]> Git Repo - linux.git/blame - kernel/futex.c
futex: Fix more put_pi_state() vs. exit_pi_state_list() races
[linux.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <[email protected]>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <[email protected]>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
6e84f315 65#include <linux/sched/mm.h>
13d60f4b 66#include <linux/hugetlb.h>
88c8004f 67#include <linux/freezer.h>
a52b89eb 68#include <linux/bootmem.h>
ab51fbab 69#include <linux/fault-inject.h>
b488893a 70
4732efbe 71#include <asm/futex.h>
1da177e4 72
1696a8be 73#include "locking/rtmutex_common.h"
c87e2837 74
99b60ce6 75/*
d7e8af1a
DB
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
99b60ce6
TG
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
99b60ce6
TG
87 *
88 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
99b60ce6 92 *
b0c29f79
DB
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 118 *
b0c29f79
DB
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
99b60ce6
TG
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
b0c29f79 127 *
d7e8af1a 128 * waiters++; (a)
8ad7b378
DB
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
99b60ce6 139 * if (uval == val)
b0c29f79 140 * queue();
99b60ce6 141 * unlock(hash_bucket(futex));
b0c29f79
DB
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
d7e8af1a
DB
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 146 *
d7e8af1a
DB
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
d7e8af1a
DB
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
174 */
175
03b8c7b6 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 177int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 178#endif
a0c1e907 179
b41277dc
DH
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
784bdf3b
TG
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
b41277dc
DH
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
c87e2837
IM
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
3859a271 215} __randomize_layout;
c87e2837 216
d8d88fbb
DH
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 219 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
ac6424b9 228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 233 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
238 */
239struct futex_q {
ec92d082 240 struct plist_node list;
1da177e4 241
d8d88fbb 242 struct task_struct *task;
1da177e4 243 spinlock_t *lock_ptr;
1da177e4 244 union futex_key key;
c87e2837 245 struct futex_pi_state *pi_state;
52400ba9 246 struct rt_mutex_waiter *rt_waiter;
84bc4af5 247 union futex_key *requeue_pi_key;
cd689985 248 u32 bitset;
3859a271 249} __randomize_layout;
1da177e4 250
5bdb05f9
DH
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
1da177e4 257/*
b2d0994b
DH
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
1da177e4
LT
261 */
262struct futex_hash_bucket {
11d4616b 263 atomic_t waiters;
ec92d082
PP
264 spinlock_t lock;
265 struct plist_head chain;
a52b89eb 266} ____cacheline_aligned_in_smp;
1da177e4 267
ac742d37
RV
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
a52b89eb 279
1da177e4 280
ab51fbab
DB
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
621a5f7a 289 bool ignore_private;
ab51fbab
DB
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 292 .ignore_private = false,
ab51fbab
DB
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
5d285a7f 301static bool should_fail_futex(bool fshared)
ab51fbab
DB
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
34f01cc1 481/**
d96ee56c
DH
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
9ea71503
SB
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
34f01cc1 488 *
6c23cbbd
RD
489 * Return: a negative error code or 0
490 *
7b4ff1ad 491 * The key words are stored in @key on success.
1da177e4 492 *
6131ffaa 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
b2d0994b 497 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 498 */
64d1304a 499static int
9ea71503 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 501{
e2970f2f 502 unsigned long address = (unsigned long)uaddr;
1da177e4 503 struct mm_struct *mm = current->mm;
077fa7ae 504 struct page *page, *tail;
14d27abd 505 struct address_space *mapping;
9ea71503 506 int err, ro = 0;
1da177e4
LT
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
e2970f2f 511 key->both.offset = address % PAGE_SIZE;
34f01cc1 512 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 513 return -EINVAL;
e2970f2f 514 address -= key->both.offset;
1da177e4 515
5cdec2d8
LT
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
ab51fbab
DB
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
34f01cc1
ED
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
34f01cc1
ED
530 key->private.mm = mm;
531 key->private.address = address;
8ad7b378 532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
533 return 0;
534 }
1da177e4 535
38d47c1b 536again:
ab51fbab
DB
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
7485d0d3 541 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
38d47c1b
PZ
550 if (err < 0)
551 return err;
9ea71503
SB
552 else
553 err = 0;
38d47c1b 554
65d8fc77
MG
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
65d8fc77 572 */
077fa7ae 573 tail = page;
65d8fc77
MG
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
e6780f72 577 /*
14d27abd 578 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 590 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 591 */
65d8fc77
MG
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
602 unlock_page(page);
603 put_page(page);
65d8fc77 604
e6780f72
HD
605 if (shmem_swizzled)
606 goto again;
65d8fc77 607
e6780f72 608 return -EFAULT;
38d47c1b 609 }
1da177e4
LT
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
65d8fc77
MG
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
1da177e4
LT
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 619 * the object not the particular process.
1da177e4 620 */
14d27abd 621 if (PageAnon(page)) {
9ea71503
SB
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
ab51fbab 626 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
627 err = -EFAULT;
628 goto out;
629 }
630
38d47c1b 631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 632 key->private.mm = mm;
e2970f2f 633 key->private.address = address;
65d8fc77
MG
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
38d47c1b 637 } else {
65d8fc77
MG
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
48fb6f4d
MG
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
65d8fc77
MG
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
48fb6f4d 680 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
38d47c1b 696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 697 key->shared.inode = inode;
077fa7ae 698 key->shared.pgoff = basepage_index(tail);
65d8fc77 699 rcu_read_unlock();
1da177e4
LT
700 }
701
9ea71503 702out:
14d27abd 703 put_page(page);
9ea71503 704 return err;
1da177e4
LT
705}
706
ae791a2d 707static inline void put_futex_key(union futex_key *key)
1da177e4 708{
38d47c1b 709 drop_futex_key_refs(key);
1da177e4
LT
710}
711
d96ee56c
DH
712/**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
fb62db2b 719 * We have no generic implementation of a non-destructive write to the
d0725992
TG
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724static int fault_in_user_writeable(u32 __user *uaddr)
725{
722d0172
AK
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
2efaca92 730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 731 FAULT_FLAG_WRITE, NULL);
722d0172
AK
732 up_read(&mm->mmap_sem);
733
d0725992
TG
734 return ret < 0 ? ret : 0;
735}
736
4b1c486b
DH
737/**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
741 *
742 * Must be called with the hb lock held.
743 */
744static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746{
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754}
755
37a9d912
ML
756static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
36cf3b5c 758{
37a9d912 759 int ret;
36cf3b5c
TG
760
761 pagefault_disable();
37a9d912 762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
763 pagefault_enable();
764
37a9d912 765 return ret;
36cf3b5c
TG
766}
767
768static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
769{
770 int ret;
771
a866374a 772 pagefault_disable();
bd28b145 773 ret = __get_user(*dest, from);
a866374a 774 pagefault_enable();
1da177e4
LT
775
776 return ret ? -EFAULT : 0;
777}
778
c87e2837
IM
779
780/*
781 * PI code:
782 */
783static int refill_pi_state_cache(void)
784{
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
4668edc3 790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
791
792 if (!pi_state)
793 return -ENOMEM;
794
c87e2837
IM
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
38d47c1b 799 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804}
805
bf92cf3a 806static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
807{
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814}
815
bf92cf3a
PZ
816static void get_pi_state(struct futex_pi_state *pi_state)
817{
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819}
820
30a6b803 821/*
29e9ee5d
TG
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
30a6b803 824 */
29e9ee5d 825static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 826{
30a6b803
BS
827 if (!pi_state)
828 return;
829
c87e2837
IM
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
c74aef2d 838 struct task_struct *owner;
c87e2837 839
c74aef2d
PZ
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
849 }
850
c74aef2d 851 if (current->pi_state_cache) {
c87e2837 852 kfree(pi_state);
c74aef2d 853 } else {
c87e2837
IM
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863}
864
865/*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
bf92cf3a 869static struct task_struct *futex_find_get_task(pid_t pid)
c87e2837
IM
870{
871 struct task_struct *p;
872
d359b549 873 rcu_read_lock();
228ebcbe 874 p = find_task_by_vpid(pid);
7a0ea09a
MH
875 if (p)
876 get_task_struct(p);
a06381fe 877
d359b549 878 rcu_read_unlock();
c87e2837
IM
879
880 return p;
881}
882
bc2eecd7
NP
883#ifdef CONFIG_FUTEX_PI
884
c87e2837
IM
885/*
886 * This task is holding PI mutexes at exit time => bad.
887 * Kernel cleans up PI-state, but userspace is likely hosed.
888 * (Robust-futex cleanup is separate and might save the day for userspace.)
889 */
890void exit_pi_state_list(struct task_struct *curr)
891{
c87e2837
IM
892 struct list_head *next, *head = &curr->pi_state_list;
893 struct futex_pi_state *pi_state;
627371d7 894 struct futex_hash_bucket *hb;
38d47c1b 895 union futex_key key = FUTEX_KEY_INIT;
c87e2837 896
a0c1e907
TG
897 if (!futex_cmpxchg_enabled)
898 return;
c87e2837
IM
899 /*
900 * We are a ZOMBIE and nobody can enqueue itself on
901 * pi_state_list anymore, but we have to be careful
627371d7 902 * versus waiters unqueueing themselves:
c87e2837 903 */
1d615482 904 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 905 while (!list_empty(head)) {
c87e2837
IM
906 next = head->next;
907 pi_state = list_entry(next, struct futex_pi_state, list);
908 key = pi_state->key;
627371d7 909 hb = hash_futex(&key);
153fbd12
PZ
910
911 /*
912 * We can race against put_pi_state() removing itself from the
913 * list (a waiter going away). put_pi_state() will first
914 * decrement the reference count and then modify the list, so
915 * its possible to see the list entry but fail this reference
916 * acquire.
917 *
918 * In that case; drop the locks to let put_pi_state() make
919 * progress and retry the loop.
920 */
921 if (!atomic_inc_not_zero(&pi_state->refcount)) {
922 raw_spin_unlock_irq(&curr->pi_lock);
923 cpu_relax();
924 raw_spin_lock_irq(&curr->pi_lock);
925 continue;
926 }
1d615482 927 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 928
c87e2837 929 spin_lock(&hb->lock);
c74aef2d
PZ
930 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
931 raw_spin_lock(&curr->pi_lock);
627371d7
IM
932 /*
933 * We dropped the pi-lock, so re-check whether this
934 * task still owns the PI-state:
935 */
c87e2837 936 if (head->next != next) {
153fbd12 937 /* retain curr->pi_lock for the loop invariant */
c74aef2d 938 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 939 spin_unlock(&hb->lock);
153fbd12 940 put_pi_state(pi_state);
c87e2837
IM
941 continue;
942 }
943
c87e2837 944 WARN_ON(pi_state->owner != curr);
627371d7
IM
945 WARN_ON(list_empty(&pi_state->list));
946 list_del_init(&pi_state->list);
c87e2837 947 pi_state->owner = NULL;
c87e2837 948
153fbd12 949 raw_spin_unlock(&curr->pi_lock);
c74aef2d 950 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
951 spin_unlock(&hb->lock);
952
16ffa12d
PZ
953 rt_mutex_futex_unlock(&pi_state->pi_mutex);
954 put_pi_state(pi_state);
955
1d615482 956 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 957 }
1d615482 958 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
959}
960
bc2eecd7
NP
961#endif
962
54a21788
TG
963/*
964 * We need to check the following states:
965 *
966 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
967 *
968 * [1] NULL | --- | --- | 0 | 0/1 | Valid
969 * [2] NULL | --- | --- | >0 | 0/1 | Valid
970 *
971 * [3] Found | NULL | -- | Any | 0/1 | Invalid
972 *
973 * [4] Found | Found | NULL | 0 | 1 | Valid
974 * [5] Found | Found | NULL | >0 | 1 | Invalid
975 *
976 * [6] Found | Found | task | 0 | 1 | Valid
977 *
978 * [7] Found | Found | NULL | Any | 0 | Invalid
979 *
980 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
981 * [9] Found | Found | task | 0 | 0 | Invalid
982 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
983 *
984 * [1] Indicates that the kernel can acquire the futex atomically. We
985 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
986 *
987 * [2] Valid, if TID does not belong to a kernel thread. If no matching
988 * thread is found then it indicates that the owner TID has died.
989 *
990 * [3] Invalid. The waiter is queued on a non PI futex
991 *
992 * [4] Valid state after exit_robust_list(), which sets the user space
993 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
994 *
995 * [5] The user space value got manipulated between exit_robust_list()
996 * and exit_pi_state_list()
997 *
998 * [6] Valid state after exit_pi_state_list() which sets the new owner in
999 * the pi_state but cannot access the user space value.
