]> Git Repo - linux.git/blame - mm/memory.c
thermal: intel: menlow: Get rid of this driver
[linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh ([email protected])
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * ([email protected])
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
1da177e4 80
b3d1411b
JFG
81#include <trace/events/kmem.h>
82
6952b61d 83#include <asm/io.h>
33a709b2 84#include <asm/mmu_context.h>
1da177e4 85#include <asm/pgalloc.h>
7c0f6ba6 86#include <linux/uaccess.h>
1da177e4
LT
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
1da177e4 89
e80d3909 90#include "pgalloc-track.h"
42b77728 91#include "internal.h"
014bb1de 92#include "swap.h"
42b77728 93
af27d940 94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
96#endif
97
a9ee6cf5 98#ifndef CONFIG_NUMA
1da177e4 99unsigned long max_mapnr;
1da177e4 100EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
101
102struct page *mem_map;
1da177e4
LT
103EXPORT_SYMBOL(mem_map);
104#endif
105
5c041f5d
PX
106static vm_fault_t do_fault(struct vm_fault *vmf);
107
1da177e4
LT
108/*
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113 * and ZONE_HIGHMEM.
114 */
166f61b9 115void *high_memory;
1da177e4 116EXPORT_SYMBOL(high_memory);
1da177e4 117
32a93233
IM
118/*
119 * Randomize the address space (stacks, mmaps, brk, etc.).
120 *
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
123 */
124int randomize_va_space __read_mostly =
125#ifdef CONFIG_COMPAT_BRK
126 1;
127#else
128 2;
129#endif
a62eaf15 130
46bdb427
WD
131#ifndef arch_wants_old_prefaulted_pte
132static inline bool arch_wants_old_prefaulted_pte(void)
133{
134 /*
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
138 */
139 return false;
140}
141#endif
142
a62eaf15
AK
143static int __init disable_randmaps(char *s)
144{
145 randomize_va_space = 0;
9b41046c 146 return 1;
a62eaf15
AK
147}
148__setup("norandmaps", disable_randmaps);
149
62eede62 150unsigned long zero_pfn __read_mostly;
0b70068e
AB
151EXPORT_SYMBOL(zero_pfn);
152
166f61b9
TH
153unsigned long highest_memmap_pfn __read_mostly;
154
a13ea5b7
HD
155/*
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157 */
158static int __init init_zero_pfn(void)
159{
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 return 0;
162}
e720e7d0 163early_initcall(init_zero_pfn);
a62eaf15 164
f1a79412 165void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 166{
f1a79412 167 trace_rss_stat(mm, member);
b3d1411b 168}
d559db08 169
1da177e4
LT
170/*
171 * Note: this doesn't free the actual pages themselves. That
172 * has been handled earlier when unmapping all the memory regions.
173 */
9e1b32ca
BH
174static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175 unsigned long addr)
1da177e4 176{
2f569afd 177 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 178 pmd_clear(pmd);
9e1b32ca 179 pte_free_tlb(tlb, token, addr);
c4812909 180 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
181}
182
e0da382c
HD
183static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 unsigned long addr, unsigned long end,
185 unsigned long floor, unsigned long ceiling)
1da177e4
LT
186{
187 pmd_t *pmd;
188 unsigned long next;
e0da382c 189 unsigned long start;
1da177e4 190
e0da382c 191 start = addr;
1da177e4 192 pmd = pmd_offset(pud, addr);
1da177e4
LT
193 do {
194 next = pmd_addr_end(addr, end);
195 if (pmd_none_or_clear_bad(pmd))
196 continue;
9e1b32ca 197 free_pte_range(tlb, pmd, addr);
1da177e4
LT
198 } while (pmd++, addr = next, addr != end);
199
e0da382c
HD
200 start &= PUD_MASK;
201 if (start < floor)
202 return;
203 if (ceiling) {
204 ceiling &= PUD_MASK;
205 if (!ceiling)
206 return;
1da177e4 207 }
e0da382c
HD
208 if (end - 1 > ceiling - 1)
209 return;
210
211 pmd = pmd_offset(pud, start);
212 pud_clear(pud);
9e1b32ca 213 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 214 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
215}
216
c2febafc 217static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
1da177e4
LT
220{
221 pud_t *pud;
222 unsigned long next;
e0da382c 223 unsigned long start;
1da177e4 224
e0da382c 225 start = addr;
c2febafc 226 pud = pud_offset(p4d, addr);
1da177e4
LT
227 do {
228 next = pud_addr_end(addr, end);
229 if (pud_none_or_clear_bad(pud))
230 continue;
e0da382c 231 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
232 } while (pud++, addr = next, addr != end);
233
c2febafc
KS
234 start &= P4D_MASK;
235 if (start < floor)
236 return;
237 if (ceiling) {
238 ceiling &= P4D_MASK;
239 if (!ceiling)
240 return;
241 }
242 if (end - 1 > ceiling - 1)
243 return;
244
245 pud = pud_offset(p4d, start);
246 p4d_clear(p4d);
247 pud_free_tlb(tlb, pud, start);
b4e98d9a 248 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
249}
250
251static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 unsigned long addr, unsigned long end,
253 unsigned long floor, unsigned long ceiling)
254{
255 p4d_t *p4d;
256 unsigned long next;
257 unsigned long start;
258
259 start = addr;
260 p4d = p4d_offset(pgd, addr);
261 do {
262 next = p4d_addr_end(addr, end);
263 if (p4d_none_or_clear_bad(p4d))
264 continue;
265 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 } while (p4d++, addr = next, addr != end);
267
e0da382c
HD
268 start &= PGDIR_MASK;
269 if (start < floor)
270 return;
271 if (ceiling) {
272 ceiling &= PGDIR_MASK;
273 if (!ceiling)
274 return;
1da177e4 275 }
e0da382c
HD
276 if (end - 1 > ceiling - 1)
277 return;
278
c2febafc 279 p4d = p4d_offset(pgd, start);
e0da382c 280 pgd_clear(pgd);
c2febafc 281 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
282}
283
284/*
e0da382c 285 * This function frees user-level page tables of a process.
1da177e4 286 */
42b77728 287void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
288 unsigned long addr, unsigned long end,
289 unsigned long floor, unsigned long ceiling)
1da177e4
LT
290{
291 pgd_t *pgd;
292 unsigned long next;
e0da382c
HD
293
294 /*
295 * The next few lines have given us lots of grief...
296 *
297 * Why are we testing PMD* at this top level? Because often
298 * there will be no work to do at all, and we'd prefer not to
299 * go all the way down to the bottom just to discover that.
300 *
301 * Why all these "- 1"s? Because 0 represents both the bottom
302 * of the address space and the top of it (using -1 for the
303 * top wouldn't help much: the masks would do the wrong thing).
304 * The rule is that addr 0 and floor 0 refer to the bottom of
305 * the address space, but end 0 and ceiling 0 refer to the top
306 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 * that end 0 case should be mythical).
308 *
309 * Wherever addr is brought up or ceiling brought down, we must
310 * be careful to reject "the opposite 0" before it confuses the
311 * subsequent tests. But what about where end is brought down
312 * by PMD_SIZE below? no, end can't go down to 0 there.
313 *
314 * Whereas we round start (addr) and ceiling down, by different
315 * masks at different levels, in order to test whether a table
316 * now has no other vmas using it, so can be freed, we don't
317 * bother to round floor or end up - the tests don't need that.
318 */
1da177e4 319
e0da382c
HD
320 addr &= PMD_MASK;
321 if (addr < floor) {
322 addr += PMD_SIZE;
323 if (!addr)
324 return;
325 }
326 if (ceiling) {
327 ceiling &= PMD_MASK;
328 if (!ceiling)
329 return;
330 }
331 if (end - 1 > ceiling - 1)
332 end -= PMD_SIZE;
333 if (addr > end - 1)
334 return;
07e32661
AK
335 /*
336 * We add page table cache pages with PAGE_SIZE,
337 * (see pte_free_tlb()), flush the tlb if we need
338 */
ed6a7935 339 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 340 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
341 do {
342 next = pgd_addr_end(addr, end);
343 if (pgd_none_or_clear_bad(pgd))
344 continue;
c2febafc 345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 346 } while (pgd++, addr = next, addr != end);
e0da382c
HD
347}
348
763ecb03
LH
349void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 struct vm_area_struct *vma, unsigned long floor,
351 unsigned long ceiling)
e0da382c 352{
763ecb03
LH
353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355 do {
e0da382c 356 unsigned long addr = vma->vm_start;
763ecb03
LH
357 struct vm_area_struct *next;
358
359 /*
360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 * be 0. This will underflow and is okay.
362 */
363 next = mas_find(&mas, ceiling - 1);
e0da382c 364
8f4f8c16 365 /*
25d9e2d1
NP
366 * Hide vma from rmap and truncate_pagecache before freeing
367 * pgtables
8f4f8c16 368 */
5beb4930 369 unlink_anon_vmas(vma);
8f4f8c16
HD
370 unlink_file_vma(vma);
371
9da61aef 372 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 374 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
375 } else {
376 /*
377 * Optimization: gather nearby vmas into one call down
378 */
379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 380 && !is_vm_hugetlb_page(next)) {
3bf5ee95 381 vma = next;
763ecb03 382 next = mas_find(&mas, ceiling - 1);
5beb4930 383 unlink_anon_vmas(vma);
8f4f8c16 384 unlink_file_vma(vma);
3bf5ee95
HD
385 }
386 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 387 floor, next ? next->vm_start : ceiling);
3bf5ee95 388 }
e0da382c 389 vma = next;
763ecb03 390 } while (vma);
1da177e4
LT
391}
392
03c4f204 393void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 394{
03c4f204 395 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 396
8ac1f832 397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 398 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
399 /*
400 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 * visible before the pte is made visible to other CPUs by being
402 * put into page tables.
403 *
404 * The other side of the story is the pointer chasing in the page
405 * table walking code (when walking the page table without locking;
406 * ie. most of the time). Fortunately, these data accesses consist
407 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 * being the notable exception) will already guarantee loads are
409 * seen in-order. See the alpha page table accessors for the
410 * smp_rmb() barriers in page table walking code.
411 */
412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
413 pmd_populate(mm, pmd, *pte);
414 *pte = NULL;
4b471e88 415 }
c4088ebd 416 spin_unlock(ptl);
03c4f204
QZ
417}
418
4cf58924 419int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 420{
4cf58924 421 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
422 if (!new)
423 return -ENOMEM;
424
03c4f204 425 pmd_install(mm, pmd, &new);
2f569afd
MS
426 if (new)
427 pte_free(mm, new);
1bb3630e 428 return 0;
1da177e4
LT
429}
430
4cf58924 431int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 432{
4cf58924 433 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
434 if (!new)
435 return -ENOMEM;
436
437 spin_lock(&init_mm.page_table_lock);
8ac1f832 438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 439 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 440 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 441 new = NULL;
4b471e88 442 }
1bb3630e 443 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
444 if (new)
445 pte_free_kernel(&init_mm, new);
1bb3630e 446 return 0;
1da177e4
LT
447}
448
d559db08
KH
449static inline void init_rss_vec(int *rss)
450{
451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452}
453
454static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 455{
d559db08
KH
456 int i;
457
34e55232 458 if (current->mm == mm)
05af2e10 459 sync_mm_rss(mm);
d559db08
KH
460 for (i = 0; i < NR_MM_COUNTERS; i++)
461 if (rss[i])
462 add_mm_counter(mm, i, rss[i]);
ae859762
HD
463}
464
b5810039 465/*
6aab341e
LT
466 * This function is called to print an error when a bad pte
467 * is found. For example, we might have a PFN-mapped pte in
468 * a region that doesn't allow it.
b5810039
NP
469 *
470 * The calling function must still handle the error.
471 */
3dc14741
HD
472static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 pte_t pte, struct page *page)
b5810039 474{
3dc14741 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
476 p4d_t *p4d = p4d_offset(pgd, addr);
477 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
478 pmd_t *pmd = pmd_offset(pud, addr);
479 struct address_space *mapping;
480 pgoff_t index;
d936cf9b
HD
481 static unsigned long resume;
482 static unsigned long nr_shown;
483 static unsigned long nr_unshown;
484
485 /*
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
488 */
489 if (nr_shown == 60) {
490 if (time_before(jiffies, resume)) {
491 nr_unshown++;
492 return;
493 }
494 if (nr_unshown) {
1170532b
JP
495 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496 nr_unshown);
d936cf9b
HD
497 nr_unshown = 0;
498 }
499 nr_shown = 0;
500 }
501 if (nr_shown++ == 0)
502 resume = jiffies + 60 * HZ;
3dc14741
HD
503
504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 index = linear_page_index(vma, addr);
506
1170532b
JP
507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
508 current->comm,
509 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 510 if (page)
f0b791a3 511 dump_page(page, "bad pte");
6aa9b8b2 512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
515 vma->vm_file,
516 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 518 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 519 dump_stack();
373d4d09 520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
521}
522
ee498ed7 523/*
7e675137 524 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 525 *
7e675137
NP
526 * "Special" mappings do not wish to be associated with a "struct page" (either
527 * it doesn't exist, or it exists but they don't want to touch it). In this
528 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 529 *
7e675137
NP
530 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531 * pte bit, in which case this function is trivial. Secondly, an architecture
532 * may not have a spare pte bit, which requires a more complicated scheme,
533 * described below.
534 *
535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536 * special mapping (even if there are underlying and valid "struct pages").
537 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 538 *
b379d790
JH
539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542 * mapping will always honor the rule
6aab341e
LT
543 *
544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545 *
7e675137
NP
546 * And for normal mappings this is false.
547 *
548 * This restricts such mappings to be a linear translation from virtual address
549 * to pfn. To get around this restriction, we allow arbitrary mappings so long
550 * as the vma is not a COW mapping; in that case, we know that all ptes are
551 * special (because none can have been COWed).
b379d790 552 *
b379d790 553 *
7e675137 554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
555 *
556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557 * page" backing, however the difference is that _all_ pages with a struct
558 * page (that is, those where pfn_valid is true) are refcounted and considered
559 * normal pages by the VM. The disadvantage is that pages are refcounted
560 * (which can be slower and simply not an option for some PFNMAP users). The
561 * advantage is that we don't have to follow the strict linearity rule of
562 * PFNMAP mappings in order to support COWable mappings.
563 *
ee498ed7 564 */
25b2995a
CH
565struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566 pte_t pte)
ee498ed7 567{
22b31eec 568 unsigned long pfn = pte_pfn(pte);
7e675137 569
00b3a331 570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 571 if (likely(!pte_special(pte)))
22b31eec 572 goto check_pfn;
667a0a06
DV
573 if (vma->vm_ops && vma->vm_ops->find_special_page)
574 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576 return NULL;
df6ad698
JG
577 if (is_zero_pfn(pfn))
578 return NULL;
e1fb4a08 579 if (pte_devmap(pte))
3218f871
AS
580 /*
581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 * and will have refcounts incremented on their struct pages
583 * when they are inserted into PTEs, thus they are safe to
584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587 */
e1fb4a08
DJ
588 return NULL;
589
df6ad698 590 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
591 return NULL;
592 }
593
00b3a331 594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 595
b379d790
JH
596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 if (vma->vm_flags & VM_MIXEDMAP) {
598 if (!pfn_valid(pfn))
599 return NULL;
600 goto out;
601 } else {
7e675137
NP
602 unsigned long off;
603 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
604 if (pfn == vma->vm_pgoff + off)
605 return NULL;
606 if (!is_cow_mapping(vma->vm_flags))
607 return NULL;
608 }
6aab341e
LT
609 }
610
b38af472
HD
611 if (is_zero_pfn(pfn))
612 return NULL;
00b3a331 613
22b31eec
HD
614check_pfn:
615 if (unlikely(pfn > highest_memmap_pfn)) {
616 print_bad_pte(vma, addr, pte, NULL);
617 return NULL;
618 }
6aab341e
LT
619
620 /*
7e675137 621 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 622 * eg. VDSO mappings can cause them to exist.
6aab341e 623 */
b379d790 624out:
6aab341e 625 return pfn_to_page(pfn);
ee498ed7
HD
626}
627
318e9342
VMO
628struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
629 pte_t pte)
630{
631 struct page *page = vm_normal_page(vma, addr, pte);
632
633 if (page)
634 return page_folio(page);
635 return NULL;
636}
637
28093f9f
GS
638#ifdef CONFIG_TRANSPARENT_HUGEPAGE
639struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
640 pmd_t pmd)
641{
642 unsigned long pfn = pmd_pfn(pmd);
643
644 /*
645 * There is no pmd_special() but there may be special pmds, e.g.
646 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 647 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
648 */
649 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
650 if (vma->vm_flags & VM_MIXEDMAP) {
651 if (!pfn_valid(pfn))
652 return NULL;
653 goto out;
654 } else {
655 unsigned long off;
656 off = (addr - vma->vm_start) >> PAGE_SHIFT;
657 if (pfn == vma->vm_pgoff + off)
658 return NULL;
659 if (!is_cow_mapping(vma->vm_flags))
660 return NULL;
661 }
662 }
663
e1fb4a08
DJ
664 if (pmd_devmap(pmd))
665 return NULL;
3cde287b 666 if (is_huge_zero_pmd(pmd))
28093f9f
GS
667 return NULL;
668 if (unlikely(pfn > highest_memmap_pfn))
669 return NULL;
670
671 /*
672 * NOTE! We still have PageReserved() pages in the page tables.
673 * eg. VDSO mappings can cause them to exist.
674 */
675out:
676 return pfn_to_page(pfn);
677}
678#endif
679
b756a3b5
AP
680static void restore_exclusive_pte(struct vm_area_struct *vma,
681 struct page *page, unsigned long address,
682 pte_t *ptep)
683{
684 pte_t pte;
685 swp_entry_t entry;
686
687 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
688 if (pte_swp_soft_dirty(*ptep))
689 pte = pte_mksoft_dirty(pte);
690
691 entry = pte_to_swp_entry(*ptep);
692 if (pte_swp_uffd_wp(*ptep))
693 pte = pte_mkuffd_wp(pte);
694 else if (is_writable_device_exclusive_entry(entry))
695 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
696
6c287605
DH
697 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
698
b756a3b5
AP
699 /*
700 * No need to take a page reference as one was already
701 * created when the swap entry was made.
702 */
703 if (PageAnon(page))
f1e2db12 704 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
705 else
706 /*
707 * Currently device exclusive access only supports anonymous
708 * memory so the entry shouldn't point to a filebacked page.
709 */
4d8ff640 710 WARN_ON_ONCE(1);
b756a3b5 711
1eba86c0
PT
712 set_pte_at(vma->vm_mm, address, ptep, pte);
713
b756a3b5
AP
714 /*
715 * No need to invalidate - it was non-present before. However
716 * secondary CPUs may have mappings that need invalidating.
717 */
718 update_mmu_cache(vma, address, ptep);
719}
720
721/*
722 * Tries to restore an exclusive pte if the page lock can be acquired without
723 * sleeping.
724 */
725static int
726try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
727 unsigned long addr)
728{
729 swp_entry_t entry = pte_to_swp_entry(*src_pte);
730 struct page *page = pfn_swap_entry_to_page(entry);
731
732 if (trylock_page(page)) {
733 restore_exclusive_pte(vma, page, addr, src_pte);
734 unlock_page(page);
735 return 0;
736 }
737
738 return -EBUSY;
739}
740
1da177e4
LT
741/*
742 * copy one vm_area from one task to the other. Assumes the page tables
743 * already present in the new task to be cleared in the whole range
744 * covered by this vma.
1da177e4
LT
745 */
746
df3a57d1
LT
747static unsigned long
748copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
749 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
750 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 751{
8f34f1ea 752 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
753 pte_t pte = *src_pte;
754 struct page *page;
df3a57d1
LT
755 swp_entry_t entry = pte_to_swp_entry(pte);
756
757 if (likely(!non_swap_entry(entry))) {
758 if (swap_duplicate(entry) < 0)
9a5cc85c 759 return -EIO;
df3a57d1
LT
760
761 /* make sure dst_mm is on swapoff's mmlist. */
762 if (unlikely(list_empty(&dst_mm->mmlist))) {
763 spin_lock(&mmlist_lock);
764 if (list_empty(&dst_mm->mmlist))
765 list_add(&dst_mm->mmlist,
766 &src_mm->mmlist);
767 spin_unlock(&mmlist_lock);
768 }
1493a191
DH
769 /* Mark the swap entry as shared. */
770 if (pte_swp_exclusive(*src_pte)) {
771 pte = pte_swp_clear_exclusive(*src_pte);
772 set_pte_at(src_mm, addr, src_pte, pte);
773 }
df3a57d1
LT
774 rss[MM_SWAPENTS]++;
775 } else if (is_migration_entry(entry)) {
af5cdaf8 776 page = pfn_swap_entry_to_page(entry);
1da177e4 777
df3a57d1 778 rss[mm_counter(page)]++;
5042db43 779
6c287605 780 if (!is_readable_migration_entry(entry) &&
df3a57d1 781 is_cow_mapping(vm_flags)) {
5042db43 782 /*
6c287605
DH
783 * COW mappings require pages in both parent and child
784 * to be set to read. A previously exclusive entry is
785 * now shared.
5042db43 786 */
4dd845b5
AP
787 entry = make_readable_migration_entry(
788 swp_offset(entry));
df3a57d1
LT
789 pte = swp_entry_to_pte(entry);
790 if (pte_swp_soft_dirty(*src_pte))
791 pte = pte_swp_mksoft_dirty(pte);
792 if (pte_swp_uffd_wp(*src_pte))
793 pte = pte_swp_mkuffd_wp(pte);
794 set_pte_at(src_mm, addr, src_pte, pte);
795 }
796 } else if (is_device_private_entry(entry)) {
af5cdaf8 797 page = pfn_swap_entry_to_page(entry);
5042db43 798
df3a57d1
LT
799 /*
800 * Update rss count even for unaddressable pages, as
801 * they should treated just like normal pages in this
802 * respect.
803 *
804 * We will likely want to have some new rss counters
805 * for unaddressable pages, at some point. But for now
806 * keep things as they are.
807 */
808 get_page(page);
809 rss[mm_counter(page)]++;
fb3d824d
DH
810 /* Cannot fail as these pages cannot get pinned. */
811 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
812
813 /*
814 * We do not preserve soft-dirty information, because so
815 * far, checkpoint/restore is the only feature that
816 * requires that. And checkpoint/restore does not work
817 * when a device driver is involved (you cannot easily
818 * save and restore device driver state).
819 */
4dd845b5 820 if (is_writable_device_private_entry(entry) &&
df3a57d1 821 is_cow_mapping(vm_flags)) {
4dd845b5
AP
822 entry = make_readable_device_private_entry(
823 swp_offset(entry));
df3a57d1
LT
824 pte = swp_entry_to_pte(entry);
825 if (pte_swp_uffd_wp(*src_pte))
826 pte = pte_swp_mkuffd_wp(pte);
827 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 828 }
b756a3b5
AP
829 } else if (is_device_exclusive_entry(entry)) {
830 /*
831 * Make device exclusive entries present by restoring the
832 * original entry then copying as for a present pte. Device
833 * exclusive entries currently only support private writable
834 * (ie. COW) mappings.
835 */
836 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
837 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
838 return -EBUSY;
839 return -ENOENT;
c56d1b62 840 } else if (is_pte_marker_entry(entry)) {
7e3ce3f8 841 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
49d6d7fb 842 set_pte_at(dst_mm, addr, dst_pte, pte);
c56d1b62 843 return 0;
1da177e4 844 }
8f34f1ea
PX
845 if (!userfaultfd_wp(dst_vma))
846 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
847 set_pte_at(dst_mm, addr, dst_pte, pte);
848 return 0;
849}
850
70e806e4 851/*
b51ad4f8 852 * Copy a present and normal page.
