]> Git Repo - linux.git/blame - mm/ksm.c
hugetlb: force allocating surplus hugepages on mempolicy allowed nodes
[linux.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
4e5fa4f5 24#include <linux/sched/cputime.h>
31dbd01f
IE
25#include <linux/rwsem.h>
26#include <linux/pagemap.h>
27#include <linux/rmap.h>
28#include <linux/spinlock.h>
59e1a2f4 29#include <linux/xxhash.h>
31dbd01f
IE
30#include <linux/delay.h>
31#include <linux/kthread.h>
32#include <linux/wait.h>
33#include <linux/slab.h>
34#include <linux/rbtree.h>
62b61f61 35#include <linux/memory.h>
31dbd01f 36#include <linux/mmu_notifier.h>
2c6854fd 37#include <linux/swap.h>
f8af4da3 38#include <linux/ksm.h>
4ca3a69b 39#include <linux/hashtable.h>
878aee7d 40#include <linux/freezer.h>
72788c38 41#include <linux/oom.h>
90bd6fd3 42#include <linux/numa.h>
d7c0e68d 43#include <linux/pagewalk.h>
f8af4da3 44
31dbd01f 45#include <asm/tlbflush.h>
73848b46 46#include "internal.h"
58730ab6 47#include "mm_slot.h"
31dbd01f 48
739100c8
SR
49#define CREATE_TRACE_POINTS
50#include <trace/events/ksm.h>
51
e850dcf5
HD
52#ifdef CONFIG_NUMA
53#define NUMA(x) (x)
54#define DO_NUMA(x) do { (x); } while (0)
55#else
56#define NUMA(x) (0)
57#define DO_NUMA(x) do { } while (0)
58#endif
59
5e924ff5
SR
60typedef u8 rmap_age_t;
61
5a2ca3ef
MR
62/**
63 * DOC: Overview
64 *
31dbd01f
IE
65 * A few notes about the KSM scanning process,
66 * to make it easier to understand the data structures below:
67 *
68 * In order to reduce excessive scanning, KSM sorts the memory pages by their
69 * contents into a data structure that holds pointers to the pages' locations.
70 *
71 * Since the contents of the pages may change at any moment, KSM cannot just
72 * insert the pages into a normal sorted tree and expect it to find anything.
73 * Therefore KSM uses two data structures - the stable and the unstable tree.
74 *
75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76 * by their contents. Because each such page is write-protected, searching on
77 * this tree is fully assured to be working (except when pages are unmapped),
78 * and therefore this tree is called the stable tree.
79 *
5a2ca3ef
MR
80 * The stable tree node includes information required for reverse
81 * mapping from a KSM page to virtual addresses that map this page.
82 *
83 * In order to avoid large latencies of the rmap walks on KSM pages,
84 * KSM maintains two types of nodes in the stable tree:
85 *
86 * * the regular nodes that keep the reverse mapping structures in a
87 * linked list
88 * * the "chains" that link nodes ("dups") that represent the same
89 * write protected memory content, but each "dup" corresponds to a
90 * different KSM page copy of that content
91 *
92 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 93 * using the same struct ksm_stable_node structure.
5a2ca3ef 94 *
31dbd01f
IE
95 * In addition to the stable tree, KSM uses a second data structure called the
96 * unstable tree: this tree holds pointers to pages which have been found to
97 * be "unchanged for a period of time". The unstable tree sorts these pages
98 * by their contents, but since they are not write-protected, KSM cannot rely
99 * upon the unstable tree to work correctly - the unstable tree is liable to
100 * be corrupted as its contents are modified, and so it is called unstable.
101 *
102 * KSM solves this problem by several techniques:
103 *
104 * 1) The unstable tree is flushed every time KSM completes scanning all
105 * memory areas, and then the tree is rebuilt again from the beginning.
106 * 2) KSM will only insert into the unstable tree, pages whose hash value
107 * has not changed since the previous scan of all memory areas.
108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109 * colors of the nodes and not on their contents, assuring that even when
110 * the tree gets "corrupted" it won't get out of balance, so scanning time
111 * remains the same (also, searching and inserting nodes in an rbtree uses
112 * the same algorithm, so we have no overhead when we flush and rebuild).
113 * 4) KSM never flushes the stable tree, which means that even if it were to
114 * take 10 attempts to find a page in the unstable tree, once it is found,
115 * it is secured in the stable tree. (When we scan a new page, we first
116 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
117 *
118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
120 */
121
122/**
21fbd591 123 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 124 * @slot: hash lookup from mm to mm_slot
6514d511 125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 126 */
21fbd591 127struct ksm_mm_slot {
58730ab6 128 struct mm_slot slot;
21fbd591 129 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
130};
131
132/**
133 * struct ksm_scan - cursor for scanning
134 * @mm_slot: the current mm_slot we are scanning
135 * @address: the next address inside that to be scanned
6514d511 136 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
137 * @seqnr: count of completed full scans (needed when removing unstable node)
138 *
139 * There is only the one ksm_scan instance of this cursor structure.
140 */
141struct ksm_scan {
21fbd591 142 struct ksm_mm_slot *mm_slot;
31dbd01f 143 unsigned long address;
21fbd591 144 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
145 unsigned long seqnr;
146};
147
7b6ba2c7 148/**
21fbd591 149 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 150 * @node: rb node of this ksm page in the stable tree
4146d2d6 151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 153 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 154 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
156 * @chain_prune_time: time of the last full garbage collection
157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 159 */
21fbd591 160struct ksm_stable_node {
4146d2d6
HD
161 union {
162 struct rb_node node; /* when node of stable tree */
163 struct { /* when listed for migration */
164 struct list_head *head;
2c653d0e
AA
165 struct {
166 struct hlist_node hlist_dup;
167 struct list_head list;
168 };
4146d2d6
HD
169 };
170 };
7b6ba2c7 171 struct hlist_head hlist;
2c653d0e
AA
172 union {
173 unsigned long kpfn;
174 unsigned long chain_prune_time;
175 };
176 /*
177 * STABLE_NODE_CHAIN can be any negative number in
178 * rmap_hlist_len negative range, but better not -1 to be able
179 * to reliably detect underflows.
180 */
181#define STABLE_NODE_CHAIN -1024
182 int rmap_hlist_len;
4146d2d6
HD
183#ifdef CONFIG_NUMA
184 int nid;
185#endif
7b6ba2c7
HD
186};
187
31dbd01f 188/**
21fbd591 189 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 192 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
193 * @mm: the memory structure this rmap_item is pointing into
194 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
196 * @node: rb node of this rmap_item in the unstable tree
197 * @head: pointer to stable_node heading this list in the stable tree
198 * @hlist: link into hlist of rmap_items hanging off that stable_node
5e924ff5
SR
199 * @age: number of scan iterations since creation
200 * @remaining_skips: how many scans to skip
31dbd01f 201 */
21fbd591
QZ
202struct ksm_rmap_item {
203 struct ksm_rmap_item *rmap_list;
bc56620b
HD
204 union {
205 struct anon_vma *anon_vma; /* when stable */
206#ifdef CONFIG_NUMA
207 int nid; /* when node of unstable tree */
208#endif
209 };
31dbd01f
IE
210 struct mm_struct *mm;
211 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 212 unsigned int oldchecksum; /* when unstable */
5e924ff5
SR
213 rmap_age_t age;
214 rmap_age_t remaining_skips;
31dbd01f 215 union {
7b6ba2c7
HD
216 struct rb_node node; /* when node of unstable tree */
217 struct { /* when listed from stable tree */
21fbd591 218 struct ksm_stable_node *head;
7b6ba2c7
HD
219 struct hlist_node hlist;
220 };
31dbd01f
IE
221 };
222};
223
224#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
225#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
226#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
227
228/* The stable and unstable tree heads */
ef53d16c
HD
229static struct rb_root one_stable_tree[1] = { RB_ROOT };
230static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231static struct rb_root *root_stable_tree = one_stable_tree;
232static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 233
4146d2d6
HD
234/* Recently migrated nodes of stable tree, pending proper placement */
235static LIST_HEAD(migrate_nodes);
2c653d0e 236#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 237
4ca3a69b
SL
238#define MM_SLOTS_HASH_BITS 10
239static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 240
21fbd591 241static struct ksm_mm_slot ksm_mm_head = {
58730ab6 242 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
243};
244static struct ksm_scan ksm_scan = {
245 .mm_slot = &ksm_mm_head,
246};
247
248static struct kmem_cache *rmap_item_cache;
7b6ba2c7 249static struct kmem_cache *stable_node_cache;
31dbd01f
IE
250static struct kmem_cache *mm_slot_cache;
251
4e5fa4f5
SR
252/* Default number of pages to scan per batch */
253#define DEFAULT_PAGES_TO_SCAN 100
254
b348b5fe
SR
255/* The number of pages scanned */
256static unsigned long ksm_pages_scanned;
257
31dbd01f 258/* The number of nodes in the stable tree */
b4028260 259static unsigned long ksm_pages_shared;
31dbd01f 260
e178dfde 261/* The number of page slots additionally sharing those nodes */
b4028260 262static unsigned long ksm_pages_sharing;
31dbd01f 263
473b0ce4
HD
264/* The number of nodes in the unstable tree */
265static unsigned long ksm_pages_unshared;
266
267/* The number of rmap_items in use: to calculate pages_volatile */
268static unsigned long ksm_rmap_items;
269
2c653d0e
AA
270/* The number of stable_node chains */
271static unsigned long ksm_stable_node_chains;
272
273/* The number of stable_node dups linked to the stable_node chains */
274static unsigned long ksm_stable_node_dups;
275
276/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 277static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
278
279/* Maximum number of page slots sharing a stable node */
280static int ksm_max_page_sharing = 256;
281
31dbd01f 282/* Number of pages ksmd should scan in one batch */
4e5fa4f5 283static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
31dbd01f
IE
284
285/* Milliseconds ksmd should sleep between batches */
2ffd8679 286static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 287
e86c59b1
CI
288/* Checksum of an empty (zeroed) page */
289static unsigned int zero_checksum __read_mostly;
290
291/* Whether to merge empty (zeroed) pages with actual zero pages */
292static bool ksm_use_zero_pages __read_mostly;
293
5e924ff5
SR
294/* Skip pages that couldn't be de-duplicated previously */
295/* Default to true at least temporarily, for testing */
296static bool ksm_smart_scan = true;
297
e2942062 298/* The number of zero pages which is placed by KSM */
c2dc78b8 299atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
e2942062 300
e5a68991
SR
301/* The number of pages that have been skipped due to "smart scanning" */
302static unsigned long ksm_pages_skipped;
303
4e5fa4f5
SR
304/* Don't scan more than max pages per batch. */
305static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307/* Min CPU for scanning pages per scan */
308#define KSM_ADVISOR_MIN_CPU 10
309
310/* Max CPU for scanning pages per scan */
311static unsigned int ksm_advisor_max_cpu = 70;
312
313/* Target scan time in seconds to analyze all KSM candidate pages. */
314static unsigned long ksm_advisor_target_scan_time = 200;
315
316/* Exponentially weighted moving average. */
317#define EWMA_WEIGHT 30
318
319/**
320 * struct advisor_ctx - metadata for KSM advisor
321 * @start_scan: start time of the current scan
322 * @scan_time: scan time of previous scan
323 * @change: change in percent to pages_to_scan parameter
324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325 */
326struct advisor_ctx {
327 ktime_t start_scan;
328 unsigned long scan_time;
329 unsigned long change;
330 unsigned long long cpu_time;
331};
332static struct advisor_ctx advisor_ctx;
333
334/* Define different advisor's */
335enum ksm_advisor_type {
336 KSM_ADVISOR_NONE,
337 KSM_ADVISOR_SCAN_TIME,
338};
339static enum ksm_advisor_type ksm_advisor;
340
66790e9a
SR
341#ifdef CONFIG_SYSFS
342/*
343 * Only called through the sysfs control interface:
344 */
345
346/* At least scan this many pages per batch. */
347static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349static void set_advisor_defaults(void)
350{
351 if (ksm_advisor == KSM_ADVISOR_NONE) {
352 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 advisor_ctx = (const struct advisor_ctx){ 0 };
355 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356 }
357}
358#endif /* CONFIG_SYSFS */
359
4e5fa4f5
SR
360static inline void advisor_start_scan(void)
361{
362 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 advisor_ctx.start_scan = ktime_get();
364}
365
366/*
367 * Use previous scan time if available, otherwise use current scan time as an
368 * approximation for the previous scan time.
369 */
370static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 unsigned long scan_time)
372{
373 return ctx->scan_time ? ctx->scan_time : scan_time;
374}
375
376/* Calculate exponential weighted moving average */
377static unsigned long ewma(unsigned long prev, unsigned long curr)
378{
379 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380}
381
382/*
383 * The scan time advisor is based on the current scan rate and the target
384 * scan rate.
385 *
386 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387 *
388 * To avoid perturbations it calculates a change factor of previous changes.
389 * A new change factor is calculated for each iteration and it uses an
390 * exponentially weighted moving average. The new pages_to_scan value is
391 * multiplied with that change factor:
392 *
393 * new_pages_to_scan *= change facor
394 *
395 * The new_pages_to_scan value is limited by the cpu min and max values. It
396 * calculates the cpu percent for the last scan and calculates the new
397 * estimated cpu percent cost for the next scan. That value is capped by the
398 * cpu min and max setting.
399 *
400 * In addition the new pages_to_scan value is capped by the max and min
401 * limits.