1000 *
1001 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1002 *
1003 * [8] Owner and user space value match
1004 *
1005 * [9] There is no transient state which sets the user space TID to 0
1006 * except exit_robust_list(), but this is indicated by the
1007 * FUTEX_OWNER_DIED bit. See [4]
1008 *
1009 * [10] There is no transient state which leaves owner and user space
1010 * TID out of sync.
734009e9
PZ
1011 *
1012 *
1013 * Serialization and lifetime rules:
1014 *
1015 * hb->lock:
1016 *
1017 * hb -> futex_q, relation
1018 * futex_q -> pi_state, relation
1019 *
1020 * (cannot be raw because hb can contain arbitrary amount
1021 * of futex_q's)
1022 *
1023 * pi_mutex->wait_lock:
1024 *
1025 * {uval, pi_state}
1026 *
1027 * (and pi_mutex 'obviously')
1028 *
1029 * p->pi_lock:
1030 *
1031 * p->pi_state_list -> pi_state->list, relation
1032 *
1033 * pi_state->refcount:
1034 *
1035 * pi_state lifetime
1036 *
1037 *
1038 * Lock order:
1039 *
1040 * hb->lock
1041 * pi_mutex->wait_lock
1042 * p->pi_lock
1043 *
54a21788 1044 */
e60cbc5c
TG
1045
1046/*
1047 * Validate that the existing waiter has a pi_state and sanity check
1048 * the pi_state against the user space value. If correct, attach to
1049 * it.
1050 */
734009e9
PZ
1051static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1052 struct futex_pi_state *pi_state,
e60cbc5c 1053 struct futex_pi_state **ps)
c87e2837 1054{
778e9a9c 1055 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1056 u32 uval2;
1057 int ret;
c87e2837 1058
e60cbc5c
TG
1059 /*
1060 * Userspace might have messed up non-PI and PI futexes [3]
1061 */
1062 if (unlikely(!pi_state))
1063 return -EINVAL;
06a9ec29 1064
734009e9
PZ
1065 /*
1066 * We get here with hb->lock held, and having found a
1067 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1068 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1069 * which in turn means that futex_lock_pi() still has a reference on
1070 * our pi_state.
16ffa12d
PZ
1071 *
1072 * The waiter holding a reference on @pi_state also protects against
1073 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1074 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1075 * free pi_state before we can take a reference ourselves.
734009e9 1076 */
e60cbc5c 1077 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1078
734009e9
PZ
1079 /*
1080 * Now that we have a pi_state, we can acquire wait_lock
1081 * and do the state validation.
1082 */
1083 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1084
1085 /*
1086 * Since {uval, pi_state} is serialized by wait_lock, and our current
1087 * uval was read without holding it, it can have changed. Verify it
1088 * still is what we expect it to be, otherwise retry the entire
1089 * operation.
1090 */
1091 if (get_futex_value_locked(&uval2, uaddr))
1092 goto out_efault;
1093
1094 if (uval != uval2)
1095 goto out_eagain;
1096
e60cbc5c
TG
1097 /*
1098 * Handle the owner died case:
1099 */
1100 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1101 /*
e60cbc5c
TG
1102 * exit_pi_state_list sets owner to NULL and wakes the
1103 * topmost waiter. The task which acquires the
1104 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1105 */
e60cbc5c 1106 if (!pi_state->owner) {
59647b6a 1107 /*
e60cbc5c
TG
1108 * No pi state owner, but the user space TID
1109 * is not 0. Inconsistent state. [5]
59647b6a 1110 */
e60cbc5c 1111 if (pid)
734009e9 1112 goto out_einval;
bd1dbcc6 1113 /*
e60cbc5c 1114 * Take a ref on the state and return success. [4]
866293ee 1115 */
734009e9 1116 goto out_attach;
c87e2837 1117 }
bd1dbcc6
TG
1118
1119 /*
e60cbc5c
TG
1120 * If TID is 0, then either the dying owner has not
1121 * yet executed exit_pi_state_list() or some waiter
1122 * acquired the rtmutex in the pi state, but did not
1123 * yet fixup the TID in user space.
1124 *
1125 * Take a ref on the state and return success. [6]
1126 */
1127 if (!pid)
734009e9 1128 goto out_attach;
e60cbc5c
TG
1129 } else {
1130 /*
1131 * If the owner died bit is not set, then the pi_state
1132 * must have an owner. [7]
bd1dbcc6 1133 */
e60cbc5c 1134 if (!pi_state->owner)
734009e9 1135 goto out_einval;
c87e2837
IM
1136 }
1137
e60cbc5c
TG
1138 /*
1139 * Bail out if user space manipulated the futex value. If pi
1140 * state exists then the owner TID must be the same as the
1141 * user space TID. [9/10]
1142 */
1143 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1144 goto out_einval;
1145
1146out_attach:
bf92cf3a 1147 get_pi_state(pi_state);
734009e9 1148 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1149 *ps = pi_state;
1150 return 0;
734009e9
PZ
1151
1152out_einval:
1153 ret = -EINVAL;
1154 goto out_error;
1155
1156out_eagain:
1157 ret = -EAGAIN;
1158 goto out_error;
1159
1160out_efault:
1161 ret = -EFAULT;
1162 goto out_error;
1163
1164out_error:
1165 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1166 return ret;
e60cbc5c
TG
1167}
1168
04e1b2e5
TG
1169/*
1170 * Lookup the task for the TID provided from user space and attach to
1171 * it after doing proper sanity checks.
1172 */
1173static int attach_to_pi_owner(u32 uval, union futex_key *key,
1174 struct futex_pi_state **ps)
e60cbc5c 1175{
e60cbc5c 1176 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1177 struct futex_pi_state *pi_state;
1178 struct task_struct *p;
e60cbc5c 1179
c87e2837 1180 /*
e3f2ddea 1181 * We are the first waiter - try to look up the real owner and attach
54a21788 1182 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1183 */
778e9a9c 1184 if (!pid)
e3f2ddea 1185 return -ESRCH;
c87e2837 1186 p = futex_find_get_task(pid);
7a0ea09a
MH
1187 if (!p)
1188 return -ESRCH;
778e9a9c 1189
a2129464 1190 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1191 put_task_struct(p);
1192 return -EPERM;
1193 }
1194
778e9a9c
AK
1195 /*
1196 * We need to look at the task state flags to figure out,
1197 * whether the task is exiting. To protect against the do_exit
1198 * change of the task flags, we do this protected by
1199 * p->pi_lock:
1200 */
1d615482 1201 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1202 if (unlikely(p->flags & PF_EXITING)) {
1203 /*
1204 * The task is on the way out. When PF_EXITPIDONE is
1205 * set, we know that the task has finished the
1206 * cleanup:
1207 */
1208 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1209
1d615482 1210 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1211 put_task_struct(p);
1212 return ret;
1213 }
c87e2837 1214
54a21788
TG
1215 /*
1216 * No existing pi state. First waiter. [2]
734009e9
PZ
1217 *
1218 * This creates pi_state, we have hb->lock held, this means nothing can
1219 * observe this state, wait_lock is irrelevant.
54a21788 1220 */
c87e2837
IM
1221 pi_state = alloc_pi_state();
1222
1223 /*
04e1b2e5 1224 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1225 * the owner of it:
1226 */
1227 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1228
1229 /* Store the key for possible exit cleanups: */
d0aa7a70 1230 pi_state->key = *key;
c87e2837 1231
627371d7 1232 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1233 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1234 /*
1235 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1236 * because there is no concurrency as the object is not published yet.
1237 */
c87e2837 1238 pi_state->owner = p;
1d615482 1239 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1240
1241 put_task_struct(p);
1242
d0aa7a70 1243 *ps = pi_state;
c87e2837
IM
1244
1245 return 0;
1246}
1247
734009e9
PZ
1248static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1249 struct futex_hash_bucket *hb,
04e1b2e5
TG
1250 union futex_key *key, struct futex_pi_state **ps)
1251{
499f5aca 1252 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1253
1254 /*
1255 * If there is a waiter on that futex, validate it and
1256 * attach to the pi_state when the validation succeeds.
1257 */
499f5aca 1258 if (top_waiter)
734009e9 1259 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1260
1261 /*
1262 * We are the first waiter - try to look up the owner based on
1263 * @uval and attach to it.
1264 */
1265 return attach_to_pi_owner(uval, key, ps);
1266}
1267
af54d6a1
TG
1268static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1269{
1270 u32 uninitialized_var(curval);
1271
ab51fbab
DB
1272 if (unlikely(should_fail_futex(true)))
1273 return -EFAULT;
1274
af54d6a1
TG
1275 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1276 return -EFAULT;
1277
734009e9 1278 /* If user space value changed, let the caller retry */
af54d6a1
TG
1279 return curval != uval ? -EAGAIN : 0;
1280}
1281
1a52084d 1282/**
d96ee56c 1283 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1284 * @uaddr: the pi futex user address
1285 * @hb: the pi futex hash bucket
1286 * @key: the futex key associated with uaddr and hb
1287 * @ps: the pi_state pointer where we store the result of the
1288 * lookup
1289 * @task: the task to perform the atomic lock work for. This will
1290 * be "current" except in the case of requeue pi.
1291 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1292 *
6c23cbbd 1293 * Return:
7b4ff1ad
MCC
1294 * - 0 - ready to wait;
1295 * - 1 - acquired the lock;
1296 * - <0 - error
1a52084d
DH
1297 *
1298 * The hb->lock and futex_key refs shall be held by the caller.
1299 */
1300static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1301 union futex_key *key,
1302 struct futex_pi_state **ps,
bab5bc9e 1303 struct task_struct *task, int set_waiters)
1a52084d 1304{
af54d6a1 1305 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1306 struct futex_q *top_waiter;
af54d6a1 1307 int ret;
1a52084d
DH
1308
1309 /*
af54d6a1
TG
1310 * Read the user space value first so we can validate a few
1311 * things before proceeding further.
1a52084d 1312 */
af54d6a1 1313 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1314 return -EFAULT;
1315
ab51fbab
DB
1316 if (unlikely(should_fail_futex(true)))
1317 return -EFAULT;
1318
1a52084d
DH
1319 /*
1320 * Detect deadlocks.
1321 */
af54d6a1 1322 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1323 return -EDEADLK;
1324
ab51fbab
DB
1325 if ((unlikely(should_fail_futex(true))))
1326 return -EDEADLK;
1327
1a52084d 1328 /*
af54d6a1
TG
1329 * Lookup existing state first. If it exists, try to attach to
1330 * its pi_state.
1a52084d 1331 */
499f5aca
PZ
1332 top_waiter = futex_top_waiter(hb, key);
1333 if (top_waiter)
734009e9 1334 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1335
1336 /*
af54d6a1
TG
1337 * No waiter and user TID is 0. We are here because the
1338 * waiters or the owner died bit is set or called from
1339 * requeue_cmp_pi or for whatever reason something took the
1340 * syscall.
1a52084d 1341 */
af54d6a1 1342 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1343 /*
af54d6a1
TG
1344 * We take over the futex. No other waiters and the user space
1345 * TID is 0. We preserve the owner died bit.
59fa6245 1346 */
af54d6a1
TG
1347 newval = uval & FUTEX_OWNER_DIED;
1348 newval |= vpid;
1a52084d 1349
af54d6a1
TG
1350 /* The futex requeue_pi code can enforce the waiters bit */
1351 if (set_waiters)
1352 newval |= FUTEX_WAITERS;
1353
1354 ret = lock_pi_update_atomic(uaddr, uval, newval);
1355 /* If the take over worked, return 1 */
1356 return ret < 0 ? ret : 1;
1357 }
1a52084d
DH
1358
1359 /*
af54d6a1
TG
1360 * First waiter. Set the waiters bit before attaching ourself to
1361 * the owner. If owner tries to unlock, it will be forced into
1362 * the kernel and blocked on hb->lock.
1a52084d 1363 */
af54d6a1
TG
1364 newval = uval | FUTEX_WAITERS;
1365 ret = lock_pi_update_atomic(uaddr, uval, newval);
1366 if (ret)
1367 return ret;
1a52084d 1368 /*
af54d6a1
TG
1369 * If the update of the user space value succeeded, we try to
1370 * attach to the owner. If that fails, no harm done, we only
1371 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1372 */
af54d6a1 1373 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1374}
1375
2e12978a
LJ
1376/**
1377 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1378 * @q: The futex_q to unqueue
1379 *
1380 * The q->lock_ptr must not be NULL and must be held by the caller.
