_printf(m, "%s ", sched_feat_names[i]); | |
f00b45c1 | 715 | } |
34f3a814 | 716 | seq_puts(m, "\n"); |
f00b45c1 | 717 | |
34f3a814 | 718 | return 0; |
f00b45c1 PZ |
719 | } |
720 | ||
721 | static ssize_t | |
722 | sched_feat_write(struct file *filp, const char __user *ubuf, | |
723 | size_t cnt, loff_t *ppos) | |
724 | { | |
725 | char buf[64]; | |
726 | char *cmp = buf; | |
727 | int neg = 0; | |
728 | int i; | |
729 | ||
730 | if (cnt > 63) | |
731 | cnt = 63; | |
732 | ||
733 | if (copy_from_user(&buf, ubuf, cnt)) | |
734 | return -EFAULT; | |
735 | ||
736 | buf[cnt] = 0; | |
737 | ||
c24b7c52 | 738 | if (strncmp(buf, "NO_", 3) == 0) { |
f00b45c1 PZ |
739 | neg = 1; |
740 | cmp += 3; | |
741 | } | |
742 | ||
743 | for (i = 0; sched_feat_names[i]; i++) { | |
744 | int len = strlen(sched_feat_names[i]); | |
745 | ||
746 | if (strncmp(cmp, sched_feat_names[i], len) == 0) { | |
747 | if (neg) | |
748 | sysctl_sched_features &= ~(1UL << i); | |
749 | else | |
750 | sysctl_sched_features |= (1UL << i); | |
751 | break; | |
752 | } | |
753 | } | |
754 | ||
755 | if (!sched_feat_names[i]) | |
756 | return -EINVAL; | |
757 | ||
42994724 | 758 | *ppos += cnt; |
f00b45c1 PZ |
759 | |
760 | return cnt; | |
761 | } | |
762 | ||
34f3a814 LZ |
763 | static int sched_feat_open(struct inode *inode, struct file *filp) |
764 | { | |
765 | return single_open(filp, sched_feat_show, NULL); | |
766 | } | |
767 | ||
828c0950 | 768 | static const struct file_operations sched_feat_fops = { |
34f3a814 LZ |
769 | .open = sched_feat_open, |
770 | .write = sched_feat_write, | |
771 | .read = seq_read, | |
772 | .llseek = seq_lseek, | |
773 | .release = single_release, | |
f00b45c1 PZ |
774 | }; |
775 | ||
776 | static __init int sched_init_debug(void) | |
777 | { | |
f00b45c1 PZ |
778 | debugfs_create_file("sched_features", 0644, NULL, NULL, |
779 | &sched_feat_fops); | |
780 | ||
781 | return 0; | |
782 | } | |
783 | late_initcall(sched_init_debug); | |
784 | ||
785 | #endif | |
786 | ||
787 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | |
bf5c91ba | 788 | |
b82d9fdd PZ |
789 | /* |
790 | * Number of tasks to iterate in a single balance run. | |
791 | * Limited because this is done with IRQs disabled. | |
792 | */ | |
793 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | |
794 | ||
2398f2c6 PZ |
795 | /* |
796 | * ratelimit for updating the group shares. | |
55cd5340 | 797 | * default: 0.25ms |
2398f2c6 | 798 | */ |
55cd5340 | 799 | unsigned int sysctl_sched_shares_ratelimit = 250000; |
0bcdcf28 | 800 | unsigned int normalized_sysctl_sched_shares_ratelimit = 250000; |
2398f2c6 | 801 | |
ffda12a1 PZ |
802 | /* |
803 | * Inject some fuzzyness into changing the per-cpu group shares | |
804 | * this avoids remote rq-locks at the expense of fairness. | |
805 | * default: 4 | |
806 | */ | |
807 | unsigned int sysctl_sched_shares_thresh = 4; | |
808 | ||
e9e9250b PZ |
809 | /* |
810 | * period over which we average the RT time consumption, measured | |
811 | * in ms. | |
812 | * | |
813 | * default: 1s | |
814 | */ | |
815 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | |
816 | ||
fa85ae24 | 817 | /* |
9f0c1e56 | 818 | * period over which we measure -rt task cpu usage in us. |
fa85ae24 PZ |
819 | * default: 1s |
820 | */ | |
9f0c1e56 | 821 | unsigned int sysctl_sched_rt_period = 1000000; |
fa85ae24 | 822 | |
6892b75e IM |
823 | static __read_mostly int scheduler_running; |
824 | ||
9f0c1e56 PZ |
825 | /* |
826 | * part of the period that we allow rt tasks to run in us. | |
827 | * default: 0.95s | |
828 | */ | |
829 | int sysctl_sched_rt_runtime = 950000; | |
fa85ae24 | 830 | |
d0b27fa7 PZ |
831 | static inline u64 global_rt_period(void) |
832 | { | |
833 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | |
834 | } | |
835 | ||
836 | static inline u64 global_rt_runtime(void) | |
837 | { | |
e26873bb | 838 | if (sysctl_sched_rt_runtime < 0) |
d0b27fa7 PZ |
839 | return RUNTIME_INF; |
840 | ||
841 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | |
842 | } | |
fa85ae24 | 843 | |
1da177e4 | 844 | #ifndef prepare_arch_switch |
4866cde0 NP |
845 | # define prepare_arch_switch(next) do { } while (0) |
846 | #endif | |
847 | #ifndef finish_arch_switch | |
848 | # define finish_arch_switch(prev) do { } while (0) | |
849 | #endif | |
850 | ||
051a1d1a DA |
851 | static inline int task_current(struct rq *rq, struct task_struct *p) |
852 | { | |
853 | return rq->curr == p; | |
854 | } | |
855 | ||
4866cde0 | 856 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
70b97a7f | 857 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 | 858 | { |
051a1d1a | 859 | return task_current(rq, p); |
4866cde0 NP |
860 | } |
861 | ||
70b97a7f | 862 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
863 | { |
864 | } | |
865 | ||
70b97a7f | 866 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 | 867 | { |
da04c035 IM |
868 | #ifdef CONFIG_DEBUG_SPINLOCK |
869 | /* this is a valid case when another task releases the spinlock */ | |
870 | rq->lock.owner = current; | |
871 | #endif | |
8a25d5de IM |
872 | /* |
873 | * If we are tracking spinlock dependencies then we have to | |
874 | * fix up the runqueue lock - which gets 'carried over' from | |
875 | * prev into current: | |
876 | */ | |
877 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
878 | ||
05fa785c | 879 | raw_spin_unlock_irq(&rq->lock); |
4866cde0 NP |
880 | } |
881 | ||
882 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
70b97a7f | 883 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 NP |
884 | { |
885 | #ifdef CONFIG_SMP | |
886 | return p->oncpu; | |
887 | #else | |
051a1d1a | 888 | return task_current(rq, p); |
4866cde0 NP |
889 | #endif |
890 | } | |
891 | ||
70b97a7f | 892 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
893 | { |
894 | #ifdef CONFIG_SMP | |
895 | /* | |
896 | * We can optimise this out completely for !SMP, because the | |
897 | * SMP rebalancing from interrupt is the only thing that cares | |
898 | * here. | |
899 | */ | |
900 | next->oncpu = 1; | |
901 | #endif | |
902 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
05fa785c | 903 | raw_spin_unlock_irq(&rq->lock); |
4866cde0 | 904 | #else |
05fa785c | 905 | raw_spin_unlock(&rq->lock); |
4866cde0 NP |
906 | #endif |
907 | } | |
908 | ||
70b97a7f | 909 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 NP |
910 | { |
911 | #ifdef CONFIG_SMP | |
912 | /* | |
913 | * After ->oncpu is cleared, the task can be moved to a different CPU. | |
914 | * We must ensure this doesn't happen until the switch is completely | |
915 | * finished. | |
916 | */ | |
917 | smp_wmb(); | |
918 | prev->oncpu = 0; | |
919 | #endif | |
920 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
921 | local_irq_enable(); | |
1da177e4 | 922 | #endif |
4866cde0 NP |
923 | } |
924 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
1da177e4 | 925 | |
0970d299 | 926 | /* |
65cc8e48 PZ |
927 | * Check whether the task is waking, we use this to synchronize ->cpus_allowed |
928 | * against ttwu(). | |
0970d299 PZ |
929 | */ |
930 | static inline int task_is_waking(struct task_struct *p) | |
931 | { | |
0017d735 | 932 | return unlikely(p->state == TASK_WAKING); |
0970d299 PZ |
933 | } |
934 | ||
b29739f9 IM |
935 | /* |
936 | * __task_rq_lock - lock the runqueue a given task resides on. | |
937 | * Must be called interrupts disabled. | |
938 | */ | |
70b97a7f | 939 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
b29739f9 IM |
940 | __acquires(rq->lock) |
941 | { | |
0970d299 PZ |
942 | struct rq *rq; |
943 | ||
3a5c359a | 944 | for (;;) { |
0970d299 | 945 | rq = task_rq(p); |
05fa785c | 946 | raw_spin_lock(&rq->lock); |
65cc8e48 | 947 | if (likely(rq == task_rq(p))) |
3a5c359a | 948 | return rq; |
05fa785c | 949 | raw_spin_unlock(&rq->lock); |
b29739f9 | 950 | } |
b29739f9 IM |
951 | } |
952 | ||
1da177e4 LT |
953 | /* |
954 | * task_rq_lock - lock the runqueue a given task resides on and disable | |
41a2d6cf | 955 | * interrupts. Note the ordering: we can safely lookup the task_rq without |
1da177e4 LT |
956 | * explicitly disabling preemption. |
957 | */ | |
70b97a7f | 958 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
1da177e4 LT |
959 | __acquires(rq->lock) |
960 | { | |
70b97a7f | 961 | struct rq *rq; |
1da177e4 | 962 | |
3a5c359a AK |
963 | for (;;) { |
964 | local_irq_save(*flags); | |
965 | rq = task_rq(p); | |
05fa785c | 966 | raw_spin_lock(&rq->lock); |
65cc8e48 | 967 | if (likely(rq == task_rq(p))) |
3a5c359a | 968 | return rq; |
05fa785c | 969 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
1da177e4 | 970 | } |
1da177e4 LT |
971 | } |
972 | ||
a9957449 | 973 | static void __task_rq_unlock(struct rq *rq) |
b29739f9 IM |
974 | __releases(rq->lock) |
975 | { | |
05fa785c | 976 | raw_spin_unlock(&rq->lock); |
b29739f9 IM |
977 | } |
978 | ||
70b97a7f | 979 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
1da177e4 LT |
980 | __releases(rq->lock) |
981 | { | |
05fa785c | 982 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
1da177e4 LT |
983 | } |
984 | ||
1da177e4 | 985 | /* |
cc2a73b5 | 986 | * this_rq_lock - lock this runqueue and disable interrupts. |
1da177e4 | 987 | */ |
a9957449 | 988 | static struct rq *this_rq_lock(void) |
1da177e4 LT |
989 | __acquires(rq->lock) |
990 | { | |
70b97a7f | 991 | struct rq *rq; |
1da177e4 LT |
992 | |
993 | local_irq_disable(); | |
994 | rq = this_rq(); | |
05fa785c | 995 | raw_spin_lock(&rq->lock); |
1da177e4 LT |
996 | |
997 | return rq; | |
998 | } | |
999 | ||
8f4d37ec PZ |
1000 | #ifdef CONFIG_SCHED_HRTICK |
1001 | /* | |
1002 | * Use HR-timers to deliver accurate preemption points. | |
1003 | * | |
1004 | * Its all a bit involved since we cannot program an hrt while holding the | |
1005 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | |
1006 | * reschedule event. | |
1007 | * | |
1008 | * When we get rescheduled we reprogram the hrtick_timer outside of the | |
1009 | * rq->lock. | |
1010 | */ | |
8f4d37ec PZ |
1011 | |
1012 | /* | |
1013 | * Use hrtick when: | |
1014 | * - enabled by features | |
1015 | * - hrtimer is actually high res | |
1016 | */ | |
1017 | static inline int hrtick_enabled(struct rq *rq) | |
1018 | { | |
1019 | if (!sched_feat(HRTICK)) | |
1020 | return 0; | |
ba42059f | 1021 | if (!cpu_active(cpu_of(rq))) |
b328ca18 | 1022 | return 0; |
8f4d37ec PZ |
1023 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
1024 | } | |
1025 | ||
8f4d37ec PZ |
1026 | static void hrtick_clear(struct rq *rq) |
1027 | { | |
1028 | if (hrtimer_active(&rq->hrtick_timer)) | |
1029 | hrtimer_cancel(&rq->hrtick_timer); | |
1030 | } | |
1031 | ||
8f4d37ec PZ |
1032 | /* |
1033 | * High-resolution timer tick. | |
1034 | * Runs from hardirq context with interrupts disabled. | |
1035 | */ | |
1036 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | |
1037 | { | |
1038 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | |
1039 | ||
1040 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | |
1041 | ||
05fa785c | 1042 | raw_spin_lock(&rq->lock); |
3e51f33f | 1043 | update_rq_clock(rq); |
8f4d37ec | 1044 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
05fa785c | 1045 | raw_spin_unlock(&rq->lock); |
8f4d37ec PZ |
1046 | |
1047 | return HRTIMER_NORESTART; | |
1048 | } | |
1049 | ||
95e904c7 | 1050 | #ifdef CONFIG_SMP |
31656519 PZ |
1051 | /* |
1052 | * called from hardirq (IPI) context | |
1053 | */ | |
1054 | static void __hrtick_start(void *arg) | |
b328ca18 | 1055 | { |
31656519 | 1056 | struct rq *rq = arg; |
b328ca18 | 1057 | |
05fa785c | 1058 | raw_spin_lock(&rq->lock); |
31656519 PZ |
1059 | hrtimer_restart(&rq->hrtick_timer); |
1060 | rq->hrtick_csd_pending = 0; | |
05fa785c | 1061 | raw_spin_unlock(&rq->lock); |
b328ca18 PZ |
1062 | } |
1063 | ||
31656519 PZ |
1064 | /* |
1065 | * Called to set the hrtick timer state. | |
1066 | * | |
1067 | * called with rq->lock held and irqs disabled | |
1068 | */ | |
1069 | static void hrtick_start(struct rq *rq, u64 delay) | |
b328ca18 | 1070 | { |
31656519 PZ |
1071 | struct hrtimer *timer = &rq->hrtick_timer; |
1072 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | |
b328ca18 | 1073 | |
cc584b21 | 1074 | hrtimer_set_expires(timer, time); |
31656519 PZ |
1075 | |
1076 | if (rq == this_rq()) { | |
1077 | hrtimer_restart(timer); | |
1078 | } else if (!rq->hrtick_csd_pending) { | |
6e275637 | 1079 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); |
31656519 PZ |
1080 | rq->hrtick_csd_pending = 1; |
1081 | } | |
b328ca18 PZ |
1082 | } |
1083 | ||
1084 | static int | |
1085 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1086 | { | |
1087 | int cpu = (int)(long)hcpu; | |
1088 | ||
1089 | switch (action) { | |
1090 | case CPU_UP_CANCELED: | |
1091 | case CPU_UP_CANCELED_FROZEN: | |
1092 | case CPU_DOWN_PREPARE: | |
1093 | case CPU_DOWN_PREPARE_FROZEN: | |
1094 | case CPU_DEAD: | |
1095 | case CPU_DEAD_FROZEN: | |
31656519 | 1096 | hrtick_clear(cpu_rq(cpu)); |
b328ca18 PZ |
1097 | return NOTIFY_OK; |
1098 | } | |
1099 | ||
1100 | return NOTIFY_DONE; | |
1101 | } | |
1102 | ||
fa748203 | 1103 | static __init void init_hrtick(void) |
b328ca18 PZ |
1104 | { |
1105 | hotcpu_notifier(hotplug_hrtick, 0); | |
1106 | } | |
31656519 PZ |
1107 | #else |
1108 | /* | |
1109 | * Called to set the hrtick timer state. | |
1110 | * | |
1111 | * called with rq->lock held and irqs disabled | |
1112 | */ | |
1113 | static void hrtick_start(struct rq *rq, u64 delay) | |
1114 | { | |
7f1e2ca9 | 1115 | __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, |
5c333864 | 1116 | HRTIMER_MODE_REL_PINNED, 0); |
31656519 | 1117 | } |
b328ca18 | 1118 | |
006c75f1 | 1119 | static inline void init_hrtick(void) |
8f4d37ec | 1120 | { |
8f4d37ec | 1121 | } |
31656519 | 1122 | #endif /* CONFIG_SMP */ |
8f4d37ec | 1123 | |
31656519 | 1124 | static void init_rq_hrtick(struct rq *rq) |
8f4d37ec | 1125 | { |
31656519 PZ |
1126 | #ifdef CONFIG_SMP |
1127 | rq->hrtick_csd_pending = 0; | |
8f4d37ec | 1128 | |
31656519 PZ |
1129 | rq->hrtick_csd.flags = 0; |
1130 | rq->hrtick_csd.func = __hrtick_start; | |
1131 | rq->hrtick_csd.info = rq; | |
1132 | #endif | |
8f4d37ec | 1133 | |
31656519 PZ |
1134 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
1135 | rq->hrtick_timer.function = hrtick; | |
8f4d37ec | 1136 | } |
006c75f1 | 1137 | #else /* CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
1138 | static inline void hrtick_clear(struct rq *rq) |
1139 | { | |
1140 | } | |
1141 | ||
8f4d37ec PZ |
1142 | static inline void init_rq_hrtick(struct rq *rq) |
1143 | { | |
1144 | } | |
1145 | ||
b328ca18 PZ |
1146 | static inline void init_hrtick(void) |
1147 | { | |
1148 | } | |
006c75f1 | 1149 | #endif /* CONFIG_SCHED_HRTICK */ |
8f4d37ec | 1150 | |
c24d20db IM |
1151 | /* |
1152 | * resched_task - mark a task 'to be rescheduled now'. | |
1153 | * | |
1154 | * On UP this means the setting of the need_resched flag, on SMP it | |
1155 | * might also involve a cross-CPU call to trigger the scheduler on | |
1156 | * the target CPU. | |
1157 | */ | |
1158 | #ifdef CONFIG_SMP | |
1159 | ||
1160 | #ifndef tsk_is_polling | |
1161 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | |
1162 | #endif | |
1163 | ||
31656519 | 1164 | static void resched_task(struct task_struct *p) |
c24d20db IM |
1165 | { |
1166 | int cpu; | |
1167 | ||
05fa785c | 1168 | assert_raw_spin_locked(&task_rq(p)->lock); |
c24d20db | 1169 | |
5ed0cec0 | 1170 | if (test_tsk_need_resched(p)) |
c24d20db IM |
1171 | return; |
1172 | ||
5ed0cec0 | 1173 | set_tsk_need_resched(p); |
c24d20db IM |
1174 | |
1175 | cpu = task_cpu(p); | |
1176 | if (cpu == smp_processor_id()) | |
1177 | return; | |
1178 | ||
1179 | /* NEED_RESCHED must be visible before we test polling */ | |
1180 | smp_mb(); | |
1181 | if (!tsk_is_polling(p)) | |
1182 | smp_send_reschedule(cpu); | |
1183 | } | |
1184 | ||
1185 | static void resched_cpu(int cpu) | |
1186 | { | |
1187 | struct rq *rq = cpu_rq(cpu); | |
1188 | unsigned long flags; | |
1189 | ||
05fa785c | 1190 | if (!raw_spin_trylock_irqsave(&rq->lock, flags)) |
c24d20db IM |
1191 | return; |
1192 | resched_task(cpu_curr(cpu)); | |
05fa785c | 1193 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
c24d20db | 1194 | } |
06d8308c TG |
1195 | |
1196 | #ifdef CONFIG_NO_HZ | |
83cd4fe2 VP |
1197 | /* |
1198 | * In the semi idle case, use the nearest busy cpu for migrating timers | |
1199 | * from an idle cpu. This is good for power-savings. | |
1200 | * | |
1201 | * We don't do similar optimization for completely idle system, as | |
1202 | * selecting an idle cpu will add more delays to the timers than intended | |
1203 | * (as that cpu's timer base may not be uptodate wrt jiffies etc). | |
1204 | */ | |
1205 | int get_nohz_timer_target(void) | |
1206 | { | |
1207 | int cpu = smp_processor_id(); | |
1208 | int i; | |
1209 | struct sched_domain *sd; | |
1210 | ||
1211 | for_each_domain(cpu, sd) { | |
1212 | for_each_cpu(i, sched_domain_span(sd)) | |
1213 | if (!idle_cpu(i)) | |
1214 | return i; | |
1215 | } | |
1216 | return cpu; | |
1217 | } | |
06d8308c TG |
1218 | /* |
1219 | * When add_timer_on() enqueues a timer into the timer wheel of an | |
1220 | * idle CPU then this timer might expire before the next timer event | |
1221 | * which is scheduled to wake up that CPU. In case of a completely | |
1222 | * idle system the next event might even be infinite time into the | |
1223 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | |
1224 | * leaves the inner idle loop so the newly added timer is taken into | |
1225 | * account when the CPU goes back to idle and evaluates the timer | |
1226 | * wheel for the next timer event. | |
1227 | */ | |
1228 | void wake_up_idle_cpu(int cpu) | |
1229 | { | |
1230 | struct rq *rq = cpu_rq(cpu); | |
1231 | ||
1232 | if (cpu == smp_processor_id()) | |
1233 | return; | |
1234 | ||
1235 | /* | |
1236 | * This is safe, as this function is called with the timer | |
1237 | * wheel base lock of (cpu) held. When the CPU is on the way | |
1238 | * to idle and has not yet set rq->curr to idle then it will | |
1239 | * be serialized on the timer wheel base lock and take the new | |
1240 | * timer into account automatically. | |
1241 | */ | |
1242 | if (rq->curr != rq->idle) | |
1243 | return; | |
1244 | ||
1245 | /* | |
1246 | * We can set TIF_RESCHED on the idle task of the other CPU | |
1247 | * lockless. The worst case is that the other CPU runs the | |
1248 | * idle task through an additional NOOP schedule() | |
1249 | */ | |
5ed0cec0 | 1250 | set_tsk_need_resched(rq->idle); |
06d8308c TG |
1251 | |
1252 | /* NEED_RESCHED must be visible before we test polling */ | |
1253 | smp_mb(); | |
1254 | if (!tsk_is_polling(rq->idle)) | |
1255 | smp_send_reschedule(cpu); | |
1256 | } | |
39c0cbe2 | 1257 | |
6d6bc0ad | 1258 | #endif /* CONFIG_NO_HZ */ |
06d8308c | 1259 | |
e9e9250b PZ |
1260 | static u64 sched_avg_period(void) |
1261 | { | |
1262 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | |
1263 | } | |
1264 | ||
1265 | static void sched_avg_update(struct rq *rq) | |
1266 | { | |
1267 | s64 period = sched_avg_period(); | |
1268 | ||
1269 | while ((s64)(rq->clock - rq->age_stamp) > period) { | |
0d98bb26 WD |
1270 | /* |
1271 | * Inline assembly required to prevent the compiler | |
1272 | * optimising this loop into a divmod call. | |
1273 | * See __iter_div_u64_rem() for another example of this. | |
1274 | */ | |
1275 | asm("" : "+rm" (rq->age_stamp)); | |
e9e9250b PZ |
1276 | rq->age_stamp += period; |
1277 | rq->rt_avg /= 2; | |
1278 | } | |
1279 | } | |
1280 | ||
1281 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |
1282 | { | |
1283 | rq->rt_avg += rt_delta; | |
1284 | sched_avg_update(rq); | |
1285 | } | |
1286 | ||
6d6bc0ad | 1287 | #else /* !CONFIG_SMP */ |
31656519 | 1288 | static void resched_task(struct task_struct *p) |
c24d20db | 1289 | { |
05fa785c | 1290 | assert_raw_spin_locked(&task_rq(p)->lock); |
31656519 | 1291 | set_tsk_need_resched(p); |
c24d20db | 1292 | } |
e9e9250b PZ |
1293 | |
1294 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |
1295 | { | |
1296 | } | |
da2b71ed SS |
1297 | |
1298 | static void sched_avg_update(struct rq *rq) | |
1299 | { | |
1300 | } | |
6d6bc0ad | 1301 | #endif /* CONFIG_SMP */ |
c24d20db | 1302 | |
45bf76df IM |
1303 | #if BITS_PER_LONG == 32 |
1304 | # define WMULT_CONST (~0UL) | |
1305 | #else | |
1306 | # define WMULT_CONST (1UL << 32) | |
1307 | #endif | |
1308 | ||
1309 | #define WMULT_SHIFT 32 | |
1310 | ||
194081eb IM |
1311 | /* |
1312 | * Shift right and round: | |
1313 | */ | |
cf2ab469 | 1314 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
194081eb | 1315 | |
a7be37ac PZ |
1316 | /* |
1317 | * delta *= weight / lw | |
1318 | */ | |
cb1c4fc9 | 1319 | static unsigned long |
45bf76df IM |
1320 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1321 | struct load_weight *lw) | |
1322 | { | |
1323 | u64 tmp; | |
1324 | ||
7a232e03 LJ |
1325 | if (!lw->inv_weight) { |
1326 | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) | |
1327 | lw->inv_weight = 1; | |
1328 | else | |
1329 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | |
1330 | / (lw->weight+1); | |
1331 | } | |
45bf76df IM |
1332 | |
1333 | tmp = (u64)delta_exec * weight; | |
1334 | /* | |
1335 | * Check whether we'd overflow the 64-bit multiplication: | |
1336 | */ | |
194081eb | 1337 | if (unlikely(tmp > WMULT_CONST)) |
cf2ab469 | 1338 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
194081eb IM |
1339 | WMULT_SHIFT/2); |
1340 | else | |
cf2ab469 | 1341 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
45bf76df | 1342 | |
ecf691da | 1343 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
45bf76df IM |
1344 | } |
1345 | ||
1091985b | 1346 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
45bf76df IM |
1347 | { |
1348 | lw->weight += inc; | |
e89996ae | 1349 | lw->inv_weight = 0; |
45bf76df IM |
1350 | } |
1351 | ||
1091985b | 1352 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
45bf76df IM |
1353 | { |
1354 | lw->weight -= dec; | |
e89996ae | 1355 | lw->inv_weight = 0; |
45bf76df IM |
1356 | } |
1357 | ||
2dd73a4f PW |
1358 | /* |
1359 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
1360 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
1361 | * each task makes to its run queue's load is weighted according to its | |
41a2d6cf | 1362 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
2dd73a4f PW |
1363 | * scaled version of the new time slice allocation that they receive on time |
1364 | * slice expiry etc. | |
1365 | */ | |
1366 | ||
cce7ade8 PZ |
1367 | #define WEIGHT_IDLEPRIO 3 |
1368 | #define WMULT_IDLEPRIO 1431655765 | |
dd41f596 IM |
1369 | |
1370 | /* | |
1371 | * Nice levels are multiplicative, with a gentle 10% change for every | |
1372 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | |
1373 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | |
1374 | * that remained on nice 0. | |
1375 | * | |
1376 | * The "10% effect" is relative and cumulative: from _any_ nice level, | |
1377 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | |
f9153ee6 IM |
1378 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
1379 | * If a task goes up by ~10% and another task goes down by ~10% then | |
1380 | * the relative distance between them is ~25%.) | |
dd41f596 IM |
1381 | */ |
1382 | static const int prio_to_weight[40] = { | |
254753dc IM |
1383 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
1384 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | |
1385 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | |
1386 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | |
1387 | /* 0 */ 1024, 820, 655, 526, 423, | |
1388 | /* 5 */ 335, 272, 215, 172, 137, | |
1389 | /* 10 */ 110, 87, 70, 56, 45, | |
1390 | /* 15 */ 36, 29, 23, 18, 15, | |
dd41f596 IM |
1391 | }; |
1392 | ||
5714d2de IM |
1393 | /* |
1394 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | |
1395 | * | |
1396 | * In cases where the weight does not change often, we can use the | |
1397 | * precalculated inverse to speed up arithmetics by turning divisions | |
1398 | * into multiplications: | |
1399 | */ | |
dd41f596 | 1400 | static const u32 prio_to_wmult[40] = { |
254753dc IM |
1401 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
1402 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | |
1403 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | |
1404 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | |
1405 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | |
1406 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | |
1407 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | |
1408 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | |
dd41f596 | 1409 | }; |
2dd73a4f | 1410 | |
ef12fefa BR |
1411 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
1412 | enum cpuacct_stat_index { | |
1413 | CPUACCT_STAT_USER, /* ... user mode */ | |
1414 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | |
1415 | ||
1416 | CPUACCT_STAT_NSTATS, | |
1417 | }; | |
1418 | ||
d842de87 SV |
1419 | #ifdef CONFIG_CGROUP_CPUACCT |
1420 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | |
ef12fefa BR |
1421 | static void cpuacct_update_stats(struct task_struct *tsk, |
1422 | enum cpuacct_stat_index idx, cputime_t val); | |
d842de87 SV |
1423 | #else |
1424 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | |
ef12fefa BR |
1425 | static inline void cpuacct_update_stats(struct task_struct *tsk, |
1426 | enum cpuacct_stat_index idx, cputime_t val) {} | |
d842de87 SV |
1427 | #endif |
1428 | ||
18d95a28 PZ |
1429 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) |
1430 | { | |
1431 | update_load_add(&rq->load, load); | |
1432 | } | |
1433 | ||
1434 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | |
1435 | { | |
1436 | update_load_sub(&rq->load, load); | |
1437 | } | |
1438 | ||
7940ca36 | 1439 | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) |
eb755805 | 1440 | typedef int (*tg_visitor)(struct task_group *, void *); |
c09595f6 PZ |
1441 | |
1442 | /* | |
1443 | * Iterate the full tree, calling @down when first entering a node and @up when | |
1444 | * leaving it for the final time. | |
1445 | */ | |
eb755805 | 1446 | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
c09595f6 PZ |
1447 | { |
1448 | struct task_group *parent, *child; | |
eb755805 | 1449 | int ret; |
c09595f6 PZ |
1450 | |
1451 | rcu_read_lock(); | |
1452 | parent = &root_task_group; | |
1453 | down: | |
eb755805 PZ |
1454 | ret = (*down)(parent, data); |
1455 | if (ret) | |
1456 | goto out_unlock; | |
c09595f6 PZ |
1457 | list_for_each_entry_rcu(child, &parent->children, siblings) { |
1458 | parent = child; | |
1459 | goto down; | |
1460 | ||
1461 | up: | |
1462 | continue; | |
1463 | } | |
eb755805 PZ |
1464 | ret = (*up)(parent, data); |
1465 | if (ret) | |
1466 | goto out_unlock; | |
c09595f6 PZ |
1467 | |
1468 | child = parent; | |
1469 | parent = parent->parent; | |
1470 | if (parent) | |
1471 | goto up; | |
eb755805 | 1472 | out_unlock: |
c09595f6 | 1473 | rcu_read_unlock(); |
eb755805 PZ |
1474 | |
1475 | return ret; | |
c09595f6 PZ |
1476 | } |
1477 | ||
eb755805 PZ |
1478 | static int tg_nop(struct task_group *tg, void *data) |
1479 | { | |
1480 | return 0; | |
c09595f6 | 1481 | } |
eb755805 PZ |
1482 | #endif |
1483 | ||
1484 | #ifdef CONFIG_SMP | |
f5f08f39 PZ |
1485 | /* Used instead of source_load when we know the type == 0 */ |
1486 | static unsigned long weighted_cpuload(const int cpu) | |
1487 | { | |
1488 | return cpu_rq(cpu)->load.weight; | |
1489 | } | |
1490 | ||
1491 | /* | |
1492 | * Return a low guess at the load of a migration-source cpu weighted | |
1493 | * according to the scheduling class and "nice" value. | |
1494 | * | |
1495 | * We want to under-estimate the load of migration sources, to | |
1496 | * balance conservatively. | |
1497 | */ | |
1498 | static unsigned long source_load(int cpu, int type) | |
1499 | { | |
1500 | struct rq *rq = cpu_rq(cpu); | |
1501 | unsigned long total = weighted_cpuload(cpu); | |
1502 | ||
1503 | if (type == 0 || !sched_feat(LB_BIAS)) | |
1504 | return total; | |
1505 | ||
1506 | return min(rq->cpu_load[type-1], total); | |
1507 | } | |
1508 | ||
1509 | /* | |
1510 | * Return a high guess at the load of a migration-target cpu weighted | |
1511 | * according to the scheduling class and "nice" value. | |
1512 | */ | |
1513 | static unsigned long target_load(int cpu, int type) | |
1514 | { | |
1515 | struct rq *rq = cpu_rq(cpu); | |
1516 | unsigned long total = weighted_cpuload(cpu); | |
1517 | ||
1518 | if (type == 0 || !sched_feat(LB_BIAS)) | |
1519 | return total; | |
1520 | ||
1521 | return max(rq->cpu_load[type-1], total); | |
1522 | } | |
1523 | ||
ae154be1 PZ |
1524 | static unsigned long power_of(int cpu) |
1525 | { | |
e51fd5e2 | 1526 | return cpu_rq(cpu)->cpu_power; |
ae154be1 PZ |
1527 | } |
1528 | ||
eb755805 PZ |
1529 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
1530 | ||
1531 | static unsigned long cpu_avg_load_per_task(int cpu) | |
1532 | { | |
1533 | struct rq *rq = cpu_rq(cpu); | |
af6d596f | 1534 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); |
eb755805 | 1535 | |
4cd42620 SR |
1536 | if (nr_running) |
1537 | rq->avg_load_per_task = rq->load.weight / nr_running; | |
a2d47777 BS |
1538 | else |
1539 | rq->avg_load_per_task = 0; | |
eb755805 PZ |
1540 | |
1541 | return rq->avg_load_per_task; | |
1542 | } | |
1543 | ||
1544 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
c09595f6 | 1545 | |
43cf38eb | 1546 | static __read_mostly unsigned long __percpu *update_shares_data; |
34d76c41 | 1547 | |
c09595f6 PZ |
1548 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
1549 | ||
1550 | /* | |
1551 | * Calculate and set the cpu's group shares. | |
1552 | */ | |
34d76c41 PZ |
1553 | static void update_group_shares_cpu(struct task_group *tg, int cpu, |
1554 | unsigned long sd_shares, | |
1555 | unsigned long sd_rq_weight, | |
4a6cc4bd | 1556 | unsigned long *usd_rq_weight) |
18d95a28 | 1557 | { |
34d76c41 | 1558 | unsigned long shares, rq_weight; |
a5004278 | 1559 | int boost = 0; |
c09595f6 | 1560 | |
4a6cc4bd | 1561 | rq_weight = usd_rq_weight[cpu]; |
a5004278 PZ |
1562 | if (!rq_weight) { |
1563 | boost = 1; | |
1564 | rq_weight = NICE_0_LOAD; | |
1565 | } | |
c8cba857 | 1566 | |
c09595f6 | 1567 | /* |
a8af7246 PZ |
1568 | * \Sum_j shares_j * rq_weight_i |
1569 | * shares_i = ----------------------------- | |
1570 | * \Sum_j rq_weight_j | |
c09595f6 | 1571 | */ |
ec4e0e2f | 1572 | shares = (sd_shares * rq_weight) / sd_rq_weight; |
ffda12a1 | 1573 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); |
c09595f6 | 1574 | |
ffda12a1 PZ |
1575 | if (abs(shares - tg->se[cpu]->load.weight) > |
1576 | sysctl_sched_shares_thresh) { | |
1577 | struct rq *rq = cpu_rq(cpu); | |
1578 | unsigned long flags; | |
c09595f6 | 1579 | |
05fa785c | 1580 | raw_spin_lock_irqsave(&rq->lock, flags); |
34d76c41 | 1581 | tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; |
a5004278 | 1582 | tg->cfs_rq[cpu]->shares = boost ? 0 : shares; |
ffda12a1 | 1583 | __set_se_shares(tg->se[cpu], shares); |
05fa785c | 1584 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
ffda12a1 | 1585 | } |
18d95a28 | 1586 | } |
c09595f6 PZ |
1587 | |
1588 | /* | |
c8cba857 PZ |
1589 | * Re-compute the task group their per cpu shares over the given domain. |
1590 | * This needs to be done in a bottom-up fashion because the rq weight of a | |
1591 | * parent group depends on the shares of its child groups. | |
c09595f6 | 1592 | */ |
eb755805 | 1593 | static int tg_shares_up(struct task_group *tg, void *data) |
c09595f6 | 1594 | { |
cd8ad40d | 1595 | unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0; |
4a6cc4bd | 1596 | unsigned long *usd_rq_weight; |
eb755805 | 1597 | struct sched_domain *sd = data; |
34d76c41 | 1598 | unsigned long flags; |
c8cba857 | 1599 | int i; |
c09595f6 | 1600 | |
34d76c41 PZ |
1601 | if (!tg->se[0]) |
1602 | return 0; | |
1603 | ||
1604 | local_irq_save(flags); | |
4a6cc4bd | 1605 | usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id()); |
34d76c41 | 1606 | |
758b2cdc | 1607 | for_each_cpu(i, sched_domain_span(sd)) { |
34d76c41 | 1608 | weight = tg->cfs_rq[i]->load.weight; |
4a6cc4bd | 1609 | usd_rq_weight[i] = weight; |
34d76c41 | 1610 | |
cd8ad40d | 1611 | rq_weight += weight; |
ec4e0e2f KC |
1612 | /* |
1613 | * If there are currently no tasks on the cpu pretend there | |
1614 | * is one of average load so that when a new task gets to | |
1615 | * run here it will not get delayed by group starvation. | |
1616 | */ | |
ec4e0e2f KC |
1617 | if (!weight) |
1618 | weight = NICE_0_LOAD; | |
1619 | ||
cd8ad40d | 1620 | sum_weight += weight; |
c8cba857 | 1621 | shares += tg->cfs_rq[i]->shares; |
c09595f6 | 1622 | } |
c09595f6 | 1623 | |
cd8ad40d PZ |
1624 | if (!rq_weight) |
1625 | rq_weight = sum_weight; | |
1626 | ||
c8cba857 PZ |
1627 | if ((!shares && rq_weight) || shares > tg->shares) |
1628 | shares = tg->shares; | |
1629 | ||
1630 | if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) | |
1631 | shares = tg->shares; | |
c09595f6 | 1632 | |
758b2cdc | 1633 | for_each_cpu(i, sched_domain_span(sd)) |
4a6cc4bd | 1634 | update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight); |
34d76c41 PZ |
1635 | |
1636 | local_irq_restore(flags); | |
eb755805 PZ |
1637 | |
1638 | return 0; | |
c09595f6 PZ |
1639 | } |
1640 | ||
1641 | /* | |
c8cba857 PZ |
1642 | * Compute the cpu's hierarchical load factor for each task group. |
1643 | * This needs to be done in a top-down fashion because the load of a child | |
1644 | * group is a fraction of its parents load. | |
c09595f6 | 1645 | */ |
eb755805 | 1646 | static int tg_load_down(struct task_group *tg, void *data) |
c09595f6 | 1647 | { |
c8cba857 | 1648 | unsigned long load; |
eb755805 | 1649 | long cpu = (long)data; |
c09595f6 | 1650 | |
c8cba857 PZ |
1651 | if (!tg->parent) { |
1652 | load = cpu_rq(cpu)->load.weight; | |
1653 | } else { | |
1654 | load = tg->parent->cfs_rq[cpu]->h_load; | |
1655 | load *= tg->cfs_rq[cpu]->shares; | |
1656 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | |
1657 | } | |
c09595f6 | 1658 | |
c8cba857 | 1659 | tg->cfs_rq[cpu]->h_load = load; |
c09595f6 | 1660 | |
eb755805 | 1661 | return 0; |
c09595f6 PZ |
1662 | } |
1663 | ||
c8cba857 | 1664 | static void update_shares(struct sched_domain *sd) |
4d8d595d | 1665 | { |
e7097159 PZ |
1666 | s64 elapsed; |
1667 | u64 now; | |
1668 | ||
1669 | if (root_task_group_empty()) | |
1670 | return; | |
1671 | ||
c676329a | 1672 | now = local_clock(); |
e7097159 | 1673 | elapsed = now - sd->last_update; |
2398f2c6 PZ |
1674 | |
1675 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | |
1676 | sd->last_update = now; | |
eb755805 | 1677 | walk_tg_tree(tg_nop, tg_shares_up, sd); |
2398f2c6 | 1678 | } |
4d8d595d PZ |
1679 | } |
1680 | ||
eb755805 | 1681 | static void update_h_load(long cpu) |
c09595f6 | 1682 | { |
eb755805 | 1683 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
c09595f6 PZ |
1684 | } |
1685 | ||
c09595f6 PZ |
1686 | #else |
1687 | ||
c8cba857 | 1688 | static inline void update_shares(struct sched_domain *sd) |
4d8d595d PZ |
1689 | { |
1690 | } | |
1691 | ||
18d95a28 PZ |
1692 | #endif |
1693 | ||
8f45e2b5 GH |
1694 | #ifdef CONFIG_PREEMPT |
1695 | ||
b78bb868 PZ |
1696 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); |
1697 | ||
70574a99 | 1698 | /* |
8f45e2b5 GH |
1699 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1700 | * way at the expense of forcing extra atomic operations in all | |
1701 | * invocations. This assures that the double_lock is acquired using the | |
1702 | * same underlying policy as the spinlock_t on this architecture, which | |
1703 | * reduces latency compared to the unfair variant below. However, it | |
1704 | * also adds more overhead and therefore may reduce throughput. | |
70574a99 | 1705 | */ |
8f45e2b5 GH |
1706 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1707 | __releases(this_rq->lock) | |
1708 | __acquires(busiest->lock) | |
1709 | __acquires(this_rq->lock) | |
1710 | { | |
05fa785c | 1711 | raw_spin_unlock(&this_rq->lock); |
8f45e2b5 GH |
1712 | double_rq_lock(this_rq, busiest); |
1713 | ||
1714 | return 1; | |
1715 | } | |
1716 | ||
1717 | #else | |
1718 | /* | |
1719 | * Unfair double_lock_balance: Optimizes throughput at the expense of | |
1720 | * latency by eliminating extra atomic operations when the locks are | |
1721 | * already in proper order on entry. This favors lower cpu-ids and will | |
1722 | * grant the double lock to lower cpus over higher ids under contention, | |
1723 | * regardless of entry order into the function. | |
1724 | */ | |
1725 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
70574a99 AD |
1726 | __releases(this_rq->lock) |
1727 | __acquires(busiest->lock) | |
1728 | __acquires(this_rq->lock) | |
1729 | { | |
1730 | int ret = 0; | |
1731 | ||
05fa785c | 1732 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
70574a99 | 1733 | if (busiest < this_rq) { |
05fa785c TG |
1734 | raw_spin_unlock(&this_rq->lock); |
1735 | raw_spin_lock(&busiest->lock); | |
1736 | raw_spin_lock_nested(&this_rq->lock, | |
1737 | SINGLE_DEPTH_NESTING); | |
70574a99 AD |
1738 | ret = 1; |
1739 | } else | |
05fa785c TG |
1740 | raw_spin_lock_nested(&busiest->lock, |
1741 | SINGLE_DEPTH_NESTING); | |
70574a99 AD |
1742 | } |
1743 | return ret; | |
1744 | } | |
1745 | ||
8f45e2b5 GH |
1746 | #endif /* CONFIG_PREEMPT */ |
1747 | ||
1748 | /* | |
1749 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
1750 | */ | |
1751 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
1752 | { | |
1753 | if (unlikely(!irqs_disabled())) { | |
1754 | /* printk() doesn't work good under rq->lock */ | |
05fa785c | 1755 | raw_spin_unlock(&this_rq->lock); |
8f45e2b5 GH |
1756 | BUG_ON(1); |
1757 | } | |
1758 | ||
1759 | return _double_lock_balance(this_rq, busiest); | |
1760 | } | |
1761 | ||
70574a99 AD |
1762 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1763 | __releases(busiest->lock) | |
1764 | { | |
05fa785c | 1765 | raw_spin_unlock(&busiest->lock); |
70574a99 AD |
1766 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
1767 | } | |
1e3c88bd PZ |
1768 | |
1769 | /* | |
1770 | * double_rq_lock - safely lock two runqueues | |
1771 | * | |
1772 | * Note this does not disable interrupts like task_rq_lock, | |
1773 | * you need to do so manually before calling. | |
1774 | */ | |
1775 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | |
1776 | __acquires(rq1->lock) | |
1777 | __acquires(rq2->lock) | |
1778 | { | |
1779 | BUG_ON(!irqs_disabled()); | |
1780 | if (rq1 == rq2) { | |
1781 | raw_spin_lock(&rq1->lock); | |
1782 | __acquire(rq2->lock); /* Fake it out ;) */ | |
1783 | } else { | |
1784 | if (rq1 < rq2) { | |
1785 | raw_spin_lock(&rq1->lock); | |
1786 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | |
1787 | } else { | |
1788 | raw_spin_lock(&rq2->lock); | |
1789 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | |
1790 | } | |
1791 | } | |
1e3c88bd PZ |
1792 | } |
1793 | ||
1794 | /* | |
1795 | * double_rq_unlock - safely unlock two runqueues | |
1796 | * | |
1797 | * Note this does not restore interrupts like task_rq_unlock, | |
1798 | * you need to do so manually after calling. | |
1799 | */ | |
1800 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | |
1801 | __releases(rq1->lock) | |
1802 | __releases(rq2->lock) | |
1803 | { | |
1804 | raw_spin_unlock(&rq1->lock); | |
1805 | if (rq1 != rq2) | |
1806 | raw_spin_unlock(&rq2->lock); | |
1807 | else | |
1808 | __release(rq2->lock); | |
1809 | } | |
1810 | ||
18d95a28 PZ |
1811 | #endif |
1812 | ||
30432094 | 1813 | #ifdef CONFIG_FAIR_GROUP_SCHED |
34e83e85 IM |
1814 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) |
1815 | { | |
30432094 | 1816 | #ifdef CONFIG_SMP |
34e83e85 IM |
1817 | cfs_rq->shares = shares; |
1818 | #endif | |
1819 | } | |
30432094 | 1820 | #endif |
e7693a36 | 1821 | |
74f5187a | 1822 | static void calc_load_account_idle(struct rq *this_rq); |
0bcdcf28 | 1823 | static void update_sysctl(void); |
acb4a848 | 1824 | static int get_update_sysctl_factor(void); |