70e806e4 853 *
b51ad4f8
DH
854 * NOTE! The usual case is that this isn't required;
855 * instead, the caller can just increase the page refcount
856 * and re-use the pte the traditional way.
70e806e4
PX
857 *
858 * And if we need a pre-allocated page but don't yet have
859 * one, return a negative error to let the preallocation
860 * code know so that it can do so outside the page table
861 * lock.
862 */
863static inline int
c78f4636
PX
864copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
865 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 866 struct folio **prealloc, struct page *page)
70e806e4 867{
edf50470 868 struct folio *new_folio;
b51ad4f8 869 pte_t pte;
70e806e4 870
edf50470
MWO
871 new_folio = *prealloc;
872 if (!new_folio)
70e806e4
PX
873 return -EAGAIN;
874
875 /*
876 * We have a prealloc page, all good! Take it
877 * over and copy the page & arm it.
878 */
879 *prealloc = NULL;
edf50470
MWO
880 copy_user_highpage(&new_folio->page, page, addr, src_vma);
881 __folio_mark_uptodate(new_folio);
882 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
883 folio_add_lru_vma(new_folio, dst_vma);
884 rss[MM_ANONPAGES]++;
70e806e4
PX
885
886 /* All done, just insert the new page copy in the child */
edf50470 887 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 888 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
889 if (userfaultfd_pte_wp(dst_vma, *src_pte))
890 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 891 pte = pte_mkuffd_wp(pte);
c78f4636 892 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
893 return 0;
894}
895
896/*
897 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
898 * is required to copy this pte.
899 */
900static inline int
c78f4636
PX
901copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 903 struct folio **prealloc)
df3a57d1 904{
c78f4636
PX
905 struct mm_struct *src_mm = src_vma->vm_mm;
906 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
907 pte_t pte = *src_pte;
908 struct page *page;
14ddee41 909 struct folio *folio;
df3a57d1 910
c78f4636 911 page = vm_normal_page(src_vma, addr, pte);
14ddee41
MWO
912 if (page)
913 folio = page_folio(page);
914 if (page && folio_test_anon(folio)) {
b51ad4f8
DH
915 /*
916 * If this page may have been pinned by the parent process,
917 * copy the page immediately for the child so that we'll always
918 * guarantee the pinned page won't be randomly replaced in the
919 * future.
920 */
14ddee41 921 folio_get(folio);
fb3d824d 922 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
14ddee41
MWO
923 /* Page may be pinned, we have to copy. */
924 folio_put(folio);
fb3d824d
DH
925 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
926 addr, rss, prealloc, page);
927 }
edf50470 928 rss[MM_ANONPAGES]++;
b51ad4f8 929 } else if (page) {
14ddee41 930 folio_get(folio);
fb3d824d 931 page_dup_file_rmap(page, false);
edf50470 932 rss[mm_counter_file(page)]++;
70e806e4
PX
933 }
934
1da177e4
LT
935 /*
936 * If it's a COW mapping, write protect it both
937 * in the parent and the child
938 */
1b2de5d0 939 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 940 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 941 pte = pte_wrprotect(pte);
1da177e4 942 }
14ddee41 943 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
1da177e4
LT
944
945 /*
946 * If it's a shared mapping, mark it clean in
947 * the child
948 */
949 if (vm_flags & VM_SHARED)
950 pte = pte_mkclean(pte);
951 pte = pte_mkold(pte);
6aab341e 952
8f34f1ea 953 if (!userfaultfd_wp(dst_vma))
b569a176
PX
954 pte = pte_clear_uffd_wp(pte);
955
c78f4636 956 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
957 return 0;
958}
959
edf50470
MWO
960static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
961 struct vm_area_struct *vma, unsigned long addr)
70e806e4 962{
edf50470 963 struct folio *new_folio;
70e806e4 964
edf50470
MWO
965 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
966 if (!new_folio)
70e806e4
PX
967 return NULL;
968
edf50470
MWO
969 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
970 folio_put(new_folio);
70e806e4 971 return NULL;
6aab341e 972 }
edf50470 973 cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
ae859762 974
edf50470 975 return new_folio;
1da177e4
LT
976}
977
c78f4636
PX
978static int
979copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
980 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
981 unsigned long end)
1da177e4 982{
c78f4636
PX
983 struct mm_struct *dst_mm = dst_vma->vm_mm;
984 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 985 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 986 pte_t *src_pte, *dst_pte;
c74df32c 987 spinlock_t *src_ptl, *dst_ptl;
70e806e4 988 int progress, ret = 0;
d559db08 989 int rss[NR_MM_COUNTERS];
570a335b 990 swp_entry_t entry = (swp_entry_t){0};
edf50470 991 struct folio *prealloc = NULL;
1da177e4
LT
992
993again:
70e806e4 994 progress = 0;
d559db08
KH
995 init_rss_vec(rss);
996
c74df32c 997 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
998 if (!dst_pte) {
999 ret = -ENOMEM;
1000 goto out;
1001 }
ece0e2b6 1002 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1003 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1004 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1005 orig_src_pte = src_pte;
1006 orig_dst_pte = dst_pte;
6606c3e0 1007 arch_enter_lazy_mmu_mode();
1da177e4 1008
1da177e4
LT
1009 do {
1010 /*
1011 * We are holding two locks at this point - either of them
1012 * could generate latencies in another task on another CPU.
1013 */
e040f218
HD
1014 if (progress >= 32) {
1015 progress = 0;
1016 if (need_resched() ||
95c354fe 1017 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1018 break;
1019 }
1da177e4
LT
1020 if (pte_none(*src_pte)) {
1021 progress++;
1022 continue;
1023 }
79a1971c 1024 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1025 ret = copy_nonpresent_pte(dst_mm, src_mm,
1026 dst_pte, src_pte,
1027 dst_vma, src_vma,
1028 addr, rss);
1029 if (ret == -EIO) {
1030 entry = pte_to_swp_entry(*src_pte);
79a1971c 1031 break;
b756a3b5
AP
1032 } else if (ret == -EBUSY) {
1033 break;
1034 } else if (!ret) {
1035 progress += 8;
1036 continue;
9a5cc85c 1037 }
b756a3b5
AP
1038
1039 /*
1040 * Device exclusive entry restored, continue by copying
1041 * the now present pte.
1042 */
1043 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1044 }
70e806e4 1045 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1046 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1047 addr, rss, &prealloc);
70e806e4
PX
1048 /*
1049 * If we need a pre-allocated page for this pte, drop the
1050 * locks, allocate, and try again.
1051 */
1052 if (unlikely(ret == -EAGAIN))
1053 break;
1054 if (unlikely(prealloc)) {
1055 /*
1056 * pre-alloc page cannot be reused by next time so as
1057 * to strictly follow mempolicy (e.g., alloc_page_vma()
1058 * will allocate page according to address). This
1059 * could only happen if one pinned pte changed.
1060 */
edf50470 1061 folio_put(prealloc);
70e806e4
PX
1062 prealloc = NULL;
1063 }
1da177e4
LT
1064 progress += 8;
1065 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1066
6606c3e0 1067 arch_leave_lazy_mmu_mode();
c74df32c 1068 spin_unlock(src_ptl);
ece0e2b6 1069 pte_unmap(orig_src_pte);
d559db08 1070 add_mm_rss_vec(dst_mm, rss);
c36987e2 1071 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1072 cond_resched();
570a335b 1073
9a5cc85c
AP
1074 if (ret == -EIO) {
1075 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1076 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1077 ret = -ENOMEM;
1078 goto out;
1079 }
1080 entry.val = 0;
b756a3b5
AP
1081 } else if (ret == -EBUSY) {
1082 goto out;
9a5cc85c 1083 } else if (ret == -EAGAIN) {
c78f4636 1084 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1085 if (!prealloc)
570a335b 1086 return -ENOMEM;
9a5cc85c
AP
1087 } else if (ret) {
1088 VM_WARN_ON_ONCE(1);
570a335b 1089 }
9a5cc85c
AP
1090
1091 /* We've captured and resolved the error. Reset, try again. */
1092 ret = 0;
1093
1da177e4
LT
1094 if (addr != end)
1095 goto again;
70e806e4
PX
1096out:
1097 if (unlikely(prealloc))
edf50470 1098 folio_put(prealloc);
70e806e4 1099 return ret;
1da177e4
LT
1100}
1101
c78f4636
PX
1102static inline int
1103copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1105 unsigned long end)
1da177e4 1106{
c78f4636
PX
1107 struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1109 pmd_t *src_pmd, *dst_pmd;
1110 unsigned long next;
1111
1112 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1113 if (!dst_pmd)
1114 return -ENOMEM;
1115 src_pmd = pmd_offset(src_pud, addr);
1116 do {
1117 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1118 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1119 || pmd_devmap(*src_pmd)) {
71e3aac0 1120 int err;
c78f4636 1121 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1122 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1123 addr, dst_vma, src_vma);
71e3aac0
AA
1124 if (err == -ENOMEM)
1125 return -ENOMEM;
1126 if (!err)
1127 continue;
1128 /* fall through */
1129 }
1da177e4
LT
1130 if (pmd_none_or_clear_bad(src_pmd))
1131 continue;
c78f4636
PX
1132 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1133 addr, next))
1da177e4
LT
1134 return -ENOMEM;
1135 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1136 return 0;
1137}
1138
c78f4636
PX
1139static inline int
1140copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1142 unsigned long end)
1da177e4 1143{
c78f4636
PX
1144 struct mm_struct *dst_mm = dst_vma->vm_mm;
1145 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1146 pud_t *src_pud, *dst_pud;
1147 unsigned long next;
1148
c2febafc 1149 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1150 if (!dst_pud)
1151 return -ENOMEM;
c2febafc 1152 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1153 do {
1154 next = pud_addr_end(addr, end);
a00cc7d9
MW
1155 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1156 int err;
1157
c78f4636 1158 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1159 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1160 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1161 if (err == -ENOMEM)
1162 return -ENOMEM;
1163 if (!err)
1164 continue;
1165 /* fall through */
1166 }
1da177e4
LT
1167 if (pud_none_or_clear_bad(src_pud))
1168 continue;
c78f4636
PX
1169 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1170 addr, next))
1da177e4
LT
1171 return -ENOMEM;
1172 } while (dst_pud++, src_pud++, addr = next, addr != end);
1173 return 0;
1174}
1175
c78f4636
PX
1176static inline int
1177copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1179 unsigned long end)
c2febafc 1180{
c78f4636 1181 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1182 p4d_t *src_p4d, *dst_p4d;
1183 unsigned long next;
1184
1185 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1186 if (!dst_p4d)
1187 return -ENOMEM;
1188 src_p4d = p4d_offset(src_pgd, addr);
1189 do {
1190 next = p4d_addr_end(addr, end);
1191 if (p4d_none_or_clear_bad(src_p4d))
1192 continue;
c78f4636
PX
1193 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1194 addr, next))
c2febafc
KS
1195 return -ENOMEM;
1196 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1197 return 0;
1198}
1199
c56d1b62
PX
1200/*
1201 * Return true if the vma needs to copy the pgtable during this fork(). Return
1202 * false when we can speed up fork() by allowing lazy page faults later until
1203 * when the child accesses the memory range.
1204 */
bc70fbf2 1205static bool
c56d1b62
PX
1206vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1207{
1208 /*
1209 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1210 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1211 * contains uffd-wp protection information, that's something we can't
1212 * retrieve from page cache, and skip copying will lose those info.
1213 */
1214 if (userfaultfd_wp(dst_vma))
1215 return true;
1216
bcd51a3c 1217 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1218 return true;
1219
1220 if (src_vma->anon_vma)
1221 return true;
1222
1223 /*
1224 * Don't copy ptes where a page fault will fill them correctly. Fork
1225 * becomes much lighter when there are big shared or private readonly
1226 * mappings. The tradeoff is that copy_page_range is more efficient
1227 * than faulting.
1228 */
1229 return false;
1230}
1231
c78f4636
PX
1232int
1233copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1234{
1235 pgd_t *src_pgd, *dst_pgd;
1236 unsigned long next;
c78f4636
PX
1237 unsigned long addr = src_vma->vm_start;
1238 unsigned long end = src_vma->vm_end;
1239 struct mm_struct *dst_mm = dst_vma->vm_mm;
1240 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1241 struct mmu_notifier_range range;
2ec74c3e 1242 bool is_cow;
cddb8a5c 1243 int ret;
1da177e4 1244
c56d1b62 1245 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1246 return 0;
d992895b 1247
c78f4636 1248 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1249 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1250
c78f4636 1251 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1252 /*
1253 * We do not free on error cases below as remove_vma
1254 * gets called on error from higher level routine
1255 */
c78f4636 1256 ret = track_pfn_copy(src_vma);
2ab64037 1257 if (ret)
1258 return ret;
1259 }
1260
cddb8a5c
AA
1261 /*
1262 * We need to invalidate the secondary MMU mappings only when
1263 * there could be a permission downgrade on the ptes of the
1264 * parent mm. And a permission downgrade will only happen if
1265 * is_cow_mapping() returns true.
1266 */
c78f4636 1267 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1268
1269 if (is_cow) {
7269f999 1270 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1271 0, src_mm, addr, end);
ac46d4f3 1272 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1273 /*
1274 * Disabling preemption is not needed for the write side, as
1275 * the read side doesn't spin, but goes to the mmap_lock.
1276 *
1277 * Use the raw variant of the seqcount_t write API to avoid
1278 * lockdep complaining about preemptibility.
1279 */
1280 mmap_assert_write_locked(src_mm);
1281 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1282 }
cddb8a5c
AA
1283
1284 ret = 0;
1da177e4
LT
1285 dst_pgd = pgd_offset(dst_mm, addr);
1286 src_pgd = pgd_offset(src_mm, addr);
1287 do {
1288 next = pgd_addr_end(addr, end);
1289 if (pgd_none_or_clear_bad(src_pgd))
1290 continue;
c78f4636
PX
1291 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292 addr, next))) {
cddb8a5c
AA
1293 ret = -ENOMEM;
1294 break;
1295 }
1da177e4 1296 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1297
57efa1fe
JG
1298 if (is_cow) {
1299 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1300 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1301 }
cddb8a5c 1302 return ret;
1da177e4
LT
1303}
1304
5abfd71d
PX
1305/* Whether we should zap all COWed (private) pages too */
1306static inline bool should_zap_cows(struct zap_details *details)
1307{
1308 /* By default, zap all pages */
1309 if (!details)
1310 return true;
1311
1312 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1313 return details->even_cows;
5abfd71d
PX
1314}
1315
2e148f1e 1316/* Decides whether we should zap this page with the page pointer specified */
254ab940 1317static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1318{
5abfd71d
PX
1319 /* If we can make a decision without *page.. */
1320 if (should_zap_cows(details))
254ab940 1321 return true;
5abfd71d
PX
1322
1323 /* E.g. the caller passes NULL for the case of a zero page */
1324 if (!page)
254ab940 1325 return true;
3506659e 1326
2e148f1e
PX
1327 /* Otherwise we should only zap non-anon pages */
1328 return !PageAnon(page);
3506659e
MWO
1329}
1330
999dad82
PX
1331static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1332{
1333 if (!details)
1334 return false;
1335
1336 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1337}
1338
1339/*
1340 * This function makes sure that we'll replace the none pte with an uffd-wp
1341 * swap special pte marker when necessary. Must be with the pgtable lock held.
1342 */
1343static inline void
1344zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1345 unsigned long addr, pte_t *pte,
1346 struct zap_details *details, pte_t pteval)
1347{
1348 if (zap_drop_file_uffd_wp(details))
1349 return;
1350
1351 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1352}
1353
51c6f666 1354static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1355 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1356 unsigned long addr, unsigned long end,
97a89413 1357 struct zap_details *details)
1da177e4 1358{
b5810039 1359 struct mm_struct *mm = tlb->mm;
d16dfc55 1360 int force_flush = 0;
d559db08 1361 int rss[NR_MM_COUNTERS];
97a89413 1362 spinlock_t *ptl;
5f1a1907 1363 pte_t *start_pte;
97a89413 1364 pte_t *pte;
8a5f14a2 1365 swp_entry_t entry;
d559db08 1366
ed6a7935 1367 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1368again:
e303297e 1369 init_rss_vec(rss);
5f1a1907
SR
1370 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1371 pte = start_pte;
3ea27719 1372 flush_tlb_batched_pending(mm);
6606c3e0 1373 arch_enter_lazy_mmu_mode();
1da177e4
LT
1374 do {
1375 pte_t ptent = *pte;
8018db85
PX
1376 struct page *page;
1377
166f61b9 1378 if (pte_none(ptent))
1da177e4 1379 continue;
6f5e6b9e 1380
7b167b68
MK
1381 if (need_resched())
1382 break;
1383
1da177e4 1384 if (pte_present(ptent)) {
5df397de
LT
1385 unsigned int delay_rmap;
1386
25b2995a 1387 page = vm_normal_page(vma, addr, ptent);
254ab940 1388 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1389 continue;
b5810039 1390 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1391 tlb->fullmm);
1da177e4 1392 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1393 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1394 ptent);
1da177e4
LT
1395 if (unlikely(!page))
1396 continue;
eca56ff9 1397
5df397de 1398 delay_rmap = 0;
eca56ff9 1399 if (!PageAnon(page)) {
1cf35d47 1400 if (pte_dirty(ptent)) {
6237bcd9 1401 set_page_dirty(page);
5df397de
LT
1402 if (tlb_delay_rmap(tlb)) {
1403 delay_rmap = 1;
1404 force_flush = 1;
1405 }
1cf35d47 1406 }
8788f678 1407 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1408 mark_page_accessed(page);
6237bcd9 1409 }
eca56ff9 1410 rss[mm_counter(page)]--;
5df397de
LT
1411 if (!delay_rmap) {
1412 page_remove_rmap(page, vma, false);
1413 if (unlikely(page_mapcount(page) < 0))
1414 print_bad_pte(vma, addr, ptent, page);
1415 }
1416 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1417 force_flush = 1;
ce9ec37b 1418 addr += PAGE_SIZE;
d16dfc55 1419 break;
1cf35d47 1420 }
1da177e4
LT
1421 continue;
1422 }
5042db43
JG
1423
1424 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1425 if (is_device_private_entry(entry) ||
1426 is_device_exclusive_entry(entry)) {
8018db85 1427 page = pfn_swap_entry_to_page(entry);
254ab940 1428 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1429 continue;
999dad82
PX
1430 /*
1431 * Both device private/exclusive mappings should only
1432 * work with anonymous page so far, so we don't need to
1433 * consider uffd-wp bit when zap. For more information,
1434 * see zap_install_uffd_wp_if_needed().
1435 */
1436 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1437 rss[mm_counter(page)]--;
b756a3b5 1438 if (is_device_private_entry(entry))
cea86fe2 1439 page_remove_rmap(page, vma, false);
5042db43 1440 put_page(page);
8018db85 1441 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1442 /* Genuine swap entry, hence a private anon page */
1443 if (!should_zap_cows(details))
1444 continue;
8a5f14a2 1445 rss[MM_SWAPENTS]--;
8018db85
PX
1446 if (unlikely(!free_swap_and_cache(entry)))
1447 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1448 } else if (is_migration_entry(entry)) {
af5cdaf8 1449 page = pfn_swap_entry_to_page(entry);
254ab940 1450 if (!should_zap_page(details, page))
5abfd71d 1451 continue;
eca56ff9 1452 rss[mm_counter(page)]--;
999dad82
PX
1453 } else if (pte_marker_entry_uffd_wp(entry)) {
1454 /* Only drop the uffd-wp marker if explicitly requested */
1455 if (!zap_drop_file_uffd_wp(details))
1456 continue;
9f186f9e
ML
1457 } else if (is_hwpoison_entry(entry) ||
1458 is_swapin_error_entry(entry)) {
5abfd71d
PX
1459 if (!should_zap_cows(details))
1460 continue;
1461 } else {
1462 /* We should have covered all the swap entry types */
1463 WARN_ON_ONCE(1);
b084d435 1464 }
9888a1ca 1465 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1466 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1467 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1468
d559db08 1469 add_mm_rss_vec(mm, rss);
6606c3e0 1470 arch_leave_lazy_mmu_mode();
51c6f666 1471
1cf35d47 1472 /* Do the actual TLB flush before dropping ptl */
5df397de 1473 if (force_flush) {
1cf35d47 1474 tlb_flush_mmu_tlbonly(tlb);
f036c818 1475 tlb_flush_rmaps(tlb, vma);
5df397de 1476 }
1cf35d47
LT
1477 pte_unmap_unlock(start_pte, ptl);
1478
1479 /*
1480 * If we forced a TLB flush (either due to running out of
1481 * batch buffers or because we needed to flush dirty TLB
1482 * entries before releasing the ptl), free the batched
1483 * memory too. Restart if we didn't do everything.
1484 */
1485 if (force_flush) {
1486 force_flush = 0;
fa0aafb8 1487 tlb_flush_mmu(tlb);
7b167b68
MK
1488 }
1489
1490 if (addr != end) {
1491 cond_resched();
1492 goto again;
d16dfc55
PZ
1493 }
1494
51c6f666 1495 return addr;
1da177e4
LT
1496}
1497
51c6f666 1498static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1499 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1500 unsigned long addr, unsigned long end,
97a89413 1501 struct zap_details *details)
1da177e4
LT
1502{
1503 pmd_t *pmd;
1504 unsigned long next;
1505
1506 pmd = pmd_offset(pud, addr);
1507 do {
1508 next = pmd_addr_end(addr, end);
84c3fc4e 1509 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1510 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1511 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1512 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1513 goto next;
71e3aac0 1514 /* fall through */
3506659e
MWO
1515 } else if (details && details->single_folio &&
1516 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1517 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1518 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1519 /*
1520 * Take and drop THP pmd lock so that we cannot return
1521 * prematurely, while zap_huge_pmd() has cleared *pmd,
1522 * but not yet decremented compound_mapcount().
1523 */
1524 spin_unlock(ptl);
71e3aac0 1525 }
22061a1f 1526
1a5a9906
AA
1527 /*
1528 * Here there can be other concurrent MADV_DONTNEED or
1529 * trans huge page faults running, and if the pmd is
1530 * none or trans huge it can change under us. This is
c1e8d7c6 1531 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1532 * mode.