1381 */
1382static void __unqueue_futex(struct futex_q *q)
1383{
1384 struct futex_hash_bucket *hb;
1385
29096202
SR
1386 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1387 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1388 return;
1389
1390 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1391 plist_del(&q->list, &hb->chain);
11d4616b 1392 hb_waiters_dec(hb);
2e12978a
LJ
1393}
1394
1da177e4
LT
1395/*
1396 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1397 * Afterwards, the futex_q must not be accessed. Callers
1398 * must ensure to later call wake_up_q() for the actual
1399 * wakeups to occur.
1da177e4 1400 */
1d0dcb3a 1401static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1402{
f1a11e05
TG
1403 struct task_struct *p = q->task;
1404
aa10990e
DH
1405 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1406 return;
1407
1da177e4 1408 /*
1d0dcb3a
DB
1409 * Queue the task for later wakeup for after we've released
1410 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1411 */
1d0dcb3a 1412 wake_q_add(wake_q, p);
2e12978a 1413 __unqueue_futex(q);
1da177e4 1414 /*
38fcd06e
DHV
1415 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1416 * is written, without taking any locks. This is possible in the event
1417 * of a spurious wakeup, for example. A memory barrier is required here
1418 * to prevent the following store to lock_ptr from getting ahead of the
1419 * plist_del in __unqueue_futex().
1da177e4 1420 */
1b367ece 1421 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1422}
1423
16ffa12d
PZ
1424/*
1425 * Caller must hold a reference on @pi_state.
1426 */
1427static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1428{
7cfdaf38 1429 u32 uninitialized_var(curval), newval;
16ffa12d 1430 struct task_struct *new_owner;
aa2bfe55 1431 bool postunlock = false;
194a6b5b 1432 DEFINE_WAKE_Q(wake_q);
13fbca4c 1433 int ret = 0;
c87e2837 1434
c87e2837 1435 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1436 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1437 /*
bebe5b51 1438 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1439 *
1440 * When this happens, give up our locks and try again, giving
1441 * the futex_lock_pi() instance time to complete, either by
1442 * waiting on the rtmutex or removing itself from the futex
1443 * queue.
1444 */
1445 ret = -EAGAIN;
1446 goto out_unlock;
73d786bd 1447 }
c87e2837
IM
1448
1449 /*
16ffa12d
PZ
1450 * We pass it to the next owner. The WAITERS bit is always kept
1451 * enabled while there is PI state around. We cleanup the owner
1452 * died bit, because we are the owner.
c87e2837 1453 */
13fbca4c 1454 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1455
ab51fbab
DB
1456 if (unlikely(should_fail_futex(true)))
1457 ret = -EFAULT;
1458
89e9e66b 1459 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1460 ret = -EFAULT;
734009e9 1461
89e9e66b
SAS
1462 } else if (curval != uval) {
1463 /*
1464 * If a unconditional UNLOCK_PI operation (user space did not
1465 * try the TID->0 transition) raced with a waiter setting the
1466 * FUTEX_WAITERS flag between get_user() and locking the hash
1467 * bucket lock, retry the operation.
1468 */
1469 if ((FUTEX_TID_MASK & curval) == uval)
1470 ret = -EAGAIN;
1471 else
1472 ret = -EINVAL;
1473 }
734009e9 1474
16ffa12d
PZ
1475 if (ret)
1476 goto out_unlock;
c87e2837 1477
94ffac5d
PZ
1478 /*
1479 * This is a point of no return; once we modify the uval there is no
1480 * going back and subsequent operations must not fail.
1481 */
1482
b4abf910 1483 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1484 WARN_ON(list_empty(&pi_state->list));
1485 list_del_init(&pi_state->list);
b4abf910 1486 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1487
b4abf910 1488 raw_spin_lock(&new_owner->pi_lock);
627371d7 1489 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1490 list_add(&pi_state->list, &new_owner->pi_state_list);
1491 pi_state->owner = new_owner;
b4abf910 1492 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1493
aa2bfe55 1494 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1495
16ffa12d 1496out_unlock:
5293c2ef 1497 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1498
aa2bfe55
PZ
1499 if (postunlock)
1500 rt_mutex_postunlock(&wake_q);
c87e2837 1501
16ffa12d 1502 return ret;
c87e2837
IM
1503}
1504
8b8f319f
IM
1505/*
1506 * Express the locking dependencies for lockdep:
1507 */
1508static inline void
1509double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1510{
1511 if (hb1 <= hb2) {
1512 spin_lock(&hb1->lock);
1513 if (hb1 < hb2)
1514 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1515 } else { /* hb1 > hb2 */
1516 spin_lock(&hb2->lock);
1517 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1518 }
1519}
1520
5eb3dc62
DH
1521static inline void
1522double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1523{
f061d351 1524 spin_unlock(&hb1->lock);
88f502fe
IM
1525 if (hb1 != hb2)
1526 spin_unlock(&hb2->lock);
5eb3dc62
DH
1527}
1528
1da177e4 1529/*
b2d0994b 1530 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1531 */
b41277dc
DH
1532static int
1533futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1534{
e2970f2f 1535 struct futex_hash_bucket *hb;
1da177e4 1536 struct futex_q *this, *next;
38d47c1b 1537 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1538 int ret;
194a6b5b 1539 DEFINE_WAKE_Q(wake_q);
1da177e4 1540
cd689985
TG
1541 if (!bitset)
1542 return -EINVAL;
1543
9ea71503 1544 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1545 if (unlikely(ret != 0))
1546 goto out;
1547
e2970f2f 1548 hb = hash_futex(&key);
b0c29f79
DB
1549
1550 /* Make sure we really have tasks to wakeup */
1551 if (!hb_waiters_pending(hb))
1552 goto out_put_key;
1553
e2970f2f 1554 spin_lock(&hb->lock);
1da177e4 1555
0d00c7b2 1556 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1557 if (match_futex (&this->key, &key)) {
52400ba9 1558 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1559 ret = -EINVAL;
1560 break;
1561 }
cd689985
TG
1562
1563 /* Check if one of the bits is set in both bitsets */
1564 if (!(this->bitset & bitset))
1565 continue;
1566
1d0dcb3a 1567 mark_wake_futex(&wake_q, this);
1da177e4
LT
1568 if (++ret >= nr_wake)
1569 break;
1570 }
1571 }
1572
e2970f2f 1573 spin_unlock(&hb->lock);
1d0dcb3a 1574 wake_up_q(&wake_q);
b0c29f79 1575out_put_key:
ae791a2d 1576 put_futex_key(&key);
42d35d48 1577out:
1da177e4
LT
1578 return ret;
1579}
1580
30d6e0a4
JS
1581static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1582{
1583 unsigned int op = (encoded_op & 0x70000000) >> 28;
1584 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1585 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1586 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1587 int oldval, ret;
1588
1589 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1590 if (oparg < 0 || oparg > 31)
1591 return -EINVAL;
1592 oparg = 1 << oparg;
1593 }
1594
1595 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1596 return -EFAULT;
1597
1598 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1599 if (ret)
1600 return ret;
1601
1602 switch (cmp) {
1603 case FUTEX_OP_CMP_EQ:
1604 return oldval == cmparg;
1605 case FUTEX_OP_CMP_NE:
1606 return oldval != cmparg;
1607 case FUTEX_OP_CMP_LT:
1608 return oldval < cmparg;
1609 case FUTEX_OP_CMP_GE:
1610 return oldval >= cmparg;
1611 case FUTEX_OP_CMP_LE:
1612 return oldval <= cmparg;
1613 case FUTEX_OP_CMP_GT:
1614 return oldval > cmparg;
1615 default:
1616 return -ENOSYS;
1617 }
1618}
1619
4732efbe
JJ
1620/*
1621 * Wake up all waiters hashed on the physical page that is mapped
1622 * to this virtual address:
1623 */
e2970f2f 1624static int
b41277dc 1625futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1626 int nr_wake, int nr_wake2, int op)
4732efbe 1627{
38d47c1b 1628 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1629 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1630 struct futex_q *this, *next;
e4dc5b7a 1631 int ret, op_ret;
194a6b5b 1632 DEFINE_WAKE_Q(wake_q);
4732efbe 1633
e4dc5b7a 1634retry:
9ea71503 1635 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1636 if (unlikely(ret != 0))
1637 goto out;
9ea71503 1638 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1639 if (unlikely(ret != 0))
42d35d48 1640 goto out_put_key1;
4732efbe 1641
e2970f2f
IM
1642 hb1 = hash_futex(&key1);
1643 hb2 = hash_futex(&key2);
4732efbe 1644
e4dc5b7a 1645retry_private:
eaaea803 1646 double_lock_hb(hb1, hb2);
e2970f2f 1647 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1648 if (unlikely(op_ret < 0)) {
4732efbe 1649
5eb3dc62 1650 double_unlock_hb(hb1, hb2);
4732efbe 1651
7ee1dd3f 1652#ifndef CONFIG_MMU
e2970f2f
IM
1653 /*
1654 * we don't get EFAULT from MMU faults if we don't have an MMU,
1655 * but we might get them from range checking
1656 */
7ee1dd3f 1657 ret = op_ret;
42d35d48 1658 goto out_put_keys;
7ee1dd3f
DH
1659#endif
1660
796f8d9b
DG
1661 if (unlikely(op_ret != -EFAULT)) {
1662 ret = op_ret;
42d35d48 1663 goto out_put_keys;
796f8d9b
DG
1664 }
1665
d0725992 1666 ret = fault_in_user_writeable(uaddr2);
4732efbe 1667 if (ret)
de87fcc1 1668 goto out_put_keys;
4732efbe 1669
b41277dc 1670 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1671 goto retry_private;
1672
ae791a2d
TG
1673 put_futex_key(&key2);
1674 put_futex_key(&key1);
e4dc5b7a 1675 goto retry;
4732efbe
JJ
1676 }
1677
0d00c7b2 1678 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1679 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1680 if (this->pi_state || this->rt_waiter) {
1681 ret = -EINVAL;
1682 goto out_unlock;
1683 }
1d0dcb3a 1684 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1685 if (++ret >= nr_wake)
1686 break;
1687 }
1688 }
1689
1690 if (op_ret > 0) {
4732efbe 1691 op_ret = 0;
0d00c7b2 1692 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1693 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1694 if (this->pi_state || this->rt_waiter) {
1695 ret = -EINVAL;
1696 goto out_unlock;
1697 }
1d0dcb3a 1698 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1699 if (++op_ret >= nr_wake2)
1700 break;
1701 }
1702 }
1703 ret += op_ret;
1704 }
1705
aa10990e 1706out_unlock:
5eb3dc62 1707 double_unlock_hb(hb1, hb2);
1d0dcb3a 1708 wake_up_q(&wake_q);
42d35d48 1709out_put_keys:
ae791a2d 1710 put_futex_key(&key2);
42d35d48 1711out_put_key1:
ae791a2d 1712 put_futex_key(&key1);
42d35d48 1713out:
4732efbe
JJ
1714 return ret;
1715}
1716
9121e478
DH
1717/**
1718 * requeue_futex() - Requeue a futex_q from one hb to another
1719 * @q: the futex_q to requeue
1720 * @hb1: the source hash_bucket
1721 * @hb2: the target hash_bucket
1722 * @key2: the new key for the requeued futex_q
1723 */
1724static inline
1725void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1726 struct futex_hash_bucket *hb2, union futex_key *key2)
1727{
1728
1729 /*
1730 * If key1 and key2 hash to the same bucket, no need to
1731 * requeue.
1732 */
1733 if (likely(&hb1->chain != &hb2->chain)) {
1734 plist_del(&q->list, &hb1->chain);
11d4616b 1735 hb_waiters_dec(hb1);
11d4616b 1736 hb_waiters_inc(hb2);
fe1bce9e 1737 plist_add(&q->list, &hb2->chain);
9121e478 1738 q->lock_ptr = &hb2->lock;
9121e478
DH
1739 }
1740 get_futex_key_refs(key2);
1741 q->key = *key2;
1742}
1743
52400ba9
DH
1744/**
1745 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1746 * @q: the futex_q
1747 * @key: the key of the requeue target futex
1748 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1749 *
1750 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1751 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1752 * to the requeue target futex so the waiter can detect the wakeup on the right
1753 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1754 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1755 * to protect access to the pi_state to fixup the owner later. Must be called
1756 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1757 */
1758static inline
beda2c7e
DH
1759void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1760 struct futex_hash_bucket *hb)
52400ba9 1761{
52400ba9
DH
1762 get_futex_key_refs(key);
1763 q->key = *key;
1764
2e12978a 1765 __unqueue_futex(q);
52400ba9
DH
1766
1767 WARN_ON(!q->rt_waiter);
1768 q->rt_waiter = NULL;
1769
beda2c7e 1770 q->lock_ptr = &hb->lock;
beda2c7e 1771
f1a11e05 1772 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1773}
1774
1775/**
1776 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1777 * @pifutex: the user address of the to futex
1778 * @hb1: the from futex hash bucket, must be locked by the caller
1779 * @hb2: the to futex hash bucket, must be locked by the caller
1780 * @key1: the from futex key
1781 * @key2: the to futex key
1782 * @ps: address to store the pi_state pointer
1783 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1784 *
1785 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1786 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1787 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1788 * hb1 and hb2 must be held by the caller.