fdf3e95d | 1825 | static void update_cpu_load(struct rq *this_rq); |
dce48a84 | 1826 | |
cd29fe6f PZ |
1827 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1828 | { | |
1829 | set_task_rq(p, cpu); | |
1830 | #ifdef CONFIG_SMP | |
1831 | /* | |
1832 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | |
1833 | * successfuly executed on another CPU. We must ensure that updates of | |
1834 | * per-task data have been completed by this moment. | |
1835 | */ | |
1836 | smp_wmb(); | |
1837 | task_thread_info(p)->cpu = cpu; | |
1838 | #endif | |
1839 | } | |
dce48a84 | 1840 | |
1e3c88bd | 1841 | static const struct sched_class rt_sched_class; |
dd41f596 IM |
1842 | |
1843 | #define sched_class_highest (&rt_sched_class) | |
1f11eb6a GH |
1844 | #define for_each_class(class) \ |
1845 | for (class = sched_class_highest; class; class = class->next) | |
dd41f596 | 1846 | |
1e3c88bd PZ |
1847 | #include "sched_stats.h" |
1848 | ||
c09595f6 | 1849 | static void inc_nr_running(struct rq *rq) |
9c217245 IM |
1850 | { |
1851 | rq->nr_running++; | |
9c217245 IM |
1852 | } |
1853 | ||
c09595f6 | 1854 | static void dec_nr_running(struct rq *rq) |
9c217245 IM |
1855 | { |
1856 | rq->nr_running--; | |
9c217245 IM |
1857 | } |
1858 | ||
45bf76df IM |
1859 | static void set_load_weight(struct task_struct *p) |
1860 | { | |
1861 | if (task_has_rt_policy(p)) { | |
e51fd5e2 PZ |
1862 | p->se.load.weight = 0; |
1863 | p->se.load.inv_weight = WMULT_CONST; | |
dd41f596 IM |
1864 | return; |
1865 | } | |
45bf76df | 1866 | |
dd41f596 IM |
1867 | /* |
1868 | * SCHED_IDLE tasks get minimal weight: | |
1869 | */ | |
1870 | if (p->policy == SCHED_IDLE) { | |
1871 | p->se.load.weight = WEIGHT_IDLEPRIO; | |
1872 | p->se.load.inv_weight = WMULT_IDLEPRIO; | |
1873 | return; | |
1874 | } | |
71f8bd46 | 1875 | |
dd41f596 IM |
1876 | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
1877 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | |
71f8bd46 IM |
1878 | } |
1879 | ||
371fd7e7 | 1880 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) |
2087a1ad | 1881 | { |
a64692a3 | 1882 | update_rq_clock(rq); |
dd41f596 | 1883 | sched_info_queued(p); |
371fd7e7 | 1884 | p->sched_class->enqueue_task(rq, p, flags); |
dd41f596 | 1885 | p->se.on_rq = 1; |
71f8bd46 IM |
1886 | } |
1887 | ||
371fd7e7 | 1888 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) |
71f8bd46 | 1889 | { |
a64692a3 | 1890 | update_rq_clock(rq); |
46ac22ba | 1891 | sched_info_dequeued(p); |
371fd7e7 | 1892 | p->sched_class->dequeue_task(rq, p, flags); |
dd41f596 | 1893 | p->se.on_rq = 0; |
71f8bd46 IM |
1894 | } |
1895 | ||
1e3c88bd PZ |
1896 | /* |
1897 | * activate_task - move a task to the runqueue. | |
1898 | */ | |
371fd7e7 | 1899 | static void activate_task(struct rq *rq, struct task_struct *p, int flags) |
1e3c88bd PZ |
1900 | { |
1901 | if (task_contributes_to_load(p)) | |
1902 | rq->nr_uninterruptible--; | |
1903 | ||
371fd7e7 | 1904 | enqueue_task(rq, p, flags); |
1e3c88bd PZ |
1905 | inc_nr_running(rq); |
1906 | } | |
1907 | ||
1908 | /* | |
1909 | * deactivate_task - remove a task from the runqueue. | |
1910 | */ | |
371fd7e7 | 1911 | static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
1e3c88bd PZ |
1912 | { |
1913 | if (task_contributes_to_load(p)) | |
1914 | rq->nr_uninterruptible++; | |
1915 | ||
371fd7e7 | 1916 | dequeue_task(rq, p, flags); |
1e3c88bd PZ |
1917 | dec_nr_running(rq); |
1918 | } | |
1919 | ||
1920 | #include "sched_idletask.c" | |
1921 | #include "sched_fair.c" | |
1922 | #include "sched_rt.c" | |
1923 | #ifdef CONFIG_SCHED_DEBUG | |
1924 | # include "sched_debug.c" | |
1925 | #endif | |
1926 | ||
14531189 | 1927 | /* |
dd41f596 | 1928 | * __normal_prio - return the priority that is based on the static prio |
14531189 | 1929 | */ |
14531189 IM |
1930 | static inline int __normal_prio(struct task_struct *p) |
1931 | { | |
dd41f596 | 1932 | return p->static_prio; |
14531189 IM |
1933 | } |
1934 | ||
b29739f9 IM |
1935 | /* |
1936 | * Calculate the expected normal priority: i.e. priority | |
1937 | * without taking RT-inheritance into account. Might be | |
1938 | * boosted by interactivity modifiers. Changes upon fork, | |
1939 | * setprio syscalls, and whenever the interactivity | |
1940 | * estimator recalculates. | |
1941 | */ | |
36c8b586 | 1942 | static inline int normal_prio(struct task_struct *p) |
b29739f9 IM |
1943 | { |
1944 | int prio; | |
1945 | ||
e05606d3 | 1946 | if (task_has_rt_policy(p)) |
b29739f9 IM |
1947 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
1948 | else | |
1949 | prio = __normal_prio(p); | |
1950 | return prio; | |
1951 | } | |
1952 | ||
1953 | /* | |
1954 | * Calculate the current priority, i.e. the priority | |
1955 | * taken into account by the scheduler. This value might | |
1956 | * be boosted by RT tasks, or might be boosted by | |
1957 | * interactivity modifiers. Will be RT if the task got | |
1958 | * RT-boosted. If not then it returns p->normal_prio. | |
1959 | */ | |
36c8b586 | 1960 | static int effective_prio(struct task_struct *p) |
b29739f9 IM |
1961 | { |
1962 | p->normal_prio = normal_prio(p); | |
1963 | /* | |
1964 | * If we are RT tasks or we were boosted to RT priority, | |
1965 | * keep the priority unchanged. Otherwise, update priority | |
1966 | * to the normal priority: | |
1967 | */ | |
1968 | if (!rt_prio(p->prio)) | |
1969 | return p->normal_prio; | |
1970 | return p->prio; | |
1971 | } | |
1972 | ||
1da177e4 LT |
1973 | /** |
1974 | * task_curr - is this task currently executing on a CPU? | |
1975 | * @p: the task in question. | |
1976 | */ | |
36c8b586 | 1977 | inline int task_curr(const struct task_struct *p) |
1da177e4 LT |
1978 | { |
1979 | return cpu_curr(task_cpu(p)) == p; | |
1980 | } | |
1981 | ||
cb469845 SR |
1982 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1983 | const struct sched_class *prev_class, | |
1984 | int oldprio, int running) | |
1985 | { | |
1986 | if (prev_class != p->sched_class) { | |
1987 | if (prev_class->switched_from) | |
1988 | prev_class->switched_from(rq, p, running); | |
1989 | p->sched_class->switched_to(rq, p, running); | |
1990 | } else | |
1991 | p->sched_class->prio_changed(rq, p, oldprio, running); | |
1992 | } | |
1993 | ||
1da177e4 | 1994 | #ifdef CONFIG_SMP |
cc367732 IM |
1995 | /* |
1996 | * Is this task likely cache-hot: | |
1997 | */ | |
e7693a36 | 1998 | static int |
cc367732 IM |
1999 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) |
2000 | { | |
2001 | s64 delta; | |
2002 | ||
e6c8fba7 PZ |
2003 | if (p->sched_class != &fair_sched_class) |
2004 | return 0; | |
2005 | ||
f540a608 IM |
2006 | /* |
2007 | * Buddy candidates are cache hot: | |
2008 | */ | |
f685ceac | 2009 | if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && |
4793241b PZ |
2010 | (&p->se == cfs_rq_of(&p->se)->next || |
2011 | &p->se == cfs_rq_of(&p->se)->last)) | |
f540a608 IM |
2012 | return 1; |
2013 | ||
6bc1665b IM |
2014 | if (sysctl_sched_migration_cost == -1) |
2015 | return 1; | |
2016 | if (sysctl_sched_migration_cost == 0) | |
2017 | return 0; | |
2018 | ||
cc367732 IM |
2019 | delta = now - p->se.exec_start; |
2020 | ||
2021 | return delta < (s64)sysctl_sched_migration_cost; | |
2022 | } | |
2023 | ||
dd41f596 | 2024 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
c65cc870 | 2025 | { |
e2912009 PZ |
2026 | #ifdef CONFIG_SCHED_DEBUG |
2027 | /* | |
2028 | * We should never call set_task_cpu() on a blocked task, | |
2029 | * ttwu() will sort out the placement. | |
2030 | */ | |
077614ee PZ |
2031 | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && |
2032 | !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); | |
e2912009 PZ |
2033 | #endif |
2034 | ||
de1d7286 | 2035 | trace_sched_migrate_task(p, new_cpu); |
cbc34ed1 | 2036 | |
0c69774e PZ |
2037 | if (task_cpu(p) != new_cpu) { |
2038 | p->se.nr_migrations++; | |
2039 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); | |
2040 | } | |
dd41f596 IM |
2041 | |
2042 | __set_task_cpu(p, new_cpu); | |
c65cc870 IM |
2043 | } |
2044 | ||
969c7921 | 2045 | struct migration_arg { |
36c8b586 | 2046 | struct task_struct *task; |
1da177e4 | 2047 | int dest_cpu; |
70b97a7f | 2048 | }; |
1da177e4 | 2049 | |
969c7921 TH |
2050 | static int migration_cpu_stop(void *data); |
2051 | ||
1da177e4 LT |
2052 | /* |
2053 | * The task's runqueue lock must be held. | |
2054 | * Returns true if you have to wait for migration thread. | |
2055 | */ | |
969c7921 | 2056 | static bool migrate_task(struct task_struct *p, int dest_cpu) |
1da177e4 | 2057 | { |
70b97a7f | 2058 | struct rq *rq = task_rq(p); |
1da177e4 LT |
2059 | |
2060 | /* | |
2061 | * If the task is not on a runqueue (and not running), then | |
e2912009 | 2062 | * the next wake-up will properly place the task. |
1da177e4 | 2063 | */ |
969c7921 | 2064 | return p->se.on_rq || task_running(rq, p); |
1da177e4 LT |
2065 | } |
2066 | ||
2067 | /* | |
2068 | * wait_task_inactive - wait for a thread to unschedule. | |
2069 | * | |
85ba2d86 RM |
2070 | * If @match_state is nonzero, it's the @p->state value just checked and |
2071 | * not expected to change. If it changes, i.e. @p might have woken up, | |
2072 | * then return zero. When we succeed in waiting for @p to be off its CPU, | |
2073 | * we return a positive number (its total switch count). If a second call | |
2074 | * a short while later returns the same number, the caller can be sure that | |
2075 | * @p has remained unscheduled the whole time. | |
2076 | * | |
1da177e4 LT |
2077 | * The caller must ensure that the task *will* unschedule sometime soon, |
2078 | * else this function might spin for a *long* time. This function can't | |
2079 | * be called with interrupts off, or it may introduce deadlock with | |
2080 | * smp_call_function() if an IPI is sent by the same process we are | |
2081 | * waiting to become inactive. | |
2082 | */ | |
85ba2d86 | 2083 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
1da177e4 LT |
2084 | { |
2085 | unsigned long flags; | |
dd41f596 | 2086 | int running, on_rq; |
85ba2d86 | 2087 | unsigned long ncsw; |
70b97a7f | 2088 | struct rq *rq; |
1da177e4 | 2089 | |
3a5c359a AK |
2090 | for (;;) { |
2091 | /* | |
2092 | * We do the initial early heuristics without holding | |
2093 | * any task-queue locks at all. We'll only try to get | |
2094 | * the runqueue lock when things look like they will | |
2095 | * work out! | |
2096 | */ | |
2097 | rq = task_rq(p); | |
fa490cfd | 2098 | |
3a5c359a AK |
2099 | /* |
2100 | * If the task is actively running on another CPU | |
2101 | * still, just relax and busy-wait without holding | |
2102 | * any locks. | |
2103 | * | |
2104 | * NOTE! Since we don't hold any locks, it's not | |
2105 | * even sure that "rq" stays as the right runqueue! | |
2106 | * But we don't care, since "task_running()" will | |
2107 | * return false if the runqueue has changed and p | |
2108 | * is actually now running somewhere else! | |
2109 | */ | |
85ba2d86 RM |
2110 | while (task_running(rq, p)) { |
2111 | if (match_state && unlikely(p->state != match_state)) | |
2112 | return 0; | |
3a5c359a | 2113 | cpu_relax(); |
85ba2d86 | 2114 | } |
fa490cfd | 2115 | |
3a5c359a AK |
2116 | /* |
2117 | * Ok, time to look more closely! We need the rq | |
2118 | * lock now, to be *sure*. If we're wrong, we'll | |
2119 | * just go back and repeat. | |
2120 | */ | |
2121 | rq = task_rq_lock(p, &flags); | |
27a9da65 | 2122 | trace_sched_wait_task(p); |
3a5c359a AK |
2123 | running = task_running(rq, p); |
2124 | on_rq = p->se.on_rq; | |
85ba2d86 | 2125 | ncsw = 0; |
f31e11d8 | 2126 | if (!match_state || p->state == match_state) |
93dcf55f | 2127 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
3a5c359a | 2128 | task_rq_unlock(rq, &flags); |
fa490cfd | 2129 | |
85ba2d86 RM |
2130 | /* |
2131 | * If it changed from the expected state, bail out now. | |
2132 | */ | |
2133 | if (unlikely(!ncsw)) | |
2134 | break; | |
2135 | ||
3a5c359a AK |
2136 | /* |
2137 | * Was it really running after all now that we | |
2138 | * checked with the proper locks actually held? | |
2139 | * | |
2140 | * Oops. Go back and try again.. | |
2141 | */ | |
2142 | if (unlikely(running)) { | |
2143 | cpu_relax(); | |
2144 | continue; | |
2145 | } | |
fa490cfd | 2146 | |
3a5c359a AK |
2147 | /* |
2148 | * It's not enough that it's not actively running, | |
2149 | * it must be off the runqueue _entirely_, and not | |
2150 | * preempted! | |
2151 | * | |
80dd99b3 | 2152 | * So if it was still runnable (but just not actively |
3a5c359a AK |
2153 | * running right now), it's preempted, and we should |
2154 | * yield - it could be a while. | |
2155 | */ | |
2156 | if (unlikely(on_rq)) { | |
2157 | schedule_timeout_uninterruptible(1); | |
2158 | continue; | |
2159 | } | |
fa490cfd | 2160 | |
3a5c359a AK |
2161 | /* |
2162 | * Ahh, all good. It wasn't running, and it wasn't | |
2163 | * runnable, which means that it will never become | |
2164 | * running in the future either. We're all done! | |
2165 | */ | |
2166 | break; | |
2167 | } | |
85ba2d86 RM |
2168 | |
2169 | return ncsw; | |
1da177e4 LT |
2170 | } |
2171 | ||
2172 | /*** | |
2173 | * kick_process - kick a running thread to enter/exit the kernel | |
2174 | * @p: the to-be-kicked thread | |
2175 | * | |
2176 | * Cause a process which is running on another CPU to enter | |
2177 | * kernel-mode, without any delay. (to get signals handled.) | |
2178 | * | |
2179 | * NOTE: this function doesnt have to take the runqueue lock, | |
2180 | * because all it wants to ensure is that the remote task enters | |
2181 | * the kernel. If the IPI races and the task has been migrated | |
2182 | * to another CPU then no harm is done and the purpose has been | |
2183 | * achieved as well. | |
2184 | */ | |
36c8b586 | 2185 | void kick_process(struct task_struct *p) |
1da177e4 LT |
2186 | { |
2187 | int cpu; | |
2188 | ||
2189 | preempt_disable(); | |
2190 | cpu = task_cpu(p); | |
2191 | if ((cpu != smp_processor_id()) && task_curr(p)) | |
2192 | smp_send_reschedule(cpu); | |
2193 | preempt_enable(); | |
2194 | } | |
b43e3521 | 2195 | EXPORT_SYMBOL_GPL(kick_process); |
476d139c | 2196 | #endif /* CONFIG_SMP */ |
1da177e4 | 2197 | |
0793a61d TG |
2198 | /** |
2199 | * task_oncpu_function_call - call a function on the cpu on which a task runs | |
2200 | * @p: the task to evaluate | |
2201 | * @func: the function to be called | |
2202 | * @info: the function call argument | |
2203 | * | |
2204 | * Calls the function @func when the task is currently running. This might | |
2205 | * be on the current CPU, which just calls the function directly | |
2206 | */ | |
2207 | void task_oncpu_function_call(struct task_struct *p, | |
2208 | void (*func) (void *info), void *info) | |
2209 | { | |
2210 | int cpu; | |
2211 | ||
2212 | preempt_disable(); | |
2213 | cpu = task_cpu(p); | |
2214 | if (task_curr(p)) | |
2215 | smp_call_function_single(cpu, func, info, 1); | |
2216 | preempt_enable(); | |
2217 | } | |
2218 | ||
970b13ba | 2219 | #ifdef CONFIG_SMP |
30da688e ON |
2220 | /* |
2221 | * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held. | |
2222 | */ | |
5da9a0fb PZ |
2223 | static int select_fallback_rq(int cpu, struct task_struct *p) |
2224 | { | |
2225 | int dest_cpu; | |
2226 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); | |
2227 | ||
2228 | /* Look for allowed, online CPU in same node. */ | |
2229 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | |
2230 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | |
2231 | return dest_cpu; | |
2232 | ||
2233 | /* Any allowed, online CPU? */ | |
2234 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); | |
2235 | if (dest_cpu < nr_cpu_ids) | |
2236 | return dest_cpu; | |
2237 | ||
2238 | /* No more Mr. Nice Guy. */ | |
897f0b3c | 2239 | if (unlikely(dest_cpu >= nr_cpu_ids)) { |
9084bb82 | 2240 | dest_cpu = cpuset_cpus_allowed_fallback(p); |
5da9a0fb PZ |
2241 | /* |
2242 | * Don't tell them about moving exiting tasks or | |
2243 | * kernel threads (both mm NULL), since they never | |
2244 | * leave kernel. | |
2245 | */ | |
2246 | if (p->mm && printk_ratelimit()) { | |
2247 | printk(KERN_INFO "process %d (%s) no " | |
2248 | "longer affine to cpu%d\n", | |
2249 | task_pid_nr(p), p->comm, cpu); | |
2250 | } | |
2251 | } | |
2252 | ||
2253 | return dest_cpu; | |
2254 | } | |
2255 | ||
e2912009 | 2256 | /* |
30da688e | 2257 | * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable. |
e2912009 | 2258 | */ |
970b13ba | 2259 | static inline |
0017d735 | 2260 | int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags) |
970b13ba | 2261 | { |
0017d735 | 2262 | int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags); |
e2912009 PZ |
2263 | |
2264 | /* | |
2265 | * In order not to call set_task_cpu() on a blocking task we need | |
2266 | * to rely on ttwu() to place the task on a valid ->cpus_allowed | |
2267 | * cpu. | |
2268 | * | |
2269 | * Since this is common to all placement strategies, this lives here. | |
2270 | * | |
2271 | * [ this allows ->select_task() to simply return task_cpu(p) and | |
2272 | * not worry about this generic constraint ] | |
2273 | */ | |
2274 | if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || | |
70f11205 | 2275 | !cpu_online(cpu))) |
5da9a0fb | 2276 | cpu = select_fallback_rq(task_cpu(p), p); |
e2912009 PZ |
2277 | |
2278 | return cpu; | |
970b13ba | 2279 | } |
09a40af5 MG |
2280 | |
2281 | static void update_avg(u64 *avg, u64 sample) | |
2282 | { | |
2283 | s64 diff = sample - *avg; | |
2284 | *avg += diff >> 3; | |
2285 | } | |
970b13ba PZ |
2286 | #endif |
2287 | ||
9ed3811a TH |
2288 | static inline void ttwu_activate(struct task_struct *p, struct rq *rq, |
2289 | bool is_sync, bool is_migrate, bool is_local, | |
2290 | unsigned long en_flags) | |
2291 | { | |
2292 | schedstat_inc(p, se.statistics.nr_wakeups); | |
2293 | if (is_sync) | |
2294 | schedstat_inc(p, se.statistics.nr_wakeups_sync); | |
2295 | if (is_migrate) | |
2296 | schedstat_inc(p, se.statistics.nr_wakeups_migrate); | |
2297 | if (is_local) | |
2298 | schedstat_inc(p, se.statistics.nr_wakeups_local); | |
2299 | else | |
2300 | schedstat_inc(p, se.statistics.nr_wakeups_remote); | |
2301 | ||
2302 | activate_task(rq, p, en_flags); | |
2303 | } | |
2304 | ||
2305 | static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq, | |
2306 | int wake_flags, bool success) | |
2307 | { | |
2308 | trace_sched_wakeup(p, success); | |
2309 | check_preempt_curr(rq, p, wake_flags); | |
2310 | ||
2311 | p->state = TASK_RUNNING; | |
2312 | #ifdef CONFIG_SMP | |
2313 | if (p->sched_class->task_woken) | |
2314 | p->sched_class->task_woken(rq, p); | |
2315 | ||
2316 | if (unlikely(rq->idle_stamp)) { | |
2317 | u64 delta = rq->clock - rq->idle_stamp; | |
2318 | u64 max = 2*sysctl_sched_migration_cost; | |
2319 | ||
2320 | if (delta > max) | |
2321 | rq->avg_idle = max; | |
2322 | else | |
2323 | update_avg(&rq->avg_idle, delta); | |
2324 | rq->idle_stamp = 0; | |
2325 | } | |
2326 | #endif | |
21aa9af0 TH |
2327 | /* if a worker is waking up, notify workqueue */ |
2328 | if ((p->flags & PF_WQ_WORKER) && success) | |
2329 | wq_worker_waking_up(p, cpu_of(rq)); | |
9ed3811a TH |
2330 | } |
2331 | ||
2332 | /** | |
1da177e4 | 2333 | * try_to_wake_up - wake up a thread |
9ed3811a | 2334 | * @p: the thread to be awakened |
1da177e4 | 2335 | * @state: the mask of task states that can be woken |
9ed3811a | 2336 | * @wake_flags: wake modifier flags (WF_*) |
1da177e4 LT |
2337 | * |
2338 | * Put it on the run-queue if it's not already there. The "current" | |
2339 | * thread is always on the run-queue (except when the actual | |
2340 | * re-schedule is in progress), and as such you're allowed to do | |
2341 | * the simpler "current->state = TASK_RUNNING" to mark yourself | |
2342 | * runnable without the overhead of this. | |
2343 | * | |
9ed3811a TH |
2344 | * Returns %true if @p was woken up, %false if it was already running |
2345 | * or @state didn't match @p's state. | |
1da177e4 | 2346 | */ |
7d478721 PZ |
2347 | static int try_to_wake_up(struct task_struct *p, unsigned int state, |
2348 | int wake_flags) | |
1da177e4 | 2349 | { |
cc367732 | 2350 | int cpu, orig_cpu, this_cpu, success = 0; |
1da177e4 | 2351 | unsigned long flags; |
371fd7e7 | 2352 | unsigned long en_flags = ENQUEUE_WAKEUP; |
ab3b3aa5 | 2353 | struct rq *rq; |
1da177e4 | 2354 | |
e9c84311 | 2355 | this_cpu = get_cpu(); |
2398f2c6 | 2356 | |
04e2f174 | 2357 | smp_wmb(); |
ab3b3aa5 | 2358 | rq = task_rq_lock(p, &flags); |
e9c84311 | 2359 | if (!(p->state & state)) |
1da177e4 LT |
2360 | goto out; |
2361 | ||
dd41f596 | 2362 | if (p->se.on_rq) |
1da177e4 LT |
2363 | goto out_running; |
2364 | ||
2365 | cpu = task_cpu(p); | |
cc367732 | 2366 | orig_cpu = cpu; |
1da177e4 LT |
2367 | |
2368 | #ifdef CONFIG_SMP | |
2369 | if (unlikely(task_running(rq, p))) | |
2370 | goto out_activate; | |
2371 | ||
e9c84311 PZ |
2372 | /* |
2373 | * In order to handle concurrent wakeups and release the rq->lock | |
2374 | * we put the task in TASK_WAKING state. | |
eb24073b IM |
2375 | * |
2376 | * First fix up the nr_uninterruptible count: | |
e9c84311 | 2377 | */ |
cc87f76a PZ |
2378 | if (task_contributes_to_load(p)) { |
2379 | if (likely(cpu_online(orig_cpu))) | |
2380 | rq->nr_uninterruptible--; | |
2381 | else | |
2382 | this_rq()->nr_uninterruptible--; | |
2383 | } | |
e9c84311 | 2384 | p->state = TASK_WAKING; |
efbbd05a | 2385 | |
371fd7e7 | 2386 | if (p->sched_class->task_waking) { |
efbbd05a | 2387 | p->sched_class->task_waking(rq, p); |
371fd7e7 PZ |
2388 | en_flags |= ENQUEUE_WAKING; |
2389 | } | |
efbbd05a | 2390 | |
0017d735 PZ |
2391 | cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags); |
2392 | if (cpu != orig_cpu) | |
5d2f5a61 | 2393 | set_task_cpu(p, cpu); |
0017d735 | 2394 | __task_rq_unlock(rq); |
ab19cb23 | 2395 | |
0970d299 PZ |
2396 | rq = cpu_rq(cpu); |
2397 | raw_spin_lock(&rq->lock); | |
f5dc3753 | 2398 | |
0970d299 PZ |
2399 | /* |
2400 | * We migrated the task without holding either rq->lock, however | |
2401 | * since the task is not on the task list itself, nobody else | |
2402 | * will try and migrate the task, hence the rq should match the | |
2403 | * cpu we just moved it to. | |
2404 | */ | |
2405 | WARN_ON(task_cpu(p) != cpu); | |
e9c84311 | 2406 | WARN_ON(p->state != TASK_WAKING); |
1da177e4 | 2407 | |
e7693a36 GH |
2408 | #ifdef CONFIG_SCHEDSTATS |
2409 | schedstat_inc(rq, ttwu_count); | |
2410 | if (cpu == this_cpu) | |
2411 | schedstat_inc(rq, ttwu_local); | |
2412 | else { | |
2413 | struct sched_domain *sd; | |
2414 | for_each_domain(this_cpu, sd) { | |
758b2cdc | 2415 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
e7693a36 GH |
2416 | schedstat_inc(sd, ttwu_wake_remote); |
2417 | break; | |
2418 | } | |
2419 | } | |
2420 | } | |
6d6bc0ad | 2421 | #endif /* CONFIG_SCHEDSTATS */ |
e7693a36 | 2422 | |
1da177e4 LT |
2423 | out_activate: |
2424 | #endif /* CONFIG_SMP */ | |
9ed3811a TH |
2425 | ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu, |
2426 | cpu == this_cpu, en_flags); | |
1da177e4 | 2427 | success = 1; |
1da177e4 | 2428 | out_running: |
9ed3811a | 2429 | ttwu_post_activation(p, rq, wake_flags, success); |
1da177e4 LT |
2430 | out: |
2431 | task_rq_unlock(rq, &flags); | |
e9c84311 | 2432 | put_cpu(); |
1da177e4 LT |
2433 | |
2434 | return success; | |
2435 | } | |
2436 | ||
21aa9af0 TH |
2437 | /** |
2438 | * try_to_wake_up_local - try to wake up a local task with rq lock held | |
2439 | * @p: the thread to be awakened | |
2440 | * | |
2441 | * Put @p on the run-queue if it's not alredy there. The caller must | |
2442 | * ensure that this_rq() is locked, @p is bound to this_rq() and not | |
2443 | * the current task. this_rq() stays locked over invocation. | |
2444 | */ | |
2445 | static void try_to_wake_up_local(struct task_struct *p) | |
2446 | { | |
2447 | struct rq *rq = task_rq(p); | |
2448 | bool success = false; | |
2449 | ||
2450 | BUG_ON(rq != this_rq()); | |
2451 | BUG_ON(p == current); | |
2452 | lockdep_assert_held(&rq->lock); | |
2453 | ||
2454 | if (!(p->state & TASK_NORMAL)) | |
2455 | return; | |
2456 | ||
2457 | if (!p->se.on_rq) { | |
2458 | if (likely(!task_running(rq, p))) { | |
2459 | schedstat_inc(rq, ttwu_count); | |
2460 | schedstat_inc(rq, ttwu_local); | |
2461 | } | |
2462 | ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP); | |
2463 | success = true; | |
2464 | } | |
2465 | ttwu_post_activation(p, rq, 0, success); | |
2466 | } | |
2467 | ||
50fa610a DH |
2468 | /** |
2469 | * wake_up_process - Wake up a specific process | |
2470 | * @p: The process to be woken up. | |
2471 | * | |
2472 | * Attempt to wake up the nominated process and move it to the set of runnable | |
2473 | * processes. Returns 1 if the process was woken up, 0 if it was already | |
2474 | * running. | |
2475 | * | |
2476 | * It may be assumed that this function implies a write memory barrier before | |
2477 | * changing the task state if and only if any tasks are woken up. | |
2478 | */ | |
7ad5b3a5 | 2479 | int wake_up_process(struct task_struct *p) |
1da177e4 | 2480 | { |
d9514f6c | 2481 | return try_to_wake_up(p, TASK_ALL, 0); |
1da177e4 | 2482 | } |
1da177e4 LT |
2483 | EXPORT_SYMBOL(wake_up_process); |
2484 | ||
7ad5b3a5 | 2485 | int wake_up_state(struct task_struct *p, unsigned int state) |
1da177e4 LT |
2486 | { |
2487 | return try_to_wake_up(p, state, 0); | |
2488 | } | |
2489 | ||
1da177e4 LT |
2490 | /* |
2491 | * Perform scheduler related setup for a newly forked process p. | |
2492 | * p is forked by current. | |
dd41f596 IM |
2493 | * |
2494 | * __sched_fork() is basic setup used by init_idle() too: | |
2495 | */ | |
2496 | static void __sched_fork(struct task_struct *p) | |
2497 | { | |
dd41f596 IM |
2498 | p->se.exec_start = 0; |
2499 | p->se.sum_exec_runtime = 0; | |
f6cf891c | 2500 | p->se.prev_sum_exec_runtime = 0; |
6c594c21 | 2501 | p->se.nr_migrations = 0; |
6cfb0d5d IM |
2502 | |
2503 | #ifdef CONFIG_SCHEDSTATS | |
41acab88 | 2504 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); |
6cfb0d5d | 2505 | #endif |
476d139c | 2506 | |
fa717060 | 2507 | INIT_LIST_HEAD(&p->rt.run_list); |
dd41f596 | 2508 | p->se.on_rq = 0; |
4a55bd5e | 2509 | INIT_LIST_HEAD(&p->se.group_node); |
476d139c | 2510 | |
e107be36 AK |
2511 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2512 | INIT_HLIST_HEAD(&p->preempt_notifiers); | |
2513 | #endif | |
dd41f596 IM |
2514 | } |
2515 | ||
2516 | /* | |
2517 | * fork()/clone()-time setup: | |
2518 | */ | |
2519 | void sched_fork(struct task_struct *p, int clone_flags) | |
2520 | { | |
2521 | int cpu = get_cpu(); | |
2522 | ||
2523 | __sched_fork(p); | |
06b83b5f | 2524 | /* |
0017d735 | 2525 | * We mark the process as running here. This guarantees that |
06b83b5f PZ |
2526 | * nobody will actually run it, and a signal or other external |
2527 | * event cannot wake it up and insert it on the runqueue either. | |
2528 | */ | |
0017d735 | 2529 | p->state = TASK_RUNNING; |
dd41f596 | 2530 | |
b9dc29e7 MG |
2531 | /* |
2532 | * Revert to default priority/policy on fork if requested. | |
2533 | */ | |
2534 | if (unlikely(p->sched_reset_on_fork)) { | |
f83f9ac2 | 2535 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { |
b9dc29e7 | 2536 | p->policy = SCHED_NORMAL; |
f83f9ac2 PW |
2537 | p->normal_prio = p->static_prio; |
2538 | } | |
b9dc29e7 | 2539 | |
6c697bdf MG |
2540 | if (PRIO_TO_NICE(p->static_prio) < 0) { |
2541 | p->static_prio = NICE_TO_PRIO(0); | |
f83f9ac2 | 2542 | p->normal_prio = p->static_prio; |
6c697bdf MG |
2543 | set_load_weight(p); |
2544 | } | |
2545 | ||
b9dc29e7 MG |
2546 | /* |
2547 | * We don't need the reset flag anymore after the fork. It has | |
2548 | * fulfilled its duty: | |
2549 | */ | |
2550 | p->sched_reset_on_fork = 0; | |
2551 | } | |
ca94c442 | 2552 | |
f83f9ac2 PW |
2553 | /* |
2554 | * Make sure we do not leak PI boosting priority to the child. | |
2555 | */ | |
2556 | p->prio = current->normal_prio; | |
2557 | ||
2ddbf952 HS |
2558 | if (!rt_prio(p->prio)) |
2559 | p->sched_class = &fair_sched_class; | |
b29739f9 | 2560 | |
cd29fe6f PZ |
2561 | if (p->sched_class->task_fork) |
2562 | p->sched_class->task_fork(p); | |
2563 | ||
86951599 PZ |
2564 | /* |
2565 | * The child is not yet in the pid-hash so no cgroup attach races, | |
2566 | * and the cgroup is pinned to this child due to cgroup_fork() | |
2567 | * is ran before sched_fork(). | |
2568 | * | |
2569 | * Silence PROVE_RCU. | |
2570 | */ | |
2571 | rcu_read_lock(); | |
5f3edc1b | 2572 | set_task_cpu(p, cpu); |
86951599 | 2573 | rcu_read_unlock(); |
5f3edc1b | 2574 | |
52f17b6c | 2575 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
dd41f596 | 2576 | if (likely(sched_info_on())) |
52f17b6c | 2577 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
1da177e4 | 2578 | #endif |
d6077cb8 | 2579 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
4866cde0 NP |
2580 | p->oncpu = 0; |
2581 | #endif | |
1da177e4 | 2582 | #ifdef CONFIG_PREEMPT |
4866cde0 | 2583 | /* Want to start with kernel preemption disabled. */ |
a1261f54 | 2584 | task_thread_info(p)->preempt_count = 1; |
1da177e4 | 2585 | #endif |
917b627d GH |
2586 | plist_node_init(&p->pushable_tasks, MAX_PRIO); |
2587 | ||
476d139c | 2588 | put_cpu(); |
1da177e4 LT |
2589 | } |
2590 | ||
2591 | /* | |
2592 | * wake_up_new_task - wake up a newly created task for the first time. | |
2593 | * | |
2594 | * This function will do some initial scheduler statistics housekeeping | |
2595 | * that must be done for every newly created context, then puts the task | |
2596 | * on the runqueue and wakes it. | |
2597 | */ | |
7ad5b3a5 | 2598 | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
1da177e4 LT |
2599 | { |
2600 | unsigned long flags; | |
dd41f596 | 2601 | struct rq *rq; |
c890692b | 2602 | int cpu __maybe_unused = get_cpu(); |
fabf318e PZ |
2603 | |
2604 | #ifdef CONFIG_SMP | |
0017d735 PZ |
2605 | rq = task_rq_lock(p, &flags); |
2606 | p->state = TASK_WAKING; | |
2607 | ||
fabf318e PZ |
2608 | /* |
2609 | * Fork balancing, do it here and not earlier because: | |
2610 | * - cpus_allowed can change in the fork path | |
2611 | * - any previously selected cpu might disappear through hotplug | |
2612 | * | |
0017d735 PZ |
2613 | * We set TASK_WAKING so that select_task_rq() can drop rq->lock |
2614 | * without people poking at ->cpus_allowed. | |
fabf318e | 2615 | */ |
0017d735 | 2616 | cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0); |
fabf318e | 2617 | set_task_cpu(p, cpu); |
1da177e4 | 2618 | |
06b83b5f | 2619 | p->state = TASK_RUNNING; |
0017d735 PZ |
2620 | task_rq_unlock(rq, &flags); |
2621 | #endif | |
2622 | ||
2623 | rq = task_rq_lock(p, &flags); | |
cd29fe6f | 2624 | activate_task(rq, p, 0); |
27a9da65 | 2625 | trace_sched_wakeup_new(p, 1); |
a7558e01 | 2626 | check_preempt_curr(rq, p, WF_FORK); |
9a897c5a | 2627 | #ifdef CONFIG_SMP |
efbbd05a PZ |
2628 | if (p->sched_class->task_woken) |
2629 | p->sched_class->task_woken(rq, p); | |
9a897c5a | 2630 | #endif |
dd41f596 | 2631 | task_rq_unlock(rq, &flags); |
fabf318e | 2632 | put_cpu(); |
1da177e4 LT |
2633 | } |
2634 | ||
e107be36 AK |
2635 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2636 | ||
2637 | /** | |
80dd99b3 | 2638 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
421cee29 | 2639 | * @notifier: notifier struct to register |
e107be36 AK |
2640 | */ |
2641 | void preempt_notifier_register(struct preempt_notifier *notifier) | |
2642 | { | |
2643 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | |
2644 | } | |
2645 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | |
2646 | ||
2647 | /** | |
2648 | * preempt_notifier_unregister - no longer interested in preemption notifications | |
421cee29 | 2649 | * @notifier: notifier struct to unregister |
e107be36 AK |
2650 | * |
2651 | * This is safe to call from within a preemption notifier. | |
2652 | */ | |
2653 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | |
2654 | { | |
2655 | hlist_del(¬ifier->link); | |
2656 | } | |
2657 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | |
2658 | ||
2659 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2660 | { | |
2661 | struct preempt_notifier *notifier; | |
2662 | struct hlist_node *node; | |
2663 | ||
2664 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2665 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | |
2666 | } | |
2667 | ||
2668 | static void | |
2669 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2670 | struct task_struct *next) | |
2671 | { | |
2672 | struct preempt_notifier *notifier; | |
2673 | struct hlist_node *node; | |
2674 | ||
2675 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2676 | notifier->ops->sched_out(notifier, next); | |
2677 | } | |
2678 | ||
6d6bc0ad | 2679 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 AK |
2680 | |
2681 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2682 | { | |
2683 | } | |
2684 | ||
2685 | static void | |
2686 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2687 | struct task_struct *next) | |
2688 | { | |
2689 | } | |
2690 | ||
6d6bc0ad | 2691 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 | 2692 | |
4866cde0 NP |
2693 | /** |
2694 | * prepare_task_switch - prepare to switch tasks | |
2695 | * @rq: the runqueue preparing to switch | |
421cee29 | 2696 | * @prev: the current task that is being switched out |
4866cde0 NP |
2697 | * @next: the task we are going to switch to. |
2698 | * | |
2699 | * This is called with the rq lock held and interrupts off. It must | |
2700 | * be paired with a subsequent finish_task_switch after the context | |
2701 | * switch. | |
2702 | * | |
2703 | * prepare_task_switch sets up locking and calls architecture specific | |
2704 | * hooks. | |
2705 | */ | |
e107be36 AK |
2706 | static inline void |
2707 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | |
2708 | struct task_struct *next) | |
4866cde0 | 2709 | { |
e107be36 | 2710 | fire_sched_out_preempt_notifiers(prev, next); |
4866cde0 NP |
2711 | prepare_lock_switch(rq, next); |
2712 | prepare_arch_switch(next); | |
2713 | } | |
2714 | ||
1da177e4 LT |
2715 | /** |
2716 | * finish_task_switch - clean up after a task-switch | |
344babaa | 2717 | * @rq: runqueue associated with task-switch |
1da177e4 LT |
2718 | * @prev: the thread we just switched away from. |
2719 | * | |
4866cde0 NP |
2720 | * finish_task_switch must be called after the context switch, paired |
2721 | * with a prepare_task_switch call before the context switch. | |
2722 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | |
2723 | * and do any other architecture-specific cleanup actions. | |
1da177e4 LT |
2724 | * |
2725 | * Note that we may have delayed dropping an mm in context_switch(). If | |
41a2d6cf | 2726 | * so, we finish that here outside of the runqueue lock. (Doing it |
1da177e4 LT |
2727 | * with the lock held can cause deadlocks; see schedule() for |
2728 | * details.) | |
2729 | */ | |
a9957449 | 2730 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
1da177e4 LT |
2731 | __releases(rq->lock) |
2732 | { | |
1da177e4 | 2733 | struct mm_struct *mm = rq->prev_mm; |
55a101f8 | 2734 | long prev_state; |
1da177e4 LT |
2735 | |
2736 | rq->prev_mm = NULL; | |
2737 | ||
2738 | /* | |
2739 | * A task struct has one reference for the use as "current". | |
c394cc9f | 2740 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
55a101f8 ON |
2741 | * schedule one last time. The schedule call will never return, and |
2742 | * the scheduled task must drop that reference. | |
c394cc9f | 2743 | * The test for TASK_DEAD must occur while the runqueue locks are |
1da177e4 LT |
2744 | * still held, otherwise prev could be scheduled on another cpu, die |
2745 | * there before we look at prev->state, and then the reference would | |
2746 | * be dropped twice. | |
2747 | * Manfred Spraul <[email protected]> | |
2748 | */ | |
55a101f8 | 2749 | prev_state = prev->state; |
4866cde0 | 2750 | finish_arch_switch(prev); |
8381f65d JI |
2751 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
2752 | local_irq_disable(); | |
2753 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | |
49f47433 | 2754 | perf_event_task_sched_in(current); |
8381f65d JI |
2755 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
2756 | local_irq_enable(); | |
2757 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | |
4866cde0 | 2758 | finish_lock_switch(rq, prev); |
e8fa1362 | 2759 | |
e107be36 | 2760 | fire_sched_in_preempt_notifiers(current); |
1da177e4 LT |
2761 | if (mm) |
2762 | mmdrop(mm); | |
c394cc9f | 2763 | if (unlikely(prev_state == TASK_DEAD)) { |
c6fd91f0 | 2764 | /* |
2765 | * Remove function-return probe instances associated with this | |
2766 | * task and put them back on the free list. | |
9761eea8 | 2767 | */ |
c6fd91f0 | 2768 | kprobe_flush_task(prev); |
1da177e4 | 2769 | put_task_struct(prev); |
c6fd91f0 | 2770 | } |
1da177e4 LT |
2771 | } |
2772 | ||
3f029d3c GH |
2773 | #ifdef CONFIG_SMP |
2774 | ||
2775 | /* assumes rq->lock is held */ | |
2776 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) | |
2777 | { | |
2778 | if (prev->sched_class->pre_schedule) | |
2779 | prev->sched_class->pre_schedule(rq, prev); | |
2780 | } | |
2781 | ||
2782 | /* rq->lock is NOT held, but preemption is disabled */ | |
2783 | static inline void post_schedule(struct rq *rq) | |
2784 | { | |
2785 | if (rq->post_schedule) { | |
2786 | unsigned long flags; | |
2787 | ||
05fa785c | 2788 | raw_spin_lock_irqsave(&rq->lock, flags); |
3f029d3c GH |
2789 | if (rq->curr->sched_class->post_schedule) |
2790 | rq->curr->sched_class->post_schedule(rq); | |
05fa785c | 2791 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
3f029d3c GH |
2792 | |
2793 | rq->post_schedule = 0; | |
2794 | } | |
2795 | } | |
2796 | ||
2797 | #else | |
da19ab51 | 2798 | |
3f029d3c GH |
2799 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) |
2800 | { | |
2801 | } | |
2802 | ||
2803 | static inline void post_schedule(struct rq *rq) | |
2804 | { | |
1da177e4 LT |
2805 | } |
2806 | ||
3f029d3c GH |
2807 | #endif |
2808 | ||
1da177e4 LT |
2809 | /** |
2810 | * schedule_tail - first thing a freshly forked thread must call. | |
2811 | * @prev: the thread we just switched away from. | |
2812 | */ | |
36c8b586 | 2813 | asmlinkage void schedule_tail(struct task_struct *prev) |
1da177e4 LT |
2814 | __releases(rq->lock) |
2815 | { | |
70b97a7f IM |
2816 | struct rq *rq = this_rq(); |
2817 | ||
4866cde0 | 2818 | finish_task_switch(rq, prev); |
da19ab51 | 2819 | |
3f029d3c GH |
2820 | /* |
2821 | * FIXME: do we need to worry about rq being invalidated by the | |
2822 | * task_switch? | |
2823 | */ | |
2824 | post_schedule(rq); | |
70b97a7f | 2825 | |
4866cde0 NP |
2826 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
2827 | /* In this case, finish_task_switch does not reenable preemption */ | |
2828 | preempt_enable(); | |
2829 | #endif | |
1da177e4 | 2830 | if (current->set_child_tid) |
b488893a | 2831 | put_user(task_pid_vnr(current), current->set_child_tid); |
1da177e4 LT |
2832 | } |
2833 | ||
2834 | /* | |
2835 | * context_switch - switch to the new MM and the new | |
2836 | * thread's register state. | |
2837 | */ | |
dd41f596 | 2838 | static inline void |
70b97a7f | 2839 | context_switch(struct rq *rq, struct task_struct *prev, |
36c8b586 | 2840 | struct task_struct *next) |
1da177e4 | 2841 | { |
dd41f596 | 2842 | struct mm_struct *mm, *oldmm; |
1da177e4 | 2843 | |
e107be36 | 2844 | prepare_task_switch(rq, prev, next); |
27a9da65 | 2845 | trace_sched_switch(prev, next); |
dd41f596 IM |
2846 | mm = next->mm; |
2847 | oldmm = prev->active_mm; | |
9226d125 ZA |
2848 | /* |
2849 | * For paravirt, this is coupled with an exit in switch_to to | |
2850 | * combine the page table reload and the switch backend into | |
2851 | * one hypercall. | |
2852 | */ | |
224101ed | 2853 | arch_start_context_switch(prev); |
9226d125 | 2854 | |
710390d9 | 2855 | if (likely(!mm)) { |
1da177e4 LT |
2856 | next->active_mm = oldmm; |
2857 | atomic_inc(&oldmm->mm_count); | |
2858 | enter_lazy_tlb(oldmm, next); | |
2859 | } else | |
2860 | switch_mm(oldmm, mm, next); | |
2861 | ||
710390d9 | 2862 | if (likely(!prev->mm)) { |
1da177e4 | 2863 | prev->active_mm = NULL; |