402 */
403static void scan_time_advisor(void)
404{
405 unsigned int cpu_percent;
406 unsigned long cpu_time;
407 unsigned long cpu_time_diff;
408 unsigned long cpu_time_diff_ms;
409 unsigned long pages;
410 unsigned long per_page_cost;
411 unsigned long factor;
412 unsigned long change;
413 unsigned long last_scan_time;
414 unsigned long scan_time;
415
416 /* Convert scan time to seconds */
417 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418 MSEC_PER_SEC);
419 scan_time = scan_time ? scan_time : 1;
420
421 /* Calculate CPU consumption of ksmd background thread */
422 cpu_time = task_sched_runtime(current);
423 cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 cpu_percent = cpu_percent ? cpu_percent : 1;
428 last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430 /* Calculate scan time as percentage of target scan time */
431 factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 factor = factor ? factor : 1;
433
434 /*
435 * Calculate scan time as percentage of last scan time and use
436 * exponentially weighted average to smooth it
437 */
438 change = scan_time * 100 / last_scan_time;
439 change = change ? change : 1;
440 change = ewma(advisor_ctx.change, change);
441
442 /* Calculate new scan rate based on target scan rate. */
443 pages = ksm_thread_pages_to_scan * 100 / factor;
444 /* Update pages_to_scan by weighted change percentage. */
445 pages = pages * change / 100;
446
447 /* Cap new pages_to_scan value */
448 per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 per_page_cost = per_page_cost ? per_page_cost : 1;
450
451 pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455 /* Update advisor context */
456 advisor_ctx.change = change;
457 advisor_ctx.scan_time = scan_time;
458 advisor_ctx.cpu_time = cpu_time;
459
460 ksm_thread_pages_to_scan = pages;
5088b497 461 trace_ksm_advisor(scan_time, pages, cpu_percent);
4e5fa4f5
SR
462}
463
464static void advisor_stop_scan(void)
465{
466 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467 scan_time_advisor();
468}
469
e850dcf5 470#ifdef CONFIG_NUMA
90bd6fd3
PH
471/* Zeroed when merging across nodes is not allowed */
472static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 473static int ksm_nr_node_ids = 1;
e850dcf5
HD
474#else
475#define ksm_merge_across_nodes 1U
ef53d16c 476#define ksm_nr_node_ids 1
e850dcf5 477#endif
90bd6fd3 478
31dbd01f
IE
479#define KSM_RUN_STOP 0
480#define KSM_RUN_MERGE 1
481#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
482#define KSM_RUN_OFFLINE 4
483static unsigned long ksm_run = KSM_RUN_STOP;
484static void wait_while_offlining(void);
31dbd01f
IE
485
486static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 487static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
488static DEFINE_MUTEX(ksm_thread_mutex);
489static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
31dbd01f
IE
491static int __init ksm_slab_init(void)
492{
aa1b9489 493 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
494 if (!rmap_item_cache)
495 goto out;
496
aa1b9489 497 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
498 if (!stable_node_cache)
499 goto out_free1;
500
aa1b9489 501 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 502 if (!mm_slot_cache)
7b6ba2c7 503 goto out_free2;
31dbd01f
IE
504
505 return 0;
506
7b6ba2c7
HD
507out_free2:
508 kmem_cache_destroy(stable_node_cache);
509out_free1:
31dbd01f
IE
510 kmem_cache_destroy(rmap_item_cache);
511out:
512 return -ENOMEM;
513}
514
515static void __init ksm_slab_free(void)
516{
517 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 518 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
519 kmem_cache_destroy(rmap_item_cache);
520 mm_slot_cache = NULL;
521}
522
21fbd591 523static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
524{
525 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
526}
527
21fbd591 528static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
529{
530 return dup->head == STABLE_NODE_DUP_HEAD;
531}
532
21fbd591
QZ
533static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
534 struct ksm_stable_node *chain)
2c653d0e
AA
535{
536 VM_BUG_ON(is_stable_node_dup(dup));
537 dup->head = STABLE_NODE_DUP_HEAD;
538 VM_BUG_ON(!is_stable_node_chain(chain));
539 hlist_add_head(&dup->hlist_dup, &chain->hlist);
540 ksm_stable_node_dups++;
541}
542
21fbd591 543static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 544{
b4fecc67 545 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
546 hlist_del(&dup->hlist_dup);
547 ksm_stable_node_dups--;
548}
549
21fbd591 550static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
551{
552 VM_BUG_ON(is_stable_node_chain(dup));
553 if (is_stable_node_dup(dup))
554 __stable_node_dup_del(dup);
555 else
556 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
557#ifdef CONFIG_DEBUG_VM
558 dup->head = NULL;
559#endif
560}
561
21fbd591 562static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 563{
21fbd591 564 struct ksm_rmap_item *rmap_item;
473b0ce4 565
5b398e41 566 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
567 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
568 if (rmap_item)
569 ksm_rmap_items++;
570 return rmap_item;
31dbd01f
IE
571}
572
21fbd591 573static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 574{
473b0ce4 575 ksm_rmap_items--;
cb4df4ca 576 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
577 rmap_item->mm = NULL; /* debug safety */
578 kmem_cache_free(rmap_item_cache, rmap_item);
579}
580
21fbd591 581static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 582{
6213055f 583 /*
584 * The allocation can take too long with GFP_KERNEL when memory is under
585 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
586 * grants access to memory reserves, helping to avoid this problem.
587 */
588 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
589}
590
21fbd591 591static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 592{
2c653d0e
AA
593 VM_BUG_ON(stable_node->rmap_hlist_len &&
594 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
595 kmem_cache_free(stable_node_cache, stable_node);
596}
597
a913e182
HD
598/*
599 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
600 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 601 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
602 * a special flag: they can just back out as soon as mm_users goes to zero.
603 * ksm_test_exit() is used throughout to make this test for exit: in some
604 * places for correctness, in some places just to avoid unnecessary work.
605 */
606static inline bool ksm_test_exit(struct mm_struct *mm)
607{
608 return atomic_read(&mm->mm_users) == 0;
609}
610
d7c0e68d
DH
611static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
612 struct mm_walk *walk)
613{
614 struct page *page = NULL;
615 spinlock_t *ptl;
616 pte_t *pte;
c33c7948 617 pte_t ptent;
d7c0e68d
DH
618 int ret;
619
d7c0e68d 620 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
04dee9e8
HD
621 if (!pte)
622 return 0;
c33c7948
RR
623 ptent = ptep_get(pte);
624 if (pte_present(ptent)) {
625 page = vm_normal_page(walk->vma, addr, ptent);
626 } else if (!pte_none(ptent)) {
627 swp_entry_t entry = pte_to_swp_entry(ptent);
d7c0e68d
DH
628
629 /*
630 * As KSM pages remain KSM pages until freed, no need to wait
631 * here for migration to end.
632 */
633 if (is_migration_entry(entry))
634 page = pfn_swap_entry_to_page(entry);
635 }
79271476 636 /* return 1 if the page is an normal ksm page or KSM-placed zero page */
afccb080 637 ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
d7c0e68d
DH
638 pte_unmap_unlock(pte, ptl);
639 return ret;
640}
641
642static const struct mm_walk_ops break_ksm_ops = {
643 .pmd_entry = break_ksm_pmd_entry,
49b06385
SB
644 .walk_lock = PGWALK_RDLOCK,
645};
646
647static const struct mm_walk_ops break_ksm_lock_vma_ops = {
648 .pmd_entry = break_ksm_pmd_entry,
649 .walk_lock = PGWALK_WRLOCK,
d7c0e68d
DH
650};
651
31dbd01f 652/*
6cce3314
DH
653 * We use break_ksm to break COW on a ksm page by triggering unsharing,
654 * such that the ksm page will get replaced by an exclusive anonymous page.
31dbd01f 655 *
6cce3314 656 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
31dbd01f
IE
657 * in case the application has unmapped and remapped mm,addr meanwhile.
658 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 659 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126 660 *
6cce3314 661 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
1b2ee126
DH
662 * of the process that owns 'vma'. We also do not want to enforce
663 * protection keys here anyway.
31dbd01f 664 */
49b06385 665static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
31dbd01f 666{
50a7ca3c 667 vm_fault_t ret = 0;
49b06385
SB
668 const struct mm_walk_ops *ops = lock_vma ?
669 &break_ksm_lock_vma_ops : &break_ksm_ops;
31dbd01f
IE
670
671 do {
d7c0e68d 672 int ksm_page;
58f595c6 673
31dbd01f 674 cond_resched();
49b06385 675 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
d7c0e68d
DH
676 if (WARN_ON_ONCE(ksm_page < 0))
677 return ksm_page;
58f595c6
DH
678 if (!ksm_page)
679 return 0;
680 ret = handle_mm_fault(vma, addr,
6cce3314 681 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
58f595c6
DH
682 NULL);
683 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 684 /*
58f595c6
DH
685 * We must loop until we no longer find a KSM page because
686 * handle_mm_fault() may back out if there's any difficulty e.g. if
687 * pte accessed bit gets updated concurrently.
d952b791
HD
688 *
689 * VM_FAULT_SIGBUS could occur if we race with truncation of the
690 * backing file, which also invalidates anonymous pages: that's
691 * okay, that truncation will have unmapped the PageKsm for us.
692 *
693 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
694 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
695 * current task has TIF_MEMDIE set, and will be OOM killed on return
696 * to user; and ksmd, having no mm, would never be chosen for that.
697 *
698 * But if the mm is in a limited mem_cgroup, then the fault may fail
699 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
700 * even ksmd can fail in this way - though it's usually breaking ksm
701 * just to undo a merge it made a moment before, so unlikely to oom.
702 *
703 * That's a pity: we might therefore have more kernel pages allocated
704 * than we're counting as nodes in the stable tree; but ksm_do_scan
705 * will retry to break_cow on each pass, so should recover the page
706 * in due course. The important thing is to not let VM_MERGEABLE
707 * be cleared while any such pages might remain in the area.
708 */
709 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
710}
711
d7597f59
SR
712static bool vma_ksm_compatible(struct vm_area_struct *vma)
713{
714 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
715 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
716 VM_MIXEDMAP))
717 return false; /* just ignore the advice */
718
719 if (vma_is_dax(vma))
720 return false;
721
722#ifdef VM_SAO
723 if (vma->vm_flags & VM_SAO)
724 return false;
725#endif
726#ifdef VM_SPARC_ADI
727 if (vma->vm_flags & VM_SPARC_ADI)
728 return false;
729#endif
730
731 return true;
732}
733
ef694222
BL
734static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
735 unsigned long addr)
736{
737 struct vm_area_struct *vma;
738 if (ksm_test_exit(mm))
739 return NULL;
ff69fb81
LH
740 vma = vma_lookup(mm, addr);
741 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
742 return NULL;
743 return vma;
744}
745
21fbd591 746static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 747{
8dd3557a
HD
748 struct mm_struct *mm = rmap_item->mm;
749 unsigned long addr = rmap_item->address;
31dbd01f
IE
750 struct vm_area_struct *vma;
751
4035c07a
HD
752 /*
753 * It is not an accident that whenever we want to break COW
754 * to undo, we also need to drop a reference to the anon_vma.
755 */
9e60109f 756 put_anon_vma(rmap_item->anon_vma);
4035c07a 757
d8ed45c5 758 mmap_read_lock(mm);
ef694222
BL
759 vma = find_mergeable_vma(mm, addr);
760 if (vma)
49b06385 761 break_ksm(vma, addr, false);
d8ed45c5 762 mmap_read_unlock(mm);
31dbd01f
IE
763}
764
21fbd591 765static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
766{
767 struct mm_struct *mm = rmap_item->mm;
768 unsigned long addr = rmap_item->address;
769 struct vm_area_struct *vma;
770 struct page *page;
771
d8ed45c5 772 mmap_read_lock(mm);
ef694222
BL
773 vma = find_mergeable_vma(mm, addr);
774 if (!vma)
31dbd01f
IE
775 goto out;
776
777 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 778 if (IS_ERR_OR_NULL(page))
31dbd01f 779 goto out;
f7091ed6
HW
780 if (is_zone_device_page(page))
781 goto out_putpage;
f765f540 782 if (PageAnon(page)) {
31dbd01f
IE
783 flush_anon_page(vma, page, addr);
784 flush_dcache_page(page);
785 } else {
f7091ed6 786out_putpage:
31dbd01f 787 put_page(page);
c8f95ed1
AA
788out:
789 page = NULL;
31dbd01f 790 }
d8ed45c5 791 mmap_read_unlock(mm);
31dbd01f
IE
792 return page;
793}
794
90bd6fd3
PH
795/*
796 * This helper is used for getting right index into array of tree roots.
797 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
798 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
799 * every node has its own stable and unstable tree.
800 */
801static inline int get_kpfn_nid(unsigned long kpfn)
802{
d8fc16a8 803 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
804}
805
21fbd591 806static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
807 struct rb_root *root)
808{
21fbd591 809 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
810 VM_BUG_ON(is_stable_node_chain(dup));
811 if (likely(chain)) {
812 INIT_HLIST_HEAD(&chain->hlist);
813 chain->chain_prune_time = jiffies;
814 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
815#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 816 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
817#endif
818 ksm_stable_node_chains++;
819
820 /*
821 * Put the stable node chain in the first dimension of
822 * the stable tree and at the same time remove the old
823 * stable node.
824 */
825 rb_replace_node(&dup->node, &chain->node, root);
826
827 /*
828 * Move the old stable node to the second dimension
829 * queued in the hlist_dup. The invariant is that all
830 * dup stable_nodes in the chain->hlist point to pages
457aef94 831 * that are write protected and have the exact same
2c653d0e
AA
832 * content.
833 */
834 stable_node_chain_add_dup(dup, chain);
835 }
836 return chain;
837}
838
21fbd591 839static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
840 struct rb_root *root)
841{
842 rb_erase(&chain->node, root);
843 free_stable_node(chain);
844 ksm_stable_node_chains--;
845}
846
21fbd591 847static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 848{
21fbd591 849 struct ksm_rmap_item *rmap_item;
4035c07a 850
2c653d0e
AA
851 /* check it's not STABLE_NODE_CHAIN or negative */
852 BUG_ON(stable_node->rmap_hlist_len < 0);
853
b67bfe0d 854 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
739100c8 855 if (rmap_item->hlist.next) {
4035c07a 856 ksm_pages_sharing--;
739100c8
SR
857 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
858 } else {
4035c07a 859 ksm_pages_shared--;
739100c8 860 }
76093853 861
862 rmap_item->mm->ksm_merging_pages--;
863
2c653d0e
AA
864 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
865 stable_node->rmap_hlist_len--;
9e60109f 866 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
867 rmap_item->address &= PAGE_MASK;
868 cond_resched();
869 }
870
2c653d0e
AA
871 /*
872 * We need the second aligned pointer of the migrate_nodes
873 * list_head to stay clear from the rb_parent_color union
874 * (aligned and different than any node) and also different
875 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 876 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 877 */
2c653d0e
AA
878 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
879 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 880
739100c8 881 trace_ksm_remove_ksm_page(stable_node->kpfn);
4146d2d6
HD
882 if (stable_node->head == &migrate_nodes)
883 list_del(&stable_node->list);
884 else
2c653d0e 885 stable_node_dup_del(stable_node);
4035c07a
HD
886 free_stable_node(stable_node);
887}
888
85b67b01
DH
889enum ksm_get_folio_flags {
890 KSM_GET_FOLIO_NOLOCK,
891 KSM_GET_FOLIO_LOCK,
892 KSM_GET_FOLIO_TRYLOCK
2cee57d1
YS
893};
894
4035c07a 895/*
b91f9472 896 * ksm_get_folio: checks if the page indicated by the stable node
4035c07a
HD
897 * is still its ksm page, despite having held no reference to it.
898 * In which case we can trust the content of the page, and it
899 * returns the gotten page; but if the page has now been zapped,
900 * remove the stale node from the stable tree and return NULL.
c8d6553b 901 * But beware, the stable node's page might be being migrated.
4035c07a
HD
902 *
903 * You would expect the stable_node to hold a reference to the ksm page.
904 * But if it increments the page's count, swapping out has to wait for
905 * ksmd to come around again before it can free the page, which may take
906 * seconds or even minutes: much too unresponsive. So instead we use a
907 * "keyhole reference": access to the ksm page from the stable node peeps
908 * out through its keyhole to see if that page still holds the right key,
909 * pointing back to this stable node. This relies on freeing a PageAnon
910 * page to reset its page->mapping to NULL, and relies on no other use of
911 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
912 * is on its way to being freed; but it is an anomaly to bear in mind.
913 */
b91f9472 914static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
85b67b01 915 enum ksm_get_folio_flags flags)
4035c07a 916{
b91f9472 917 struct folio *folio;
4035c07a 918 void *expected_mapping;
c8d6553b 919 unsigned long kpfn;
4035c07a 920
bda807d4
MK
921 expected_mapping = (void *)((unsigned long)stable_node |
922 PAGE_MAPPING_KSM);
c8d6553b 923again:
08df4774 924 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
b91f9472
AS
925 folio = pfn_folio(kpfn);
926 if (READ_ONCE(folio->mapping) != expected_mapping)
4035c07a 927 goto stale;
c8d6553b
HD
928
929 /*
930 * We cannot do anything with the page while its refcount is 0.