52400ba9 1789 *
6c23cbbd 1790 * Return:
7b4ff1ad
MCC
1791 * - 0 - failed to acquire the lock atomically;
1792 * - >0 - acquired the lock, return value is vpid of the top_waiter
1793 * - <0 - error
52400ba9
DH
1794 */
1795static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1796 struct futex_hash_bucket *hb1,
1797 struct futex_hash_bucket *hb2,
1798 union futex_key *key1, union futex_key *key2,
bab5bc9e 1799 struct futex_pi_state **ps, int set_waiters)
52400ba9 1800{
bab5bc9e 1801 struct futex_q *top_waiter = NULL;
52400ba9 1802 u32 curval;
866293ee 1803 int ret, vpid;
52400ba9
DH
1804
1805 if (get_futex_value_locked(&curval, pifutex))
1806 return -EFAULT;
1807
ab51fbab
DB
1808 if (unlikely(should_fail_futex(true)))
1809 return -EFAULT;
1810
bab5bc9e
DH
1811 /*
1812 * Find the top_waiter and determine if there are additional waiters.
1813 * If the caller intends to requeue more than 1 waiter to pifutex,
1814 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1815 * as we have means to handle the possible fault. If not, don't set
1816 * the bit unecessarily as it will force the subsequent unlock to enter
1817 * the kernel.
1818 */
52400ba9
DH
1819 top_waiter = futex_top_waiter(hb1, key1);
1820
1821 /* There are no waiters, nothing for us to do. */
1822 if (!top_waiter)
1823 return 0;
1824
84bc4af5
DH
1825 /* Ensure we requeue to the expected futex. */
1826 if (!match_futex(top_waiter->requeue_pi_key, key2))
1827 return -EINVAL;
1828
52400ba9 1829 /*
bab5bc9e
DH
1830 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1831 * the contended case or if set_waiters is 1. The pi_state is returned
1832 * in ps in contended cases.
52400ba9 1833 */
866293ee 1834 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1835 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1836 set_waiters);
866293ee 1837 if (ret == 1) {
beda2c7e 1838 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1839 return vpid;
1840 }
52400ba9
DH
1841 return ret;
1842}
1843
1844/**
1845 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1846 * @uaddr1: source futex user address
b41277dc 1847 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1848 * @uaddr2: target futex user address
1849 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1850 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1851 * @cmpval: @uaddr1 expected value (or %NULL)
1852 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1853 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1854 *
1855 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1856 * uaddr2 atomically on behalf of the top waiter.
1857 *
6c23cbbd 1858 * Return:
7b4ff1ad
MCC
1859 * - >=0 - on success, the number of tasks requeued or woken;
1860 * - <0 - on error
1da177e4 1861 */
b41277dc
DH
1862static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1863 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1864 u32 *cmpval, int requeue_pi)
1da177e4 1865{
38d47c1b 1866 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1867 int drop_count = 0, task_count = 0, ret;
1868 struct futex_pi_state *pi_state = NULL;
e2970f2f 1869 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1870 struct futex_q *this, *next;
194a6b5b 1871 DEFINE_WAKE_Q(wake_q);
52400ba9 1872
bc2eecd7
NP
1873 /*
1874 * When PI not supported: return -ENOSYS if requeue_pi is true,
1875 * consequently the compiler knows requeue_pi is always false past
1876 * this point which will optimize away all the conditional code
1877 * further down.
1878 */
1879 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1880 return -ENOSYS;
1881
52400ba9 1882 if (requeue_pi) {
e9c243a5
TG
1883 /*
1884 * Requeue PI only works on two distinct uaddrs. This
1885 * check is only valid for private futexes. See below.
1886 */
1887 if (uaddr1 == uaddr2)
1888 return -EINVAL;
1889
52400ba9
DH
1890 /*
1891 * requeue_pi requires a pi_state, try to allocate it now
1892 * without any locks in case it fails.
1893 */
1894 if (refill_pi_state_cache())
1895 return -ENOMEM;
1896 /*
1897 * requeue_pi must wake as many tasks as it can, up to nr_wake
1898 * + nr_requeue, since it acquires the rt_mutex prior to
1899 * returning to userspace, so as to not leave the rt_mutex with
1900 * waiters and no owner. However, second and third wake-ups
1901 * cannot be predicted as they involve race conditions with the
1902 * first wake and a fault while looking up the pi_state. Both
1903 * pthread_cond_signal() and pthread_cond_broadcast() should
1904 * use nr_wake=1.
1905 */
1906 if (nr_wake != 1)
1907 return -EINVAL;
1908 }
1da177e4 1909
42d35d48 1910retry:
9ea71503 1911 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1912 if (unlikely(ret != 0))
1913 goto out;
9ea71503
SB
1914 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1915 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1916 if (unlikely(ret != 0))
42d35d48 1917 goto out_put_key1;
1da177e4 1918
e9c243a5
TG
1919 /*
1920 * The check above which compares uaddrs is not sufficient for
1921 * shared futexes. We need to compare the keys:
1922 */
1923 if (requeue_pi && match_futex(&key1, &key2)) {
1924 ret = -EINVAL;
1925 goto out_put_keys;
1926 }
1927
e2970f2f
IM
1928 hb1 = hash_futex(&key1);
1929 hb2 = hash_futex(&key2);
1da177e4 1930
e4dc5b7a 1931retry_private:
69cd9eba 1932 hb_waiters_inc(hb2);
8b8f319f 1933 double_lock_hb(hb1, hb2);
1da177e4 1934
e2970f2f
IM
1935 if (likely(cmpval != NULL)) {
1936 u32 curval;
1da177e4 1937
e2970f2f 1938 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1939
1940 if (unlikely(ret)) {
5eb3dc62 1941 double_unlock_hb(hb1, hb2);
69cd9eba 1942 hb_waiters_dec(hb2);
1da177e4 1943
e2970f2f 1944 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1945 if (ret)
1946 goto out_put_keys;
1da177e4 1947
b41277dc 1948 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1949 goto retry_private;
1da177e4 1950
ae791a2d
TG
1951 put_futex_key(&key2);
1952 put_futex_key(&key1);
e4dc5b7a 1953 goto retry;
1da177e4 1954 }
e2970f2f 1955 if (curval != *cmpval) {
1da177e4
LT
1956 ret = -EAGAIN;
1957 goto out_unlock;
1958 }
1959 }
1960
52400ba9 1961 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1962 /*
1963 * Attempt to acquire uaddr2 and wake the top waiter. If we
1964 * intend to requeue waiters, force setting the FUTEX_WAITERS
1965 * bit. We force this here where we are able to easily handle
1966 * faults rather in the requeue loop below.
1967 */
52400ba9 1968 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1969 &key2, &pi_state, nr_requeue);
52400ba9
DH
1970
1971 /*
1972 * At this point the top_waiter has either taken uaddr2 or is
1973 * waiting on it. If the former, then the pi_state will not
1974 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1975 * reference to it. If the lock was taken, ret contains the
1976 * vpid of the top waiter task.
ecb38b78
TG
1977 * If the lock was not taken, we have pi_state and an initial
1978 * refcount on it. In case of an error we have nothing.
52400ba9 1979 */
866293ee 1980 if (ret > 0) {
52400ba9 1981 WARN_ON(pi_state);
89061d3d 1982 drop_count++;
52400ba9 1983 task_count++;
866293ee 1984 /*
ecb38b78
TG
1985 * If we acquired the lock, then the user space value
1986 * of uaddr2 should be vpid. It cannot be changed by
1987 * the top waiter as it is blocked on hb2 lock if it
1988 * tries to do so. If something fiddled with it behind
1989 * our back the pi state lookup might unearth it. So
1990 * we rather use the known value than rereading and
1991 * handing potential crap to lookup_pi_state.
1992 *
1993 * If that call succeeds then we have pi_state and an
1994 * initial refcount on it.
866293ee 1995 */
734009e9 1996 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
1997 }
1998
1999 switch (ret) {
2000 case 0:
ecb38b78 2001 /* We hold a reference on the pi state. */
52400ba9 2002 break;
4959f2de
TG
2003
2004 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2005 case -EFAULT:
2006 double_unlock_hb(hb1, hb2);
69cd9eba 2007 hb_waiters_dec(hb2);
ae791a2d
TG
2008 put_futex_key(&key2);
2009 put_futex_key(&key1);
d0725992 2010 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2011 if (!ret)
2012 goto retry;
2013 goto out;
2014 case -EAGAIN:
af54d6a1
TG
2015 /*
2016 * Two reasons for this:
2017 * - Owner is exiting and we just wait for the
2018 * exit to complete.
2019 * - The user space value changed.
2020 */
52400ba9 2021 double_unlock_hb(hb1, hb2);
69cd9eba 2022 hb_waiters_dec(hb2);
ae791a2d
TG
2023 put_futex_key(&key2);
2024 put_futex_key(&key1);
52400ba9
DH
2025 cond_resched();
2026 goto retry;
2027 default:
2028 goto out_unlock;
2029 }
2030 }
2031
0d00c7b2 2032 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2033 if (task_count - nr_wake >= nr_requeue)
2034 break;
2035
2036 if (!match_futex(&this->key, &key1))
1da177e4 2037 continue;
52400ba9 2038
392741e0
DH
2039 /*
2040 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2041 * be paired with each other and no other futex ops.
aa10990e
DH
2042 *
2043 * We should never be requeueing a futex_q with a pi_state,
2044 * which is awaiting a futex_unlock_pi().
392741e0
DH
2045 */
2046 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2047 (!requeue_pi && this->rt_waiter) ||
2048 this->pi_state) {
392741e0
DH
2049 ret = -EINVAL;
2050 break;
2051 }
52400ba9
DH
2052
2053 /*
2054 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2055 * lock, we already woke the top_waiter. If not, it will be
2056 * woken by futex_unlock_pi().
2057 */
2058 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2059 mark_wake_futex(&wake_q, this);
52400ba9
DH
2060 continue;
2061 }
1da177e4 2062
84bc4af5
DH
2063 /* Ensure we requeue to the expected futex for requeue_pi. */
2064 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2065 ret = -EINVAL;
2066 break;
2067 }
2068
52400ba9
DH
2069 /*
2070 * Requeue nr_requeue waiters and possibly one more in the case
2071 * of requeue_pi if we couldn't acquire the lock atomically.
2072 */
2073 if (requeue_pi) {
ecb38b78
TG
2074 /*
2075 * Prepare the waiter to take the rt_mutex. Take a
2076 * refcount on the pi_state and store the pointer in
2077 * the futex_q object of the waiter.
2078 */
bf92cf3a 2079 get_pi_state(pi_state);
52400ba9
DH
2080 this->pi_state = pi_state;
2081 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2082 this->rt_waiter,
c051b21f 2083 this->task);
52400ba9 2084 if (ret == 1) {
ecb38b78
TG
2085 /*
2086 * We got the lock. We do neither drop the
2087 * refcount on pi_state nor clear
2088 * this->pi_state because the waiter needs the
2089 * pi_state for cleaning up the user space
2090 * value. It will drop the refcount after
2091 * doing so.
2092 */
beda2c7e 2093 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2094 drop_count++;
52400ba9
DH
2095 continue;
2096 } else if (ret) {
ecb38b78
TG
2097 /*
2098 * rt_mutex_start_proxy_lock() detected a
2099 * potential deadlock when we tried to queue
2100 * that waiter. Drop the pi_state reference
2101 * which we took above and remove the pointer
2102 * to the state from the waiters futex_q
2103 * object.
2104 */
52400ba9 2105 this->pi_state = NULL;
29e9ee5d 2106 put_pi_state(pi_state);
885c2cb7
TG
2107 /*
2108 * We stop queueing more waiters and let user
2109 * space deal with the mess.
2110 */
2111 break;
52400ba9 2112 }
1da177e4 2113 }
52400ba9
DH
2114 requeue_futex(this, hb1, hb2, &key2);
2115 drop_count++;
1da177e4
LT
2116 }
2117
ecb38b78
TG
2118 /*
2119 * We took an extra initial reference to the pi_state either
2120 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2121 * need to drop it here again.