1da177e4 LT |
2864 | rq->prev_mm = oldmm; |
2865 | } | |
3a5f5e48 IM |
2866 | /* |
2867 | * Since the runqueue lock will be released by the next | |
2868 | * task (which is an invalid locking op but in the case | |
2869 | * of the scheduler it's an obvious special-case), so we | |
2870 | * do an early lockdep release here: | |
2871 | */ | |
2872 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
8a25d5de | 2873 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
3a5f5e48 | 2874 | #endif |
1da177e4 LT |
2875 | |
2876 | /* Here we just switch the register state and the stack. */ | |
2877 | switch_to(prev, next, prev); | |
2878 | ||
dd41f596 IM |
2879 | barrier(); |
2880 | /* | |
2881 | * this_rq must be evaluated again because prev may have moved | |
2882 | * CPUs since it called schedule(), thus the 'rq' on its stack | |
2883 | * frame will be invalid. | |
2884 | */ | |
2885 | finish_task_switch(this_rq(), prev); | |
1da177e4 LT |
2886 | } |
2887 | ||
2888 | /* | |
2889 | * nr_running, nr_uninterruptible and nr_context_switches: | |
2890 | * | |
2891 | * externally visible scheduler statistics: current number of runnable | |
2892 | * threads, current number of uninterruptible-sleeping threads, total | |
2893 | * number of context switches performed since bootup. | |
2894 | */ | |
2895 | unsigned long nr_running(void) | |
2896 | { | |
2897 | unsigned long i, sum = 0; | |
2898 | ||
2899 | for_each_online_cpu(i) | |
2900 | sum += cpu_rq(i)->nr_running; | |
2901 | ||
2902 | return sum; | |
f711f609 | 2903 | } |
1da177e4 LT |
2904 | |
2905 | unsigned long nr_uninterruptible(void) | |
f711f609 | 2906 | { |
1da177e4 | 2907 | unsigned long i, sum = 0; |
f711f609 | 2908 | |
0a945022 | 2909 | for_each_possible_cpu(i) |
1da177e4 | 2910 | sum += cpu_rq(i)->nr_uninterruptible; |
f711f609 GS |
2911 | |
2912 | /* | |
1da177e4 LT |
2913 | * Since we read the counters lockless, it might be slightly |
2914 | * inaccurate. Do not allow it to go below zero though: | |
f711f609 | 2915 | */ |
1da177e4 LT |
2916 | if (unlikely((long)sum < 0)) |
2917 | sum = 0; | |
f711f609 | 2918 | |
1da177e4 | 2919 | return sum; |
f711f609 | 2920 | } |
f711f609 | 2921 | |
1da177e4 | 2922 | unsigned long long nr_context_switches(void) |
46cb4b7c | 2923 | { |
cc94abfc SR |
2924 | int i; |
2925 | unsigned long long sum = 0; | |
46cb4b7c | 2926 | |
0a945022 | 2927 | for_each_possible_cpu(i) |
1da177e4 | 2928 | sum += cpu_rq(i)->nr_switches; |
46cb4b7c | 2929 | |
1da177e4 LT |
2930 | return sum; |
2931 | } | |
483b4ee6 | 2932 | |
1da177e4 LT |
2933 | unsigned long nr_iowait(void) |
2934 | { | |
2935 | unsigned long i, sum = 0; | |
483b4ee6 | 2936 | |
0a945022 | 2937 | for_each_possible_cpu(i) |
1da177e4 | 2938 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
46cb4b7c | 2939 | |
1da177e4 LT |
2940 | return sum; |
2941 | } | |
483b4ee6 | 2942 | |
8c215bd3 | 2943 | unsigned long nr_iowait_cpu(int cpu) |
69d25870 | 2944 | { |
8c215bd3 | 2945 | struct rq *this = cpu_rq(cpu); |
69d25870 AV |
2946 | return atomic_read(&this->nr_iowait); |
2947 | } | |
46cb4b7c | 2948 | |
69d25870 AV |
2949 | unsigned long this_cpu_load(void) |
2950 | { | |
2951 | struct rq *this = this_rq(); | |
2952 | return this->cpu_load[0]; | |
2953 | } | |
e790fb0b | 2954 | |
46cb4b7c | 2955 | |
dce48a84 TG |
2956 | /* Variables and functions for calc_load */ |
2957 | static atomic_long_t calc_load_tasks; | |
2958 | static unsigned long calc_load_update; | |
2959 | unsigned long avenrun[3]; | |
2960 | EXPORT_SYMBOL(avenrun); | |
46cb4b7c | 2961 | |
74f5187a PZ |
2962 | static long calc_load_fold_active(struct rq *this_rq) |
2963 | { | |
2964 | long nr_active, delta = 0; | |
2965 | ||
2966 | nr_active = this_rq->nr_running; | |
2967 | nr_active += (long) this_rq->nr_uninterruptible; | |
2968 | ||
2969 | if (nr_active != this_rq->calc_load_active) { | |
2970 | delta = nr_active - this_rq->calc_load_active; | |
2971 | this_rq->calc_load_active = nr_active; | |
2972 | } | |
2973 | ||
2974 | return delta; | |
2975 | } | |
2976 | ||
2977 | #ifdef CONFIG_NO_HZ | |
2978 | /* | |
2979 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | |
2980 | * | |
2981 | * When making the ILB scale, we should try to pull this in as well. | |
2982 | */ | |
2983 | static atomic_long_t calc_load_tasks_idle; | |
2984 | ||
2985 | static void calc_load_account_idle(struct rq *this_rq) | |
2986 | { | |
2987 | long delta; | |
2988 | ||
2989 | delta = calc_load_fold_active(this_rq); | |
2990 | if (delta) | |
2991 | atomic_long_add(delta, &calc_load_tasks_idle); | |
2992 | } | |
2993 | ||
2994 | static long calc_load_fold_idle(void) | |
2995 | { | |
2996 | long delta = 0; | |
2997 | ||
2998 | /* | |
2999 | * Its got a race, we don't care... | |
3000 | */ | |
3001 | if (atomic_long_read(&calc_load_tasks_idle)) | |
3002 | delta = atomic_long_xchg(&calc_load_tasks_idle, 0); | |
3003 | ||
3004 | return delta; | |
3005 | } | |
3006 | #else | |
3007 | static void calc_load_account_idle(struct rq *this_rq) | |
3008 | { | |
3009 | } | |
3010 | ||
3011 | static inline long calc_load_fold_idle(void) | |
3012 | { | |
3013 | return 0; | |
3014 | } | |
3015 | #endif | |
3016 | ||
2d02494f TG |
3017 | /** |
3018 | * get_avenrun - get the load average array | |
3019 | * @loads: pointer to dest load array | |
3020 | * @offset: offset to add | |
3021 | * @shift: shift count to shift the result left | |
3022 | * | |
3023 | * These values are estimates at best, so no need for locking. | |
3024 | */ | |
3025 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | |
3026 | { | |
3027 | loads[0] = (avenrun[0] + offset) << shift; | |
3028 | loads[1] = (avenrun[1] + offset) << shift; | |
3029 | loads[2] = (avenrun[2] + offset) << shift; | |
46cb4b7c | 3030 | } |
46cb4b7c | 3031 | |
dce48a84 TG |
3032 | static unsigned long |
3033 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | |
db1b1fef | 3034 | { |
dce48a84 TG |
3035 | load *= exp; |
3036 | load += active * (FIXED_1 - exp); | |
3037 | return load >> FSHIFT; | |
3038 | } | |
46cb4b7c SS |
3039 | |
3040 | /* | |
dce48a84 TG |
3041 | * calc_load - update the avenrun load estimates 10 ticks after the |
3042 | * CPUs have updated calc_load_tasks. | |
7835b98b | 3043 | */ |
dce48a84 | 3044 | void calc_global_load(void) |
7835b98b | 3045 | { |
dce48a84 TG |
3046 | unsigned long upd = calc_load_update + 10; |
3047 | long active; | |
1da177e4 | 3048 | |
dce48a84 TG |
3049 | if (time_before(jiffies, upd)) |
3050 | return; | |
1da177e4 | 3051 | |
dce48a84 TG |
3052 | active = atomic_long_read(&calc_load_tasks); |
3053 | active = active > 0 ? active * FIXED_1 : 0; | |
1da177e4 | 3054 | |
dce48a84 TG |
3055 | avenrun[0] = calc_load(avenrun[0], EXP_1, active); |
3056 | avenrun[1] = calc_load(avenrun[1], EXP_5, active); | |
3057 | avenrun[2] = calc_load(avenrun[2], EXP_15, active); | |
dd41f596 | 3058 | |
dce48a84 TG |
3059 | calc_load_update += LOAD_FREQ; |
3060 | } | |
1da177e4 | 3061 | |
dce48a84 | 3062 | /* |
74f5187a PZ |
3063 | * Called from update_cpu_load() to periodically update this CPU's |
3064 | * active count. | |
dce48a84 TG |
3065 | */ |
3066 | static void calc_load_account_active(struct rq *this_rq) | |
3067 | { | |
74f5187a | 3068 | long delta; |
08c183f3 | 3069 | |
74f5187a PZ |
3070 | if (time_before(jiffies, this_rq->calc_load_update)) |
3071 | return; | |
783609c6 | 3072 | |
74f5187a PZ |
3073 | delta = calc_load_fold_active(this_rq); |
3074 | delta += calc_load_fold_idle(); | |
3075 | if (delta) | |
dce48a84 | 3076 | atomic_long_add(delta, &calc_load_tasks); |
74f5187a PZ |
3077 | |
3078 | this_rq->calc_load_update += LOAD_FREQ; | |
46cb4b7c SS |
3079 | } |
3080 | ||
fdf3e95d VP |
3081 | /* |
3082 | * The exact cpuload at various idx values, calculated at every tick would be | |
3083 | * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load | |
3084 | * | |
3085 | * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called | |
3086 | * on nth tick when cpu may be busy, then we have: | |
3087 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | |
3088 | * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load | |
3089 | * | |
3090 | * decay_load_missed() below does efficient calculation of | |
3091 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | |
3092 | * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load | |
3093 | * | |
3094 | * The calculation is approximated on a 128 point scale. | |
3095 | * degrade_zero_ticks is the number of ticks after which load at any | |
3096 | * particular idx is approximated to be zero. | |
3097 | * degrade_factor is a precomputed table, a row for each load idx. | |
3098 | * Each column corresponds to degradation factor for a power of two ticks, | |
3099 | * based on 128 point scale. | |
3100 | * Example: | |
3101 | * row 2, col 3 (=12) says that the degradation at load idx 2 after | |
3102 | * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). | |
3103 | * | |
3104 | * With this power of 2 load factors, we can degrade the load n times | |
3105 | * by looking at 1 bits in n and doing as many mult/shift instead of | |
3106 | * n mult/shifts needed by the exact degradation. | |
3107 | */ | |
3108 | #define DEGRADE_SHIFT 7 | |
3109 | static const unsigned char | |
3110 | degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; | |
3111 | static const unsigned char | |
3112 | degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { | |
3113 | {0, 0, 0, 0, 0, 0, 0, 0}, | |
3114 | {64, 32, 8, 0, 0, 0, 0, 0}, | |
3115 | {96, 72, 40, 12, 1, 0, 0}, | |
3116 | {112, 98, 75, 43, 15, 1, 0}, | |
3117 | {120, 112, 98, 76, 45, 16, 2} }; | |
3118 | ||
3119 | /* | |
3120 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog | |
3121 | * would be when CPU is idle and so we just decay the old load without | |
3122 | * adding any new load. | |
3123 | */ | |
3124 | static unsigned long | |
3125 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | |
3126 | { | |
3127 | int j = 0; | |
3128 | ||
3129 | if (!missed_updates) | |
3130 | return load; | |
3131 | ||
3132 | if (missed_updates >= degrade_zero_ticks[idx]) | |
3133 | return 0; | |
3134 | ||
3135 | if (idx == 1) | |
3136 | return load >> missed_updates; | |
3137 | ||
3138 | while (missed_updates) { | |
3139 | if (missed_updates % 2) | |
3140 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; | |
3141 | ||
3142 | missed_updates >>= 1; | |
3143 | j++; | |
3144 | } | |
3145 | return load; | |
3146 | } | |
3147 | ||
46cb4b7c | 3148 | /* |
dd41f596 | 3149 | * Update rq->cpu_load[] statistics. This function is usually called every |
fdf3e95d VP |
3150 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called |
3151 | * every tick. We fix it up based on jiffies. | |
46cb4b7c | 3152 | */ |
dd41f596 | 3153 | static void update_cpu_load(struct rq *this_rq) |
46cb4b7c | 3154 | { |
495eca49 | 3155 | unsigned long this_load = this_rq->load.weight; |
fdf3e95d VP |
3156 | unsigned long curr_jiffies = jiffies; |
3157 | unsigned long pending_updates; | |
dd41f596 | 3158 | int i, scale; |
46cb4b7c | 3159 | |
dd41f596 | 3160 | this_rq->nr_load_updates++; |
46cb4b7c | 3161 | |
fdf3e95d VP |
3162 | /* Avoid repeated calls on same jiffy, when moving in and out of idle */ |
3163 | if (curr_jiffies == this_rq->last_load_update_tick) | |
3164 | return; | |
3165 | ||
3166 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; | |
3167 | this_rq->last_load_update_tick = curr_jiffies; | |
3168 | ||
dd41f596 | 3169 | /* Update our load: */ |
fdf3e95d VP |
3170 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ |
3171 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
dd41f596 | 3172 | unsigned long old_load, new_load; |
7d1e6a9b | 3173 | |
dd41f596 | 3174 | /* scale is effectively 1 << i now, and >> i divides by scale */ |
46cb4b7c | 3175 | |
dd41f596 | 3176 | old_load = this_rq->cpu_load[i]; |
fdf3e95d | 3177 | old_load = decay_load_missed(old_load, pending_updates - 1, i); |
dd41f596 | 3178 | new_load = this_load; |
a25707f3 IM |
3179 | /* |
3180 | * Round up the averaging division if load is increasing. This | |
3181 | * prevents us from getting stuck on 9 if the load is 10, for | |
3182 | * example. | |
3183 | */ | |
3184 | if (new_load > old_load) | |
fdf3e95d VP |
3185 | new_load += scale - 1; |
3186 | ||
3187 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; | |
dd41f596 | 3188 | } |
da2b71ed SS |
3189 | |
3190 | sched_avg_update(this_rq); | |
fdf3e95d VP |
3191 | } |
3192 | ||
3193 | static void update_cpu_load_active(struct rq *this_rq) | |
3194 | { | |
3195 | update_cpu_load(this_rq); | |
46cb4b7c | 3196 | |
74f5187a | 3197 | calc_load_account_active(this_rq); |
46cb4b7c SS |
3198 | } |
3199 | ||
dd41f596 | 3200 | #ifdef CONFIG_SMP |
8a0be9ef | 3201 | |
46cb4b7c | 3202 | /* |
38022906 PZ |
3203 | * sched_exec - execve() is a valuable balancing opportunity, because at |
3204 | * this point the task has the smallest effective memory and cache footprint. | |
46cb4b7c | 3205 | */ |
38022906 | 3206 | void sched_exec(void) |
46cb4b7c | 3207 | { |
38022906 | 3208 | struct task_struct *p = current; |
1da177e4 | 3209 | unsigned long flags; |
70b97a7f | 3210 | struct rq *rq; |
0017d735 | 3211 | int dest_cpu; |
46cb4b7c | 3212 | |
1da177e4 | 3213 | rq = task_rq_lock(p, &flags); |
0017d735 PZ |
3214 | dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0); |
3215 | if (dest_cpu == smp_processor_id()) | |
3216 | goto unlock; | |
38022906 | 3217 | |
46cb4b7c | 3218 | /* |
38022906 | 3219 | * select_task_rq() can race against ->cpus_allowed |
46cb4b7c | 3220 | */ |
30da688e | 3221 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) && |
969c7921 TH |
3222 | likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) { |
3223 | struct migration_arg arg = { p, dest_cpu }; | |
46cb4b7c | 3224 | |
1da177e4 | 3225 | task_rq_unlock(rq, &flags); |
969c7921 | 3226 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
1da177e4 LT |
3227 | return; |
3228 | } | |
0017d735 | 3229 | unlock: |
1da177e4 | 3230 | task_rq_unlock(rq, &flags); |
1da177e4 | 3231 | } |
dd41f596 | 3232 | |
1da177e4 LT |
3233 | #endif |
3234 | ||
1da177e4 LT |
3235 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
3236 | ||
3237 | EXPORT_PER_CPU_SYMBOL(kstat); | |
3238 | ||
3239 | /* | |
c5f8d995 | 3240 | * Return any ns on the sched_clock that have not yet been accounted in |
f06febc9 | 3241 | * @p in case that task is currently running. |
c5f8d995 HS |
3242 | * |
3243 | * Called with task_rq_lock() held on @rq. | |
1da177e4 | 3244 | */ |
c5f8d995 HS |
3245 | static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) |
3246 | { | |
3247 | u64 ns = 0; | |
3248 | ||
3249 | if (task_current(rq, p)) { | |
3250 | update_rq_clock(rq); | |
3251 | ns = rq->clock - p->se.exec_start; | |
3252 | if ((s64)ns < 0) | |
3253 | ns = 0; | |
3254 | } | |
3255 | ||
3256 | return ns; | |
3257 | } | |
3258 | ||
bb34d92f | 3259 | unsigned long long task_delta_exec(struct task_struct *p) |
1da177e4 | 3260 | { |
1da177e4 | 3261 | unsigned long flags; |
41b86e9c | 3262 | struct rq *rq; |
bb34d92f | 3263 | u64 ns = 0; |
48f24c4d | 3264 | |
41b86e9c | 3265 | rq = task_rq_lock(p, &flags); |
c5f8d995 HS |
3266 | ns = do_task_delta_exec(p, rq); |
3267 | task_rq_unlock(rq, &flags); | |
1508487e | 3268 | |
c5f8d995 HS |
3269 | return ns; |
3270 | } | |
f06febc9 | 3271 | |
c5f8d995 HS |
3272 | /* |
3273 | * Return accounted runtime for the task. | |
3274 | * In case the task is currently running, return the runtime plus current's | |
3275 | * pending runtime that have not been accounted yet. | |
3276 | */ | |
3277 | unsigned long long task_sched_runtime(struct task_struct *p) | |
3278 | { | |
3279 | unsigned long flags; | |
3280 | struct rq *rq; | |
3281 | u64 ns = 0; | |
3282 | ||
3283 | rq = task_rq_lock(p, &flags); | |
3284 | ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); | |
3285 | task_rq_unlock(rq, &flags); | |
3286 | ||
3287 | return ns; | |
3288 | } | |
48f24c4d | 3289 | |
c5f8d995 HS |
3290 | /* |
3291 | * Return sum_exec_runtime for the thread group. | |
3292 | * In case the task is currently running, return the sum plus current's | |
3293 | * pending runtime that have not been accounted yet. | |
3294 | * | |
3295 | * Note that the thread group might have other running tasks as well, | |
3296 | * so the return value not includes other pending runtime that other | |
3297 | * running tasks might have. | |
3298 | */ | |
3299 | unsigned long long thread_group_sched_runtime(struct task_struct *p) | |
3300 | { | |
3301 | struct task_cputime totals; | |
3302 | unsigned long flags; | |
3303 | struct rq *rq; | |
3304 | u64 ns; | |
3305 | ||
3306 | rq = task_rq_lock(p, &flags); | |
3307 | thread_group_cputime(p, &totals); | |
3308 | ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); | |
41b86e9c | 3309 | task_rq_unlock(rq, &flags); |
48f24c4d | 3310 | |
1da177e4 LT |
3311 | return ns; |
3312 | } | |
3313 | ||
1da177e4 LT |
3314 | /* |
3315 | * Account user cpu time to a process. | |
3316 | * @p: the process that the cpu time gets accounted to | |
1da177e4 | 3317 | * @cputime: the cpu time spent in user space since the last update |
457533a7 | 3318 | * @cputime_scaled: cputime scaled by cpu frequency |
1da177e4 | 3319 | */ |
457533a7 MS |
3320 | void account_user_time(struct task_struct *p, cputime_t cputime, |
3321 | cputime_t cputime_scaled) | |
1da177e4 LT |
3322 | { |
3323 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3324 | cputime64_t tmp; | |
3325 | ||
457533a7 | 3326 | /* Add user time to process. */ |
1da177e4 | 3327 | p->utime = cputime_add(p->utime, cputime); |
457533a7 | 3328 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
f06febc9 | 3329 | account_group_user_time(p, cputime); |
1da177e4 LT |
3330 | |
3331 | /* Add user time to cpustat. */ | |
3332 | tmp = cputime_to_cputime64(cputime); | |
3333 | if (TASK_NICE(p) > 0) | |
3334 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
3335 | else | |
3336 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
ef12fefa BR |
3337 | |
3338 | cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); | |
49b5cf34 JL |
3339 | /* Account for user time used */ |
3340 | acct_update_integrals(p); | |
1da177e4 LT |
3341 | } |
3342 | ||
94886b84 LV |
3343 | /* |
3344 | * Account guest cpu time to a process. | |
3345 | * @p: the process that the cpu time gets accounted to | |
3346 | * @cputime: the cpu time spent in virtual machine since the last update | |
457533a7 | 3347 | * @cputime_scaled: cputime scaled by cpu frequency |
94886b84 | 3348 | */ |
457533a7 MS |
3349 | static void account_guest_time(struct task_struct *p, cputime_t cputime, |
3350 | cputime_t cputime_scaled) | |
94886b84 LV |
3351 | { |
3352 | cputime64_t tmp; | |
3353 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3354 | ||
3355 | tmp = cputime_to_cputime64(cputime); | |
3356 | ||
457533a7 | 3357 | /* Add guest time to process. */ |
94886b84 | 3358 | p->utime = cputime_add(p->utime, cputime); |
457533a7 | 3359 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
f06febc9 | 3360 | account_group_user_time(p, cputime); |
94886b84 LV |
3361 | p->gtime = cputime_add(p->gtime, cputime); |
3362 | ||
457533a7 | 3363 | /* Add guest time to cpustat. */ |
ce0e7b28 RO |
3364 | if (TASK_NICE(p) > 0) { |
3365 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
3366 | cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | |
3367 | } else { | |
3368 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
3369 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | |
3370 | } | |
94886b84 LV |
3371 | } |
3372 | ||
1da177e4 LT |
3373 | /* |
3374 | * Account system cpu time to a process. | |
3375 | * @p: the process that the cpu time gets accounted to | |
3376 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
3377 | * @cputime: the cpu time spent in kernel space since the last update | |
457533a7 | 3378 | * @cputime_scaled: cputime scaled by cpu frequency |
1da177e4 LT |
3379 | */ |
3380 | void account_system_time(struct task_struct *p, int hardirq_offset, | |
457533a7 | 3381 | cputime_t cputime, cputime_t cputime_scaled) |
1da177e4 LT |
3382 | { |
3383 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
1da177e4 LT |
3384 | cputime64_t tmp; |
3385 | ||
983ed7a6 | 3386 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
457533a7 | 3387 | account_guest_time(p, cputime, cputime_scaled); |
983ed7a6 HH |
3388 | return; |
3389 | } | |
94886b84 | 3390 | |
457533a7 | 3391 | /* Add system time to process. */ |
1da177e4 | 3392 | p->stime = cputime_add(p->stime, cputime); |
457533a7 | 3393 | p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); |
f06febc9 | 3394 | account_group_system_time(p, cputime); |
1da177e4 LT |
3395 | |
3396 | /* Add system time to cpustat. */ | |
3397 | tmp = cputime_to_cputime64(cputime); | |
3398 | if (hardirq_count() - hardirq_offset) | |
3399 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | |
3400 | else if (softirq_count()) | |
3401 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | |
1da177e4 | 3402 | else |
79741dd3 MS |
3403 | cpustat->system = cputime64_add(cpustat->system, tmp); |
3404 | ||
ef12fefa BR |
3405 | cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); |
3406 | ||
1da177e4 LT |
3407 | /* Account for system time used */ |
3408 | acct_update_integrals(p); | |
1da177e4 LT |
3409 | } |
3410 | ||
c66f08be | 3411 | /* |
1da177e4 | 3412 | * Account for involuntary wait time. |
1da177e4 | 3413 | * @steal: the cpu time spent in involuntary wait |
c66f08be | 3414 | */ |
79741dd3 | 3415 | void account_steal_time(cputime_t cputime) |
c66f08be | 3416 | { |
79741dd3 MS |
3417 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
3418 | cputime64_t cputime64 = cputime_to_cputime64(cputime); | |
3419 | ||
3420 | cpustat->steal = cputime64_add(cpustat->steal, cputime64); | |
c66f08be MN |
3421 | } |
3422 | ||
1da177e4 | 3423 | /* |
79741dd3 MS |
3424 | * Account for idle time. |
3425 | * @cputime: the cpu time spent in idle wait | |
1da177e4 | 3426 | */ |
79741dd3 | 3427 | void account_idle_time(cputime_t cputime) |
1da177e4 LT |
3428 | { |
3429 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
79741dd3 | 3430 | cputime64_t cputime64 = cputime_to_cputime64(cputime); |
70b97a7f | 3431 | struct rq *rq = this_rq(); |
1da177e4 | 3432 | |
79741dd3 MS |
3433 | if (atomic_read(&rq->nr_iowait) > 0) |
3434 | cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); | |
3435 | else | |
3436 | cpustat->idle = cputime64_add(cpustat->idle, cputime64); | |
1da177e4 LT |
3437 | } |
3438 | ||
79741dd3 MS |
3439 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
3440 | ||
3441 | /* | |
3442 | * Account a single tick of cpu time. | |
3443 | * @p: the process that the cpu time gets accounted to | |
3444 | * @user_tick: indicates if the tick is a user or a system tick | |
3445 | */ | |
3446 | void account_process_tick(struct task_struct *p, int user_tick) | |
3447 | { | |
a42548a1 | 3448 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
79741dd3 MS |
3449 | struct rq *rq = this_rq(); |
3450 | ||
3451 | if (user_tick) | |
a42548a1 | 3452 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
f5f293a4 | 3453 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
a42548a1 | 3454 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
79741dd3 MS |
3455 | one_jiffy_scaled); |
3456 | else | |
a42548a1 | 3457 | account_idle_time(cputime_one_jiffy); |
79741dd3 MS |
3458 | } |
3459 | ||
3460 | /* | |
3461 | * Account multiple ticks of steal time. | |
3462 | * @p: the process from which the cpu time has been stolen | |
3463 | * @ticks: number of stolen ticks | |
3464 | */ | |
3465 | void account_steal_ticks(unsigned long ticks) | |
3466 | { | |
3467 | account_steal_time(jiffies_to_cputime(ticks)); | |
3468 | } | |
3469 | ||
3470 | /* | |
3471 | * Account multiple ticks of idle time. | |
3472 | * @ticks: number of stolen ticks | |
3473 | */ | |
3474 | void account_idle_ticks(unsigned long ticks) | |
3475 | { | |
3476 | account_idle_time(jiffies_to_cputime(ticks)); | |
1da177e4 LT |
3477 | } |
3478 | ||
79741dd3 MS |
3479 | #endif |
3480 | ||
49048622 BS |
3481 | /* |
3482 | * Use precise platform statistics if available: | |
3483 | */ | |
3484 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | |
d180c5bc | 3485 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
49048622 | 3486 | { |
d99ca3b9 HS |
3487 | *ut = p->utime; |
3488 | *st = p->stime; | |
49048622 BS |
3489 | } |
3490 | ||
0cf55e1e | 3491 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
49048622 | 3492 | { |
0cf55e1e HS |
3493 | struct task_cputime cputime; |
3494 | ||
3495 | thread_group_cputime(p, &cputime); | |
3496 | ||
3497 | *ut = cputime.utime; | |
3498 | *st = cputime.stime; | |
49048622 BS |
3499 | } |
3500 | #else | |
761b1d26 HS |
3501 | |
3502 | #ifndef nsecs_to_cputime | |
b7b20df9 | 3503 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) |
761b1d26 HS |
3504 | #endif |
3505 | ||
d180c5bc | 3506 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
49048622 | 3507 | { |
d99ca3b9 | 3508 | cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); |
49048622 BS |
3509 | |
3510 | /* | |
3511 | * Use CFS's precise accounting: | |
3512 | */ | |
d180c5bc | 3513 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
49048622 BS |
3514 | |
3515 | if (total) { | |
d180c5bc HS |
3516 | u64 temp; |
3517 | ||
3518 | temp = (u64)(rtime * utime); | |
49048622 | 3519 | do_div(temp, total); |
d180c5bc HS |
3520 | utime = (cputime_t)temp; |
3521 | } else | |
3522 | utime = rtime; | |
49048622 | 3523 | |
d180c5bc HS |
3524 | /* |
3525 | * Compare with previous values, to keep monotonicity: | |
3526 | */ | |
761b1d26 | 3527 | p->prev_utime = max(p->prev_utime, utime); |
d99ca3b9 | 3528 | p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); |
49048622 | 3529 | |
d99ca3b9 HS |
3530 | *ut = p->prev_utime; |
3531 | *st = p->prev_stime; | |
49048622 BS |
3532 | } |
3533 | ||
0cf55e1e HS |
3534 | /* |
3535 | * Must be called with siglock held. | |
3536 | */ | |
3537 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |
49048622 | 3538 | { |
0cf55e1e HS |
3539 | struct signal_struct *sig = p->signal; |
3540 | struct task_cputime cputime; | |
3541 | cputime_t rtime, utime, total; | |
49048622 | 3542 | |
0cf55e1e | 3543 | thread_group_cputime(p, &cputime); |
49048622 | 3544 | |
0cf55e1e HS |
3545 | total = cputime_add(cputime.utime, cputime.stime); |
3546 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); | |
49048622 | 3547 | |
0cf55e1e HS |
3548 | if (total) { |
3549 | u64 temp; | |
49048622 | 3550 | |
0cf55e1e HS |
3551 | temp = (u64)(rtime * cputime.utime); |
3552 | do_div(temp, total); | |
3553 | utime = (cputime_t)temp; | |
3554 | } else | |
3555 | utime = rtime; | |
3556 | ||
3557 | sig->prev_utime = max(sig->prev_utime, utime); | |
3558 | sig->prev_stime = max(sig->prev_stime, | |
3559 | cputime_sub(rtime, sig->prev_utime)); | |
3560 | ||
3561 | *ut = sig->prev_utime; | |
3562 | *st = sig->prev_stime; | |
49048622 | 3563 | } |
49048622 | 3564 | #endif |
49048622 | 3565 | |
7835b98b CL |
3566 | /* |
3567 | * This function gets called by the timer code, with HZ frequency. | |
3568 | * We call it with interrupts disabled. | |
3569 | * | |
3570 | * It also gets called by the fork code, when changing the parent's | |
3571 | * timeslices. | |
3572 | */ | |
3573 | void scheduler_tick(void) | |
3574 | { | |
7835b98b CL |
3575 | int cpu = smp_processor_id(); |
3576 | struct rq *rq = cpu_rq(cpu); | |
dd41f596 | 3577 | struct task_struct *curr = rq->curr; |
3e51f33f PZ |
3578 | |
3579 | sched_clock_tick(); | |
dd41f596 | 3580 | |
05fa785c | 3581 | raw_spin_lock(&rq->lock); |
3e51f33f | 3582 | update_rq_clock(rq); |
fdf3e95d | 3583 | update_cpu_load_active(rq); |
fa85ae24 | 3584 | curr->sched_class->task_tick(rq, curr, 0); |
05fa785c | 3585 | raw_spin_unlock(&rq->lock); |
7835b98b | 3586 | |
49f47433 | 3587 | perf_event_task_tick(curr); |
e220d2dc | 3588 | |
e418e1c2 | 3589 | #ifdef CONFIG_SMP |
dd41f596 IM |
3590 | rq->idle_at_tick = idle_cpu(cpu); |
3591 | trigger_load_balance(rq, cpu); | |
e418e1c2 | 3592 | #endif |
1da177e4 LT |
3593 | } |
3594 | ||
132380a0 | 3595 | notrace unsigned long get_parent_ip(unsigned long addr) |
6cd8a4bb SR |
3596 | { |
3597 | if (in_lock_functions(addr)) { | |
3598 | addr = CALLER_ADDR2; | |
3599 | if (in_lock_functions(addr)) | |
3600 | addr = CALLER_ADDR3; | |
3601 | } | |
3602 | return addr; | |
3603 | } | |
1da177e4 | 3604 | |
7e49fcce SR |
3605 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
3606 | defined(CONFIG_PREEMPT_TRACER)) | |
3607 | ||
43627582 | 3608 | void __kprobes add_preempt_count(int val) |
1da177e4 | 3609 | { |
6cd8a4bb | 3610 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
3611 | /* |
3612 | * Underflow? | |
3613 | */ | |
9a11b49a IM |
3614 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
3615 | return; | |
6cd8a4bb | 3616 | #endif |
1da177e4 | 3617 | preempt_count() += val; |
6cd8a4bb | 3618 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
3619 | /* |
3620 | * Spinlock count overflowing soon? | |
3621 | */ | |
33859f7f MOS |
3622 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
3623 | PREEMPT_MASK - 10); | |
6cd8a4bb SR |
3624 | #endif |
3625 | if (preempt_count() == val) | |
3626 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
3627 | } |
3628 | EXPORT_SYMBOL(add_preempt_count); | |
3629 | ||
43627582 | 3630 | void __kprobes sub_preempt_count(int val) |
1da177e4 | 3631 | { |
6cd8a4bb | 3632 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
3633 | /* |
3634 | * Underflow? | |
3635 | */ | |
01e3eb82 | 3636 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
9a11b49a | 3637 | return; |
1da177e4 LT |
3638 | /* |
3639 | * Is the spinlock portion underflowing? | |
3640 | */ | |
9a11b49a IM |
3641 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
3642 | !(preempt_count() & PREEMPT_MASK))) | |
3643 | return; | |
6cd8a4bb | 3644 | #endif |
9a11b49a | 3645 | |
6cd8a4bb SR |
3646 | if (preempt_count() == val) |
3647 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
3648 | preempt_count() -= val; |
3649 | } | |
3650 | EXPORT_SYMBOL(sub_preempt_count); | |
3651 | ||
3652 | #endif | |
3653 | ||
3654 | /* | |
dd41f596 | 3655 | * Print scheduling while atomic bug: |
1da177e4 | 3656 | */ |
dd41f596 | 3657 | static noinline void __schedule_bug(struct task_struct *prev) |
1da177e4 | 3658 | { |
838225b4 SS |
3659 | struct pt_regs *regs = get_irq_regs(); |
3660 | ||
3df0fc5b PZ |
3661 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", |
3662 | prev->comm, prev->pid, preempt_count()); | |
838225b4 | 3663 | |
dd41f596 | 3664 | debug_show_held_locks(prev); |
e21f5b15 | 3665 | print_modules(); |
dd41f596 IM |
3666 | if (irqs_disabled()) |
3667 | print_irqtrace_events(prev); | |
838225b4 SS |
3668 | |
3669 | if (regs) | |
3670 | show_regs(regs); | |
3671 | else | |
3672 | dump_stack(); | |
dd41f596 | 3673 | } |
1da177e4 | 3674 | |
dd41f596 IM |
3675 | /* |
3676 | * Various schedule()-time debugging checks and statistics: | |
3677 | */ | |
3678 | static inline void schedule_debug(struct task_struct *prev) | |
3679 | { | |
1da177e4 | 3680 | /* |
41a2d6cf | 3681 | * Test if we are atomic. Since do_exit() needs to call into |
1da177e4 LT |
3682 | * schedule() atomically, we ignore that path for now. |
3683 | * Otherwise, whine if we are scheduling when we should not be. | |
3684 | */ | |
3f33a7ce | 3685 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
dd41f596 IM |
3686 | __schedule_bug(prev); |
3687 | ||
1da177e4 LT |
3688 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
3689 | ||
2d72376b | 3690 | schedstat_inc(this_rq(), sched_count); |
b8efb561 IM |
3691 | #ifdef CONFIG_SCHEDSTATS |
3692 | if (unlikely(prev->lock_depth >= 0)) { | |
2d72376b IM |
3693 | schedstat_inc(this_rq(), bkl_count); |
3694 | schedstat_inc(prev, sched_info.bkl_count); | |
b8efb561 IM |
3695 | } |
3696 | #endif | |
dd41f596 IM |
3697 | } |
3698 | ||
6cecd084 | 3699 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
df1c99d4 | 3700 | { |
a64692a3 MG |
3701 | if (prev->se.on_rq) |
3702 | update_rq_clock(rq); | |
3703 | rq->skip_clock_update = 0; | |
6cecd084 | 3704 | prev->sched_class->put_prev_task(rq, prev); |
df1c99d4 MG |
3705 | } |
3706 | ||
dd41f596 IM |
3707 | /* |
3708 | * Pick up the highest-prio task: | |
3709 | */ | |
3710 | static inline struct task_struct * | |
b67802ea | 3711 | pick_next_task(struct rq *rq) |
dd41f596 | 3712 | { |
5522d5d5 | 3713 | const struct sched_class *class; |
dd41f596 | 3714 | struct task_struct *p; |
1da177e4 LT |
3715 | |
3716 | /* | |
dd41f596 IM |
3717 | * Optimization: we know that if all tasks are in |
3718 | * the fair class we can call that function directly: | |
1da177e4 | 3719 | */ |
dd41f596 | 3720 | if (likely(rq->nr_running == rq->cfs.nr_running)) { |
fb8d4724 | 3721 | p = fair_sched_class.pick_next_task(rq); |
dd41f596 IM |
3722 | if (likely(p)) |
3723 | return p; | |
1da177e4 LT |
3724 | } |
3725 | ||
dd41f596 IM |
3726 | class = sched_class_highest; |
3727 | for ( ; ; ) { | |
fb8d4724 | 3728 | p = class->pick_next_task(rq); |
dd41f596 IM |
3729 | if (p) |
3730 | return p; | |
3731 | /* | |
3732 | * Will never be NULL as the idle class always | |
3733 | * returns a non-NULL p: | |
3734 | */ | |
3735 | class = class->next; | |
3736 | } | |
3737 | } | |
1da177e4 | 3738 | |
dd41f596 IM |
3739 | /* |
3740 | * schedule() is the main scheduler function. | |
3741 | */ | |
ff743345 | 3742 | asmlinkage void __sched schedule(void) |
dd41f596 IM |
3743 | { |
3744 | struct task_struct *prev, *next; | |
67ca7bde | 3745 | unsigned long *switch_count; |
dd41f596 | 3746 | struct rq *rq; |
31656519 | 3747 | int cpu; |
dd41f596 | 3748 | |
ff743345 PZ |
3749 | need_resched: |
3750 | preempt_disable(); | |
dd41f596 IM |
3751 | cpu = smp_processor_id(); |
3752 | rq = cpu_rq(cpu); | |
25502a6c | 3753 | rcu_note_context_switch(cpu); |
dd41f596 | 3754 | prev = rq->curr; |
dd41f596 IM |
3755 | |
3756 | release_kernel_lock(prev); | |
3757 | need_resched_nonpreemptible: | |
3758 | ||
3759 | schedule_debug(prev); | |
1da177e4 | 3760 | |
31656519 | 3761 | if (sched_feat(HRTICK)) |
f333fdc9 | 3762 | hrtick_clear(rq); |
8f4d37ec | 3763 | |
05fa785c | 3764 | raw_spin_lock_irq(&rq->lock); |
1e819950 | 3765 | clear_tsk_need_resched(prev); |
1da177e4 | 3766 | |
246d86b5 | 3767 | switch_count = &prev->nivcsw; |
1da177e4 | 3768 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
21aa9af0 | 3769 | if (unlikely(signal_pending_state(prev->state, prev))) { |
1da177e4 | 3770 | prev->state = TASK_RUNNING; |
21aa9af0 TH |
3771 | } else { |
3772 | /* | |
3773 | * If a worker is going to sleep, notify and | |
3774 | * ask workqueue whether it wants to wake up a | |
3775 | * task to maintain concurrency. If so, wake | |
3776 | * up the task. | |
3777 | */ | |
3778 | if (prev->flags & PF_WQ_WORKER) { | |
3779 | struct task_struct *to_wakeup; | |
3780 | ||
3781 | to_wakeup = wq_worker_sleeping(prev, cpu); | |
3782 | if (to_wakeup) | |
3783 | try_to_wake_up_local(to_wakeup); | |
3784 | } | |
371fd7e7 | 3785 | deactivate_task(rq, prev, DEQUEUE_SLEEP); |
21aa9af0 | 3786 | } |
dd41f596 | 3787 | switch_count = &prev->nvcsw; |
1da177e4 LT |
3788 | } |
3789 | ||
3f029d3c | 3790 | pre_schedule(rq, prev); |
f65eda4f | 3791 | |
dd41f596 | 3792 | if (unlikely(!rq->nr_running)) |
1da177e4 | 3793 | idle_balance(cpu, rq); |
1da177e4 | 3794 | |
df1c99d4 | 3795 | put_prev_task(rq, prev); |
b67802ea | 3796 | next = pick_next_task(rq); |
1da177e4 | 3797 | |
1da177e4 | 3798 | if (likely(prev != next)) { |
673a90a1 | 3799 | sched_info_switch(prev, next); |
49f47433 | 3800 | perf_event_task_sched_out(prev, next); |
673a90a1 | 3801 | |
1da177e4 LT |
3802 | rq->nr_switches++; |
3803 | rq->curr = next; | |
3804 | ++*switch_count; | |
3805 | ||
dd41f596 | 3806 | context_switch(rq, prev, next); /* unlocks the rq */ |
8f4d37ec | 3807 | /* |
246d86b5 ON |
3808 | * The context switch have flipped the stack from under us |
3809 | * and restored the local variables which were saved when | |
3810 | * this task called schedule() in the past. prev == current | |
3811 | * is still correct, but it can be moved to another cpu/rq. | |
8f4d37ec PZ |
3812 | */ |
3813 | cpu = smp_processor_id(); | |
3814 | rq = cpu_rq(cpu); | |
1da177e4 | 3815 | } else |
05fa785c | 3816 | raw_spin_unlock_irq(&rq->lock); |
1da177e4 | 3817 | |
3f029d3c | 3818 | post_schedule(rq); |
1da177e4 | 3819 | |
246d86b5 | 3820 | if (unlikely(reacquire_kernel_lock(prev))) |
1da177e4 | 3821 | goto need_resched_nonpreemptible; |
8f4d37ec | 3822 | |
1da177e4 | 3823 | preempt_enable_no_resched(); |
ff743345 | 3824 | if (need_resched()) |
1da177e4 LT |
3825 | goto need_resched; |
3826 | } | |
1da177e4 LT |
3827 | EXPORT_SYMBOL(schedule); |
3828 | ||
c08f7829 | 3829 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
0d66bf6d PZ |
3830 | /* |
3831 | * Look out! "owner" is an entirely speculative pointer | |
3832 | * access and not reliable. | |
3833 | */ | |
3834 | int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) | |
3835 | { | |
3836 | unsigned int cpu; | |
3837 | struct rq *rq; | |
3838 | ||
3839 | if (!sched_feat(OWNER_SPIN)) | |
3840 | return 0; | |
3841 | ||
3842 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
3843 | /* | |
3844 | * Need to access the cpu field knowing that | |
3845 | * DEBUG_PAGEALLOC could have unmapped it if | |
3846 | * the mutex owner just released it and exited. | |
3847 | */ | |
3848 | if (probe_kernel_address(&owner->cpu, cpu)) | |
4b402210 | 3849 | return 0; |
0d66bf6d PZ |
3850 | #else |
3851 | cpu = owner->cpu; | |
3852 | #endif | |
3853 | ||
3854 | /* | |
3855 | * Even if the access succeeded (likely case), | |
3856 | * the cpu field may no longer be valid. | |
3857 | */ | |
3858 | if (cpu >= nr_cpumask_bits) | |
4b402210 | 3859 | return 0; |
0d66bf6d PZ |
3860 | |
3861 | /* | |
3862 | * We need to validate that we can do a | |
3863 | * get_cpu() and that we have the percpu area. | |
3864 | */ | |
3865 | if (!cpu_online(cpu)) | |
4b402210 | 3866 | return 0; |
0d66bf6d PZ |
3867 | |
3868 | rq = cpu_rq(cpu); | |
3869 | ||
3870 | for (;;) { | |
3871 | /* | |
3872 | * Owner changed, break to re-assess state. | |
3873 | */ | |
9d0f4dcc TC |
3874 | if (lock->owner != owner) { |
3875 | /* | |
3876 | * If the lock has switched to a different owner, | |
3877 | * we likely have heavy contention. Return 0 to quit | |
3878 | * optimistic spinning and not contend further: | |
3879 | */ | |
3880 | if (lock->owner) | |
3881 | return 0; | |
0d66bf6d | 3882 | break; |
9d0f4dcc | 3883 | } |
0d66bf6d PZ |
3884 | |
3885 | /* | |
3886 | * Is that owner really running on that cpu? | |
3887 | */ | |
3888 | if (task_thread_info(rq->curr) != owner || need_resched()) | |
3889 | return 0; | |
3890 | ||
3891 | cpu_relax(); | |
3892 | } | |
4b402210 | 3893 | |
0d66bf6d PZ |
3894 | return 1; |
3895 | } | |
3896 | #endif | |
3897 | ||
1da177e4 LT |
3898 | #ifdef CONFIG_PREEMPT |
3899 | /* | |
2ed6e34f | 3900 | * this is the entry point to schedule() from in-kernel preemption |
41a2d6cf | 3901 | * off of preempt_enable. Kernel preemptions off return from interrupt |
1da177e4 LT |
3902 | * occur there and call schedule directly. |
3903 | */ | |
d1f74e20 | 3904 | asmlinkage void __sched notrace preempt_schedule(void) |
1da177e4 LT |
3905 | { |
3906 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 3907 | |
1da177e4 LT |
3908 | /* |
3909 | * If there is a non-zero preempt_count or interrupts are disabled, | |
41a2d6cf | 3910 | * we do not want to preempt the current task. Just return.. |
1da177e4 | 3911 | */ |
beed33a8 | 3912 | if (likely(ti->preempt_count || irqs_disabled())) |
1da177e4 LT |
3913 | return; |
3914 | ||
3a5c359a | 3915 | do { |
d1f74e20 | 3916 | add_preempt_count_notrace(PREEMPT_ACTIVE); |
3a5c359a | 3917 | schedule(); |
d1f74e20 | 3918 | sub_preempt_count_notrace(PREEMPT_ACTIVE); |
1da177e4 | 3919 | |
3a5c359a AK |
3920 | /* |
3921 | * Check again in case we missed a preemption opportunity | |
3922 | * between schedule and now. | |
3923 | */ | |
3924 | barrier(); | |
5ed0cec0 | 3925 | } while (need_resched()); |
1da177e4 | 3926 | } |
1da177e4 LT |