931 * Usually 0 means free, or tail of a higher-order page: in which
932 * case this node is no longer referenced, and should be freed;
1c4c3b99 933 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 934 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 935 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 936 * in folio_migrate_mapping(), it might still be our page,
52d1e606 937 * in which case it's essential to keep the node.
c8d6553b 938 */
b91f9472 939 while (!folio_try_get(folio)) {
c8d6553b
HD
940 /*
941 * Another check for page->mapping != expected_mapping would
942 * work here too. We have chosen the !PageSwapCache test to
943 * optimize the common case, when the page is or is about to
944 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 945 * in the ref_freeze section of __remove_mapping(); but Anon
b91f9472 946 * folio->mapping reset to NULL later, in free_pages_prepare().
c8d6553b 947 */
b91f9472 948 if (!folio_test_swapcache(folio))
c8d6553b
HD
949 goto stale;
950 cpu_relax();
951 }
952
b91f9472
AS
953 if (READ_ONCE(folio->mapping) != expected_mapping) {
954 folio_put(folio);
4035c07a
HD
955 goto stale;
956 }
c8d6553b 957
85b67b01 958 if (flags == KSM_GET_FOLIO_TRYLOCK) {
b91f9472
AS
959 if (!folio_trylock(folio)) {
960 folio_put(folio);
2cee57d1
YS
961 return ERR_PTR(-EBUSY);
962 }
85b67b01 963 } else if (flags == KSM_GET_FOLIO_LOCK)
b91f9472 964 folio_lock(folio);
2cee57d1 965
85b67b01 966 if (flags != KSM_GET_FOLIO_NOLOCK) {
b91f9472
AS
967 if (READ_ONCE(folio->mapping) != expected_mapping) {
968 folio_unlock(folio);
969 folio_put(folio);
8aafa6a4
HD
970 goto stale;
971 }
972 }
b91f9472 973 return folio;
c8d6553b 974
4035c07a 975stale:
c8d6553b
HD
976 /*
977 * We come here from above when page->mapping or !PageSwapCache
978 * suggests that the node is stale; but it might be under migration.
19138349 979 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
980 * before checking whether node->kpfn has been changed.
981 */
982 smp_rmb();
4db0c3c2 983 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 984 goto again;
4035c07a
HD
985 remove_node_from_stable_tree(stable_node);
986 return NULL;
987}
988
31dbd01f
IE
989/*
990 * Removing rmap_item from stable or unstable tree.
991 * This function will clean the information from the stable/unstable tree.
992 */
21fbd591 993static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 994{
7b6ba2c7 995 if (rmap_item->address & STABLE_FLAG) {
21fbd591 996 struct ksm_stable_node *stable_node;
f39b6e2d 997 struct folio *folio;
31dbd01f 998
7b6ba2c7 999 stable_node = rmap_item->head;
85b67b01 1000 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
f39b6e2d 1001 if (!folio)
4035c07a 1002 goto out;
5ad64688 1003
7b6ba2c7 1004 hlist_del(&rmap_item->hlist);
f39b6e2d
AS
1005 folio_unlock(folio);
1006 folio_put(folio);
08beca44 1007
98666f8a 1008 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
1009 ksm_pages_sharing--;
1010 else
7b6ba2c7 1011 ksm_pages_shared--;
76093853 1012
1013 rmap_item->mm->ksm_merging_pages--;
1014
2c653d0e
AA
1015 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1016 stable_node->rmap_hlist_len--;
31dbd01f 1017
9e60109f 1018 put_anon_vma(rmap_item->anon_vma);
c89a384e 1019 rmap_item->head = NULL;
93d17715 1020 rmap_item->address &= PAGE_MASK;
31dbd01f 1021
7b6ba2c7 1022 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
1023 unsigned char age;
1024 /*
9ba69294 1025 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 1026 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
1027 * But be careful when an mm is exiting: do the rb_erase
1028 * if this rmap_item was inserted by this scan, rather
1029 * than left over from before.
31dbd01f
IE
1030 */
1031 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 1032 BUG_ON(age > 1);
31dbd01f 1033 if (!age)
90bd6fd3 1034 rb_erase(&rmap_item->node,
ef53d16c 1035 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 1036 ksm_pages_unshared--;
93d17715 1037 rmap_item->address &= PAGE_MASK;
31dbd01f 1038 }
4035c07a 1039out:
31dbd01f
IE
1040 cond_resched(); /* we're called from many long loops */
1041}
1042
21fbd591 1043static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 1044{
6514d511 1045 while (*rmap_list) {
21fbd591 1046 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 1047 *rmap_list = rmap_item->rmap_list;
31dbd01f 1048 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1049 free_rmap_item(rmap_item);
1050 }
1051}
1052
1053/*
e850dcf5 1054 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
1055 * than check every pte of a given vma, the locking doesn't quite work for
1056 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 1057 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
1058 * rmap_items from parent to child at fork time (so as not to waste time
1059 * if exit comes before the next scan reaches it).
81464e30
HD
1060 *
1061 * Similarly, although we'd like to remove rmap_items (so updating counts
1062 * and freeing memory) when unmerging an area, it's easier to leave that
1063 * to the next pass of ksmd - consider, for example, how ksmd might be
1064 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 1065 */
d952b791 1066static int unmerge_ksm_pages(struct vm_area_struct *vma,
49b06385 1067 unsigned long start, unsigned long end, bool lock_vma)
31dbd01f
IE
1068{
1069 unsigned long addr;
d952b791 1070 int err = 0;
31dbd01f 1071
d952b791 1072 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
1073 if (ksm_test_exit(vma->vm_mm))
1074 break;
d952b791
HD
1075 if (signal_pending(current))
1076 err = -ERESTARTSYS;
1077 else
49b06385 1078 err = break_ksm(vma, addr, lock_vma);
d952b791
HD
1079 }
1080 return err;
31dbd01f
IE
1081}
1082
21fbd591 1083static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
1084{
1085 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1086}
1087
21fbd591 1088static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 1089{
19138349 1090 return folio_stable_node(page_folio(page));
88484826
MR
1091}
1092
b8b0ff24
AS
1093static inline void folio_set_stable_node(struct folio *folio,
1094 struct ksm_stable_node *stable_node)
88484826 1095{
452e862f
AS
1096 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1097 folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
88484826
MR
1098}
1099
2ffd8679
HD
1100#ifdef CONFIG_SYSFS
1101/*
1102 * Only called through the sysfs control interface:
1103 */
21fbd591 1104static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe 1105{
9d5cc140 1106 struct folio *folio;
cbf86cfe
HD
1107 int err;
1108
85b67b01 1109 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
9d5cc140 1110 if (!folio) {
cbf86cfe 1111 /*
9d5cc140 1112 * ksm_get_folio did remove_node_from_stable_tree itself.
cbf86cfe
HD
1113 */
1114 return 0;
1115 }
1116
9a63236f
AR
1117 /*
1118 * Page could be still mapped if this races with __mmput() running in
1119 * between ksm_exit() and exit_mmap(). Just refuse to let
1120 * merge_across_nodes/max_page_sharing be switched.
1121 */
1122 err = -EBUSY;
9d5cc140 1123 if (!folio_mapped(folio)) {
cbf86cfe 1124 /*
9d5cc140
AS
1125 * The stable node did not yet appear stale to ksm_get_folio(),
1126 * since that allows for an unmapped ksm folio to be recognized
8fdb3dbf 1127 * right up until it is freed; but the node is safe to remove.
9d5cc140
AS
1128 * This folio might be in an LRU cache waiting to be freed,
1129 * or it might be in the swapcache (perhaps under writeback),
cbf86cfe
HD
1130 * or it might have been removed from swapcache a moment ago.
1131 */
9d5cc140 1132 folio_set_stable_node(folio, NULL);
cbf86cfe
HD
1133 remove_node_from_stable_tree(stable_node);
1134 err = 0;
1135 }
1136
9d5cc140
AS
1137 folio_unlock(folio);
1138 folio_put(folio);
cbf86cfe
HD
1139 return err;
1140}
1141
21fbd591 1142static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
1143 struct rb_root *root)
1144{
21fbd591 1145 struct ksm_stable_node *dup;
2c653d0e
AA
1146 struct hlist_node *hlist_safe;
1147
1148 if (!is_stable_node_chain(stable_node)) {
1149 VM_BUG_ON(is_stable_node_dup(stable_node));
1150 if (remove_stable_node(stable_node))
1151 return true;
1152 else
1153 return false;
1154 }
1155
1156 hlist_for_each_entry_safe(dup, hlist_safe,
1157 &stable_node->hlist, hlist_dup) {
1158 VM_BUG_ON(!is_stable_node_dup(dup));
1159 if (remove_stable_node(dup))
1160 return true;
1161 }
1162 BUG_ON(!hlist_empty(&stable_node->hlist));
1163 free_stable_node_chain(stable_node, root);
1164 return false;
1165}
1166
cbf86cfe
HD
1167static int remove_all_stable_nodes(void)
1168{
21fbd591 1169 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
1170 int nid;
1171 int err = 0;
1172
ef53d16c 1173 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
1174 while (root_stable_tree[nid].rb_node) {
1175 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 1176 struct ksm_stable_node, node);
2c653d0e
AA
1177 if (remove_stable_node_chain(stable_node,
1178 root_stable_tree + nid)) {
cbf86cfe
HD
1179 err = -EBUSY;
1180 break; /* proceed to next nid */
1181 }
1182 cond_resched();
1183 }
1184 }
03640418 1185 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
1186 if (remove_stable_node(stable_node))
1187 err = -EBUSY;
1188 cond_resched();
1189 }
cbf86cfe
HD
1190 return err;
1191}
1192
d952b791 1193static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 1194{
21fbd591 1195 struct ksm_mm_slot *mm_slot;
58730ab6 1196 struct mm_slot *slot;
31dbd01f
IE
1197 struct mm_struct *mm;
1198 struct vm_area_struct *vma;
d952b791
HD
1199 int err = 0;
1200
1201 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1202 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1203 struct mm_slot, mm_node);
1204 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 1205 spin_unlock(&ksm_mmlist_lock);
31dbd01f 1206
a5f18ba0
MWO
1207 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1208 mm_slot = ksm_scan.mm_slot) {
58730ab6 1209 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 1210
58730ab6 1211 mm = mm_slot->slot.mm;
d8ed45c5 1212 mmap_read_lock(mm);
6db504ce
LH
1213
1214 /*
1215 * Exit right away if mm is exiting to avoid lockdep issue in
1216 * the maple tree
1217 */
1218 if (ksm_test_exit(mm))
1219 goto mm_exiting;
1220
a5f18ba0 1221 for_each_vma(vmi, vma) {
31dbd01f
IE
1222 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1223 continue;
d952b791 1224 err = unmerge_ksm_pages(vma,
49b06385 1225 vma->vm_start, vma->vm_end, false);
9ba69294
HD
1226 if (err)
1227 goto error;
31dbd01f 1228 }
9ba69294 1229
6db504ce 1230mm_exiting:
420be4ed 1231 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1232 mmap_read_unlock(mm);
d952b791
HD
1233
1234 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1235 slot = list_entry(mm_slot->slot.mm_node.next,
1236 struct mm_slot, mm_node);
1237 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 1238 if (ksm_test_exit(mm)) {
58730ab6
QZ
1239 hash_del(&mm_slot->slot.hash);
1240 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
1241 spin_unlock(&ksm_mmlist_lock);
1242
58730ab6 1243 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 1244 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 1245 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294 1246 mmdrop(mm);
7496fea9 1247 } else
9ba69294 1248 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1249 }
1250
cbf86cfe
HD
1251 /* Clean up stable nodes, but don't worry if some are still busy */
1252 remove_all_stable_nodes();
d952b791 1253 ksm_scan.seqnr = 0;
9ba69294
HD
1254 return 0;
1255
1256error:
d8ed45c5 1257 mmap_read_unlock(mm);
31dbd01f 1258 spin_lock(&ksm_mmlist_lock);
d952b791 1259 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1260 spin_unlock(&ksm_mmlist_lock);
d952b791 1261 return err;
31dbd01f 1262}
2ffd8679 1263#endif /* CONFIG_SYSFS */
31dbd01f 1264
31dbd01f
IE
1265static u32 calc_checksum(struct page *page)
1266{
1267 u32 checksum;
b3351989 1268 void *addr = kmap_local_page(page);
59e1a2f4 1269 checksum = xxhash(addr, PAGE_SIZE, 0);
b3351989 1270 kunmap_local(addr);
31dbd01f
IE
1271 return checksum;
1272}
1273
40d707f3 1274static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
31dbd01f
IE
1275 pte_t *orig_pte)
1276{
1277 struct mm_struct *mm = vma->vm_mm;
40d707f3 1278 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
31dbd01f
IE
1279 int swapped;
1280 int err = -EFAULT;
ac46d4f3 1281 struct mmu_notifier_range range;
6c287605 1282 bool anon_exclusive;
c33c7948 1283 pte_t entry;
31dbd01f 1284
40d707f3
AS
1285 if (WARN_ON_ONCE(folio_test_large(folio)))
1286 return err;
1287
1288 pvmw.address = page_address_in_vma(&folio->page, vma);
36eaff33 1289 if (pvmw.address == -EFAULT)
31dbd01f
IE
1290 goto out;
1291
7d4a8be0 1292 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
ac46d4f3
JG
1293 pvmw.address + PAGE_SIZE);
1294 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1295
36eaff33 1296 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1297 goto out_mn;
36eaff33
KS
1298 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1299 goto out_unlock;
31dbd01f 1300
40d707f3 1301 anon_exclusive = PageAnonExclusive(&folio->page);
c33c7948
RR
1302 entry = ptep_get(pvmw.pte);
1303 if (pte_write(entry) || pte_dirty(entry) ||
6c287605 1304 anon_exclusive || mm_tlb_flush_pending(mm)) {
40d707f3
AS
1305 swapped = folio_test_swapcache(folio);
1306 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
31dbd01f 1307 /*
25985edc 1308 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1309 * take any lock, therefore the check that we are going to make
f0953a1b 1310 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1311 * O_DIRECT can happen right after the check.
1312 * So we clear the pte and flush the tlb before the check
1313 * this assure us that no O_DIRECT can happen after the check
1314 * or in the middle of the check.
0f10851e
JG
1315 *
1316 * No need to notify as we are downgrading page table to read
1317 * only not changing it to point to a new page.
1318 *
ee65728e 1319 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1320 */
0f10851e 1321 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1322 /*
1323 * Check that no O_DIRECT or similar I/O is in progress on the
1324 * page
1325 */
40d707f3 1326 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
36eaff33 1327 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1328 goto out_unlock;
1329 }
6c287605 1330
e3b4b137
DH
1331 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1332 if (anon_exclusive &&
40d707f3 1333 folio_try_share_anon_rmap_pte(folio, &folio->page)) {
6c287605
DH
1334 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1335 goto out_unlock;
1336 }
1337
4e31635c 1338 if (pte_dirty(entry))
40d707f3 1339 folio_mark_dirty(folio);
6a56ccbc
DH
1340 entry = pte_mkclean(entry);
1341
1342 if (pte_write(entry))
1343 entry = pte_wrprotect(entry);
595cd8f2 1344
f7842747 1345 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1346 }
c33c7948 1347 *orig_pte = entry;
31dbd01f
IE
1348 err = 0;
1349
1350out_unlock:
36eaff33 1351 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1352out_mn:
ac46d4f3 1353 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1354out:
1355 return err;
1356}
1357
1358/**
1359 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1360 * @vma: vma that holds the pte pointing to page
1361 * @page: the page we are replacing by kpage
1362 * @kpage: the ksm page we replace page by
31dbd01f
IE
1363 * @orig_pte: the original value of the pte
1364 *
1365 * Returns 0 on success, -EFAULT on failure.