2122 */
29e9ee5d 2123 put_pi_state(pi_state);
885c2cb7
TG
2124
2125out_unlock:
5eb3dc62 2126 double_unlock_hb(hb1, hb2);
1d0dcb3a 2127 wake_up_q(&wake_q);
69cd9eba 2128 hb_waiters_dec(hb2);
1da177e4 2129
cd84a42f
DH
2130 /*
2131 * drop_futex_key_refs() must be called outside the spinlocks. During
2132 * the requeue we moved futex_q's from the hash bucket at key1 to the
2133 * one at key2 and updated their key pointer. We no longer need to
2134 * hold the references to key1.
2135 */
1da177e4 2136 while (--drop_count >= 0)
9adef58b 2137 drop_futex_key_refs(&key1);
1da177e4 2138
42d35d48 2139out_put_keys:
ae791a2d 2140 put_futex_key(&key2);
42d35d48 2141out_put_key1:
ae791a2d 2142 put_futex_key(&key1);
42d35d48 2143out:
52400ba9 2144 return ret ? ret : task_count;
1da177e4
LT
2145}
2146
2147/* The key must be already stored in q->key. */
82af7aca 2148static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2149 __acquires(&hb->lock)
1da177e4 2150{
e2970f2f 2151 struct futex_hash_bucket *hb;
1da177e4 2152
e2970f2f 2153 hb = hash_futex(&q->key);
11d4616b
LT
2154
2155 /*
2156 * Increment the counter before taking the lock so that
2157 * a potential waker won't miss a to-be-slept task that is
2158 * waiting for the spinlock. This is safe as all queue_lock()
2159 * users end up calling queue_me(). Similarly, for housekeeping,
2160 * decrement the counter at queue_unlock() when some error has
2161 * occurred and we don't end up adding the task to the list.
2162 */
2163 hb_waiters_inc(hb);
2164
e2970f2f 2165 q->lock_ptr = &hb->lock;
1da177e4 2166
8ad7b378 2167 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2168 return hb;
1da177e4
LT
2169}
2170
d40d65c8 2171static inline void
0d00c7b2 2172queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2173 __releases(&hb->lock)
d40d65c8
DH
2174{
2175 spin_unlock(&hb->lock);
11d4616b 2176 hb_waiters_dec(hb);
d40d65c8
DH
2177}
2178
cfafcd11 2179static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2180{
ec92d082
PP
2181 int prio;
2182
2183 /*
2184 * The priority used to register this element is
2185 * - either the real thread-priority for the real-time threads
2186 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2187 * - or MAX_RT_PRIO for non-RT threads.
2188 * Thus, all RT-threads are woken first in priority order, and
2189 * the others are woken last, in FIFO order.
2190 */
2191 prio = min(current->normal_prio, MAX_RT_PRIO);
2192
2193 plist_node_init(&q->list, prio);
ec92d082 2194 plist_add(&q->list, &hb->chain);
c87e2837 2195 q->task = current;
cfafcd11
PZ
2196}
2197
2198/**
2199 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2200 * @q: The futex_q to enqueue
2201 * @hb: The destination hash bucket
2202 *
2203 * The hb->lock must be held by the caller, and is released here. A call to
2204 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2205 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2206 * or nothing if the unqueue is done as part of the wake process and the unqueue
2207 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2208 * an example).
2209 */
2210static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2211 __releases(&hb->lock)
2212{
2213 __queue_me(q, hb);
e2970f2f 2214 spin_unlock(&hb->lock);
1da177e4
LT
2215}
2216
d40d65c8
DH
2217/**
2218 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2219 * @q: The futex_q to unqueue
2220 *
2221 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2222 * be paired with exactly one earlier call to queue_me().
2223 *
6c23cbbd 2224 * Return:
7b4ff1ad
MCC
2225 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2226 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2227 */
1da177e4
LT
2228static int unqueue_me(struct futex_q *q)
2229{
1da177e4 2230 spinlock_t *lock_ptr;
e2970f2f 2231 int ret = 0;
1da177e4
LT
2232
2233 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2234retry:
29b75eb2
JZ
2235 /*
2236 * q->lock_ptr can change between this read and the following spin_lock.
2237 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2238 * optimizing lock_ptr out of the logic below.
2239 */
2240 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2241 if (lock_ptr != NULL) {
1da177e4
LT
2242 spin_lock(lock_ptr);
2243 /*
2244 * q->lock_ptr can change between reading it and
2245 * spin_lock(), causing us to take the wrong lock. This
2246 * corrects the race condition.
2247 *
2248 * Reasoning goes like this: if we have the wrong lock,
2249 * q->lock_ptr must have changed (maybe several times)
2250 * between reading it and the spin_lock(). It can
2251 * change again after the spin_lock() but only if it was
2252 * already changed before the spin_lock(). It cannot,
2253 * however, change back to the original value. Therefore
2254 * we can detect whether we acquired the correct lock.
2255 */
2256 if (unlikely(lock_ptr != q->lock_ptr)) {
2257 spin_unlock(lock_ptr);
2258 goto retry;
2259 }
2e12978a 2260 __unqueue_futex(q);
c87e2837
IM
2261
2262 BUG_ON(q->pi_state);
2263
1da177e4
LT
2264 spin_unlock(lock_ptr);
2265 ret = 1;
2266 }
2267
9adef58b 2268 drop_futex_key_refs(&q->key);
1da177e4
LT
2269 return ret;
2270}
2271
c87e2837
IM
2272/*
2273 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2274 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2275 * and dropped here.
c87e2837 2276 */
d0aa7a70 2277static void unqueue_me_pi(struct futex_q *q)
15e408cd 2278 __releases(q->lock_ptr)
c87e2837 2279{
2e12978a 2280 __unqueue_futex(q);
c87e2837
IM
2281
2282 BUG_ON(!q->pi_state);
29e9ee5d 2283 put_pi_state(q->pi_state);
c87e2837
IM
2284 q->pi_state = NULL;
2285
d0aa7a70 2286 spin_unlock(q->lock_ptr);
c87e2837
IM
2287}
2288
d0aa7a70 2289/*
cdf71a10 2290 * Fixup the pi_state owner with the new owner.
d0aa7a70 2291 *
778e9a9c
AK
2292 * Must be called with hash bucket lock held and mm->sem held for non
2293 * private futexes.
d0aa7a70 2294 */
778e9a9c 2295static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2296 struct task_struct *newowner)
d0aa7a70 2297{
cdf71a10 2298 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2299 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2300 u32 uval, uninitialized_var(curval), newval;
734009e9 2301 struct task_struct *oldowner;
e4dc5b7a 2302 int ret;
d0aa7a70 2303
734009e9
PZ
2304 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2305
2306 oldowner = pi_state->owner;
d0aa7a70 2307 /* Owner died? */
1b7558e4
TG
2308 if (!pi_state->owner)
2309 newtid |= FUTEX_OWNER_DIED;
2310
2311 /*
2312 * We are here either because we stole the rtmutex from the
8161239a 2313 * previous highest priority waiter or we are the highest priority
16ffa12d
PZ
2314 * waiter but have failed to get the rtmutex the first time.
2315 *
8161239a
LJ
2316 * We have to replace the newowner TID in the user space variable.
2317 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2318 *
b2d0994b
DH
2319 * Note: We write the user space value _before_ changing the pi_state
2320 * because we can fault here. Imagine swapped out pages or a fork
2321 * that marked all the anonymous memory readonly for cow.
1b7558e4 2322 *
734009e9
PZ
2323 * Modifying pi_state _before_ the user space value would leave the
2324 * pi_state in an inconsistent state when we fault here, because we
2325 * need to drop the locks to handle the fault. This might be observed
2326 * in the PID check in lookup_pi_state.
1b7558e4
TG
2327 */
2328retry:
2329 if (get_futex_value_locked(&uval, uaddr))
2330 goto handle_fault;
2331
16ffa12d 2332 for (;;) {
1b7558e4
TG
2333 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2334
37a9d912 2335 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2336 goto handle_fault;
2337 if (curval == uval)
2338 break;
2339 uval = curval;
2340 }
2341
2342 /*
2343 * We fixed up user space. Now we need to fix the pi_state
2344 * itself.
2345 */
d0aa7a70 2346 if (pi_state->owner != NULL) {
734009e9 2347 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2348 WARN_ON(list_empty(&pi_state->list));
2349 list_del_init(&pi_state->list);
734009e9 2350 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2351 }
d0aa7a70 2352
cdf71a10 2353 pi_state->owner = newowner;
d0aa7a70 2354
734009e9 2355 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2356 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2357 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2358 raw_spin_unlock(&newowner->pi_lock);
2359 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2360
1b7558e4 2361 return 0;
d0aa7a70 2362
d0aa7a70 2363 /*
734009e9
PZ
2364 * To handle the page fault we need to drop the locks here. That gives
2365 * the other task (either the highest priority waiter itself or the
2366 * task which stole the rtmutex) the chance to try the fixup of the
2367 * pi_state. So once we are back from handling the fault we need to
2368 * check the pi_state after reacquiring the locks and before trying to
2369 * do another fixup. When the fixup has been done already we simply
2370 * return.
2371 *
2372 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2373 * drop hb->lock since the caller owns the hb -> futex_q relation.
2374 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2375 */
1b7558e4 2376handle_fault:
734009e9 2377 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2378 spin_unlock(q->lock_ptr);
778e9a9c 2379
d0725992 2380 ret = fault_in_user_writeable(uaddr);
778e9a9c 2381
1b7558e4 2382 spin_lock(q->lock_ptr);
734009e9 2383 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2384
1b7558e4
TG
2385 /*
2386 * Check if someone else fixed it for us:
2387 */
734009e9
PZ
2388 if (pi_state->owner != oldowner) {
2389 ret = 0;
2390 goto out_unlock;
2391 }
1b7558e4
TG
2392
2393 if (ret)
734009e9 2394 goto out_unlock;
1b7558e4
TG
2395
2396 goto retry;
734009e9
PZ
2397
2398out_unlock:
2399 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2400 return ret;
d0aa7a70
PP
2401}
2402
72c1bbf3 2403static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2404
dd973998
DH
2405/**
2406 * fixup_owner() - Post lock pi_state and corner case management
2407 * @uaddr: user address of the futex
dd973998
DH
2408 * @q: futex_q (contains pi_state and access to the rt_mutex)
2409 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2410 *
2411 * After attempting to lock an rt_mutex, this function is called to cleanup
2412 * the pi_state owner as well as handle race conditions that may allow us to
2413 * acquire the lock. Must be called with the hb lock held.
2414 *
6c23cbbd 2415 * Return:
7b4ff1ad
MCC
2416 * - 1 - success, lock taken;
2417 * - 0 - success, lock not taken;
2418 * - <0 - on error (-EFAULT)
dd973998 2419 */
ae791a2d 2420static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2421{
dd973998
DH
2422 int ret = 0;
2423
2424 if (locked) {
2425 /*
2426 * Got the lock. We might not be the anticipated owner if we
2427 * did a lock-steal - fix up the PI-state in that case:
16ffa12d
PZ
2428 *
2429 * We can safely read pi_state->owner without holding wait_lock
2430 * because we now own the rt_mutex, only the owner will attempt
2431 * to change it.
dd973998
DH
2432 */
2433 if (q->pi_state->owner != current)
ae791a2d 2434 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2435 goto out;
2436 }
2437
dd973998
DH
2438 /*
2439 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2440 * the owner of the rt_mutex.
dd973998 2441 */
73d786bd 2442 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2443 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2444 "pi-state %p\n", ret,
2445 q->pi_state->pi_mutex.owner,
2446 q->pi_state->owner);
73d786bd 2447 }
dd973998
DH
2448
2449out:
2450 return ret ? ret : locked;
2451}
2452
ca5f9524
DH
2453/**
2454 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2455 * @hb: the futex hash bucket, must be locked by the caller
2456 * @q: the futex_q to queue up on
2457 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2458 */
2459static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2460 struct hrtimer_sleeper *timeout)
ca5f9524 2461{
9beba3c5
DH
2462 /*
2463 * The task state is guaranteed to be set before another task can
b92b8b35 2464 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2465 * queue_me() calls spin_unlock() upon completion, both serializing
2466 * access to the hash list and forcing another memory barrier.
2467 */
f1a11e05 2468 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2469 queue_me(q, hb);
ca5f9524
DH
2470
2471 /* Arm the timer */
2e4b0d3f 2472 if (timeout)
ca5f9524 2473 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2474
2475 /*
0729e196
DH
2476 * If we have been removed from the hash list, then another task
2477 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2478 */
2479 if (likely(!plist_node_empty(&q->list))) {
2480 /*
2481 * If the timer has already expired, current will already be
2482 * flagged for rescheduling. Only call schedule if there
2483 * is no timeout, or if it has yet to expire.