3927 | EXPORT_SYMBOL(preempt_schedule); |
3928 | ||
3929 | /* | |
2ed6e34f | 3930 | * this is the entry point to schedule() from kernel preemption |
1da177e4 LT |
3931 | * off of irq context. |
3932 | * Note, that this is called and return with irqs disabled. This will | |
3933 | * protect us against recursive calling from irq. | |
3934 | */ | |
3935 | asmlinkage void __sched preempt_schedule_irq(void) | |
3936 | { | |
3937 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 3938 | |
2ed6e34f | 3939 | /* Catch callers which need to be fixed */ |
1da177e4 LT |
3940 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
3941 | ||
3a5c359a AK |
3942 | do { |
3943 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a AK |
3944 | local_irq_enable(); |
3945 | schedule(); | |
3946 | local_irq_disable(); | |
3a5c359a | 3947 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 3948 | |
3a5c359a AK |
3949 | /* |
3950 | * Check again in case we missed a preemption opportunity | |
3951 | * between schedule and now. | |
3952 | */ | |
3953 | barrier(); | |
5ed0cec0 | 3954 | } while (need_resched()); |
1da177e4 LT |
3955 | } |
3956 | ||
3957 | #endif /* CONFIG_PREEMPT */ | |
3958 | ||
63859d4f | 3959 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
95cdf3b7 | 3960 | void *key) |
1da177e4 | 3961 | { |
63859d4f | 3962 | return try_to_wake_up(curr->private, mode, wake_flags); |
1da177e4 | 3963 | } |
1da177e4 LT |
3964 | EXPORT_SYMBOL(default_wake_function); |
3965 | ||
3966 | /* | |
41a2d6cf IM |
3967 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
3968 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | |
1da177e4 LT |
3969 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
3970 | * | |
3971 | * There are circumstances in which we can try to wake a task which has already | |
41a2d6cf | 3972 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
1da177e4 LT |
3973 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
3974 | */ | |
78ddb08f | 3975 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
63859d4f | 3976 | int nr_exclusive, int wake_flags, void *key) |
1da177e4 | 3977 | { |
2e45874c | 3978 | wait_queue_t *curr, *next; |
1da177e4 | 3979 | |
2e45874c | 3980 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
48f24c4d IM |
3981 | unsigned flags = curr->flags; |
3982 | ||
63859d4f | 3983 | if (curr->func(curr, mode, wake_flags, key) && |
48f24c4d | 3984 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
1da177e4 LT |
3985 | break; |
3986 | } | |
3987 | } | |
3988 | ||
3989 | /** | |
3990 | * __wake_up - wake up threads blocked on a waitqueue. | |
3991 | * @q: the waitqueue | |
3992 | * @mode: which threads | |
3993 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
67be2dd1 | 3994 | * @key: is directly passed to the wakeup function |
50fa610a DH |
3995 | * |
3996 | * It may be assumed that this function implies a write memory barrier before | |
3997 | * changing the task state if and only if any tasks are woken up. | |
1da177e4 | 3998 | */ |
7ad5b3a5 | 3999 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
95cdf3b7 | 4000 | int nr_exclusive, void *key) |
1da177e4 LT |
4001 | { |
4002 | unsigned long flags; | |
4003 | ||
4004 | spin_lock_irqsave(&q->lock, flags); | |
4005 | __wake_up_common(q, mode, nr_exclusive, 0, key); | |
4006 | spin_unlock_irqrestore(&q->lock, flags); | |
4007 | } | |
1da177e4 LT |
4008 | EXPORT_SYMBOL(__wake_up); |
4009 | ||
4010 | /* | |
4011 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | |
4012 | */ | |
7ad5b3a5 | 4013 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
1da177e4 LT |
4014 | { |
4015 | __wake_up_common(q, mode, 1, 0, NULL); | |
4016 | } | |
22c43c81 | 4017 | EXPORT_SYMBOL_GPL(__wake_up_locked); |
1da177e4 | 4018 | |
4ede816a DL |
4019 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
4020 | { | |
4021 | __wake_up_common(q, mode, 1, 0, key); | |
4022 | } | |
4023 | ||
1da177e4 | 4024 | /** |
4ede816a | 4025 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. |
1da177e4 LT |
4026 | * @q: the waitqueue |
4027 | * @mode: which threads | |
4028 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
4ede816a | 4029 | * @key: opaque value to be passed to wakeup targets |
1da177e4 LT |
4030 | * |
4031 | * The sync wakeup differs that the waker knows that it will schedule | |
4032 | * away soon, so while the target thread will be woken up, it will not | |
4033 | * be migrated to another CPU - ie. the two threads are 'synchronized' | |
4034 | * with each other. This can prevent needless bouncing between CPUs. | |
4035 | * | |
4036 | * On UP it can prevent extra preemption. | |
50fa610a DH |
4037 | * |
4038 | * It may be assumed that this function implies a write memory barrier before | |
4039 | * changing the task state if and only if any tasks are woken up. | |
1da177e4 | 4040 | */ |
4ede816a DL |
4041 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, |
4042 | int nr_exclusive, void *key) | |
1da177e4 LT |
4043 | { |
4044 | unsigned long flags; | |
7d478721 | 4045 | int wake_flags = WF_SYNC; |
1da177e4 LT |
4046 | |
4047 | if (unlikely(!q)) | |
4048 | return; | |
4049 | ||
4050 | if (unlikely(!nr_exclusive)) | |
7d478721 | 4051 | wake_flags = 0; |
1da177e4 LT |
4052 | |
4053 | spin_lock_irqsave(&q->lock, flags); | |
7d478721 | 4054 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
1da177e4 LT |
4055 | spin_unlock_irqrestore(&q->lock, flags); |
4056 | } | |
4ede816a DL |
4057 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
4058 | ||
4059 | /* | |
4060 | * __wake_up_sync - see __wake_up_sync_key() | |
4061 | */ | |
4062 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | |
4063 | { | |
4064 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | |
4065 | } | |
1da177e4 LT |
4066 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
4067 | ||
65eb3dc6 KD |
4068 | /** |
4069 | * complete: - signals a single thread waiting on this completion | |
4070 | * @x: holds the state of this particular completion | |
4071 | * | |
4072 | * This will wake up a single thread waiting on this completion. Threads will be | |
4073 | * awakened in the same order in which they were queued. | |
4074 | * | |
4075 | * See also complete_all(), wait_for_completion() and related routines. | |
50fa610a DH |
4076 | * |
4077 | * It may be assumed that this function implies a write memory barrier before | |
4078 | * changing the task state if and only if any tasks are woken up. | |
65eb3dc6 | 4079 | */ |
b15136e9 | 4080 | void complete(struct completion *x) |
1da177e4 LT |
4081 | { |
4082 | unsigned long flags; | |
4083 | ||
4084 | spin_lock_irqsave(&x->wait.lock, flags); | |
4085 | x->done++; | |
d9514f6c | 4086 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
1da177e4 LT |
4087 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4088 | } | |
4089 | EXPORT_SYMBOL(complete); | |
4090 | ||
65eb3dc6 KD |
4091 | /** |
4092 | * complete_all: - signals all threads waiting on this completion | |
4093 | * @x: holds the state of this particular completion | |
4094 | * | |
4095 | * This will wake up all threads waiting on this particular completion event. | |
50fa610a DH |
4096 | * |
4097 | * It may be assumed that this function implies a write memory barrier before | |
4098 | * changing the task state if and only if any tasks are woken up. | |
65eb3dc6 | 4099 | */ |
b15136e9 | 4100 | void complete_all(struct completion *x) |
1da177e4 LT |
4101 | { |
4102 | unsigned long flags; | |
4103 | ||
4104 | spin_lock_irqsave(&x->wait.lock, flags); | |
4105 | x->done += UINT_MAX/2; | |
d9514f6c | 4106 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
1da177e4 LT |
4107 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4108 | } | |
4109 | EXPORT_SYMBOL(complete_all); | |
4110 | ||
8cbbe86d AK |
4111 | static inline long __sched |
4112 | do_wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4113 | { |
1da177e4 LT |
4114 | if (!x->done) { |
4115 | DECLARE_WAITQUEUE(wait, current); | |
4116 | ||
a93d2f17 | 4117 | __add_wait_queue_tail_exclusive(&x->wait, &wait); |
1da177e4 | 4118 | do { |
94d3d824 | 4119 | if (signal_pending_state(state, current)) { |
ea71a546 ON |
4120 | timeout = -ERESTARTSYS; |
4121 | break; | |
8cbbe86d AK |
4122 | } |
4123 | __set_current_state(state); | |
1da177e4 LT |
4124 | spin_unlock_irq(&x->wait.lock); |
4125 | timeout = schedule_timeout(timeout); | |
4126 | spin_lock_irq(&x->wait.lock); | |
ea71a546 | 4127 | } while (!x->done && timeout); |
1da177e4 | 4128 | __remove_wait_queue(&x->wait, &wait); |
ea71a546 ON |
4129 | if (!x->done) |
4130 | return timeout; | |
1da177e4 LT |
4131 | } |
4132 | x->done--; | |
ea71a546 | 4133 | return timeout ?: 1; |
1da177e4 | 4134 | } |
1da177e4 | 4135 | |
8cbbe86d AK |
4136 | static long __sched |
4137 | wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4138 | { |
1da177e4 LT |
4139 | might_sleep(); |
4140 | ||
4141 | spin_lock_irq(&x->wait.lock); | |
8cbbe86d | 4142 | timeout = do_wait_for_common(x, timeout, state); |
1da177e4 | 4143 | spin_unlock_irq(&x->wait.lock); |
8cbbe86d AK |
4144 | return timeout; |
4145 | } | |
1da177e4 | 4146 | |
65eb3dc6 KD |
4147 | /** |
4148 | * wait_for_completion: - waits for completion of a task | |
4149 | * @x: holds the state of this particular completion | |
4150 | * | |
4151 | * This waits to be signaled for completion of a specific task. It is NOT | |
4152 | * interruptible and there is no timeout. | |
4153 | * | |
4154 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | |
4155 | * and interrupt capability. Also see complete(). | |
4156 | */ | |
b15136e9 | 4157 | void __sched wait_for_completion(struct completion *x) |
8cbbe86d AK |
4158 | { |
4159 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | |
1da177e4 | 4160 | } |
8cbbe86d | 4161 | EXPORT_SYMBOL(wait_for_completion); |
1da177e4 | 4162 | |
65eb3dc6 KD |
4163 | /** |
4164 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | |
4165 | * @x: holds the state of this particular completion | |
4166 | * @timeout: timeout value in jiffies | |
4167 | * | |
4168 | * This waits for either a completion of a specific task to be signaled or for a | |
4169 | * specified timeout to expire. The timeout is in jiffies. It is not | |
4170 | * interruptible. | |
4171 | */ | |
b15136e9 | 4172 | unsigned long __sched |
8cbbe86d | 4173 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
1da177e4 | 4174 | { |
8cbbe86d | 4175 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
1da177e4 | 4176 | } |
8cbbe86d | 4177 | EXPORT_SYMBOL(wait_for_completion_timeout); |
1da177e4 | 4178 | |
65eb3dc6 KD |
4179 | /** |
4180 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | |
4181 | * @x: holds the state of this particular completion | |
4182 | * | |
4183 | * This waits for completion of a specific task to be signaled. It is | |
4184 | * interruptible. | |
4185 | */ | |
8cbbe86d | 4186 | int __sched wait_for_completion_interruptible(struct completion *x) |
0fec171c | 4187 | { |
51e97990 AK |
4188 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
4189 | if (t == -ERESTARTSYS) | |
4190 | return t; | |
4191 | return 0; | |
0fec171c | 4192 | } |
8cbbe86d | 4193 | EXPORT_SYMBOL(wait_for_completion_interruptible); |
1da177e4 | 4194 | |
65eb3dc6 KD |
4195 | /** |
4196 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | |
4197 | * @x: holds the state of this particular completion | |
4198 | * @timeout: timeout value in jiffies | |
4199 | * | |
4200 | * This waits for either a completion of a specific task to be signaled or for a | |
4201 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. | |
4202 | */ | |
b15136e9 | 4203 | unsigned long __sched |
8cbbe86d AK |
4204 | wait_for_completion_interruptible_timeout(struct completion *x, |
4205 | unsigned long timeout) | |
0fec171c | 4206 | { |
8cbbe86d | 4207 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
0fec171c | 4208 | } |
8cbbe86d | 4209 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
1da177e4 | 4210 | |
65eb3dc6 KD |
4211 | /** |
4212 | * wait_for_completion_killable: - waits for completion of a task (killable) | |
4213 | * @x: holds the state of this particular completion | |
4214 | * | |
4215 | * This waits to be signaled for completion of a specific task. It can be | |
4216 | * interrupted by a kill signal. | |
4217 | */ | |
009e577e MW |
4218 | int __sched wait_for_completion_killable(struct completion *x) |
4219 | { | |
4220 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | |
4221 | if (t == -ERESTARTSYS) | |
4222 | return t; | |
4223 | return 0; | |
4224 | } | |
4225 | EXPORT_SYMBOL(wait_for_completion_killable); | |
4226 | ||
0aa12fb4 SW |
4227 | /** |
4228 | * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) | |
4229 | * @x: holds the state of this particular completion | |
4230 | * @timeout: timeout value in jiffies | |
4231 | * | |
4232 | * This waits for either a completion of a specific task to be | |
4233 | * signaled or for a specified timeout to expire. It can be | |
4234 | * interrupted by a kill signal. The timeout is in jiffies. | |
4235 | */ | |
4236 | unsigned long __sched | |
4237 | wait_for_completion_killable_timeout(struct completion *x, | |
4238 | unsigned long timeout) | |
4239 | { | |
4240 | return wait_for_common(x, timeout, TASK_KILLABLE); | |
4241 | } | |
4242 | EXPORT_SYMBOL(wait_for_completion_killable_timeout); | |
4243 | ||
be4de352 DC |
4244 | /** |
4245 | * try_wait_for_completion - try to decrement a completion without blocking | |
4246 | * @x: completion structure | |
4247 | * | |
4248 | * Returns: 0 if a decrement cannot be done without blocking | |
4249 | * 1 if a decrement succeeded. | |
4250 | * | |
4251 | * If a completion is being used as a counting completion, | |
4252 | * attempt to decrement the counter without blocking. This | |
4253 | * enables us to avoid waiting if the resource the completion | |
4254 | * is protecting is not available. | |
4255 | */ | |
4256 | bool try_wait_for_completion(struct completion *x) | |
4257 | { | |
7539a3b3 | 4258 | unsigned long flags; |
be4de352 DC |
4259 | int ret = 1; |
4260 | ||
7539a3b3 | 4261 | spin_lock_irqsave(&x->wait.lock, flags); |
be4de352 DC |
4262 | if (!x->done) |
4263 | ret = 0; | |
4264 | else | |
4265 | x->done--; | |
7539a3b3 | 4266 | spin_unlock_irqrestore(&x->wait.lock, flags); |
be4de352 DC |
4267 | return ret; |
4268 | } | |
4269 | EXPORT_SYMBOL(try_wait_for_completion); | |
4270 | ||
4271 | /** | |
4272 | * completion_done - Test to see if a completion has any waiters | |
4273 | * @x: completion structure | |
4274 | * | |
4275 | * Returns: 0 if there are waiters (wait_for_completion() in progress) | |
4276 | * 1 if there are no waiters. | |
4277 | * | |
4278 | */ | |
4279 | bool completion_done(struct completion *x) | |
4280 | { | |
7539a3b3 | 4281 | unsigned long flags; |
be4de352 DC |
4282 | int ret = 1; |
4283 | ||
7539a3b3 | 4284 | spin_lock_irqsave(&x->wait.lock, flags); |
be4de352 DC |
4285 | if (!x->done) |
4286 | ret = 0; | |
7539a3b3 | 4287 | spin_unlock_irqrestore(&x->wait.lock, flags); |
be4de352 DC |
4288 | return ret; |
4289 | } | |
4290 | EXPORT_SYMBOL(completion_done); | |
4291 | ||
8cbbe86d AK |
4292 | static long __sched |
4293 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | |
1da177e4 | 4294 | { |
0fec171c IM |
4295 | unsigned long flags; |
4296 | wait_queue_t wait; | |
4297 | ||
4298 | init_waitqueue_entry(&wait, current); | |
1da177e4 | 4299 | |
8cbbe86d | 4300 | __set_current_state(state); |
1da177e4 | 4301 | |
8cbbe86d AK |
4302 | spin_lock_irqsave(&q->lock, flags); |
4303 | __add_wait_queue(q, &wait); | |
4304 | spin_unlock(&q->lock); | |
4305 | timeout = schedule_timeout(timeout); | |
4306 | spin_lock_irq(&q->lock); | |
4307 | __remove_wait_queue(q, &wait); | |
4308 | spin_unlock_irqrestore(&q->lock, flags); | |
4309 | ||
4310 | return timeout; | |
4311 | } | |
4312 | ||
4313 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | |
4314 | { | |
4315 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | |
1da177e4 | 4316 | } |
1da177e4 LT |
4317 | EXPORT_SYMBOL(interruptible_sleep_on); |
4318 | ||
0fec171c | 4319 | long __sched |
95cdf3b7 | 4320 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 4321 | { |
8cbbe86d | 4322 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
1da177e4 | 4323 | } |
1da177e4 LT |
4324 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
4325 | ||
0fec171c | 4326 | void __sched sleep_on(wait_queue_head_t *q) |
1da177e4 | 4327 | { |
8cbbe86d | 4328 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
1da177e4 | 4329 | } |
1da177e4 LT |
4330 | EXPORT_SYMBOL(sleep_on); |
4331 | ||
0fec171c | 4332 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 4333 | { |
8cbbe86d | 4334 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
1da177e4 | 4335 | } |
1da177e4 LT |
4336 | EXPORT_SYMBOL(sleep_on_timeout); |
4337 | ||
b29739f9 IM |
4338 | #ifdef CONFIG_RT_MUTEXES |
4339 | ||
4340 | /* | |
4341 | * rt_mutex_setprio - set the current priority of a task | |
4342 | * @p: task | |
4343 | * @prio: prio value (kernel-internal form) | |
4344 | * | |
4345 | * This function changes the 'effective' priority of a task. It does | |
4346 | * not touch ->normal_prio like __setscheduler(). | |
4347 | * | |
4348 | * Used by the rt_mutex code to implement priority inheritance logic. | |
4349 | */ | |
36c8b586 | 4350 | void rt_mutex_setprio(struct task_struct *p, int prio) |
b29739f9 IM |
4351 | { |
4352 | unsigned long flags; | |
83b699ed | 4353 | int oldprio, on_rq, running; |
70b97a7f | 4354 | struct rq *rq; |
83ab0aa0 | 4355 | const struct sched_class *prev_class; |
b29739f9 IM |
4356 | |
4357 | BUG_ON(prio < 0 || prio > MAX_PRIO); | |
4358 | ||
4359 | rq = task_rq_lock(p, &flags); | |
4360 | ||
d5f9f942 | 4361 | oldprio = p->prio; |
83ab0aa0 | 4362 | prev_class = p->sched_class; |
dd41f596 | 4363 | on_rq = p->se.on_rq; |
051a1d1a | 4364 | running = task_current(rq, p); |
0e1f3483 | 4365 | if (on_rq) |
69be72c1 | 4366 | dequeue_task(rq, p, 0); |
0e1f3483 HS |
4367 | if (running) |
4368 | p->sched_class->put_prev_task(rq, p); | |
dd41f596 IM |
4369 | |
4370 | if (rt_prio(prio)) | |
4371 | p->sched_class = &rt_sched_class; | |
4372 | else | |
4373 | p->sched_class = &fair_sched_class; | |
4374 | ||
b29739f9 IM |
4375 | p->prio = prio; |
4376 | ||
0e1f3483 HS |
4377 | if (running) |
4378 | p->sched_class->set_curr_task(rq); | |
dd41f596 | 4379 | if (on_rq) { |
371fd7e7 | 4380 | enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); |
cb469845 SR |
4381 | |
4382 | check_class_changed(rq, p, prev_class, oldprio, running); | |
b29739f9 IM |
4383 | } |
4384 | task_rq_unlock(rq, &flags); | |
4385 | } | |
4386 | ||
4387 | #endif | |
4388 | ||
36c8b586 | 4389 | void set_user_nice(struct task_struct *p, long nice) |
1da177e4 | 4390 | { |
dd41f596 | 4391 | int old_prio, delta, on_rq; |
1da177e4 | 4392 | unsigned long flags; |
70b97a7f | 4393 | struct rq *rq; |
1da177e4 LT |
4394 | |
4395 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | |
4396 | return; | |
4397 | /* | |
4398 | * We have to be careful, if called from sys_setpriority(), | |
4399 | * the task might be in the middle of scheduling on another CPU. | |
4400 | */ | |
4401 | rq = task_rq_lock(p, &flags); | |
4402 | /* | |
4403 | * The RT priorities are set via sched_setscheduler(), but we still | |
4404 | * allow the 'normal' nice value to be set - but as expected | |
4405 | * it wont have any effect on scheduling until the task is | |
dd41f596 | 4406 | * SCHED_FIFO/SCHED_RR: |
1da177e4 | 4407 | */ |
e05606d3 | 4408 | if (task_has_rt_policy(p)) { |
1da177e4 LT |
4409 | p->static_prio = NICE_TO_PRIO(nice); |
4410 | goto out_unlock; | |
4411 | } | |
dd41f596 | 4412 | on_rq = p->se.on_rq; |
c09595f6 | 4413 | if (on_rq) |
69be72c1 | 4414 | dequeue_task(rq, p, 0); |
1da177e4 | 4415 | |
1da177e4 | 4416 | p->static_prio = NICE_TO_PRIO(nice); |
2dd73a4f | 4417 | set_load_weight(p); |
b29739f9 IM |
4418 | old_prio = p->prio; |
4419 | p->prio = effective_prio(p); | |
4420 | delta = p->prio - old_prio; | |
1da177e4 | 4421 | |
dd41f596 | 4422 | if (on_rq) { |
371fd7e7 | 4423 | enqueue_task(rq, p, 0); |
1da177e4 | 4424 | /* |
d5f9f942 AM |
4425 | * If the task increased its priority or is running and |
4426 | * lowered its priority, then reschedule its CPU: | |
1da177e4 | 4427 | */ |
d5f9f942 | 4428 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
1da177e4 LT |
4429 | resched_task(rq->curr); |
4430 | } | |
4431 | out_unlock: | |
4432 | task_rq_unlock(rq, &flags); | |
4433 | } | |
1da177e4 LT |
4434 | EXPORT_SYMBOL(set_user_nice); |
4435 | ||
e43379f1 MM |
4436 | /* |
4437 | * can_nice - check if a task can reduce its nice value | |
4438 | * @p: task | |
4439 | * @nice: nice value | |
4440 | */ | |
36c8b586 | 4441 | int can_nice(const struct task_struct *p, const int nice) |
e43379f1 | 4442 | { |
024f4747 MM |
4443 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
4444 | int nice_rlim = 20 - nice; | |
48f24c4d | 4445 | |
78d7d407 | 4446 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || |
e43379f1 MM |
4447 | capable(CAP_SYS_NICE)); |
4448 | } | |
4449 | ||
1da177e4 LT |
4450 | #ifdef __ARCH_WANT_SYS_NICE |
4451 | ||
4452 | /* | |
4453 | * sys_nice - change the priority of the current process. | |
4454 | * @increment: priority increment | |
4455 | * | |
4456 | * sys_setpriority is a more generic, but much slower function that | |
4457 | * does similar things. | |
4458 | */ | |
5add95d4 | 4459 | SYSCALL_DEFINE1(nice, int, increment) |
1da177e4 | 4460 | { |
48f24c4d | 4461 | long nice, retval; |
1da177e4 LT |
4462 | |
4463 | /* | |
4464 | * Setpriority might change our priority at the same moment. | |
4465 | * We don't have to worry. Conceptually one call occurs first | |
4466 | * and we have a single winner. | |
4467 | */ | |
e43379f1 MM |
4468 | if (increment < -40) |
4469 | increment = -40; | |
1da177e4 LT |
4470 | if (increment > 40) |
4471 | increment = 40; | |
4472 | ||
2b8f836f | 4473 | nice = TASK_NICE(current) + increment; |
1da177e4 LT |
4474 | if (nice < -20) |
4475 | nice = -20; | |
4476 | if (nice > 19) | |
4477 | nice = 19; | |
4478 | ||
e43379f1 MM |
4479 | if (increment < 0 && !can_nice(current, nice)) |
4480 | return -EPERM; | |
4481 | ||
1da177e4 LT |
4482 | retval = security_task_setnice(current, nice); |
4483 | if (retval) | |
4484 | return retval; | |
4485 | ||
4486 | set_user_nice(current, nice); | |
4487 | return 0; | |
4488 | } | |
4489 | ||
4490 | #endif | |
4491 | ||
4492 | /** | |
4493 | * task_prio - return the priority value of a given task. | |
4494 | * @p: the task in question. | |
4495 | * | |
4496 | * This is the priority value as seen by users in /proc. | |
4497 | * RT tasks are offset by -200. Normal tasks are centered | |
4498 | * around 0, value goes from -16 to +15. | |
4499 | */ | |
36c8b586 | 4500 | int task_prio(const struct task_struct *p) |
1da177e4 LT |
4501 | { |
4502 | return p->prio - MAX_RT_PRIO; | |
4503 | } | |
4504 | ||
4505 | /** | |
4506 | * task_nice - return the nice value of a given task. | |
4507 | * @p: the task in question. | |
4508 | */ | |
36c8b586 | 4509 | int task_nice(const struct task_struct *p) |
1da177e4 LT |
4510 | { |
4511 | return TASK_NICE(p); | |
4512 | } | |
150d8bed | 4513 | EXPORT_SYMBOL(task_nice); |
1da177e4 LT |
4514 | |
4515 | /** | |
4516 | * idle_cpu - is a given cpu idle currently? | |
4517 | * @cpu: the processor in question. | |
4518 | */ | |
4519 | int idle_cpu(int cpu) | |
4520 | { | |
4521 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | |
4522 | } | |
4523 | ||
1da177e4 LT |
4524 | /** |
4525 | * idle_task - return the idle task for a given cpu. | |
4526 | * @cpu: the processor in question. | |
4527 | */ | |
36c8b586 | 4528 | struct task_struct *idle_task(int cpu) |
1da177e4 LT |
4529 | { |
4530 | return cpu_rq(cpu)->idle; | |
4531 | } | |
4532 | ||
4533 | /** | |
4534 | * find_process_by_pid - find a process with a matching PID value. | |
4535 | * @pid: the pid in question. | |
4536 | */ | |
a9957449 | 4537 | static struct task_struct *find_process_by_pid(pid_t pid) |
1da177e4 | 4538 | { |
228ebcbe | 4539 | return pid ? find_task_by_vpid(pid) : current; |
1da177e4 LT |
4540 | } |
4541 | ||
4542 | /* Actually do priority change: must hold rq lock. */ | |
dd41f596 IM |
4543 | static void |
4544 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |
1da177e4 | 4545 | { |
dd41f596 | 4546 | BUG_ON(p->se.on_rq); |
48f24c4d | 4547 | |
1da177e4 LT |
4548 | p->policy = policy; |
4549 | p->rt_priority = prio; | |
b29739f9 IM |
4550 | p->normal_prio = normal_prio(p); |
4551 | /* we are holding p->pi_lock already */ | |
4552 | p->prio = rt_mutex_getprio(p); | |
ffd44db5 PZ |
4553 | if (rt_prio(p->prio)) |
4554 | p->sched_class = &rt_sched_class; | |
4555 | else | |
4556 | p->sched_class = &fair_sched_class; | |
2dd73a4f | 4557 | set_load_weight(p); |
1da177e4 LT |
4558 | } |
4559 | ||
c69e8d9c DH |
4560 | /* |
4561 | * check the target process has a UID that matches the current process's | |
4562 | */ | |
4563 | static bool check_same_owner(struct task_struct *p) | |
4564 | { | |
4565 | const struct cred *cred = current_cred(), *pcred; | |
4566 | bool match; | |
4567 | ||
4568 | rcu_read_lock(); | |
4569 | pcred = __task_cred(p); | |
4570 | match = (cred->euid == pcred->euid || | |
4571 | cred->euid == pcred->uid); | |
4572 | rcu_read_unlock(); | |
4573 | return match; | |
4574 | } | |
4575 | ||
961ccddd RR |
4576 | static int __sched_setscheduler(struct task_struct *p, int policy, |
4577 | struct sched_param *param, bool user) | |
1da177e4 | 4578 | { |
83b699ed | 4579 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
1da177e4 | 4580 | unsigned long flags; |
83ab0aa0 | 4581 | const struct sched_class *prev_class; |
70b97a7f | 4582 | struct rq *rq; |
ca94c442 | 4583 | int reset_on_fork; |
1da177e4 | 4584 | |
66e5393a SR |
4585 | /* may grab non-irq protected spin_locks */ |
4586 | BUG_ON(in_interrupt()); | |
1da177e4 LT |
4587 | recheck: |
4588 | /* double check policy once rq lock held */ | |
ca94c442 LP |
4589 | if (policy < 0) { |
4590 | reset_on_fork = p->sched_reset_on_fork; | |
1da177e4 | 4591 | policy = oldpolicy = p->policy; |
ca94c442 LP |
4592 | } else { |
4593 | reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); | |
4594 | policy &= ~SCHED_RESET_ON_FORK; | |
4595 | ||
4596 | if (policy != SCHED_FIFO && policy != SCHED_RR && | |
4597 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | |
4598 | policy != SCHED_IDLE) | |
4599 | return -EINVAL; | |
4600 | } | |
4601 | ||
1da177e4 LT |
4602 | /* |
4603 | * Valid priorities for SCHED_FIFO and SCHED_RR are | |
dd41f596 IM |
4604 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
4605 | * SCHED_BATCH and SCHED_IDLE is 0. | |
1da177e4 LT |
4606 | */ |
4607 | if (param->sched_priority < 0 || | |
95cdf3b7 | 4608 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
d46523ea | 4609 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
1da177e4 | 4610 | return -EINVAL; |
e05606d3 | 4611 | if (rt_policy(policy) != (param->sched_priority != 0)) |
1da177e4 LT |
4612 | return -EINVAL; |
4613 | ||
37e4ab3f OC |
4614 | /* |
4615 | * Allow unprivileged RT tasks to decrease priority: | |
4616 | */ | |
961ccddd | 4617 | if (user && !capable(CAP_SYS_NICE)) { |
e05606d3 | 4618 | if (rt_policy(policy)) { |
a44702e8 ON |
4619 | unsigned long rlim_rtprio = |
4620 | task_rlimit(p, RLIMIT_RTPRIO); | |
8dc3e909 ON |
4621 | |
4622 | /* can't set/change the rt policy */ | |
4623 | if (policy != p->policy && !rlim_rtprio) | |
4624 | return -EPERM; | |
4625 | ||
4626 | /* can't increase priority */ | |
4627 | if (param->sched_priority > p->rt_priority && | |
4628 | param->sched_priority > rlim_rtprio) | |
4629 | return -EPERM; | |
4630 | } | |
dd41f596 IM |
4631 | /* |
4632 | * Like positive nice levels, dont allow tasks to | |
4633 | * move out of SCHED_IDLE either: | |
4634 | */ | |
4635 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | |
4636 | return -EPERM; | |
5fe1d75f | 4637 | |
37e4ab3f | 4638 | /* can't change other user's priorities */ |
c69e8d9c | 4639 | if (!check_same_owner(p)) |
37e4ab3f | 4640 | return -EPERM; |
ca94c442 LP |
4641 | |
4642 | /* Normal users shall not reset the sched_reset_on_fork flag */ | |
4643 | if (p->sched_reset_on_fork && !reset_on_fork) | |
4644 | return -EPERM; | |
37e4ab3f | 4645 | } |
1da177e4 | 4646 | |
725aad24 | 4647 | if (user) { |
725aad24 JF |
4648 | retval = security_task_setscheduler(p, policy, param); |
4649 | if (retval) | |
4650 | return retval; | |
4651 | } | |
4652 | ||
b29739f9 IM |
4653 | /* |
4654 | * make sure no PI-waiters arrive (or leave) while we are | |
4655 | * changing the priority of the task: | |
4656 | */ | |
1d615482 | 4657 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
1da177e4 LT |
4658 | /* |
4659 | * To be able to change p->policy safely, the apropriate | |
4660 | * runqueue lock must be held. | |
4661 | */ | |
b29739f9 | 4662 | rq = __task_rq_lock(p); |
dc61b1d6 PZ |
4663 | |
4664 | #ifdef CONFIG_RT_GROUP_SCHED | |
4665 | if (user) { | |
4666 | /* | |
4667 | * Do not allow realtime tasks into groups that have no runtime | |
4668 | * assigned. | |
4669 | */ | |
4670 | if (rt_bandwidth_enabled() && rt_policy(policy) && | |
4671 | task_group(p)->rt_bandwidth.rt_runtime == 0) { | |
4672 | __task_rq_unlock(rq); | |
4673 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | |
4674 | return -EPERM; | |
4675 | } | |
4676 | } | |
4677 | #endif | |
4678 | ||
1da177e4 LT |
4679 | /* recheck policy now with rq lock held */ |
4680 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | |
4681 | policy = oldpolicy = -1; | |
b29739f9 | 4682 | __task_rq_unlock(rq); |
1d615482 | 4683 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
1da177e4 LT |
4684 | goto recheck; |
4685 | } | |
dd41f596 | 4686 | on_rq = p->se.on_rq; |
051a1d1a | 4687 | running = task_current(rq, p); |
0e1f3483 | 4688 | if (on_rq) |
2e1cb74a | 4689 | deactivate_task(rq, p, 0); |
0e1f3483 HS |
4690 | if (running) |
4691 | p->sched_class->put_prev_task(rq, p); | |
f6b53205 | 4692 | |
ca94c442 LP |
4693 | p->sched_reset_on_fork = reset_on_fork; |
4694 | ||
1da177e4 | 4695 | oldprio = p->prio; |
83ab0aa0 | 4696 | prev_class = p->sched_class; |
dd41f596 | 4697 | __setscheduler(rq, p, policy, param->sched_priority); |
f6b53205 | 4698 | |
0e1f3483 HS |
4699 | if (running) |
4700 | p->sched_class->set_curr_task(rq); | |
dd41f596 IM |
4701 | if (on_rq) { |
4702 | activate_task(rq, p, 0); | |
cb469845 SR |
4703 | |
4704 | check_class_changed(rq, p, prev_class, oldprio, running); | |
1da177e4 | 4705 | } |
b29739f9 | 4706 | __task_rq_unlock(rq); |
1d615482 | 4707 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
b29739f9 | 4708 | |
95e02ca9 TG |
4709 | rt_mutex_adjust_pi(p); |
4710 | ||
1da177e4 LT |
4711 | return 0; |
4712 | } | |
961ccddd RR |
4713 | |
4714 | /** | |
4715 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | |
4716 | * @p: the task in question. | |
4717 | * @policy: new policy. | |
4718 | * @param: structure containing the new RT priority. | |
4719 | * | |
4720 | * NOTE that the task may be already dead. | |
4721 | */ | |
4722 | int sched_setscheduler(struct task_struct *p, int policy, | |
4723 | struct sched_param *param) | |
4724 | { | |
4725 | return __sched_setscheduler(p, policy, param, true); | |
4726 | } | |
1da177e4 LT |
4727 | EXPORT_SYMBOL_GPL(sched_setscheduler); |
4728 | ||
961ccddd RR |
4729 | /** |
4730 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | |
4731 | * @p: the task in question. | |
4732 | * @policy: new policy. | |
4733 | * @param: structure containing the new RT priority. | |
4734 | * | |
4735 | * Just like sched_setscheduler, only don't bother checking if the | |
4736 | * current context has permission. For example, this is needed in | |
4737 | * stop_machine(): we create temporary high priority worker threads, | |
4738 | * but our caller might not have that capability. | |
4739 | */ | |
4740 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | |
4741 | struct sched_param *param) | |
4742 | { | |
4743 | return __sched_setscheduler(p, policy, param, false); | |
4744 | } | |
4745 | ||
95cdf3b7 IM |
4746 | static int |
4747 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 4748 | { |
1da177e4 LT |
4749 | struct sched_param lparam; |
4750 | struct task_struct *p; | |
36c8b586 | 4751 | int retval; |
1da177e4 LT |
4752 | |
4753 | if (!param || pid < 0) | |
4754 | return -EINVAL; | |
4755 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | |
4756 | return -EFAULT; | |
5fe1d75f ON |
4757 | |
4758 | rcu_read_lock(); | |
4759 | retval = -ESRCH; | |
1da177e4 | 4760 | p = find_process_by_pid(pid); |
5fe1d75f ON |
4761 | if (p != NULL) |
4762 | retval = sched_setscheduler(p, policy, &lparam); | |
4763 | rcu_read_unlock(); | |
36c8b586 | 4764 | |
1da177e4 LT |
4765 | return retval; |
4766 | } | |
4767 | ||
4768 | /** | |
4769 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | |
4770 | * @pid: the pid in question. | |
4771 | * @policy: new policy. | |
4772 | * @param: structure containing the new RT priority. | |
4773 | */ | |
5add95d4 HC |
4774 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, |
4775 | struct sched_param __user *, param) | |
1da177e4 | 4776 | { |
c21761f1 JB |
4777 | /* negative values for policy are not valid */ |
4778 | if (policy < 0) | |
4779 | return -EINVAL; | |
4780 | ||
1da177e4 LT |
4781 | return do_sched_setscheduler(pid, policy, param); |
4782 | } | |
4783 | ||
4784 | /** | |
4785 | * sys_sched_setparam - set/change the RT priority of a thread | |
4786 | * @pid: the pid in question. | |
4787 | * @param: structure containing the new RT priority. | |
4788 | */ | |
5add95d4 | 4789 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
1da177e4 LT |
4790 | { |
4791 | return do_sched_setscheduler(pid, -1, param); | |
4792 | } | |
4793 | ||
4794 | /** | |
4795 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | |
4796 | * @pid: the pid in question. | |
4797 | */ | |
5add95d4 | 4798 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
1da177e4 | 4799 | { |
36c8b586 | 4800 | struct task_struct *p; |
3a5c359a | 4801 | int retval; |
1da177e4 LT |
4802 | |
4803 | if (pid < 0) | |
3a5c359a | 4804 | return -EINVAL; |
1da177e4 LT |
4805 | |
4806 | retval = -ESRCH; | |
5fe85be0 | 4807 | rcu_read_lock(); |
1da177e4 LT |
4808 | p = find_process_by_pid(pid); |
4809 | if (p) { | |
4810 | retval = security_task_getscheduler(p); | |
4811 | if (!retval) | |
ca94c442 LP |
4812 | retval = p->policy |
4813 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | |
1da177e4 | 4814 | } |
5fe85be0 | 4815 | rcu_read_unlock(); |
1da177e4 LT |
4816 | return retval; |
4817 | } | |
4818 | ||
4819 | /** | |
ca94c442 | 4820 | * sys_sched_getparam - get the RT priority of a thread |
1da177e4 LT |
4821 | * @pid: the pid in question. |
4822 | * @param: structure containing the RT priority. | |
4823 | */ | |
5add95d4 | 4824 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
1da177e4 LT |
4825 | { |
4826 | struct sched_param lp; | |
36c8b586 | 4827 | struct task_struct *p; |
3a5c359a | 4828 | int retval; |
1da177e4 LT |
4829 | |
4830 | if (!param || pid < 0) | |
3a5c359a | 4831 | return -EINVAL; |
1da177e4 | 4832 | |
5fe85be0 | 4833 | rcu_read_lock(); |
1da177e4 LT |
4834 | p = find_process_by_pid(pid); |
4835 | retval = -ESRCH; | |
4836 | if (!p) | |
4837 | goto out_unlock; | |
4838 | ||
4839 | retval = security_task_getscheduler(p); | |
4840 | if (retval) | |
4841 | goto out_unlock; | |
4842 | ||
4843 | lp.sched_priority = p->rt_priority; | |
5fe85be0 | 4844 | rcu_read_unlock(); |
1da177e4 LT |
4845 | |
4846 | /* | |
4847 | * This one might sleep, we cannot do it with a spinlock held ... | |
4848 | */ | |
4849 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | |
4850 | ||
1da177e4 LT |
4851 | return retval; |
4852 | ||
4853 | out_unlock: | |
5fe85be0 | 4854 | rcu_read_unlock(); |
1da177e4 LT |
4855 | return retval; |
4856 | } | |
4857 | ||
96f874e2 | 4858 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
1da177e4 | 4859 | { |
5a16f3d3 | 4860 | cpumask_var_t cpus_allowed, new_mask; |
36c8b586 IM |
4861 | struct task_struct *p; |
4862 | int retval; | |
1da177e4 | 4863 | |
95402b38 | 4864 | get_online_cpus(); |
23f5d142 | 4865 | rcu_read_lock(); |
1da177e4 LT |
4866 | |
4867 | p = find_process_by_pid(pid); | |
4868 | if (!p) { | |
23f5d142 | 4869 | rcu_read_unlock(); |
95402b38 | 4870 | put_online_cpus(); |
1da177e4 LT |
4871 | return -ESRCH; |
4872 | } | |
4873 | ||
23f5d142 | 4874 | /* Prevent p going away */ |
1da177e4 | 4875 | get_task_struct(p); |
23f5d142 | 4876 | rcu_read_unlock(); |
1da177e4 | 4877 | |
5a16f3d3 RR |
4878 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
4879 | retval = -ENOMEM; | |
4880 | goto out_put_task; | |
4881 | } | |
4882 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | |
4883 | retval = -ENOMEM; | |
4884 | goto out_free_cpus_allowed; | |
4885 | } | |
1da177e4 | 4886 | retval = -EPERM; |
c69e8d9c | 4887 | if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) |
1da177e4 LT |
4888 | goto out_unlock; |
4889 | ||
e7834f8f DQ |
4890 | retval = security_task_setscheduler(p, 0, NULL); |
4891 | if (retval) | |
4892 | goto out_unlock; | |
4893 | ||
5a16f3d3 RR |
4894 | cpuset_cpus_allowed(p, cpus_allowed); |
4895 | cpumask_and(new_mask, in_mask, cpus_allowed); | |
8707d8b8 | 4896 | again: |
5a16f3d3 | 4897 | retval = set_cpus_allowed_ptr(p, new_mask); |
1da177e4 | 4898 | |
8707d8b8 | 4899 | if (!retval) { |
5a16f3d3 RR |
4900 | cpuset_cpus_allowed(p, cpus_allowed); |
4901 | if (!cpumask_subset(new_mask, cpus_allowed)) { | |
8707d8b8 PM |
4902 | /* |
4903 | * We must have raced with a concurrent cpuset | |
4904 | * update. Just reset the cpus_allowed to the | |
4905 | * cpuset's cpus_allowed | |
4906 | */ | |
5a16f3d3 | 4907 | cpumask_copy(new_mask, cpus_allowed); |
8707d8b8 PM |
4908 | goto again; |
4909 | } | |
4910 | } | |
1da177e4 | 4911 | out_unlock: |
5a16f3d3 RR |
4912 | free_cpumask_var(new_mask); |
4913 | out_free_cpus_allowed: | |
4914 | free_cpumask_var(cpus_allowed); | |
4915 | out_put_task: | |
1da177e4 | 4916 | put_task_struct(p); |
95402b38 | 4917 | put_online_cpus(); |
1da177e4 LT |
4918 | return retval; |
4919 | } | |
4920 | ||
4921 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | |
96f874e2 | 4922 | struct cpumask *new_mask) |
1da177e4 | 4923 | { |
96f874e2 RR |
4924 | if (len < cpumask_size()) |
4925 | cpumask_clear(new_mask); | |
4926 | else if (len > cpumask_size()) | |
4927 | len = cpumask_size(); | |
4928 | ||
1da177e4 LT |
4929 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
4930 | } | |
4931 | ||
4932 | /** | |
4933 | * sys_sched_setaffinity - set the cpu affinity of a process | |
4934 | * @pid: pid of the process | |
4935 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
4936 | * @user_mask_ptr: user-space pointer to the new cpu mask | |
4937 | */ | |
5add95d4 HC |
4938 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
4939 | unsigned long __user *, user_mask_ptr) | |
1da177e4 | 4940 | { |
5a16f3d3 | 4941 | cpumask_var_t new_mask; |
1da177e4 LT |
4942 | int retval; |
4943 | ||
5a16f3d3 RR |
4944 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
4945 | return -ENOMEM; | |
1da177e4 | 4946 | |
5a16f3d3 RR |
4947 | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
4948 | if (retval == 0) | |
4949 | retval = sched_setaffinity(pid, new_mask); | |
4950 | free_cpumask_var(new_mask); | |
4951 | return retval; | |
1da177e4 LT |
4952 | } |
4953 | ||
96f874e2 | 4954 | long sched_getaffinity(pid_t pid, struct cpumask *mask) |
1da177e4 | 4955 | { |
36c8b586 | 4956 | struct task_struct *p; |
31605683 TG |
4957 | unsigned long flags; |
4958 | struct rq *rq; | |
1da177e4 | 4959 | int retval; |
1da177e4 | 4960 | |
95402b38 | 4961 | get_online_cpus(); |
23f5d142 | 4962 | rcu_read_lock(); |
1da177e4 LT |
4963 | |
4964 | retval = -ESRCH; | |
4965 | p = find_process_by_pid(pid); | |
4966 | if (!p) | |
4967 | goto out_unlock; | |
4968 | ||
e7834f8f DQ |
4969 | retval = security_task_getscheduler(p); |
4970 | if (retval) | |
4971 | goto out_unlock; | |
4972 | ||
31605683 | 4973 | rq = task_rq_lock(p, &flags); |