1533 */
1534 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1535 goto next;
97a89413 1536 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1537next:
97a89413
PZ
1538 cond_resched();
1539 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1540
1541 return addr;
1da177e4
LT
1542}
1543
51c6f666 1544static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1545 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1546 unsigned long addr, unsigned long end,
97a89413 1547 struct zap_details *details)
1da177e4
LT
1548{
1549 pud_t *pud;
1550 unsigned long next;
1551
c2febafc 1552 pud = pud_offset(p4d, addr);
1da177e4
LT
1553 do {
1554 next = pud_addr_end(addr, end);
a00cc7d9
MW
1555 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1556 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1557 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1558 split_huge_pud(vma, pud, addr);
1559 } else if (zap_huge_pud(tlb, vma, pud, addr))
1560 goto next;
1561 /* fall through */
1562 }
97a89413 1563 if (pud_none_or_clear_bad(pud))
1da177e4 1564 continue;
97a89413 1565 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1566next:
1567 cond_resched();
97a89413 1568 } while (pud++, addr = next, addr != end);
51c6f666
RH
1569
1570 return addr;
1da177e4
LT
1571}
1572
c2febafc
KS
1573static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1574 struct vm_area_struct *vma, pgd_t *pgd,
1575 unsigned long addr, unsigned long end,
1576 struct zap_details *details)
1577{
1578 p4d_t *p4d;
1579 unsigned long next;
1580
1581 p4d = p4d_offset(pgd, addr);
1582 do {
1583 next = p4d_addr_end(addr, end);
1584 if (p4d_none_or_clear_bad(p4d))
1585 continue;
1586 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1587 } while (p4d++, addr = next, addr != end);
1588
1589 return addr;
1590}
1591
aac45363 1592void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1593 struct vm_area_struct *vma,
1594 unsigned long addr, unsigned long end,
1595 struct zap_details *details)
1da177e4
LT
1596{
1597 pgd_t *pgd;
1598 unsigned long next;
1599
1da177e4
LT
1600 BUG_ON(addr >= end);
1601 tlb_start_vma(tlb, vma);
1602 pgd = pgd_offset(vma->vm_mm, addr);
1603 do {
1604 next = pgd_addr_end(addr, end);
97a89413 1605 if (pgd_none_or_clear_bad(pgd))
1da177e4 1606 continue;
c2febafc 1607 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1608 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1609 tlb_end_vma(tlb, vma);
1610}
51c6f666 1611
f5cc4eef
AV
1612
1613static void unmap_single_vma(struct mmu_gather *tlb,
1614 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1615 unsigned long end_addr,
68f48381 1616 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1617{
1618 unsigned long start = max(vma->vm_start, start_addr);
1619 unsigned long end;
1620
1621 if (start >= vma->vm_end)
1622 return;
1623 end = min(vma->vm_end, end_addr);
1624 if (end <= vma->vm_start)
1625 return;
1626
cbc91f71
SD
1627 if (vma->vm_file)
1628 uprobe_munmap(vma, start, end);
1629
b3b9c293 1630 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1631 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1632
1633 if (start != end) {
1634 if (unlikely(is_vm_hugetlb_page(vma))) {
1635 /*
1636 * It is undesirable to test vma->vm_file as it
1637 * should be non-null for valid hugetlb area.
1638 * However, vm_file will be NULL in the error
7aa6b4ad 1639 * cleanup path of mmap_region. When
f5cc4eef 1640 * hugetlbfs ->mmap method fails,
7aa6b4ad 1641 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1642 * before calling this function to clean up.
1643 * Since no pte has actually been setup, it is
1644 * safe to do nothing in this case.
1645 */
24669e58 1646 if (vma->vm_file) {
05e90bd0
PX
1647 zap_flags_t zap_flags = details ?
1648 details->zap_flags : 0;
05e90bd0
PX
1649 __unmap_hugepage_range_final(tlb, vma, start, end,
1650 NULL, zap_flags);
24669e58 1651 }
f5cc4eef
AV
1652 } else
1653 unmap_page_range(tlb, vma, start, end, details);
1654 }
1da177e4
LT
1655}
1656
1da177e4
LT
1657/**
1658 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1659 * @tlb: address of the caller's struct mmu_gather
763ecb03 1660 * @mt: the maple tree
1da177e4
LT
1661 * @vma: the starting vma
1662 * @start_addr: virtual address at which to start unmapping
1663 * @end_addr: virtual address at which to end unmapping
1da177e4 1664 *
508034a3 1665 * Unmap all pages in the vma list.
1da177e4 1666 *
1da177e4
LT
1667 * Only addresses between `start' and `end' will be unmapped.
1668 *
1669 * The VMA list must be sorted in ascending virtual address order.
1670 *
1671 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1672 * range after unmap_vmas() returns. So the only responsibility here is to
1673 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1674 * drops the lock and schedules.
1675 */
763ecb03 1676void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1da177e4 1677 struct vm_area_struct *vma, unsigned long start_addr,
68f48381 1678 unsigned long end_addr, bool mm_wr_locked)
1da177e4 1679{
ac46d4f3 1680 struct mmu_notifier_range range;
999dad82 1681 struct zap_details details = {
04ada095 1682 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1683 /* Careful - we need to zap private pages too! */
1684 .even_cows = true,
1685 };
763ecb03 1686 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1da177e4 1687
7d4a8be0 1688 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1689 start_addr, end_addr);
ac46d4f3 1690 mmu_notifier_invalidate_range_start(&range);
763ecb03 1691 do {
68f48381
SB
1692 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1693 mm_wr_locked);
763ecb03 1694 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
ac46d4f3 1695 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1696}
1697
f5cc4eef
AV
1698/**
1699 * zap_page_range_single - remove user pages in a given range
1700 * @vma: vm_area_struct holding the applicable pages
1701 * @address: starting address of pages to zap
1702 * @size: number of bytes to zap
8a5f14a2 1703 * @details: details of shared cache invalidation
f5cc4eef
AV
1704 *
1705 * The range must fit into one VMA.
1da177e4 1706 */
21b85b09 1707void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1708 unsigned long size, struct zap_details *details)
1709{
21b85b09 1710 const unsigned long end = address + size;
ac46d4f3 1711 struct mmu_notifier_range range;
d16dfc55 1712 struct mmu_gather tlb;
1da177e4 1713
1da177e4 1714 lru_add_drain();
7d4a8be0 1715 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09
MK
1716 address, end);
1717 if (is_vm_hugetlb_page(vma))
1718 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1719 &range.end);
a72afd87 1720 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1721 update_hiwater_rss(vma->vm_mm);
1722 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1723 /*
1724 * unmap 'address-end' not 'range.start-range.end' as range
1725 * could have been expanded for hugetlb pmd sharing.
1726 */
68f48381 1727 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1728 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1729 tlb_finish_mmu(&tlb);
1da177e4
LT
1730}
1731
c627f9cc
JS
1732/**
1733 * zap_vma_ptes - remove ptes mapping the vma
1734 * @vma: vm_area_struct holding ptes to be zapped
1735 * @address: starting address of pages to zap
1736 * @size: number of bytes to zap
1737 *
1738 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1739 *
1740 * The entire address range must be fully contained within the vma.
1741 *
c627f9cc 1742 */
27d036e3 1743void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1744 unsigned long size)
1745{
88a35912 1746 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1747 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1748 return;
1749
f5cc4eef 1750 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1751}
1752EXPORT_SYMBOL_GPL(zap_vma_ptes);
1753
8cd3984d 1754static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1755{
c2febafc
KS
1756 pgd_t *pgd;
1757 p4d_t *p4d;
1758 pud_t *pud;
1759 pmd_t *pmd;
1760
1761 pgd = pgd_offset(mm, addr);
1762 p4d = p4d_alloc(mm, pgd, addr);
1763 if (!p4d)
1764 return NULL;
1765 pud = pud_alloc(mm, p4d, addr);
1766 if (!pud)
1767 return NULL;
1768 pmd = pmd_alloc(mm, pud, addr);
1769 if (!pmd)
1770 return NULL;
1771
1772 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1773 return pmd;
1774}
1775
1776pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1777 spinlock_t **ptl)
1778{
1779 pmd_t *pmd = walk_to_pmd(mm, addr);
1780
1781 if (!pmd)
1782 return NULL;
c2febafc 1783 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1784}
1785
8efd6f5b
AR
1786static int validate_page_before_insert(struct page *page)
1787{
1788 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1789 return -EINVAL;
1790 flush_dcache_page(page);
1791 return 0;
1792}
1793
cea86fe2 1794static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1795 unsigned long addr, struct page *page, pgprot_t prot)
1796{
1797 if (!pte_none(*pte))
1798 return -EBUSY;
1799 /* Ok, finally just insert the thing.. */
1800 get_page(page);
f1a79412 1801 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1802 page_add_file_rmap(page, vma, false);
1803 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1804 return 0;
1805}
1806
238f58d8
LT
1807/*
1808 * This is the old fallback for page remapping.
1809 *
1810 * For historical reasons, it only allows reserved pages. Only
1811 * old drivers should use this, and they needed to mark their
1812 * pages reserved for the old functions anyway.
1813 */
423bad60
NP
1814static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1815 struct page *page, pgprot_t prot)
238f58d8
LT
1816{
1817 int retval;
c9cfcddf 1818 pte_t *pte;
8a9f3ccd
BS
1819 spinlock_t *ptl;
1820
8efd6f5b
AR
1821 retval = validate_page_before_insert(page);
1822 if (retval)
5b4e655e 1823 goto out;
238f58d8 1824 retval = -ENOMEM;
cea86fe2 1825 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1826 if (!pte)
5b4e655e 1827 goto out;
cea86fe2 1828 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1829 pte_unmap_unlock(pte, ptl);
1830out:
1831 return retval;
1832}
1833
8cd3984d 1834#ifdef pte_index
cea86fe2 1835static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1836 unsigned long addr, struct page *page, pgprot_t prot)
1837{
1838 int err;
1839
1840 if (!page_count(page))
1841 return -EINVAL;
1842 err = validate_page_before_insert(page);
7f70c2a6
AR
1843 if (err)
1844 return err;
cea86fe2 1845 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1846}
1847
1848/* insert_pages() amortizes the cost of spinlock operations
1849 * when inserting pages in a loop. Arch *must* define pte_index.
1850 */
1851static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1852 struct page **pages, unsigned long *num, pgprot_t prot)
1853{
1854 pmd_t *pmd = NULL;
7f70c2a6
AR
1855 pte_t *start_pte, *pte;
1856 spinlock_t *pte_lock;
8cd3984d
AR
1857 struct mm_struct *const mm = vma->vm_mm;
1858 unsigned long curr_page_idx = 0;
1859 unsigned long remaining_pages_total = *num;
1860 unsigned long pages_to_write_in_pmd;
1861 int ret;
1862more:
1863 ret = -EFAULT;
1864 pmd = walk_to_pmd(mm, addr);
1865 if (!pmd)
1866 goto out;
1867
1868 pages_to_write_in_pmd = min_t(unsigned long,
1869 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1870
1871 /* Allocate the PTE if necessary; takes PMD lock once only. */
1872 ret = -ENOMEM;
1873 if (pte_alloc(mm, pmd))
1874 goto out;
8cd3984d
AR
1875
1876 while (pages_to_write_in_pmd) {
1877 int pte_idx = 0;
1878 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1879
7f70c2a6
AR
1880 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1881 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1882 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1883 addr, pages[curr_page_idx], prot);
1884 if (unlikely(err)) {
7f70c2a6 1885 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1886 ret = err;
1887 remaining_pages_total -= pte_idx;
1888 goto out;
1889 }
1890 addr += PAGE_SIZE;
1891 ++curr_page_idx;
1892 }
7f70c2a6 1893 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1894 pages_to_write_in_pmd -= batch_size;
1895 remaining_pages_total -= batch_size;
1896 }
1897 if (remaining_pages_total)
1898 goto more;
1899 ret = 0;
1900out:
1901 *num = remaining_pages_total;
1902 return ret;
1903}
1904#endif /* ifdef pte_index */
1905
1906/**
1907 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1908 * @vma: user vma to map to
1909 * @addr: target start user address of these pages
1910 * @pages: source kernel pages
1911 * @num: in: number of pages to map. out: number of pages that were *not*
1912 * mapped. (0 means all pages were successfully mapped).
1913 *
1914 * Preferred over vm_insert_page() when inserting multiple pages.
1915 *
1916 * In case of error, we may have mapped a subset of the provided
1917 * pages. It is the caller's responsibility to account for this case.
1918 *
1919 * The same restrictions apply as in vm_insert_page().
1920 */
1921int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1922 struct page **pages, unsigned long *num)
1923{
1924#ifdef pte_index
1925 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1926
1927 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1928 return -EFAULT;
1929 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1930 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 1931 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1932 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
1933 }
1934 /* Defer page refcount checking till we're about to map that page. */
1935 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1936#else
1937 unsigned long idx = 0, pgcount = *num;
45779b03 1938 int err = -EINVAL;
8cd3984d
AR
1939
1940 for (; idx < pgcount; ++idx) {
1941 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1942 if (err)
1943 break;
1944 }
1945 *num = pgcount - idx;
1946 return err;
1947#endif /* ifdef pte_index */
1948}
1949EXPORT_SYMBOL(vm_insert_pages);
1950
bfa5bf6d
REB
1951/**
1952 * vm_insert_page - insert single page into user vma
1953 * @vma: user vma to map to
1954 * @addr: target user address of this page
1955 * @page: source kernel page
1956 *
a145dd41
LT
1957 * This allows drivers to insert individual pages they've allocated
1958 * into a user vma.
1959 *
1960 * The page has to be a nice clean _individual_ kernel allocation.
1961 * If you allocate a compound page, you need to have marked it as
1962 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1963 * (see split_page()).
a145dd41
LT
1964 *
1965 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1966 * took an arbitrary page protection parameter. This doesn't allow
1967 * that. Your vma protection will have to be set up correctly, which
1968 * means that if you want a shared writable mapping, you'd better
1969 * ask for a shared writable mapping!
1970 *
1971 * The page does not need to be reserved.
4b6e1e37
KK
1972 *
1973 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1974 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1975 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1976 * function from other places, for example from page-fault handler.
a862f68a
MR
1977 *
1978 * Return: %0 on success, negative error code otherwise.
a145dd41 1979 */
423bad60
NP
1980int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1981 struct page *page)
a145dd41
LT
1982{
1983 if (addr < vma->vm_start || addr >= vma->vm_end)
1984 return -EFAULT;
1985 if (!page_count(page))
1986 return -EINVAL;
4b6e1e37 1987 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1988 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 1989 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1990 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 1991 }
423bad60 1992 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1993}
e3c3374f 1994EXPORT_SYMBOL(vm_insert_page);
a145dd41 1995
a667d745
SJ
1996/*
1997 * __vm_map_pages - maps range of kernel pages into user vma
1998 * @vma: user vma to map to
1999 * @pages: pointer to array of source kernel pages
2000 * @num: number of pages in page array
2001 * @offset: user's requested vm_pgoff
2002 *
2003 * This allows drivers to map range of kernel pages into a user vma.
2004 *
2005 * Return: 0 on success and error code otherwise.
2006 */
2007static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2008 unsigned long num, unsigned long offset)
2009{
2010 unsigned long count = vma_pages(vma);
2011 unsigned long uaddr = vma->vm_start;
2012 int ret, i;
2013
2014 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2015 if (offset >= num)
a667d745
SJ
2016 return -ENXIO;
2017
2018 /* Fail if the user requested size exceeds available object size */
2019 if (count > num - offset)
2020 return -ENXIO;
2021
2022 for (i = 0; i < count; i++) {
2023 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2024 if (ret < 0)
2025 return ret;
2026 uaddr += PAGE_SIZE;
2027 }
2028
2029 return 0;
2030}
2031
2032/**
2033 * vm_map_pages - maps range of kernel pages starts with non zero offset
2034 * @vma: user vma to map to
2035 * @pages: pointer to array of source kernel pages
2036 * @num: number of pages in page array
2037 *
2038 * Maps an object consisting of @num pages, catering for the user's
2039 * requested vm_pgoff
2040 *
2041 * If we fail to insert any page into the vma, the function will return
2042 * immediately leaving any previously inserted pages present. Callers
2043 * from the mmap handler may immediately return the error as their caller
2044 * will destroy the vma, removing any successfully inserted pages. Other
2045 * callers should make their own arrangements for calling unmap_region().
2046 *
2047 * Context: Process context. Called by mmap handlers.
2048 * Return: 0 on success and error code otherwise.
2049 */
2050int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2051 unsigned long num)
2052{
2053 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2054}
2055EXPORT_SYMBOL(vm_map_pages);
2056
2057/**
2058 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2059 * @vma: user vma to map to
2060 * @pages: pointer to array of source kernel pages
2061 * @num: number of pages in page array
2062 *
2063 * Similar to vm_map_pages(), except that it explicitly sets the offset
2064 * to 0. This function is intended for the drivers that did not consider
2065 * vm_pgoff.
2066 *
2067 * Context: Process context. Called by mmap handlers.
2068 * Return: 0 on success and error code otherwise.
2069 */
2070int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2071 unsigned long num)
2072{
2073 return __vm_map_pages(vma, pages, num, 0);
2074}
2075EXPORT_SYMBOL(vm_map_pages_zero);
2076
9b5a8e00 2077static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2078 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2079{
2080 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2081 pte_t *pte, entry;
2082 spinlock_t *ptl;
2083
423bad60
NP
2084 pte = get_locked_pte(mm, addr, &ptl);
2085 if (!pte)
9b5a8e00 2086 return VM_FAULT_OOM;
b2770da6
RZ
2087 if (!pte_none(*pte)) {
2088 if (mkwrite) {
2089 /*
2090 * For read faults on private mappings the PFN passed
2091 * in may not match the PFN we have mapped if the
2092 * mapped PFN is a writeable COW page. In the mkwrite
2093 * case we are creating a writable PTE for a shared
f2c57d91
JK
2094 * mapping and we expect the PFNs to match. If they
2095 * don't match, we are likely racing with block
2096 * allocation and mapping invalidation so just skip the
2097 * update.
b2770da6 2098 */
f2c57d91
JK
2099 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2100 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2101 goto out_unlock;
f2c57d91 2102 }
cae85cb8
JK
2103 entry = pte_mkyoung(*pte);
2104 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2105 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2106 update_mmu_cache(vma, addr, pte);
2107 }
2108 goto out_unlock;
b2770da6 2109 }
423bad60
NP
2110
2111 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2112 if (pfn_t_devmap(pfn))
2113 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2114 else
2115 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2116
b2770da6
RZ
2117 if (mkwrite) {
2118 entry = pte_mkyoung(entry);
2119 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2120 }
2121
423bad60 2122 set_pte_at(mm, addr, pte, entry);
4b3073e1 2123 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2124
423bad60
NP
2125out_unlock:
2126 pte_unmap_unlock(pte, ptl);
9b5a8e00 2127 return VM_FAULT_NOPAGE;
423bad60
NP
2128}
2129
f5e6d1d5
MW
2130/**
2131 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2132 * @vma: user vma to map to
2133 * @addr: target user address of this page
2134 * @pfn: source kernel pfn
2135 * @pgprot: pgprot flags for the inserted page
2136 *
a1a0aea5 2137 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2138 * to override pgprot on a per-page basis.
2139 *
2140 * This only makes sense for IO mappings, and it makes no sense for
2141 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2142 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2143 * impractical.
2144 *
574c5b3d
TH
2145 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2146 * a value of @pgprot different from that of @vma->vm_page_prot.
2147 *
ae2b01f3 2148 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2149 * Return: vm_fault_t value.
2150 */
2151vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2152 unsigned long pfn, pgprot_t pgprot)
2153{
6d958546
MW
2154 /*
2155 * Technically, architectures with pte_special can avoid all these
2156 * restrictions (same for remap_pfn_range). However we would like
2157 * consistency in testing and feature parity among all, so we should
2158 * try to keep these invariants in place for everybody.
2159 */
2160 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2161 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2162 (VM_PFNMAP|VM_MIXEDMAP));
2163 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2164 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2165
2166 if (addr < vma->vm_start || addr >= vma->vm_end)
2167 return VM_FAULT_SIGBUS;
2168
2169 if (!pfn_modify_allowed(pfn, pgprot))
2170 return VM_FAULT_SIGBUS;
2171
2172 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2173
9b5a8e00 2174 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2175 false);
f5e6d1d5
MW
2176}
2177EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2178
ae2b01f3
MW
2179/**
2180 * vmf_insert_pfn - insert single pfn into user vma
2181 * @vma: user vma to map to
2182 * @addr: target user address of this page
2183 * @pfn: source kernel pfn
2184 *
2185 * Similar to vm_insert_page, this allows drivers to insert individual pages
2186 * they've allocated into a user vma. Same comments apply.
2187 *
2188 * This function should only be called from a vm_ops->fault handler, and
2189 * in that case the handler should return the result of this function.
2190 *
2191 * vma cannot be a COW mapping.
2192 *
2193 * As this is called only for pages that do not currently exist, we
2194 * do not need to flush old virtual caches or the TLB.
2195 *
2196 * Context: Process context. May allocate using %GFP_KERNEL.
2197 * Return: vm_fault_t value.
2198 */
2199vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2200 unsigned long pfn)
2201{
2202 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2203}
2204EXPORT_SYMBOL(vmf_insert_pfn);
2205
785a3fab
DW
2206static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2207{
2208 /* these checks mirror the abort conditions in vm_normal_page */
2209 if (vma->vm_flags & VM_MIXEDMAP)
2210 return true;
2211 if (pfn_t_devmap(pfn))
2212 return true;
2213 if (pfn_t_special(pfn))
2214 return true;
2215 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2216 return true;
2217 return false;
2218}
2219
79f3aa5b 2220static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2221 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2222 bool mkwrite)
423bad60 2223{
79f3aa5b 2224 int err;
87744ab3 2225
785a3fab 2226 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2227
423bad60 2228 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2229 return VM_FAULT_SIGBUS;
308a047c
BP
2230
2231 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2232
42e4089c 2233 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2234 return VM_FAULT_SIGBUS;
42e4089c 2235
423bad60
NP
2236 /*
2237 * If we don't have pte special, then we have to use the pfn_valid()
2238 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2239 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2240 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2241 * without pte special, it would there be refcounted as a normal page.
423bad60 2242 */
00b3a331
LD
2243 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2244 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2245 struct page *page;
2246
03fc2da6
DW
2247 /*
2248 * At this point we are committed to insert_page()
2249 * regardless of whether the caller specified flags that
2250 * result in pfn_t_has_page() == false.
2251 */
2252 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2253 err = insert_page(vma, addr, page, pgprot);
2254 } else {
9b5a8e00 2255 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2256 }
b2770da6 2257
5d747637
MW
2258 if (err == -ENOMEM)
2259 return VM_FAULT_OOM;
2260 if (err < 0 && err != -EBUSY)
2261 return VM_FAULT_SIGBUS;
2262
2263 return VM_FAULT_NOPAGE;
e0dc0d8f 2264}
79f3aa5b 2265
574c5b3d
TH
2266/**
2267 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2268 * @vma: user vma to map to
2269 * @addr: target user address of this page
2270 * @pfn: source kernel pfn
2271 * @pgprot: pgprot flags for the inserted page
2272 *
a1a0aea5 2273 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2274 * to override pgprot on a per-page basis.
2275 *
2276 * Typically this function should be used by drivers to set caching- and
2277 * encryption bits different than those of @vma->vm_page_prot, because
2278 * the caching- or encryption mode may not be known at mmap() time.
2279 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2280 * to set caching and encryption bits for those vmas (except for COW pages).
2281 * This is ensured by core vm only modifying these page table entries using
2282 * functions that don't touch caching- or encryption bits, using pte_modify()
2283 * if needed. (See for example mprotect()).
2284 * Also when new page-table entries are created, this is only done using the
2285 * fault() callback, and never using the value of vma->vm_page_prot,
2286 * except for page-table entries that point to anonymous pages as the result
2287 * of COW.
2288 *
2289 * Context: Process context. May allocate using %GFP_KERNEL.
2290 * Return: vm_fault_t value.
2291 */
2292vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2293 pfn_t pfn, pgprot_t pgprot)
2294{
2295 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2296}
5379e4dd 2297EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2298
79f3aa5b
MW
2299vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2300 pfn_t pfn)
2301{
574c5b3d 2302 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2303}
5d747637 2304EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2305
ab77dab4
SJ
2306/*
2307 * If the insertion of PTE failed because someone else already added a
2308 * different entry in the mean time, we treat that as success as we assume
2309 * the same entry was actually inserted.