2484 */
2485 if (!timeout || timeout->task)
88c8004f 2486 freezable_schedule();
ca5f9524
DH
2487 }
2488 __set_current_state(TASK_RUNNING);
2489}
2490
f801073f
DH
2491/**
2492 * futex_wait_setup() - Prepare to wait on a futex
2493 * @uaddr: the futex userspace address
2494 * @val: the expected value
b41277dc 2495 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2496 * @q: the associated futex_q
2497 * @hb: storage for hash_bucket pointer to be returned to caller
2498 *
2499 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2500 * compare it with the expected value. Handle atomic faults internally.
2501 * Return with the hb lock held and a q.key reference on success, and unlocked
2502 * with no q.key reference on failure.
2503 *
6c23cbbd 2504 * Return:
7b4ff1ad
MCC
2505 * - 0 - uaddr contains val and hb has been locked;
2506 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2507 */
b41277dc 2508static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2509 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2510{
e2970f2f
IM
2511 u32 uval;
2512 int ret;
1da177e4 2513
1da177e4 2514 /*
b2d0994b 2515 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2516 * Order is important:
2517 *
2518 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2519 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2520 *
2521 * The basic logical guarantee of a futex is that it blocks ONLY
2522 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2523 * any cond. If we locked the hash-bucket after testing *uaddr, that
2524 * would open a race condition where we could block indefinitely with
1da177e4
LT
2525 * cond(var) false, which would violate the guarantee.
2526 *
8fe8f545
ML
2527 * On the other hand, we insert q and release the hash-bucket only
2528 * after testing *uaddr. This guarantees that futex_wait() will NOT
2529 * absorb a wakeup if *uaddr does not match the desired values
2530 * while the syscall executes.
1da177e4 2531 */
f801073f 2532retry:
9ea71503 2533 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2534 if (unlikely(ret != 0))
a5a2a0c7 2535 return ret;
f801073f
DH
2536
2537retry_private:
2538 *hb = queue_lock(q);
2539
e2970f2f 2540 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2541
f801073f 2542 if (ret) {
0d00c7b2 2543 queue_unlock(*hb);
1da177e4 2544
e2970f2f 2545 ret = get_user(uval, uaddr);
e4dc5b7a 2546 if (ret)
f801073f 2547 goto out;
1da177e4 2548
b41277dc 2549 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2550 goto retry_private;
2551
ae791a2d 2552 put_futex_key(&q->key);
e4dc5b7a 2553 goto retry;
1da177e4 2554 }
ca5f9524 2555
f801073f 2556 if (uval != val) {
0d00c7b2 2557 queue_unlock(*hb);
f801073f 2558 ret = -EWOULDBLOCK;
2fff78c7 2559 }
1da177e4 2560
f801073f
DH
2561out:
2562 if (ret)
ae791a2d 2563 put_futex_key(&q->key);
f801073f
DH
2564 return ret;
2565}
2566
b41277dc
DH
2567static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2568 ktime_t *abs_time, u32 bitset)
f801073f
DH
2569{
2570 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2571 struct restart_block *restart;
2572 struct futex_hash_bucket *hb;
5bdb05f9 2573 struct futex_q q = futex_q_init;
f801073f
DH
2574 int ret;
2575
2576 if (!bitset)
2577 return -EINVAL;
f801073f
DH
2578 q.bitset = bitset;
2579
2580 if (abs_time) {
2581 to = &timeout;
2582
b41277dc
DH
2583 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2584 CLOCK_REALTIME : CLOCK_MONOTONIC,
2585 HRTIMER_MODE_ABS);
f801073f
DH
2586 hrtimer_init_sleeper(to, current);
2587 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2588 current->timer_slack_ns);
2589 }
2590
d58e6576 2591retry:
7ada876a
DH
2592 /*
2593 * Prepare to wait on uaddr. On success, holds hb lock and increments
2594 * q.key refs.
2595 */
b41277dc 2596 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2597 if (ret)
2598 goto out;
2599
ca5f9524 2600 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2601 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2602
2603 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2604 ret = 0;
7ada876a 2605 /* unqueue_me() drops q.key ref */
1da177e4 2606 if (!unqueue_me(&q))
7ada876a 2607 goto out;
2fff78c7 2608 ret = -ETIMEDOUT;
ca5f9524 2609 if (to && !to->task)
7ada876a 2610 goto out;
72c1bbf3 2611
e2970f2f 2612 /*
d58e6576
TG
2613 * We expect signal_pending(current), but we might be the
2614 * victim of a spurious wakeup as well.
e2970f2f 2615 */
7ada876a 2616 if (!signal_pending(current))
d58e6576 2617 goto retry;
d58e6576 2618
2fff78c7 2619 ret = -ERESTARTSYS;
c19384b5 2620 if (!abs_time)
7ada876a 2621 goto out;
1da177e4 2622
f56141e3 2623 restart = &current->restart_block;
2fff78c7 2624 restart->fn = futex_wait_restart;
a3c74c52 2625 restart->futex.uaddr = uaddr;
2fff78c7 2626 restart->futex.val = val;
2456e855 2627 restart->futex.time = *abs_time;
2fff78c7 2628 restart->futex.bitset = bitset;
0cd9c649 2629 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2630
2fff78c7
PZ
2631 ret = -ERESTART_RESTARTBLOCK;
2632
42d35d48 2633out:
ca5f9524
DH
2634 if (to) {
2635 hrtimer_cancel(&to->timer);
2636 destroy_hrtimer_on_stack(&to->timer);
2637 }
c87e2837
IM
2638 return ret;
2639}
2640
72c1bbf3
NP
2641
2642static long futex_wait_restart(struct restart_block *restart)
2643{
a3c74c52 2644 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2645 ktime_t t, *tp = NULL;
72c1bbf3 2646
a72188d8 2647 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2648 t = restart->futex.time;
a72188d8
DH
2649 tp = &t;
2650 }
72c1bbf3 2651 restart->fn = do_no_restart_syscall;
b41277dc
DH
2652
2653 return (long)futex_wait(uaddr, restart->futex.flags,
2654 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2655}
2656
2657
c87e2837
IM
2658/*
2659 * Userspace tried a 0 -> TID atomic transition of the futex value
2660 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2661 * if there are waiters then it will block as a consequence of relying
2662 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2663 * a 0 value of the futex too.).
2664 *
2665 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2666 */
996636dd 2667static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2668 ktime_t *time, int trylock)
c87e2837 2669{
c5780e97 2670 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2671 struct futex_pi_state *pi_state = NULL;
cfafcd11 2672 struct rt_mutex_waiter rt_waiter;
c87e2837 2673 struct futex_hash_bucket *hb;
5bdb05f9 2674 struct futex_q q = futex_q_init;
dd973998 2675 int res, ret;
c87e2837 2676
bc2eecd7
NP
2677 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2678 return -ENOSYS;
2679
c87e2837
IM
2680 if (refill_pi_state_cache())
2681 return -ENOMEM;
2682
c19384b5 2683 if (time) {
c5780e97 2684 to = &timeout;
237fc6e7
TG
2685 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2686 HRTIMER_MODE_ABS);
c5780e97 2687 hrtimer_init_sleeper(to, current);
cc584b21 2688 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2689 }
2690
42d35d48 2691retry:
9ea71503 2692 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2693 if (unlikely(ret != 0))
42d35d48 2694 goto out;
c87e2837 2695
e4dc5b7a 2696retry_private:
82af7aca 2697 hb = queue_lock(&q);
c87e2837 2698
bab5bc9e 2699 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2700 if (unlikely(ret)) {
767f509c
DB
2701 /*
2702 * Atomic work succeeded and we got the lock,
2703 * or failed. Either way, we do _not_ block.
2704 */
778e9a9c 2705 switch (ret) {
1a52084d
DH
2706 case 1:
2707 /* We got the lock. */
2708 ret = 0;
2709 goto out_unlock_put_key;
2710 case -EFAULT:
2711 goto uaddr_faulted;
778e9a9c
AK
2712 case -EAGAIN:
2713 /*
af54d6a1
TG
2714 * Two reasons for this:
2715 * - Task is exiting and we just wait for the
2716 * exit to complete.
2717 * - The user space value changed.
778e9a9c 2718 */
0d00c7b2 2719 queue_unlock(hb);
ae791a2d 2720 put_futex_key(&q.key);
778e9a9c
AK
2721 cond_resched();
2722 goto retry;
778e9a9c 2723 default:
42d35d48 2724 goto out_unlock_put_key;
c87e2837 2725 }
c87e2837
IM
2726 }
2727
cfafcd11
PZ
2728 WARN_ON(!q.pi_state);
2729
c87e2837
IM
2730 /*
2731 * Only actually queue now that the atomic ops are done:
2732 */
cfafcd11 2733 __queue_me(&q, hb);
c87e2837 2734
cfafcd11 2735 if (trylock) {
5293c2ef 2736 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2737 /* Fixup the trylock return value: */
2738 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2739 goto no_block;
c87e2837
IM
2740 }
2741
56222b21
PZ
2742 rt_mutex_init_waiter(&rt_waiter);
2743
cfafcd11 2744 /*
56222b21
PZ
2745 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2746 * hold it while doing rt_mutex_start_proxy(), because then it will
2747 * include hb->lock in the blocking chain, even through we'll not in
2748 * fact hold it while blocking. This will lead it to report -EDEADLK
2749 * and BUG when futex_unlock_pi() interleaves with this.
2750 *
2751 * Therefore acquire wait_lock while holding hb->lock, but drop the
2752 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2753 * serializes against futex_unlock_pi() as that does the exact same
2754 * lock handoff sequence.
cfafcd11 2755 */
56222b21
PZ
2756 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2757 spin_unlock(q.lock_ptr);
2758 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2759 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2760
cfafcd11
PZ
2761 if (ret) {
2762 if (ret == 1)
2763 ret = 0;
2764
56222b21 2765 spin_lock(q.lock_ptr);
cfafcd11
PZ
2766 goto no_block;
2767 }
2768
cfafcd11
PZ
2769
2770 if (unlikely(to))
2771 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2772
2773 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2774
a99e4e41 2775 spin_lock(q.lock_ptr);
cfafcd11
PZ
2776 /*
2777 * If we failed to acquire the lock (signal/timeout), we must
2778 * first acquire the hb->lock before removing the lock from the
2779 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2780 * wait lists consistent.
56222b21
PZ
2781 *
2782 * In particular; it is important that futex_unlock_pi() can not
2783 * observe this inconsistency.
cfafcd11
PZ
2784 */
2785 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2786 ret = 0;
2787
2788no_block:
dd973998
DH
2789 /*
2790 * Fixup the pi_state owner and possibly acquire the lock if we
2791 * haven't already.
2792 */
ae791a2d 2793 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2794 /*
2795 * If fixup_owner() returned an error, proprogate that. If it acquired
2796 * the lock, clear our -ETIMEDOUT or -EINTR.
2797 */
2798 if (res)
2799 ret = (res < 0) ? res : 0;
c87e2837 2800
e8f6386c 2801 /*
dd973998
DH
2802 * If fixup_owner() faulted and was unable to handle the fault, unlock
2803 * it and return the fault to userspace.
e8f6386c 2804 */
16ffa12d
PZ
2805 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2806 pi_state = q.pi_state;
2807 get_pi_state(pi_state);
2808 }
e8f6386c 2809
778e9a9c
AK
2810 /* Unqueue and drop the lock */
2811 unqueue_me_pi(&q);
c87e2837 2812
16ffa12d
PZ
2813 if (pi_state) {
2814 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2815 put_pi_state(pi_state);
2816 }
2817
5ecb01cf 2818 goto out_put_key;
c87e2837 2819
42d35d48 2820out_unlock_put_key:
0d00c7b2 2821 queue_unlock(hb);
c87e2837 2822
42d35d48 2823out_put_key:
ae791a2d 2824 put_futex_key(&q.key);
42d35d48 2825out:
97181f9b
TG
2826 if (to) {
2827 hrtimer_cancel(&to->timer);
237fc6e7 2828 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2829 }
dd973998 2830 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2831
42d35d48 2832uaddr_faulted:
0d00c7b2 2833 queue_unlock(hb);
778e9a9c 2834
d0725992 2835 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2836 if (ret)
2837 goto out_put_key;
c87e2837 2838
b41277dc 2839 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2840 goto retry_private;
2841
ae791a2d 2842 put_futex_key(&q.key);
e4dc5b7a 2843 goto retry;
c87e2837
IM
2844}
2845
c87e2837
IM
2846/*
2847 * Userspace attempted a TID -> 0 atomic transition, and failed.