96f874e2 | 4974 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
31605683 | 4975 | task_rq_unlock(rq, &flags); |
1da177e4 LT |
4976 | |
4977 | out_unlock: | |
23f5d142 | 4978 | rcu_read_unlock(); |
95402b38 | 4979 | put_online_cpus(); |
1da177e4 | 4980 | |
9531b62f | 4981 | return retval; |
1da177e4 LT |
4982 | } |
4983 | ||
4984 | /** | |
4985 | * sys_sched_getaffinity - get the cpu affinity of a process | |
4986 | * @pid: pid of the process | |
4987 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
4988 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | |
4989 | */ | |
5add95d4 HC |
4990 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
4991 | unsigned long __user *, user_mask_ptr) | |
1da177e4 LT |
4992 | { |
4993 | int ret; | |
f17c8607 | 4994 | cpumask_var_t mask; |
1da177e4 | 4995 | |
84fba5ec | 4996 | if ((len * BITS_PER_BYTE) < nr_cpu_ids) |
cd3d8031 KM |
4997 | return -EINVAL; |
4998 | if (len & (sizeof(unsigned long)-1)) | |
1da177e4 LT |
4999 | return -EINVAL; |
5000 | ||
f17c8607 RR |
5001 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
5002 | return -ENOMEM; | |
1da177e4 | 5003 | |
f17c8607 RR |
5004 | ret = sched_getaffinity(pid, mask); |
5005 | if (ret == 0) { | |
8bc037fb | 5006 | size_t retlen = min_t(size_t, len, cpumask_size()); |
cd3d8031 KM |
5007 | |
5008 | if (copy_to_user(user_mask_ptr, mask, retlen)) | |
f17c8607 RR |
5009 | ret = -EFAULT; |
5010 | else | |
cd3d8031 | 5011 | ret = retlen; |
f17c8607 RR |
5012 | } |
5013 | free_cpumask_var(mask); | |
1da177e4 | 5014 | |
f17c8607 | 5015 | return ret; |
1da177e4 LT |
5016 | } |
5017 | ||
5018 | /** | |
5019 | * sys_sched_yield - yield the current processor to other threads. | |
5020 | * | |
dd41f596 IM |
5021 | * This function yields the current CPU to other tasks. If there are no |
5022 | * other threads running on this CPU then this function will return. | |
1da177e4 | 5023 | */ |
5add95d4 | 5024 | SYSCALL_DEFINE0(sched_yield) |
1da177e4 | 5025 | { |
70b97a7f | 5026 | struct rq *rq = this_rq_lock(); |
1da177e4 | 5027 | |
2d72376b | 5028 | schedstat_inc(rq, yld_count); |
4530d7ab | 5029 | current->sched_class->yield_task(rq); |
1da177e4 LT |
5030 | |
5031 | /* | |
5032 | * Since we are going to call schedule() anyway, there's | |
5033 | * no need to preempt or enable interrupts: | |
5034 | */ | |
5035 | __release(rq->lock); | |
8a25d5de | 5036 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
9828ea9d | 5037 | do_raw_spin_unlock(&rq->lock); |
1da177e4 LT |
5038 | preempt_enable_no_resched(); |
5039 | ||
5040 | schedule(); | |
5041 | ||
5042 | return 0; | |
5043 | } | |
5044 | ||
d86ee480 PZ |
5045 | static inline int should_resched(void) |
5046 | { | |
5047 | return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); | |
5048 | } | |
5049 | ||
e7b38404 | 5050 | static void __cond_resched(void) |
1da177e4 | 5051 | { |
e7aaaa69 FW |
5052 | add_preempt_count(PREEMPT_ACTIVE); |
5053 | schedule(); | |
5054 | sub_preempt_count(PREEMPT_ACTIVE); | |
1da177e4 LT |
5055 | } |
5056 | ||
02b67cc3 | 5057 | int __sched _cond_resched(void) |
1da177e4 | 5058 | { |
d86ee480 | 5059 | if (should_resched()) { |
1da177e4 LT |
5060 | __cond_resched(); |
5061 | return 1; | |
5062 | } | |
5063 | return 0; | |
5064 | } | |
02b67cc3 | 5065 | EXPORT_SYMBOL(_cond_resched); |
1da177e4 LT |
5066 | |
5067 | /* | |
613afbf8 | 5068 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
1da177e4 LT |
5069 | * call schedule, and on return reacquire the lock. |
5070 | * | |
41a2d6cf | 5071 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
1da177e4 LT |
5072 | * operations here to prevent schedule() from being called twice (once via |
5073 | * spin_unlock(), once by hand). | |
5074 | */ | |
613afbf8 | 5075 | int __cond_resched_lock(spinlock_t *lock) |
1da177e4 | 5076 | { |
d86ee480 | 5077 | int resched = should_resched(); |
6df3cecb JK |
5078 | int ret = 0; |
5079 | ||
f607c668 PZ |
5080 | lockdep_assert_held(lock); |
5081 | ||
95c354fe | 5082 | if (spin_needbreak(lock) || resched) { |
1da177e4 | 5083 | spin_unlock(lock); |
d86ee480 | 5084 | if (resched) |
95c354fe NP |
5085 | __cond_resched(); |
5086 | else | |
5087 | cpu_relax(); | |
6df3cecb | 5088 | ret = 1; |
1da177e4 | 5089 | spin_lock(lock); |
1da177e4 | 5090 | } |
6df3cecb | 5091 | return ret; |
1da177e4 | 5092 | } |
613afbf8 | 5093 | EXPORT_SYMBOL(__cond_resched_lock); |
1da177e4 | 5094 | |
613afbf8 | 5095 | int __sched __cond_resched_softirq(void) |
1da177e4 LT |
5096 | { |
5097 | BUG_ON(!in_softirq()); | |
5098 | ||
d86ee480 | 5099 | if (should_resched()) { |
98d82567 | 5100 | local_bh_enable(); |
1da177e4 LT |
5101 | __cond_resched(); |
5102 | local_bh_disable(); | |
5103 | return 1; | |
5104 | } | |
5105 | return 0; | |
5106 | } | |
613afbf8 | 5107 | EXPORT_SYMBOL(__cond_resched_softirq); |
1da177e4 | 5108 | |
1da177e4 LT |
5109 | /** |
5110 | * yield - yield the current processor to other threads. | |
5111 | * | |
72fd4a35 | 5112 | * This is a shortcut for kernel-space yielding - it marks the |
1da177e4 LT |
5113 | * thread runnable and calls sys_sched_yield(). |
5114 | */ | |
5115 | void __sched yield(void) | |
5116 | { | |
5117 | set_current_state(TASK_RUNNING); | |
5118 | sys_sched_yield(); | |
5119 | } | |
1da177e4 LT |
5120 | EXPORT_SYMBOL(yield); |
5121 | ||
5122 | /* | |
41a2d6cf | 5123 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
1da177e4 | 5124 | * that process accounting knows that this is a task in IO wait state. |
1da177e4 LT |
5125 | */ |
5126 | void __sched io_schedule(void) | |
5127 | { | |
54d35f29 | 5128 | struct rq *rq = raw_rq(); |
1da177e4 | 5129 | |
0ff92245 | 5130 | delayacct_blkio_start(); |
1da177e4 | 5131 | atomic_inc(&rq->nr_iowait); |
8f0dfc34 | 5132 | current->in_iowait = 1; |
1da177e4 | 5133 | schedule(); |
8f0dfc34 | 5134 | current->in_iowait = 0; |
1da177e4 | 5135 | atomic_dec(&rq->nr_iowait); |
0ff92245 | 5136 | delayacct_blkio_end(); |
1da177e4 | 5137 | } |
1da177e4 LT |
5138 | EXPORT_SYMBOL(io_schedule); |
5139 | ||
5140 | long __sched io_schedule_timeout(long timeout) | |
5141 | { | |
54d35f29 | 5142 | struct rq *rq = raw_rq(); |
1da177e4 LT |
5143 | long ret; |
5144 | ||
0ff92245 | 5145 | delayacct_blkio_start(); |
1da177e4 | 5146 | atomic_inc(&rq->nr_iowait); |
8f0dfc34 | 5147 | current->in_iowait = 1; |
1da177e4 | 5148 | ret = schedule_timeout(timeout); |
8f0dfc34 | 5149 | current->in_iowait = 0; |
1da177e4 | 5150 | atomic_dec(&rq->nr_iowait); |
0ff92245 | 5151 | delayacct_blkio_end(); |
1da177e4 LT |
5152 | return ret; |
5153 | } | |
5154 | ||
5155 | /** | |
5156 | * sys_sched_get_priority_max - return maximum RT priority. | |
5157 | * @policy: scheduling class. | |
5158 | * | |
5159 | * this syscall returns the maximum rt_priority that can be used | |
5160 | * by a given scheduling class. | |
5161 | */ | |
5add95d4 | 5162 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
1da177e4 LT |
5163 | { |
5164 | int ret = -EINVAL; | |
5165 | ||
5166 | switch (policy) { | |
5167 | case SCHED_FIFO: | |
5168 | case SCHED_RR: | |
5169 | ret = MAX_USER_RT_PRIO-1; | |
5170 | break; | |
5171 | case SCHED_NORMAL: | |
b0a9499c | 5172 | case SCHED_BATCH: |
dd41f596 | 5173 | case SCHED_IDLE: |
1da177e4 LT |
5174 | ret = 0; |
5175 | break; | |
5176 | } | |
5177 | return ret; | |
5178 | } | |
5179 | ||
5180 | /** | |
5181 | * sys_sched_get_priority_min - return minimum RT priority. | |
5182 | * @policy: scheduling class. | |
5183 | * | |
5184 | * this syscall returns the minimum rt_priority that can be used | |
5185 | * by a given scheduling class. | |
5186 | */ | |
5add95d4 | 5187 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
1da177e4 LT |
5188 | { |
5189 | int ret = -EINVAL; | |
5190 | ||
5191 | switch (policy) { | |
5192 | case SCHED_FIFO: | |
5193 | case SCHED_RR: | |
5194 | ret = 1; | |
5195 | break; | |
5196 | case SCHED_NORMAL: | |
b0a9499c | 5197 | case SCHED_BATCH: |
dd41f596 | 5198 | case SCHED_IDLE: |
1da177e4 LT |
5199 | ret = 0; |
5200 | } | |
5201 | return ret; | |
5202 | } | |
5203 | ||
5204 | /** | |
5205 | * sys_sched_rr_get_interval - return the default timeslice of a process. | |
5206 | * @pid: pid of the process. | |
5207 | * @interval: userspace pointer to the timeslice value. | |
5208 | * | |
5209 | * this syscall writes the default timeslice value of a given process | |
5210 | * into the user-space timespec buffer. A value of '0' means infinity. | |
5211 | */ | |
17da2bd9 | 5212 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
754fe8d2 | 5213 | struct timespec __user *, interval) |
1da177e4 | 5214 | { |
36c8b586 | 5215 | struct task_struct *p; |
a4ec24b4 | 5216 | unsigned int time_slice; |
dba091b9 TG |
5217 | unsigned long flags; |
5218 | struct rq *rq; | |
3a5c359a | 5219 | int retval; |
1da177e4 | 5220 | struct timespec t; |
1da177e4 LT |
5221 | |
5222 | if (pid < 0) | |
3a5c359a | 5223 | return -EINVAL; |
1da177e4 LT |
5224 | |
5225 | retval = -ESRCH; | |
1a551ae7 | 5226 | rcu_read_lock(); |
1da177e4 LT |
5227 | p = find_process_by_pid(pid); |
5228 | if (!p) | |
5229 | goto out_unlock; | |
5230 | ||
5231 | retval = security_task_getscheduler(p); | |
5232 | if (retval) | |
5233 | goto out_unlock; | |
5234 | ||
dba091b9 TG |
5235 | rq = task_rq_lock(p, &flags); |
5236 | time_slice = p->sched_class->get_rr_interval(rq, p); | |
5237 | task_rq_unlock(rq, &flags); | |
a4ec24b4 | 5238 | |
1a551ae7 | 5239 | rcu_read_unlock(); |
a4ec24b4 | 5240 | jiffies_to_timespec(time_slice, &t); |
1da177e4 | 5241 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
1da177e4 | 5242 | return retval; |
3a5c359a | 5243 | |
1da177e4 | 5244 | out_unlock: |
1a551ae7 | 5245 | rcu_read_unlock(); |
1da177e4 LT |
5246 | return retval; |
5247 | } | |
5248 | ||
7c731e0a | 5249 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
36c8b586 | 5250 | |
82a1fcb9 | 5251 | void sched_show_task(struct task_struct *p) |
1da177e4 | 5252 | { |
1da177e4 | 5253 | unsigned long free = 0; |
36c8b586 | 5254 | unsigned state; |
1da177e4 | 5255 | |
1da177e4 | 5256 | state = p->state ? __ffs(p->state) + 1 : 0; |
3df0fc5b | 5257 | printk(KERN_INFO "%-13.13s %c", p->comm, |
2ed6e34f | 5258 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
4bd77321 | 5259 | #if BITS_PER_LONG == 32 |
1da177e4 | 5260 | if (state == TASK_RUNNING) |
3df0fc5b | 5261 | printk(KERN_CONT " running "); |
1da177e4 | 5262 | else |
3df0fc5b | 5263 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
1da177e4 LT |
5264 | #else |
5265 | if (state == TASK_RUNNING) | |
3df0fc5b | 5266 | printk(KERN_CONT " running task "); |
1da177e4 | 5267 | else |
3df0fc5b | 5268 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
1da177e4 LT |
5269 | #endif |
5270 | #ifdef CONFIG_DEBUG_STACK_USAGE | |
7c9f8861 | 5271 | free = stack_not_used(p); |
1da177e4 | 5272 | #endif |
3df0fc5b | 5273 | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, |
aa47b7e0 DR |
5274 | task_pid_nr(p), task_pid_nr(p->real_parent), |
5275 | (unsigned long)task_thread_info(p)->flags); | |
1da177e4 | 5276 | |
5fb5e6de | 5277 | show_stack(p, NULL); |
1da177e4 LT |
5278 | } |
5279 | ||
e59e2ae2 | 5280 | void show_state_filter(unsigned long state_filter) |
1da177e4 | 5281 | { |
36c8b586 | 5282 | struct task_struct *g, *p; |
1da177e4 | 5283 | |
4bd77321 | 5284 | #if BITS_PER_LONG == 32 |
3df0fc5b PZ |
5285 | printk(KERN_INFO |
5286 | " task PC stack pid father\n"); | |
1da177e4 | 5287 | #else |
3df0fc5b PZ |
5288 | printk(KERN_INFO |
5289 | " task PC stack pid father\n"); | |
1da177e4 LT |
5290 | #endif |
5291 | read_lock(&tasklist_lock); | |
5292 | do_each_thread(g, p) { | |
5293 | /* | |
5294 | * reset the NMI-timeout, listing all files on a slow | |
5295 | * console might take alot of time: | |
5296 | */ | |
5297 | touch_nmi_watchdog(); | |
39bc89fd | 5298 | if (!state_filter || (p->state & state_filter)) |
82a1fcb9 | 5299 | sched_show_task(p); |
1da177e4 LT |
5300 | } while_each_thread(g, p); |
5301 | ||
04c9167f JF |
5302 | touch_all_softlockup_watchdogs(); |
5303 | ||
dd41f596 IM |
5304 | #ifdef CONFIG_SCHED_DEBUG |
5305 | sysrq_sched_debug_show(); | |
5306 | #endif | |
1da177e4 | 5307 | read_unlock(&tasklist_lock); |
e59e2ae2 IM |
5308 | /* |
5309 | * Only show locks if all tasks are dumped: | |
5310 | */ | |
93335a21 | 5311 | if (!state_filter) |
e59e2ae2 | 5312 | debug_show_all_locks(); |
1da177e4 LT |
5313 | } |
5314 | ||
1df21055 IM |
5315 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
5316 | { | |
dd41f596 | 5317 | idle->sched_class = &idle_sched_class; |
1df21055 IM |
5318 | } |
5319 | ||
f340c0d1 IM |
5320 | /** |
5321 | * init_idle - set up an idle thread for a given CPU | |
5322 | * @idle: task in question | |
5323 | * @cpu: cpu the idle task belongs to | |
5324 | * | |
5325 | * NOTE: this function does not set the idle thread's NEED_RESCHED | |
5326 | * flag, to make booting more robust. | |
5327 | */ | |
5c1e1767 | 5328 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
1da177e4 | 5329 | { |
70b97a7f | 5330 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
5331 | unsigned long flags; |
5332 | ||
05fa785c | 5333 | raw_spin_lock_irqsave(&rq->lock, flags); |
5cbd54ef | 5334 | |
dd41f596 | 5335 | __sched_fork(idle); |
06b83b5f | 5336 | idle->state = TASK_RUNNING; |
dd41f596 IM |
5337 | idle->se.exec_start = sched_clock(); |
5338 | ||
96f874e2 | 5339 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); |
dd41f596 | 5340 | __set_task_cpu(idle, cpu); |
1da177e4 | 5341 | |
1da177e4 | 5342 | rq->curr = rq->idle = idle; |
4866cde0 NP |
5343 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
5344 | idle->oncpu = 1; | |
5345 | #endif | |
05fa785c | 5346 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1da177e4 LT |
5347 | |
5348 | /* Set the preempt count _outside_ the spinlocks! */ | |
8e3e076c LT |
5349 | #if defined(CONFIG_PREEMPT) |
5350 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | |
5351 | #else | |
a1261f54 | 5352 | task_thread_info(idle)->preempt_count = 0; |
8e3e076c | 5353 | #endif |
dd41f596 IM |
5354 | /* |
5355 | * The idle tasks have their own, simple scheduling class: | |
5356 | */ | |
5357 | idle->sched_class = &idle_sched_class; | |
fb52607a | 5358 | ftrace_graph_init_task(idle); |
1da177e4 LT |
5359 | } |
5360 | ||
5361 | /* | |
5362 | * In a system that switches off the HZ timer nohz_cpu_mask | |
5363 | * indicates which cpus entered this state. This is used | |
5364 | * in the rcu update to wait only for active cpus. For system | |
5365 | * which do not switch off the HZ timer nohz_cpu_mask should | |
6a7b3dc3 | 5366 | * always be CPU_BITS_NONE. |
1da177e4 | 5367 | */ |
6a7b3dc3 | 5368 | cpumask_var_t nohz_cpu_mask; |
1da177e4 | 5369 | |
19978ca6 IM |
5370 | /* |
5371 | * Increase the granularity value when there are more CPUs, | |
5372 | * because with more CPUs the 'effective latency' as visible | |
5373 | * to users decreases. But the relationship is not linear, | |
5374 | * so pick a second-best guess by going with the log2 of the | |
5375 | * number of CPUs. | |
5376 | * | |
5377 | * This idea comes from the SD scheduler of Con Kolivas: | |
5378 | */ | |
acb4a848 | 5379 | static int get_update_sysctl_factor(void) |
19978ca6 | 5380 | { |
4ca3ef71 | 5381 | unsigned int cpus = min_t(int, num_online_cpus(), 8); |
1983a922 CE |
5382 | unsigned int factor; |
5383 | ||
5384 | switch (sysctl_sched_tunable_scaling) { | |
5385 | case SCHED_TUNABLESCALING_NONE: | |
5386 | factor = 1; | |
5387 | break; | |
5388 | case SCHED_TUNABLESCALING_LINEAR: | |
5389 | factor = cpus; | |
5390 | break; | |
5391 | case SCHED_TUNABLESCALING_LOG: | |
5392 | default: | |
5393 | factor = 1 + ilog2(cpus); | |
5394 | break; | |
5395 | } | |
19978ca6 | 5396 | |
acb4a848 CE |
5397 | return factor; |
5398 | } | |
19978ca6 | 5399 | |
acb4a848 CE |
5400 | static void update_sysctl(void) |
5401 | { | |
5402 | unsigned int factor = get_update_sysctl_factor(); | |
19978ca6 | 5403 | |
0bcdcf28 CE |
5404 | #define SET_SYSCTL(name) \ |
5405 | (sysctl_##name = (factor) * normalized_sysctl_##name) | |
5406 | SET_SYSCTL(sched_min_granularity); | |
5407 | SET_SYSCTL(sched_latency); | |
5408 | SET_SYSCTL(sched_wakeup_granularity); | |
5409 | SET_SYSCTL(sched_shares_ratelimit); | |
5410 | #undef SET_SYSCTL | |
5411 | } | |
55cd5340 | 5412 | |
0bcdcf28 CE |
5413 | static inline void sched_init_granularity(void) |
5414 | { | |
5415 | update_sysctl(); | |
19978ca6 IM |
5416 | } |
5417 | ||
1da177e4 LT |
5418 | #ifdef CONFIG_SMP |
5419 | /* | |
5420 | * This is how migration works: | |
5421 | * | |
969c7921 TH |
5422 | * 1) we invoke migration_cpu_stop() on the target CPU using |
5423 | * stop_one_cpu(). | |
5424 | * 2) stopper starts to run (implicitly forcing the migrated thread | |
5425 | * off the CPU) | |
5426 | * 3) it checks whether the migrated task is still in the wrong runqueue. | |
5427 | * 4) if it's in the wrong runqueue then the migration thread removes | |
1da177e4 | 5428 | * it and puts it into the right queue. |
969c7921 TH |
5429 | * 5) stopper completes and stop_one_cpu() returns and the migration |
5430 | * is done. | |
1da177e4 LT |
5431 | */ |
5432 | ||
5433 | /* | |
5434 | * Change a given task's CPU affinity. Migrate the thread to a | |
5435 | * proper CPU and schedule it away if the CPU it's executing on | |
5436 | * is removed from the allowed bitmask. | |
5437 | * | |
5438 | * NOTE: the caller must have a valid reference to the task, the | |
41a2d6cf | 5439 | * task must not exit() & deallocate itself prematurely. The |
1da177e4 LT |
5440 | * call is not atomic; no spinlocks may be held. |
5441 | */ | |
96f874e2 | 5442 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
1da177e4 LT |
5443 | { |
5444 | unsigned long flags; | |
70b97a7f | 5445 | struct rq *rq; |
969c7921 | 5446 | unsigned int dest_cpu; |
48f24c4d | 5447 | int ret = 0; |
1da177e4 | 5448 | |
65cc8e48 PZ |
5449 | /* |
5450 | * Serialize against TASK_WAKING so that ttwu() and wunt() can | |
5451 | * drop the rq->lock and still rely on ->cpus_allowed. | |
5452 | */ | |
5453 | again: | |
5454 | while (task_is_waking(p)) | |
5455 | cpu_relax(); | |
1da177e4 | 5456 | rq = task_rq_lock(p, &flags); |
65cc8e48 PZ |
5457 | if (task_is_waking(p)) { |
5458 | task_rq_unlock(rq, &flags); | |
5459 | goto again; | |
5460 | } | |
e2912009 | 5461 | |
6ad4c188 | 5462 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
1da177e4 LT |
5463 | ret = -EINVAL; |
5464 | goto out; | |
5465 | } | |
5466 | ||
9985b0ba | 5467 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && |
96f874e2 | 5468 | !cpumask_equal(&p->cpus_allowed, new_mask))) { |
9985b0ba DR |
5469 | ret = -EINVAL; |
5470 | goto out; | |
5471 | } | |
5472 | ||
73fe6aae | 5473 | if (p->sched_class->set_cpus_allowed) |
cd8ba7cd | 5474 | p->sched_class->set_cpus_allowed(p, new_mask); |
73fe6aae | 5475 | else { |
96f874e2 RR |
5476 | cpumask_copy(&p->cpus_allowed, new_mask); |
5477 | p->rt.nr_cpus_allowed = cpumask_weight(new_mask); | |
73fe6aae GH |
5478 | } |
5479 | ||
1da177e4 | 5480 | /* Can the task run on the task's current CPU? If so, we're done */ |
96f874e2 | 5481 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
1da177e4 LT |
5482 | goto out; |
5483 | ||
969c7921 TH |
5484 | dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); |
5485 | if (migrate_task(p, dest_cpu)) { | |
5486 | struct migration_arg arg = { p, dest_cpu }; | |
1da177e4 LT |
5487 | /* Need help from migration thread: drop lock and wait. */ |
5488 | task_rq_unlock(rq, &flags); | |
969c7921 | 5489 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
1da177e4 LT |
5490 | tlb_migrate_finish(p->mm); |
5491 | return 0; | |
5492 | } | |
5493 | out: | |
5494 | task_rq_unlock(rq, &flags); | |
48f24c4d | 5495 | |
1da177e4 LT |
5496 | return ret; |
5497 | } | |
cd8ba7cd | 5498 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
1da177e4 LT |
5499 | |
5500 | /* | |
41a2d6cf | 5501 | * Move (not current) task off this cpu, onto dest cpu. We're doing |
1da177e4 LT |
5502 | * this because either it can't run here any more (set_cpus_allowed() |
5503 | * away from this CPU, or CPU going down), or because we're | |
5504 | * attempting to rebalance this task on exec (sched_exec). | |
5505 | * | |
5506 | * So we race with normal scheduler movements, but that's OK, as long | |
5507 | * as the task is no longer on this CPU. | |
efc30814 KK |
5508 | * |
5509 | * Returns non-zero if task was successfully migrated. | |
1da177e4 | 5510 | */ |
efc30814 | 5511 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
1da177e4 | 5512 | { |
70b97a7f | 5513 | struct rq *rq_dest, *rq_src; |
e2912009 | 5514 | int ret = 0; |
1da177e4 | 5515 | |
e761b772 | 5516 | if (unlikely(!cpu_active(dest_cpu))) |
efc30814 | 5517 | return ret; |
1da177e4 LT |
5518 | |
5519 | rq_src = cpu_rq(src_cpu); | |
5520 | rq_dest = cpu_rq(dest_cpu); | |
5521 | ||
5522 | double_rq_lock(rq_src, rq_dest); | |
5523 | /* Already moved. */ | |
5524 | if (task_cpu(p) != src_cpu) | |
b1e38734 | 5525 | goto done; |
1da177e4 | 5526 | /* Affinity changed (again). */ |
96f874e2 | 5527 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
b1e38734 | 5528 | goto fail; |
1da177e4 | 5529 | |
e2912009 PZ |
5530 | /* |
5531 | * If we're not on a rq, the next wake-up will ensure we're | |
5532 | * placed properly. | |
5533 | */ | |
5534 | if (p->se.on_rq) { | |
2e1cb74a | 5535 | deactivate_task(rq_src, p, 0); |
e2912009 | 5536 | set_task_cpu(p, dest_cpu); |
dd41f596 | 5537 | activate_task(rq_dest, p, 0); |
15afe09b | 5538 | check_preempt_curr(rq_dest, p, 0); |
1da177e4 | 5539 | } |
b1e38734 | 5540 | done: |
efc30814 | 5541 | ret = 1; |
b1e38734 | 5542 | fail: |
1da177e4 | 5543 | double_rq_unlock(rq_src, rq_dest); |
efc30814 | 5544 | return ret; |
1da177e4 LT |
5545 | } |
5546 | ||
5547 | /* | |
969c7921 TH |
5548 | * migration_cpu_stop - this will be executed by a highprio stopper thread |
5549 | * and performs thread migration by bumping thread off CPU then | |
5550 | * 'pushing' onto another runqueue. | |
1da177e4 | 5551 | */ |
969c7921 | 5552 | static int migration_cpu_stop(void *data) |
1da177e4 | 5553 | { |
969c7921 | 5554 | struct migration_arg *arg = data; |
f7b4cddc | 5555 | |
969c7921 TH |
5556 | /* |
5557 | * The original target cpu might have gone down and we might | |
5558 | * be on another cpu but it doesn't matter. | |
5559 | */ | |
f7b4cddc | 5560 | local_irq_disable(); |
969c7921 | 5561 | __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); |
f7b4cddc | 5562 | local_irq_enable(); |
1da177e4 | 5563 | return 0; |
f7b4cddc ON |
5564 | } |
5565 | ||
1da177e4 | 5566 | #ifdef CONFIG_HOTPLUG_CPU |
054b9108 | 5567 | /* |
3a4fa0a2 | 5568 | * Figure out where task on dead CPU should go, use force if necessary. |
054b9108 | 5569 | */ |
6a1bdc1b | 5570 | void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
1da177e4 | 5571 | { |
1445c08d ON |
5572 | struct rq *rq = cpu_rq(dead_cpu); |
5573 | int needs_cpu, uninitialized_var(dest_cpu); | |
5574 | unsigned long flags; | |
e76bd8d9 | 5575 | |
1445c08d | 5576 | local_irq_save(flags); |
e76bd8d9 | 5577 | |
1445c08d ON |
5578 | raw_spin_lock(&rq->lock); |
5579 | needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING); | |
5580 | if (needs_cpu) | |
5581 | dest_cpu = select_fallback_rq(dead_cpu, p); | |
5582 | raw_spin_unlock(&rq->lock); | |
c1804d54 ON |
5583 | /* |
5584 | * It can only fail if we race with set_cpus_allowed(), | |
5585 | * in the racer should migrate the task anyway. | |
5586 | */ | |
1445c08d | 5587 | if (needs_cpu) |
c1804d54 | 5588 | __migrate_task(p, dead_cpu, dest_cpu); |
1445c08d | 5589 | local_irq_restore(flags); |
1da177e4 LT |
5590 | } |
5591 | ||
5592 | /* | |
5593 | * While a dead CPU has no uninterruptible tasks queued at this point, | |
5594 | * it might still have a nonzero ->nr_uninterruptible counter, because | |
5595 | * for performance reasons the counter is not stricly tracking tasks to | |
5596 | * their home CPUs. So we just add the counter to another CPU's counter, | |
5597 | * to keep the global sum constant after CPU-down: | |
5598 | */ | |
70b97a7f | 5599 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
1da177e4 | 5600 | { |
6ad4c188 | 5601 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); |
1da177e4 LT |
5602 | unsigned long flags; |
5603 | ||
5604 | local_irq_save(flags); | |
5605 | double_rq_lock(rq_src, rq_dest); | |
5606 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | |
5607 | rq_src->nr_uninterruptible = 0; | |
5608 | double_rq_unlock(rq_src, rq_dest); | |
5609 | local_irq_restore(flags); | |
5610 | } | |
5611 | ||
5612 | /* Run through task list and migrate tasks from the dead cpu. */ | |
5613 | static void migrate_live_tasks(int src_cpu) | |
5614 | { | |
48f24c4d | 5615 | struct task_struct *p, *t; |
1da177e4 | 5616 | |
f7b4cddc | 5617 | read_lock(&tasklist_lock); |
1da177e4 | 5618 | |
48f24c4d IM |
5619 | do_each_thread(t, p) { |
5620 | if (p == current) | |
1da177e4 LT |
5621 | continue; |
5622 | ||
48f24c4d IM |
5623 | if (task_cpu(p) == src_cpu) |
5624 | move_task_off_dead_cpu(src_cpu, p); | |
5625 | } while_each_thread(t, p); | |
1da177e4 | 5626 | |
f7b4cddc | 5627 | read_unlock(&tasklist_lock); |
1da177e4 LT |
5628 | } |
5629 | ||
dd41f596 IM |
5630 | /* |
5631 | * Schedules idle task to be the next runnable task on current CPU. | |
94bc9a7b DA |
5632 | * It does so by boosting its priority to highest possible. |
5633 | * Used by CPU offline code. | |
1da177e4 LT |
5634 | */ |
5635 | void sched_idle_next(void) | |
5636 | { | |
48f24c4d | 5637 | int this_cpu = smp_processor_id(); |
70b97a7f | 5638 | struct rq *rq = cpu_rq(this_cpu); |
1da177e4 LT |
5639 | struct task_struct *p = rq->idle; |
5640 | unsigned long flags; | |
5641 | ||
5642 | /* cpu has to be offline */ | |
48f24c4d | 5643 | BUG_ON(cpu_online(this_cpu)); |
1da177e4 | 5644 | |
48f24c4d IM |
5645 | /* |
5646 | * Strictly not necessary since rest of the CPUs are stopped by now | |
5647 | * and interrupts disabled on the current cpu. | |
1da177e4 | 5648 | */ |
05fa785c | 5649 | raw_spin_lock_irqsave(&rq->lock, flags); |
1da177e4 | 5650 | |
dd41f596 | 5651 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
48f24c4d | 5652 | |
94bc9a7b | 5653 | activate_task(rq, p, 0); |
1da177e4 | 5654 | |
05fa785c | 5655 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1da177e4 LT |
5656 | } |
5657 | ||
48f24c4d IM |
5658 | /* |
5659 | * Ensures that the idle task is using init_mm right before its cpu goes | |
1da177e4 LT |
5660 | * offline. |
5661 | */ | |
5662 | void idle_task_exit(void) | |
5663 | { | |
5664 | struct mm_struct *mm = current->active_mm; | |
5665 | ||
5666 | BUG_ON(cpu_online(smp_processor_id())); | |
5667 | ||
5668 | if (mm != &init_mm) | |
5669 | switch_mm(mm, &init_mm, current); | |
5670 | mmdrop(mm); | |
5671 | } | |
5672 | ||
054b9108 | 5673 | /* called under rq->lock with disabled interrupts */ |
36c8b586 | 5674 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) |
1da177e4 | 5675 | { |
70b97a7f | 5676 | struct rq *rq = cpu_rq(dead_cpu); |
1da177e4 LT |
5677 | |
5678 | /* Must be exiting, otherwise would be on tasklist. */ | |
270f722d | 5679 | BUG_ON(!p->exit_state); |
1da177e4 LT |
5680 | |
5681 | /* Cannot have done final schedule yet: would have vanished. */ | |
c394cc9f | 5682 | BUG_ON(p->state == TASK_DEAD); |
1da177e4 | 5683 | |
48f24c4d | 5684 | get_task_struct(p); |
1da177e4 LT |
5685 | |
5686 | /* | |
5687 | * Drop lock around migration; if someone else moves it, | |
41a2d6cf | 5688 | * that's OK. No task can be added to this CPU, so iteration is |
1da177e4 LT |
5689 | * fine. |
5690 | */ | |
05fa785c | 5691 | raw_spin_unlock_irq(&rq->lock); |
48f24c4d | 5692 | move_task_off_dead_cpu(dead_cpu, p); |
05fa785c | 5693 | raw_spin_lock_irq(&rq->lock); |
1da177e4 | 5694 | |
48f24c4d | 5695 | put_task_struct(p); |
1da177e4 LT |
5696 | } |
5697 | ||
5698 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | |
5699 | static void migrate_dead_tasks(unsigned int dead_cpu) | |
5700 | { | |
70b97a7f | 5701 | struct rq *rq = cpu_rq(dead_cpu); |
dd41f596 | 5702 | struct task_struct *next; |
48f24c4d | 5703 | |
dd41f596 IM |
5704 | for ( ; ; ) { |
5705 | if (!rq->nr_running) | |
5706 | break; | |
b67802ea | 5707 | next = pick_next_task(rq); |
dd41f596 IM |
5708 | if (!next) |
5709 | break; | |
79c53799 | 5710 | next->sched_class->put_prev_task(rq, next); |
dd41f596 | 5711 | migrate_dead(dead_cpu, next); |
e692ab53 | 5712 | |
1da177e4 LT |
5713 | } |
5714 | } | |
dce48a84 TG |
5715 | |
5716 | /* | |
5717 | * remove the tasks which were accounted by rq from calc_load_tasks. | |
5718 | */ | |
5719 | static void calc_global_load_remove(struct rq *rq) | |
5720 | { | |
5721 | atomic_long_sub(rq->calc_load_active, &calc_load_tasks); | |
a468d389 | 5722 | rq->calc_load_active = 0; |
dce48a84 | 5723 | } |
1da177e4 LT |
5724 | #endif /* CONFIG_HOTPLUG_CPU */ |
5725 | ||
e692ab53 NP |
5726 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
5727 | ||
5728 | static struct ctl_table sd_ctl_dir[] = { | |
e0361851 AD |
5729 | { |
5730 | .procname = "sched_domain", | |
c57baf1e | 5731 | .mode = 0555, |
e0361851 | 5732 | }, |
56992309 | 5733 | {} |
e692ab53 NP |
5734 | }; |
5735 | ||
5736 | static struct ctl_table sd_ctl_root[] = { | |
e0361851 AD |
5737 | { |
5738 | .procname = "kernel", | |
c57baf1e | 5739 | .mode = 0555, |
e0361851 AD |
5740 | .child = sd_ctl_dir, |
5741 | }, | |
56992309 | 5742 | {} |
e692ab53 NP |
5743 | }; |
5744 | ||
5745 | static struct ctl_table *sd_alloc_ctl_entry(int n) | |
5746 | { | |
5747 | struct ctl_table *entry = | |
5cf9f062 | 5748 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
e692ab53 | 5749 | |
e692ab53 NP |
5750 | return entry; |
5751 | } | |
5752 | ||
6382bc90 MM |
5753 | static void sd_free_ctl_entry(struct ctl_table **tablep) |
5754 | { | |
cd790076 | 5755 | struct ctl_table *entry; |
6382bc90 | 5756 | |
cd790076 MM |
5757 | /* |
5758 | * In the intermediate directories, both the child directory and | |
5759 | * procname are dynamically allocated and could fail but the mode | |
41a2d6cf | 5760 | * will always be set. In the lowest directory the names are |
cd790076 MM |
5761 | * static strings and all have proc handlers. |
5762 | */ | |
5763 | for (entry = *tablep; entry->mode; entry++) { | |
6382bc90 MM |
5764 | if (entry->child) |
5765 | sd_free_ctl_entry(&entry->child); | |
cd790076 MM |
5766 | if (entry->proc_handler == NULL) |
5767 | kfree(entry->procname); | |
5768 | } | |
6382bc90 MM |
5769 | |
5770 | kfree(*tablep); | |
5771 | *tablep = NULL; | |
5772 | } | |
5773 | ||
e692ab53 | 5774 | static void |
e0361851 | 5775 | set_table_entry(struct ctl_table *entry, |
e692ab53 NP |
5776 | const char *procname, void *data, int maxlen, |
5777 | mode_t mode, proc_handler *proc_handler) | |
5778 | { | |
e692ab53 NP |
5779 | entry->procname = procname; |
5780 | entry->data = data; | |
5781 | entry->maxlen = maxlen; | |
5782 | entry->mode = mode; | |
5783 | entry->proc_handler = proc_handler; | |
5784 | } | |
5785 | ||
5786 | static struct ctl_table * | |
5787 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | |
5788 | { | |
a5d8c348 | 5789 | struct ctl_table *table = sd_alloc_ctl_entry(13); |
e692ab53 | 5790 | |
ad1cdc1d MM |
5791 | if (table == NULL) |
5792 | return NULL; | |
5793 | ||
e0361851 | 5794 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
e692ab53 | 5795 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 5796 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
e692ab53 | 5797 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 5798 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
e692ab53 | 5799 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5800 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
e692ab53 | 5801 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5802 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
e692ab53 | 5803 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5804 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
e692ab53 | 5805 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5806 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
e692ab53 | 5807 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5808 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
e692ab53 | 5809 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5810 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
e692ab53 | 5811 | sizeof(int), 0644, proc_dointvec_minmax); |
ace8b3d6 | 5812 | set_table_entry(&table[9], "cache_nice_tries", |
e692ab53 NP |
5813 | &sd->cache_nice_tries, |
5814 | sizeof(int), 0644, proc_dointvec_minmax); | |
ace8b3d6 | 5815 | set_table_entry(&table[10], "flags", &sd->flags, |
e692ab53 | 5816 | sizeof(int), 0644, proc_dointvec_minmax); |
a5d8c348 IM |
5817 | set_table_entry(&table[11], "name", sd->name, |
5818 | CORENAME_MAX_SIZE, 0444, proc_dostring); | |
5819 | /* &table[12] is terminator */ | |
e692ab53 NP |
5820 | |
5821 | return table; | |
5822 | } | |
5823 | ||
9a4e7159 | 5824 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
e692ab53 NP |
5825 | { |
5826 | struct ctl_table *entry, *table; | |
5827 | struct sched_domain *sd; | |
5828 | int domain_num = 0, i; | |
5829 | char buf[32]; | |
5830 | ||
5831 | for_each_domain(cpu, sd) | |
5832 | domain_num++; | |
5833 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | |
ad1cdc1d MM |
5834 | if (table == NULL) |
5835 | return NULL; | |
e692ab53 NP |
5836 | |
5837 | i = 0; | |
5838 | for_each_domain(cpu, sd) { | |
5839 | snprintf(buf, 32, "domain%d", i); | |
e692ab53 | 5840 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 5841 | entry->mode = 0555; |
e692ab53 NP |
5842 | entry->child = sd_alloc_ctl_domain_table(sd); |
5843 | entry++; | |
5844 | i++; | |
5845 | } | |
5846 | return table; | |
5847 | } | |
5848 | ||
5849 | static struct ctl_table_header *sd_sysctl_header; | |
6382bc90 | 5850 | static void register_sched_domain_sysctl(void) |
e692ab53 | 5851 | { |
6ad4c188 | 5852 | int i, cpu_num = num_possible_cpus(); |
e692ab53 NP |
5853 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
5854 | char buf[32]; | |
5855 | ||
7378547f MM |
5856 | WARN_ON(sd_ctl_dir[0].child); |
5857 | sd_ctl_dir[0].child = entry; | |
5858 | ||
ad1cdc1d MM |
5859 | if (entry == NULL) |
5860 | return; | |
5861 | ||
6ad4c188 | 5862 | for_each_possible_cpu(i) { |
e692ab53 | 5863 | snprintf(buf, 32, "cpu%d", i); |
e692ab53 | 5864 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 5865 | entry->mode = 0555; |
e692ab53 | 5866 | entry->child = sd_alloc_ctl_cpu_table(i); |
97b6ea7b | 5867 | entry++; |
e692ab53 | 5868 | } |
7378547f MM |
5869 | |
5870 | WARN_ON(sd_sysctl_header); | |
e692ab53 NP |
5871 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
5872 | } | |
6382bc90 | 5873 | |
7378547f | 5874 | /* may be called multiple times per register */ |
6382bc90 MM |
5875 | static void unregister_sched_domain_sysctl(void) |
5876 | { | |
7378547f MM |
5877 | if (sd_sysctl_header) |
5878 | unregister_sysctl_table(sd_sysctl_header); | |
6382bc90 | 5879 | sd_sysctl_header = NULL; |
7378547f MM |
5880 | if (sd_ctl_dir[0].child) |
5881 | sd_free_ctl_entry(&sd_ctl_dir[0].child); | |
6382bc90 | 5882 | } |
e692ab53 | 5883 | #else |
6382bc90 MM |
5884 | static void register_sched_domain_sysctl(void) |
5885 | { | |
5886 | } | |
5887 | static void unregister_sched_domain_sysctl(void) | |
e692ab53 NP |
5888 | { |
5889 | } | |
5890 | #endif | |
5891 | ||
1f11eb6a GH |
5892 | static void set_rq_online(struct rq *rq) |
5893 | { | |
5894 | if (!rq->online) { | |
5895 | const struct sched_class *class; | |
5896 | ||
c6c4927b | 5897 | cpumask_set_cpu(rq->cpu, rq->rd->online); |
1f11eb6a GH |
5898 | rq->online = 1; |
5899 | ||
5900 | for_each_class(class) { | |
5901 | if (class->rq_online) | |
5902 | class->rq_online(rq); | |
5903 | } | |
5904 | } | |
5905 | } | |
5906 | ||
5907 | static void set_rq_offline(struct rq *rq) | |
5908 | { | |
5909 | if (rq->online) { | |
5910 | const struct sched_class *class; | |
5911 | ||
5912 | for_each_class(class) { | |
5913 | if (class->rq_offline) | |
5914 | class->rq_offline(rq); | |
5915 | } | |
5916 | ||
c6c4927b | 5917 | cpumask_clear_cpu(rq->cpu, rq->rd->online); |
1f11eb6a GH |
5918 | rq->online = 0; |
5919 | } | |
5920 | } | |
5921 | ||
1da177e4 LT |
5922 | /* |
5923 | * migration_call - callback that gets triggered when a CPU is added. | |
5924 | * Here we can start up the necessary migration thread for the new CPU. | |
5925 | */ | |
48f24c4d IM |
5926 | static int __cpuinit |
5927 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1da177e4 | 5928 | { |
48f24c4d | 5929 | int cpu = (long)hcpu; |
1da177e4 | 5930 | unsigned long flags; |
969c7921 | 5931 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
5932 | |
5933 | switch (action) { | |
5be9361c | 5934 | |
1da177e4 | 5935 | case CPU_UP_PREPARE: |
8bb78442 | 5936 | case CPU_UP_PREPARE_FROZEN: |
a468d389 | 5937 | rq->calc_load_update = calc_load_update; |
1da177e4 | 5938 | break; |
48f24c4d | 5939 | |
1da177e4 | 5940 | case CPU_ONLINE: |
8bb78442 | 5941 | case CPU_ONLINE_FROZEN: |
1f94ef59 | 5942 | /* Update our root-domain */ |
05fa785c | 5943 | raw_spin_lock_irqsave(&rq->lock, flags); |
1f94ef59 | 5944 | if (rq->rd) { |
c6c4927b | 5945 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
1f11eb6a GH |
5946 | |
5947 | set_rq_online(rq); | |
1f94ef59 | 5948 | } |
05fa785c | 5949 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1da177e4 | 5950 | break; |
48f24c4d | 5951 | |
1da177e4 | 5952 | #ifdef CONFIG_HOTPLUG_CPU |
1da177e4 | 5953 | case CPU_DEAD: |
8bb78442 | 5954 | case CPU_DEAD_FROZEN: |
1da177e4 | 5955 | migrate_live_tasks(cpu); |
1da177e4 | 5956 | /* Idle task back to normal (off runqueue, low prio) */ |
05fa785c | 5957 | raw_spin_lock_irq(&rq->lock); |
2e1cb74a | 5958 | deactivate_task(rq, rq->idle, 0); |
dd41f596 IM |
5959 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
5960 | rq->idle->sched_class = &idle_sched_class; | |
1da177e4 | 5961 | migrate_dead_tasks(cpu); |
05fa785c | 5962 | raw_spin_unlock_irq(&rq->lock); |
1da177e4 LT |
5963 | migrate_nr_uninterruptible(rq); |
5964 | BUG_ON(rq->nr_running != 0); | |
dce48a84 | 5965 | calc_global_load_remove(rq); |
1da177e4 | 5966 | break; |
57d885fe | 5967 | |
08f503b0 GH |
5968 | case CPU_DYING: |
5969 | case CPU_DYING_FROZEN: | |
57d885fe | 5970 | /* Update our root-domain */ |
05fa785c | 5971 | raw_spin_lock_irqsave(&rq->lock, flags); |
57d885fe | 5972 | if (rq->rd) { |
c6c4927b | 5973 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
1f11eb6a | 5974 | set_rq_offline(rq); |
57d885fe | 5975 | } |
05fa785c | 5976 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
57d885fe | 5977 | break; |
1da177e4 LT |
5978 | #endif |
5979 | } | |
5980 | return NOTIFY_OK; | |
5981 | } | |
5982 | ||
f38b0820 PM |
5983 | /* |
5984 | * Register at high priority so that task migration (migrate_all_tasks) | |
5985 | * happens before everything else. This has to be lower priority than | |
cdd6c482 | 5986 | * the notifier in the perf_event subsystem, though. |
1da177e4 | 5987 | */ |
26c2143b | 5988 | static struct notifier_block __cpuinitdata migration_notifier = { |
1da177e4 | 5989 | .notifier_call = migration_call, |
50a323b7 | 5990 | .priority = CPU_PRI_MIGRATION, |
1da177e4 LT |
5991 | }; |
5992 | ||
3a101d05 TH |
5993 | static int __cpuinit sched_cpu_active(struct notifier_block *nfb, |
5994 | unsigned long action, void *hcpu) | |
5995 | { | |
5996 | switch (action & ~CPU_TASKS_FROZEN) { | |
5997 | case CPU_ONLINE: | |
5998 | case CPU_DOWN_FAILED: | |
5999 | set_cpu_active((long)hcpu, true); | |
6000 | return NOTIFY_OK; | |
6001 | default: | |
6002 | return NOTIFY_DONE; | |
6003 | } | |
6004 | } | |
6005 | ||
6006 | static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, | |
6007 | unsigned long action, void *hcpu) | |
6008 | { | |
6009 | switch (action & ~CPU_TASKS_FROZEN) { | |
6010 | case CPU_DOWN_PREPARE: | |
6011 | set_cpu_active((long)hcpu, false); | |
6012 | return NOTIFY_OK; | |
6013 | default: | |
6014 | return NOTIFY_DONE; | |
6015 | } | |
6016 | } | |
6017 | ||
7babe8db | 6018 | static int __init migration_init(void) |
1da177e4 LT |
6019 | { |
6020 | void *cpu = (void *)(long)smp_processor_id(); | |
07dccf33 | 6021 | int err; |