2310 */
ab77dab4
SJ
2311vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2312 unsigned long addr, pfn_t pfn)
b2770da6 2313{
574c5b3d 2314 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2315}
ab77dab4 2316EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2317
1da177e4
LT
2318/*
2319 * maps a range of physical memory into the requested pages. the old
2320 * mappings are removed. any references to nonexistent pages results
2321 * in null mappings (currently treated as "copy-on-access")
2322 */
2323static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2324 unsigned long addr, unsigned long end,
2325 unsigned long pfn, pgprot_t prot)
2326{
90a3e375 2327 pte_t *pte, *mapped_pte;
c74df32c 2328 spinlock_t *ptl;
42e4089c 2329 int err = 0;
1da177e4 2330
90a3e375 2331 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2332 if (!pte)
2333 return -ENOMEM;
6606c3e0 2334 arch_enter_lazy_mmu_mode();
1da177e4
LT
2335 do {
2336 BUG_ON(!pte_none(*pte));
42e4089c
AK
2337 if (!pfn_modify_allowed(pfn, prot)) {
2338 err = -EACCES;
2339 break;
2340 }
7e675137 2341 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2342 pfn++;
2343 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2344 arch_leave_lazy_mmu_mode();
90a3e375 2345 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2346 return err;
1da177e4
LT
2347}
2348
2349static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2350 unsigned long addr, unsigned long end,
2351 unsigned long pfn, pgprot_t prot)
2352{
2353 pmd_t *pmd;
2354 unsigned long next;
42e4089c 2355 int err;
1da177e4
LT
2356
2357 pfn -= addr >> PAGE_SHIFT;
2358 pmd = pmd_alloc(mm, pud, addr);
2359 if (!pmd)
2360 return -ENOMEM;
f66055ab 2361 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2362 do {
2363 next = pmd_addr_end(addr, end);
42e4089c
AK
2364 err = remap_pte_range(mm, pmd, addr, next,
2365 pfn + (addr >> PAGE_SHIFT), prot);
2366 if (err)
2367 return err;
1da177e4
LT
2368 } while (pmd++, addr = next, addr != end);
2369 return 0;
2370}
2371
c2febafc 2372static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2373 unsigned long addr, unsigned long end,
2374 unsigned long pfn, pgprot_t prot)
2375{
2376 pud_t *pud;
2377 unsigned long next;
42e4089c 2378 int err;
1da177e4
LT
2379
2380 pfn -= addr >> PAGE_SHIFT;
c2febafc 2381 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2382 if (!pud)
2383 return -ENOMEM;
2384 do {
2385 next = pud_addr_end(addr, end);
42e4089c
AK
2386 err = remap_pmd_range(mm, pud, addr, next,
2387 pfn + (addr >> PAGE_SHIFT), prot);
2388 if (err)
2389 return err;
1da177e4
LT
2390 } while (pud++, addr = next, addr != end);
2391 return 0;
2392}
2393
c2febafc
KS
2394static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2395 unsigned long addr, unsigned long end,
2396 unsigned long pfn, pgprot_t prot)
2397{
2398 p4d_t *p4d;
2399 unsigned long next;
42e4089c 2400 int err;
c2febafc
KS
2401
2402 pfn -= addr >> PAGE_SHIFT;
2403 p4d = p4d_alloc(mm, pgd, addr);
2404 if (!p4d)
2405 return -ENOMEM;
2406 do {
2407 next = p4d_addr_end(addr, end);
42e4089c
AK
2408 err = remap_pud_range(mm, p4d, addr, next,
2409 pfn + (addr >> PAGE_SHIFT), prot);
2410 if (err)
2411 return err;
c2febafc
KS
2412 } while (p4d++, addr = next, addr != end);
2413 return 0;
2414}
2415
74ffa5a3
CH
2416/*
2417 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2418 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2419 */
74ffa5a3
CH
2420int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2421 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2422{
2423 pgd_t *pgd;
2424 unsigned long next;
2d15cab8 2425 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2426 struct mm_struct *mm = vma->vm_mm;
2427 int err;
2428
0c4123e3
AZ
2429 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2430 return -EINVAL;
2431
1da177e4
LT
2432 /*
2433 * Physically remapped pages are special. Tell the
2434 * rest of the world about it:
2435 * VM_IO tells people not to look at these pages
2436 * (accesses can have side effects).
6aab341e
LT
2437 * VM_PFNMAP tells the core MM that the base pages are just
2438 * raw PFN mappings, and do not have a "struct page" associated
2439 * with them.
314e51b9
KK
2440 * VM_DONTEXPAND
2441 * Disable vma merging and expanding with mremap().
2442 * VM_DONTDUMP
2443 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2444 *
2445 * There's a horrible special case to handle copy-on-write
2446 * behaviour that some programs depend on. We mark the "original"
2447 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2448 * See vm_normal_page() for details.
1da177e4 2449 */
b3b9c293
KK
2450 if (is_cow_mapping(vma->vm_flags)) {
2451 if (addr != vma->vm_start || end != vma->vm_end)
2452 return -EINVAL;
fb155c16 2453 vma->vm_pgoff = pfn;
b3b9c293
KK
2454 }
2455
1c71222e 2456 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2457
2458 BUG_ON(addr >= end);
2459 pfn -= addr >> PAGE_SHIFT;
2460 pgd = pgd_offset(mm, addr);
2461 flush_cache_range(vma, addr, end);
1da177e4
LT
2462 do {
2463 next = pgd_addr_end(addr, end);
c2febafc 2464 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2465 pfn + (addr >> PAGE_SHIFT), prot);
2466 if (err)
74ffa5a3 2467 return err;
1da177e4 2468 } while (pgd++, addr = next, addr != end);
2ab64037 2469
74ffa5a3
CH
2470 return 0;
2471}
2472
2473/**
2474 * remap_pfn_range - remap kernel memory to userspace
2475 * @vma: user vma to map to
2476 * @addr: target page aligned user address to start at
2477 * @pfn: page frame number of kernel physical memory address
2478 * @size: size of mapping area
2479 * @prot: page protection flags for this mapping
2480 *
2481 * Note: this is only safe if the mm semaphore is held when called.
2482 *
2483 * Return: %0 on success, negative error code otherwise.
2484 */
2485int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2486 unsigned long pfn, unsigned long size, pgprot_t prot)
2487{
2488 int err;
2489
2490 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2491 if (err)
74ffa5a3 2492 return -EINVAL;
2ab64037 2493
74ffa5a3
CH
2494 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2495 if (err)
68f48381 2496 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2497 return err;
2498}
2499EXPORT_SYMBOL(remap_pfn_range);
2500
b4cbb197
LT
2501/**
2502 * vm_iomap_memory - remap memory to userspace
2503 * @vma: user vma to map to
abd69b9e 2504 * @start: start of the physical memory to be mapped
b4cbb197
LT
2505 * @len: size of area
2506 *
2507 * This is a simplified io_remap_pfn_range() for common driver use. The
2508 * driver just needs to give us the physical memory range to be mapped,
2509 * we'll figure out the rest from the vma information.
2510 *
2511 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2512 * whatever write-combining details or similar.
a862f68a
MR
2513 *
2514 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2515 */
2516int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2517{
2518 unsigned long vm_len, pfn, pages;
2519
2520 /* Check that the physical memory area passed in looks valid */
2521 if (start + len < start)
2522 return -EINVAL;
2523 /*
2524 * You *really* shouldn't map things that aren't page-aligned,
2525 * but we've historically allowed it because IO memory might
2526 * just have smaller alignment.
2527 */
2528 len += start & ~PAGE_MASK;
2529 pfn = start >> PAGE_SHIFT;
2530 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2531 if (pfn + pages < pfn)
2532 return -EINVAL;
2533
2534 /* We start the mapping 'vm_pgoff' pages into the area */
2535 if (vma->vm_pgoff > pages)
2536 return -EINVAL;
2537 pfn += vma->vm_pgoff;
2538 pages -= vma->vm_pgoff;
2539
2540 /* Can we fit all of the mapping? */
2541 vm_len = vma->vm_end - vma->vm_start;
2542 if (vm_len >> PAGE_SHIFT > pages)
2543 return -EINVAL;
2544
2545 /* Ok, let it rip */
2546 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2547}
2548EXPORT_SYMBOL(vm_iomap_memory);
2549
aee16b3c
JF
2550static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2551 unsigned long addr, unsigned long end,
e80d3909
JR
2552 pte_fn_t fn, void *data, bool create,
2553 pgtbl_mod_mask *mask)
aee16b3c 2554{
8abb50c7 2555 pte_t *pte, *mapped_pte;
be1db475 2556 int err = 0;
3f649ab7 2557 spinlock_t *ptl;
aee16b3c 2558
be1db475 2559 if (create) {
8abb50c7 2560 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2561 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2562 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2563 if (!pte)
2564 return -ENOMEM;
2565 } else {
8abb50c7 2566 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2567 pte_offset_kernel(pmd, addr) :
2568 pte_offset_map_lock(mm, pmd, addr, &ptl);
2569 }
aee16b3c
JF
2570
2571 BUG_ON(pmd_huge(*pmd));
2572
38e0edb1
JF
2573 arch_enter_lazy_mmu_mode();
2574
eeb4a05f
CH
2575 if (fn) {
2576 do {
2577 if (create || !pte_none(*pte)) {
2578 err = fn(pte++, addr, data);
2579 if (err)
2580 break;
2581 }
2582 } while (addr += PAGE_SIZE, addr != end);
2583 }
e80d3909 2584 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2585
38e0edb1
JF
2586 arch_leave_lazy_mmu_mode();
2587
aee16b3c 2588 if (mm != &init_mm)
8abb50c7 2589 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2590 return err;
2591}
2592
2593static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2594 unsigned long addr, unsigned long end,
e80d3909
JR
2595 pte_fn_t fn, void *data, bool create,
2596 pgtbl_mod_mask *mask)
aee16b3c
JF
2597{
2598 pmd_t *pmd;
2599 unsigned long next;
be1db475 2600 int err = 0;
aee16b3c 2601
ceb86879
AK
2602 BUG_ON(pud_huge(*pud));
2603
be1db475 2604 if (create) {
e80d3909 2605 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2606 if (!pmd)
2607 return -ENOMEM;
2608 } else {
2609 pmd = pmd_offset(pud, addr);
2610 }
aee16b3c
JF
2611 do {
2612 next = pmd_addr_end(addr, end);
0c95cba4
NP
2613 if (pmd_none(*pmd) && !create)
2614 continue;
2615 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2616 return -EINVAL;
2617 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2618 if (!create)
2619 continue;
2620 pmd_clear_bad(pmd);
be1db475 2621 }
0c95cba4
NP
2622 err = apply_to_pte_range(mm, pmd, addr, next,
2623 fn, data, create, mask);
2624 if (err)
2625 break;
aee16b3c 2626 } while (pmd++, addr = next, addr != end);
0c95cba4 2627
aee16b3c
JF
2628 return err;
2629}
2630
c2febafc 2631static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2632 unsigned long addr, unsigned long end,
e80d3909
JR
2633 pte_fn_t fn, void *data, bool create,
2634 pgtbl_mod_mask *mask)
aee16b3c
JF
2635{
2636 pud_t *pud;
2637 unsigned long next;
be1db475 2638 int err = 0;
aee16b3c 2639
be1db475 2640 if (create) {
e80d3909 2641 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2642 if (!pud)
2643 return -ENOMEM;
2644 } else {
2645 pud = pud_offset(p4d, addr);
2646 }
aee16b3c
JF
2647 do {
2648 next = pud_addr_end(addr, end);
0c95cba4
NP
2649 if (pud_none(*pud) && !create)
2650 continue;
2651 if (WARN_ON_ONCE(pud_leaf(*pud)))
2652 return -EINVAL;
2653 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2654 if (!create)
2655 continue;
2656 pud_clear_bad(pud);
be1db475 2657 }
0c95cba4
NP
2658 err = apply_to_pmd_range(mm, pud, addr, next,
2659 fn, data, create, mask);
2660 if (err)
2661 break;
aee16b3c 2662 } while (pud++, addr = next, addr != end);
0c95cba4 2663
aee16b3c
JF
2664 return err;
2665}
2666
c2febafc
KS
2667static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2668 unsigned long addr, unsigned long end,
e80d3909
JR
2669 pte_fn_t fn, void *data, bool create,
2670 pgtbl_mod_mask *mask)
c2febafc
KS
2671{
2672 p4d_t *p4d;
2673 unsigned long next;
be1db475 2674 int err = 0;
c2febafc 2675
be1db475 2676 if (create) {
e80d3909 2677 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2678 if (!p4d)
2679 return -ENOMEM;
2680 } else {
2681 p4d = p4d_offset(pgd, addr);
2682 }
c2febafc
KS
2683 do {
2684 next = p4d_addr_end(addr, end);
0c95cba4
NP
2685 if (p4d_none(*p4d) && !create)
2686 continue;
2687 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2688 return -EINVAL;
2689 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2690 if (!create)
2691 continue;
2692 p4d_clear_bad(p4d);
be1db475 2693 }
0c95cba4
NP
2694 err = apply_to_pud_range(mm, p4d, addr, next,
2695 fn, data, create, mask);
2696 if (err)
2697 break;
c2febafc 2698 } while (p4d++, addr = next, addr != end);
0c95cba4 2699
c2febafc
KS
2700 return err;
2701}
2702
be1db475
DA
2703static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2704 unsigned long size, pte_fn_t fn,
2705 void *data, bool create)
aee16b3c
JF
2706{
2707 pgd_t *pgd;
e80d3909 2708 unsigned long start = addr, next;
57250a5b 2709 unsigned long end = addr + size;
e80d3909 2710 pgtbl_mod_mask mask = 0;
be1db475 2711 int err = 0;
aee16b3c 2712
9cb65bc3
MP
2713 if (WARN_ON(addr >= end))
2714 return -EINVAL;
2715
aee16b3c
JF
2716 pgd = pgd_offset(mm, addr);
2717 do {
2718 next = pgd_addr_end(addr, end);
0c95cba4 2719 if (pgd_none(*pgd) && !create)
be1db475 2720 continue;
0c95cba4
NP
2721 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2722 return -EINVAL;
2723 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2724 if (!create)
2725 continue;
2726 pgd_clear_bad(pgd);
2727 }
2728 err = apply_to_p4d_range(mm, pgd, addr, next,
2729 fn, data, create, &mask);
aee16b3c
JF
2730 if (err)
2731 break;
2732 } while (pgd++, addr = next, addr != end);
57250a5b 2733
e80d3909
JR
2734 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2735 arch_sync_kernel_mappings(start, start + size);
2736
aee16b3c
JF
2737 return err;
2738}
be1db475
DA
2739
2740/*
2741 * Scan a region of virtual memory, filling in page tables as necessary
2742 * and calling a provided function on each leaf page table.
2743 */
2744int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2745 unsigned long size, pte_fn_t fn, void *data)
2746{
2747 return __apply_to_page_range(mm, addr, size, fn, data, true);
2748}
aee16b3c
JF
2749EXPORT_SYMBOL_GPL(apply_to_page_range);
2750
be1db475
DA
2751/*
2752 * Scan a region of virtual memory, calling a provided function on
2753 * each leaf page table where it exists.
2754 *
2755 * Unlike apply_to_page_range, this does _not_ fill in page tables
2756 * where they are absent.
2757 */
2758int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2759 unsigned long size, pte_fn_t fn, void *data)
2760{
2761 return __apply_to_page_range(mm, addr, size, fn, data, false);
2762}
2763EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2764
8f4e2101 2765/*
9b4bdd2f
KS
2766 * handle_pte_fault chooses page fault handler according to an entry which was
2767 * read non-atomically. Before making any commitment, on those architectures
2768 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2769 * parts, do_swap_page must check under lock before unmapping the pte and
2770 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2771 * and do_anonymous_page can safely check later on).
8f4e2101 2772 */
2ca99358 2773static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2774{
2775 int same = 1;
923717cb 2776#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2777 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2778 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2779 spin_lock(ptl);
2ca99358 2780 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2781 spin_unlock(ptl);
8f4e2101
HD
2782 }
2783#endif
2ca99358
PX
2784 pte_unmap(vmf->pte);
2785 vmf->pte = NULL;
8f4e2101
HD
2786 return same;
2787}
2788
a873dfe1
TL
2789/*
2790 * Return:
2791 * 0: copied succeeded
2792 * -EHWPOISON: copy failed due to hwpoison in source page
2793 * -EAGAIN: copied failed (some other reason)
2794 */
2795static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2796 struct vm_fault *vmf)
6aab341e 2797{
a873dfe1 2798 int ret;
83d116c5
JH
2799 void *kaddr;
2800 void __user *uaddr;
c3e5ea6e 2801 bool locked = false;
83d116c5
JH
2802 struct vm_area_struct *vma = vmf->vma;
2803 struct mm_struct *mm = vma->vm_mm;
2804 unsigned long addr = vmf->address;
2805
83d116c5 2806 if (likely(src)) {
d302c239
TL
2807 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2808 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2809 return -EHWPOISON;
d302c239 2810 }
a873dfe1 2811 return 0;
83d116c5
JH
2812 }
2813
6aab341e
LT
2814 /*
2815 * If the source page was a PFN mapping, we don't have
2816 * a "struct page" for it. We do a best-effort copy by
2817 * just copying from the original user address. If that
2818 * fails, we just zero-fill it. Live with it.
2819 */
83d116c5
JH
2820 kaddr = kmap_atomic(dst);
2821 uaddr = (void __user *)(addr & PAGE_MASK);
2822
2823 /*
2824 * On architectures with software "accessed" bits, we would
2825 * take a double page fault, so mark it accessed here.
2826 */
e1fd09e3 2827 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2828 pte_t entry;
5d2a2dbb 2829
83d116c5 2830 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2831 locked = true;
83d116c5
JH
2832 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2833 /*
2834 * Other thread has already handled the fault
7df67697 2835 * and update local tlb only
83d116c5 2836 */
7df67697 2837 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2838 ret = -EAGAIN;
83d116c5
JH
2839 goto pte_unlock;
2840 }
2841
2842 entry = pte_mkyoung(vmf->orig_pte);
2843 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2844 update_mmu_cache(vma, addr, vmf->pte);
2845 }
2846
2847 /*
2848 * This really shouldn't fail, because the page is there
2849 * in the page tables. But it might just be unreadable,
2850 * in which case we just give up and fill the result with
2851 * zeroes.
2852 */
2853 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2854 if (locked)
2855 goto warn;
2856
2857 /* Re-validate under PTL if the page is still mapped */
2858 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2859 locked = true;
2860 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2861 /* The PTE changed under us, update local tlb */
2862 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2863 ret = -EAGAIN;
c3e5ea6e
KS
2864 goto pte_unlock;
2865 }
2866
5d2a2dbb 2867 /*
985ba004 2868 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2869 * Try to copy again under PTL.
5d2a2dbb 2870 */
c3e5ea6e
KS
2871 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2872 /*
2873 * Give a warn in case there can be some obscure
2874 * use-case
2875 */
2876warn:
2877 WARN_ON_ONCE(1);
2878 clear_page(kaddr);
2879 }
83d116c5
JH
2880 }
2881
a873dfe1 2882 ret = 0;
83d116c5
JH
2883
2884pte_unlock:
c3e5ea6e 2885 if (locked)
83d116c5
JH
2886 pte_unmap_unlock(vmf->pte, vmf->ptl);
2887 kunmap_atomic(kaddr);
2888 flush_dcache_page(dst);
2889
2890 return ret;
6aab341e
LT
2891}
2892
c20cd45e
MH
2893static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2894{
2895 struct file *vm_file = vma->vm_file;
2896
2897 if (vm_file)
2898 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2899
2900 /*
2901 * Special mappings (e.g. VDSO) do not have any file so fake
2902 * a default GFP_KERNEL for them.
2903 */
2904 return GFP_KERNEL;
2905}
2906
fb09a464
KS
2907/*
2908 * Notify the address space that the page is about to become writable so that
2909 * it can prohibit this or wait for the page to get into an appropriate state.
2910 *
2911 * We do this without the lock held, so that it can sleep if it needs to.
2912 */
2b740303 2913static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2914{
2b740303 2915 vm_fault_t ret;
38b8cb7f
JK
2916 struct page *page = vmf->page;
2917 unsigned int old_flags = vmf->flags;
fb09a464 2918
38b8cb7f 2919 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2920
dc617f29
DW
2921 if (vmf->vma->vm_file &&
2922 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2923 return VM_FAULT_SIGBUS;
2924
11bac800 2925 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2926 /* Restore original flags so that caller is not surprised */
2927 vmf->flags = old_flags;
fb09a464
KS
2928 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2929 return ret;
2930 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2931 lock_page(page);
2932 if (!page->mapping) {
2933 unlock_page(page);
2934 return 0; /* retry */
2935 }
2936 ret |= VM_FAULT_LOCKED;
2937 } else
2938 VM_BUG_ON_PAGE(!PageLocked(page), page);
2939 return ret;
2940}
2941
97ba0c2b
JK
2942/*
2943 * Handle dirtying of a page in shared file mapping on a write fault.
2944 *
2945 * The function expects the page to be locked and unlocks it.
2946 */
89b15332 2947static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2948{
89b15332 2949 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2950 struct address_space *mapping;
89b15332 2951 struct page *page = vmf->page;
97ba0c2b
JK
2952 bool dirtied;
2953 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2954
2955 dirtied = set_page_dirty(page);
2956 VM_BUG_ON_PAGE(PageAnon(page), page);
2957 /*
2958 * Take a local copy of the address_space - page.mapping may be zeroed
2959 * by truncate after unlock_page(). The address_space itself remains
2960 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2961 * release semantics to prevent the compiler from undoing this copying.
2962 */
2963 mapping = page_rmapping(page);
2964 unlock_page(page);
2965
89b15332
JW
2966 if (!page_mkwrite)
2967 file_update_time(vma->vm_file);
2968
2969 /*
2970 * Throttle page dirtying rate down to writeback speed.
2971 *
2972 * mapping may be NULL here because some device drivers do not
2973 * set page.mapping but still dirty their pages
2974 *
c1e8d7c6 2975 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2976 * is pinning the mapping, as per above.
2977 */
97ba0c2b 2978 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2979 struct file *fpin;
2980
2981 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2982 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2983 if (fpin) {
2984 fput(fpin);
d9272525 2985 return VM_FAULT_COMPLETED;
89b15332 2986 }
97ba0c2b
JK
2987 }
2988
89b15332 2989 return 0;
97ba0c2b
JK
2990}
2991
4e047f89
SR
2992/*
2993 * Handle write page faults for pages that can be reused in the current vma
2994 *
2995 * This can happen either due to the mapping being with the VM_SHARED flag,
2996 * or due to us being the last reference standing to the page. In either
2997 * case, all we need to do here is to mark the page as writable and update
2998 * any related book-keeping.
2999 */
997dd98d 3000static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3001 __releases(vmf->ptl)
4e047f89 3002{
82b0f8c3 3003 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3004 struct page *page = vmf->page;
4e047f89 3005 pte_t entry;
6c287605 3006
c89357e2 3007 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3008 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3009
4e047f89
SR
3010 /*
3011 * Clear the pages cpupid information as the existing
3012 * information potentially belongs to a now completely
3013 * unrelated process.
3014 */
3015 if (page)
3016 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3017
2994302b
JK
3018 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3019 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3020 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3021 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3022 update_mmu_cache(vma, vmf->address, vmf->pte);
3023 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3024 count_vm_event(PGREUSE);
4e047f89
SR
3025}
3026
2f38ab2c 3027/*
c89357e2
DH
3028 * Handle the case of a page which we actually need to copy to a new page,
3029 * either due to COW or unsharing.