2848 * This is the in-kernel slowpath: we look up the PI state (if any),
2849 * and do the rt-mutex unlock.
2850 */
b41277dc 2851static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2852{
ccf9e6a8 2853 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2854 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2855 struct futex_hash_bucket *hb;
499f5aca 2856 struct futex_q *top_waiter;
e4dc5b7a 2857 int ret;
c87e2837 2858
bc2eecd7
NP
2859 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2860 return -ENOSYS;
2861
c87e2837
IM
2862retry:
2863 if (get_user(uval, uaddr))
2864 return -EFAULT;
2865 /*
2866 * We release only a lock we actually own:
2867 */
c0c9ed15 2868 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2869 return -EPERM;
c87e2837 2870
9ea71503 2871 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2872 if (ret)
2873 return ret;
c87e2837
IM
2874
2875 hb = hash_futex(&key);
2876 spin_lock(&hb->lock);
2877
c87e2837 2878 /*
ccf9e6a8
TG
2879 * Check waiters first. We do not trust user space values at
2880 * all and we at least want to know if user space fiddled
2881 * with the futex value instead of blindly unlocking.
c87e2837 2882 */
499f5aca
PZ
2883 top_waiter = futex_top_waiter(hb, &key);
2884 if (top_waiter) {
16ffa12d
PZ
2885 struct futex_pi_state *pi_state = top_waiter->pi_state;
2886
2887 ret = -EINVAL;
2888 if (!pi_state)
2889 goto out_unlock;
2890
2891 /*
2892 * If current does not own the pi_state then the futex is
2893 * inconsistent and user space fiddled with the futex value.
2894 */
2895 if (pi_state->owner != current)
2896 goto out_unlock;
2897
bebe5b51 2898 get_pi_state(pi_state);
802ab58d 2899 /*
bebe5b51
PZ
2900 * By taking wait_lock while still holding hb->lock, we ensure
2901 * there is no point where we hold neither; and therefore
2902 * wake_futex_pi() must observe a state consistent with what we
2903 * observed.
16ffa12d 2904 */
bebe5b51 2905 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
2906 spin_unlock(&hb->lock);
2907
c74aef2d 2908 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
2909 ret = wake_futex_pi(uaddr, uval, pi_state);
2910
2911 put_pi_state(pi_state);
2912
2913 /*
2914 * Success, we're done! No tricky corner cases.
802ab58d
SAS
2915 */
2916 if (!ret)
2917 goto out_putkey;
c87e2837 2918 /*
ccf9e6a8
TG
2919 * The atomic access to the futex value generated a
2920 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2921 */
2922 if (ret == -EFAULT)
2923 goto pi_faulted;
89e9e66b
SAS
2924 /*
2925 * A unconditional UNLOCK_PI op raced against a waiter
2926 * setting the FUTEX_WAITERS bit. Try again.
2927 */
2928 if (ret == -EAGAIN) {
89e9e66b
SAS
2929 put_futex_key(&key);
2930 goto retry;
2931 }
802ab58d
SAS
2932 /*
2933 * wake_futex_pi has detected invalid state. Tell user
2934 * space.
2935 */
16ffa12d 2936 goto out_putkey;
c87e2837 2937 }
ccf9e6a8 2938
c87e2837 2939 /*
ccf9e6a8
TG
2940 * We have no kernel internal state, i.e. no waiters in the
2941 * kernel. Waiters which are about to queue themselves are stuck
2942 * on hb->lock. So we can safely ignore them. We do neither
2943 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2944 * owner.
c87e2837 2945 */
16ffa12d
PZ
2946 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2947 spin_unlock(&hb->lock);
13fbca4c 2948 goto pi_faulted;
16ffa12d 2949 }
c87e2837 2950
ccf9e6a8
TG
2951 /*
2952 * If uval has changed, let user space handle it.
2953 */
2954 ret = (curval == uval) ? 0 : -EAGAIN;
2955
c87e2837
IM
2956out_unlock:
2957 spin_unlock(&hb->lock);
802ab58d 2958out_putkey:
ae791a2d 2959 put_futex_key(&key);
c87e2837
IM
2960 return ret;
2961
2962pi_faulted:
ae791a2d 2963 put_futex_key(&key);
c87e2837 2964
d0725992 2965 ret = fault_in_user_writeable(uaddr);
b5686363 2966 if (!ret)
c87e2837
IM
2967 goto retry;
2968
1da177e4
LT
2969 return ret;
2970}
2971
52400ba9
DH
2972/**
2973 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2974 * @hb: the hash_bucket futex_q was original enqueued on
2975 * @q: the futex_q woken while waiting to be requeued
2976 * @key2: the futex_key of the requeue target futex
2977 * @timeout: the timeout associated with the wait (NULL if none)
2978 *
2979 * Detect if the task was woken on the initial futex as opposed to the requeue
2980 * target futex. If so, determine if it was a timeout or a signal that caused
2981 * the wakeup and return the appropriate error code to the caller. Must be
2982 * called with the hb lock held.
2983 *
6c23cbbd 2984 * Return:
7b4ff1ad
MCC
2985 * - 0 = no early wakeup detected;
2986 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2987 */
2988static inline
2989int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2990 struct futex_q *q, union futex_key *key2,
2991 struct hrtimer_sleeper *timeout)
2992{
2993 int ret = 0;
2994
2995 /*
2996 * With the hb lock held, we avoid races while we process the wakeup.
2997 * We only need to hold hb (and not hb2) to ensure atomicity as the
2998 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2999 * It can't be requeued from uaddr2 to something else since we don't
3000 * support a PI aware source futex for requeue.
3001 */
3002 if (!match_futex(&q->key, key2)) {
3003 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3004 /*
3005 * We were woken prior to requeue by a timeout or a signal.
3006 * Unqueue the futex_q and determine which it was.
3007 */
2e12978a 3008 plist_del(&q->list, &hb->chain);
11d4616b 3009 hb_waiters_dec(hb);
52400ba9 3010
d58e6576 3011 /* Handle spurious wakeups gracefully */
11df6ddd 3012 ret = -EWOULDBLOCK;
52400ba9
DH
3013 if (timeout && !timeout->task)
3014 ret = -ETIMEDOUT;
d58e6576 3015 else if (signal_pending(current))
1c840c14 3016 ret = -ERESTARTNOINTR;
52400ba9
DH
3017 }
3018 return ret;
3019}
3020
3021/**
3022 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3023 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3024 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3025 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3026 * @val: the expected value of uaddr
3027 * @abs_time: absolute timeout
56ec1607 3028 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3029 * @uaddr2: the pi futex we will take prior to returning to user-space
3030 *
3031 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3032 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3033 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3034 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3035 * without one, the pi logic would not know which task to boost/deboost, if
3036 * there was a need to.
52400ba9
DH
3037 *
3038 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3039 * via the following--
52400ba9 3040 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3041 * 2) wakeup on uaddr2 after a requeue
3042 * 3) signal
3043 * 4) timeout
52400ba9 3044 *
cc6db4e6 3045 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3046 *
3047 * If 2, we may then block on trying to take the rt_mutex and return via:
3048 * 5) successful lock
3049 * 6) signal
3050 * 7) timeout
3051 * 8) other lock acquisition failure
3052 *
cc6db4e6 3053 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3054 *
3055 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3056 *
6c23cbbd 3057 * Return:
7b4ff1ad
MCC
3058 * - 0 - On success;
3059 * - <0 - On error
52400ba9 3060 */
b41277dc 3061static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3062 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3063 u32 __user *uaddr2)
52400ba9
DH
3064{
3065 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 3066 struct futex_pi_state *pi_state = NULL;
52400ba9 3067 struct rt_mutex_waiter rt_waiter;
52400ba9 3068 struct futex_hash_bucket *hb;
5bdb05f9
DH
3069 union futex_key key2 = FUTEX_KEY_INIT;
3070 struct futex_q q = futex_q_init;
52400ba9 3071 int res, ret;
52400ba9 3072
bc2eecd7
NP
3073 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3074 return -ENOSYS;
3075
6f7b0a2a
DH
3076 if (uaddr == uaddr2)
3077 return -EINVAL;
3078
52400ba9
DH
3079 if (!bitset)
3080 return -EINVAL;
3081
3082 if (abs_time) {
3083 to = &timeout;
b41277dc
DH
3084 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3085 CLOCK_REALTIME : CLOCK_MONOTONIC,
3086 HRTIMER_MODE_ABS);
52400ba9
DH
3087 hrtimer_init_sleeper(to, current);
3088 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3089 current->timer_slack_ns);
3090 }
3091
3092 /*
3093 * The waiter is allocated on our stack, manipulated by the requeue
3094 * code while we sleep on uaddr.
3095 */
50809358 3096 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3097
9ea71503 3098 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
3099 if (unlikely(ret != 0))
3100 goto out;
3101
84bc4af5
DH
3102 q.bitset = bitset;
3103 q.rt_waiter = &rt_waiter;
3104 q.requeue_pi_key = &key2;
3105
7ada876a
DH
3106 /*
3107 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3108 * count.
3109 */
b41277dc 3110 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3111 if (ret)
3112 goto out_key2;
52400ba9 3113
e9c243a5
TG
3114 /*
3115 * The check above which compares uaddrs is not sufficient for
3116 * shared futexes. We need to compare the keys:
3117 */
3118 if (match_futex(&q.key, &key2)) {
13c42c2f 3119 queue_unlock(hb);
e9c243a5
TG
3120 ret = -EINVAL;
3121 goto out_put_keys;
3122 }
3123
52400ba9 3124 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3125 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3126
3127 spin_lock(&hb->lock);
3128 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3129 spin_unlock(&hb->lock);
3130 if (ret)
3131 goto out_put_keys;
3132
3133 /*
3134 * In order for us to be here, we know our q.key == key2, and since
3135 * we took the hb->lock above, we also know that futex_requeue() has
3136 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3137 * race with the atomic proxy lock acquisition by the requeue code. The
3138 * futex_requeue dropped our key1 reference and incremented our key2
3139 * reference count.
52400ba9
DH
3140 */
3141
3142 /* Check if the requeue code acquired the second futex for us. */
3143 if (!q.rt_waiter) {
3144 /*
3145 * Got the lock. We might not be the anticipated owner if we
3146 * did a lock-steal - fix up the PI-state in that case.
3147 */
3148 if (q.pi_state && (q.pi_state->owner != current)) {
3149 spin_lock(q.lock_ptr);
ae791a2d 3150 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3151 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3152 pi_state = q.pi_state;
3153 get_pi_state(pi_state);
3154 }
fb75a428
TG
3155 /*
3156 * Drop the reference to the pi state which
3157 * the requeue_pi() code acquired for us.
3158 */
29e9ee5d 3159 put_pi_state(q.pi_state);
52400ba9
DH
3160 spin_unlock(q.lock_ptr);
3161 }
3162 } else {
c236c8e9
PZ
3163 struct rt_mutex *pi_mutex;
3164
52400ba9
DH
3165 /*
3166 * We have been woken up by futex_unlock_pi(), a timeout, or a
3167 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3168 * the pi_state.
3169 */
f27071cb 3170 WARN_ON(!q.pi_state);
52400ba9 3171 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3172 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3173
3174 spin_lock(q.lock_ptr);
38d589f2
PZ
3175 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3176 ret = 0;
3177
3178 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3179 /*
3180 * Fixup the pi_state owner and possibly acquire the lock if we
3181 * haven't already.
3182 */
ae791a2d 3183 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3184 /*
3185 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3186 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3187 */
3188 if (res)
3189 ret = (res < 0) ? res : 0;
3190
c236c8e9
PZ
3191 /*
3192 * If fixup_pi_state_owner() faulted and was unable to handle
3193 * the fault, unlock the rt_mutex and return the fault to
3194 * userspace.
3195 */
16ffa12d
PZ
3196 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3197 pi_state = q.pi_state;
3198 get_pi_state(pi_state);
3199 }
c236c8e9 3200
52400ba9
DH
3201 /* Unqueue and drop the lock. */
3202 unqueue_me_pi(&q);
3203 }
3204
16ffa12d
PZ
3205 if (pi_state) {
3206 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3207 put_pi_state(pi_state);
3208 }
3209
c236c8e9 3210 if (ret == -EINTR) {
52400ba9 3211 /*
cc6db4e6
DH
3212 * We've already been requeued, but cannot restart by calling
3213 * futex_lock_pi() directly. We could restart this syscall, but
3214 * it would detect that the user space "val" changed and return
3215 * -EWOULDBLOCK. Save the overhead of the restart and return
3216 * -EWOULDBLOCK directly.