48f24c4d | 6022 | |
3a101d05 | 6023 | /* Initialize migration for the boot CPU */ |
07dccf33 AM |
6024 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
6025 | BUG_ON(err == NOTIFY_BAD); | |
1da177e4 LT |
6026 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
6027 | register_cpu_notifier(&migration_notifier); | |
7babe8db | 6028 | |
3a101d05 TH |
6029 | /* Register cpu active notifiers */ |
6030 | cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); | |
6031 | cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); | |
6032 | ||
a004cd42 | 6033 | return 0; |
1da177e4 | 6034 | } |
7babe8db | 6035 | early_initcall(migration_init); |
1da177e4 LT |
6036 | #endif |
6037 | ||
6038 | #ifdef CONFIG_SMP | |
476f3534 | 6039 | |
3e9830dc | 6040 | #ifdef CONFIG_SCHED_DEBUG |
4dcf6aff | 6041 | |
f6630114 MT |
6042 | static __read_mostly int sched_domain_debug_enabled; |
6043 | ||
6044 | static int __init sched_domain_debug_setup(char *str) | |
6045 | { | |
6046 | sched_domain_debug_enabled = 1; | |
6047 | ||
6048 | return 0; | |
6049 | } | |
6050 | early_param("sched_debug", sched_domain_debug_setup); | |
6051 | ||
7c16ec58 | 6052 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
96f874e2 | 6053 | struct cpumask *groupmask) |
1da177e4 | 6054 | { |
4dcf6aff | 6055 | struct sched_group *group = sd->groups; |
434d53b0 | 6056 | char str[256]; |
1da177e4 | 6057 | |
968ea6d8 | 6058 | cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); |
96f874e2 | 6059 | cpumask_clear(groupmask); |
4dcf6aff IM |
6060 | |
6061 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | |
6062 | ||
6063 | if (!(sd->flags & SD_LOAD_BALANCE)) { | |
3df0fc5b | 6064 | printk("does not load-balance\n"); |
4dcf6aff | 6065 | if (sd->parent) |
3df0fc5b PZ |
6066 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" |
6067 | " has parent"); | |
4dcf6aff | 6068 | return -1; |
41c7ce9a NP |
6069 | } |
6070 | ||
3df0fc5b | 6071 | printk(KERN_CONT "span %s level %s\n", str, sd->name); |
4dcf6aff | 6072 | |
758b2cdc | 6073 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
3df0fc5b PZ |
6074 | printk(KERN_ERR "ERROR: domain->span does not contain " |
6075 | "CPU%d\n", cpu); | |
4dcf6aff | 6076 | } |
758b2cdc | 6077 | if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { |
3df0fc5b PZ |
6078 | printk(KERN_ERR "ERROR: domain->groups does not contain" |
6079 | " CPU%d\n", cpu); | |
4dcf6aff | 6080 | } |
1da177e4 | 6081 | |
4dcf6aff | 6082 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
1da177e4 | 6083 | do { |
4dcf6aff | 6084 | if (!group) { |
3df0fc5b PZ |
6085 | printk("\n"); |
6086 | printk(KERN_ERR "ERROR: group is NULL\n"); | |
1da177e4 LT |
6087 | break; |
6088 | } | |
6089 | ||
18a3885f | 6090 | if (!group->cpu_power) { |
3df0fc5b PZ |
6091 | printk(KERN_CONT "\n"); |
6092 | printk(KERN_ERR "ERROR: domain->cpu_power not " | |
6093 | "set\n"); | |
4dcf6aff IM |
6094 | break; |
6095 | } | |
1da177e4 | 6096 | |
758b2cdc | 6097 | if (!cpumask_weight(sched_group_cpus(group))) { |
3df0fc5b PZ |
6098 | printk(KERN_CONT "\n"); |
6099 | printk(KERN_ERR "ERROR: empty group\n"); | |
4dcf6aff IM |
6100 | break; |
6101 | } | |
1da177e4 | 6102 | |
758b2cdc | 6103 | if (cpumask_intersects(groupmask, sched_group_cpus(group))) { |
3df0fc5b PZ |
6104 | printk(KERN_CONT "\n"); |
6105 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | |
4dcf6aff IM |
6106 | break; |
6107 | } | |
1da177e4 | 6108 | |
758b2cdc | 6109 | cpumask_or(groupmask, groupmask, sched_group_cpus(group)); |
1da177e4 | 6110 | |
968ea6d8 | 6111 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
381512cf | 6112 | |
3df0fc5b | 6113 | printk(KERN_CONT " %s", str); |
18a3885f | 6114 | if (group->cpu_power != SCHED_LOAD_SCALE) { |
3df0fc5b PZ |
6115 | printk(KERN_CONT " (cpu_power = %d)", |
6116 | group->cpu_power); | |
381512cf | 6117 | } |
1da177e4 | 6118 | |
4dcf6aff IM |
6119 | group = group->next; |
6120 | } while (group != sd->groups); | |
3df0fc5b | 6121 | printk(KERN_CONT "\n"); |
1da177e4 | 6122 | |
758b2cdc | 6123 | if (!cpumask_equal(sched_domain_span(sd), groupmask)) |
3df0fc5b | 6124 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
1da177e4 | 6125 | |
758b2cdc RR |
6126 | if (sd->parent && |
6127 | !cpumask_subset(groupmask, sched_domain_span(sd->parent))) | |
3df0fc5b PZ |
6128 | printk(KERN_ERR "ERROR: parent span is not a superset " |
6129 | "of domain->span\n"); | |
4dcf6aff IM |
6130 | return 0; |
6131 | } | |
1da177e4 | 6132 | |
4dcf6aff IM |
6133 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
6134 | { | |
d5dd3db1 | 6135 | cpumask_var_t groupmask; |
4dcf6aff | 6136 | int level = 0; |
1da177e4 | 6137 | |
f6630114 MT |
6138 | if (!sched_domain_debug_enabled) |
6139 | return; | |
6140 | ||
4dcf6aff IM |
6141 | if (!sd) { |
6142 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | |
6143 | return; | |
6144 | } | |
1da177e4 | 6145 | |
4dcf6aff IM |
6146 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
6147 | ||
d5dd3db1 | 6148 | if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { |
7c16ec58 MT |
6149 | printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); |
6150 | return; | |
6151 | } | |
6152 | ||
4dcf6aff | 6153 | for (;;) { |
7c16ec58 | 6154 | if (sched_domain_debug_one(sd, cpu, level, groupmask)) |
4dcf6aff | 6155 | break; |
1da177e4 LT |
6156 | level++; |
6157 | sd = sd->parent; | |
33859f7f | 6158 | if (!sd) |
4dcf6aff IM |
6159 | break; |
6160 | } | |
d5dd3db1 | 6161 | free_cpumask_var(groupmask); |
1da177e4 | 6162 | } |
6d6bc0ad | 6163 | #else /* !CONFIG_SCHED_DEBUG */ |
48f24c4d | 6164 | # define sched_domain_debug(sd, cpu) do { } while (0) |
6d6bc0ad | 6165 | #endif /* CONFIG_SCHED_DEBUG */ |
1da177e4 | 6166 | |
1a20ff27 | 6167 | static int sd_degenerate(struct sched_domain *sd) |
245af2c7 | 6168 | { |
758b2cdc | 6169 | if (cpumask_weight(sched_domain_span(sd)) == 1) |
245af2c7 SS |
6170 | return 1; |
6171 | ||
6172 | /* Following flags need at least 2 groups */ | |
6173 | if (sd->flags & (SD_LOAD_BALANCE | | |
6174 | SD_BALANCE_NEWIDLE | | |
6175 | SD_BALANCE_FORK | | |
89c4710e SS |
6176 | SD_BALANCE_EXEC | |
6177 | SD_SHARE_CPUPOWER | | |
6178 | SD_SHARE_PKG_RESOURCES)) { | |
245af2c7 SS |
6179 | if (sd->groups != sd->groups->next) |
6180 | return 0; | |
6181 | } | |
6182 | ||
6183 | /* Following flags don't use groups */ | |
c88d5910 | 6184 | if (sd->flags & (SD_WAKE_AFFINE)) |
245af2c7 SS |
6185 | return 0; |
6186 | ||
6187 | return 1; | |
6188 | } | |
6189 | ||
48f24c4d IM |
6190 | static int |
6191 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |
245af2c7 SS |
6192 | { |
6193 | unsigned long cflags = sd->flags, pflags = parent->flags; | |
6194 | ||
6195 | if (sd_degenerate(parent)) | |
6196 | return 1; | |
6197 | ||
758b2cdc | 6198 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
245af2c7 SS |
6199 | return 0; |
6200 | ||
245af2c7 SS |
6201 | /* Flags needing groups don't count if only 1 group in parent */ |
6202 | if (parent->groups == parent->groups->next) { | |
6203 | pflags &= ~(SD_LOAD_BALANCE | | |
6204 | SD_BALANCE_NEWIDLE | | |
6205 | SD_BALANCE_FORK | | |
89c4710e SS |
6206 | SD_BALANCE_EXEC | |
6207 | SD_SHARE_CPUPOWER | | |
6208 | SD_SHARE_PKG_RESOURCES); | |
5436499e KC |
6209 | if (nr_node_ids == 1) |
6210 | pflags &= ~SD_SERIALIZE; | |
245af2c7 SS |
6211 | } |
6212 | if (~cflags & pflags) | |
6213 | return 0; | |
6214 | ||
6215 | return 1; | |
6216 | } | |
6217 | ||
c6c4927b RR |
6218 | static void free_rootdomain(struct root_domain *rd) |
6219 | { | |
047106ad PZ |
6220 | synchronize_sched(); |
6221 | ||
68e74568 RR |
6222 | cpupri_cleanup(&rd->cpupri); |
6223 | ||
c6c4927b RR |
6224 | free_cpumask_var(rd->rto_mask); |
6225 | free_cpumask_var(rd->online); | |
6226 | free_cpumask_var(rd->span); | |
6227 | kfree(rd); | |
6228 | } | |
6229 | ||
57d885fe GH |
6230 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
6231 | { | |
a0490fa3 | 6232 | struct root_domain *old_rd = NULL; |
57d885fe | 6233 | unsigned long flags; |
57d885fe | 6234 | |
05fa785c | 6235 | raw_spin_lock_irqsave(&rq->lock, flags); |
57d885fe GH |
6236 | |
6237 | if (rq->rd) { | |
a0490fa3 | 6238 | old_rd = rq->rd; |
57d885fe | 6239 | |
c6c4927b | 6240 | if (cpumask_test_cpu(rq->cpu, old_rd->online)) |
1f11eb6a | 6241 | set_rq_offline(rq); |
57d885fe | 6242 | |
c6c4927b | 6243 | cpumask_clear_cpu(rq->cpu, old_rd->span); |
dc938520 | 6244 | |
a0490fa3 IM |
6245 | /* |
6246 | * If we dont want to free the old_rt yet then | |
6247 | * set old_rd to NULL to skip the freeing later | |
6248 | * in this function: | |
6249 | */ | |
6250 | if (!atomic_dec_and_test(&old_rd->refcount)) | |
6251 | old_rd = NULL; | |
57d885fe GH |
6252 | } |
6253 | ||
6254 | atomic_inc(&rd->refcount); | |
6255 | rq->rd = rd; | |
6256 | ||
c6c4927b | 6257 | cpumask_set_cpu(rq->cpu, rd->span); |
00aec93d | 6258 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
1f11eb6a | 6259 | set_rq_online(rq); |
57d885fe | 6260 | |
05fa785c | 6261 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
a0490fa3 IM |
6262 | |
6263 | if (old_rd) | |
6264 | free_rootdomain(old_rd); | |
57d885fe GH |
6265 | } |
6266 | ||
68c38fc3 | 6267 | static int init_rootdomain(struct root_domain *rd) |
57d885fe GH |
6268 | { |
6269 | memset(rd, 0, sizeof(*rd)); | |
6270 | ||
68c38fc3 | 6271 | if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) |
0c910d28 | 6272 | goto out; |
68c38fc3 | 6273 | if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) |
c6c4927b | 6274 | goto free_span; |
68c38fc3 | 6275 | if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) |
c6c4927b | 6276 | goto free_online; |
6e0534f2 | 6277 | |
68c38fc3 | 6278 | if (cpupri_init(&rd->cpupri) != 0) |
68e74568 | 6279 | goto free_rto_mask; |
c6c4927b | 6280 | return 0; |
6e0534f2 | 6281 | |
68e74568 RR |
6282 | free_rto_mask: |
6283 | free_cpumask_var(rd->rto_mask); | |
c6c4927b RR |
6284 | free_online: |
6285 | free_cpumask_var(rd->online); | |
6286 | free_span: | |
6287 | free_cpumask_var(rd->span); | |
0c910d28 | 6288 | out: |
c6c4927b | 6289 | return -ENOMEM; |
57d885fe GH |
6290 | } |
6291 | ||
6292 | static void init_defrootdomain(void) | |
6293 | { | |
68c38fc3 | 6294 | init_rootdomain(&def_root_domain); |
c6c4927b | 6295 | |
57d885fe GH |
6296 | atomic_set(&def_root_domain.refcount, 1); |
6297 | } | |
6298 | ||
dc938520 | 6299 | static struct root_domain *alloc_rootdomain(void) |
57d885fe GH |
6300 | { |
6301 | struct root_domain *rd; | |
6302 | ||
6303 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | |
6304 | if (!rd) | |
6305 | return NULL; | |
6306 | ||
68c38fc3 | 6307 | if (init_rootdomain(rd) != 0) { |
c6c4927b RR |
6308 | kfree(rd); |
6309 | return NULL; | |
6310 | } | |
57d885fe GH |
6311 | |
6312 | return rd; | |
6313 | } | |
6314 | ||
1da177e4 | 6315 | /* |
0eab9146 | 6316 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
1da177e4 LT |
6317 | * hold the hotplug lock. |
6318 | */ | |
0eab9146 IM |
6319 | static void |
6320 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |
1da177e4 | 6321 | { |
70b97a7f | 6322 | struct rq *rq = cpu_rq(cpu); |
245af2c7 SS |
6323 | struct sched_domain *tmp; |
6324 | ||
669c55e9 PZ |
6325 | for (tmp = sd; tmp; tmp = tmp->parent) |
6326 | tmp->span_weight = cpumask_weight(sched_domain_span(tmp)); | |
6327 | ||
245af2c7 | 6328 | /* Remove the sched domains which do not contribute to scheduling. */ |
f29c9b1c | 6329 | for (tmp = sd; tmp; ) { |
245af2c7 SS |
6330 | struct sched_domain *parent = tmp->parent; |
6331 | if (!parent) | |
6332 | break; | |
f29c9b1c | 6333 | |
1a848870 | 6334 | if (sd_parent_degenerate(tmp, parent)) { |
245af2c7 | 6335 | tmp->parent = parent->parent; |
1a848870 SS |
6336 | if (parent->parent) |
6337 | parent->parent->child = tmp; | |
f29c9b1c LZ |
6338 | } else |
6339 | tmp = tmp->parent; | |
245af2c7 SS |
6340 | } |
6341 | ||
1a848870 | 6342 | if (sd && sd_degenerate(sd)) { |
245af2c7 | 6343 | sd = sd->parent; |
1a848870 SS |
6344 | if (sd) |
6345 | sd->child = NULL; | |
6346 | } | |
1da177e4 LT |
6347 | |
6348 | sched_domain_debug(sd, cpu); | |
6349 | ||
57d885fe | 6350 | rq_attach_root(rq, rd); |
674311d5 | 6351 | rcu_assign_pointer(rq->sd, sd); |
1da177e4 LT |
6352 | } |
6353 | ||
6354 | /* cpus with isolated domains */ | |
dcc30a35 | 6355 | static cpumask_var_t cpu_isolated_map; |
1da177e4 LT |
6356 | |
6357 | /* Setup the mask of cpus configured for isolated domains */ | |
6358 | static int __init isolated_cpu_setup(char *str) | |
6359 | { | |
bdddd296 | 6360 | alloc_bootmem_cpumask_var(&cpu_isolated_map); |
968ea6d8 | 6361 | cpulist_parse(str, cpu_isolated_map); |
1da177e4 LT |
6362 | return 1; |
6363 | } | |
6364 | ||
8927f494 | 6365 | __setup("isolcpus=", isolated_cpu_setup); |
1da177e4 LT |
6366 | |
6367 | /* | |
6711cab4 SS |
6368 | * init_sched_build_groups takes the cpumask we wish to span, and a pointer |
6369 | * to a function which identifies what group(along with sched group) a CPU | |
96f874e2 RR |
6370 | * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids |
6371 | * (due to the fact that we keep track of groups covered with a struct cpumask). | |
1da177e4 LT |
6372 | * |
6373 | * init_sched_build_groups will build a circular linked list of the groups | |
6374 | * covered by the given span, and will set each group's ->cpumask correctly, | |
6375 | * and ->cpu_power to 0. | |
6376 | */ | |
a616058b | 6377 | static void |
96f874e2 RR |
6378 | init_sched_build_groups(const struct cpumask *span, |
6379 | const struct cpumask *cpu_map, | |
6380 | int (*group_fn)(int cpu, const struct cpumask *cpu_map, | |
7c16ec58 | 6381 | struct sched_group **sg, |
96f874e2 RR |
6382 | struct cpumask *tmpmask), |
6383 | struct cpumask *covered, struct cpumask *tmpmask) | |
1da177e4 LT |
6384 | { |
6385 | struct sched_group *first = NULL, *last = NULL; | |
1da177e4 LT |
6386 | int i; |
6387 | ||
96f874e2 | 6388 | cpumask_clear(covered); |
7c16ec58 | 6389 | |
abcd083a | 6390 | for_each_cpu(i, span) { |
6711cab4 | 6391 | struct sched_group *sg; |
7c16ec58 | 6392 | int group = group_fn(i, cpu_map, &sg, tmpmask); |
1da177e4 LT |
6393 | int j; |
6394 | ||
758b2cdc | 6395 | if (cpumask_test_cpu(i, covered)) |
1da177e4 LT |
6396 | continue; |
6397 | ||
758b2cdc | 6398 | cpumask_clear(sched_group_cpus(sg)); |
18a3885f | 6399 | sg->cpu_power = 0; |
1da177e4 | 6400 | |
abcd083a | 6401 | for_each_cpu(j, span) { |
7c16ec58 | 6402 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) |
1da177e4 LT |
6403 | continue; |
6404 | ||
96f874e2 | 6405 | cpumask_set_cpu(j, covered); |
758b2cdc | 6406 | cpumask_set_cpu(j, sched_group_cpus(sg)); |
1da177e4 LT |
6407 | } |
6408 | if (!first) | |
6409 | first = sg; | |
6410 | if (last) | |
6411 | last->next = sg; | |
6412 | last = sg; | |
6413 | } | |
6414 | last->next = first; | |
6415 | } | |
6416 | ||
9c1cfda2 | 6417 | #define SD_NODES_PER_DOMAIN 16 |
1da177e4 | 6418 | |
9c1cfda2 | 6419 | #ifdef CONFIG_NUMA |
198e2f18 | 6420 | |
9c1cfda2 JH |
6421 | /** |
6422 | * find_next_best_node - find the next node to include in a sched_domain | |
6423 | * @node: node whose sched_domain we're building | |
6424 | * @used_nodes: nodes already in the sched_domain | |
6425 | * | |
41a2d6cf | 6426 | * Find the next node to include in a given scheduling domain. Simply |
9c1cfda2 JH |
6427 | * finds the closest node not already in the @used_nodes map. |
6428 | * | |
6429 | * Should use nodemask_t. | |
6430 | */ | |
c5f59f08 | 6431 | static int find_next_best_node(int node, nodemask_t *used_nodes) |
9c1cfda2 JH |
6432 | { |
6433 | int i, n, val, min_val, best_node = 0; | |
6434 | ||
6435 | min_val = INT_MAX; | |
6436 | ||
076ac2af | 6437 | for (i = 0; i < nr_node_ids; i++) { |
9c1cfda2 | 6438 | /* Start at @node */ |
076ac2af | 6439 | n = (node + i) % nr_node_ids; |
9c1cfda2 JH |
6440 | |
6441 | if (!nr_cpus_node(n)) | |
6442 | continue; | |
6443 | ||
6444 | /* Skip already used nodes */ | |
c5f59f08 | 6445 | if (node_isset(n, *used_nodes)) |
9c1cfda2 JH |
6446 | continue; |
6447 | ||
6448 | /* Simple min distance search */ | |
6449 | val = node_distance(node, n); | |
6450 | ||
6451 | if (val < min_val) { | |
6452 | min_val = val; | |
6453 | best_node = n; | |
6454 | } | |
6455 | } | |
6456 | ||
c5f59f08 | 6457 | node_set(best_node, *used_nodes); |
9c1cfda2 JH |
6458 | return best_node; |
6459 | } | |
6460 | ||
6461 | /** | |
6462 | * sched_domain_node_span - get a cpumask for a node's sched_domain | |
6463 | * @node: node whose cpumask we're constructing | |
73486722 | 6464 | * @span: resulting cpumask |
9c1cfda2 | 6465 | * |
41a2d6cf | 6466 | * Given a node, construct a good cpumask for its sched_domain to span. It |
9c1cfda2 JH |
6467 | * should be one that prevents unnecessary balancing, but also spreads tasks |
6468 | * out optimally. | |
6469 | */ | |
96f874e2 | 6470 | static void sched_domain_node_span(int node, struct cpumask *span) |
9c1cfda2 | 6471 | { |
c5f59f08 | 6472 | nodemask_t used_nodes; |
48f24c4d | 6473 | int i; |
9c1cfda2 | 6474 | |
6ca09dfc | 6475 | cpumask_clear(span); |
c5f59f08 | 6476 | nodes_clear(used_nodes); |
9c1cfda2 | 6477 | |
6ca09dfc | 6478 | cpumask_or(span, span, cpumask_of_node(node)); |
c5f59f08 | 6479 | node_set(node, used_nodes); |
9c1cfda2 JH |
6480 | |
6481 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | |
c5f59f08 | 6482 | int next_node = find_next_best_node(node, &used_nodes); |
48f24c4d | 6483 | |
6ca09dfc | 6484 | cpumask_or(span, span, cpumask_of_node(next_node)); |
9c1cfda2 | 6485 | } |
9c1cfda2 | 6486 | } |
6d6bc0ad | 6487 | #endif /* CONFIG_NUMA */ |
9c1cfda2 | 6488 | |
5c45bf27 | 6489 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
48f24c4d | 6490 | |
6c99e9ad RR |
6491 | /* |
6492 | * The cpus mask in sched_group and sched_domain hangs off the end. | |
4200efd9 IM |
6493 | * |
6494 | * ( See the the comments in include/linux/sched.h:struct sched_group | |
6495 | * and struct sched_domain. ) | |
6c99e9ad RR |
6496 | */ |
6497 | struct static_sched_group { | |
6498 | struct sched_group sg; | |
6499 | DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); | |
6500 | }; | |
6501 | ||
6502 | struct static_sched_domain { | |
6503 | struct sched_domain sd; | |
6504 | DECLARE_BITMAP(span, CONFIG_NR_CPUS); | |
6505 | }; | |
6506 | ||
49a02c51 AH |
6507 | struct s_data { |
6508 | #ifdef CONFIG_NUMA | |
6509 | int sd_allnodes; | |
6510 | cpumask_var_t domainspan; | |
6511 | cpumask_var_t covered; | |
6512 | cpumask_var_t notcovered; | |
6513 | #endif | |
6514 | cpumask_var_t nodemask; | |
6515 | cpumask_var_t this_sibling_map; | |
6516 | cpumask_var_t this_core_map; | |
6517 | cpumask_var_t send_covered; | |
6518 | cpumask_var_t tmpmask; | |
6519 | struct sched_group **sched_group_nodes; | |
6520 | struct root_domain *rd; | |
6521 | }; | |
6522 | ||
2109b99e AH |
6523 | enum s_alloc { |
6524 | sa_sched_groups = 0, | |
6525 | sa_rootdomain, | |
6526 | sa_tmpmask, | |
6527 | sa_send_covered, | |
6528 | sa_this_core_map, | |
6529 | sa_this_sibling_map, | |
6530 | sa_nodemask, | |
6531 | sa_sched_group_nodes, | |
6532 | #ifdef CONFIG_NUMA | |
6533 | sa_notcovered, | |
6534 | sa_covered, | |
6535 | sa_domainspan, | |
6536 | #endif | |
6537 | sa_none, | |
6538 | }; | |
6539 | ||
9c1cfda2 | 6540 | /* |
48f24c4d | 6541 | * SMT sched-domains: |
9c1cfda2 | 6542 | */ |
1da177e4 | 6543 | #ifdef CONFIG_SCHED_SMT |
6c99e9ad | 6544 | static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); |
1871e52c | 6545 | static DEFINE_PER_CPU(struct static_sched_group, sched_groups); |
48f24c4d | 6546 | |
41a2d6cf | 6547 | static int |
96f874e2 RR |
6548 | cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, |
6549 | struct sched_group **sg, struct cpumask *unused) | |
1da177e4 | 6550 | { |
6711cab4 | 6551 | if (sg) |
1871e52c | 6552 | *sg = &per_cpu(sched_groups, cpu).sg; |
1da177e4 LT |
6553 | return cpu; |
6554 | } | |
6d6bc0ad | 6555 | #endif /* CONFIG_SCHED_SMT */ |
1da177e4 | 6556 | |
48f24c4d IM |
6557 | /* |
6558 | * multi-core sched-domains: | |
6559 | */ | |
1e9f28fa | 6560 | #ifdef CONFIG_SCHED_MC |
6c99e9ad RR |
6561 | static DEFINE_PER_CPU(struct static_sched_domain, core_domains); |
6562 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); | |
6d6bc0ad | 6563 | #endif /* CONFIG_SCHED_MC */ |
1e9f28fa SS |
6564 | |
6565 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | |
41a2d6cf | 6566 | static int |
96f874e2 RR |
6567 | cpu_to_core_group(int cpu, const struct cpumask *cpu_map, |
6568 | struct sched_group **sg, struct cpumask *mask) | |
1e9f28fa | 6569 | { |
6711cab4 | 6570 | int group; |
7c16ec58 | 6571 | |
c69fc56d | 6572 | cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); |
96f874e2 | 6573 | group = cpumask_first(mask); |
6711cab4 | 6574 | if (sg) |
6c99e9ad | 6575 | *sg = &per_cpu(sched_group_core, group).sg; |
6711cab4 | 6576 | return group; |
1e9f28fa SS |
6577 | } |
6578 | #elif defined(CONFIG_SCHED_MC) | |
41a2d6cf | 6579 | static int |
96f874e2 RR |
6580 | cpu_to_core_group(int cpu, const struct cpumask *cpu_map, |
6581 | struct sched_group **sg, struct cpumask *unused) | |
1e9f28fa | 6582 | { |
6711cab4 | 6583 | if (sg) |
6c99e9ad | 6584 | *sg = &per_cpu(sched_group_core, cpu).sg; |
1e9f28fa SS |
6585 | return cpu; |
6586 | } | |
6587 | #endif | |
6588 | ||
6c99e9ad RR |
6589 | static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); |
6590 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); | |
48f24c4d | 6591 | |
41a2d6cf | 6592 | static int |
96f874e2 RR |
6593 | cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, |
6594 | struct sched_group **sg, struct cpumask *mask) | |
1da177e4 | 6595 | { |
6711cab4 | 6596 | int group; |
48f24c4d | 6597 | #ifdef CONFIG_SCHED_MC |
6ca09dfc | 6598 | cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); |
96f874e2 | 6599 | group = cpumask_first(mask); |
1e9f28fa | 6600 | #elif defined(CONFIG_SCHED_SMT) |
c69fc56d | 6601 | cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); |
96f874e2 | 6602 | group = cpumask_first(mask); |
1da177e4 | 6603 | #else |
6711cab4 | 6604 | group = cpu; |
1da177e4 | 6605 | #endif |
6711cab4 | 6606 | if (sg) |
6c99e9ad | 6607 | *sg = &per_cpu(sched_group_phys, group).sg; |
6711cab4 | 6608 | return group; |
1da177e4 LT |
6609 | } |
6610 | ||
6611 | #ifdef CONFIG_NUMA | |
1da177e4 | 6612 | /* |
9c1cfda2 JH |
6613 | * The init_sched_build_groups can't handle what we want to do with node |
6614 | * groups, so roll our own. Now each node has its own list of groups which | |
6615 | * gets dynamically allocated. | |
1da177e4 | 6616 | */ |
62ea9ceb | 6617 | static DEFINE_PER_CPU(struct static_sched_domain, node_domains); |
434d53b0 | 6618 | static struct sched_group ***sched_group_nodes_bycpu; |
1da177e4 | 6619 | |
62ea9ceb | 6620 | static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); |
6c99e9ad | 6621 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); |
9c1cfda2 | 6622 | |
96f874e2 RR |
6623 | static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, |
6624 | struct sched_group **sg, | |
6625 | struct cpumask *nodemask) | |
9c1cfda2 | 6626 | { |
6711cab4 SS |
6627 | int group; |
6628 | ||
6ca09dfc | 6629 | cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); |
96f874e2 | 6630 | group = cpumask_first(nodemask); |
6711cab4 SS |
6631 | |
6632 | if (sg) | |
6c99e9ad | 6633 | *sg = &per_cpu(sched_group_allnodes, group).sg; |
6711cab4 | 6634 | return group; |
1da177e4 | 6635 | } |
6711cab4 | 6636 | |
08069033 SS |
6637 | static void init_numa_sched_groups_power(struct sched_group *group_head) |
6638 | { | |
6639 | struct sched_group *sg = group_head; | |
6640 | int j; | |
6641 | ||
6642 | if (!sg) | |
6643 | return; | |
3a5c359a | 6644 | do { |
758b2cdc | 6645 | for_each_cpu(j, sched_group_cpus(sg)) { |
3a5c359a | 6646 | struct sched_domain *sd; |
08069033 | 6647 | |
6c99e9ad | 6648 | sd = &per_cpu(phys_domains, j).sd; |
13318a71 | 6649 | if (j != group_first_cpu(sd->groups)) { |
3a5c359a AK |
6650 | /* |
6651 | * Only add "power" once for each | |
6652 | * physical package. | |
6653 | */ | |
6654 | continue; | |
6655 | } | |
08069033 | 6656 | |
18a3885f | 6657 | sg->cpu_power += sd->groups->cpu_power; |
3a5c359a AK |
6658 | } |
6659 | sg = sg->next; | |
6660 | } while (sg != group_head); | |
08069033 | 6661 | } |
0601a88d AH |
6662 | |
6663 | static int build_numa_sched_groups(struct s_data *d, | |
6664 | const struct cpumask *cpu_map, int num) | |
6665 | { | |
6666 | struct sched_domain *sd; | |
6667 | struct sched_group *sg, *prev; | |
6668 | int n, j; | |
6669 | ||
6670 | cpumask_clear(d->covered); | |
6671 | cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); | |
6672 | if (cpumask_empty(d->nodemask)) { | |
6673 | d->sched_group_nodes[num] = NULL; | |
6674 | goto out; | |
6675 | } | |
6676 | ||
6677 | sched_domain_node_span(num, d->domainspan); | |
6678 | cpumask_and(d->domainspan, d->domainspan, cpu_map); | |
6679 | ||
6680 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | |
6681 | GFP_KERNEL, num); | |
6682 | if (!sg) { | |
3df0fc5b PZ |
6683 | printk(KERN_WARNING "Can not alloc domain group for node %d\n", |
6684 | num); | |
0601a88d AH |
6685 | return -ENOMEM; |
6686 | } | |
6687 | d->sched_group_nodes[num] = sg; | |
6688 | ||
6689 | for_each_cpu(j, d->nodemask) { | |
6690 | sd = &per_cpu(node_domains, j).sd; | |
6691 | sd->groups = sg; | |
6692 | } | |
6693 | ||
18a3885f | 6694 | sg->cpu_power = 0; |
0601a88d AH |
6695 | cpumask_copy(sched_group_cpus(sg), d->nodemask); |
6696 | sg->next = sg; | |
6697 | cpumask_or(d->covered, d->covered, d->nodemask); | |
6698 | ||
6699 | prev = sg; | |
6700 | for (j = 0; j < nr_node_ids; j++) { | |
6701 | n = (num + j) % nr_node_ids; | |
6702 | cpumask_complement(d->notcovered, d->covered); | |
6703 | cpumask_and(d->tmpmask, d->notcovered, cpu_map); | |
6704 | cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); | |
6705 | if (cpumask_empty(d->tmpmask)) | |
6706 | break; | |
6707 | cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); | |
6708 | if (cpumask_empty(d->tmpmask)) | |
6709 | continue; | |
6710 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | |
6711 | GFP_KERNEL, num); | |
6712 | if (!sg) { | |
3df0fc5b PZ |
6713 | printk(KERN_WARNING |
6714 | "Can not alloc domain group for node %d\n", j); | |
0601a88d AH |
6715 | return -ENOMEM; |
6716 | } | |
18a3885f | 6717 | sg->cpu_power = 0; |
0601a88d AH |
6718 | cpumask_copy(sched_group_cpus(sg), d->tmpmask); |
6719 | sg->next = prev->next; | |
6720 | cpumask_or(d->covered, d->covered, d->tmpmask); | |
6721 | prev->next = sg; | |
6722 | prev = sg; | |
6723 | } | |
6724 | out: | |
6725 | return 0; | |
6726 | } | |
6d6bc0ad | 6727 | #endif /* CONFIG_NUMA */ |
1da177e4 | 6728 | |
a616058b | 6729 | #ifdef CONFIG_NUMA |
51888ca2 | 6730 | /* Free memory allocated for various sched_group structures */ |
96f874e2 RR |
6731 | static void free_sched_groups(const struct cpumask *cpu_map, |
6732 | struct cpumask *nodemask) | |
51888ca2 | 6733 | { |
a616058b | 6734 | int cpu, i; |
51888ca2 | 6735 | |
abcd083a | 6736 | for_each_cpu(cpu, cpu_map) { |
51888ca2 SV |
6737 | struct sched_group **sched_group_nodes |
6738 | = sched_group_nodes_bycpu[cpu]; | |
6739 | ||
51888ca2 SV |
6740 | if (!sched_group_nodes) |
6741 | continue; | |
6742 | ||
076ac2af | 6743 | for (i = 0; i < nr_node_ids; i++) { |
51888ca2 SV |
6744 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; |
6745 | ||
6ca09dfc | 6746 | cpumask_and(nodemask, cpumask_of_node(i), cpu_map); |
96f874e2 | 6747 | if (cpumask_empty(nodemask)) |
51888ca2 SV |
6748 | continue; |
6749 | ||
6750 | if (sg == NULL) | |
6751 | continue; | |
6752 | sg = sg->next; | |
6753 | next_sg: | |
6754 | oldsg = sg; | |
6755 | sg = sg->next; | |
6756 | kfree(oldsg); | |
6757 | if (oldsg != sched_group_nodes[i]) | |
6758 | goto next_sg; | |
6759 | } | |
6760 | kfree(sched_group_nodes); | |
6761 | sched_group_nodes_bycpu[cpu] = NULL; | |
6762 | } | |
51888ca2 | 6763 | } |
6d6bc0ad | 6764 | #else /* !CONFIG_NUMA */ |
96f874e2 RR |
6765 | static void free_sched_groups(const struct cpumask *cpu_map, |
6766 | struct cpumask *nodemask) | |
a616058b SS |
6767 | { |
6768 | } | |
6d6bc0ad | 6769 | #endif /* CONFIG_NUMA */ |
51888ca2 | 6770 | |
89c4710e SS |
6771 | /* |
6772 | * Initialize sched groups cpu_power. | |
6773 | * | |
6774 | * cpu_power indicates the capacity of sched group, which is used while | |
6775 | * distributing the load between different sched groups in a sched domain. | |
6776 | * Typically cpu_power for all the groups in a sched domain will be same unless | |
6777 | * there are asymmetries in the topology. If there are asymmetries, group | |
6778 | * having more cpu_power will pickup more load compared to the group having | |
6779 | * less cpu_power. | |
89c4710e SS |
6780 | */ |
6781 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |
6782 | { | |
6783 | struct sched_domain *child; | |
6784 | struct sched_group *group; | |
f93e65c1 PZ |
6785 | long power; |
6786 | int weight; | |
89c4710e SS |
6787 | |
6788 | WARN_ON(!sd || !sd->groups); | |
6789 | ||
13318a71 | 6790 | if (cpu != group_first_cpu(sd->groups)) |
89c4710e SS |
6791 | return; |
6792 | ||
6793 | child = sd->child; | |
6794 | ||
18a3885f | 6795 | sd->groups->cpu_power = 0; |
5517d86b | 6796 | |
f93e65c1 PZ |
6797 | if (!child) { |
6798 | power = SCHED_LOAD_SCALE; | |
6799 | weight = cpumask_weight(sched_domain_span(sd)); | |
6800 | /* | |
6801 | * SMT siblings share the power of a single core. | |
a52bfd73 PZ |
6802 | * Usually multiple threads get a better yield out of |
6803 | * that one core than a single thread would have, | |
6804 | * reflect that in sd->smt_gain. | |
f93e65c1 | 6805 | */ |
a52bfd73 PZ |
6806 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { |
6807 | power *= sd->smt_gain; | |
f93e65c1 | 6808 | power /= weight; |
a52bfd73 PZ |
6809 | power >>= SCHED_LOAD_SHIFT; |
6810 | } | |
18a3885f | 6811 | sd->groups->cpu_power += power; |
89c4710e SS |
6812 | return; |
6813 | } | |
6814 | ||
89c4710e | 6815 | /* |
f93e65c1 | 6816 | * Add cpu_power of each child group to this groups cpu_power. |
89c4710e SS |
6817 | */ |
6818 | group = child->groups; | |
6819 | do { | |
18a3885f | 6820 | sd->groups->cpu_power += group->cpu_power; |
89c4710e SS |
6821 | group = group->next; |
6822 | } while (group != child->groups); | |
6823 | } | |
6824 | ||
7c16ec58 MT |
6825 | /* |
6826 | * Initializers for schedule domains | |
6827 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | |
6828 | */ | |
6829 | ||
a5d8c348 IM |
6830 | #ifdef CONFIG_SCHED_DEBUG |
6831 | # define SD_INIT_NAME(sd, type) sd->name = #type | |
6832 | #else | |
6833 | # define SD_INIT_NAME(sd, type) do { } while (0) | |
6834 | #endif | |
6835 | ||
7c16ec58 | 6836 | #define SD_INIT(sd, type) sd_init_##type(sd) |
a5d8c348 | 6837 | |
7c16ec58 MT |
6838 | #define SD_INIT_FUNC(type) \ |
6839 | static noinline void sd_init_##type(struct sched_domain *sd) \ | |
6840 | { \ | |
6841 | memset(sd, 0, sizeof(*sd)); \ | |
6842 | *sd = SD_##type##_INIT; \ | |
1d3504fc | 6843 | sd->level = SD_LV_##type; \ |
a5d8c348 | 6844 | SD_INIT_NAME(sd, type); \ |
7c16ec58 MT |
6845 | } |
6846 | ||
6847 | SD_INIT_FUNC(CPU) | |
6848 | #ifdef CONFIG_NUMA | |
6849 | SD_INIT_FUNC(ALLNODES) | |
6850 | SD_INIT_FUNC(NODE) | |
6851 | #endif | |
6852 | #ifdef CONFIG_SCHED_SMT | |
6853 | SD_INIT_FUNC(SIBLING) | |
6854 | #endif | |
6855 | #ifdef CONFIG_SCHED_MC | |
6856 | SD_INIT_FUNC(MC) | |
6857 | #endif | |
6858 | ||
1d3504fc HS |
6859 | static int default_relax_domain_level = -1; |
6860 | ||
6861 | static int __init setup_relax_domain_level(char *str) | |
6862 | { | |
30e0e178 LZ |
6863 | unsigned long val; |
6864 | ||
6865 | val = simple_strtoul(str, NULL, 0); | |
6866 | if (val < SD_LV_MAX) | |
6867 | default_relax_domain_level = val; | |
6868 | ||
1d3504fc HS |
6869 | return 1; |
6870 | } | |
6871 | __setup("relax_domain_level=", setup_relax_domain_level); | |
6872 | ||
6873 | static void set_domain_attribute(struct sched_domain *sd, | |
6874 | struct sched_domain_attr *attr) | |
6875 | { | |
6876 | int request; | |
6877 | ||
6878 | if (!attr || attr->relax_domain_level < 0) { | |
6879 | if (default_relax_domain_level < 0) | |
6880 | return; | |
6881 | else | |
6882 | request = default_relax_domain_level; | |
6883 | } else | |
6884 | request = attr->relax_domain_level; | |
6885 | if (request < sd->level) { | |
6886 | /* turn off idle balance on this domain */ | |
c88d5910 | 6887 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
1d3504fc HS |
6888 | } else { |
6889 | /* turn on idle balance on this domain */ | |
c88d5910 | 6890 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
1d3504fc HS |
6891 | } |
6892 | } | |
6893 | ||
2109b99e AH |
6894 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, |
6895 | const struct cpumask *cpu_map) | |
6896 | { | |
6897 | switch (what) { | |
6898 | case sa_sched_groups: | |
6899 | free_sched_groups(cpu_map, d->tmpmask); /* fall through */ | |
6900 | d->sched_group_nodes = NULL; | |
6901 | case sa_rootdomain: | |
6902 | free_rootdomain(d->rd); /* fall through */ | |
6903 | case sa_tmpmask: | |
6904 | free_cpumask_var(d->tmpmask); /* fall through */ | |
6905 | case sa_send_covered: | |
6906 | free_cpumask_var(d->send_covered); /* fall through */ | |
6907 | case sa_this_core_map: | |
6908 | free_cpumask_var(d->this_core_map); /* fall through */ | |
6909 | case sa_this_sibling_map: | |
6910 | free_cpumask_var(d->this_sibling_map); /* fall through */ | |
6911 | case sa_nodemask: | |
6912 | free_cpumask_var(d->nodemask); /* fall through */ | |
6913 | case sa_sched_group_nodes: | |
d1b55138 | 6914 | #ifdef CONFIG_NUMA |
2109b99e AH |
6915 | kfree(d->sched_group_nodes); /* fall through */ |
6916 | case sa_notcovered: | |
6917 | free_cpumask_var(d->notcovered); /* fall through */ | |
6918 | case sa_covered: | |
6919 | free_cpumask_var(d->covered); /* fall through */ | |
6920 | case sa_domainspan: | |
6921 | free_cpumask_var(d->domainspan); /* fall through */ | |
3404c8d9 | 6922 | #endif |
2109b99e AH |
6923 | case sa_none: |
6924 | break; | |
6925 | } | |
6926 | } | |
3404c8d9 | 6927 | |
2109b99e AH |
6928 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, |
6929 | const struct cpumask *cpu_map) | |
6930 | { | |
3404c8d9 | 6931 | #ifdef CONFIG_NUMA |
2109b99e AH |
6932 | if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) |
6933 | return sa_none; | |
6934 | if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) | |
6935 | return sa_domainspan; | |
6936 | if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) | |
6937 | return sa_covered; | |
6938 | /* Allocate the per-node list of sched groups */ | |
6939 | d->sched_group_nodes = kcalloc(nr_node_ids, | |
6940 | sizeof(struct sched_group *), GFP_KERNEL); | |
6941 | if (!d->sched_group_nodes) { | |
3df0fc5b | 6942 | printk(KERN_WARNING "Can not alloc sched group node list\n"); |
2109b99e | 6943 | return sa_notcovered; |
d1b55138 | 6944 | } |
2109b99e | 6945 | sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; |
d1b55138 | 6946 | #endif |
2109b99e AH |
6947 | if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) |
6948 | return sa_sched_group_nodes; | |
6949 | if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) | |
6950 | return sa_nodemask; | |
6951 | if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) | |
6952 | return sa_this_sibling_map; | |
6953 | if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) | |
6954 | return sa_this_core_map; | |
6955 | if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) | |
6956 | return sa_send_covered; | |
6957 | d->rd = alloc_rootdomain(); | |
6958 | if (!d->rd) { | |
3df0fc5b | 6959 | printk(KERN_WARNING "Cannot alloc root domain\n"); |
2109b99e | 6960 | return sa_tmpmask; |
57d885fe | 6961 | } |
2109b99e AH |
6962 | return sa_rootdomain; |
6963 | } | |
57d885fe | 6964 | |
7f4588f3 AH |
6965 | static struct sched_domain *__build_numa_sched_domains(struct s_data *d, |
6966 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) | |
6967 | { | |
6968 | struct sched_domain *sd = NULL; | |
7c16ec58 | 6969 | #ifdef CONFIG_NUMA |
7f4588f3 | 6970 | struct sched_domain *parent; |
1da177e4 | 6971 | |
7f4588f3 AH |
6972 | d->sd_allnodes = 0; |
6973 | if (cpumask_weight(cpu_map) > | |
6974 | SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { | |
6975 | sd = &per_cpu(allnodes_domains, i).sd; | |
6976 | SD_INIT(sd, ALLNODES); | |
1d3504fc | 6977 | set_domain_attribute(sd, attr); |
7f4588f3 AH |
6978 | cpumask_copy(sched_domain_span(sd), cpu_map); |
6979 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); | |
6980 | d->sd_allnodes = 1; | |
6981 | } | |
6982 | parent = sd; | |
6983 | ||
6984 | sd = &per_cpu(node_domains, i).sd; | |
6985 | SD_INIT(sd, NODE); | |
6986 | set_domain_attribute(sd, attr); | |
6987 | sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); | |
6988 | sd->parent = parent; | |
6989 | if (parent) | |
6990 | parent->child = sd; | |
6991 | cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); | |
1da177e4 | 6992 | #endif |
7f4588f3 AH |
6993 | return sd; |
6994 | } | |
1da177e4 | 6995 | |
87cce662 AH |
6996 | static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, |
6997 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | |
6998 | struct sched_domain *parent, int i) | |
6999 | { | |
7000 | struct sched_domain *sd; | |
7001 | sd = &per_cpu(phys_domains, i).sd; | |
7002 | SD_INIT(sd, CPU); | |
7003 | set_domain_attribute(sd, attr); | |
7004 | cpumask_copy(sched_domain_span(sd), d->nodemask); | |
7005 | sd->parent = parent; | |
7006 | if (parent) | |
7007 | parent->child = sd; | |
7008 | cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); | |
7009 | return sd; | |
7010 | } | |
1da177e4 | 7011 | |
410c4081 AH |
7012 | static struct sched_domain *__build_mc_sched_domain(struct s_data *d, |
7013 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | |
7014 | struct sched_domain *parent, int i) | |
7015 | { | |
7016 | struct sched_domain *sd = parent; | |
1e9f28fa | 7017 | #ifdef CONFIG_SCHED_MC |
410c4081 AH |
7018 | sd = &per_cpu(core_domains, i).sd; |
7019 | SD_INIT(sd, MC); | |
7020 | set_domain_attribute(sd, attr); | |
7021 | cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); | |
7022 | sd->parent = parent; | |
7023 | parent->child = sd; | |
7024 | cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); | |
1e9f28fa | 7025 | #endif |
410c4081 AH |
7026 | return sd; |
7027 | } | |
1e9f28fa | 7028 | |
d8173535 AH |
7029 | static struct sched_domain *__build_smt_sched_domain(struct s_data *d, |
7030 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | |
7031 | struct sched_domain *parent, int i) | |
7032 | { | |
7033 | struct sched_domain *sd = parent; | |
1da177e4 | 7034 | #ifdef CONFIG_SCHED_SMT |
d8173535 AH |
7035 | sd = &per_cpu(cpu_domains, i).sd; |
7036 | SD_INIT(sd, SIBLING); | |
7037 | set_domain_attribute(sd, attr); | |
7038 | cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); | |
7039 | sd->parent = parent; | |
7040 | parent->child = sd; | |
7041 | cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); | |
1da177e4 | 7042 | #endif |
d8173535 AH |
7043 | return sd; |
7044 | } | |
1da177e4 | 7045 | |
0e8e85c9 AH |
7046 | static void build_sched_groups(struct s_data *d, enum sched_domain_level l, |
7047 | const struct cpumask *cpu_map, int cpu) | |
7048 | { | |
7049 | switch (l) { | |
1da177e4 | 7050 | #ifdef CONFIG_SCHED_SMT |
0e8e85c9 AH |
7051 | case SD_LV_SIBLING: /* set up CPU (sibling) groups */ |
7052 | cpumask_and(d->this_sibling_map, cpu_map, | |
7053 | topology_thread_cpumask(cpu)); | |
7054 | if (cpu == cpumask_first(d->this_sibling_map)) | |
7055 | init_sched_build_groups(d->this_sibling_map, cpu_map, | |
7056 | &cpu_to_cpu_group, | |
7057 | d->send_covered, d->tmpmask); | |
7058 | break; | |
1da177e4 | 7059 | #endif |
1e9f28fa | 7060 | #ifdef CONFIG_SCHED_MC |
a2af04cd AH |
7061 | case SD_LV_MC: /* set up multi-core groups */ |
7062 | cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); | |
7063 | if (cpu == cpumask_first(d->this_core_map)) | |
7064 | init_sched_build_groups(d->this_core_map, cpu_map, | |
7065 | &cpu_to_core_group, | |
7066 | d->send_covered, d->tmpmask); | |
7067 | break; | |