2f38ab2c 3030 *
c1e8d7c6 3031 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3032 * without the ptl held.
3033 *
3034 * High level logic flow:
3035 *
3036 * - Allocate a page, copy the content of the old page to the new one.
3037 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3038 * - Take the PTL. If the pte changed, bail out and release the allocated page
3039 * - If the pte is still the way we remember it, update the page table and all
3040 * relevant references. This includes dropping the reference the page-table
3041 * held to the old page, as well as updating the rmap.
3042 * - In any case, unlock the PTL and drop the reference we took to the old page.
3043 */
2b740303 3044static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3045{
c89357e2 3046 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3047 struct vm_area_struct *vma = vmf->vma;
bae473a4 3048 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3049 struct folio *old_folio = NULL;
3050 struct folio *new_folio = NULL;
2f38ab2c
SR
3051 pte_t entry;
3052 int page_copied = 0;
ac46d4f3 3053 struct mmu_notifier_range range;
a873dfe1 3054 int ret;
2f38ab2c 3055
662ce1dc
YY
3056 delayacct_wpcopy_start();
3057
28d41a48
MWO
3058 if (vmf->page)
3059 old_folio = page_folio(vmf->page);
2f38ab2c
SR
3060 if (unlikely(anon_vma_prepare(vma)))
3061 goto oom;
3062
2994302b 3063 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
6bc56a4d
MWO
3064 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3065 if (!new_folio)
2f38ab2c
SR
3066 goto oom;
3067 } else {
28d41a48
MWO
3068 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3069 vmf->address, false);
3070 if (!new_folio)
2f38ab2c 3071 goto oom;
83d116c5 3072
28d41a48 3073 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
a873dfe1 3074 if (ret) {
83d116c5
JH
3075 /*
3076 * COW failed, if the fault was solved by other,
3077 * it's fine. If not, userspace would re-fault on
3078 * the same address and we will handle the fault
3079 * from the second attempt.
a873dfe1 3080 * The -EHWPOISON case will not be retried.
83d116c5 3081 */
28d41a48
MWO
3082 folio_put(new_folio);
3083 if (old_folio)
3084 folio_put(old_folio);
662ce1dc
YY
3085
3086 delayacct_wpcopy_end();
a873dfe1 3087 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3088 }
28d41a48 3089 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3090 }
2f38ab2c 3091
28d41a48 3092 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
2f38ab2c 3093 goto oom_free_new;
28d41a48 3094 cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
2f38ab2c 3095
28d41a48 3096 __folio_mark_uptodate(new_folio);
eb3c24f3 3097
7d4a8be0 3098 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3099 vmf->address & PAGE_MASK,
ac46d4f3
JG
3100 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3101 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3102
3103 /*
3104 * Re-check the pte - we dropped the lock
3105 */
82b0f8c3 3106 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3107 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
28d41a48
MWO
3108 if (old_folio) {
3109 if (!folio_test_anon(old_folio)) {
3110 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
f1a79412 3111 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3112 }
3113 } else {
f1a79412 3114 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3115 }
2994302b 3116 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3117 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3118 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3119 if (unlikely(unshare)) {
3120 if (pte_soft_dirty(vmf->orig_pte))
3121 entry = pte_mksoft_dirty(entry);
3122 if (pte_uffd_wp(vmf->orig_pte))
3123 entry = pte_mkuffd_wp(entry);
3124 } else {
3125 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3126 }
111fe718 3127
2f38ab2c
SR
3128 /*
3129 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3130 * pte with the new entry, to keep TLBs on different CPUs in
3131 * sync. This code used to set the new PTE then flush TLBs, but
3132 * that left a window where the new PTE could be loaded into
3133 * some TLBs while the old PTE remains in others.
2f38ab2c 3134 */
82b0f8c3 3135 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
28d41a48
MWO
3136 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3137 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3138 /*
3139 * We call the notify macro here because, when using secondary
3140 * mmu page tables (such as kvm shadow page tables), we want the
3141 * new page to be mapped directly into the secondary page table.
3142 */
c89357e2 3143 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3144 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3145 update_mmu_cache(vma, vmf->address, vmf->pte);
28d41a48 3146 if (old_folio) {
2f38ab2c
SR
3147 /*
3148 * Only after switching the pte to the new page may
3149 * we remove the mapcount here. Otherwise another
3150 * process may come and find the rmap count decremented
3151 * before the pte is switched to the new page, and
3152 * "reuse" the old page writing into it while our pte
3153 * here still points into it and can be read by other
3154 * threads.
3155 *
3156 * The critical issue is to order this
3157 * page_remove_rmap with the ptp_clear_flush above.
3158 * Those stores are ordered by (if nothing else,)
3159 * the barrier present in the atomic_add_negative
3160 * in page_remove_rmap.
3161 *
3162 * Then the TLB flush in ptep_clear_flush ensures that
3163 * no process can access the old page before the
3164 * decremented mapcount is visible. And the old page
3165 * cannot be reused until after the decremented
3166 * mapcount is visible. So transitively, TLBs to
3167 * old page will be flushed before it can be reused.
3168 */
28d41a48 3169 page_remove_rmap(vmf->page, vma, false);
2f38ab2c
SR
3170 }
3171
3172 /* Free the old page.. */
28d41a48 3173 new_folio = old_folio;
2f38ab2c
SR
3174 page_copied = 1;
3175 } else {
7df67697 3176 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3177 }
3178
28d41a48
MWO
3179 if (new_folio)
3180 folio_put(new_folio);
2f38ab2c 3181
82b0f8c3 3182 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3183 /*
3184 * No need to double call mmu_notifier->invalidate_range() callback as
3185 * the above ptep_clear_flush_notify() did already call it.
3186 */
ac46d4f3 3187 mmu_notifier_invalidate_range_only_end(&range);
28d41a48 3188 if (old_folio) {
f4c4a3f4 3189 if (page_copied)
28d41a48
MWO
3190 free_swap_cache(&old_folio->page);
3191 folio_put(old_folio);
2f38ab2c 3192 }
662ce1dc
YY
3193
3194 delayacct_wpcopy_end();
cb8d8633 3195 return 0;
2f38ab2c 3196oom_free_new:
28d41a48 3197 folio_put(new_folio);
2f38ab2c 3198oom:
28d41a48
MWO
3199 if (old_folio)
3200 folio_put(old_folio);
662ce1dc
YY
3201
3202 delayacct_wpcopy_end();
2f38ab2c
SR
3203 return VM_FAULT_OOM;
3204}
3205
66a6197c
JK
3206/**
3207 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3208 * writeable once the page is prepared
3209 *
3210 * @vmf: structure describing the fault
3211 *
3212 * This function handles all that is needed to finish a write page fault in a
3213 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3214 * It handles locking of PTE and modifying it.
66a6197c
JK
3215 *
3216 * The function expects the page to be locked or other protection against
3217 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3218 *
2797e79f 3219 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3220 * we acquired PTE lock.
66a6197c 3221 */
2b740303 3222vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3223{
3224 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3225 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3226 &vmf->ptl);
3227 /*
3228 * We might have raced with another page fault while we released the
3229 * pte_offset_map_lock.
3230 */
3231 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3232 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3233 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3234 return VM_FAULT_NOPAGE;
66a6197c
JK
3235 }
3236 wp_page_reuse(vmf);
a19e2553 3237 return 0;
66a6197c
JK
3238}
3239
dd906184
BH
3240/*
3241 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3242 * mapping
3243 */
2b740303 3244static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3245{
82b0f8c3 3246 struct vm_area_struct *vma = vmf->vma;
bae473a4 3247
dd906184 3248 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3249 vm_fault_t ret;
dd906184 3250
82b0f8c3 3251 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3252 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3253 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3254 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3255 return ret;
66a6197c 3256 return finish_mkwrite_fault(vmf);
dd906184 3257 }
997dd98d 3258 wp_page_reuse(vmf);
cb8d8633 3259 return 0;
dd906184
BH
3260}
3261
2b740303 3262static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3263 __releases(vmf->ptl)
93e478d4 3264{
82b0f8c3 3265 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3266 vm_fault_t ret = 0;
93e478d4 3267
a41b70d6 3268 get_page(vmf->page);
93e478d4 3269
93e478d4 3270 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3271 vm_fault_t tmp;
93e478d4 3272
82b0f8c3 3273 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3274 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3275 if (unlikely(!tmp || (tmp &
3276 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3277 put_page(vmf->page);
93e478d4
SR
3278 return tmp;
3279 }
66a6197c 3280 tmp = finish_mkwrite_fault(vmf);
a19e2553 3281 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3282 unlock_page(vmf->page);
a41b70d6 3283 put_page(vmf->page);
66a6197c 3284 return tmp;
93e478d4 3285 }
66a6197c
JK
3286 } else {
3287 wp_page_reuse(vmf);
997dd98d 3288 lock_page(vmf->page);
93e478d4 3289 }
89b15332 3290 ret |= fault_dirty_shared_page(vmf);
997dd98d 3291 put_page(vmf->page);
93e478d4 3292
89b15332 3293 return ret;
93e478d4
SR
3294}
3295
1da177e4 3296/*
c89357e2
DH
3297 * This routine handles present pages, when
3298 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3299 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3300 * (FAULT_FLAG_UNSHARE)
3301 *
3302 * It is done by copying the page to a new address and decrementing the
3303 * shared-page counter for the old page.
1da177e4 3304 *
1da177e4
LT
3305 * Note that this routine assumes that the protection checks have been
3306 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3307 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3308 * done any necessary COW.
1da177e4 3309 *
c89357e2
DH
3310 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3311 * though the page will change only once the write actually happens. This
3312 * avoids a few races, and potentially makes it more efficient.
1da177e4 3313 *
c1e8d7c6 3314 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3315 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3316 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3317 */
2b740303 3318static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3319 __releases(vmf->ptl)
1da177e4 3320{
c89357e2 3321 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3322 struct vm_area_struct *vma = vmf->vma;
b9086fde 3323 struct folio *folio = NULL;
1da177e4 3324
c89357e2
DH
3325 if (likely(!unshare)) {
3326 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3327 pte_unmap_unlock(vmf->pte, vmf->ptl);
3328 return handle_userfault(vmf, VM_UFFD_WP);
3329 }
3330
3331 /*
3332 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3333 * is flushed in this case before copying.
3334 */
3335 if (unlikely(userfaultfd_wp(vmf->vma) &&
3336 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3337 flush_tlb_page(vmf->vma, vmf->address);
3338 }
6ce64428 3339
a41b70d6 3340 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3341
b9086fde
DH
3342 /*
3343 * Shared mapping: we are guaranteed to have VM_WRITE and
3344 * FAULT_FLAG_WRITE set at this point.
3345 */
3346 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3347 /*
64e45507
PF
3348 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3349 * VM_PFNMAP VMA.
251b97f5
PZ
3350 *
3351 * We should not cow pages in a shared writeable mapping.
dd906184 3352 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3353 */
b9086fde 3354 if (!vmf->page)
2994302b 3355 return wp_pfn_shared(vmf);
b9086fde 3356 return wp_page_shared(vmf);
251b97f5 3357 }
1da177e4 3358
b9086fde
DH
3359 if (vmf->page)
3360 folio = page_folio(vmf->page);
3361
d08b3851 3362 /*
b9086fde
DH
3363 * Private mapping: create an exclusive anonymous page copy if reuse
3364 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
d08b3851 3365 */
b9086fde 3366 if (folio && folio_test_anon(folio)) {
6c287605
DH
3367 /*
3368 * If the page is exclusive to this process we must reuse the
3369 * page without further checks.
3370 */
e4a2ed94 3371 if (PageAnonExclusive(vmf->page))
6c287605
DH
3372 goto reuse;
3373
53a05ad9 3374 /*
e4a2ed94
MWO
3375 * We have to verify under folio lock: these early checks are
3376 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3377 * the swapcache if there is little hope that we can reuse.
3378 *
e4a2ed94 3379 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3380 */
e4a2ed94 3381 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3382 goto copy;
e4a2ed94 3383 if (!folio_test_lru(folio))
d4c47097
DH
3384 /*
3385 * Note: We cannot easily detect+handle references from
e4a2ed94 3386 * remote LRU pagevecs or references to LRU folios.
d4c47097
DH
3387 */
3388 lru_add_drain();
e4a2ed94 3389 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3390 goto copy;
e4a2ed94 3391 if (!folio_trylock(folio))
09854ba9 3392 goto copy;
e4a2ed94
MWO
3393 if (folio_test_swapcache(folio))
3394 folio_free_swap(folio);
3395 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3396 folio_unlock(folio);
52d1e606 3397 goto copy;
b009c024 3398 }
09854ba9 3399 /*
e4a2ed94
MWO
3400 * Ok, we've got the only folio reference from our mapping
3401 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3402 * sunglasses. Hit it.
09854ba9 3403 */
e4a2ed94
MWO
3404 page_move_anon_rmap(vmf->page, vma);
3405 folio_unlock(folio);
6c287605 3406reuse:
c89357e2
DH
3407 if (unlikely(unshare)) {
3408 pte_unmap_unlock(vmf->pte, vmf->ptl);
3409 return 0;
3410 }
be068f29 3411 wp_page_reuse(vmf);
cb8d8633 3412 return 0;
1da177e4 3413 }
52d1e606 3414copy:
1da177e4
LT
3415 /*
3416 * Ok, we need to copy. Oh, well..
3417 */
b9086fde
DH
3418 if (folio)
3419 folio_get(folio);
28766805 3420
82b0f8c3 3421 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3422#ifdef CONFIG_KSM
b9086fde 3423 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3424 count_vm_event(COW_KSM);
3425#endif
a41b70d6 3426 return wp_page_copy(vmf);
1da177e4
LT
3427}
3428
97a89413 3429static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3430 unsigned long start_addr, unsigned long end_addr,
3431 struct zap_details *details)
3432{
f5cc4eef 3433 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3434}
3435
f808c13f 3436static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3437 pgoff_t first_index,
3438 pgoff_t last_index,
1da177e4
LT
3439 struct zap_details *details)
3440{
3441 struct vm_area_struct *vma;
1da177e4
LT
3442 pgoff_t vba, vea, zba, zea;
3443
232a6a1c 3444 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3445 vba = vma->vm_pgoff;
d6e93217 3446 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3447 zba = max(first_index, vba);
3448 zea = min(last_index, vea);
1da177e4 3449
97a89413 3450 unmap_mapping_range_vma(vma,
1da177e4
LT
3451 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3452 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3453 details);
1da177e4
LT
3454 }
3455}
3456
22061a1f 3457/**
3506659e
MWO
3458 * unmap_mapping_folio() - Unmap single folio from processes.
3459 * @folio: The locked folio to be unmapped.
22061a1f 3460 *
3506659e 3461 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3462 * Typically, for efficiency, the range of nearby pages has already been
3463 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3464 * truncation or invalidation holds the lock on a folio, it may find that
3465 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3466 * to unmap it finally.
3467 */
3506659e 3468void unmap_mapping_folio(struct folio *folio)
22061a1f 3469{
3506659e 3470 struct address_space *mapping = folio->mapping;
22061a1f 3471 struct zap_details details = { };
232a6a1c
PX
3472 pgoff_t first_index;
3473 pgoff_t last_index;
22061a1f 3474
3506659e 3475 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3476
3506659e
MWO
3477 first_index = folio->index;
3478 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3479
2e148f1e 3480 details.even_cows = false;
3506659e 3481 details.single_folio = folio;
999dad82 3482 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3483
2c865995 3484 i_mmap_lock_read(mapping);
22061a1f 3485 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3486 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3487 last_index, &details);
2c865995 3488 i_mmap_unlock_read(mapping);
22061a1f
HD
3489}
3490
977fbdcd
MW
3491/**
3492 * unmap_mapping_pages() - Unmap pages from processes.
3493 * @mapping: The address space containing pages to be unmapped.
3494 * @start: Index of first page to be unmapped.
3495 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3496 * @even_cows: Whether to unmap even private COWed pages.
3497 *
3498 * Unmap the pages in this address space from any userspace process which
3499 * has them mmaped. Generally, you want to remove COWed pages as well when
3500 * a file is being truncated, but not when invalidating pages from the page
3501 * cache.
3502 */
3503void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3504 pgoff_t nr, bool even_cows)
3505{
3506 struct zap_details details = { };
232a6a1c
PX
3507 pgoff_t first_index = start;
3508 pgoff_t last_index = start + nr - 1;
977fbdcd 3509
2e148f1e 3510 details.even_cows = even_cows;
232a6a1c
PX
3511 if (last_index < first_index)
3512 last_index = ULONG_MAX;
977fbdcd 3513
2c865995 3514 i_mmap_lock_read(mapping);
977fbdcd 3515 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3516 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3517 last_index, &details);
2c865995 3518 i_mmap_unlock_read(mapping);
977fbdcd 3519}
6e0e99d5 3520EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3521
1da177e4 3522/**
8a5f14a2 3523 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3524 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3525 * file.
3526 *
3d41088f 3527 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3528 * @holebegin: byte in first page to unmap, relative to the start of
3529 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3530 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3531 * must keep the partial page. In contrast, we must get rid of
3532 * partial pages.
3533 * @holelen: size of prospective hole in bytes. This will be rounded
3534 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3535 * end of the file.
3536 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3537 * but 0 when invalidating pagecache, don't throw away private data.
3538 */
3539void unmap_mapping_range(struct address_space *mapping,
3540 loff_t const holebegin, loff_t const holelen, int even_cows)
3541{
1da177e4
LT
3542 pgoff_t hba = holebegin >> PAGE_SHIFT;
3543 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3544
3545 /* Check for overflow. */
3546 if (sizeof(holelen) > sizeof(hlen)) {
3547 long long holeend =
3548 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3549 if (holeend & ~(long long)ULONG_MAX)
3550 hlen = ULONG_MAX - hba + 1;
3551 }
3552
977fbdcd 3553 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3554}
3555EXPORT_SYMBOL(unmap_mapping_range);
3556
b756a3b5
AP
3557/*
3558 * Restore a potential device exclusive pte to a working pte entry
3559 */
3560static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3561{
19672a9e 3562 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3563 struct vm_area_struct *vma = vmf->vma;
3564 struct mmu_notifier_range range;
3565
7c7b9629
AP
3566 /*
3567 * We need a reference to lock the folio because we don't hold
3568 * the PTL so a racing thread can remove the device-exclusive
3569 * entry and unmap it. If the folio is free the entry must
3570 * have been removed already. If it happens to have already
3571 * been re-allocated after being freed all we do is lock and
3572 * unlock it.
3573 */
3574 if (!folio_try_get(folio))
3575 return 0;
3576
3577 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3578 folio_put(folio);
b756a3b5 3579 return VM_FAULT_RETRY;
7c7b9629 3580 }
7d4a8be0 3581 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3582 vma->vm_mm, vmf->address & PAGE_MASK,
3583 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3584 mmu_notifier_invalidate_range_start(&range);
3585
3586 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3587 &vmf->ptl);
3588 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
19672a9e 3589 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5
AP
3590
3591 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3592 folio_unlock(folio);
7c7b9629 3593 folio_put(folio);
b756a3b5
AP
3594
3595 mmu_notifier_invalidate_range_end(&range);
3596 return 0;
3597}
3598
a160e537 3599static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3600 struct vm_area_struct *vma,
3601 unsigned int fault_flags)
3602{
a160e537 3603 if (!folio_test_swapcache(folio))
c145e0b4 3604 return false;
9202d527 3605 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3606 folio_test_mlocked(folio))
c145e0b4
DH
3607 return true;
3608 /*
3609 * If we want to map a page that's in the swapcache writable, we
3610 * have to detect via the refcount if we're really the exclusive
3611 * user. Try freeing the swapcache to get rid of the swapcache
3612 * reference only in case it's likely that we'll be the exlusive user.
3613 */
a160e537
MWO
3614 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3615 folio_ref_count(folio) == 2;
c145e0b4
DH
3616}
3617
9c28a205
PX
3618static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3619{
3620 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3621 vmf->address, &vmf->ptl);
3622 /*
3623 * Be careful so that we will only recover a special uffd-wp pte into a
3624 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3625 *
3626 * This should also cover the case where e.g. the pte changed
3627 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3628 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3629 */
7e3ce3f8 3630 if (pte_same(vmf->orig_pte, *vmf->pte))
9c28a205
PX
3631 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3632 pte_unmap_unlock(vmf->pte, vmf->ptl);
3633 return 0;
3634}
3635
3636/*
3637 * This is actually a page-missing access, but with uffd-wp special pte
3638 * installed. It means this pte was wr-protected before being unmapped.
3639 */
3640static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3641{
3642 /*
3643 * Just in case there're leftover special ptes even after the region
7a079ba2 3644 * got unregistered - we can simply clear them.
9c28a205
PX
3645 */
3646 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3647 return pte_marker_clear(vmf);
3648
3649 /* do_fault() can handle pte markers too like none pte */
3650 return do_fault(vmf);
3651}
3652
5c041f5d
PX
3653static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3654{
3655 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3656 unsigned long marker = pte_marker_get(entry);
3657
3658 /*
ca92ea3d
PX
3659 * PTE markers should never be empty. If anything weird happened,
3660 * the best thing to do is to kill the process along with its mm.
5c041f5d 3661 */
ca92ea3d 3662 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3663 return VM_FAULT_SIGBUS;
3664
15520a3f
PX
3665 /* Higher priority than uffd-wp when data corrupted */
3666 if (marker & PTE_MARKER_SWAPIN_ERROR)
3667 return VM_FAULT_SIGBUS;
3668
9c28a205
PX
3669 if (pte_marker_entry_uffd_wp(entry))
3670 return pte_marker_handle_uffd_wp(vmf);
3671
3672 /* This is an unknown pte marker */
3673 return VM_FAULT_SIGBUS;
5c041f5d
PX
3674}
3675
1da177e4 3676/*
c1e8d7c6 3677 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3678 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3679 * We return with pte unmapped and unlocked.
3680 *
c1e8d7c6 3681 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3682 * as does filemap_fault().
1da177e4 3683 */
2b740303 3684vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3685{
82b0f8c3 3686 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3687 struct folio *swapcache, *folio = NULL;
3688 struct page *page;
2799e775 3689 struct swap_info_struct *si = NULL;
14f9135d 3690 rmap_t rmap_flags = RMAP_NONE;
1493a191 3691 bool exclusive = false;
65500d23 3692 swp_entry_t entry;
1da177e4 3693 pte_t pte;
d065bd81 3694 int locked;
2b740303 3695 vm_fault_t ret = 0;
aae466b0 3696 void *shadow = NULL;
1da177e4 3697
2ca99358 3698 if (!pte_unmap_same(vmf))
8f4e2101 3699 goto out;
65500d23 3700
2994302b 3701 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3702 if (unlikely(non_swap_entry(entry))) {
3703 if (is_migration_entry(entry)) {
82b0f8c3
JK
3704 migration_entry_wait(vma->vm_mm, vmf->pmd,
3705 vmf->address);
b756a3b5
AP
3706 } else if (is_device_exclusive_entry(entry)) {
3707 vmf->page = pfn_swap_entry_to_page(entry);
3708 ret = remove_device_exclusive_entry(vmf);
5042db43 3709 } else if (is_device_private_entry(entry)) {
af5cdaf8 3710 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3711 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3712 vmf->address, &vmf->ptl);
3713 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3714 spin_unlock(vmf->ptl);
3715 goto out;
3716 }
3717
3718 /*
3719 * Get a page reference while we know the page can't be
3720 * freed.