1366 */
8dd3557a
HD
1367static int replace_page(struct vm_area_struct *vma, struct page *page,
1368 struct page *kpage, pte_t orig_pte)
31dbd01f 1369{
97729534 1370 struct folio *kfolio = page_folio(kpage);
31dbd01f 1371 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1372 struct folio *folio;
31dbd01f 1373 pmd_t *pmd;
50722804 1374 pmd_t pmde;
31dbd01f 1375 pte_t *ptep;
e86c59b1 1376 pte_t newpte;
31dbd01f
IE
1377 spinlock_t *ptl;
1378 unsigned long addr;
31dbd01f 1379 int err = -EFAULT;
ac46d4f3 1380 struct mmu_notifier_range range;
31dbd01f 1381
8dd3557a 1382 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1383 if (addr == -EFAULT)
1384 goto out;
1385
6219049a
BL
1386 pmd = mm_find_pmd(mm, addr);
1387 if (!pmd)
31dbd01f 1388 goto out;
50722804
ZK
1389 /*
1390 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1391 * without holding anon_vma lock for write. So when looking for a
1392 * genuine pmde (in which to find pte), test present and !THP together.
1393 */
26e1a0c3 1394 pmde = pmdp_get_lockless(pmd);
50722804
ZK
1395 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1396 goto out;
31dbd01f 1397
7d4a8be0 1398 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
6f4f13e8 1399 addr + PAGE_SIZE);
ac46d4f3 1400 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1401
31dbd01f 1402 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
04dee9e8
HD
1403 if (!ptep)
1404 goto out_mn;
c33c7948 1405 if (!pte_same(ptep_get(ptep), orig_pte)) {
31dbd01f 1406 pte_unmap_unlock(ptep, ptl);
6bdb913f 1407 goto out_mn;
31dbd01f 1408 }
6c287605 1409 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
97729534
DH
1410 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1411 kfolio);
31dbd01f 1412
e86c59b1
CI
1413 /*
1414 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1415 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1416 */
1417 if (!is_zero_pfn(page_to_pfn(kpage))) {
97729534
DH
1418 folio_get(kfolio);
1419 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1420 newpte = mk_pte(kpage, vma->vm_page_prot);
1421 } else {
79271476 1422 /*
1423 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1424 * we can easily track all KSM-placed zero pages by checking if
1425 * the dirty bit in zero page's PTE is set.
1426 */
1427 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
c2dc78b8 1428 ksm_map_zero_page(mm);
a38c015f
CI
1429 /*
1430 * We're replacing an anonymous page with a zero page, which is
1431 * not anonymous. We need to do proper accounting otherwise we
1432 * will get wrong values in /proc, and a BUG message in dmesg
1433 * when tearing down the mm.
1434 */
1435 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1436 }
31dbd01f 1437
c33c7948 1438 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
0f10851e
JG
1439 /*
1440 * No need to notify as we are replacing a read only page with another
1441 * read only page with the same content.
1442 *
ee65728e 1443 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1444 */
1445 ptep_clear_flush(vma, addr, ptep);
f7842747 1446 set_pte_at(mm, addr, ptep, newpte);
31dbd01f 1447
b4e6f66e 1448 folio = page_folio(page);
18e8612e 1449 folio_remove_rmap_pte(folio, page, vma);
b4e6f66e
MWO
1450 if (!folio_mapped(folio))
1451 folio_free_swap(folio);
1452 folio_put(folio);
31dbd01f
IE
1453
1454 pte_unmap_unlock(ptep, ptl);
1455 err = 0;
6bdb913f 1456out_mn:
ac46d4f3 1457 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1458out:
1459 return err;
1460}
1461
1462/*
1463 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1464 * @vma: the vma that holds the pte pointing to page
1465 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1466 * @kpage: the PageKsm page that we want to map instead of page,
1467 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1468 *
1469 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1470 */
1471static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1472 struct page *page, struct page *kpage)
31dbd01f
IE
1473{
1474 pte_t orig_pte = __pte(0);
1475 int err = -EFAULT;
1476
db114b83
HD
1477 if (page == kpage) /* ksm page forked */
1478 return 0;
1479
8dd3557a 1480 if (!PageAnon(page))
31dbd01f
IE
1481 goto out;
1482
31dbd01f
IE
1483 /*
1484 * We need the page lock to read a stable PageSwapCache in
1485 * write_protect_page(). We use trylock_page() instead of
1486 * lock_page() because we don't want to wait here - we
1487 * prefer to continue scanning and merging different pages,
1488 * then come back to this page when it is unlocked.
1489 */
8dd3557a 1490 if (!trylock_page(page))
31e855ea 1491 goto out;
f765f540
KS
1492
1493 if (PageTransCompound(page)) {
a7306c34 1494 if (split_huge_page(page))
f765f540
KS
1495 goto out_unlock;
1496 }
1497
31dbd01f
IE
1498 /*
1499 * If this anonymous page is mapped only here, its pte may need
1500 * to be write-protected. If it's mapped elsewhere, all of its
1501 * ptes are necessarily already write-protected. But in either
1502 * case, we need to lock and check page_count is not raised.
1503 */
40d707f3 1504 if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
80e14822
HD
1505 if (!kpage) {
1506 /*
1507 * While we hold page lock, upgrade page from
1508 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1509 * stable_tree_insert() will update stable_node.
1510 */
452e862f 1511 folio_set_stable_node(page_folio(page), NULL);
80e14822 1512 mark_page_accessed(page);
337ed7eb
MK
1513 /*
1514 * Page reclaim just frees a clean page with no dirty
1515 * ptes: make sure that the ksm page would be swapped.
1516 */
1517 if (!PageDirty(page))
1518 SetPageDirty(page);
80e14822
HD
1519 err = 0;
1520 } else if (pages_identical(page, kpage))
1521 err = replace_page(vma, page, kpage, orig_pte);
1522 }
31dbd01f 1523
f765f540 1524out_unlock:
8dd3557a 1525 unlock_page(page);
31dbd01f
IE
1526out:
1527 return err;
1528}
1529
81464e30
HD
1530/*
1531 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1532 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1533 *
1534 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1535 */
21fbd591 1536static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1537 struct page *page, struct page *kpage)
81464e30 1538{
8dd3557a 1539 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1540 struct vm_area_struct *vma;
1541 int err = -EFAULT;
1542
d8ed45c5 1543 mmap_read_lock(mm);
85c6e8dd
AA
1544 vma = find_mergeable_vma(mm, rmap_item->address);
1545 if (!vma)
81464e30
HD
1546 goto out;
1547
8dd3557a 1548 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1549 if (err)
1550 goto out;
1551
bc56620b
HD
1552 /* Unstable nid is in union with stable anon_vma: remove first */
1553 remove_rmap_item_from_tree(rmap_item);
1554
c1e8d7c6 1555 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1556 rmap_item->anon_vma = vma->anon_vma;
1557 get_anon_vma(vma->anon_vma);
81464e30 1558out:
d8ed45c5 1559 mmap_read_unlock(mm);
739100c8
SR
1560 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1561 rmap_item, mm, err);
81464e30
HD
1562 return err;
1563}
1564
31dbd01f
IE
1565/*
1566 * try_to_merge_two_pages - take two identical pages and prepare them
1567 * to be merged into one page.
1568 *
8dd3557a
HD
1569 * This function returns the kpage if we successfully merged two identical
1570 * pages into one ksm page, NULL otherwise.
31dbd01f 1571 *
80e14822 1572 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1573 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1574 */
21fbd591 1575static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1576 struct page *page,
21fbd591 1577 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1578 struct page *tree_page)
31dbd01f 1579{
80e14822 1580 int err;
31dbd01f 1581
80e14822 1582 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1583 if (!err) {
8dd3557a 1584 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1585 tree_page, page);
31dbd01f 1586 /*
81464e30
HD
1587 * If that fails, we have a ksm page with only one pte
1588 * pointing to it: so break it.
31dbd01f 1589 */
4035c07a 1590 if (err)
8dd3557a 1591 break_cow(rmap_item);
31dbd01f 1592 }
80e14822 1593 return err ? NULL : page;
31dbd01f
IE
1594}
1595
2c653d0e 1596static __always_inline
21fbd591 1597bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1598{
1599 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1600 /*
1601 * Check that at least one mapping still exists, otherwise
1602 * there's no much point to merge and share with this
1603 * stable_node, as the underlying tree_page of the other
1604 * sharer is going to be freed soon.
1605 */
1606 return stable_node->rmap_hlist_len &&
1607 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1608}
1609
1610static __always_inline
21fbd591 1611bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1612{
1613 return __is_page_sharing_candidate(stable_node, 0);
1614}
1615
79899cce
AS
1616static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1617 struct ksm_stable_node **_stable_node,
1618 struct rb_root *root,
1619 bool prune_stale_stable_nodes)
2c653d0e 1620{
21fbd591 1621 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1622 struct hlist_node *hlist_safe;
6f528de2 1623 struct folio *folio, *tree_folio = NULL;
2c653d0e
AA
1624 int nr = 0;
1625 int found_rmap_hlist_len;
1626
1627 if (!prune_stale_stable_nodes ||
1628 time_before(jiffies, stable_node->chain_prune_time +
1629 msecs_to_jiffies(
1630 ksm_stable_node_chains_prune_millisecs)))
1631 prune_stale_stable_nodes = false;
1632 else
1633 stable_node->chain_prune_time = jiffies;
1634
1635 hlist_for_each_entry_safe(dup, hlist_safe,
1636 &stable_node->hlist, hlist_dup) {
1637 cond_resched();
1638 /*
1639 * We must walk all stable_node_dup to prune the stale
1640 * stable nodes during lookup.
1641 *
6f528de2 1642 * ksm_get_folio can drop the nodes from the
2c653d0e
AA
1643 * stable_node->hlist if they point to freed pages
1644 * (that's why we do a _safe walk). The "dup"
1645 * stable_node parameter itself will be freed from
1646 * under us if it returns NULL.
1647 */
85b67b01 1648 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
6f528de2 1649 if (!folio)
2c653d0e
AA
1650 continue;
1651 nr += 1;
1652 if (is_page_sharing_candidate(dup)) {
1653 if (!found ||
1654 dup->rmap_hlist_len > found_rmap_hlist_len) {
1655 if (found)
6f528de2 1656 folio_put(tree_folio);
2c653d0e
AA
1657 found = dup;
1658 found_rmap_hlist_len = found->rmap_hlist_len;
6f528de2 1659 tree_folio = folio;
2c653d0e 1660
8dc5ffcd 1661 /* skip put_page for found dup */
2c653d0e
AA
1662 if (!prune_stale_stable_nodes)
1663 break;
2c653d0e
AA
1664 continue;
1665 }
1666 }
6f528de2 1667 folio_put(folio);
2c653d0e
AA
1668 }
1669
80b18dfa
AA
1670 if (found) {
1671 /*
1672 * nr is counting all dups in the chain only if
1673 * prune_stale_stable_nodes is true, otherwise we may
1674 * break the loop at nr == 1 even if there are
1675 * multiple entries.
1676 */
1677 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1678 /*
1679 * If there's not just one entry it would
1680 * corrupt memory, better BUG_ON. In KSM
1681 * context with no lock held it's not even
1682 * fatal.
1683 */
1684 BUG_ON(stable_node->hlist.first->next);
1685
1686 /*
1687 * There's just one entry and it is below the
1688 * deduplication limit so drop the chain.
1689 */
1690 rb_replace_node(&stable_node->node, &found->node,
1691 root);
1692 free_stable_node(stable_node);
1693 ksm_stable_node_chains--;
1694 ksm_stable_node_dups--;
b4fecc67 1695 /*
0ba1d0f7
AA
1696 * NOTE: the caller depends on the stable_node
1697 * to be equal to stable_node_dup if the chain
1698 * was collapsed.
b4fecc67 1699 */
0ba1d0f7
AA
1700 *_stable_node = found;
1701 /*
f0953a1b 1702 * Just for robustness, as stable_node is
0ba1d0f7
AA
1703 * otherwise left as a stable pointer, the
1704 * compiler shall optimize it away at build
1705 * time.
1706 */
1707 stable_node = NULL;
80b18dfa
AA
1708 } else if (stable_node->hlist.first != &found->hlist_dup &&
1709 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1710 /*
80b18dfa
AA
1711 * If the found stable_node dup can accept one
1712 * more future merge (in addition to the one
1713 * that is underway) and is not at the head of
1714 * the chain, put it there so next search will
1715 * be quicker in the !prune_stale_stable_nodes
1716 * case.
1717 *
1718 * NOTE: it would be inaccurate to use nr > 1
1719 * instead of checking the hlist.first pointer
1720 * directly, because in the
1721 * prune_stale_stable_nodes case "nr" isn't
1722 * the position of the found dup in the chain,
1723 * but the total number of dups in the chain.
2c653d0e
AA
1724 */
1725 hlist_del(&found->hlist_dup);
1726 hlist_add_head(&found->hlist_dup,
1727 &stable_node->hlist);
1728 }
1729 }
1730
8dc5ffcd 1731 *_stable_node_dup = found;
79899cce 1732 return tree_folio;
2c653d0e
AA
1733}
1734
21fbd591 1735static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1736 struct rb_root *root)
1737{
1738 if (!is_stable_node_chain(stable_node))
1739 return stable_node;
1740 if (hlist_empty(&stable_node->hlist)) {
1741 free_stable_node_chain(stable_node, root);
1742 return NULL;
1743 }
1744 return hlist_entry(stable_node->hlist.first,
1745 typeof(*stable_node), hlist_dup);
1746}
1747
8dc5ffcd 1748/*
79899cce 1749 * Like for ksm_get_folio, this function can free the *_stable_node and
8dc5ffcd
AA
1750 * *_stable_node_dup if the returned tree_page is NULL.
1751 *
1752 * It can also free and overwrite *_stable_node with the found
1753 * stable_node_dup if the chain is collapsed (in which case
1754 * *_stable_node will be equal to *_stable_node_dup like if the chain
1755 * never existed). It's up to the caller to verify tree_page is not
1756 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1757 *
1758 * *_stable_node_dup is really a second output parameter of this
1759 * function and will be overwritten in all cases, the caller doesn't
1760 * need to initialize it.
1761 */
79899cce
AS
1762static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1763 struct ksm_stable_node **_stable_node,
1764 struct rb_root *root,
1765 bool prune_stale_stable_nodes)
2c653d0e 1766{
21fbd591 1767 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1768 if (!is_stable_node_chain(stable_node)) {
1769 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1770 *_stable_node_dup = stable_node;
85b67b01 1771 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
2c653d0e 1772 }
8dc5ffcd
AA
1773 /*
1774 * _stable_node_dup set to NULL means the stable_node
1775 * reached the ksm_max_page_sharing limit.
1776 */
1777 *_stable_node_dup = NULL;
2c653d0e
AA
1778 return NULL;
1779 }
8dc5ffcd 1780 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1781 prune_stale_stable_nodes);
1782}
1783
79899cce
AS
1784static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1785 struct ksm_stable_node **s_n,
1786 struct rb_root *root)
2c653d0e 1787{
8dc5ffcd 1788 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1789}
1790
79899cce
AS
1791static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1792 struct ksm_stable_node *s_n,
1793 struct rb_root *root)
2c653d0e 1794{
21fbd591 1795 struct ksm_stable_node *old_stable_node = s_n;
79899cce 1796 struct folio *tree_folio;
8dc5ffcd 1797
79899cce 1798 tree_folio = __stable_node_chain(s_n_d, &s_n, root, false);
8dc5ffcd
AA
1799 /* not pruning dups so s_n cannot have changed */
1800 VM_BUG_ON(s_n != old_stable_node);
79899cce 1801 return tree_folio;
2c653d0e
AA
1802}
1803
31dbd01f 1804/*
8dd3557a 1805 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1806 *
1807 * This function checks if there is a page inside the stable tree
1808 * with identical content to the page that we are scanning right now.