1e9f28fa | 7068 | #endif |
86548096 AH |
7069 | case SD_LV_CPU: /* set up physical groups */ |
7070 | cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); | |
7071 | if (!cpumask_empty(d->nodemask)) | |
7072 | init_sched_build_groups(d->nodemask, cpu_map, | |
7073 | &cpu_to_phys_group, | |
7074 | d->send_covered, d->tmpmask); | |
7075 | break; | |
1da177e4 | 7076 | #ifdef CONFIG_NUMA |
de616e36 AH |
7077 | case SD_LV_ALLNODES: |
7078 | init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, | |
7079 | d->send_covered, d->tmpmask); | |
7080 | break; | |
7081 | #endif | |
0e8e85c9 AH |
7082 | default: |
7083 | break; | |
7c16ec58 | 7084 | } |
0e8e85c9 | 7085 | } |
9c1cfda2 | 7086 | |
2109b99e AH |
7087 | /* |
7088 | * Build sched domains for a given set of cpus and attach the sched domains | |
7089 | * to the individual cpus | |
7090 | */ | |
7091 | static int __build_sched_domains(const struct cpumask *cpu_map, | |
7092 | struct sched_domain_attr *attr) | |
7093 | { | |
7094 | enum s_alloc alloc_state = sa_none; | |
7095 | struct s_data d; | |
294b0c96 | 7096 | struct sched_domain *sd; |
2109b99e | 7097 | int i; |
7c16ec58 | 7098 | #ifdef CONFIG_NUMA |
2109b99e | 7099 | d.sd_allnodes = 0; |
7c16ec58 | 7100 | #endif |
9c1cfda2 | 7101 | |
2109b99e AH |
7102 | alloc_state = __visit_domain_allocation_hell(&d, cpu_map); |
7103 | if (alloc_state != sa_rootdomain) | |
7104 | goto error; | |
7105 | alloc_state = sa_sched_groups; | |
9c1cfda2 | 7106 | |
1da177e4 | 7107 | /* |
1a20ff27 | 7108 | * Set up domains for cpus specified by the cpu_map. |
1da177e4 | 7109 | */ |
abcd083a | 7110 | for_each_cpu(i, cpu_map) { |
49a02c51 AH |
7111 | cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), |
7112 | cpu_map); | |
9761eea8 | 7113 | |
7f4588f3 | 7114 | sd = __build_numa_sched_domains(&d, cpu_map, attr, i); |
87cce662 | 7115 | sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); |
410c4081 | 7116 | sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); |
d8173535 | 7117 | sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); |
1da177e4 | 7118 | } |
9c1cfda2 | 7119 | |
abcd083a | 7120 | for_each_cpu(i, cpu_map) { |
0e8e85c9 | 7121 | build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); |
a2af04cd | 7122 | build_sched_groups(&d, SD_LV_MC, cpu_map, i); |
1da177e4 | 7123 | } |
9c1cfda2 | 7124 | |
1da177e4 | 7125 | /* Set up physical groups */ |
86548096 AH |
7126 | for (i = 0; i < nr_node_ids; i++) |
7127 | build_sched_groups(&d, SD_LV_CPU, cpu_map, i); | |
9c1cfda2 | 7128 | |
1da177e4 LT |
7129 | #ifdef CONFIG_NUMA |
7130 | /* Set up node groups */ | |
de616e36 AH |
7131 | if (d.sd_allnodes) |
7132 | build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); | |
9c1cfda2 | 7133 | |
0601a88d AH |
7134 | for (i = 0; i < nr_node_ids; i++) |
7135 | if (build_numa_sched_groups(&d, cpu_map, i)) | |
51888ca2 | 7136 | goto error; |
1da177e4 LT |
7137 | #endif |
7138 | ||
7139 | /* Calculate CPU power for physical packages and nodes */ | |
5c45bf27 | 7140 | #ifdef CONFIG_SCHED_SMT |
abcd083a | 7141 | for_each_cpu(i, cpu_map) { |
294b0c96 | 7142 | sd = &per_cpu(cpu_domains, i).sd; |
89c4710e | 7143 | init_sched_groups_power(i, sd); |
5c45bf27 | 7144 | } |
1da177e4 | 7145 | #endif |
1e9f28fa | 7146 | #ifdef CONFIG_SCHED_MC |
abcd083a | 7147 | for_each_cpu(i, cpu_map) { |
294b0c96 | 7148 | sd = &per_cpu(core_domains, i).sd; |
89c4710e | 7149 | init_sched_groups_power(i, sd); |
5c45bf27 SS |
7150 | } |
7151 | #endif | |
1e9f28fa | 7152 | |
abcd083a | 7153 | for_each_cpu(i, cpu_map) { |
294b0c96 | 7154 | sd = &per_cpu(phys_domains, i).sd; |
89c4710e | 7155 | init_sched_groups_power(i, sd); |
1da177e4 LT |
7156 | } |
7157 | ||
9c1cfda2 | 7158 | #ifdef CONFIG_NUMA |
076ac2af | 7159 | for (i = 0; i < nr_node_ids; i++) |
49a02c51 | 7160 | init_numa_sched_groups_power(d.sched_group_nodes[i]); |
9c1cfda2 | 7161 | |
49a02c51 | 7162 | if (d.sd_allnodes) { |
6711cab4 | 7163 | struct sched_group *sg; |
f712c0c7 | 7164 | |
96f874e2 | 7165 | cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, |
49a02c51 | 7166 | d.tmpmask); |
f712c0c7 SS |
7167 | init_numa_sched_groups_power(sg); |
7168 | } | |
9c1cfda2 JH |
7169 | #endif |
7170 | ||
1da177e4 | 7171 | /* Attach the domains */ |
abcd083a | 7172 | for_each_cpu(i, cpu_map) { |
1da177e4 | 7173 | #ifdef CONFIG_SCHED_SMT |
6c99e9ad | 7174 | sd = &per_cpu(cpu_domains, i).sd; |
1e9f28fa | 7175 | #elif defined(CONFIG_SCHED_MC) |
6c99e9ad | 7176 | sd = &per_cpu(core_domains, i).sd; |
1da177e4 | 7177 | #else |
6c99e9ad | 7178 | sd = &per_cpu(phys_domains, i).sd; |
1da177e4 | 7179 | #endif |
49a02c51 | 7180 | cpu_attach_domain(sd, d.rd, i); |
1da177e4 | 7181 | } |
51888ca2 | 7182 | |
2109b99e AH |
7183 | d.sched_group_nodes = NULL; /* don't free this we still need it */ |
7184 | __free_domain_allocs(&d, sa_tmpmask, cpu_map); | |
7185 | return 0; | |
51888ca2 | 7186 | |
51888ca2 | 7187 | error: |
2109b99e AH |
7188 | __free_domain_allocs(&d, alloc_state, cpu_map); |
7189 | return -ENOMEM; | |
1da177e4 | 7190 | } |
029190c5 | 7191 | |
96f874e2 | 7192 | static int build_sched_domains(const struct cpumask *cpu_map) |
1d3504fc HS |
7193 | { |
7194 | return __build_sched_domains(cpu_map, NULL); | |
7195 | } | |
7196 | ||
acc3f5d7 | 7197 | static cpumask_var_t *doms_cur; /* current sched domains */ |
029190c5 | 7198 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
4285f594 IM |
7199 | static struct sched_domain_attr *dattr_cur; |
7200 | /* attribues of custom domains in 'doms_cur' */ | |
029190c5 PJ |
7201 | |
7202 | /* | |
7203 | * Special case: If a kmalloc of a doms_cur partition (array of | |
4212823f RR |
7204 | * cpumask) fails, then fallback to a single sched domain, |
7205 | * as determined by the single cpumask fallback_doms. | |
029190c5 | 7206 | */ |
4212823f | 7207 | static cpumask_var_t fallback_doms; |
029190c5 | 7208 | |
ee79d1bd HC |
7209 | /* |
7210 | * arch_update_cpu_topology lets virtualized architectures update the | |
7211 | * cpu core maps. It is supposed to return 1 if the topology changed | |
7212 | * or 0 if it stayed the same. | |
7213 | */ | |
7214 | int __attribute__((weak)) arch_update_cpu_topology(void) | |
22e52b07 | 7215 | { |
ee79d1bd | 7216 | return 0; |
22e52b07 HC |
7217 | } |
7218 | ||
acc3f5d7 RR |
7219 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) |
7220 | { | |
7221 | int i; | |
7222 | cpumask_var_t *doms; | |
7223 | ||
7224 | doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | |
7225 | if (!doms) | |
7226 | return NULL; | |
7227 | for (i = 0; i < ndoms; i++) { | |
7228 | if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | |
7229 | free_sched_domains(doms, i); | |
7230 | return NULL; | |
7231 | } | |
7232 | } | |
7233 | return doms; | |
7234 | } | |
7235 | ||
7236 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | |
7237 | { | |
7238 | unsigned int i; | |
7239 | for (i = 0; i < ndoms; i++) | |
7240 | free_cpumask_var(doms[i]); | |
7241 | kfree(doms); | |
7242 | } | |
7243 | ||
1a20ff27 | 7244 | /* |
41a2d6cf | 7245 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
029190c5 PJ |
7246 | * For now this just excludes isolated cpus, but could be used to |
7247 | * exclude other special cases in the future. | |
1a20ff27 | 7248 | */ |
96f874e2 | 7249 | static int arch_init_sched_domains(const struct cpumask *cpu_map) |
1a20ff27 | 7250 | { |
7378547f MM |
7251 | int err; |
7252 | ||
22e52b07 | 7253 | arch_update_cpu_topology(); |
029190c5 | 7254 | ndoms_cur = 1; |
acc3f5d7 | 7255 | doms_cur = alloc_sched_domains(ndoms_cur); |
029190c5 | 7256 | if (!doms_cur) |
acc3f5d7 RR |
7257 | doms_cur = &fallback_doms; |
7258 | cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); | |
1d3504fc | 7259 | dattr_cur = NULL; |
acc3f5d7 | 7260 | err = build_sched_domains(doms_cur[0]); |
6382bc90 | 7261 | register_sched_domain_sysctl(); |
7378547f MM |
7262 | |
7263 | return err; | |
1a20ff27 DG |
7264 | } |
7265 | ||
96f874e2 RR |
7266 | static void arch_destroy_sched_domains(const struct cpumask *cpu_map, |
7267 | struct cpumask *tmpmask) | |
1da177e4 | 7268 | { |
7c16ec58 | 7269 | free_sched_groups(cpu_map, tmpmask); |
9c1cfda2 | 7270 | } |
1da177e4 | 7271 | |
1a20ff27 DG |
7272 | /* |
7273 | * Detach sched domains from a group of cpus specified in cpu_map | |
7274 | * These cpus will now be attached to the NULL domain | |
7275 | */ | |
96f874e2 | 7276 | static void detach_destroy_domains(const struct cpumask *cpu_map) |
1a20ff27 | 7277 | { |
96f874e2 RR |
7278 | /* Save because hotplug lock held. */ |
7279 | static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); | |
1a20ff27 DG |
7280 | int i; |
7281 | ||
abcd083a | 7282 | for_each_cpu(i, cpu_map) |
57d885fe | 7283 | cpu_attach_domain(NULL, &def_root_domain, i); |
1a20ff27 | 7284 | synchronize_sched(); |
96f874e2 | 7285 | arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); |
1a20ff27 DG |
7286 | } |
7287 | ||
1d3504fc HS |
7288 | /* handle null as "default" */ |
7289 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |
7290 | struct sched_domain_attr *new, int idx_new) | |
7291 | { | |
7292 | struct sched_domain_attr tmp; | |
7293 | ||
7294 | /* fast path */ | |
7295 | if (!new && !cur) | |
7296 | return 1; | |
7297 | ||
7298 | tmp = SD_ATTR_INIT; | |
7299 | return !memcmp(cur ? (cur + idx_cur) : &tmp, | |
7300 | new ? (new + idx_new) : &tmp, | |
7301 | sizeof(struct sched_domain_attr)); | |
7302 | } | |
7303 | ||
029190c5 PJ |
7304 | /* |
7305 | * Partition sched domains as specified by the 'ndoms_new' | |
41a2d6cf | 7306 | * cpumasks in the array doms_new[] of cpumasks. This compares |
029190c5 PJ |
7307 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
7308 | * It destroys each deleted domain and builds each new domain. | |
7309 | * | |
acc3f5d7 | 7310 | * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. |
41a2d6cf IM |
7311 | * The masks don't intersect (don't overlap.) We should setup one |
7312 | * sched domain for each mask. CPUs not in any of the cpumasks will | |
7313 | * not be load balanced. If the same cpumask appears both in the | |
029190c5 PJ |
7314 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
7315 | * it as it is. | |
7316 | * | |
acc3f5d7 RR |
7317 | * The passed in 'doms_new' should be allocated using |
7318 | * alloc_sched_domains. This routine takes ownership of it and will | |
7319 | * free_sched_domains it when done with it. If the caller failed the | |
7320 | * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, | |
7321 | * and partition_sched_domains() will fallback to the single partition | |
7322 | * 'fallback_doms', it also forces the domains to be rebuilt. | |
029190c5 | 7323 | * |
96f874e2 | 7324 | * If doms_new == NULL it will be replaced with cpu_online_mask. |
700018e0 LZ |
7325 | * ndoms_new == 0 is a special case for destroying existing domains, |
7326 | * and it will not create the default domain. | |
dfb512ec | 7327 | * |
029190c5 PJ |
7328 | * Call with hotplug lock held |
7329 | */ | |
acc3f5d7 | 7330 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
1d3504fc | 7331 | struct sched_domain_attr *dattr_new) |
029190c5 | 7332 | { |
dfb512ec | 7333 | int i, j, n; |
d65bd5ec | 7334 | int new_topology; |
029190c5 | 7335 | |
712555ee | 7336 | mutex_lock(&sched_domains_mutex); |
a1835615 | 7337 | |
7378547f MM |
7338 | /* always unregister in case we don't destroy any domains */ |
7339 | unregister_sched_domain_sysctl(); | |
7340 | ||
d65bd5ec HC |
7341 | /* Let architecture update cpu core mappings. */ |
7342 | new_topology = arch_update_cpu_topology(); | |
7343 | ||
dfb512ec | 7344 | n = doms_new ? ndoms_new : 0; |
029190c5 PJ |
7345 | |
7346 | /* Destroy deleted domains */ | |
7347 | for (i = 0; i < ndoms_cur; i++) { | |
d65bd5ec | 7348 | for (j = 0; j < n && !new_topology; j++) { |
acc3f5d7 | 7349 | if (cpumask_equal(doms_cur[i], doms_new[j]) |
1d3504fc | 7350 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
029190c5 PJ |
7351 | goto match1; |
7352 | } | |
7353 | /* no match - a current sched domain not in new doms_new[] */ | |
acc3f5d7 | 7354 | detach_destroy_domains(doms_cur[i]); |
029190c5 PJ |
7355 | match1: |
7356 | ; | |
7357 | } | |
7358 | ||
e761b772 MK |
7359 | if (doms_new == NULL) { |
7360 | ndoms_cur = 0; | |
acc3f5d7 | 7361 | doms_new = &fallback_doms; |
6ad4c188 | 7362 | cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); |
faa2f98f | 7363 | WARN_ON_ONCE(dattr_new); |
e761b772 MK |
7364 | } |
7365 | ||
029190c5 PJ |
7366 | /* Build new domains */ |
7367 | for (i = 0; i < ndoms_new; i++) { | |
d65bd5ec | 7368 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
acc3f5d7 | 7369 | if (cpumask_equal(doms_new[i], doms_cur[j]) |
1d3504fc | 7370 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
029190c5 PJ |
7371 | goto match2; |
7372 | } | |
7373 | /* no match - add a new doms_new */ | |
acc3f5d7 | 7374 | __build_sched_domains(doms_new[i], |
1d3504fc | 7375 | dattr_new ? dattr_new + i : NULL); |
029190c5 PJ |
7376 | match2: |
7377 | ; | |
7378 | } | |
7379 | ||
7380 | /* Remember the new sched domains */ | |
acc3f5d7 RR |
7381 | if (doms_cur != &fallback_doms) |
7382 | free_sched_domains(doms_cur, ndoms_cur); | |
1d3504fc | 7383 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
029190c5 | 7384 | doms_cur = doms_new; |
1d3504fc | 7385 | dattr_cur = dattr_new; |
029190c5 | 7386 | ndoms_cur = ndoms_new; |
7378547f MM |
7387 | |
7388 | register_sched_domain_sysctl(); | |
a1835615 | 7389 | |
712555ee | 7390 | mutex_unlock(&sched_domains_mutex); |
029190c5 PJ |
7391 | } |
7392 | ||
5c45bf27 | 7393 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
c70f22d2 | 7394 | static void arch_reinit_sched_domains(void) |
5c45bf27 | 7395 | { |
95402b38 | 7396 | get_online_cpus(); |
dfb512ec MK |
7397 | |
7398 | /* Destroy domains first to force the rebuild */ | |
7399 | partition_sched_domains(0, NULL, NULL); | |
7400 | ||
e761b772 | 7401 | rebuild_sched_domains(); |
95402b38 | 7402 | put_online_cpus(); |
5c45bf27 SS |
7403 | } |
7404 | ||
7405 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |
7406 | { | |
afb8a9b7 | 7407 | unsigned int level = 0; |
5c45bf27 | 7408 | |
afb8a9b7 GS |
7409 | if (sscanf(buf, "%u", &level) != 1) |
7410 | return -EINVAL; | |
7411 | ||
7412 | /* | |
7413 | * level is always be positive so don't check for | |
7414 | * level < POWERSAVINGS_BALANCE_NONE which is 0 | |
7415 | * What happens on 0 or 1 byte write, | |
7416 | * need to check for count as well? | |
7417 | */ | |
7418 | ||
7419 | if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) | |
5c45bf27 SS |
7420 | return -EINVAL; |
7421 | ||
7422 | if (smt) | |
afb8a9b7 | 7423 | sched_smt_power_savings = level; |
5c45bf27 | 7424 | else |
afb8a9b7 | 7425 | sched_mc_power_savings = level; |
5c45bf27 | 7426 | |
c70f22d2 | 7427 | arch_reinit_sched_domains(); |
5c45bf27 | 7428 | |
c70f22d2 | 7429 | return count; |
5c45bf27 SS |
7430 | } |
7431 | ||
5c45bf27 | 7432 | #ifdef CONFIG_SCHED_MC |
f718cd4a | 7433 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
c9be0a36 | 7434 | struct sysdev_class_attribute *attr, |
f718cd4a | 7435 | char *page) |
5c45bf27 SS |
7436 | { |
7437 | return sprintf(page, "%u\n", sched_mc_power_savings); | |
7438 | } | |
f718cd4a | 7439 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
c9be0a36 | 7440 | struct sysdev_class_attribute *attr, |
48f24c4d | 7441 | const char *buf, size_t count) |
5c45bf27 SS |
7442 | { |
7443 | return sched_power_savings_store(buf, count, 0); | |
7444 | } | |
f718cd4a AK |
7445 | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, |
7446 | sched_mc_power_savings_show, | |
7447 | sched_mc_power_savings_store); | |
5c45bf27 SS |
7448 | #endif |
7449 | ||
7450 | #ifdef CONFIG_SCHED_SMT | |
f718cd4a | 7451 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
c9be0a36 | 7452 | struct sysdev_class_attribute *attr, |
f718cd4a | 7453 | char *page) |
5c45bf27 SS |
7454 | { |
7455 | return sprintf(page, "%u\n", sched_smt_power_savings); | |
7456 | } | |
f718cd4a | 7457 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
c9be0a36 | 7458 | struct sysdev_class_attribute *attr, |
48f24c4d | 7459 | const char *buf, size_t count) |
5c45bf27 SS |
7460 | { |
7461 | return sched_power_savings_store(buf, count, 1); | |
7462 | } | |
f718cd4a AK |
7463 | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, |
7464 | sched_smt_power_savings_show, | |
6707de00 AB |
7465 | sched_smt_power_savings_store); |
7466 | #endif | |
7467 | ||
39aac648 | 7468 | int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) |
6707de00 AB |
7469 | { |
7470 | int err = 0; | |
7471 | ||
7472 | #ifdef CONFIG_SCHED_SMT | |
7473 | if (smt_capable()) | |
7474 | err = sysfs_create_file(&cls->kset.kobj, | |
7475 | &attr_sched_smt_power_savings.attr); | |
7476 | #endif | |
7477 | #ifdef CONFIG_SCHED_MC | |
7478 | if (!err && mc_capable()) | |
7479 | err = sysfs_create_file(&cls->kset.kobj, | |
7480 | &attr_sched_mc_power_savings.attr); | |
7481 | #endif | |
7482 | return err; | |
7483 | } | |
6d6bc0ad | 7484 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
5c45bf27 | 7485 | |
1da177e4 | 7486 | /* |
3a101d05 TH |
7487 | * Update cpusets according to cpu_active mask. If cpusets are |
7488 | * disabled, cpuset_update_active_cpus() becomes a simple wrapper | |
7489 | * around partition_sched_domains(). | |
1da177e4 | 7490 | */ |
0b2e918a TH |
7491 | static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, |
7492 | void *hcpu) | |
e761b772 | 7493 | { |
3a101d05 | 7494 | switch (action & ~CPU_TASKS_FROZEN) { |
e761b772 | 7495 | case CPU_ONLINE: |
6ad4c188 | 7496 | case CPU_DOWN_FAILED: |
3a101d05 | 7497 | cpuset_update_active_cpus(); |
e761b772 | 7498 | return NOTIFY_OK; |
3a101d05 TH |
7499 | default: |
7500 | return NOTIFY_DONE; | |
7501 | } | |
7502 | } | |
e761b772 | 7503 | |
0b2e918a TH |
7504 | static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, |
7505 | void *hcpu) | |
3a101d05 TH |
7506 | { |
7507 | switch (action & ~CPU_TASKS_FROZEN) { | |
7508 | case CPU_DOWN_PREPARE: | |
7509 | cpuset_update_active_cpus(); | |
7510 | return NOTIFY_OK; | |
e761b772 MK |
7511 | default: |
7512 | return NOTIFY_DONE; | |
7513 | } | |
7514 | } | |
e761b772 MK |
7515 | |
7516 | static int update_runtime(struct notifier_block *nfb, | |
7517 | unsigned long action, void *hcpu) | |
1da177e4 | 7518 | { |
7def2be1 PZ |
7519 | int cpu = (int)(long)hcpu; |
7520 | ||
1da177e4 | 7521 | switch (action) { |
1da177e4 | 7522 | case CPU_DOWN_PREPARE: |
8bb78442 | 7523 | case CPU_DOWN_PREPARE_FROZEN: |
7def2be1 | 7524 | disable_runtime(cpu_rq(cpu)); |
1da177e4 LT |
7525 | return NOTIFY_OK; |
7526 | ||
1da177e4 | 7527 | case CPU_DOWN_FAILED: |
8bb78442 | 7528 | case CPU_DOWN_FAILED_FROZEN: |
1da177e4 | 7529 | case CPU_ONLINE: |
8bb78442 | 7530 | case CPU_ONLINE_FROZEN: |
7def2be1 | 7531 | enable_runtime(cpu_rq(cpu)); |
e761b772 MK |
7532 | return NOTIFY_OK; |
7533 | ||
1da177e4 LT |
7534 | default: |
7535 | return NOTIFY_DONE; | |
7536 | } | |
1da177e4 | 7537 | } |
1da177e4 LT |
7538 | |
7539 | void __init sched_init_smp(void) | |
7540 | { | |
dcc30a35 RR |
7541 | cpumask_var_t non_isolated_cpus; |
7542 | ||
7543 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | |
cb5fd13f | 7544 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); |
5c1e1767 | 7545 | |
434d53b0 MT |
7546 | #if defined(CONFIG_NUMA) |
7547 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | |
7548 | GFP_KERNEL); | |
7549 | BUG_ON(sched_group_nodes_bycpu == NULL); | |
7550 | #endif | |
95402b38 | 7551 | get_online_cpus(); |
712555ee | 7552 | mutex_lock(&sched_domains_mutex); |
6ad4c188 | 7553 | arch_init_sched_domains(cpu_active_mask); |
dcc30a35 RR |
7554 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); |
7555 | if (cpumask_empty(non_isolated_cpus)) | |
7556 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | |
712555ee | 7557 | mutex_unlock(&sched_domains_mutex); |
95402b38 | 7558 | put_online_cpus(); |
e761b772 | 7559 | |
3a101d05 TH |
7560 | hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); |
7561 | hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); | |
e761b772 MK |
7562 | |
7563 | /* RT runtime code needs to handle some hotplug events */ | |
7564 | hotcpu_notifier(update_runtime, 0); | |
7565 | ||
b328ca18 | 7566 | init_hrtick(); |
5c1e1767 NP |
7567 | |
7568 | /* Move init over to a non-isolated CPU */ | |
dcc30a35 | 7569 | if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) |
5c1e1767 | 7570 | BUG(); |
19978ca6 | 7571 | sched_init_granularity(); |
dcc30a35 | 7572 | free_cpumask_var(non_isolated_cpus); |
4212823f | 7573 | |
0e3900e6 | 7574 | init_sched_rt_class(); |
1da177e4 LT |
7575 | } |
7576 | #else | |
7577 | void __init sched_init_smp(void) | |
7578 | { | |
19978ca6 | 7579 | sched_init_granularity(); |
1da177e4 LT |
7580 | } |
7581 | #endif /* CONFIG_SMP */ | |
7582 | ||
cd1bb94b AB |
7583 | const_debug unsigned int sysctl_timer_migration = 1; |
7584 | ||
1da177e4 LT |
7585 | int in_sched_functions(unsigned long addr) |
7586 | { | |
1da177e4 LT |
7587 | return in_lock_functions(addr) || |
7588 | (addr >= (unsigned long)__sched_text_start | |
7589 | && addr < (unsigned long)__sched_text_end); | |
7590 | } | |
7591 | ||
a9957449 | 7592 | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) |
dd41f596 IM |
7593 | { |
7594 | cfs_rq->tasks_timeline = RB_ROOT; | |
4a55bd5e | 7595 | INIT_LIST_HEAD(&cfs_rq->tasks); |
dd41f596 IM |
7596 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7597 | cfs_rq->rq = rq; | |
7598 | #endif | |
67e9fb2a | 7599 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
dd41f596 IM |
7600 | } |
7601 | ||
fa85ae24 PZ |
7602 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) |
7603 | { | |
7604 | struct rt_prio_array *array; | |
7605 | int i; | |
7606 | ||
7607 | array = &rt_rq->active; | |
7608 | for (i = 0; i < MAX_RT_PRIO; i++) { | |
7609 | INIT_LIST_HEAD(array->queue + i); | |
7610 | __clear_bit(i, array->bitmap); | |
7611 | } | |
7612 | /* delimiter for bitsearch: */ | |
7613 | __set_bit(MAX_RT_PRIO, array->bitmap); | |
7614 | ||
052f1dc7 | 7615 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
e864c499 | 7616 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
398a153b | 7617 | #ifdef CONFIG_SMP |
e864c499 | 7618 | rt_rq->highest_prio.next = MAX_RT_PRIO; |
48d5e258 | 7619 | #endif |
48d5e258 | 7620 | #endif |
fa85ae24 PZ |
7621 | #ifdef CONFIG_SMP |
7622 | rt_rq->rt_nr_migratory = 0; | |
fa85ae24 | 7623 | rt_rq->overloaded = 0; |
05fa785c | 7624 | plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock); |
fa85ae24 PZ |
7625 | #endif |
7626 | ||
7627 | rt_rq->rt_time = 0; | |
7628 | rt_rq->rt_throttled = 0; | |
ac086bc2 | 7629 | rt_rq->rt_runtime = 0; |
0986b11b | 7630 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); |
6f505b16 | 7631 | |
052f1dc7 | 7632 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc | 7633 | rt_rq->rt_nr_boosted = 0; |
6f505b16 PZ |
7634 | rt_rq->rq = rq; |
7635 | #endif | |
fa85ae24 PZ |
7636 | } |
7637 | ||
6f505b16 | 7638 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ec7dc8ac DG |
7639 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
7640 | struct sched_entity *se, int cpu, int add, | |
7641 | struct sched_entity *parent) | |
6f505b16 | 7642 | { |
ec7dc8ac | 7643 | struct rq *rq = cpu_rq(cpu); |
6f505b16 PZ |
7644 | tg->cfs_rq[cpu] = cfs_rq; |
7645 | init_cfs_rq(cfs_rq, rq); | |
7646 | cfs_rq->tg = tg; | |
7647 | if (add) | |
7648 | list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | |
7649 | ||
7650 | tg->se[cpu] = se; | |
354d60c2 DG |
7651 | /* se could be NULL for init_task_group */ |
7652 | if (!se) | |
7653 | return; | |
7654 | ||
ec7dc8ac DG |
7655 | if (!parent) |
7656 | se->cfs_rq = &rq->cfs; | |
7657 | else | |
7658 | se->cfs_rq = parent->my_q; | |
7659 | ||
6f505b16 PZ |
7660 | se->my_q = cfs_rq; |
7661 | se->load.weight = tg->shares; | |
e05510d0 | 7662 | se->load.inv_weight = 0; |
ec7dc8ac | 7663 | se->parent = parent; |
6f505b16 | 7664 | } |
052f1dc7 | 7665 | #endif |
6f505b16 | 7666 | |
052f1dc7 | 7667 | #ifdef CONFIG_RT_GROUP_SCHED |
ec7dc8ac DG |
7668 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
7669 | struct sched_rt_entity *rt_se, int cpu, int add, | |
7670 | struct sched_rt_entity *parent) | |
6f505b16 | 7671 | { |
ec7dc8ac DG |
7672 | struct rq *rq = cpu_rq(cpu); |
7673 | ||
6f505b16 PZ |
7674 | tg->rt_rq[cpu] = rt_rq; |
7675 | init_rt_rq(rt_rq, rq); | |
7676 | rt_rq->tg = tg; | |
ac086bc2 | 7677 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
6f505b16 PZ |
7678 | if (add) |
7679 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | |
7680 | ||
7681 | tg->rt_se[cpu] = rt_se; | |
354d60c2 DG |
7682 | if (!rt_se) |
7683 | return; | |
7684 | ||
ec7dc8ac DG |
7685 | if (!parent) |
7686 | rt_se->rt_rq = &rq->rt; | |
7687 | else | |
7688 | rt_se->rt_rq = parent->my_q; | |
7689 | ||
6f505b16 | 7690 | rt_se->my_q = rt_rq; |
ec7dc8ac | 7691 | rt_se->parent = parent; |
6f505b16 PZ |
7692 | INIT_LIST_HEAD(&rt_se->run_list); |
7693 | } | |
7694 | #endif | |
7695 | ||
1da177e4 LT |
7696 | void __init sched_init(void) |
7697 | { | |
dd41f596 | 7698 | int i, j; |
434d53b0 MT |
7699 | unsigned long alloc_size = 0, ptr; |
7700 | ||
7701 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
7702 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
7703 | #endif | |
7704 | #ifdef CONFIG_RT_GROUP_SCHED | |
7705 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
eff766a6 | 7706 | #endif |
df7c8e84 | 7707 | #ifdef CONFIG_CPUMASK_OFFSTACK |
8c083f08 | 7708 | alloc_size += num_possible_cpus() * cpumask_size(); |
434d53b0 | 7709 | #endif |
434d53b0 | 7710 | if (alloc_size) { |
36b7b6d4 | 7711 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); |
434d53b0 MT |
7712 | |
7713 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
7714 | init_task_group.se = (struct sched_entity **)ptr; | |
7715 | ptr += nr_cpu_ids * sizeof(void **); | |
7716 | ||
7717 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
7718 | ptr += nr_cpu_ids * sizeof(void **); | |
eff766a6 | 7719 | |
6d6bc0ad | 7720 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
434d53b0 MT |
7721 | #ifdef CONFIG_RT_GROUP_SCHED |
7722 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
7723 | ptr += nr_cpu_ids * sizeof(void **); | |
7724 | ||
7725 | init_task_group.rt_rq = (struct rt_rq **)ptr; | |
eff766a6 PZ |
7726 | ptr += nr_cpu_ids * sizeof(void **); |
7727 | ||
6d6bc0ad | 7728 | #endif /* CONFIG_RT_GROUP_SCHED */ |
df7c8e84 RR |
7729 | #ifdef CONFIG_CPUMASK_OFFSTACK |
7730 | for_each_possible_cpu(i) { | |
7731 | per_cpu(load_balance_tmpmask, i) = (void *)ptr; | |
7732 | ptr += cpumask_size(); | |
7733 | } | |
7734 | #endif /* CONFIG_CPUMASK_OFFSTACK */ | |
434d53b0 | 7735 | } |
dd41f596 | 7736 | |
57d885fe GH |
7737 | #ifdef CONFIG_SMP |
7738 | init_defrootdomain(); | |
7739 | #endif | |
7740 | ||
d0b27fa7 PZ |
7741 | init_rt_bandwidth(&def_rt_bandwidth, |
7742 | global_rt_period(), global_rt_runtime()); | |
7743 | ||
7744 | #ifdef CONFIG_RT_GROUP_SCHED | |
7745 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | |
7746 | global_rt_period(), global_rt_runtime()); | |
6d6bc0ad | 7747 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 | 7748 | |
7c941438 | 7749 | #ifdef CONFIG_CGROUP_SCHED |
6f505b16 | 7750 | list_add(&init_task_group.list, &task_groups); |
f473aa5e PZ |
7751 | INIT_LIST_HEAD(&init_task_group.children); |
7752 | ||
7c941438 | 7753 | #endif /* CONFIG_CGROUP_SCHED */ |
6f505b16 | 7754 | |
4a6cc4bd JK |
7755 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP |
7756 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), | |
7757 | __alignof__(unsigned long)); | |
7758 | #endif | |
0a945022 | 7759 | for_each_possible_cpu(i) { |
70b97a7f | 7760 | struct rq *rq; |
1da177e4 LT |
7761 | |
7762 | rq = cpu_rq(i); | |
05fa785c | 7763 | raw_spin_lock_init(&rq->lock); |
7897986b | 7764 | rq->nr_running = 0; |
dce48a84 TG |
7765 | rq->calc_load_active = 0; |
7766 | rq->calc_load_update = jiffies + LOAD_FREQ; | |
dd41f596 | 7767 | init_cfs_rq(&rq->cfs, rq); |
6f505b16 | 7768 | init_rt_rq(&rq->rt, rq); |
dd41f596 | 7769 | #ifdef CONFIG_FAIR_GROUP_SCHED |
4cf86d77 | 7770 | init_task_group.shares = init_task_group_load; |
6f505b16 | 7771 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
354d60c2 DG |
7772 | #ifdef CONFIG_CGROUP_SCHED |
7773 | /* | |
7774 | * How much cpu bandwidth does init_task_group get? | |
7775 | * | |
7776 | * In case of task-groups formed thr' the cgroup filesystem, it | |
7777 | * gets 100% of the cpu resources in the system. This overall | |
7778 | * system cpu resource is divided among the tasks of | |
7779 | * init_task_group and its child task-groups in a fair manner, | |
7780 | * based on each entity's (task or task-group's) weight | |
7781 | * (se->load.weight). | |
7782 | * | |
7783 | * In other words, if init_task_group has 10 tasks of weight | |
7784 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | |
7785 | * then A0's share of the cpu resource is: | |
7786 | * | |
0d905bca | 7787 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% |
354d60c2 DG |
7788 | * |
7789 | * We achieve this by letting init_task_group's tasks sit | |
7790 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | |
7791 | */ | |
ec7dc8ac | 7792 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
052f1dc7 | 7793 | #endif |
354d60c2 DG |
7794 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
7795 | ||
7796 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | |
052f1dc7 | 7797 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 7798 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
354d60c2 | 7799 | #ifdef CONFIG_CGROUP_SCHED |
ec7dc8ac | 7800 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
354d60c2 | 7801 | #endif |
dd41f596 | 7802 | #endif |
1da177e4 | 7803 | |
dd41f596 IM |
7804 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
7805 | rq->cpu_load[j] = 0; | |
fdf3e95d VP |
7806 | |
7807 | rq->last_load_update_tick = jiffies; | |
7808 | ||
1da177e4 | 7809 | #ifdef CONFIG_SMP |
41c7ce9a | 7810 | rq->sd = NULL; |
57d885fe | 7811 | rq->rd = NULL; |
e51fd5e2 | 7812 | rq->cpu_power = SCHED_LOAD_SCALE; |
3f029d3c | 7813 | rq->post_schedule = 0; |
1da177e4 | 7814 | rq->active_balance = 0; |
dd41f596 | 7815 | rq->next_balance = jiffies; |
1da177e4 | 7816 | rq->push_cpu = 0; |
0a2966b4 | 7817 | rq->cpu = i; |
1f11eb6a | 7818 | rq->online = 0; |
eae0c9df MG |
7819 | rq->idle_stamp = 0; |
7820 | rq->avg_idle = 2*sysctl_sched_migration_cost; | |
dc938520 | 7821 | rq_attach_root(rq, &def_root_domain); |
83cd4fe2 VP |
7822 | #ifdef CONFIG_NO_HZ |
7823 | rq->nohz_balance_kick = 0; | |
7824 | init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i)); | |
7825 | #endif | |
1da177e4 | 7826 | #endif |
8f4d37ec | 7827 | init_rq_hrtick(rq); |
1da177e4 | 7828 | atomic_set(&rq->nr_iowait, 0); |
1da177e4 LT |
7829 | } |
7830 | ||
2dd73a4f | 7831 | set_load_weight(&init_task); |
b50f60ce | 7832 | |
e107be36 AK |
7833 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
7834 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | |
7835 | #endif | |
7836 | ||
c9819f45 | 7837 | #ifdef CONFIG_SMP |
962cf36c | 7838 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); |
c9819f45 CL |
7839 | #endif |
7840 | ||
b50f60ce | 7841 | #ifdef CONFIG_RT_MUTEXES |
1d615482 | 7842 | plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); |
b50f60ce HC |
7843 | #endif |
7844 | ||
1da177e4 LT |
7845 | /* |
7846 | * The boot idle thread does lazy MMU switching as well: | |
7847 | */ | |
7848 | atomic_inc(&init_mm.mm_count); | |
7849 | enter_lazy_tlb(&init_mm, current); | |
7850 | ||
7851 | /* | |
7852 | * Make us the idle thread. Technically, schedule() should not be | |
7853 | * called from this thread, however somewhere below it might be, | |
7854 | * but because we are the idle thread, we just pick up running again | |
7855 | * when this runqueue becomes "idle". | |
7856 | */ | |
7857 | init_idle(current, smp_processor_id()); | |
dce48a84 TG |
7858 | |
7859 | calc_load_update = jiffies + LOAD_FREQ; | |
7860 | ||
dd41f596 IM |
7861 | /* |
7862 | * During early bootup we pretend to be a normal task: | |
7863 | */ | |
7864 | current->sched_class = &fair_sched_class; | |
6892b75e | 7865 | |
6a7b3dc3 | 7866 | /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ |
49557e62 | 7867 | zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); |
bf4d83f6 | 7868 | #ifdef CONFIG_SMP |
7d1e6a9b | 7869 | #ifdef CONFIG_NO_HZ |
83cd4fe2 VP |
7870 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
7871 | alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT); | |
7872 | atomic_set(&nohz.load_balancer, nr_cpu_ids); | |
7873 | atomic_set(&nohz.first_pick_cpu, nr_cpu_ids); | |
7874 | atomic_set(&nohz.second_pick_cpu, nr_cpu_ids); | |
7d1e6a9b | 7875 | #endif |
bdddd296 RR |
7876 | /* May be allocated at isolcpus cmdline parse time */ |
7877 | if (cpu_isolated_map == NULL) | |
7878 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | |
bf4d83f6 | 7879 | #endif /* SMP */ |
6a7b3dc3 | 7880 | |
cdd6c482 | 7881 | perf_event_init(); |
0d905bca | 7882 | |
6892b75e | 7883 | scheduler_running = 1; |
1da177e4 LT |
7884 | } |
7885 | ||
7886 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | |
e4aafea2 FW |
7887 | static inline int preempt_count_equals(int preempt_offset) |
7888 | { | |
234da7bc | 7889 | int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); |
e4aafea2 FW |
7890 | |
7891 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | |
7892 | } | |
7893 | ||
d894837f | 7894 | void __might_sleep(const char *file, int line, int preempt_offset) |
1da177e4 | 7895 | { |
48f24c4d | 7896 | #ifdef in_atomic |
1da177e4 LT |
7897 | static unsigned long prev_jiffy; /* ratelimiting */ |
7898 | ||
e4aafea2 FW |
7899 | if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || |
7900 | system_state != SYSTEM_RUNNING || oops_in_progress) | |
aef745fc IM |
7901 | return; |
7902 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | |
7903 | return; | |
7904 | prev_jiffy = jiffies; | |
7905 | ||
3df0fc5b PZ |
7906 | printk(KERN_ERR |
7907 | "BUG: sleeping function called from invalid context at %s:%d\n", | |
7908 | file, line); | |
7909 | printk(KERN_ERR | |
7910 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | |
7911 | in_atomic(), irqs_disabled(), | |
7912 | current->pid, current->comm); | |
aef745fc IM |
7913 | |
7914 | debug_show_held_locks(current); | |
7915 | if (irqs_disabled()) | |
7916 | print_irqtrace_events(current); | |
7917 | dump_stack(); | |
1da177e4 LT |
7918 | #endif |
7919 | } | |
7920 | EXPORT_SYMBOL(__might_sleep); | |
7921 | #endif | |
7922 | ||
7923 | #ifdef CONFIG_MAGIC_SYSRQ | |
3a5e4dc1 AK |
7924 | static void normalize_task(struct rq *rq, struct task_struct *p) |
7925 | { | |
7926 | int on_rq; | |
3e51f33f | 7927 | |
3a5e4dc1 AK |
7928 | on_rq = p->se.on_rq; |
7929 | if (on_rq) | |
7930 | deactivate_task(rq, p, 0); | |
7931 | __setscheduler(rq, p, SCHED_NORMAL, 0); | |
7932 | if (on_rq) { | |
7933 | activate_task(rq, p, 0); | |
7934 | resched_task(rq->curr); | |
7935 | } | |
7936 | } | |
7937 | ||
1da177e4 LT |
7938 | void normalize_rt_tasks(void) |
7939 | { | |
a0f98a1c | 7940 | struct task_struct *g, *p; |
1da177e4 | 7941 | unsigned long flags; |
70b97a7f | 7942 | struct rq *rq; |
1da177e4 | 7943 | |
4cf5d77a | 7944 | read_lock_irqsave(&tasklist_lock, flags); |
a0f98a1c | 7945 | do_each_thread(g, p) { |
178be793 IM |
7946 | /* |
7947 | * Only normalize user tasks: | |
7948 | */ | |
7949 | if (!p->mm) | |
7950 | continue; | |
7951 | ||
6cfb0d5d | 7952 | p->se.exec_start = 0; |
6cfb0d5d | 7953 | #ifdef CONFIG_SCHEDSTATS |
41acab88 LDM |
7954 | p->se.statistics.wait_start = 0; |
7955 | p->se.statistics.sleep_start = 0; | |
7956 | p->se.statistics.block_start = 0; | |
6cfb0d5d | 7957 | #endif |
dd41f596 IM |
7958 | |
7959 | if (!rt_task(p)) { | |
7960 | /* | |
7961 | * Renice negative nice level userspace | |
7962 | * tasks back to 0: | |
7963 | */ | |
7964 | if (TASK_NICE(p) < 0 && p->mm) | |
7965 | set_user_nice(p, 0); | |
1da177e4 | 7966 | continue; |
dd41f596 | 7967 | } |
1da177e4 | 7968 | |
1d615482 | 7969 | raw_spin_lock(&p->pi_lock); |
b29739f9 | 7970 | rq = __task_rq_lock(p); |
1da177e4 | 7971 | |
178be793 | 7972 | normalize_task(rq, p); |
3a5e4dc1 | 7973 | |
b29739f9 | 7974 | __task_rq_unlock(rq); |
1d615482 | 7975 | raw_spin_unlock(&p->pi_lock); |
a0f98a1c IM |
7976 | } while_each_thread(g, p); |
7977 | ||
4cf5d77a | 7978 | read_unlock_irqrestore(&tasklist_lock, flags); |
1da177e4 LT |
7979 | } |
7980 | ||
7981 | #endif /* CONFIG_MAGIC_SYSRQ */ | |
1df5c10a | 7982 | |
67fc4e0c | 7983 | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) |
1df5c10a | 7984 | /* |
67fc4e0c | 7985 | * These functions are only useful for the IA64 MCA handling, or kdb. |
1df5c10a LT |
7986 | * |
7987 | * They can only be called when the whole system has been | |
7988 | * stopped - every CPU needs to be quiescent, and no scheduling | |
7989 | * activity can take place. Using them for anything else would | |
7990 | * be a serious bug, and as a result, they aren't even visible | |
7991 | * under any other configuration. | |
7992 | */ | |
7993 | ||
7994 | /** | |
7995 | * curr_task - return the current task for a given cpu. | |
7996 | * @cpu: the processor in question. | |
7997 | * | |
7998 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
7999 | */ | |
36c8b586 | 8000 | struct task_struct *curr_task(int cpu) |
1df5c10a LT |
8001 | { |
8002 | return cpu_curr(cpu); | |
8003 | } | |
8004 | ||
67fc4e0c JW |
8005 | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ |
8006 | ||
8007 | #ifdef CONFIG_IA64 | |
1df5c10a LT |
8008 | /** |
8009 | * set_curr_task - set the current task for a given cpu. | |
8010 | * @cpu: the processor in question. | |
8011 | * @p: the task pointer to set. | |
8012 | * | |
8013 | * Description: This function must only be used when non-maskable interrupts | |
41a2d6cf IM |
8014 | * are serviced on a separate stack. It allows the architecture to switch the |
8015 | * notion of the current task on a cpu in a non-blocking manner. This function | |
1df5c10a LT |
8016 | * must be called with all CPU's synchronized, and interrupts disabled, the |
8017 | * and caller must save the original value of the current task (see | |
8018 | * curr_task() above) and restore that value before reenabling interrupts and | |
8019 | * re-starting the system. | |
8020 | * | |
8021 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
8022 | */ | |
36c8b586 | 8023 | void set_curr_task(int cpu, struct task_struct *p) |
1df5c10a LT |
8024 | { |
8025 | cpu_curr(cpu) = p; | |
8026 | } | |
8027 | ||
8028 | #endif | |
29f59db3 | 8029 | |
bccbe08a PZ |
8030 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8031 | static void free_fair_sched_group(struct task_group *tg) | |
6f505b16 PZ |
8032 | { |
8033 | int i; | |
8034 | ||
8035 | for_each_possible_cpu(i) { | |
8036 | if (tg->cfs_rq) | |
8037 | kfree(tg->cfs_rq[i]); | |
8038 | if (tg->se) | |
8039 | kfree(tg->se[i]); | |
6f505b16 PZ |
8040 | } |
8041 | ||
8042 | kfree(tg->cfs_rq); | |
8043 | kfree(tg->se); | |
6f505b16 PZ |
8044 | } |
8045 | ||
ec7dc8ac DG |
8046 | static |
8047 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
29f59db3 | 8048 | { |
29f59db3 | 8049 | struct cfs_rq *cfs_rq; |
eab17229 | 8050 | struct sched_entity *se; |
9b5b7751 | 8051 | struct rq *rq; |
29f59db3 SV |
8052 | int i; |
8053 | ||
434d53b0 | 8054 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8055 | if (!tg->cfs_rq) |
8056 | goto err; | |
434d53b0 | 8057 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8058 | if (!tg->se) |
8059 | goto err; | |
052f1dc7 PZ |
8060 | |
8061 | tg->shares = NICE_0_LOAD; | |
29f59db3 SV |
8062 | |
8063 | for_each_possible_cpu(i) { | |
9b5b7751 | 8064 | rq = cpu_rq(i); |
29f59db3 | 8065 | |
eab17229 LZ |
8066 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), |
8067 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 SV |
8068 | if (!cfs_rq) |
8069 | goto err; | |
8070 | ||
eab17229 LZ |
8071 | se = kzalloc_node(sizeof(struct sched_entity), |
8072 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 | 8073 | if (!se) |