3721 */
3722 get_page(vmf->page);
3723 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3724 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3725 put_page(vmf->page);
d1737fdb
AK
3726 } else if (is_hwpoison_entry(entry)) {
3727 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3728 } else if (is_pte_marker_entry(entry)) {
3729 ret = handle_pte_marker(vmf);
d1737fdb 3730 } else {
2994302b 3731 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3732 ret = VM_FAULT_SIGBUS;
d1737fdb 3733 }
0697212a
CL
3734 goto out;
3735 }
0bcac06f 3736
2799e775
ML
3737 /* Prevent swapoff from happening to us. */
3738 si = get_swap_device(entry);
3739 if (unlikely(!si))
3740 goto out;
0bcac06f 3741
5a423081
MWO
3742 folio = swap_cache_get_folio(entry, vma, vmf->address);
3743 if (folio)
3744 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3745 swapcache = folio;
f8020772 3746
d4f9565a 3747 if (!folio) {
a449bf58
QC
3748 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3749 __swap_count(entry) == 1) {
0bcac06f 3750 /* skip swapcache */
63ad4add
MWO
3751 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3752 vma, vmf->address, false);
3753 page = &folio->page;
3754 if (folio) {
3755 __folio_set_locked(folio);
3756 __folio_set_swapbacked(folio);
4c6355b2 3757
65995918 3758 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3759 vma->vm_mm, GFP_KERNEL,
3760 entry)) {
545b1b07 3761 ret = VM_FAULT_OOM;
4c6355b2 3762 goto out_page;
545b1b07 3763 }
0add0c77 3764 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3765
aae466b0
JK
3766 shadow = get_shadow_from_swap_cache(entry);
3767 if (shadow)
63ad4add 3768 workingset_refault(folio, shadow);
0076f029 3769
63ad4add 3770 folio_add_lru(folio);
0add0c77
SB
3771
3772 /* To provide entry to swap_readpage() */
63ad4add 3773 folio_set_swap_entry(folio, entry);
5169b844 3774 swap_readpage(page, true, NULL);
63ad4add 3775 folio->private = NULL;
0bcac06f 3776 }
aa8d22a1 3777 } else {
e9e9b7ec
MK
3778 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3779 vmf);
63ad4add
MWO
3780 if (page)
3781 folio = page_folio(page);
d4f9565a 3782 swapcache = folio;
0bcac06f
MK
3783 }
3784
d4f9565a 3785 if (!folio) {
1da177e4 3786 /*
8f4e2101
HD
3787 * Back out if somebody else faulted in this pte
3788 * while we released the pte lock.
1da177e4 3789 */
82b0f8c3
JK
3790 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3791 vmf->address, &vmf->ptl);
2994302b 3792 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3793 ret = VM_FAULT_OOM;
65500d23 3794 goto unlock;
1da177e4
LT
3795 }
3796
3797 /* Had to read the page from swap area: Major fault */
3798 ret = VM_FAULT_MAJOR;
f8891e5e 3799 count_vm_event(PGMAJFAULT);
2262185c 3800 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3801 } else if (PageHWPoison(page)) {
71f72525
WF
3802 /*
3803 * hwpoisoned dirty swapcache pages are kept for killing
3804 * owner processes (which may be unknown at hwpoison time)
3805 */
d1737fdb 3806 ret = VM_FAULT_HWPOISON;
4779cb31 3807 goto out_release;
1da177e4
LT
3808 }
3809
19672a9e 3810 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
e709ffd6 3811
d065bd81
ML
3812 if (!locked) {
3813 ret |= VM_FAULT_RETRY;
3814 goto out_release;
3815 }
073e587e 3816
84d60fdd
DH
3817 if (swapcache) {
3818 /*
3b344157 3819 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3820 * swapcache from under us. The page pin, and pte_same test
3821 * below, are not enough to exclude that. Even if it is still
3822 * swapcache, we need to check that the page's swap has not
3823 * changed.
3824 */
63ad4add 3825 if (unlikely(!folio_test_swapcache(folio) ||
84d60fdd
DH
3826 page_private(page) != entry.val))
3827 goto out_page;
3828
3829 /*
3830 * KSM sometimes has to copy on read faults, for example, if
3831 * page->index of !PageKSM() pages would be nonlinear inside the
3832 * anon VMA -- PageKSM() is lost on actual swapout.
3833 */
3834 page = ksm_might_need_to_copy(page, vma, vmf->address);
3835 if (unlikely(!page)) {
3836 ret = VM_FAULT_OOM;
84d60fdd 3837 goto out_page;
6b970599
KW
3838 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3839 ret = VM_FAULT_HWPOISON;
3840 goto out_page;
84d60fdd 3841 }
63ad4add 3842 folio = page_folio(page);
c145e0b4
DH
3843
3844 /*
3845 * If we want to map a page that's in the swapcache writable, we
3846 * have to detect via the refcount if we're really the exclusive
3847 * owner. Try removing the extra reference from the local LRU
3848 * pagevecs if required.
3849 */
d4f9565a 3850 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3851 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3852 lru_add_drain();
5ad64688
HD
3853 }
3854
9d82c694 3855 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3856
1da177e4 3857 /*
8f4e2101 3858 * Back out if somebody else already faulted in this pte.
1da177e4 3859 */
82b0f8c3
JK
3860 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3861 &vmf->ptl);
2994302b 3862 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3863 goto out_nomap;
b8107480 3864
63ad4add 3865 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3866 ret = VM_FAULT_SIGBUS;
3867 goto out_nomap;
1da177e4
LT
3868 }
3869
78fbe906
DH
3870 /*
3871 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3872 * must never point at an anonymous page in the swapcache that is
3873 * PG_anon_exclusive. Sanity check that this holds and especially, that
3874 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3875 * check after taking the PT lock and making sure that nobody
3876 * concurrently faulted in this page and set PG_anon_exclusive.
3877 */
63ad4add
MWO
3878 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3879 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3880
1493a191
DH
3881 /*
3882 * Check under PT lock (to protect against concurrent fork() sharing
3883 * the swap entry concurrently) for certainly exclusive pages.
3884 */
63ad4add 3885 if (!folio_test_ksm(folio)) {
1493a191 3886 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3887 if (folio != swapcache) {
1493a191
DH
3888 /*
3889 * We have a fresh page that is not exposed to the
3890 * swapcache -> certainly exclusive.
3891 */
3892 exclusive = true;
63ad4add 3893 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3894 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3895 /*
3896 * This is tricky: not all swap backends support
3897 * concurrent page modifications while under writeback.
3898 *
3899 * So if we stumble over such a page in the swapcache
3900 * we must not set the page exclusive, otherwise we can
3901 * map it writable without further checks and modify it
3902 * while still under writeback.
3903 *
3904 * For these problematic swap backends, simply drop the
3905 * exclusive marker: this is perfectly fine as we start
3906 * writeback only if we fully unmapped the page and
3907 * there are no unexpected references on the page after
3908 * unmapping succeeded. After fully unmapped, no
3909 * further GUP references (FOLL_GET and FOLL_PIN) can
3910 * appear, so dropping the exclusive marker and mapping
3911 * it only R/O is fine.
3912 */
3913 exclusive = false;
3914 }
3915 }
3916
8c7c6e34 3917 /*
c145e0b4
DH
3918 * Remove the swap entry and conditionally try to free up the swapcache.
3919 * We're already holding a reference on the page but haven't mapped it
3920 * yet.
8c7c6e34 3921 */
c145e0b4 3922 swap_free(entry);
a160e537
MWO
3923 if (should_try_to_free_swap(folio, vma, vmf->flags))
3924 folio_free_swap(folio);
1da177e4 3925
f1a79412
SB
3926 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3927 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 3928 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3929
3930 /*
1493a191
DH
3931 * Same logic as in do_wp_page(); however, optimize for pages that are
3932 * certainly not shared either because we just allocated them without
3933 * exposing them to the swapcache or because the swap entry indicates
3934 * exclusivity.
c145e0b4 3935 */
63ad4add
MWO
3936 if (!folio_test_ksm(folio) &&
3937 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
3938 if (vmf->flags & FAULT_FLAG_WRITE) {
3939 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3940 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 3941 }
14f9135d 3942 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3943 }
1da177e4 3944 flush_icache_page(vma, page);
2994302b 3945 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3946 pte = pte_mksoft_dirty(pte);
f1eb1bac 3947 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 3948 pte = pte_mkuffd_wp(pte);
2994302b 3949 vmf->orig_pte = pte;
0bcac06f
MK
3950
3951 /* ksm created a completely new copy */
d4f9565a 3952 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 3953 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 3954 folio_add_lru_vma(folio, vma);
0bcac06f 3955 } else {
f1e2db12 3956 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3957 }
1da177e4 3958
63ad4add
MWO
3959 VM_BUG_ON(!folio_test_anon(folio) ||
3960 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
3961 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3962 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3963
63ad4add 3964 folio_unlock(folio);
d4f9565a 3965 if (folio != swapcache && swapcache) {
4969c119
AA
3966 /*
3967 * Hold the lock to avoid the swap entry to be reused
3968 * until we take the PT lock for the pte_same() check
3969 * (to avoid false positives from pte_same). For
3970 * further safety release the lock after the swap_free
3971 * so that the swap count won't change under a
3972 * parallel locked swapcache.
3973 */
d4f9565a
MWO
3974 folio_unlock(swapcache);
3975 folio_put(swapcache);
4969c119 3976 }
c475a8ab 3977
82b0f8c3 3978 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3979 ret |= do_wp_page(vmf);
61469f1d
HD
3980 if (ret & VM_FAULT_ERROR)
3981 ret &= VM_FAULT_ERROR;
1da177e4
LT
3982 goto out;
3983 }
3984
3985 /* No need to invalidate - it was non-present before */
82b0f8c3 3986 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3987unlock:
82b0f8c3 3988 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3989out:
2799e775
ML
3990 if (si)
3991 put_swap_device(si);
1da177e4 3992 return ret;
b8107480 3993out_nomap:
82b0f8c3 3994 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3995out_page:
63ad4add 3996 folio_unlock(folio);
4779cb31 3997out_release:
63ad4add 3998 folio_put(folio);
d4f9565a
MWO
3999 if (folio != swapcache && swapcache) {
4000 folio_unlock(swapcache);
4001 folio_put(swapcache);
4969c119 4002 }
2799e775
ML
4003 if (si)
4004 put_swap_device(si);
65500d23 4005 return ret;
1da177e4
LT
4006}
4007
4008/*
c1e8d7c6 4009 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4010 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4011 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4012 */
2b740303 4013static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4014{
82b0f8c3 4015 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 4016 struct folio *folio;
2b740303 4017 vm_fault_t ret = 0;
1da177e4 4018 pte_t entry;
1da177e4 4019
6b7339f4
KS
4020 /* File mapping without ->vm_ops ? */
4021 if (vma->vm_flags & VM_SHARED)
4022 return VM_FAULT_SIGBUS;
4023
7267ec00
KS
4024 /*
4025 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4026 * pte_offset_map() on pmds where a huge pmd might be created
4027 * from a different thread.
4028 *
3e4e28c5 4029 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4030 * parallel threads are excluded by other means.
4031 *
3e4e28c5 4032 * Here we only have mmap_read_lock(mm).
7267ec00 4033 */
4cf58924 4034 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4035 return VM_FAULT_OOM;
4036
f9ce0be7 4037 /* See comment in handle_pte_fault() */
82b0f8c3 4038 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4039 return 0;
4040
11ac5524 4041 /* Use the zero-page for reads */
82b0f8c3 4042 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4043 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4044 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4045 vma->vm_page_prot));
82b0f8c3
JK
4046 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4047 vmf->address, &vmf->ptl);
7df67697
BM
4048 if (!pte_none(*vmf->pte)) {
4049 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4050 goto unlock;
7df67697 4051 }
6b31d595
MH
4052 ret = check_stable_address_space(vma->vm_mm);
4053 if (ret)
4054 goto unlock;
6b251fc9
AA
4055 /* Deliver the page fault to userland, check inside PT lock */
4056 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4057 pte_unmap_unlock(vmf->pte, vmf->ptl);
4058 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4059 }
a13ea5b7
HD
4060 goto setpte;
4061 }
4062
557ed1fa 4063 /* Allocate our own private page. */
557ed1fa
NP
4064 if (unlikely(anon_vma_prepare(vma)))
4065 goto oom;
6bc56a4d
MWO
4066 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4067 if (!folio)
557ed1fa 4068 goto oom;
eb3c24f3 4069
6bc56a4d 4070 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4071 goto oom_free_page;
cb3184de 4072 cgroup_throttle_swaprate(&folio->page, GFP_KERNEL);
eb3c24f3 4073
52f37629 4074 /*
cb3184de 4075 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4076 * preceding stores to the page contents become visible before
52f37629
MK
4077 * the set_pte_at() write.
4078 */
cb3184de 4079 __folio_mark_uptodate(folio);
8f4e2101 4080
cb3184de 4081 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4082 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4083 if (vma->vm_flags & VM_WRITE)
4084 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4085
82b0f8c3
JK
4086 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4087 &vmf->ptl);
7df67697 4088 if (!pte_none(*vmf->pte)) {
bce8cb3c 4089 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4090 goto release;
7df67697 4091 }
9ba69294 4092
6b31d595
MH
4093 ret = check_stable_address_space(vma->vm_mm);
4094 if (ret)
4095 goto release;
4096
6b251fc9
AA
4097 /* Deliver the page fault to userland, check inside PT lock */
4098 if (userfaultfd_missing(vma)) {
82b0f8c3 4099 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4100 folio_put(folio);
82b0f8c3 4101 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4102 }
4103
f1a79412 4104 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4105 folio_add_new_anon_rmap(folio, vma, vmf->address);
4106 folio_add_lru_vma(folio, vma);
a13ea5b7 4107setpte:
82b0f8c3 4108 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4109
4110 /* No need to invalidate - it was non-present before */
82b0f8c3 4111 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4112unlock:
82b0f8c3 4113 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4114 return ret;
8f4e2101 4115release:
cb3184de 4116 folio_put(folio);
8f4e2101 4117 goto unlock;
8a9f3ccd 4118oom_free_page:
cb3184de 4119 folio_put(folio);
65500d23 4120oom:
1da177e4
LT
4121 return VM_FAULT_OOM;
4122}
4123
9a95f3cf 4124/*
c1e8d7c6 4125 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4126 * released depending on flags and vma->vm_ops->fault() return value.
4127 * See filemap_fault() and __lock_page_retry().
4128 */
2b740303 4129static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4130{
82b0f8c3 4131 struct vm_area_struct *vma = vmf->vma;
2b740303 4132 vm_fault_t ret;
7eae74af 4133
63f3655f
MH
4134 /*
4135 * Preallocate pte before we take page_lock because this might lead to
4136 * deadlocks for memcg reclaim which waits for pages under writeback:
4137 * lock_page(A)
4138 * SetPageWriteback(A)
4139 * unlock_page(A)
4140 * lock_page(B)
4141 * lock_page(B)
d383807a 4142 * pte_alloc_one
63f3655f
MH
4143 * shrink_page_list
4144 * wait_on_page_writeback(A)
4145 * SetPageWriteback(B)
4146 * unlock_page(B)
4147 * # flush A, B to clear the writeback
4148 */
4149 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4150 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4151 if (!vmf->prealloc_pte)
4152 return VM_FAULT_OOM;
63f3655f
MH
4153 }
4154
11bac800 4155 ret = vma->vm_ops->fault(vmf);
3917048d 4156 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4157 VM_FAULT_DONE_COW)))
bc2466e4 4158 return ret;
7eae74af 4159
667240e0 4160 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4161 struct page *page = vmf->page;
e53ac737
RR
4162 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4163 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4164 if (page_mapped(page))
4165 unmap_mapping_pages(page_mapping(page),
4166 page->index, 1, false);
e53ac737 4167 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4168 if (invalidate_inode_page(page))
4169 poisonret = VM_FAULT_NOPAGE;
4170 unlock_page(page);
e53ac737 4171 }
3149c79f 4172 put_page(page);
936ca80d 4173 vmf->page = NULL;
e53ac737 4174 return poisonret;
7eae74af
KS
4175 }
4176
4177 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4178 lock_page(vmf->page);
7eae74af 4179 else
667240e0 4180 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4181
7eae74af
KS
4182 return ret;
4183}
4184
396bcc52 4185#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4186static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4187{
82b0f8c3 4188 struct vm_area_struct *vma = vmf->vma;
953c66c2 4189
82b0f8c3 4190 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4191 /*
4192 * We are going to consume the prealloc table,
4193 * count that as nr_ptes.
4194 */
c4812909 4195 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4196 vmf->prealloc_pte = NULL;
953c66c2
AK
4197}
4198
f9ce0be7 4199vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4200{
82b0f8c3
JK
4201 struct vm_area_struct *vma = vmf->vma;
4202 bool write = vmf->flags & FAULT_FLAG_WRITE;
4203 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4204 pmd_t entry;
2b740303 4205 int i;
d01ac3c3 4206 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4207
4208 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4209 return ret;
10102459 4210
10102459 4211 page = compound_head(page);
d01ac3c3
MWO
4212 if (compound_order(page) != HPAGE_PMD_ORDER)
4213 return ret;
10102459 4214
eac96c3e
YS
4215 /*
4216 * Just backoff if any subpage of a THP is corrupted otherwise
4217 * the corrupted page may mapped by PMD silently to escape the
4218 * check. This kind of THP just can be PTE mapped. Access to
4219 * the corrupted subpage should trigger SIGBUS as expected.
4220 */
4221 if (unlikely(PageHasHWPoisoned(page)))
4222 return ret;
4223
953c66c2 4224 /*
f0953a1b 4225 * Archs like ppc64 need additional space to store information
953c66c2
AK
4226 * related to pte entry. Use the preallocated table for that.
4227 */
82b0f8c3 4228 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4229 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4230 if (!vmf->prealloc_pte)
953c66c2 4231 return VM_FAULT_OOM;
953c66c2
AK
4232 }
4233
82b0f8c3
JK
4234 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4235 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4236 goto out;
4237
4238 for (i = 0; i < HPAGE_PMD_NR; i++)
4239 flush_icache_page(vma, page + i);
4240
4241 entry = mk_huge_pmd(page, vma->vm_page_prot);
4242 if (write)
f55e1014 4243 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4244
fadae295 4245 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4246 page_add_file_rmap(page, vma, true);
4247
953c66c2
AK
4248 /*
4249 * deposit and withdraw with pmd lock held
4250 */
4251 if (arch_needs_pgtable_deposit())
82b0f8c3 4252 deposit_prealloc_pte(vmf);
10102459 4253
82b0f8c3 4254 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4255
82b0f8c3 4256 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4257
4258 /* fault is handled */
4259 ret = 0;
95ecedcd 4260 count_vm_event(THP_FILE_MAPPED);
10102459 4261out:
82b0f8c3 4262 spin_unlock(vmf->ptl);
10102459
KS
4263 return ret;
4264}
4265#else
f9ce0be7 4266vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4267{
f9ce0be7 4268 return VM_FAULT_FALLBACK;
10102459
KS
4269}
4270#endif
4271
9d3af4b4 4272void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4273{
82b0f8c3 4274 struct vm_area_struct *vma = vmf->vma;
9c28a205 4275 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
82b0f8c3 4276 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4277 bool prefault = vmf->address != addr;
3bb97794 4278 pte_t entry;
7267ec00 4279
3bb97794
KS
4280 flush_icache_page(vma, page);
4281 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4282
4283 if (prefault && arch_wants_old_prefaulted_pte())
4284 entry = pte_mkold(entry);
50c25ee9
TB
4285 else
4286 entry = pte_sw_mkyoung(entry);
46bdb427 4287
3bb97794
KS
4288 if (write)
4289 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4290 if (unlikely(uffd_wp))
f1eb1bac 4291 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4292 /* copy-on-write page */
4293 if (write && !(vma->vm_flags & VM_SHARED)) {
f1a79412 4294 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4295 page_add_new_anon_rmap(page, vma, addr);
b518154e 4296 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4297 } else {
f1a79412 4298 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2 4299 page_add_file_rmap(page, vma, false);
3bb97794 4300 }
9d3af4b4 4301 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4302}
4303
f46f2ade
PX
4304static bool vmf_pte_changed(struct vm_fault *vmf)
4305{
4306 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4307 return !pte_same(*vmf->pte, vmf->orig_pte);
4308
4309 return !pte_none(*vmf->pte);
4310}
4311
9118c0cb
JK
4312/**
4313 * finish_fault - finish page fault once we have prepared the page to fault
4314 *
4315 * @vmf: structure describing the fault
4316 *
4317 * This function handles all that is needed to finish a page fault once the
4318 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4319 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4320 * addition.
9118c0cb
JK
4321 *
4322 * The function expects the page to be locked and on success it consumes a
4323 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4324 *
4325 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4326 */
2b740303 4327vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4328{
f9ce0be7 4329 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4330 struct page *page;
f9ce0be7 4331 vm_fault_t ret;
9118c0cb
JK
4332
4333 /* Did we COW the page? */
f9ce0be7 4334 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4335 page = vmf->cow_page;
4336 else
4337 page = vmf->page;
6b31d595
MH
4338
4339 /*
4340 * check even for read faults because we might have lost our CoWed
4341 * page
4342 */
f9ce0be7
KS
4343 if (!(vma->vm_flags & VM_SHARED)) {
4344 ret = check_stable_address_space(vma->vm_mm);
4345 if (ret)
4346 return ret;
4347 }
4348
4349 if (pmd_none(*vmf->pmd)) {
4350 if (PageTransCompound(page)) {
4351 ret = do_set_pmd(vmf, page);
4352 if (ret != VM_FAULT_FALLBACK)
4353 return ret;
4354 }
4355
03c4f204
QZ
4356 if (vmf->prealloc_pte)
4357 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4358 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4359 return VM_FAULT_OOM;
4360 }
4361
3fe2895c
JB
4362 /*
4363 * See comment in handle_pte_fault() for how this scenario happens, we
4364 * need to return NOPAGE so that we drop this page.
4365 */
f9ce0be7 4366 if (pmd_devmap_trans_unstable(vmf->pmd))
3fe2895c 4367 return VM_FAULT_NOPAGE;
f9ce0be7
KS
4368
4369 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4370 vmf->address, &vmf->ptl);
70427f6e 4371
f9ce0be7 4372 /* Re-check under ptl */
70427f6e 4373 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4374 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4375
4376 /* no need to invalidate: a not-present page won't be cached */
4377 update_mmu_cache(vma, vmf->address, vmf->pte);
4378
4379 ret = 0;
4380 } else {
4381 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4382 ret = VM_FAULT_NOPAGE;
70427f6e 4383 }
f9ce0be7 4384
f9ce0be7 4385 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4386 return ret;
4387}
4388
3a91053a
KS
4389static unsigned long fault_around_bytes __read_mostly =
4390 rounddown_pow_of_two(65536);
a9b0f861 4391
a9b0f861
KS
4392#ifdef CONFIG_DEBUG_FS
4393static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4394{
a9b0f861 4395 *val = fault_around_bytes;
1592eef0
KS
4396 return 0;
4397}
4398
b4903d6e 4399/*
da391d64
WK
4400 * fault_around_bytes must be rounded down to the nearest page order as it's
4401 * what do_fault_around() expects to see.
b4903d6e 4402 */
a9b0f861 4403static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4404{
a9b0f861 4405 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4406 return -EINVAL;
b4903d6e
AR
4407 if (val > PAGE_SIZE)
4408 fault_around_bytes = rounddown_pow_of_two(val);
4409 else
4410 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4411 return 0;
4412}
0a1345f8 4413DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4414 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4415
4416static int __init fault_around_debugfs(void)
4417{
d9f7979c
GKH
4418 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4419 &fault_around_bytes_fops);
1592eef0
KS
4420 return 0;
4421}
4422late_initcall(fault_around_debugfs);
1592eef0 4423#endif
8c6e50b0 4424
1fdb412b
KS
4425/*
4426 * do_fault_around() tries to map few pages around the fault address. The hope
4427 * is that the pages will be needed soon and this will lower the number of
4428 * faults to handle.