1809 *
7b6ba2c7 1810 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1811 * NULL otherwise.
1812 */
62b61f61 1813static struct page *stable_tree_search(struct page *page)
31dbd01f 1814{
90bd6fd3 1815 int nid;
ef53d16c 1816 struct rb_root *root;
4146d2d6
HD
1817 struct rb_node **new;
1818 struct rb_node *parent;
21fbd591
QZ
1819 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1820 struct ksm_stable_node *page_node;
79899cce 1821 struct folio *folio;
31dbd01f 1822
79899cce
AS
1823 folio = page_folio(page);
1824 page_node = folio_stable_node(folio);
4146d2d6
HD
1825 if (page_node && page_node->head != &migrate_nodes) {
1826 /* ksm page forked */
79899cce
AS
1827 folio_get(folio);
1828 return &folio->page;
08beca44
HD
1829 }
1830
79899cce 1831 nid = get_kpfn_nid(folio_pfn(folio));
ef53d16c 1832 root = root_stable_tree + nid;
4146d2d6 1833again:
ef53d16c 1834 new = &root->rb_node;
4146d2d6 1835 parent = NULL;
90bd6fd3 1836
4146d2d6 1837 while (*new) {
79899cce 1838 struct folio *tree_folio;
31dbd01f
IE
1839 int ret;
1840
08beca44 1841 cond_resched();
21fbd591 1842 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1843 stable_node_any = NULL;
79899cce 1844 tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1845 /*
1846 * NOTE: stable_node may have been freed by
1847 * chain_prune() if the returned stable_node_dup is
1848 * not NULL. stable_node_dup may have been inserted in
1849 * the rbtree instead as a regular stable_node (in
1850 * order to collapse the stable_node chain if a single
0ba1d0f7 1851 * stable_node dup was found in it). In such case the
3413b2c8 1852 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1853 * to the stable_node_dup that was collapsed in the
1854 * stable rbtree and stable_node will be equal to
1855 * stable_node_dup like if the chain never existed.
b4fecc67 1856 */
2c653d0e
AA
1857 if (!stable_node_dup) {
1858 /*
1859 * Either all stable_node dups were full in
1860 * this stable_node chain, or this chain was
1861 * empty and should be rb_erased.
1862 */
1863 stable_node_any = stable_node_dup_any(stable_node,
1864 root);
1865 if (!stable_node_any) {
1866 /* rb_erase just run */
1867 goto again;
1868 }
1869 /*
1870 * Take any of the stable_node dups page of
1871 * this stable_node chain to let the tree walk
1872 * continue. All KSM pages belonging to the
1873 * stable_node dups in a stable_node chain
1874 * have the same content and they're
457aef94 1875 * write protected at all times. Any will work
2c653d0e
AA
1876 * fine to continue the walk.
1877 */
79899cce 1878 tree_folio = ksm_get_folio(stable_node_any,
85b67b01 1879 KSM_GET_FOLIO_NOLOCK);
2c653d0e
AA
1880 }
1881 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
79899cce 1882 if (!tree_folio) {
f2e5ff85
AA
1883 /*
1884 * If we walked over a stale stable_node,
79899cce 1885 * ksm_get_folio() will call rb_erase() and it
f2e5ff85
AA
1886 * may rebalance the tree from under us. So
1887 * restart the search from scratch. Returning
1888 * NULL would be safe too, but we'd generate
1889 * false negative insertions just because some
1890 * stable_node was stale.
1891 */
1892 goto again;
1893 }
31dbd01f 1894
79899cce
AS
1895 ret = memcmp_pages(page, &tree_folio->page);
1896 folio_put(tree_folio);
31dbd01f 1897
4146d2d6 1898 parent = *new;
c8d6553b 1899 if (ret < 0)
4146d2d6 1900 new = &parent->rb_left;
c8d6553b 1901 else if (ret > 0)
4146d2d6 1902 new = &parent->rb_right;
c8d6553b 1903 else {
2c653d0e
AA
1904 if (page_node) {
1905 VM_BUG_ON(page_node->head != &migrate_nodes);
1906 /*
2aa33912
DH
1907 * If the mapcount of our migrated KSM folio is
1908 * at most 1, we can merge it with another
1909 * KSM folio where we know that we have space
1910 * for one more mapping without exceeding the
1911 * ksm_max_page_sharing limit: see
1912 * chain_prune(). This way, we can avoid adding
1913 * this stable node to the chain.
2c653d0e 1914 */
2aa33912 1915 if (folio_mapcount(folio) > 1)
2c653d0e
AA
1916 goto chain_append;
1917 }
1918
1919 if (!stable_node_dup) {
1920 /*
1921 * If the stable_node is a chain and
1922 * we got a payload match in memcmp
1923 * but we cannot merge the scanned
1924 * page in any of the existing
1925 * stable_node dups because they're
1926 * all full, we need to wait the
1927 * scanned page to find itself a match
1928 * in the unstable tree to create a
1929 * brand new KSM page to add later to
1930 * the dups of this stable_node.
1931 */
1932 return NULL;
1933 }
1934
c8d6553b
HD
1935 /*
1936 * Lock and unlock the stable_node's page (which
1937 * might already have been migrated) so that page
1938 * migration is sure to notice its raised count.
1939 * It would be more elegant to return stable_node
1940 * than kpage, but that involves more changes.
1941 */
79899cce 1942 tree_folio = ksm_get_folio(stable_node_dup,
85b67b01 1943 KSM_GET_FOLIO_TRYLOCK);
2cee57d1 1944
79899cce 1945 if (PTR_ERR(tree_folio) == -EBUSY)
2cee57d1
YS
1946 return ERR_PTR(-EBUSY);
1947
79899cce 1948 if (unlikely(!tree_folio))
2c653d0e
AA
1949 /*
1950 * The tree may have been rebalanced,
1951 * so re-evaluate parent and new.
1952 */
4146d2d6 1953 goto again;
79899cce 1954 folio_unlock(tree_folio);
2c653d0e
AA
1955
1956 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1957 NUMA(stable_node_dup->nid)) {
79899cce 1958 folio_put(tree_folio);
2c653d0e
AA
1959 goto replace;
1960 }
79899cce 1961 return &tree_folio->page;
c8d6553b 1962 }
31dbd01f
IE
1963 }
1964
4146d2d6
HD
1965 if (!page_node)
1966 return NULL;
1967
1968 list_del(&page_node->list);
1969 DO_NUMA(page_node->nid = nid);
1970 rb_link_node(&page_node->node, parent, new);
ef53d16c 1971 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1972out:
1973 if (is_page_sharing_candidate(page_node)) {
79899cce
AS
1974 folio_get(folio);
1975 return &folio->page;
2c653d0e
AA
1976 } else
1977 return NULL;
4146d2d6
HD
1978
1979replace:
b4fecc67
AA
1980 /*
1981 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1982 * stable_node has been updated to be the new regular
1983 * stable_node. A collapse of the chain is indistinguishable
1984 * from the case there was no chain in the stable
1985 * rbtree. Otherwise stable_node is the chain and
1986 * stable_node_dup is the dup to replace.
b4fecc67 1987 */
0ba1d0f7 1988 if (stable_node_dup == stable_node) {
b4fecc67
AA
1989 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1990 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1991 /* there is no chain */
1992 if (page_node) {
1993 VM_BUG_ON(page_node->head != &migrate_nodes);
1994 list_del(&page_node->list);
1995 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1996 rb_replace_node(&stable_node_dup->node,
1997 &page_node->node,
2c653d0e
AA
1998 root);
1999 if (is_page_sharing_candidate(page_node))
79899cce 2000 folio_get(folio);
2c653d0e 2001 else
79899cce 2002 folio = NULL;
2c653d0e 2003 } else {
b4fecc67 2004 rb_erase(&stable_node_dup->node, root);
79899cce 2005 folio = NULL;
2c653d0e 2006 }
4146d2d6 2007 } else {
2c653d0e
AA
2008 VM_BUG_ON(!is_stable_node_chain(stable_node));
2009 __stable_node_dup_del(stable_node_dup);
2010 if (page_node) {
2011 VM_BUG_ON(page_node->head != &migrate_nodes);
2012 list_del(&page_node->list);
2013 DO_NUMA(page_node->nid = nid);
2014 stable_node_chain_add_dup(page_node, stable_node);
2015 if (is_page_sharing_candidate(page_node))
79899cce 2016 folio_get(folio);
2c653d0e 2017 else
79899cce 2018 folio = NULL;
2c653d0e 2019 } else {
79899cce 2020 folio = NULL;
2c653d0e 2021 }
4146d2d6 2022 }
2c653d0e
AA
2023 stable_node_dup->head = &migrate_nodes;
2024 list_add(&stable_node_dup->list, stable_node_dup->head);
79899cce 2025 return &folio->page;
2c653d0e
AA
2026
2027chain_append:
2028 /* stable_node_dup could be null if it reached the limit */
2029 if (!stable_node_dup)
2030 stable_node_dup = stable_node_any;
b4fecc67
AA
2031 /*
2032 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
2033 * stable_node has been updated to be the new regular
2034 * stable_node. A collapse of the chain is indistinguishable
2035 * from the case there was no chain in the stable
2036 * rbtree. Otherwise stable_node is the chain and
2037 * stable_node_dup is the dup to replace.
b4fecc67 2038 */
0ba1d0f7 2039 if (stable_node_dup == stable_node) {
b4fecc67 2040 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2041 /* chain is missing so create it */
2042 stable_node = alloc_stable_node_chain(stable_node_dup,
2043 root);
2044 if (!stable_node)
2045 return NULL;
2046 }
2047 /*
2048 * Add this stable_node dup that was
2049 * migrated to the stable_node chain
2050 * of the current nid for this page
2051 * content.
2052 */
b4fecc67 2053 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2054 VM_BUG_ON(page_node->head != &migrate_nodes);
2055 list_del(&page_node->list);
2056 DO_NUMA(page_node->nid = nid);
2057 stable_node_chain_add_dup(page_node, stable_node);
2058 goto out;
31dbd01f
IE
2059}
2060
2061/*
e850dcf5 2062 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
2063 * into the stable tree.
2064 *
7b6ba2c7
HD
2065 * This function returns the stable tree node just allocated on success,
2066 * NULL otherwise.
31dbd01f 2067 */
79899cce 2068static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
31dbd01f 2069{
90bd6fd3
PH
2070 int nid;
2071 unsigned long kpfn;
ef53d16c 2072 struct rb_root *root;
90bd6fd3 2073 struct rb_node **new;
f2e5ff85 2074 struct rb_node *parent;
21fbd591 2075 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 2076 bool need_chain = false;
31dbd01f 2077
79899cce 2078 kpfn = folio_pfn(kfolio);
90bd6fd3 2079 nid = get_kpfn_nid(kpfn);
ef53d16c 2080 root = root_stable_tree + nid;
f2e5ff85
AA
2081again:
2082 parent = NULL;
ef53d16c 2083 new = &root->rb_node;
90bd6fd3 2084
31dbd01f 2085 while (*new) {
79899cce 2086 struct folio *tree_folio;
31dbd01f
IE
2087 int ret;
2088
08beca44 2089 cond_resched();
21fbd591 2090 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 2091 stable_node_any = NULL;
79899cce 2092 tree_folio = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
2093 if (!stable_node_dup) {
2094 /*
2095 * Either all stable_node dups were full in
2096 * this stable_node chain, or this chain was
2097 * empty and should be rb_erased.
2098 */
2099 stable_node_any = stable_node_dup_any(stable_node,
2100 root);
2101 if (!stable_node_any) {
2102 /* rb_erase just run */
2103 goto again;
2104 }
2105 /*
2106 * Take any of the stable_node dups page of
2107 * this stable_node chain to let the tree walk
2108 * continue. All KSM pages belonging to the
2109 * stable_node dups in a stable_node chain
2110 * have the same content and they're
457aef94 2111 * write protected at all times. Any will work
2c653d0e
AA
2112 * fine to continue the walk.
2113 */
79899cce 2114 tree_folio = ksm_get_folio(stable_node_any,
85b67b01 2115 KSM_GET_FOLIO_NOLOCK);
2c653d0e
AA
2116 }
2117 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
79899cce 2118 if (!tree_folio) {
f2e5ff85
AA
2119 /*
2120 * If we walked over a stale stable_node,
79899cce 2121 * ksm_get_folio() will call rb_erase() and it
f2e5ff85
AA
2122 * may rebalance the tree from under us. So
2123 * restart the search from scratch. Returning
2124 * NULL would be safe too, but we'd generate
2125 * false negative insertions just because some
2126 * stable_node was stale.
2127 */
2128 goto again;
2129 }
31dbd01f 2130
79899cce
AS
2131 ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2132 folio_put(tree_folio);
31dbd01f
IE
2133
2134 parent = *new;
2135 if (ret < 0)
2136 new = &parent->rb_left;
2137 else if (ret > 0)
2138 new = &parent->rb_right;
2139 else {
2c653d0e
AA
2140 need_chain = true;
2141 break;
31dbd01f
IE
2142 }
2143 }
2144
2c653d0e
AA
2145 stable_node_dup = alloc_stable_node();
2146 if (!stable_node_dup)
7b6ba2c7 2147 return NULL;
31dbd01f 2148
2c653d0e
AA
2149 INIT_HLIST_HEAD(&stable_node_dup->hlist);
2150 stable_node_dup->kpfn = kpfn;
2c653d0e
AA
2151 stable_node_dup->rmap_hlist_len = 0;
2152 DO_NUMA(stable_node_dup->nid = nid);
2153 if (!need_chain) {
2154 rb_link_node(&stable_node_dup->node, parent, new);
2155 rb_insert_color(&stable_node_dup->node, root);
2156 } else {
2157 if (!is_stable_node_chain(stable_node)) {
21fbd591 2158 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
2159 /* chain is missing so create it */
2160 stable_node = alloc_stable_node_chain(orig, root);
2161 if (!stable_node) {
2162 free_stable_node(stable_node_dup);
2163 return NULL;
2164 }
2165 }
2166 stable_node_chain_add_dup(stable_node_dup, stable_node);
2167 }
08beca44 2168
90e82349
CZ
2169 folio_set_stable_node(kfolio, stable_node_dup);
2170
2c653d0e 2171 return stable_node_dup;
31dbd01f
IE
2172}
2173
2174/*
8dd3557a
HD
2175 * unstable_tree_search_insert - search for identical page,
2176 * else insert rmap_item into the unstable tree.
31dbd01f
IE
2177 *
2178 * This function searches for a page in the unstable tree identical to the
2179 * page currently being scanned; and if no identical page is found in the
2180 * tree, we insert rmap_item as a new object into the unstable tree.
2181 *
2182 * This function returns pointer to rmap_item found to be identical
2183 * to the currently scanned page, NULL otherwise.
2184 *
2185 * This function does both searching and inserting, because they share
2186 * the same walking algorithm in an rbtree.
2187 */
8dd3557a 2188static
21fbd591 2189struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
2190 struct page *page,
2191 struct page **tree_pagep)
31dbd01f 2192{
90bd6fd3
PH
2193 struct rb_node **new;
2194 struct rb_root *root;
31dbd01f 2195 struct rb_node *parent = NULL;
90bd6fd3
PH
2196 int nid;
2197
2198 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 2199 root = root_unstable_tree + nid;
90bd6fd3 2200 new = &root->rb_node;
31dbd01f
IE
2201
2202 while (*new) {
21fbd591 2203 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2204 struct page *tree_page;
31dbd01f
IE
2205 int ret;
2206
d178f27f 2207 cond_resched();
21fbd591 2208 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 2209 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 2210 if (!tree_page)
31dbd01f
IE
2211 return NULL;
2212
2213 /*
8dd3557a 2214 * Don't substitute a ksm page for a forked page.