dfc12eb2 | 8074 | goto err_free_rq; |
29f59db3 | 8075 | |
eab17229 | 8076 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); |
bccbe08a PZ |
8077 | } |
8078 | ||
8079 | return 1; | |
8080 | ||
dfc12eb2 PC |
8081 | err_free_rq: |
8082 | kfree(cfs_rq); | |
bccbe08a PZ |
8083 | err: |
8084 | return 0; | |
8085 | } | |
8086 | ||
8087 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
8088 | { | |
8089 | list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, | |
8090 | &cpu_rq(cpu)->leaf_cfs_rq_list); | |
8091 | } | |
8092 | ||
8093 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
8094 | { | |
8095 | list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); | |
8096 | } | |
6d6bc0ad | 8097 | #else /* !CONFG_FAIR_GROUP_SCHED */ |
bccbe08a PZ |
8098 | static inline void free_fair_sched_group(struct task_group *tg) |
8099 | { | |
8100 | } | |
8101 | ||
ec7dc8ac DG |
8102 | static inline |
8103 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8104 | { |
8105 | return 1; | |
8106 | } | |
8107 | ||
8108 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
8109 | { | |
8110 | } | |
8111 | ||
8112 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
8113 | { | |
8114 | } | |
6d6bc0ad | 8115 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
8116 | |
8117 | #ifdef CONFIG_RT_GROUP_SCHED | |
bccbe08a PZ |
8118 | static void free_rt_sched_group(struct task_group *tg) |
8119 | { | |
8120 | int i; | |
8121 | ||
d0b27fa7 PZ |
8122 | destroy_rt_bandwidth(&tg->rt_bandwidth); |
8123 | ||
bccbe08a PZ |
8124 | for_each_possible_cpu(i) { |
8125 | if (tg->rt_rq) | |
8126 | kfree(tg->rt_rq[i]); | |
8127 | if (tg->rt_se) | |
8128 | kfree(tg->rt_se[i]); | |
8129 | } | |
8130 | ||
8131 | kfree(tg->rt_rq); | |
8132 | kfree(tg->rt_se); | |
8133 | } | |
8134 | ||
ec7dc8ac DG |
8135 | static |
8136 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8137 | { |
8138 | struct rt_rq *rt_rq; | |
eab17229 | 8139 | struct sched_rt_entity *rt_se; |
bccbe08a PZ |
8140 | struct rq *rq; |
8141 | int i; | |
8142 | ||
434d53b0 | 8143 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8144 | if (!tg->rt_rq) |
8145 | goto err; | |
434d53b0 | 8146 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8147 | if (!tg->rt_se) |
8148 | goto err; | |
8149 | ||
d0b27fa7 PZ |
8150 | init_rt_bandwidth(&tg->rt_bandwidth, |
8151 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | |
bccbe08a PZ |
8152 | |
8153 | for_each_possible_cpu(i) { | |
8154 | rq = cpu_rq(i); | |
8155 | ||
eab17229 LZ |
8156 | rt_rq = kzalloc_node(sizeof(struct rt_rq), |
8157 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 PZ |
8158 | if (!rt_rq) |
8159 | goto err; | |
29f59db3 | 8160 | |
eab17229 LZ |
8161 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
8162 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 | 8163 | if (!rt_se) |
dfc12eb2 | 8164 | goto err_free_rq; |
29f59db3 | 8165 | |
eab17229 | 8166 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); |
29f59db3 SV |
8167 | } |
8168 | ||
bccbe08a PZ |
8169 | return 1; |
8170 | ||
dfc12eb2 PC |
8171 | err_free_rq: |
8172 | kfree(rt_rq); | |
bccbe08a PZ |
8173 | err: |
8174 | return 0; | |
8175 | } | |
8176 | ||
8177 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
8178 | { | |
8179 | list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, | |
8180 | &cpu_rq(cpu)->leaf_rt_rq_list); | |
8181 | } | |
8182 | ||
8183 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
8184 | { | |
8185 | list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); | |
8186 | } | |
6d6bc0ad | 8187 | #else /* !CONFIG_RT_GROUP_SCHED */ |
bccbe08a PZ |
8188 | static inline void free_rt_sched_group(struct task_group *tg) |
8189 | { | |
8190 | } | |
8191 | ||
ec7dc8ac DG |
8192 | static inline |
8193 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8194 | { |
8195 | return 1; | |
8196 | } | |
8197 | ||
8198 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
8199 | { | |
8200 | } | |
8201 | ||
8202 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
8203 | { | |
8204 | } | |
6d6bc0ad | 8205 | #endif /* CONFIG_RT_GROUP_SCHED */ |
bccbe08a | 8206 | |
7c941438 | 8207 | #ifdef CONFIG_CGROUP_SCHED |
bccbe08a PZ |
8208 | static void free_sched_group(struct task_group *tg) |
8209 | { | |
8210 | free_fair_sched_group(tg); | |
8211 | free_rt_sched_group(tg); | |
8212 | kfree(tg); | |
8213 | } | |
8214 | ||
8215 | /* allocate runqueue etc for a new task group */ | |
ec7dc8ac | 8216 | struct task_group *sched_create_group(struct task_group *parent) |
bccbe08a PZ |
8217 | { |
8218 | struct task_group *tg; | |
8219 | unsigned long flags; | |
8220 | int i; | |
8221 | ||
8222 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | |
8223 | if (!tg) | |
8224 | return ERR_PTR(-ENOMEM); | |
8225 | ||
ec7dc8ac | 8226 | if (!alloc_fair_sched_group(tg, parent)) |
bccbe08a PZ |
8227 | goto err; |
8228 | ||
ec7dc8ac | 8229 | if (!alloc_rt_sched_group(tg, parent)) |
bccbe08a PZ |
8230 | goto err; |
8231 | ||
8ed36996 | 8232 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 8233 | for_each_possible_cpu(i) { |
bccbe08a PZ |
8234 | register_fair_sched_group(tg, i); |
8235 | register_rt_sched_group(tg, i); | |
9b5b7751 | 8236 | } |
6f505b16 | 8237 | list_add_rcu(&tg->list, &task_groups); |
f473aa5e PZ |
8238 | |
8239 | WARN_ON(!parent); /* root should already exist */ | |
8240 | ||
8241 | tg->parent = parent; | |
f473aa5e | 8242 | INIT_LIST_HEAD(&tg->children); |
09f2724a | 8243 | list_add_rcu(&tg->siblings, &parent->children); |
8ed36996 | 8244 | spin_unlock_irqrestore(&task_group_lock, flags); |
29f59db3 | 8245 | |
9b5b7751 | 8246 | return tg; |
29f59db3 SV |
8247 | |
8248 | err: | |
6f505b16 | 8249 | free_sched_group(tg); |
29f59db3 SV |
8250 | return ERR_PTR(-ENOMEM); |
8251 | } | |
8252 | ||
9b5b7751 | 8253 | /* rcu callback to free various structures associated with a task group */ |
6f505b16 | 8254 | static void free_sched_group_rcu(struct rcu_head *rhp) |
29f59db3 | 8255 | { |
29f59db3 | 8256 | /* now it should be safe to free those cfs_rqs */ |
6f505b16 | 8257 | free_sched_group(container_of(rhp, struct task_group, rcu)); |
29f59db3 SV |
8258 | } |
8259 | ||
9b5b7751 | 8260 | /* Destroy runqueue etc associated with a task group */ |
4cf86d77 | 8261 | void sched_destroy_group(struct task_group *tg) |
29f59db3 | 8262 | { |
8ed36996 | 8263 | unsigned long flags; |
9b5b7751 | 8264 | int i; |
29f59db3 | 8265 | |
8ed36996 | 8266 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 8267 | for_each_possible_cpu(i) { |
bccbe08a PZ |
8268 | unregister_fair_sched_group(tg, i); |
8269 | unregister_rt_sched_group(tg, i); | |
9b5b7751 | 8270 | } |
6f505b16 | 8271 | list_del_rcu(&tg->list); |
f473aa5e | 8272 | list_del_rcu(&tg->siblings); |
8ed36996 | 8273 | spin_unlock_irqrestore(&task_group_lock, flags); |
9b5b7751 | 8274 | |
9b5b7751 | 8275 | /* wait for possible concurrent references to cfs_rqs complete */ |
6f505b16 | 8276 | call_rcu(&tg->rcu, free_sched_group_rcu); |
29f59db3 SV |
8277 | } |
8278 | ||
9b5b7751 | 8279 | /* change task's runqueue when it moves between groups. |
3a252015 IM |
8280 | * The caller of this function should have put the task in its new group |
8281 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | |
8282 | * reflect its new group. | |
9b5b7751 SV |
8283 | */ |
8284 | void sched_move_task(struct task_struct *tsk) | |
29f59db3 SV |
8285 | { |
8286 | int on_rq, running; | |
8287 | unsigned long flags; | |
8288 | struct rq *rq; | |
8289 | ||
8290 | rq = task_rq_lock(tsk, &flags); | |
8291 | ||
051a1d1a | 8292 | running = task_current(rq, tsk); |
29f59db3 SV |
8293 | on_rq = tsk->se.on_rq; |
8294 | ||
0e1f3483 | 8295 | if (on_rq) |
29f59db3 | 8296 | dequeue_task(rq, tsk, 0); |
0e1f3483 HS |
8297 | if (unlikely(running)) |
8298 | tsk->sched_class->put_prev_task(rq, tsk); | |
29f59db3 | 8299 | |
6f505b16 | 8300 | set_task_rq(tsk, task_cpu(tsk)); |
29f59db3 | 8301 | |
810b3817 PZ |
8302 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8303 | if (tsk->sched_class->moved_group) | |
88ec22d3 | 8304 | tsk->sched_class->moved_group(tsk, on_rq); |
810b3817 PZ |
8305 | #endif |
8306 | ||
0e1f3483 HS |
8307 | if (unlikely(running)) |
8308 | tsk->sched_class->set_curr_task(rq); | |
8309 | if (on_rq) | |
371fd7e7 | 8310 | enqueue_task(rq, tsk, 0); |
29f59db3 | 8311 | |
29f59db3 SV |
8312 | task_rq_unlock(rq, &flags); |
8313 | } | |
7c941438 | 8314 | #endif /* CONFIG_CGROUP_SCHED */ |
29f59db3 | 8315 | |
052f1dc7 | 8316 | #ifdef CONFIG_FAIR_GROUP_SCHED |
c09595f6 | 8317 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
29f59db3 SV |
8318 | { |
8319 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
29f59db3 SV |
8320 | int on_rq; |
8321 | ||
29f59db3 | 8322 | on_rq = se->on_rq; |
62fb1851 | 8323 | if (on_rq) |
29f59db3 SV |
8324 | dequeue_entity(cfs_rq, se, 0); |
8325 | ||
8326 | se->load.weight = shares; | |
e05510d0 | 8327 | se->load.inv_weight = 0; |
29f59db3 | 8328 | |
62fb1851 | 8329 | if (on_rq) |
29f59db3 | 8330 | enqueue_entity(cfs_rq, se, 0); |
c09595f6 | 8331 | } |
62fb1851 | 8332 | |
c09595f6 PZ |
8333 | static void set_se_shares(struct sched_entity *se, unsigned long shares) |
8334 | { | |
8335 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
8336 | struct rq *rq = cfs_rq->rq; | |
8337 | unsigned long flags; | |
8338 | ||
05fa785c | 8339 | raw_spin_lock_irqsave(&rq->lock, flags); |
c09595f6 | 8340 | __set_se_shares(se, shares); |
05fa785c | 8341 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
29f59db3 SV |
8342 | } |
8343 | ||
8ed36996 PZ |
8344 | static DEFINE_MUTEX(shares_mutex); |
8345 | ||
4cf86d77 | 8346 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) |
29f59db3 SV |
8347 | { |
8348 | int i; | |
8ed36996 | 8349 | unsigned long flags; |
c61935fd | 8350 | |
ec7dc8ac DG |
8351 | /* |
8352 | * We can't change the weight of the root cgroup. | |
8353 | */ | |
8354 | if (!tg->se[0]) | |
8355 | return -EINVAL; | |
8356 | ||
18d95a28 PZ |
8357 | if (shares < MIN_SHARES) |
8358 | shares = MIN_SHARES; | |
cb4ad1ff MX |
8359 | else if (shares > MAX_SHARES) |
8360 | shares = MAX_SHARES; | |
62fb1851 | 8361 | |
8ed36996 | 8362 | mutex_lock(&shares_mutex); |
9b5b7751 | 8363 | if (tg->shares == shares) |
5cb350ba | 8364 | goto done; |
29f59db3 | 8365 | |
8ed36996 | 8366 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
8367 | for_each_possible_cpu(i) |
8368 | unregister_fair_sched_group(tg, i); | |
f473aa5e | 8369 | list_del_rcu(&tg->siblings); |
8ed36996 | 8370 | spin_unlock_irqrestore(&task_group_lock, flags); |
6b2d7700 SV |
8371 | |
8372 | /* wait for any ongoing reference to this group to finish */ | |
8373 | synchronize_sched(); | |
8374 | ||
8375 | /* | |
8376 | * Now we are free to modify the group's share on each cpu | |
8377 | * w/o tripping rebalance_share or load_balance_fair. | |
8378 | */ | |
9b5b7751 | 8379 | tg->shares = shares; |
c09595f6 PZ |
8380 | for_each_possible_cpu(i) { |
8381 | /* | |
8382 | * force a rebalance | |
8383 | */ | |
8384 | cfs_rq_set_shares(tg->cfs_rq[i], 0); | |
cb4ad1ff | 8385 | set_se_shares(tg->se[i], shares); |
c09595f6 | 8386 | } |
29f59db3 | 8387 | |
6b2d7700 SV |
8388 | /* |
8389 | * Enable load balance activity on this group, by inserting it back on | |
8390 | * each cpu's rq->leaf_cfs_rq_list. | |
8391 | */ | |
8ed36996 | 8392 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
8393 | for_each_possible_cpu(i) |
8394 | register_fair_sched_group(tg, i); | |
f473aa5e | 8395 | list_add_rcu(&tg->siblings, &tg->parent->children); |
8ed36996 | 8396 | spin_unlock_irqrestore(&task_group_lock, flags); |
5cb350ba | 8397 | done: |
8ed36996 | 8398 | mutex_unlock(&shares_mutex); |
9b5b7751 | 8399 | return 0; |
29f59db3 SV |
8400 | } |
8401 | ||
5cb350ba DG |
8402 | unsigned long sched_group_shares(struct task_group *tg) |
8403 | { | |
8404 | return tg->shares; | |
8405 | } | |
052f1dc7 | 8406 | #endif |
5cb350ba | 8407 | |
052f1dc7 | 8408 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 8409 | /* |
9f0c1e56 | 8410 | * Ensure that the real time constraints are schedulable. |
6f505b16 | 8411 | */ |
9f0c1e56 PZ |
8412 | static DEFINE_MUTEX(rt_constraints_mutex); |
8413 | ||
8414 | static unsigned long to_ratio(u64 period, u64 runtime) | |
8415 | { | |
8416 | if (runtime == RUNTIME_INF) | |
9a7e0b18 | 8417 | return 1ULL << 20; |
9f0c1e56 | 8418 | |
9a7e0b18 | 8419 | return div64_u64(runtime << 20, period); |
9f0c1e56 PZ |
8420 | } |
8421 | ||
9a7e0b18 PZ |
8422 | /* Must be called with tasklist_lock held */ |
8423 | static inline int tg_has_rt_tasks(struct task_group *tg) | |
b40b2e8e | 8424 | { |
9a7e0b18 | 8425 | struct task_struct *g, *p; |
b40b2e8e | 8426 | |
9a7e0b18 PZ |
8427 | do_each_thread(g, p) { |
8428 | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | |
8429 | return 1; | |
8430 | } while_each_thread(g, p); | |
b40b2e8e | 8431 | |
9a7e0b18 PZ |
8432 | return 0; |
8433 | } | |
b40b2e8e | 8434 | |
9a7e0b18 PZ |
8435 | struct rt_schedulable_data { |
8436 | struct task_group *tg; | |
8437 | u64 rt_period; | |
8438 | u64 rt_runtime; | |
8439 | }; | |
b40b2e8e | 8440 | |
9a7e0b18 PZ |
8441 | static int tg_schedulable(struct task_group *tg, void *data) |
8442 | { | |
8443 | struct rt_schedulable_data *d = data; | |
8444 | struct task_group *child; | |
8445 | unsigned long total, sum = 0; | |
8446 | u64 period, runtime; | |
b40b2e8e | 8447 | |
9a7e0b18 PZ |
8448 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
8449 | runtime = tg->rt_bandwidth.rt_runtime; | |
b40b2e8e | 8450 | |
9a7e0b18 PZ |
8451 | if (tg == d->tg) { |
8452 | period = d->rt_period; | |
8453 | runtime = d->rt_runtime; | |
b40b2e8e | 8454 | } |
b40b2e8e | 8455 | |
4653f803 PZ |
8456 | /* |
8457 | * Cannot have more runtime than the period. | |
8458 | */ | |
8459 | if (runtime > period && runtime != RUNTIME_INF) | |
8460 | return -EINVAL; | |
6f505b16 | 8461 | |
4653f803 PZ |
8462 | /* |
8463 | * Ensure we don't starve existing RT tasks. | |
8464 | */ | |
9a7e0b18 PZ |
8465 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) |
8466 | return -EBUSY; | |
6f505b16 | 8467 | |
9a7e0b18 | 8468 | total = to_ratio(period, runtime); |
6f505b16 | 8469 | |
4653f803 PZ |
8470 | /* |
8471 | * Nobody can have more than the global setting allows. | |
8472 | */ | |
8473 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | |
8474 | return -EINVAL; | |
6f505b16 | 8475 | |
4653f803 PZ |
8476 | /* |
8477 | * The sum of our children's runtime should not exceed our own. | |
8478 | */ | |
9a7e0b18 PZ |
8479 | list_for_each_entry_rcu(child, &tg->children, siblings) { |
8480 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | |
8481 | runtime = child->rt_bandwidth.rt_runtime; | |
6f505b16 | 8482 | |
9a7e0b18 PZ |
8483 | if (child == d->tg) { |
8484 | period = d->rt_period; | |
8485 | runtime = d->rt_runtime; | |
8486 | } | |
6f505b16 | 8487 | |
9a7e0b18 | 8488 | sum += to_ratio(period, runtime); |
9f0c1e56 | 8489 | } |
6f505b16 | 8490 | |
9a7e0b18 PZ |
8491 | if (sum > total) |
8492 | return -EINVAL; | |
8493 | ||
8494 | return 0; | |
6f505b16 PZ |
8495 | } |
8496 | ||
9a7e0b18 | 8497 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
521f1a24 | 8498 | { |
9a7e0b18 PZ |
8499 | struct rt_schedulable_data data = { |
8500 | .tg = tg, | |
8501 | .rt_period = period, | |
8502 | .rt_runtime = runtime, | |
8503 | }; | |
8504 | ||
8505 | return walk_tg_tree(tg_schedulable, tg_nop, &data); | |
521f1a24 DG |
8506 | } |
8507 | ||
d0b27fa7 PZ |
8508 | static int tg_set_bandwidth(struct task_group *tg, |
8509 | u64 rt_period, u64 rt_runtime) | |
6f505b16 | 8510 | { |
ac086bc2 | 8511 | int i, err = 0; |
9f0c1e56 | 8512 | |
9f0c1e56 | 8513 | mutex_lock(&rt_constraints_mutex); |
521f1a24 | 8514 | read_lock(&tasklist_lock); |
9a7e0b18 PZ |
8515 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
8516 | if (err) | |
9f0c1e56 | 8517 | goto unlock; |
ac086bc2 | 8518 | |
0986b11b | 8519 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
d0b27fa7 PZ |
8520 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
8521 | tg->rt_bandwidth.rt_runtime = rt_runtime; | |
ac086bc2 PZ |
8522 | |
8523 | for_each_possible_cpu(i) { | |
8524 | struct rt_rq *rt_rq = tg->rt_rq[i]; | |
8525 | ||
0986b11b | 8526 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
ac086bc2 | 8527 | rt_rq->rt_runtime = rt_runtime; |
0986b11b | 8528 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
ac086bc2 | 8529 | } |
0986b11b | 8530 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
9f0c1e56 | 8531 | unlock: |
521f1a24 | 8532 | read_unlock(&tasklist_lock); |
9f0c1e56 PZ |
8533 | mutex_unlock(&rt_constraints_mutex); |
8534 | ||
8535 | return err; | |
6f505b16 PZ |
8536 | } |
8537 | ||
d0b27fa7 PZ |
8538 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
8539 | { | |
8540 | u64 rt_runtime, rt_period; | |
8541 | ||
8542 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
8543 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | |
8544 | if (rt_runtime_us < 0) | |
8545 | rt_runtime = RUNTIME_INF; | |
8546 | ||
8547 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | |
8548 | } | |
8549 | ||
9f0c1e56 PZ |
8550 | long sched_group_rt_runtime(struct task_group *tg) |
8551 | { | |
8552 | u64 rt_runtime_us; | |
8553 | ||
d0b27fa7 | 8554 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
9f0c1e56 PZ |
8555 | return -1; |
8556 | ||
d0b27fa7 | 8557 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
9f0c1e56 PZ |
8558 | do_div(rt_runtime_us, NSEC_PER_USEC); |
8559 | return rt_runtime_us; | |
8560 | } | |
d0b27fa7 PZ |
8561 | |
8562 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | |
8563 | { | |
8564 | u64 rt_runtime, rt_period; | |
8565 | ||
8566 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | |
8567 | rt_runtime = tg->rt_bandwidth.rt_runtime; | |
8568 | ||
619b0488 R |
8569 | if (rt_period == 0) |
8570 | return -EINVAL; | |
8571 | ||
d0b27fa7 PZ |
8572 | return tg_set_bandwidth(tg, rt_period, rt_runtime); |
8573 | } | |
8574 | ||
8575 | long sched_group_rt_period(struct task_group *tg) | |
8576 | { | |
8577 | u64 rt_period_us; | |
8578 | ||
8579 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
8580 | do_div(rt_period_us, NSEC_PER_USEC); | |
8581 | return rt_period_us; | |
8582 | } | |
8583 | ||
8584 | static int sched_rt_global_constraints(void) | |
8585 | { | |
4653f803 | 8586 | u64 runtime, period; |
d0b27fa7 PZ |
8587 | int ret = 0; |
8588 | ||
ec5d4989 HS |
8589 | if (sysctl_sched_rt_period <= 0) |
8590 | return -EINVAL; | |
8591 | ||
4653f803 PZ |
8592 | runtime = global_rt_runtime(); |
8593 | period = global_rt_period(); | |
8594 | ||
8595 | /* | |
8596 | * Sanity check on the sysctl variables. | |
8597 | */ | |
8598 | if (runtime > period && runtime != RUNTIME_INF) | |
8599 | return -EINVAL; | |
10b612f4 | 8600 | |
d0b27fa7 | 8601 | mutex_lock(&rt_constraints_mutex); |
9a7e0b18 | 8602 | read_lock(&tasklist_lock); |
4653f803 | 8603 | ret = __rt_schedulable(NULL, 0, 0); |
9a7e0b18 | 8604 | read_unlock(&tasklist_lock); |
d0b27fa7 PZ |
8605 | mutex_unlock(&rt_constraints_mutex); |
8606 | ||
8607 | return ret; | |
8608 | } | |
54e99124 DG |
8609 | |
8610 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | |
8611 | { | |
8612 | /* Don't accept realtime tasks when there is no way for them to run */ | |
8613 | if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | |
8614 | return 0; | |
8615 | ||
8616 | return 1; | |
8617 | } | |
8618 | ||
6d6bc0ad | 8619 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
8620 | static int sched_rt_global_constraints(void) |
8621 | { | |
ac086bc2 PZ |
8622 | unsigned long flags; |
8623 | int i; | |
8624 | ||
ec5d4989 HS |
8625 | if (sysctl_sched_rt_period <= 0) |
8626 | return -EINVAL; | |
8627 | ||
60aa605d PZ |
8628 | /* |
8629 | * There's always some RT tasks in the root group | |
8630 | * -- migration, kstopmachine etc.. | |
8631 | */ | |
8632 | if (sysctl_sched_rt_runtime == 0) | |
8633 | return -EBUSY; | |
8634 | ||
0986b11b | 8635 | raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
ac086bc2 PZ |
8636 | for_each_possible_cpu(i) { |
8637 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | |
8638 | ||
0986b11b | 8639 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
ac086bc2 | 8640 | rt_rq->rt_runtime = global_rt_runtime(); |
0986b11b | 8641 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
ac086bc2 | 8642 | } |
0986b11b | 8643 | raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); |
ac086bc2 | 8644 | |
d0b27fa7 PZ |
8645 | return 0; |
8646 | } | |
6d6bc0ad | 8647 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
8648 | |
8649 | int sched_rt_handler(struct ctl_table *table, int write, | |
8d65af78 | 8650 | void __user *buffer, size_t *lenp, |
d0b27fa7 PZ |
8651 | loff_t *ppos) |
8652 | { | |
8653 | int ret; | |
8654 | int old_period, old_runtime; | |
8655 | static DEFINE_MUTEX(mutex); | |
8656 | ||
8657 | mutex_lock(&mutex); | |
8658 | old_period = sysctl_sched_rt_period; | |
8659 | old_runtime = sysctl_sched_rt_runtime; | |
8660 | ||
8d65af78 | 8661 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
d0b27fa7 PZ |
8662 | |
8663 | if (!ret && write) { | |
8664 | ret = sched_rt_global_constraints(); | |
8665 | if (ret) { | |
8666 | sysctl_sched_rt_period = old_period; | |
8667 | sysctl_sched_rt_runtime = old_runtime; | |
8668 | } else { | |
8669 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | |
8670 | def_rt_bandwidth.rt_period = | |
8671 | ns_to_ktime(global_rt_period()); | |
8672 | } | |
8673 | } | |
8674 | mutex_unlock(&mutex); | |
8675 | ||
8676 | return ret; | |
8677 | } | |
68318b8e | 8678 | |
052f1dc7 | 8679 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
8680 | |
8681 | /* return corresponding task_group object of a cgroup */ | |
2b01dfe3 | 8682 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) |
68318b8e | 8683 | { |
2b01dfe3 PM |
8684 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), |
8685 | struct task_group, css); | |
68318b8e SV |
8686 | } |
8687 | ||
8688 | static struct cgroup_subsys_state * | |
2b01dfe3 | 8689 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) |
68318b8e | 8690 | { |
ec7dc8ac | 8691 | struct task_group *tg, *parent; |
68318b8e | 8692 | |
2b01dfe3 | 8693 | if (!cgrp->parent) { |
68318b8e | 8694 | /* This is early initialization for the top cgroup */ |
68318b8e SV |
8695 | return &init_task_group.css; |
8696 | } | |
8697 | ||
ec7dc8ac DG |
8698 | parent = cgroup_tg(cgrp->parent); |
8699 | tg = sched_create_group(parent); | |
68318b8e SV |
8700 | if (IS_ERR(tg)) |
8701 | return ERR_PTR(-ENOMEM); | |
8702 | ||
68318b8e SV |
8703 | return &tg->css; |
8704 | } | |
8705 | ||
41a2d6cf IM |
8706 | static void |
8707 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
68318b8e | 8708 | { |
2b01dfe3 | 8709 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
8710 | |
8711 | sched_destroy_group(tg); | |
8712 | } | |
8713 | ||
41a2d6cf | 8714 | static int |
be367d09 | 8715 | cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
68318b8e | 8716 | { |
b68aa230 | 8717 | #ifdef CONFIG_RT_GROUP_SCHED |
54e99124 | 8718 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
b68aa230 PZ |
8719 | return -EINVAL; |
8720 | #else | |
68318b8e SV |
8721 | /* We don't support RT-tasks being in separate groups */ |
8722 | if (tsk->sched_class != &fair_sched_class) | |
8723 | return -EINVAL; | |
b68aa230 | 8724 | #endif |
be367d09 BB |
8725 | return 0; |
8726 | } | |
68318b8e | 8727 | |
be367d09 BB |
8728 | static int |
8729 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |
8730 | struct task_struct *tsk, bool threadgroup) | |
8731 | { | |
8732 | int retval = cpu_cgroup_can_attach_task(cgrp, tsk); | |
8733 | if (retval) | |
8734 | return retval; | |
8735 | if (threadgroup) { | |
8736 | struct task_struct *c; | |
8737 | rcu_read_lock(); | |
8738 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | |
8739 | retval = cpu_cgroup_can_attach_task(cgrp, c); | |
8740 | if (retval) { | |
8741 | rcu_read_unlock(); | |
8742 | return retval; | |
8743 | } | |
8744 | } | |
8745 | rcu_read_unlock(); | |
8746 | } | |
68318b8e SV |
8747 | return 0; |
8748 | } | |
8749 | ||
8750 | static void | |
2b01dfe3 | 8751 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
be367d09 BB |
8752 | struct cgroup *old_cont, struct task_struct *tsk, |
8753 | bool threadgroup) | |
68318b8e SV |
8754 | { |
8755 | sched_move_task(tsk); | |
be367d09 BB |
8756 | if (threadgroup) { |
8757 | struct task_struct *c; | |
8758 | rcu_read_lock(); | |
8759 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | |
8760 | sched_move_task(c); | |
8761 | } | |
8762 | rcu_read_unlock(); | |
8763 | } | |
68318b8e SV |
8764 | } |
8765 | ||
052f1dc7 | 8766 | #ifdef CONFIG_FAIR_GROUP_SCHED |
f4c753b7 | 8767 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
2b01dfe3 | 8768 | u64 shareval) |
68318b8e | 8769 | { |
2b01dfe3 | 8770 | return sched_group_set_shares(cgroup_tg(cgrp), shareval); |
68318b8e SV |
8771 | } |
8772 | ||
f4c753b7 | 8773 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) |
68318b8e | 8774 | { |
2b01dfe3 | 8775 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
8776 | |
8777 | return (u64) tg->shares; | |
8778 | } | |
6d6bc0ad | 8779 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
68318b8e | 8780 | |
052f1dc7 | 8781 | #ifdef CONFIG_RT_GROUP_SCHED |
0c70814c | 8782 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, |
06ecb27c | 8783 | s64 val) |
6f505b16 | 8784 | { |
06ecb27c | 8785 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); |
6f505b16 PZ |
8786 | } |
8787 | ||
06ecb27c | 8788 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) |
6f505b16 | 8789 | { |
06ecb27c | 8790 | return sched_group_rt_runtime(cgroup_tg(cgrp)); |
6f505b16 | 8791 | } |
d0b27fa7 PZ |
8792 | |
8793 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | |
8794 | u64 rt_period_us) | |
8795 | { | |
8796 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | |
8797 | } | |
8798 | ||
8799 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | |
8800 | { | |
8801 | return sched_group_rt_period(cgroup_tg(cgrp)); | |
8802 | } | |
6d6bc0ad | 8803 | #endif /* CONFIG_RT_GROUP_SCHED */ |
6f505b16 | 8804 | |
fe5c7cc2 | 8805 | static struct cftype cpu_files[] = { |
052f1dc7 | 8806 | #ifdef CONFIG_FAIR_GROUP_SCHED |
fe5c7cc2 PM |
8807 | { |
8808 | .name = "shares", | |
f4c753b7 PM |
8809 | .read_u64 = cpu_shares_read_u64, |
8810 | .write_u64 = cpu_shares_write_u64, | |
fe5c7cc2 | 8811 | }, |
052f1dc7 PZ |
8812 | #endif |
8813 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 8814 | { |
9f0c1e56 | 8815 | .name = "rt_runtime_us", |
06ecb27c PM |
8816 | .read_s64 = cpu_rt_runtime_read, |
8817 | .write_s64 = cpu_rt_runtime_write, | |
6f505b16 | 8818 | }, |
d0b27fa7 PZ |
8819 | { |
8820 | .name = "rt_period_us", | |
f4c753b7 PM |
8821 | .read_u64 = cpu_rt_period_read_uint, |
8822 | .write_u64 = cpu_rt_period_write_uint, | |
d0b27fa7 | 8823 | }, |
052f1dc7 | 8824 | #endif |
68318b8e SV |
8825 | }; |
8826 | ||
8827 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | |
8828 | { | |
fe5c7cc2 | 8829 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); |
68318b8e SV |
8830 | } |
8831 | ||
8832 | struct cgroup_subsys cpu_cgroup_subsys = { | |
38605cae IM |
8833 | .name = "cpu", |
8834 | .create = cpu_cgroup_create, | |
8835 | .destroy = cpu_cgroup_destroy, | |
8836 | .can_attach = cpu_cgroup_can_attach, | |
8837 | .attach = cpu_cgroup_attach, | |
8838 | .populate = cpu_cgroup_populate, | |
8839 | .subsys_id = cpu_cgroup_subsys_id, | |
68318b8e SV |
8840 | .early_init = 1, |
8841 | }; | |
8842 | ||
052f1dc7 | 8843 | #endif /* CONFIG_CGROUP_SCHED */ |
d842de87 SV |
8844 | |
8845 | #ifdef CONFIG_CGROUP_CPUACCT | |
8846 | ||
8847 | /* | |
8848 | * CPU accounting code for task groups. | |
8849 | * | |
8850 | * Based on the work by Paul Menage ([email protected]) and Balbir Singh | |
8851 | * ([email protected]). | |
8852 | */ | |
8853 | ||
934352f2 | 8854 | /* track cpu usage of a group of tasks and its child groups */ |
d842de87 SV |
8855 | struct cpuacct { |
8856 | struct cgroup_subsys_state css; | |
8857 | /* cpuusage holds pointer to a u64-type object on every cpu */ | |
43cf38eb | 8858 | u64 __percpu *cpuusage; |
ef12fefa | 8859 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; |
934352f2 | 8860 | struct cpuacct *parent; |
d842de87 SV |
8861 | }; |
8862 | ||
8863 | struct cgroup_subsys cpuacct_subsys; | |
8864 | ||
8865 | /* return cpu accounting group corresponding to this container */ | |
32cd756a | 8866 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) |
d842de87 | 8867 | { |
32cd756a | 8868 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), |
d842de87 SV |
8869 | struct cpuacct, css); |
8870 | } | |
8871 | ||
8872 | /* return cpu accounting group to which this task belongs */ | |
8873 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | |
8874 | { | |
8875 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | |
8876 | struct cpuacct, css); | |
8877 | } | |
8878 | ||
8879 | /* create a new cpu accounting group */ | |
8880 | static struct cgroup_subsys_state *cpuacct_create( | |
32cd756a | 8881 | struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 SV |
8882 | { |
8883 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | |
ef12fefa | 8884 | int i; |
d842de87 SV |
8885 | |
8886 | if (!ca) | |
ef12fefa | 8887 | goto out; |
d842de87 SV |
8888 | |
8889 | ca->cpuusage = alloc_percpu(u64); | |
ef12fefa BR |
8890 | if (!ca->cpuusage) |
8891 | goto out_free_ca; | |
8892 | ||
8893 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | |
8894 | if (percpu_counter_init(&ca->cpustat[i], 0)) | |
8895 | goto out_free_counters; | |
d842de87 | 8896 | |
934352f2 BR |
8897 | if (cgrp->parent) |
8898 | ca->parent = cgroup_ca(cgrp->parent); | |
8899 | ||
d842de87 | 8900 | return &ca->css; |
ef12fefa BR |
8901 | |
8902 | out_free_counters: | |
8903 | while (--i >= 0) | |
8904 | percpu_counter_destroy(&ca->cpustat[i]); | |
8905 | free_percpu(ca->cpuusage); | |
8906 | out_free_ca: | |
8907 | kfree(ca); | |
8908 | out: | |
8909 | return ERR_PTR(-ENOMEM); | |
d842de87 SV |
8910 | } |
8911 | ||
8912 | /* destroy an existing cpu accounting group */ | |
41a2d6cf | 8913 | static void |
32cd756a | 8914 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 8915 | { |
32cd756a | 8916 | struct cpuacct *ca = cgroup_ca(cgrp); |
ef12fefa | 8917 | int i; |
d842de87 | 8918 | |
ef12fefa BR |
8919 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) |
8920 | percpu_counter_destroy(&ca->cpustat[i]); | |
d842de87 SV |
8921 | free_percpu(ca->cpuusage); |
8922 | kfree(ca); | |
8923 | } | |
8924 | ||
720f5498 KC |
8925 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
8926 | { | |
b36128c8 | 8927 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
720f5498 KC |
8928 | u64 data; |
8929 | ||
8930 | #ifndef CONFIG_64BIT | |
8931 | /* | |
8932 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. | |
8933 | */ | |
05fa785c | 8934 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
720f5498 | 8935 | data = *cpuusage; |
05fa785c | 8936 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
720f5498 KC |
8937 | #else |
8938 | data = *cpuusage; | |
8939 | #endif | |
8940 | ||
8941 | return data; | |
8942 | } | |
8943 | ||
8944 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | |
8945 | { | |
b36128c8 | 8946 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
720f5498 KC |
8947 | |
8948 | #ifndef CONFIG_64BIT | |
8949 | /* | |
8950 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. | |
8951 | */ | |
05fa785c | 8952 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
720f5498 | 8953 | *cpuusage = val; |
05fa785c | 8954 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
720f5498 KC |
8955 | #else |
8956 | *cpuusage = val; | |
8957 | #endif | |
8958 | } | |
8959 | ||
d842de87 | 8960 | /* return total cpu usage (in nanoseconds) of a group */ |
32cd756a | 8961 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) |
d842de87 | 8962 | { |
32cd756a | 8963 | struct cpuacct *ca = cgroup_ca(cgrp); |
d842de87 SV |
8964 | u64 totalcpuusage = 0; |
8965 | int i; | |
8966 | ||
720f5498 KC |
8967 | for_each_present_cpu(i) |
8968 | totalcpuusage += cpuacct_cpuusage_read(ca, i); | |
d842de87 SV |
8969 | |
8970 | return totalcpuusage; | |
8971 | } | |
8972 | ||
0297b803 DG |
8973 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, |
8974 | u64 reset) | |
8975 | { | |
8976 | struct cpuacct *ca = cgroup_ca(cgrp); | |
8977 | int err = 0; | |
8978 | int i; | |
8979 | ||
8980 | if (reset) { | |
8981 | err = -EINVAL; | |
8982 | goto out; | |
8983 | } | |
8984 | ||
720f5498 KC |
8985 | for_each_present_cpu(i) |
8986 | cpuacct_cpuusage_write(ca, i, 0); | |
0297b803 | 8987 | |
0297b803 DG |
8988 | out: |
8989 | return err; | |
8990 | } | |
8991 | ||
e9515c3c KC |
8992 | static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, |
8993 | struct seq_file *m) | |
8994 | { | |
8995 | struct cpuacct *ca = cgroup_ca(cgroup); | |
8996 | u64 percpu; | |
8997 | int i; | |
8998 | ||
8999 | for_each_present_cpu(i) { | |
9000 | percpu = cpuacct_cpuusage_read(ca, i); | |
9001 | seq_printf(m, "%llu ", (unsigned long long) percpu); | |
9002 | } | |
9003 | seq_printf(m, "\n"); | |
9004 | return 0; | |
9005 | } | |
9006 | ||
ef12fefa BR |
9007 | static const char *cpuacct_stat_desc[] = { |
9008 | [CPUACCT_STAT_USER] = "user", | |
9009 | [CPUACCT_STAT_SYSTEM] = "system", | |
9010 | }; | |
9011 | ||
9012 | static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, | |
9013 | struct cgroup_map_cb *cb) | |
9014 | { | |
9015 | struct cpuacct *ca = cgroup_ca(cgrp); | |
9016 | int i; | |
9017 | ||
9018 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { | |
9019 | s64 val = percpu_counter_read(&ca->cpustat[i]); | |
9020 | val = cputime64_to_clock_t(val); | |
9021 | cb->fill(cb, cpuacct_stat_desc[i], val); | |
9022 | } | |
9023 | return 0; | |
9024 | } | |
9025 | ||
d842de87 SV |
9026 | static struct cftype files[] = { |
9027 | { | |
9028 | .name = "usage", | |
f4c753b7 PM |
9029 | .read_u64 = cpuusage_read, |
9030 | .write_u64 = cpuusage_write, | |
d842de87 | 9031 | }, |
e9515c3c KC |
9032 | { |
9033 | .name = "usage_percpu", | |
9034 | .read_seq_string = cpuacct_percpu_seq_read, | |
9035 | }, | |
ef12fefa BR |
9036 | { |
9037 | .name = "stat", | |
9038 | .read_map = cpuacct_stats_show, | |
9039 | }, | |
d842de87 SV |
9040 | }; |
9041 | ||
32cd756a | 9042 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 9043 | { |
32cd756a | 9044 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); |
d842de87 SV |
9045 | } |
9046 | ||
9047 | /* | |
9048 | * charge this task's execution time to its accounting group. | |
9049 | * | |
9050 | * called with rq->lock held. | |
9051 | */ | |
9052 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |
9053 | { | |
9054 | struct cpuacct *ca; | |
934352f2 | 9055 | int cpu; |
d842de87 | 9056 | |
c40c6f85 | 9057 | if (unlikely(!cpuacct_subsys.active)) |
d842de87 SV |
9058 | return; |
9059 | ||
934352f2 | 9060 | cpu = task_cpu(tsk); |
a18b83b7 BR |
9061 | |
9062 | rcu_read_lock(); | |
9063 | ||
d842de87 | 9064 | ca = task_ca(tsk); |
d842de87 | 9065 | |
934352f2 | 9066 | for (; ca; ca = ca->parent) { |
b36128c8 | 9067 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
d842de87 SV |
9068 | *cpuusage += cputime; |
9069 | } | |
a18b83b7 BR |
9070 | |
9071 | rcu_read_unlock(); | |
d842de87 SV |
9072 | } |
9073 | ||
fa535a77 AB |
9074 | /* |
9075 | * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | |
9076 | * in cputime_t units. As a result, cpuacct_update_stats calls | |
9077 | * percpu_counter_add with values large enough to always overflow the | |
9078 | * per cpu batch limit causing bad SMP scalability. | |
9079 | * | |
9080 | * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | |
9081 | * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | |
9082 | * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | |
9083 | */ | |
9084 | #ifdef CONFIG_SMP | |
9085 | #define CPUACCT_BATCH \ | |
9086 | min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | |
9087 | #else | |
9088 | #define CPUACCT_BATCH 0 | |
9089 | #endif | |
9090 | ||
ef12fefa BR |
9091 | /* |
9092 | * Charge the system/user time to the task's accounting group. | |
9093 | */ | |
9094 | static void cpuacct_update_stats(struct task_struct *tsk, | |
9095 | enum cpuacct_stat_index idx, cputime_t val) | |
9096 | { | |
9097 | struct cpuacct *ca; | |
fa535a77 | 9098 | int batch = CPUACCT_BATCH; |
ef12fefa BR |
9099 | |
9100 | if (unlikely(!cpuacct_subsys.active)) | |
9101 | return; | |
9102 | ||
9103 | rcu_read_lock(); | |
9104 | ca = task_ca(tsk); | |
9105 | ||
9106 | do { | |
fa535a77 | 9107 | __percpu_counter_add(&ca->cpustat[idx], val, batch); |
ef12fefa BR |
9108 | ca = ca->parent; |
9109 | } while (ca); | |
9110 | rcu_read_unlock(); | |
9111 | } | |
9112 | ||
d842de87 SV |
9113 | struct cgroup_subsys cpuacct_subsys = { |
9114 | .name = "cpuacct", | |
9115 | .create = cpuacct_create, | |
9116 | .destroy = cpuacct_destroy, | |
9117 | .populate = cpuacct_populate, | |
9118 | .subsys_id = cpuacct_subsys_id, | |
9119 | }; | |
9120 | #endif /* CONFIG_CGROUP_CPUACCT */ | |
03b042bf PM |
9121 | |
9122 | #ifndef CONFIG_SMP | |
9123 | ||
03b042bf PM |
9124 | void synchronize_sched_expedited(void) |
9125 | { | |
fc390cde | 9126 | barrier(); |
03b042bf PM |
9127 | } |
9128 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | |
9129 | ||
9130 | #else /* #ifndef CONFIG_SMP */ | |
9131 | ||
cc631fb7 | 9132 | static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0); |
03b042bf | 9133 | |
cc631fb7 | 9134 | static int synchronize_sched_expedited_cpu_stop(void *data) |
03b042bf | 9135 | { |
969c7921 TH |
9136 | /* |
9137 | * There must be a full memory barrier on each affected CPU | |
9138 | * between the time that try_stop_cpus() is called and the | |
9139 | * time that it returns. | |
9140 | * | |
9141 | * In the current initial implementation of cpu_stop, the | |
9142 | * above condition is already met when the control reaches | |
9143 | * this point and the following smp_mb() is not strictly | |
9144 | * necessary. Do smp_mb() anyway for documentation and | |
9145 | * robustness against future implementation changes. | |
9146 | */ | |
cc631fb7 | 9147 | smp_mb(); /* See above comment block. */ |
969c7921 | 9148 | return 0; |
03b042bf | 9149 | } |
03b042bf PM |
9150 | |
9151 | /* | |
9152 | * Wait for an rcu-sched grace period to elapse, but use "big hammer" | |
9153 | * approach to force grace period to end quickly. This consumes | |
9154 | * significant time on all CPUs, and is thus not recommended for | |
9155 | * any sort of common-case code. | |
9156 | * | |
9157 | * Note that it is illegal to call this function while holding any | |
9158 | * lock that is acquired by a CPU-hotplug notifier. Failing to | |
9159 | * observe this restriction will result in deadlock. | |
9160 | */ | |
9161 | void synchronize_sched_expedited(void) | |
9162 | { | |
969c7921 | 9163 | int snap, trycount = 0; |
03b042bf PM |
9164 | |
9165 | smp_mb(); /* ensure prior mod happens before capturing snap. */ | |
969c7921 | 9166 | snap = atomic_read(&synchronize_sched_expedited_count) + 1; |
03b042bf | 9167 | get_online_cpus(); |
969c7921 TH |
9168 | while (try_stop_cpus(cpu_online_mask, |
9169 | synchronize_sched_expedited_cpu_stop, | |
94458d5e | 9170 | NULL) == -EAGAIN) { |
03b042bf PM |
9171 | put_online_cpus(); |
9172 | if (trycount++ < 10) | |
9173 | udelay(trycount * num_online_cpus()); | |
9174 | else { | |
9175 | synchronize_sched(); | |
9176 | return; | |
9177 | } | |
969c7921 | 9178 | if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) { |
03b042bf PM |
9179 | smp_mb(); /* ensure test happens before caller kfree */ |
9180 | return; | |
9181 | } | |
9182 | get_online_cpus(); | |
9183 | } | |
969c7921 | 9184 | atomic_inc(&synchronize_sched_expedited_count); |
cc631fb7 | 9185 | smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */ |
03b042bf | 9186 | put_online_cpus(); |
03b042bf PM |
9187 | } |
9188 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | |
9189 | ||
9190 | #endif /* #else #ifndef CONFIG_SMP */ |