4429 *
4430 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4431 * not ready to be mapped: not up-to-date, locked, etc.
4432 *
1fdb412b
KS
4433 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4434 * only once.
4435 *
da391d64
WK
4436 * fault_around_bytes defines how many bytes we'll try to map.
4437 * do_fault_around() expects it to be set to a power of two less than or equal
4438 * to PTRS_PER_PTE.
1fdb412b 4439 *
da391d64
WK
4440 * The virtual address of the area that we map is naturally aligned to
4441 * fault_around_bytes rounded down to the machine page size
4442 * (and therefore to page order). This way it's easier to guarantee
4443 * that we don't cross page table boundaries.
1fdb412b 4444 */
2b740303 4445static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4446{
82b0f8c3 4447 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4448 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4449 pgoff_t end_pgoff;
2b740303 4450 int off;
8c6e50b0 4451
4db0c3c2 4452 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4453 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4454
f9ce0be7
KS
4455 address = max(address & mask, vmf->vma->vm_start);
4456 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4457 start_pgoff -= off;
8c6e50b0
KS
4458
4459 /*
da391d64
WK
4460 * end_pgoff is either the end of the page table, the end of
4461 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4462 */
bae473a4 4463 end_pgoff = start_pgoff -
f9ce0be7 4464 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4465 PTRS_PER_PTE - 1;
82b0f8c3 4466 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4467 start_pgoff + nr_pages - 1);
8c6e50b0 4468
82b0f8c3 4469 if (pmd_none(*vmf->pmd)) {
4cf58924 4470 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4471 if (!vmf->prealloc_pte)
f9ce0be7 4472 return VM_FAULT_OOM;
8c6e50b0
KS
4473 }
4474
f9ce0be7 4475 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4476}
4477
9c28a205
PX
4478/* Return true if we should do read fault-around, false otherwise */
4479static inline bool should_fault_around(struct vm_fault *vmf)
4480{
4481 /* No ->map_pages? No way to fault around... */
4482 if (!vmf->vma->vm_ops->map_pages)
4483 return false;
4484
4485 if (uffd_disable_fault_around(vmf->vma))
4486 return false;
4487
4488 return fault_around_bytes >> PAGE_SHIFT > 1;
4489}
4490
2b740303 4491static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4492{
2b740303 4493 vm_fault_t ret = 0;
8c6e50b0
KS
4494
4495 /*
4496 * Let's call ->map_pages() first and use ->fault() as fallback
4497 * if page by the offset is not ready to be mapped (cold cache or
4498 * something).
4499 */
9c28a205
PX
4500 if (should_fault_around(vmf)) {
4501 ret = do_fault_around(vmf);
4502 if (ret)
4503 return ret;
8c6e50b0 4504 }
e655fb29 4505
936ca80d 4506 ret = __do_fault(vmf);
e655fb29
KS
4507 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4508 return ret;
4509
9118c0cb 4510 ret |= finish_fault(vmf);
936ca80d 4511 unlock_page(vmf->page);
7267ec00 4512 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4513 put_page(vmf->page);
e655fb29
KS
4514 return ret;
4515}
4516
2b740303 4517static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4518{
82b0f8c3 4519 struct vm_area_struct *vma = vmf->vma;
2b740303 4520 vm_fault_t ret;
ec47c3b9
KS
4521
4522 if (unlikely(anon_vma_prepare(vma)))
4523 return VM_FAULT_OOM;
4524
936ca80d
JK
4525 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4526 if (!vmf->cow_page)
ec47c3b9
KS
4527 return VM_FAULT_OOM;
4528
8f425e4e
MWO
4529 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4530 GFP_KERNEL)) {
936ca80d 4531 put_page(vmf->cow_page);
ec47c3b9
KS
4532 return VM_FAULT_OOM;
4533 }
9d82c694 4534 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4535
936ca80d 4536 ret = __do_fault(vmf);
ec47c3b9
KS
4537 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4538 goto uncharge_out;
3917048d
JK
4539 if (ret & VM_FAULT_DONE_COW)
4540 return ret;
ec47c3b9 4541
b1aa812b 4542 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4543 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4544
9118c0cb 4545 ret |= finish_fault(vmf);
b1aa812b
JK
4546 unlock_page(vmf->page);
4547 put_page(vmf->page);
7267ec00
KS
4548 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549 goto uncharge_out;
ec47c3b9
KS
4550 return ret;
4551uncharge_out:
936ca80d 4552 put_page(vmf->cow_page);
ec47c3b9
KS
4553 return ret;
4554}
4555
2b740303 4556static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4557{
82b0f8c3 4558 struct vm_area_struct *vma = vmf->vma;
2b740303 4559 vm_fault_t ret, tmp;
1d65f86d 4560
936ca80d 4561 ret = __do_fault(vmf);
7eae74af 4562 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4563 return ret;
1da177e4
LT
4564
4565 /*
f0c6d4d2
KS
4566 * Check if the backing address space wants to know that the page is
4567 * about to become writable
1da177e4 4568 */
fb09a464 4569 if (vma->vm_ops->page_mkwrite) {
936ca80d 4570 unlock_page(vmf->page);
38b8cb7f 4571 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4572 if (unlikely(!tmp ||
4573 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4574 put_page(vmf->page);
fb09a464 4575 return tmp;
4294621f 4576 }
fb09a464
KS
4577 }
4578
9118c0cb 4579 ret |= finish_fault(vmf);
7267ec00
KS
4580 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4581 VM_FAULT_RETRY))) {
936ca80d
JK
4582 unlock_page(vmf->page);
4583 put_page(vmf->page);
f0c6d4d2 4584 return ret;
1da177e4 4585 }
b827e496 4586
89b15332 4587 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4588 return ret;
54cb8821 4589}
d00806b1 4590
9a95f3cf 4591/*
c1e8d7c6 4592 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4593 * but allow concurrent faults).
c1e8d7c6 4594 * The mmap_lock may have been released depending on flags and our
9138e47e 4595 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4596 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4597 * by other thread calling munmap()).
9a95f3cf 4598 */
2b740303 4599static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4600{
82b0f8c3 4601 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4602 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4603 vm_fault_t ret;
54cb8821 4604
ff09d7ec
AK
4605 /*
4606 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4607 */
4608 if (!vma->vm_ops->fault) {
4609 /*
4610 * If we find a migration pmd entry or a none pmd entry, which
4611 * should never happen, return SIGBUS
4612 */
4613 if (unlikely(!pmd_present(*vmf->pmd)))
4614 ret = VM_FAULT_SIGBUS;
4615 else {
4616 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4617 vmf->pmd,
4618 vmf->address,
4619 &vmf->ptl);
4620 /*
4621 * Make sure this is not a temporary clearing of pte
4622 * by holding ptl and checking again. A R/M/W update
4623 * of pte involves: take ptl, clearing the pte so that
4624 * we don't have concurrent modification by hardware
4625 * followed by an update.
4626 */
4627 if (unlikely(pte_none(*vmf->pte)))
4628 ret = VM_FAULT_SIGBUS;
4629 else
4630 ret = VM_FAULT_NOPAGE;
4631
4632 pte_unmap_unlock(vmf->pte, vmf->ptl);
4633 }
4634 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4635 ret = do_read_fault(vmf);
4636 else if (!(vma->vm_flags & VM_SHARED))
4637 ret = do_cow_fault(vmf);
4638 else
4639 ret = do_shared_fault(vmf);
4640
4641 /* preallocated pagetable is unused: free it */
4642 if (vmf->prealloc_pte) {
fc8efd2d 4643 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4644 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4645 }
4646 return ret;
54cb8821
NP
4647}
4648
f4c0d836
YS
4649int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4650 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4651{
4652 get_page(page);
4653
4654 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4655 if (page_nid == numa_node_id()) {
9532fec1 4656 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4657 *flags |= TNF_FAULT_LOCAL;
4658 }
9532fec1
MG
4659
4660 return mpol_misplaced(page, vma, addr);
4661}
4662
2b740303 4663static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4664{
82b0f8c3 4665 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4666 struct page *page = NULL;
98fa15f3 4667 int page_nid = NUMA_NO_NODE;
6a56ccbc 4668 bool writable = false;
90572890 4669 int last_cpupid;
cbee9f88 4670 int target_nid;
04a86453 4671 pte_t pte, old_pte;
6688cc05 4672 int flags = 0;
d10e63f2
MG
4673
4674 /*
166f61b9
TH
4675 * The "pte" at this point cannot be used safely without
4676 * validation through pte_unmap_same(). It's of NUMA type but
4677 * the pfn may be screwed if the read is non atomic.
166f61b9 4678 */
82b0f8c3
JK
4679 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4680 spin_lock(vmf->ptl);
cee216a6 4681 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4682 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4683 goto out;
4684 }
4685
b99a342d
YH
4686 /* Get the normal PTE */
4687 old_pte = ptep_get(vmf->pte);
04a86453 4688 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4689
6a56ccbc
DH
4690 /*
4691 * Detect now whether the PTE could be writable; this information
4692 * is only valid while holding the PT lock.
4693 */
4694 writable = pte_write(pte);
4695 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4696 can_change_pte_writable(vma, vmf->address, pte))
4697 writable = true;
4698
82b0f8c3 4699 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4700 if (!page || is_zone_device_page(page))
b99a342d 4701 goto out_map;
d10e63f2 4702
e81c4802 4703 /* TODO: handle PTE-mapped THP */
b99a342d
YH
4704 if (PageCompound(page))
4705 goto out_map;
e81c4802 4706
6688cc05 4707 /*
bea66fbd
MG
4708 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4709 * much anyway since they can be in shared cache state. This misses
4710 * the case where a mapping is writable but the process never writes
4711 * to it but pte_write gets cleared during protection updates and
4712 * pte_dirty has unpredictable behaviour between PTE scan updates,
4713 * background writeback, dirty balancing and application behaviour.
6688cc05 4714 */
6a56ccbc 4715 if (!writable)
6688cc05
PZ
4716 flags |= TNF_NO_GROUP;
4717
dabe1d99
RR
4718 /*
4719 * Flag if the page is shared between multiple address spaces. This
4720 * is later used when determining whether to group tasks together
4721 */
4722 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4723 flags |= TNF_SHARED;
4724
8191acbd 4725 page_nid = page_to_nid(page);
33024536
YH
4726 /*
4727 * For memory tiering mode, cpupid of slow memory page is used
4728 * to record page access time. So use default value.
4729 */
4730 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4731 !node_is_toptier(page_nid))
4732 last_cpupid = (-1 & LAST_CPUPID_MASK);
4733 else
4734 last_cpupid = page_cpupid_last(page);
82b0f8c3 4735 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4736 &flags);
98fa15f3 4737 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4738 put_page(page);
b99a342d 4739 goto out_map;
4daae3b4 4740 }
b99a342d 4741 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4742 writable = false;
4daae3b4
MG
4743
4744 /* Migrate to the requested node */
bf90ac19 4745 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4746 page_nid = target_nid;
6688cc05 4747 flags |= TNF_MIGRATED;
b99a342d 4748 } else {
074c2381 4749 flags |= TNF_MIGRATE_FAIL;
b99a342d
YH
4750 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4751 spin_lock(vmf->ptl);
4752 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4753 pte_unmap_unlock(vmf->pte, vmf->ptl);
4754 goto out;
4755 }
4756 goto out_map;
4757 }
4daae3b4
MG
4758
4759out:
98fa15f3 4760 if (page_nid != NUMA_NO_NODE)
6688cc05 4761 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4762 return 0;
b99a342d
YH
4763out_map:
4764 /*
4765 * Make it present again, depending on how arch implements
4766 * non-accessible ptes, some can allow access by kernel mode.
4767 */
4768 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4769 pte = pte_modify(old_pte, vma->vm_page_prot);
4770 pte = pte_mkyoung(pte);
6a56ccbc 4771 if (writable)
b99a342d
YH
4772 pte = pte_mkwrite(pte);
4773 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4774 update_mmu_cache(vma, vmf->address, vmf->pte);
4775 pte_unmap_unlock(vmf->pte, vmf->ptl);
4776 goto out;
d10e63f2
MG
4777}
4778
2b740303 4779static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4780{
f4200391 4781 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4782 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4783 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4784 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4785 return VM_FAULT_FALLBACK;
4786}
4787
183f24aa 4788/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4789static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4790{
c89357e2 4791 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4792 vm_fault_t ret;
c89357e2 4793
529b930b 4794 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4795 if (likely(!unshare) &&
4796 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4797 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4798 return do_huge_pmd_wp_page(vmf);
529b930b 4799 }
327e9fd4 4800
aea06577
DH
4801 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4802 if (vmf->vma->vm_ops->huge_fault) {
4803 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4804 if (!(ret & VM_FAULT_FALLBACK))
4805 return ret;
4806 }
327e9fd4 4807 }
af9e4d5f 4808
327e9fd4 4809 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4810 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4811
b96375f7
MW
4812 return VM_FAULT_FALLBACK;
4813}
4814
2b740303 4815static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4816{
14c99d65
GJ
4817#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4818 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4819 /* No support for anonymous transparent PUD pages yet */
4820 if (vma_is_anonymous(vmf->vma))
4821 return VM_FAULT_FALLBACK;
4822 if (vmf->vma->vm_ops->huge_fault)
4823 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4824#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4825 return VM_FAULT_FALLBACK;
4826}
4827
4828static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4829{
327e9fd4
THV
4830#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4831 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
aea06577
DH
4832 vm_fault_t ret;
4833
a00cc7d9
MW
4834 /* No support for anonymous transparent PUD pages yet */
4835 if (vma_is_anonymous(vmf->vma))
327e9fd4 4836 goto split;
aea06577
DH
4837 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4838 if (vmf->vma->vm_ops->huge_fault) {
4839 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4840 if (!(ret & VM_FAULT_FALLBACK))
4841 return ret;
4842 }
327e9fd4
THV
4843 }
4844split:
4845 /* COW or write-notify not handled on PUD level: split pud.*/
4846 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
14c99d65 4847#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4848 return VM_FAULT_FALLBACK;
4849}
4850
1da177e4
LT
4851/*
4852 * These routines also need to handle stuff like marking pages dirty
4853 * and/or accessed for architectures that don't do it in hardware (most
4854 * RISC architectures). The early dirtying is also good on the i386.
4855 *
4856 * There is also a hook called "update_mmu_cache()" that architectures
4857 * with external mmu caches can use to update those (ie the Sparc or
4858 * PowerPC hashed page tables that act as extended TLBs).
4859 *
c1e8d7c6 4860 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4861 * concurrent faults).
9a95f3cf 4862 *
c1e8d7c6 4863 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4864 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4865 */
2b740303 4866static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4867{
4868 pte_t entry;
4869
82b0f8c3 4870 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4871 /*
4872 * Leave __pte_alloc() until later: because vm_ops->fault may
4873 * want to allocate huge page, and if we expose page table
4874 * for an instant, it will be difficult to retract from
4875 * concurrent faults and from rmap lookups.
4876 */
82b0f8c3 4877 vmf->pte = NULL;
f46f2ade 4878 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4879 } else {
f9ce0be7
KS
4880 /*
4881 * If a huge pmd materialized under us just retry later. Use
4882 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4883 * of pmd_trans_huge() to ensure the pmd didn't become
4884 * pmd_trans_huge under us and then back to pmd_none, as a
4885 * result of MADV_DONTNEED running immediately after a huge pmd
4886 * fault in a different thread of this mm, in turn leading to a
4887 * misleading pmd_trans_huge() retval. All we have to ensure is
4888 * that it is a regular pmd that we can walk with
4889 * pte_offset_map() and we can do that through an atomic read
4890 * in C, which is what pmd_trans_unstable() provides.
4891 */
d0f0931d 4892 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4893 return 0;
4894 /*
4895 * A regular pmd is established and it can't morph into a huge
4896 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4897 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4898 * So now it's safe to run pte_offset_map().
4899 */
82b0f8c3 4900 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4901 vmf->orig_pte = *vmf->pte;
f46f2ade 4902 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4903
4904 /*
4905 * some architectures can have larger ptes than wordsize,
4906 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4907 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4908 * accesses. The code below just needs a consistent view
4909 * for the ifs and we later double check anyway with the
7267ec00
KS
4910 * ptl lock held. So here a barrier will do.
4911 */
4912 barrier();
2994302b 4913 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4914 pte_unmap(vmf->pte);
4915 vmf->pte = NULL;
65500d23 4916 }
1da177e4
LT
4917 }
4918
82b0f8c3
JK
4919 if (!vmf->pte) {
4920 if (vma_is_anonymous(vmf->vma))
4921 return do_anonymous_page(vmf);
7267ec00 4922 else
82b0f8c3 4923 return do_fault(vmf);
7267ec00
KS
4924 }
4925
2994302b
JK
4926 if (!pte_present(vmf->orig_pte))
4927 return do_swap_page(vmf);
7267ec00 4928
2994302b
JK
4929 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4930 return do_numa_page(vmf);
d10e63f2 4931
82b0f8c3
JK
4932 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4933 spin_lock(vmf->ptl);
2994302b 4934 entry = vmf->orig_pte;
7df67697
BM
4935 if (unlikely(!pte_same(*vmf->pte, entry))) {
4936 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4937 goto unlock;
7df67697 4938 }
c89357e2 4939 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4940 if (!pte_write(entry))
2994302b 4941 return do_wp_page(vmf);
c89357e2
DH
4942 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4943 entry = pte_mkdirty(entry);
1da177e4
LT
4944 }
4945 entry = pte_mkyoung(entry);
82b0f8c3
JK
4946 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4947 vmf->flags & FAULT_FLAG_WRITE)) {
4948 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4949 } else {
b7333b58
YS
4950 /* Skip spurious TLB flush for retried page fault */
4951 if (vmf->flags & FAULT_FLAG_TRIED)
4952 goto unlock;
1a44e149
AA
4953 /*
4954 * This is needed only for protection faults but the arch code
4955 * is not yet telling us if this is a protection fault or not.
4956 * This still avoids useless tlb flushes for .text page faults
4957 * with threads.
4958 */
82b0f8c3
JK
4959 if (vmf->flags & FAULT_FLAG_WRITE)
4960 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4961 }
8f4e2101 4962unlock:
82b0f8c3 4963 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4964 return 0;
1da177e4
LT
4965}
4966
4967/*
4968 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4969 *
c1e8d7c6 4970 * The mmap_lock may have been released depending on flags and our
9138e47e 4971 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4972 */
2b740303
SJ
4973static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4974 unsigned long address, unsigned int flags)
1da177e4 4975{
82b0f8c3 4976 struct vm_fault vmf = {
bae473a4 4977 .vma = vma,
1a29d85e 4978 .address = address & PAGE_MASK,
824ddc60 4979 .real_address = address,
bae473a4 4980 .flags = flags,
0721ec8b 4981 .pgoff = linear_page_index(vma, address),
667240e0 4982 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4983 };
dcddffd4 4984 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 4985 unsigned long vm_flags = vma->vm_flags;
1da177e4 4986 pgd_t *pgd;
c2febafc 4987 p4d_t *p4d;
2b740303 4988 vm_fault_t ret;
1da177e4 4989
1da177e4 4990 pgd = pgd_offset(mm, address);
c2febafc
KS
4991 p4d = p4d_alloc(mm, pgd, address);
4992 if (!p4d)
4993 return VM_FAULT_OOM;
a00cc7d9 4994
c2febafc 4995 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4996 if (!vmf.pud)
c74df32c 4997 return VM_FAULT_OOM;
625110b5 4998retry_pud:
7da4e2cb 4999 if (pud_none(*vmf.pud) &&
a7f4e6e4 5000 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
5001 ret = create_huge_pud(&vmf);
5002 if (!(ret & VM_FAULT_FALLBACK))
5003 return ret;
5004 } else {
5005 pud_t orig_pud = *vmf.pud;
5006
5007 barrier();
5008 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5009
c89357e2
DH
5010 /*
5011 * TODO once we support anonymous PUDs: NUMA case and
5012 * FAULT_FLAG_UNSHARE handling.
5013 */
5014 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5015 ret = wp_huge_pud(&vmf, orig_pud);
5016 if (!(ret & VM_FAULT_FALLBACK))
5017 return ret;
5018 } else {
5019 huge_pud_set_accessed(&vmf, orig_pud);
5020 return 0;
5021 }
5022 }
5023 }
5024
5025 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5026 if (!vmf.pmd)
c74df32c 5027 return VM_FAULT_OOM;
625110b5
TH
5028
5029 /* Huge pud page fault raced with pmd_alloc? */
5030 if (pud_trans_unstable(vmf.pud))
5031 goto retry_pud;
5032
7da4e2cb 5033 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5034 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5035 ret = create_huge_pmd(&vmf);
c0292554
KS
5036 if (!(ret & VM_FAULT_FALLBACK))
5037 return ret;
71e3aac0 5038 } else {
5db4f15c 5039 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5040
71e3aac0 5041 barrier();
5db4f15c 5042 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5043 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5044 !is_pmd_migration_entry(vmf.orig_pmd));
5045 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5046 pmd_migration_entry_wait(mm, vmf.pmd);
5047 return 0;
5048 }
5db4f15c
YS
5049 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5050 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5051 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5052
c89357e2
DH
5053 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5054 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5055 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5056 if (!(ret & VM_FAULT_FALLBACK))
5057 return ret;
a1dd450b 5058 } else {
5db4f15c 5059 huge_pmd_set_accessed(&vmf);
9845cbbd 5060 return 0;
1f1d06c3 5061 }
71e3aac0
AA
5062 }
5063 }
5064
82b0f8c3 5065 return handle_pte_fault(&vmf);
1da177e4
LT
5066}
5067
bce617ed 5068/**
f0953a1b 5069 * mm_account_fault - Do page fault accounting
bce617ed
PX
5070 *
5071 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5072 * of perf event counters, but we'll still do the per-task accounting to
5073 * the task who triggered this page fault.
5074 * @address: the faulted address.
5075 * @flags: the fault flags.
5076 * @ret: the fault retcode.
5077 *
f0953a1b 5078 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5079 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5080 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5081 * still be in per-arch page fault handlers at the entry of page fault.
5082 */
5083static inline void mm_account_fault(struct pt_regs *regs,
5084 unsigned long address, unsigned int flags,
5085 vm_fault_t ret)
5086{
5087 bool major;
5088
5089 /*
5090 * We don't do accounting for some specific faults:
5091 *
5092 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5093 * includes arch_vma_access_permitted() failing before reaching here.
5094 * So this is not a "this many hardware page faults" counter. We
5095 * should use the hw profiling for that.
5096 *
5097 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5098 * once they're completed.
5099 */
5100 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5101 return;
5102
5103 /*
5104 * We define the fault as a major fault when the final successful fault
5105 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5106 * handle it immediately previously).