31dbd01f 2215 */
8dd3557a
HD
2216 if (page == tree_page) {
2217 put_page(tree_page);
31dbd01f
IE
2218 return NULL;
2219 }
2220
8dd3557a 2221 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
2222
2223 parent = *new;
2224 if (ret < 0) {
8dd3557a 2225 put_page(tree_page);
31dbd01f
IE
2226 new = &parent->rb_left;
2227 } else if (ret > 0) {
8dd3557a 2228 put_page(tree_page);
31dbd01f 2229 new = &parent->rb_right;
b599cbdf
HD
2230 } else if (!ksm_merge_across_nodes &&
2231 page_to_nid(tree_page) != nid) {
2232 /*
2233 * If tree_page has been migrated to another NUMA node,
2234 * it will be flushed out and put in the right unstable
2235 * tree next time: only merge with it when across_nodes.
2236 */
2237 put_page(tree_page);
2238 return NULL;
31dbd01f 2239 } else {
8dd3557a 2240 *tree_pagep = tree_page;
31dbd01f
IE
2241 return tree_rmap_item;
2242 }
2243 }
2244
7b6ba2c7 2245 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 2246 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 2247 DO_NUMA(rmap_item->nid = nid);
31dbd01f 2248 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 2249 rb_insert_color(&rmap_item->node, root);
31dbd01f 2250
473b0ce4 2251 ksm_pages_unshared++;
31dbd01f
IE
2252 return NULL;
2253}
2254
2255/*
2256 * stable_tree_append - add another rmap_item to the linked list of
2257 * rmap_items hanging off a given node of the stable tree, all sharing
2258 * the same ksm page.
2259 */
21fbd591
QZ
2260static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2261 struct ksm_stable_node *stable_node,
2c653d0e 2262 bool max_page_sharing_bypass)
31dbd01f 2263{
2c653d0e
AA
2264 /*
2265 * rmap won't find this mapping if we don't insert the
2266 * rmap_item in the right stable_node
2267 * duplicate. page_migration could break later if rmap breaks,
2268 * so we can as well crash here. We really need to check for
2269 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2270 * for other negative values as an underflow if detected here
2c653d0e
AA
2271 * for the first time (and not when decreasing rmap_hlist_len)
2272 * would be sign of memory corruption in the stable_node.
2273 */
2274 BUG_ON(stable_node->rmap_hlist_len < 0);
2275
2276 stable_node->rmap_hlist_len++;
2277 if (!max_page_sharing_bypass)
2278 /* possibly non fatal but unexpected overflow, only warn */
2279 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2280 ksm_max_page_sharing);
2281
7b6ba2c7 2282 rmap_item->head = stable_node;
31dbd01f 2283 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2284 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2285
7b6ba2c7
HD
2286 if (rmap_item->hlist.next)
2287 ksm_pages_sharing++;
2288 else
2289 ksm_pages_shared++;
76093853 2290
2291 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2292}
2293
2294/*
81464e30
HD
2295 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2296 * if not, compare checksum to previous and if it's the same, see if page can
2297 * be inserted into the unstable tree, or merged with a page already there and
2298 * both transferred to the stable tree.
31dbd01f
IE
2299 *
2300 * @page: the page that we are searching identical page to.
2301 * @rmap_item: the reverse mapping into the virtual address of this page
2302 */
21fbd591 2303static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2304{
4b22927f 2305 struct mm_struct *mm = rmap_item->mm;
21fbd591 2306 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2307 struct page *tree_page = NULL;
21fbd591 2308 struct ksm_stable_node *stable_node;
8dd3557a 2309 struct page *kpage;
31dbd01f
IE
2310 unsigned int checksum;
2311 int err;
2c653d0e 2312 bool max_page_sharing_bypass = false;
31dbd01f 2313
4146d2d6
HD
2314 stable_node = page_stable_node(page);
2315 if (stable_node) {
2316 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2317 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2318 NUMA(stable_node->nid)) {
2319 stable_node_dup_del(stable_node);
4146d2d6
HD
2320 stable_node->head = &migrate_nodes;
2321 list_add(&stable_node->list, stable_node->head);
2322 }
2323 if (stable_node->head != &migrate_nodes &&
2324 rmap_item->head == stable_node)
2325 return;
2c653d0e
AA
2326 /*
2327 * If it's a KSM fork, allow it to go over the sharing limit
2328 * without warnings.
2329 */
2330 if (!is_page_sharing_candidate(stable_node))
2331 max_page_sharing_bypass = true;
4146d2d6 2332 }
31dbd01f
IE
2333
2334 /* We first start with searching the page inside the stable tree */
62b61f61 2335 kpage = stable_tree_search(page);
4146d2d6
HD
2336 if (kpage == page && rmap_item->head == stable_node) {
2337 put_page(kpage);
2338 return;
2339 }
2340
2341 remove_rmap_item_from_tree(rmap_item);
2342
62b61f61 2343 if (kpage) {
2cee57d1
YS
2344 if (PTR_ERR(kpage) == -EBUSY)
2345 return;
2346
08beca44 2347 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2348 if (!err) {
2349 /*
2350 * The page was successfully merged:
2351 * add its rmap_item to the stable tree.
2352 */
5ad64688 2353 lock_page(kpage);
2c653d0e
AA
2354 stable_tree_append(rmap_item, page_stable_node(kpage),
2355 max_page_sharing_bypass);
5ad64688 2356 unlock_page(kpage);
31dbd01f 2357 }
8dd3557a 2358 put_page(kpage);
31dbd01f
IE
2359 return;
2360 }
2361
2362 /*
4035c07a
HD
2363 * If the hash value of the page has changed from the last time
2364 * we calculated it, this page is changing frequently: therefore we
2365 * don't want to insert it in the unstable tree, and we don't want
2366 * to waste our time searching for something identical to it there.
31dbd01f
IE
2367 */
2368 checksum = calc_checksum(page);
2369 if (rmap_item->oldchecksum != checksum) {
2370 rmap_item->oldchecksum = checksum;
2371 return;
2372 }
2373
e86c59b1
CI
2374 /*
2375 * Same checksum as an empty page. We attempt to merge it with the
2376 * appropriate zero page if the user enabled this via sysfs.
2377 */
2378 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2379 struct vm_area_struct *vma;
2380
d8ed45c5 2381 mmap_read_lock(mm);
4b22927f 2382 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2383 if (vma) {
2384 err = try_to_merge_one_page(vma, page,
2385 ZERO_PAGE(rmap_item->address));
739100c8
SR
2386 trace_ksm_merge_one_page(
2387 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2388 rmap_item, mm, err);
56df70a6
MS
2389 } else {
2390 /*
2391 * If the vma is out of date, we do not need to
2392 * continue.
2393 */
2394 err = 0;
2395 }
d8ed45c5 2396 mmap_read_unlock(mm);
e86c59b1
CI
2397 /*
2398 * In case of failure, the page was not really empty, so we
2399 * need to continue. Otherwise we're done.
2400 */
2401 if (!err)
2402 return;
2403 }
8dd3557a
HD
2404 tree_rmap_item =
2405 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2406 if (tree_rmap_item) {
77da2ba0
CI
2407 bool split;
2408
8dd3557a
HD
2409 kpage = try_to_merge_two_pages(rmap_item, page,
2410 tree_rmap_item, tree_page);
77da2ba0
CI
2411 /*
2412 * If both pages we tried to merge belong to the same compound
2413 * page, then we actually ended up increasing the reference
2414 * count of the same compound page twice, and split_huge_page
2415 * failed.
2416 * Here we set a flag if that happened, and we use it later to
2417 * try split_huge_page again. Since we call put_page right
2418 * afterwards, the reference count will be correct and
2419 * split_huge_page should succeed.
2420 */
2421 split = PageTransCompound(page)
2422 && compound_head(page) == compound_head(tree_page);
8dd3557a 2423 put_page(tree_page);
8dd3557a 2424 if (kpage) {
bc56620b
HD
2425 /*
2426 * The pages were successfully merged: insert new
2427 * node in the stable tree and add both rmap_items.
2428 */
5ad64688 2429 lock_page(kpage);
79899cce 2430 stable_node = stable_tree_insert(page_folio(kpage));
7b6ba2c7 2431 if (stable_node) {
2c653d0e
AA
2432 stable_tree_append(tree_rmap_item, stable_node,
2433 false);
2434 stable_tree_append(rmap_item, stable_node,
2435 false);
7b6ba2c7 2436 }
5ad64688 2437 unlock_page(kpage);
7b6ba2c7 2438
31dbd01f
IE
2439 /*
2440 * If we fail to insert the page into the stable tree,
2441 * we will have 2 virtual addresses that are pointing
2442 * to a ksm page left outside the stable tree,
2443 * in which case we need to break_cow on both.
2444 */
7b6ba2c7 2445 if (!stable_node) {
8dd3557a
HD
2446 break_cow(tree_rmap_item);
2447 break_cow(rmap_item);
31dbd01f 2448 }
77da2ba0
CI
2449 } else if (split) {
2450 /*
2451 * We are here if we tried to merge two pages and
2452 * failed because they both belonged to the same
2453 * compound page. We will split the page now, but no
2454 * merging will take place.
2455 * We do not want to add the cost of a full lock; if
2456 * the page is locked, it is better to skip it and
2457 * perhaps try again later.
2458 */
2459 if (!trylock_page(page))
2460 return;
2461 split_huge_page(page);
2462 unlock_page(page);
31dbd01f 2463 }
31dbd01f
IE
2464 }
2465}
2466
21fbd591
QZ
2467static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2468 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2469 unsigned long addr)
2470{
21fbd591 2471 struct ksm_rmap_item *rmap_item;
31dbd01f 2472
6514d511
HD
2473 while (*rmap_list) {
2474 rmap_item = *rmap_list;
93d17715 2475 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2476 return rmap_item;
31dbd01f
IE
2477 if (rmap_item->address > addr)
2478 break;
6514d511 2479 *rmap_list = rmap_item->rmap_list;
31dbd01f 2480 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2481 free_rmap_item(rmap_item);
2482 }
2483
2484 rmap_item = alloc_rmap_item();
2485 if (rmap_item) {
2486 /* It has already been zeroed */
58730ab6 2487 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2488 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2489 rmap_item->address = addr;
6514d511
HD
2490 rmap_item->rmap_list = *rmap_list;
2491 *rmap_list = rmap_item;
31dbd01f
IE
2492 }
2493 return rmap_item;
2494}
2495
5e924ff5
SR
2496/*
2497 * Calculate skip age for the ksm page age. The age determines how often
2498 * de-duplicating has already been tried unsuccessfully. If the age is
2499 * smaller, the scanning of this page is skipped for less scans.
2500 *
2501 * @age: rmap_item age of page
2502 */
2503static unsigned int skip_age(rmap_age_t age)
2504{
2505 if (age <= 3)
2506 return 1;
2507 if (age <= 5)
2508 return 2;
2509 if (age <= 8)
2510 return 4;
2511
2512 return 8;
2513}
2514
2515/*
2516 * Determines if a page should be skipped for the current scan.
2517 *
2518 * @page: page to check
2519 * @rmap_item: associated rmap_item of page
2520 */
2521static bool should_skip_rmap_item(struct page *page,
2522 struct ksm_rmap_item *rmap_item)
2523{
2524 rmap_age_t age;
2525
2526 if (!ksm_smart_scan)
2527 return false;
2528
2529 /*
2530 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2531 * will essentially ignore them, but we still have to process them
2532 * properly.
2533 */
2534 if (PageKsm(page))
2535 return false;
2536
2537 age = rmap_item->age;
2538 if (age != U8_MAX)
2539 rmap_item->age++;
2540
2541 /*
2542 * Smaller ages are not skipped, they need to get a chance to go
2543 * through the different phases of the KSM merging.
2544 */
2545 if (age < 3)
2546 return false;
2547
2548 /*
2549 * Are we still allowed to skip? If not, then don't skip it
2550 * and determine how much more often we are allowed to skip next.
2551 */
2552 if (!rmap_item->remaining_skips) {
2553 rmap_item->remaining_skips = skip_age(age);
2554 return false;
2555 }
2556
2557 /* Skip this page */
e5a68991 2558 ksm_pages_skipped++;
5e924ff5
SR
2559 rmap_item->remaining_skips--;
2560 remove_rmap_item_from_tree(rmap_item);
2561 return true;
2562}
2563
21fbd591 2564static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2565{
2566 struct mm_struct *mm;
58730ab6
QZ
2567 struct ksm_mm_slot *mm_slot;
2568 struct mm_slot *slot;
31dbd01f 2569 struct vm_area_struct *vma;
21fbd591 2570 struct ksm_rmap_item *rmap_item;
a5f18ba0 2571 struct vma_iterator vmi;
90bd6fd3 2572 int nid;
31dbd01f 2573
58730ab6 2574 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2575 return NULL;
2576
58730ab6
QZ
2577 mm_slot = ksm_scan.mm_slot;
2578 if (mm_slot == &ksm_mm_head) {
4e5fa4f5 2579 advisor_start_scan();
739100c8
SR
2580 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2581
2919bfd0 2582 /*
1fec6890
MWO
2583 * A number of pages can hang around indefinitely in per-cpu
2584 * LRU cache, raised page count preventing write_protect_page
2919bfd0
HD
2585 * from merging them. Though it doesn't really matter much,
2586 * it is puzzling to see some stuck in pages_volatile until
2587 * other activity jostles them out, and they also prevented
2588 * LTP's KSM test from succeeding deterministically; so drain
2589 * them here (here rather than on entry to ksm_do_scan(),
2590 * so we don't IPI too often when pages_to_scan is set low).
2591 */
2592 lru_add_drain_all();
2593
4146d2d6
HD
2594 /*
2595 * Whereas stale stable_nodes on the stable_tree itself
2596 * get pruned in the regular course of stable_tree_search(),
2597 * those moved out to the migrate_nodes list can accumulate:
2598 * so prune them once before each full scan.
2599 */
2600 if (!ksm_merge_across_nodes) {
21fbd591 2601 struct ksm_stable_node *stable_node, *next;
72556a4c 2602 struct folio *folio;
4146d2d6 2603
03640418
GT
2604 list_for_each_entry_safe(stable_node, next,
2605 &migrate_nodes, list) {
72556a4c 2606 folio = ksm_get_folio(stable_node,
85b67b01 2607 KSM_GET_FOLIO_NOLOCK);
72556a4c
AS
2608 if (folio)
2609 folio_put(folio);
4146d2d6
HD
2610 cond_resched();
2611 }
2612 }
2613
ef53d16c 2614 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2615 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2616
2617 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2618 slot = list_entry(mm_slot->slot.mm_node.next,
2619 struct mm_slot, mm_node);
2620 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2621 ksm_scan.mm_slot = mm_slot;
31dbd01f 2622 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2623 /*
2624 * Although we tested list_empty() above, a racing __ksm_exit
2625 * of the last mm on the list may have removed it since then.