52400ba9 3217 */
2070887f 3218 ret = -EWOULDBLOCK;
52400ba9
DH
3219 }
3220
3221out_put_keys:
ae791a2d 3222 put_futex_key(&q.key);
c8b15a70 3223out_key2:
ae791a2d 3224 put_futex_key(&key2);
52400ba9
DH
3225
3226out:
3227 if (to) {
3228 hrtimer_cancel(&to->timer);
3229 destroy_hrtimer_on_stack(&to->timer);
3230 }
3231 return ret;
3232}
3233
0771dfef
IM
3234/*
3235 * Support for robust futexes: the kernel cleans up held futexes at
3236 * thread exit time.
3237 *
3238 * Implementation: user-space maintains a per-thread list of locks it
3239 * is holding. Upon do_exit(), the kernel carefully walks this list,
3240 * and marks all locks that are owned by this thread with the
c87e2837 3241 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3242 * always manipulated with the lock held, so the list is private and
3243 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3244 * field, to allow the kernel to clean up if the thread dies after
3245 * acquiring the lock, but just before it could have added itself to
3246 * the list. There can only be one such pending lock.
3247 */
3248
3249/**
d96ee56c
DH
3250 * sys_set_robust_list() - Set the robust-futex list head of a task
3251 * @head: pointer to the list-head
3252 * @len: length of the list-head, as userspace expects
0771dfef 3253 */
836f92ad
HC
3254SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3255 size_t, len)
0771dfef 3256{
a0c1e907
TG
3257 if (!futex_cmpxchg_enabled)
3258 return -ENOSYS;
0771dfef
IM
3259 /*
3260 * The kernel knows only one size for now:
3261 */
3262 if (unlikely(len != sizeof(*head)))
3263 return -EINVAL;
3264
3265 current->robust_list = head;
3266
3267 return 0;
3268}
3269
3270/**
d96ee56c
DH
3271 * sys_get_robust_list() - Get the robust-futex list head of a task
3272 * @pid: pid of the process [zero for current task]
3273 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3274 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3275 */
836f92ad
HC
3276SYSCALL_DEFINE3(get_robust_list, int, pid,
3277 struct robust_list_head __user * __user *, head_ptr,
3278 size_t __user *, len_ptr)
0771dfef 3279{
ba46df98 3280 struct robust_list_head __user *head;
0771dfef 3281 unsigned long ret;
bdbb776f 3282 struct task_struct *p;
0771dfef 3283
a0c1e907
TG
3284 if (!futex_cmpxchg_enabled)
3285 return -ENOSYS;
3286
bdbb776f
KC
3287 rcu_read_lock();
3288
3289 ret = -ESRCH;
0771dfef 3290 if (!pid)
bdbb776f 3291 p = current;
0771dfef 3292 else {
228ebcbe 3293 p = find_task_by_vpid(pid);
0771dfef
IM
3294 if (!p)
3295 goto err_unlock;
0771dfef
IM
3296 }
3297
bdbb776f 3298 ret = -EPERM;
caaee623 3299 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3300 goto err_unlock;
3301
3302 head = p->robust_list;
3303 rcu_read_unlock();
3304
0771dfef
IM
3305 if (put_user(sizeof(*head), len_ptr))
3306 return -EFAULT;
3307 return put_user(head, head_ptr);
3308
3309err_unlock:
aaa2a97e 3310 rcu_read_unlock();
0771dfef
IM
3311
3312 return ret;
3313}
3314
3315/*
3316 * Process a futex-list entry, check whether it's owned by the
3317 * dying task, and do notification if so:
3318 */
e3f2ddea 3319int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3320{
7cfdaf38 3321 u32 uval, uninitialized_var(nval), mval;
0771dfef 3322
8f17d3a5
IM
3323retry:
3324 if (get_user(uval, uaddr))
0771dfef
IM
3325 return -1;
3326
b488893a 3327 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3328 /*
3329 * Ok, this dying thread is truly holding a futex
3330 * of interest. Set the OWNER_DIED bit atomically
3331 * via cmpxchg, and if the value had FUTEX_WAITERS
3332 * set, wake up a waiter (if any). (We have to do a
3333 * futex_wake() even if OWNER_DIED is already set -
3334 * to handle the rare but possible case of recursive
3335 * thread-death.) The rest of the cleanup is done in
3336 * userspace.
3337 */
e3f2ddea 3338 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3339 /*
3340 * We are not holding a lock here, but we want to have
3341 * the pagefault_disable/enable() protection because
3342 * we want to handle the fault gracefully. If the
3343 * access fails we try to fault in the futex with R/W
3344 * verification via get_user_pages. get_user() above
3345 * does not guarantee R/W access. If that fails we
3346 * give up and leave the futex locked.
3347 */
3348 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3349 if (fault_in_user_writeable(uaddr))
3350 return -1;
3351 goto retry;
3352 }
c87e2837 3353 if (nval != uval)
8f17d3a5 3354 goto retry;
0771dfef 3355
e3f2ddea
IM
3356 /*
3357 * Wake robust non-PI futexes here. The wakeup of
3358 * PI futexes happens in exit_pi_state():
3359 */
36cf3b5c 3360 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3361 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3362 }
3363 return 0;
3364}
3365
e3f2ddea
IM
3366/*
3367 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3368 */
3369static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3370 struct robust_list __user * __user *head,
1dcc41bb 3371 unsigned int *pi)
e3f2ddea
IM
3372{
3373 unsigned long uentry;
3374
ba46df98 3375 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3376 return -EFAULT;
3377
ba46df98 3378 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3379 *pi = uentry & 1;
3380
3381 return 0;
3382}
3383
0771dfef
IM
3384/*
3385 * Walk curr->robust_list (very carefully, it's a userspace list!)
3386 * and mark any locks found there dead, and notify any waiters.
3387 *
3388 * We silently return on any sign of list-walking problem.
3389 */
3390void exit_robust_list(struct task_struct *curr)
3391{
3392 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3393 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3394 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3395 unsigned int uninitialized_var(next_pi);
0771dfef 3396 unsigned long futex_offset;
9f96cb1e 3397 int rc;
0771dfef 3398
a0c1e907
TG
3399 if (!futex_cmpxchg_enabled)
3400 return;
3401
0771dfef
IM
3402 /*
3403 * Fetch the list head (which was registered earlier, via
3404 * sys_set_robust_list()):
3405 */
e3f2ddea 3406 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3407 return;
3408 /*
3409 * Fetch the relative futex offset:
3410 */
3411 if (get_user(futex_offset, &head->futex_offset))
3412 return;
3413 /*
3414 * Fetch any possibly pending lock-add first, and handle it
3415 * if it exists:
3416 */
e3f2ddea 3417 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3418 return;
e3f2ddea 3419
9f96cb1e 3420 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3421 while (entry != &head->list) {
9f96cb1e
MS
3422 /*
3423 * Fetch the next entry in the list before calling
3424 * handle_futex_death:
3425 */
3426 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3427 /*
3428 * A pending lock might already be on the list, so
c87e2837 3429 * don't process it twice:
0771dfef
IM
3430 */
3431 if (entry != pending)
ba46df98 3432 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3433 curr, pi))
0771dfef 3434 return;
9f96cb1e 3435 if (rc)
0771dfef 3436 return;
9f96cb1e
MS
3437 entry = next_entry;
3438 pi = next_pi;
0771dfef
IM
3439 /*
3440 * Avoid excessively long or circular lists:
3441 */
3442 if (!--limit)
3443 break;
3444
3445 cond_resched();
3446 }
9f96cb1e
MS
3447
3448 if (pending)
3449 handle_futex_death((void __user *)pending + futex_offset,
3450 curr, pip);
0771dfef
IM
3451}
3452
c19384b5 3453long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3454 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3455{
81b40539 3456 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3457 unsigned int flags = 0;
34f01cc1
ED
3458
3459 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3460 flags |= FLAGS_SHARED;
1da177e4 3461
b41277dc
DH
3462 if (op & FUTEX_CLOCK_REALTIME) {
3463 flags |= FLAGS_CLOCKRT;
337f1304
DH
3464 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3465 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3466 return -ENOSYS;
3467 }
1da177e4 3468
59263b51
TG
3469 switch (cmd) {
3470 case FUTEX_LOCK_PI:
3471 case FUTEX_UNLOCK_PI:
3472 case FUTEX_TRYLOCK_PI:
3473 case FUTEX_WAIT_REQUEUE_PI:
3474 case FUTEX_CMP_REQUEUE_PI:
3475 if (!futex_cmpxchg_enabled)
3476 return -ENOSYS;
3477 }
3478
34f01cc1 3479 switch (cmd) {
1da177e4 3480 case FUTEX_WAIT:
cd689985
TG
3481 val3 = FUTEX_BITSET_MATCH_ANY;
3482 case FUTEX_WAIT_BITSET:
81b40539 3483 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3484 case FUTEX_WAKE:
cd689985
TG
3485 val3 = FUTEX_BITSET_MATCH_ANY;
3486 case FUTEX_WAKE_BITSET:
81b40539 3487 return futex_wake(uaddr, flags, val, val3);
1da177e4 3488 case FUTEX_REQUEUE:
81b40539 3489 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3490 case FUTEX_CMP_REQUEUE:
81b40539 3491 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3492 case FUTEX_WAKE_OP:
81b40539 3493 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3494 case FUTEX_LOCK_PI:
996636dd 3495 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3496 case FUTEX_UNLOCK_PI:
81b40539 3497 return futex_unlock_pi(uaddr, flags);
c87e2837 3498 case FUTEX_TRYLOCK_PI:
996636dd 3499 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3500 case FUTEX_WAIT_REQUEUE_PI:
3501 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3502 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3503 uaddr2);
52400ba9 3504 case FUTEX_CMP_REQUEUE_PI:
81b40539 3505 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3506 }
81b40539 3507 return -ENOSYS;
1da177e4
LT
3508}
3509
3510
17da2bd9
HC
3511SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3512 struct timespec __user *, utime, u32 __user *, uaddr2,
3513 u32, val3)
1da177e4 3514{
c19384b5
PP
3515 struct timespec ts;
3516 ktime_t t, *tp = NULL;
e2970f2f 3517 u32 val2 = 0;
34f01cc1 3518 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3519
cd689985 3520 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3521 cmd == FUTEX_WAIT_BITSET ||
3522 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3523 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3524 return -EFAULT;
c19384b5 3525 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3526 return -EFAULT;
c19384b5 3527 if (!timespec_valid(&ts))
9741ef96 3528 return -EINVAL;
c19384b5
PP
3529
3530 t = timespec_to_ktime(ts);
34f01cc1 3531 if (cmd == FUTEX_WAIT)
5a7780e7 3532 t = ktime_add_safe(ktime_get(), t);
c19384b5 3533 tp = &t;
1da177e4
LT
3534 }
3535 /*
52400ba9 3536 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3537 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3538 */
f54f0986 3539 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3540 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3541 val2 = (u32) (unsigned long) utime;
1da177e4 3542
c19384b5 3543 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3544}
3545
03b8c7b6 3546static void __init futex_detect_cmpxchg(void)
1da177e4 3547{
03b8c7b6 3548#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3549 u32 curval;
03b8c7b6
HC
3550
3551 /*
3552 * This will fail and we want it. Some arch implementations do
3553 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3554 * functionality. We want to know that before we call in any
3555 * of the complex code paths. Also we want to prevent
3556 * registration of robust lists in that case. NULL is
3557 * guaranteed to fault and we get -EFAULT on functional
3558 * implementation, the non-functional ones will return
3559 * -ENOSYS.
3560 */
3561 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3562 futex_cmpxchg_enabled = 1;
3563#endif
3564}
3565
3566static int __init futex_init(void)
3567{
63b1a816 3568 unsigned int futex_shift;
a52b89eb
DB
3569 unsigned long i;
3570
3571#if CONFIG_BASE_SMALL
3572 futex_hashsize = 16;
3573#else
3574 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3575#endif
3576
3577 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3578 futex_hashsize, 0,
3579 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3580 &futex_shift, NULL,
3581 futex_hashsize, futex_hashsize);
3582 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3583
3584 futex_detect_cmpxchg();
a0c1e907 3585
a52b89eb 3586 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3587 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3588 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3589 spin_lock_init(&futex_queues[i].lock);
3590 }
3591
1da177e4
LT
3592 return 0;
3593}
25f71d1c 3594core_initcall(futex_init);
This page took 1.566375 seconds and 4 git commands to generate.