5107 */
5108 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5109
a2beb5f1
PX
5110 if (major)
5111 current->maj_flt++;
5112 else
5113 current->min_flt++;
5114
bce617ed 5115 /*
a2beb5f1
PX
5116 * If the fault is done for GUP, regs will be NULL. We only do the
5117 * accounting for the per thread fault counters who triggered the
5118 * fault, and we skip the perf event updates.
bce617ed
PX
5119 */
5120 if (!regs)
5121 return;
5122
a2beb5f1 5123 if (major)
bce617ed 5124 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5125 else
bce617ed 5126 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5127}
5128
ec1c86b2
YZ
5129#ifdef CONFIG_LRU_GEN
5130static void lru_gen_enter_fault(struct vm_area_struct *vma)
5131{
8788f678
YZ
5132 /* the LRU algorithm only applies to accesses with recency */
5133 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5134}
5135
5136static void lru_gen_exit_fault(void)
5137{
5138 current->in_lru_fault = false;
5139}
5140#else
5141static void lru_gen_enter_fault(struct vm_area_struct *vma)
5142{
5143}
5144
5145static void lru_gen_exit_fault(void)
5146{
5147}
5148#endif /* CONFIG_LRU_GEN */
5149
cdc5021c
DH
5150static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5151 unsigned int *flags)
5152{
5153 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5154 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5155 return VM_FAULT_SIGSEGV;
5156 /*
5157 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5158 * just treat it like an ordinary read-fault otherwise.
5159 */
5160 if (!is_cow_mapping(vma->vm_flags))
5161 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5162 } else if (*flags & FAULT_FLAG_WRITE) {
5163 /* Write faults on read-only mappings are impossible ... */
5164 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5165 return VM_FAULT_SIGSEGV;
5166 /* ... and FOLL_FORCE only applies to COW mappings. */
5167 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5168 !is_cow_mapping(vma->vm_flags)))
5169 return VM_FAULT_SIGSEGV;
cdc5021c
DH
5170 }
5171 return 0;
5172}
5173
9a95f3cf
PC
5174/*
5175 * By the time we get here, we already hold the mm semaphore
5176 *
c1e8d7c6 5177 * The mmap_lock may have been released depending on flags and our
9138e47e 5178 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5179 */
2b740303 5180vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5181 unsigned int flags, struct pt_regs *regs)
519e5247 5182{
2b740303 5183 vm_fault_t ret;
519e5247
JW
5184
5185 __set_current_state(TASK_RUNNING);
5186
5187 count_vm_event(PGFAULT);
2262185c 5188 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247 5189
cdc5021c
DH
5190 ret = sanitize_fault_flags(vma, &flags);
5191 if (ret)
5192 return ret;
5193
de0c799b
LD
5194 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5195 flags & FAULT_FLAG_INSTRUCTION,
5196 flags & FAULT_FLAG_REMOTE))
5197 return VM_FAULT_SIGSEGV;
5198
519e5247
JW
5199 /*
5200 * Enable the memcg OOM handling for faults triggered in user
5201 * space. Kernel faults are handled more gracefully.
5202 */
5203 if (flags & FAULT_FLAG_USER)
29ef680a 5204 mem_cgroup_enter_user_fault();
519e5247 5205
ec1c86b2
YZ
5206 lru_gen_enter_fault(vma);
5207
bae473a4
KS
5208 if (unlikely(is_vm_hugetlb_page(vma)))
5209 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5210 else
5211 ret = __handle_mm_fault(vma, address, flags);
519e5247 5212
ec1c86b2
YZ
5213 lru_gen_exit_fault();
5214
49426420 5215 if (flags & FAULT_FLAG_USER) {
29ef680a 5216 mem_cgroup_exit_user_fault();
166f61b9
TH
5217 /*
5218 * The task may have entered a memcg OOM situation but
5219 * if the allocation error was handled gracefully (no
5220 * VM_FAULT_OOM), there is no need to kill anything.
5221 * Just clean up the OOM state peacefully.
5222 */
5223 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5224 mem_cgroup_oom_synchronize(false);
49426420 5225 }
3812c8c8 5226
bce617ed
PX
5227 mm_account_fault(regs, address, flags, ret);
5228
519e5247
JW
5229 return ret;
5230}
e1d6d01a 5231EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5232
90eceff1
KS
5233#ifndef __PAGETABLE_P4D_FOLDED
5234/*
5235 * Allocate p4d page table.
5236 * We've already handled the fast-path in-line.
5237 */
5238int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5239{
5240 p4d_t *new = p4d_alloc_one(mm, address);
5241 if (!new)
5242 return -ENOMEM;
5243
90eceff1 5244 spin_lock(&mm->page_table_lock);
ed33b5a6 5245 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5246 p4d_free(mm, new);
ed33b5a6
QZ
5247 } else {
5248 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5249 pgd_populate(mm, pgd, new);
ed33b5a6 5250 }
90eceff1
KS
5251 spin_unlock(&mm->page_table_lock);
5252 return 0;
5253}
5254#endif /* __PAGETABLE_P4D_FOLDED */
5255
1da177e4
LT
5256#ifndef __PAGETABLE_PUD_FOLDED
5257/*
5258 * Allocate page upper directory.
872fec16 5259 * We've already handled the fast-path in-line.
1da177e4 5260 */
c2febafc 5261int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5262{
c74df32c
HD
5263 pud_t *new = pud_alloc_one(mm, address);
5264 if (!new)
1bb3630e 5265 return -ENOMEM;
1da177e4 5266
872fec16 5267 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5268 if (!p4d_present(*p4d)) {
5269 mm_inc_nr_puds(mm);
ed33b5a6 5270 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5271 p4d_populate(mm, p4d, new);
b4e98d9a 5272 } else /* Another has populated it */
5e541973 5273 pud_free(mm, new);
c74df32c 5274 spin_unlock(&mm->page_table_lock);
1bb3630e 5275 return 0;
1da177e4
LT
5276}
5277#endif /* __PAGETABLE_PUD_FOLDED */
5278
5279#ifndef __PAGETABLE_PMD_FOLDED
5280/*
5281 * Allocate page middle directory.
872fec16 5282 * We've already handled the fast-path in-line.
1da177e4 5283 */
1bb3630e 5284int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5285{
a00cc7d9 5286 spinlock_t *ptl;
c74df32c
HD
5287 pmd_t *new = pmd_alloc_one(mm, address);
5288 if (!new)
1bb3630e 5289 return -ENOMEM;
1da177e4 5290
a00cc7d9 5291 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5292 if (!pud_present(*pud)) {
5293 mm_inc_nr_pmds(mm);
ed33b5a6 5294 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5295 pud_populate(mm, pud, new);
ed33b5a6 5296 } else { /* Another has populated it */
5e541973 5297 pmd_free(mm, new);
ed33b5a6 5298 }
a00cc7d9 5299 spin_unlock(ptl);
1bb3630e 5300 return 0;
e0f39591 5301}
1da177e4
LT
5302#endif /* __PAGETABLE_PMD_FOLDED */
5303
0e5e64c0
MS
5304/**
5305 * follow_pte - look up PTE at a user virtual address
5306 * @mm: the mm_struct of the target address space
5307 * @address: user virtual address
5308 * @ptepp: location to store found PTE
5309 * @ptlp: location to store the lock for the PTE
5310 *
5311 * On a successful return, the pointer to the PTE is stored in @ptepp;
5312 * the corresponding lock is taken and its location is stored in @ptlp.
5313 * The contents of the PTE are only stable until @ptlp is released;
5314 * any further use, if any, must be protected against invalidation
5315 * with MMU notifiers.
5316 *
5317 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5318 * should be taken for read.
5319 *
5320 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5321 * it is not a good general-purpose API.
5322 *
5323 * Return: zero on success, -ve otherwise.
5324 */
5325int follow_pte(struct mm_struct *mm, unsigned long address,
5326 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5327{
5328 pgd_t *pgd;
c2febafc 5329 p4d_t *p4d;
f8ad0f49
JW
5330 pud_t *pud;
5331 pmd_t *pmd;
5332 pte_t *ptep;
5333
5334 pgd = pgd_offset(mm, address);
5335 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5336 goto out;
5337
c2febafc
KS
5338 p4d = p4d_offset(pgd, address);
5339 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5340 goto out;
5341
5342 pud = pud_offset(p4d, address);
f8ad0f49
JW
5343 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5344 goto out;
5345
5346 pmd = pmd_offset(pud, address);
f66055ab 5347 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5348
09796395 5349 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5350 goto out;
5351
5352 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5353 if (!pte_present(*ptep))
5354 goto unlock;
5355 *ptepp = ptep;
5356 return 0;
5357unlock:
5358 pte_unmap_unlock(ptep, *ptlp);
5359out:
5360 return -EINVAL;
5361}
9fd6dad1
PB
5362EXPORT_SYMBOL_GPL(follow_pte);
5363
3b6748e2
JW
5364/**
5365 * follow_pfn - look up PFN at a user virtual address
5366 * @vma: memory mapping
5367 * @address: user virtual address
5368 * @pfn: location to store found PFN
5369 *
5370 * Only IO mappings and raw PFN mappings are allowed.
5371 *
9fd6dad1
PB
5372 * This function does not allow the caller to read the permissions
5373 * of the PTE. Do not use it.
5374 *
a862f68a 5375 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5376 */
5377int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5378 unsigned long *pfn)
5379{
5380 int ret = -EINVAL;
5381 spinlock_t *ptl;
5382 pte_t *ptep;
5383
5384 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5385 return ret;
5386
9fd6dad1 5387 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5388 if (ret)
5389 return ret;
5390 *pfn = pte_pfn(*ptep);
5391 pte_unmap_unlock(ptep, ptl);
5392 return 0;
5393}
5394EXPORT_SYMBOL(follow_pfn);
5395
28b2ee20 5396#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5397int follow_phys(struct vm_area_struct *vma,
5398 unsigned long address, unsigned int flags,
5399 unsigned long *prot, resource_size_t *phys)
28b2ee20 5400{
03668a4d 5401 int ret = -EINVAL;
28b2ee20
RR
5402 pte_t *ptep, pte;
5403 spinlock_t *ptl;
28b2ee20 5404
d87fe660 5405 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5406 goto out;
28b2ee20 5407
9fd6dad1 5408 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5409 goto out;
28b2ee20 5410 pte = *ptep;
03668a4d 5411
f6f37321 5412 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5413 goto unlock;
28b2ee20
RR
5414
5415 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5416 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5417
03668a4d 5418 ret = 0;
28b2ee20
RR
5419unlock:
5420 pte_unmap_unlock(ptep, ptl);
5421out:
d87fe660 5422 return ret;
28b2ee20
RR
5423}
5424
96667f8a
SV
5425/**
5426 * generic_access_phys - generic implementation for iomem mmap access
5427 * @vma: the vma to access
f0953a1b 5428 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5429 * @buf: buffer to read/write
5430 * @len: length of transfer
5431 * @write: set to FOLL_WRITE when writing, otherwise reading
5432 *
5433 * This is a generic implementation for &vm_operations_struct.access for an
5434 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5435 * not page based.
5436 */
28b2ee20
RR
5437int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5438 void *buf, int len, int write)
5439{
5440 resource_size_t phys_addr;
5441 unsigned long prot = 0;
2bc7273b 5442 void __iomem *maddr;
96667f8a
SV
5443 pte_t *ptep, pte;
5444 spinlock_t *ptl;
5445 int offset = offset_in_page(addr);
5446 int ret = -EINVAL;
5447
5448 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5449 return -EINVAL;
5450
5451retry:
e913a8cd 5452 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5453 return -EINVAL;
5454 pte = *ptep;
5455 pte_unmap_unlock(ptep, ptl);
28b2ee20 5456
96667f8a
SV
5457 prot = pgprot_val(pte_pgprot(pte));
5458 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5459
5460 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5461 return -EINVAL;
5462
9cb12d7b 5463 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5464 if (!maddr)
5465 return -ENOMEM;
5466
e913a8cd 5467 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5468 goto out_unmap;
5469
5470 if (!pte_same(pte, *ptep)) {
5471 pte_unmap_unlock(ptep, ptl);
5472 iounmap(maddr);
5473
5474 goto retry;
5475 }
5476
28b2ee20
RR
5477 if (write)
5478 memcpy_toio(maddr + offset, buf, len);
5479 else
5480 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5481 ret = len;
5482 pte_unmap_unlock(ptep, ptl);
5483out_unmap:
28b2ee20
RR
5484 iounmap(maddr);
5485
96667f8a 5486 return ret;
28b2ee20 5487}
5a73633e 5488EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5489#endif
5490
0ec76a11 5491/*
d3f5ffca 5492 * Access another process' address space as given in mm.
0ec76a11 5493 */
d3f5ffca
JH
5494int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5495 int len, unsigned int gup_flags)
0ec76a11 5496{
0ec76a11 5497 struct vm_area_struct *vma;
0ec76a11 5498 void *old_buf = buf;
442486ec 5499 int write = gup_flags & FOLL_WRITE;
0ec76a11 5500
d8ed45c5 5501 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5502 return 0;
5503
183ff22b 5504 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5505 while (len) {
5506 int bytes, ret, offset;
5507 void *maddr;
28b2ee20 5508 struct page *page = NULL;
0ec76a11 5509
64019a2e 5510 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5511 gup_flags, &page, &vma, NULL);
28b2ee20 5512 if (ret <= 0) {
dbffcd03
RR
5513#ifndef CONFIG_HAVE_IOREMAP_PROT
5514 break;
5515#else
28b2ee20
RR
5516 /*
5517 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5518 * we can access using slightly different code.
5519 */
3e418f98
LH
5520 vma = vma_lookup(mm, addr);
5521 if (!vma)
28b2ee20
RR
5522 break;
5523 if (vma->vm_ops && vma->vm_ops->access)
5524 ret = vma->vm_ops->access(vma, addr, buf,
5525 len, write);
5526 if (ret <= 0)
28b2ee20
RR
5527 break;
5528 bytes = ret;
dbffcd03 5529#endif
0ec76a11 5530 } else {
28b2ee20
RR
5531 bytes = len;
5532 offset = addr & (PAGE_SIZE-1);
5533 if (bytes > PAGE_SIZE-offset)
5534 bytes = PAGE_SIZE-offset;
5535
5536 maddr = kmap(page);
5537 if (write) {
5538 copy_to_user_page(vma, page, addr,
5539 maddr + offset, buf, bytes);
5540 set_page_dirty_lock(page);
5541 } else {
5542 copy_from_user_page(vma, page, addr,
5543 buf, maddr + offset, bytes);
5544 }
5545 kunmap(page);
09cbfeaf 5546 put_page(page);
0ec76a11 5547 }
0ec76a11
DH
5548 len -= bytes;
5549 buf += bytes;
5550 addr += bytes;
5551 }
d8ed45c5 5552 mmap_read_unlock(mm);
0ec76a11
DH
5553
5554 return buf - old_buf;
5555}
03252919 5556
5ddd36b9 5557/**
ae91dbfc 5558 * access_remote_vm - access another process' address space
5ddd36b9
SW
5559 * @mm: the mm_struct of the target address space
5560 * @addr: start address to access
5561 * @buf: source or destination buffer
5562 * @len: number of bytes to transfer
6347e8d5 5563 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5564 *
5565 * The caller must hold a reference on @mm.
a862f68a
MR
5566 *
5567 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5568 */
5569int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5570 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5571{
d3f5ffca 5572 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5573}
5574
206cb636
SW
5575/*
5576 * Access another process' address space.
5577 * Source/target buffer must be kernel space,
5578 * Do not walk the page table directly, use get_user_pages
5579 */
5580int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5581 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5582{
5583 struct mm_struct *mm;
5584 int ret;
5585
5586 mm = get_task_mm(tsk);
5587 if (!mm)
5588 return 0;
5589
d3f5ffca 5590 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5591
206cb636
SW
5592 mmput(mm);
5593
5594 return ret;
5595}
fcd35857 5596EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5597
03252919
AK
5598/*
5599 * Print the name of a VMA.
5600 */
5601void print_vma_addr(char *prefix, unsigned long ip)
5602{
5603 struct mm_struct *mm = current->mm;
5604 struct vm_area_struct *vma;
5605
e8bff74a 5606 /*
0a7f682d 5607 * we might be running from an atomic context so we cannot sleep
e8bff74a 5608 */
d8ed45c5 5609 if (!mmap_read_trylock(mm))
e8bff74a
IM
5610 return;
5611
03252919
AK
5612 vma = find_vma(mm, ip);
5613 if (vma && vma->vm_file) {
5614 struct file *f = vma->vm_file;
0a7f682d 5615 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5616 if (buf) {
2fbc57c5 5617 char *p;
03252919 5618
9bf39ab2 5619 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5620 if (IS_ERR(p))
5621 p = "?";
2fbc57c5 5622 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5623 vma->vm_start,
5624 vma->vm_end - vma->vm_start);
5625 free_page((unsigned long)buf);
5626 }
5627 }
d8ed45c5 5628 mmap_read_unlock(mm);
03252919 5629}
3ee1afa3 5630
662bbcb2 5631#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5632void __might_fault(const char *file, int line)
3ee1afa3 5633{
9ec23531 5634 if (pagefault_disabled())
662bbcb2 5635 return;
42a38756 5636 __might_sleep(file, line);
9ec23531 5637#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5638 if (current->mm)
da1c55f1 5639 might_lock_read(&current->mm->mmap_lock);
9ec23531 5640#endif
3ee1afa3 5641}
9ec23531 5642EXPORT_SYMBOL(__might_fault);
3ee1afa3 5643#endif
47ad8475
AA
5644
5645#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
YH
5646/*
5647 * Process all subpages of the specified huge page with the specified
5648 * operation. The target subpage will be processed last to keep its
5649 * cache lines hot.
5650 */
5651static inline void process_huge_page(
5652 unsigned long addr_hint, unsigned int pages_per_huge_page,
5653 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5654 void *arg)
47ad8475 5655{
c79b57e4
YH
5656 int i, n, base, l;
5657 unsigned long addr = addr_hint &
5658 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5659
c6ddfb6c 5660 /* Process target subpage last to keep its cache lines hot */
47ad8475 5661 might_sleep();
c79b57e4
YH
5662 n = (addr_hint - addr) / PAGE_SIZE;
5663 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5664 /* If target subpage in first half of huge page */
c79b57e4
YH
5665 base = 0;
5666 l = n;
c6ddfb6c 5667 /* Process subpages at the end of huge page */
c79b57e4
YH
5668 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5669 cond_resched();
c6ddfb6c 5670 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
5671 }
5672 } else {
c6ddfb6c 5673 /* If target subpage in second half of huge page */
c79b57e4
YH
5674 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5675 l = pages_per_huge_page - n;
c6ddfb6c 5676 /* Process subpages at the begin of huge page */
c79b57e4
YH
5677 for (i = 0; i < base; i++) {
5678 cond_resched();
c6ddfb6c 5679 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
5680 }
5681 }
5682 /*
c6ddfb6c
YH
5683 * Process remaining subpages in left-right-left-right pattern
5684 * towards the target subpage
c79b57e4
YH
5685 */
5686 for (i = 0; i < l; i++) {
5687 int left_idx = base + i;
5688 int right_idx = base + 2 * l - 1 - i;
5689
5690 cond_resched();
c6ddfb6c 5691 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5692 cond_resched();
c6ddfb6c 5693 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5694 }
5695}
5696
c6ddfb6c
YH
5697static void clear_gigantic_page(struct page *page,
5698 unsigned long addr,
5699 unsigned int pages_per_huge_page)
5700{
5701 int i;
14455eab 5702 struct page *p;
c6ddfb6c
YH
5703
5704 might_sleep();
14455eab
CL
5705 for (i = 0; i < pages_per_huge_page; i++) {
5706 p = nth_page(page, i);
c6ddfb6c
YH
5707 cond_resched();
5708 clear_user_highpage(p, addr + i * PAGE_SIZE);
5709 }
5710}
5711
5712static void clear_subpage(unsigned long addr, int idx, void *arg)
5713{
5714 struct page *page = arg;
5715
5716 clear_user_highpage(page + idx, addr);
5717}
5718
5719void clear_huge_page(struct page *page,
5720 unsigned long addr_hint, unsigned int pages_per_huge_page)
5721{
5722 unsigned long addr = addr_hint &
5723 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5724
5725 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5726 clear_gigantic_page(page, addr, pages_per_huge_page);
5727 return;
5728 }
5729
5730 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5731}
5732
47ad8475
AA
5733static void copy_user_gigantic_page(struct page *dst, struct page *src,
5734 unsigned long addr,
5735 struct vm_area_struct *vma,
5736 unsigned int pages_per_huge_page)
5737{
5738 int i;
5739 struct page *dst_base = dst;
5740 struct page *src_base = src;
5741
14455eab
CL
5742 for (i = 0; i < pages_per_huge_page; i++) {
5743 dst = nth_page(dst_base, i);
5744 src = nth_page(src_base, i);
5745
47ad8475
AA
5746 cond_resched();
5747 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
47ad8475
AA
5748 }
5749}
5750
c9f4cd71
YH
5751struct copy_subpage_arg {
5752 struct page *dst;
5753 struct page *src;
5754 struct vm_area_struct *vma;
5755};
5756
5757static void copy_subpage(unsigned long addr, int idx, void *arg)
5758{
5759 struct copy_subpage_arg *copy_arg = arg;
5760
5761 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5762 addr, copy_arg->vma);
5763}
5764
47ad8475 5765void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5766 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5767 unsigned int pages_per_huge_page)
5768{
c9f4cd71
YH
5769 unsigned long addr = addr_hint &
5770 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5771 struct copy_subpage_arg arg = {
5772 .dst = dst,
5773 .src = src,
5774 .vma = vma,
5775 };
47ad8475
AA
5776
5777 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5778 copy_user_gigantic_page(dst, src, addr, vma,
5779 pages_per_huge_page);
5780 return;
5781 }
5782
c9f4cd71 5783 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5784}
fa4d75c1
MK
5785
5786long copy_huge_page_from_user(struct page *dst_page,
5787 const void __user *usr_src,
810a56b9
MK
5788 unsigned int pages_per_huge_page,
5789 bool allow_pagefault)
fa4d75c1 5790{
fa4d75c1
MK
5791 void *page_kaddr;
5792 unsigned long i, rc = 0;
5793 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
14455eab 5794 struct page *subpage;
fa4d75c1 5795
14455eab
CL
5796 for (i = 0; i < pages_per_huge_page; i++) {
5797 subpage = nth_page(dst_page, i);
810a56b9 5798 if (allow_pagefault)
3272cfc2 5799 page_kaddr = kmap(subpage);
810a56b9 5800 else
3272cfc2 5801 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5802 rc = copy_from_user(page_kaddr,
b063e374 5803 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5804 if (allow_pagefault)
3272cfc2 5805 kunmap(subpage);
810a56b9
MK
5806 else
5807 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5808
5809 ret_val -= (PAGE_SIZE - rc);
5810 if (rc)
5811 break;
5812
e763243c
MS
5813 flush_dcache_page(subpage);
5814
fa4d75c1
MK
5815 cond_resched();
5816 }
5817 return ret_val;
5818}
47ad8475 5819#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5820
40b64acd 5821#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5822
5823static struct kmem_cache *page_ptl_cachep;
5824
5825void __init ptlock_cache_init(void)
5826{
5827 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5828 SLAB_PANIC, NULL);
5829}
5830
539edb58 5831bool ptlock_alloc(struct page *page)
49076ec2
KS
5832{
5833 spinlock_t *ptl;
5834
b35f1819 5835 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5836 if (!ptl)
5837 return false;
539edb58 5838 page->ptl = ptl;
49076ec2
KS
5839 return true;
5840}
5841
539edb58 5842void ptlock_free(struct page *page)
49076ec2 5843{
b35f1819 5844 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5845}
5846#endif
This page took 2.923973 seconds and 4 git commands to generate.