2626 */
58730ab6 2627 if (mm_slot == &ksm_mm_head)
2b472611 2628 return NULL;
31dbd01f
IE
2629next_mm:
2630 ksm_scan.address = 0;
58730ab6 2631 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2632 }
2633
58730ab6 2634 slot = &mm_slot->slot;
31dbd01f 2635 mm = slot->mm;
a5f18ba0
MWO
2636 vma_iter_init(&vmi, mm, ksm_scan.address);
2637
d8ed45c5 2638 mmap_read_lock(mm);
9ba69294 2639 if (ksm_test_exit(mm))
a5f18ba0 2640 goto no_vmas;
9ba69294 2641
a5f18ba0 2642 for_each_vma(vmi, vma) {
31dbd01f
IE
2643 if (!(vma->vm_flags & VM_MERGEABLE))
2644 continue;
2645 if (ksm_scan.address < vma->vm_start)
2646 ksm_scan.address = vma->vm_start;
2647 if (!vma->anon_vma)
2648 ksm_scan.address = vma->vm_end;
2649
2650 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2651 if (ksm_test_exit(mm))
2652 break;
31dbd01f 2653 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2654 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2655 ksm_scan.address += PAGE_SIZE;
2656 cond_resched();
2657 continue;
2658 }
f7091ed6
HW
2659 if (is_zone_device_page(*page))
2660 goto next_page;
f765f540 2661 if (PageAnon(*page)) {
31dbd01f
IE
2662 flush_anon_page(vma, *page, ksm_scan.address);
2663 flush_dcache_page(*page);
58730ab6 2664 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2665 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2666 if (rmap_item) {
6514d511
HD
2667 ksm_scan.rmap_list =
2668 &rmap_item->rmap_list;
5e924ff5
SR
2669
2670 if (should_skip_rmap_item(*page, rmap_item))
2671 goto next_page;
2672
31dbd01f
IE
2673 ksm_scan.address += PAGE_SIZE;
2674 } else
2675 put_page(*page);
d8ed45c5 2676 mmap_read_unlock(mm);
31dbd01f
IE
2677 return rmap_item;
2678 }
f7091ed6 2679next_page:
21ae5b01 2680 put_page(*page);
31dbd01f
IE
2681 ksm_scan.address += PAGE_SIZE;
2682 cond_resched();
2683 }
2684 }
2685
9ba69294 2686 if (ksm_test_exit(mm)) {
a5f18ba0 2687no_vmas:
9ba69294 2688 ksm_scan.address = 0;
58730ab6 2689 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2690 }
31dbd01f
IE
2691 /*
2692 * Nuke all the rmap_items that are above this current rmap:
2693 * because there were no VM_MERGEABLE vmas with such addresses.
2694 */
420be4ed 2695 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2696
2697 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2698 slot = list_entry(mm_slot->slot.mm_node.next,
2699 struct mm_slot, mm_node);
2700 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2701 if (ksm_scan.address == 0) {
2702 /*
c1e8d7c6 2703 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2704 * throughout, and found no VM_MERGEABLE: so do the same as
2705 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2706 * This applies either when cleaning up after __ksm_exit
2707 * (but beware: we can reach here even before __ksm_exit),
2708 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2709 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2710 */
58730ab6
QZ
2711 hash_del(&mm_slot->slot.hash);
2712 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2713 spin_unlock(&ksm_mmlist_lock);
2714
58730ab6 2715 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2716 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 2717 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
d8ed45c5 2718 mmap_read_unlock(mm);
9ba69294
HD
2719 mmdrop(mm);
2720 } else {
d8ed45c5 2721 mmap_read_unlock(mm);
7496fea9 2722 /*
3e4e28c5 2723 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2724 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2725 * already have been freed under us by __ksm_exit()
2726 * because the "mm_slot" is still hashed and
2727 * ksm_scan.mm_slot doesn't point to it anymore.
2728 */
2729 spin_unlock(&ksm_mmlist_lock);
cd551f97 2730 }
31dbd01f
IE
2731
2732 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2733 mm_slot = ksm_scan.mm_slot;
2734 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2735 goto next_mm;
2736
4e5fa4f5
SR
2737 advisor_stop_scan();
2738
739100c8 2739 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
31dbd01f
IE
2740 ksm_scan.seqnr++;
2741 return NULL;
2742}
2743
2744/**
2745 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2746 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2747 */
2748static void ksm_do_scan(unsigned int scan_npages)
2749{
21fbd591 2750 struct ksm_rmap_item *rmap_item;
3f649ab7 2751 struct page *page;
31dbd01f 2752
730cdc2c 2753 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2754 cond_resched();
2755 rmap_item = scan_get_next_rmap_item(&page);
2756 if (!rmap_item)
2757 return;
4146d2d6 2758 cmp_and_merge_page(page, rmap_item);
31dbd01f 2759 put_page(page);
730cdc2c 2760 ksm_pages_scanned++;
31dbd01f
IE
2761 }
2762}
2763
6e158384
HD
2764static int ksmd_should_run(void)
2765{
58730ab6 2766 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2767}
2768
31dbd01f
IE
2769static int ksm_scan_thread(void *nothing)
2770{
fcf9a0ef
KT
2771 unsigned int sleep_ms;
2772
878aee7d 2773 set_freezable();
339aa624 2774 set_user_nice(current, 5);
31dbd01f
IE
2775
2776 while (!kthread_should_stop()) {
6e158384 2777 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2778 wait_while_offlining();
6e158384 2779 if (ksmd_should_run())
31dbd01f 2780 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2781 mutex_unlock(&ksm_thread_mutex);
2782
2783 if (ksmd_should_run()) {
fcf9a0ef 2784 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
f55afd95 2785 wait_event_freezable_timeout(ksm_iter_wait,
fcf9a0ef
KT
2786 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2787 msecs_to_jiffies(sleep_ms));
31dbd01f 2788 } else {
878aee7d 2789 wait_event_freezable(ksm_thread_wait,
6e158384 2790 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2791 }
2792 }
2793 return 0;
2794}
2795
d7597f59
SR
2796static void __ksm_add_vma(struct vm_area_struct *vma)
2797{
2798 unsigned long vm_flags = vma->vm_flags;
2799
2800 if (vm_flags & VM_MERGEABLE)
2801 return;
2802
2803 if (vma_ksm_compatible(vma))
2804 vm_flags_set(vma, VM_MERGEABLE);
2805}
2806
24139c07
DH
2807static int __ksm_del_vma(struct vm_area_struct *vma)
2808{
2809 int err;
2810
2811 if (!(vma->vm_flags & VM_MERGEABLE))
2812 return 0;
2813
2814 if (vma->anon_vma) {
49b06385 2815 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
24139c07
DH
2816 if (err)
2817 return err;
2818 }
2819
2820 vm_flags_clear(vma, VM_MERGEABLE);
2821 return 0;
2822}
d7597f59
SR
2823/**
2824 * ksm_add_vma - Mark vma as mergeable if compatible
2825 *
2826 * @vma: Pointer to vma
2827 */
2828void ksm_add_vma(struct vm_area_struct *vma)
2829{
2830 struct mm_struct *mm = vma->vm_mm;
2831
2832 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2833 __ksm_add_vma(vma);
2834}
2835
2836static void ksm_add_vmas(struct mm_struct *mm)
2837{
2838 struct vm_area_struct *vma;
2839
2840 VMA_ITERATOR(vmi, mm, 0);
2841 for_each_vma(vmi, vma)
2842 __ksm_add_vma(vma);
2843}
2844
24139c07
DH
2845static int ksm_del_vmas(struct mm_struct *mm)
2846{
2847 struct vm_area_struct *vma;
2848 int err;
2849
2850 VMA_ITERATOR(vmi, mm, 0);
2851 for_each_vma(vmi, vma) {
2852 err = __ksm_del_vma(vma);
2853 if (err)
2854 return err;
2855 }
2856 return 0;
2857}
2858
d7597f59
SR
2859/**
2860 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2861 * compatible VMA's
2862 *
2863 * @mm: Pointer to mm
2864 *
2865 * Returns 0 on success, otherwise error code
2866 */
2867int ksm_enable_merge_any(struct mm_struct *mm)
2868{
2869 int err;
2870
2871 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2872 return 0;
2873
2874 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2875 err = __ksm_enter(mm);
2876 if (err)
2877 return err;
2878 }
2879
2880 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2881 ksm_add_vmas(mm);
2882
2883 return 0;
2884}
2885
24139c07
DH
2886/**
2887 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2888 * previously enabled via ksm_enable_merge_any().
2889 *
2890 * Disabling merging implies unmerging any merged pages, like setting
2891 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2892 * merging on all compatible VMA's remains enabled.
2893 *
2894 * @mm: Pointer to mm
2895 *
2896 * Returns 0 on success, otherwise error code
2897 */
2898int ksm_disable_merge_any(struct mm_struct *mm)
2899{
2900 int err;
2901
2902 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2903 return 0;
2904
2905 err = ksm_del_vmas(mm);
2906 if (err) {
2907 ksm_add_vmas(mm);
2908 return err;
2909 }
2910
2911 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2912 return 0;
2913}
2914
2c281f54
DH
2915int ksm_disable(struct mm_struct *mm)
2916{
2917 mmap_assert_write_locked(mm);
2918
2919 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2920 return 0;
2921 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2922 return ksm_disable_merge_any(mm);
2923 return ksm_del_vmas(mm);
2924}
2925
f8af4da3
HD
2926int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2927 unsigned long end, int advice, unsigned long *vm_flags)
2928{
2929 struct mm_struct *mm = vma->vm_mm;
d952b791 2930 int err;
f8af4da3
HD
2931
2932 switch (advice) {
2933 case MADV_MERGEABLE:
d7597f59 2934 if (vma->vm_flags & VM_MERGEABLE)
e1fb4a08 2935 return 0;
d7597f59 2936 if (!vma_ksm_compatible(vma))
74a04967 2937 return 0;
cc2383ec 2938
d952b791
HD
2939 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2940 err = __ksm_enter(mm);
2941 if (err)
2942 return err;
2943 }
f8af4da3
HD
2944
2945 *vm_flags |= VM_MERGEABLE;
2946 break;
2947
2948 case MADV_UNMERGEABLE:
2949 if (!(*vm_flags & VM_MERGEABLE))
2950 return 0; /* just ignore the advice */
2951
d952b791 2952 if (vma->anon_vma) {
49b06385 2953 err = unmerge_ksm_pages(vma, start, end, true);
d952b791
HD
2954 if (err)
2955 return err;
2956 }
f8af4da3
HD
2957
2958 *vm_flags &= ~VM_MERGEABLE;
2959 break;
2960 }
2961
2962 return 0;
2963}
33cf1707 2964EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2965
2966int __ksm_enter(struct mm_struct *mm)
2967{
21fbd591 2968 struct ksm_mm_slot *mm_slot;
58730ab6 2969 struct mm_slot *slot;
6e158384
HD
2970 int needs_wakeup;
2971
58730ab6 2972 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2973 if (!mm_slot)
2974 return -ENOMEM;
2975
58730ab6
QZ
2976 slot = &mm_slot->slot;
2977
6e158384 2978 /* Check ksm_run too? Would need tighter locking */
58730ab6 2979 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2980
31dbd01f 2981 spin_lock(&ksm_mmlist_lock);
58730ab6 2982 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2983 /*
cbf86cfe
HD
2984 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2985 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2986 * down a little; when fork is followed by immediate exec, we don't
2987 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2988 *
2989 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2990 * scanning cursor, otherwise KSM pages in newly forked mms will be
2991 * missed: then we might as well insert at the end of the list.
31dbd01f 2992 */
cbf86cfe 2993 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2994 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2995 else
58730ab6 2996 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
2997 spin_unlock(&ksm_mmlist_lock);
2998
f8af4da3 2999 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 3000 mmgrab(mm);
6e158384
HD
3001
3002 if (needs_wakeup)
3003 wake_up_interruptible(&ksm_thread_wait);
3004
739100c8 3005 trace_ksm_enter(mm);
f8af4da3
HD
3006 return 0;
3007}
3008
1c2fb7a4 3009void __ksm_exit(struct mm_struct *mm)
f8af4da3 3010{
21fbd591 3011 struct ksm_mm_slot *mm_slot;
58730ab6 3012 struct mm_slot *slot;
9ba69294 3013 int easy_to_free = 0;
cd551f97 3014
31dbd01f 3015 /*
9ba69294
HD
3016 * This process is exiting: if it's straightforward (as is the
3017 * case when ksmd was never running), free mm_slot immediately.
3018 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 3019 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
3020 * are freed, and leave the mm_slot on the list for ksmd to free.
3021 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 3022 */
9ba69294 3023
cd551f97 3024 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
3025 slot = mm_slot_lookup(mm_slots_hash, mm);
3026 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 3027 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 3028 if (!mm_slot->rmap_list) {
58730ab6
QZ
3029 hash_del(&slot->hash);
3030 list_del(&slot->mm_node);
9ba69294
HD
3031 easy_to_free = 1;
3032 } else {
58730ab6
QZ
3033 list_move(&slot->mm_node,
3034 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 3035 }
cd551f97 3036 }
cd551f97
HD
3037 spin_unlock(&ksm_mmlist_lock);
3038
9ba69294 3039 if (easy_to_free) {
58730ab6 3040 mm_slot_free(mm_slot_cache, mm_slot);
d7597f59 3041 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294
HD
3042 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3043 mmdrop(mm);
3044 } else if (mm_slot) {
d8ed45c5
ML
3045 mmap_write_lock(mm);
3046 mmap_write_unlock(mm);
9ba69294 3047 }
739100c8
SR
3048
3049 trace_ksm_exit(mm);
31dbd01f
IE
3050}
3051
96db66d9 3052struct folio *ksm_might_need_to_copy(struct folio *folio,
1486fb50 3053 struct vm_area_struct *vma, unsigned long addr)
5ad64688 3054{
96db66d9 3055 struct page *page = folio_page(folio, 0);
e05b3453 3056 struct anon_vma *anon_vma = folio_anon_vma(folio);
1486fb50 3057 struct folio *new_folio;
5ad64688 3058
1486fb50 3059 if (folio_test_large(folio))
96db66d9 3060 return folio;
1486fb50
KW
3061
3062 if (folio_test_ksm(folio)) {
3063 if (folio_stable_node(folio) &&
cbf86cfe 3064 !(ksm_run & KSM_RUN_UNMERGE))
96db66d9 3065 return folio; /* no need to copy it */
cbf86cfe 3066 } else if (!anon_vma) {
96db66d9 3067 return folio; /* no need to copy it */
1486fb50 3068 } else if (folio->index == linear_page_index(vma, addr) &&
e1c63e11 3069 anon_vma->root == vma->anon_vma->root) {
96db66d9 3070 return folio; /* still no need to copy it */
cbf86cfe 3071 }
f985fc32
ML
3072 if (PageHWPoison(page))
3073 return ERR_PTR(-EHWPOISON);
1486fb50 3074 if (!folio_test_uptodate(folio))
96db66d9 3075 return folio; /* let do_swap_page report the error */
cbf86cfe 3076
1486fb50
KW
3077 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3078 if (new_folio &&
3079 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3080 folio_put(new_folio);
3081 new_folio = NULL;
62fdb163 3082 }
1486fb50 3083 if (new_folio) {
96db66d9
MWO
3084 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3085 addr, vma)) {
1486fb50 3086 folio_put(new_folio);
96db66d9 3087 memory_failure_queue(folio_pfn(folio), 0);
6b970599
KW
3088 return ERR_PTR(-EHWPOISON);
3089 }
1486fb50
KW
3090 folio_set_dirty(new_folio);
3091 __folio_mark_uptodate(new_folio);
3092 __folio_set_locked(new_folio);
4d45c3af
YY
3093#ifdef CONFIG_SWAP
3094 count_vm_event(KSM_SWPIN_COPY);
3095#endif
5ad64688
HD
3096 }
3097
96db66d9 3098 return new_folio;
5ad64688
HD
3099}
3100
6d4675e6 3101void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 3102{
21fbd591
QZ
3103 struct ksm_stable_node *stable_node;
3104 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
3105 int search_new_forks = 0;
3106
2f031c6f 3107 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
3108
3109 /*
3110 * Rely on the page lock to protect against concurrent modifications
3111 * to that page's node of the stable tree.
3112 */
2f031c6f 3113 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 3114
2f031c6f 3115 stable_node = folio_stable_node(folio);
e9995ef9 3116 if (!stable_node)
1df631ae 3117 return;
e9995ef9 3118again:
b67bfe0d 3119 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 3120 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 3121 struct anon_vma_chain *vmac;
e9995ef9
HD
3122 struct vm_area_struct *vma;
3123
ad12695f 3124 cond_resched();
6d4675e6
MK
3125 if (!anon_vma_trylock_read(anon_vma)) {
3126 if (rwc->try_lock) {
3127 rwc->contended = true;
3128 return;
3129 }
3130 anon_vma_lock_read(anon_vma);
3131 }
bf181b9f
ML
3132 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3133 0, ULONG_MAX) {
1105a2fc
JH
3134 unsigned long addr;
3135
ad12695f 3136 cond_resched();
5beb4930 3137 vma = vmac->vma;
1105a2fc
JH
3138
3139 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 3140 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
3141
3142 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
3143 continue;
3144 /*
3145 * Initially we examine only the vma which covers this
3146 * rmap_item; but later, if there is still work to do,
3147 * we examine covering vmas in other mms: in case they
3148 * were forked from the original since ksmd passed.
3149 */
3150 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3151 continue;
3152
0dd1c7bb
JK
3153 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3154 continue;
3155
2f031c6f 3156 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 3157 anon_vma_unlock_read(anon_vma);
1df631ae 3158 return;
e9995ef9 3159 }
2f031c6f 3160 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 3161 anon_vma_unlock_read(anon_vma);
1df631ae 3162 return;
0dd1c7bb 3163 }
e9995ef9 3164 }
b6b19f25 3165 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
3166 }
3167 if (!search_new_forks++)
3168 goto again;
e9995ef9
HD
3169}
3170
4248d008
LX
3171#ifdef CONFIG_MEMORY_FAILURE
3172/*
3173 * Collect processes when the error hit an ksm page.
3174 */
b650e1d2
MWO
3175void collect_procs_ksm(struct folio *folio, struct page *page,
3176 struct list_head *to_kill, int force_early)
4248d008
LX
3177{
3178 struct ksm_stable_node *stable_node;
3179 struct ksm_rmap_item *rmap_item;
4248d008
LX
3180 struct vm_area_struct *vma;
3181 struct task_struct *tsk;
3182
3183 stable_node = folio_stable_node(folio);
3184 if (!stable_node)
3185 return;
3186 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3187 struct anon_vma *av = rmap_item->anon_vma;
3188
3189 anon_vma_lock_read(av);
d256d1cd 3190 rcu_read_lock();
4248d008
LX
3191 for_each_process(tsk) {
3192 struct anon_vma_chain *vmac;
3193 unsigned long addr;
3194 struct task_struct *t =
3195 task_early_kill(tsk, force_early);
3196 if (!t)
3197 continue;
3198 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3199 ULONG_MAX)
3200 {
3201 vma = vmac->vma;
3202 if (vma->vm_mm == t->mm) {
3203 addr = rmap_item->address & PAGE_MASK;
3204 add_to_kill_ksm(t, page, vma, to_kill,
3205 addr);
3206 }
3207 }
3208 }
d256d1cd 3209 rcu_read_unlock();
4248d008
LX
3210 anon_vma_unlock_read(av);
3211 }
3212}
3213#endif
3214
52629506 3215#ifdef CONFIG_MIGRATION
19138349 3216void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 3217{
21fbd591 3218 struct ksm_stable_node *stable_node;
e9995ef9 3219
19138349
MWO
3220 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3221 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3222 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 3223
19138349 3224 stable_node = folio_stable_node(folio);
e9995ef9 3225 if (stable_node) {
19138349
MWO
3226 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3227 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 3228 /*
19138349 3229 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 3230 * to make sure that the new stable_node->kpfn is visible
79899cce 3231 * to ksm_get_folio() before it can see that folio->mapping
19138349 3232 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
3233 */
3234 smp_wmb();
b8b0ff24 3235 folio_set_stable_node(folio, NULL);
e9995ef9
HD
3236 }
3237}
3238#endif /* CONFIG_MIGRATION */
3239
62b61f61 3240#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
3241static void wait_while_offlining(void)
3242{
3243 while (ksm_run & KSM_RUN_OFFLINE) {
3244 mutex_unlock(&ksm_thread_mutex);
3245 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 3246 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
3247 mutex_lock(&ksm_thread_mutex);
3248 }
3249}
3250
21fbd591 3251static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3252 unsigned long start_pfn,
3253 unsigned long end_pfn)
3254{
3255 if (stable_node->kpfn >= start_pfn &&
3256 stable_node->kpfn < end_pfn) {
3257 /*
79899cce 3258 * Don't ksm_get_folio, page has already gone:
2c653d0e
AA
3259 * which is why we keep kpfn instead of page*
3260 */
3261 remove_node_from_stable_tree(stable_node);
3262 return true;
3263 }
3264 return false;
3265}
3266
21fbd591 3267static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3268 unsigned long start_pfn,
3269 unsigned long end_pfn,
3270 struct rb_root *root)
3271{
21fbd591 3272 struct ksm_stable_node *dup;
2c653d0e
AA
3273 struct hlist_node *hlist_safe;
3274
3275 if (!is_stable_node_chain(stable_node)) {
3276 VM_BUG_ON(is_stable_node_dup(stable_node));
3277 return stable_node_dup_remove_range(stable_node, start_pfn,
3278 end_pfn);
3279 }
3280
3281 hlist_for_each_entry_safe(dup, hlist_safe,
3282 &stable_node->hlist, hlist_dup) {
3283 VM_BUG_ON(!is_stable_node_dup(dup));
3284 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3285 }
3286 if (hlist_empty(&stable_node->hlist)) {
3287 free_stable_node_chain(stable_node, root);
3288 return true; /* notify caller that tree was rebalanced */
3289 } else
3290 return false;
3291}
3292
ee0ea59c
HD
3293static void ksm_check_stable_tree(unsigned long start_pfn,
3294 unsigned long end_pfn)
62b61f61 3295{
21fbd591 3296 struct ksm_stable_node *stable_node, *next;
62b61f61 3297 struct rb_node *node;
90bd6fd3 3298 int nid;
62b61f61 3299
ef53d16c
HD
3300 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3301 node = rb_first(root_stable_tree + nid);
ee0ea59c 3302 while (node) {
21fbd591 3303 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
3304 if (stable_node_chain_remove_range(stable_node,
3305 start_pfn, end_pfn,
3306 root_stable_tree +
3307 nid))
ef53d16c 3308 node = rb_first(root_stable_tree + nid);
2c653d0e 3309 else
ee0ea59c
HD
3310 node = rb_next(node);
3311 cond_resched();
90bd6fd3 3312 }
ee0ea59c 3313 }
03640418 3314 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
3315 if (stable_node->kpfn >= start_pfn &&
3316 stable_node->kpfn < end_pfn)
3317 remove_node_from_stable_tree(stable_node);
3318 cond_resched();
3319 }
62b61f61
HD
3320}
3321
3322static int ksm_memory_callback(struct notifier_block *self,
3323 unsigned long action, void *arg)
3324{
3325 struct memory_notify *mn = arg;
62b61f61
HD
3326
3327 switch (action) {
3328 case MEM_GOING_OFFLINE:
3329 /*
ef4d43a8
HD
3330 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3331 * and remove_all_stable_nodes() while memory is going offline:
3332 * it is unsafe for them to touch the stable tree at this time.
3333 * But unmerge_ksm_pages(), rmap lookups and other entry points
3334 * which do not need the ksm_thread_mutex are all safe.
62b61f61 3335 */
ef4d43a8
HD
3336 mutex_lock(&ksm_thread_mutex);
3337 ksm_run |= KSM_RUN_OFFLINE;
3338 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
3339 break;
3340
3341 case MEM_OFFLINE:
3342 /*
3343 * Most of the work is done by page migration; but there might
3344 * be a few stable_nodes left over, still pointing to struct
ee0ea59c 3345 * pages which have been offlined: prune those from the tree,
79899cce 3346 * otherwise ksm_get_folio() might later try to access a
ee0ea59c 3347 * non-existent struct page.
62b61f61 3348 */
ee0ea59c
HD
3349 ksm_check_stable_tree(mn->start_pfn,
3350 mn->start_pfn + mn->nr_pages);
e4a9bc58 3351 fallthrough;
62b61f61 3352 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
3353 mutex_lock(&ksm_thread_mutex);
3354 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 3355 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
3356
3357 smp_mb(); /* wake_up_bit advises this */
3358 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
3359 break;
3360 }
3361 return NOTIFY_OK;
3362}
ef4d43a8
HD
3363#else
3364static void wait_while_offlining(void)
3365{
3366}
62b61f61
HD
3367#endif /* CONFIG_MEMORY_HOTREMOVE */
3368
d21077fb
SR
3369#ifdef CONFIG_PROC_FS
3370long ksm_process_profit(struct mm_struct *mm)
3371{
c2dc78b8 3372 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
d21077fb
SR
3373 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3374}
3375#endif /* CONFIG_PROC_FS */
3376
2ffd8679
HD
3377#ifdef CONFIG_SYSFS
3378/*
3379 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3380 */
3381
31dbd01f
IE
3382#define KSM_ATTR_RO(_name) \
3383 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3384#define KSM_ATTR(_name) \
1bad2e5c 3385 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
3386
3387static ssize_t sleep_millisecs_show(struct kobject *kobj,
3388 struct kobj_attribute *attr, char *buf)
3389{
ae7a927d 3390 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
3391}
3392
3393static ssize_t sleep_millisecs_store(struct kobject *kobj,
3394 struct kobj_attribute *attr,
3395 const char *buf, size_t count)
3396{
dfefd226 3397 unsigned int msecs;
31dbd01f
IE
3398 int err;
3399
dfefd226
AD
3400 err = kstrtouint(buf, 10, &msecs);
3401 if (err)
31dbd01f
IE
3402 return -EINVAL;
3403
3404 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 3405 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
3406
3407 return count;
3408}
3409KSM_ATTR(sleep_millisecs);
3410
3411static ssize_t pages_to_scan_show(struct kobject *kobj,
3412 struct kobj_attribute *attr, char *buf)
3413{
ae7a927d 3414 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
3415}
3416
3417static ssize_t pages_to_scan_store(struct kobject *kobj,
3418 struct kobj_attribute *attr,
3419 const char *buf, size_t count)
3420{
dfefd226 3421 unsigned int nr_pages;
31dbd01f 3422 int err;
31dbd01f 3423
4e5fa4f5
SR
3424 if (ksm_advisor != KSM_ADVISOR_NONE)
3425 return -EINVAL;
3426
dfefd226
AD
3427 err = kstrtouint(buf, 10, &nr_pages);
3428 if (err)
31dbd01f
IE
3429 return -EINVAL;
3430
3431 ksm_thread_pages_to_scan = nr_pages;
3432
3433 return count;
3434}
3435KSM_ATTR(pages_to_scan);
3436
3437static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3438 char *buf)
3439{
ae7a927d 3440 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
3441}
3442
3443static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3444 const char *buf, size_t count)
3445{
dfefd226 3446 unsigned int flags;
31dbd01f 3447 int err;
31dbd01f 3448
dfefd226
AD
3449 err = kstrtouint(buf, 10, &flags);
3450 if (err)
31dbd01f
IE
3451 return -EINVAL;
3452 if (flags > KSM_RUN_UNMERGE)
3453 return -EINVAL;
3454
3455 /*
3456 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3457 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
3458 * breaking COW to free the pages_shared (but leaves mm_slots
3459 * on the list for when ksmd may be set running again).
31dbd01f
IE
3460 */
3461
3462 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3463 wait_while_offlining();
31dbd01f
IE
3464 if (ksm_run != flags) {
3465 ksm_run = flags;
d952b791 3466 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 3467 set_current_oom_origin();
d952b791 3468 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 3469 clear_current_oom_origin();
d952b791
HD
3470 if (err) {
3471 ksm_run = KSM_RUN_STOP;
3472 count = err;
3473 }
3474 }
31dbd01f
IE
3475 }
3476 mutex_unlock(&ksm_thread_mutex);
3477
3478 if (flags & KSM_RUN_MERGE)
3479 wake_up_interruptible(&ksm_thread_wait);
3480
3481 return count;
3482}
3483KSM_ATTR(run);
3484
90bd6fd3
PH
3485#ifdef CONFIG_NUMA
3486static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 3487 struct kobj_attribute *attr, char *buf)
90bd6fd3 3488{
ae7a927d 3489 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
3490}
3491
3492static ssize_t merge_across_nodes_store(struct kobject *kobj,
3493 struct kobj_attribute *attr,
3494 const char *buf, size_t count)
3495{
3496 int err;
3497 unsigned long knob;
3498
3499 err = kstrtoul(buf, 10, &knob);
3500 if (err)
3501 return err;
3502 if (knob > 1)
3503 return -EINVAL;
3504
3505 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3506 wait_while_offlining();
90bd6fd3 3507 if (ksm_merge_across_nodes != knob) {
cbf86cfe 3508 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 3509 err = -EBUSY;
ef53d16c
HD
3510 else if (root_stable_tree == one_stable_tree) {
3511 struct rb_root *buf;
3512 /*
3513 * This is the first time that we switch away from the
3514 * default of merging across nodes: must now allocate
3515 * a buffer to hold as many roots as may be needed.
3516 * Allocate stable and unstable together:
3517 * MAXSMP NODES_SHIFT 10 will use 16kB.
3518 */
bafe1e14
JP
3519 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3520 GFP_KERNEL);
ef53d16c
HD
3521 /* Let us assume that RB_ROOT is NULL is zero */
3522 if (!buf)
3523 err = -ENOMEM;
3524 else {
3525 root_stable_tree = buf;
3526 root_unstable_tree = buf + nr_node_ids;
3527 /* Stable tree is empty but not the unstable */
3528 root_unstable_tree[0] = one_unstable_tree[0];
3529 }
3530 }
3531 if (!err) {
90bd6fd3 3532 ksm_merge_across_nodes = knob;
ef53d16c
HD
3533 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3534 }
90bd6fd3
PH
3535 }
3536 mutex_unlock(&ksm_thread_mutex);
3537
3538 return err ? err : count;
3539}
3540KSM_ATTR(merge_across_nodes);
3541#endif
3542
e86c59b1 3543static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3544 struct kobj_attribute *attr, char *buf)
e86c59b1 3545{
ae7a927d 3546 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3547}
3548static ssize_t use_zero_pages_store(struct kobject *kobj,
3549 struct kobj_attribute *attr,
3550 const char *buf, size_t count)
3551{
3552 int err;
3553 bool value;
3554
3555 err = kstrtobool(buf, &value);
3556 if (err)
3557 return -EINVAL;
3558
3559 ksm_use_zero_pages = value;
3560
3561 return count;
3562}
3563KSM_ATTR(use_zero_pages);
3564
2c653d0e
AA
3565static ssize_t max_page_sharing_show(struct kobject *kobj,
3566 struct kobj_attribute *attr, char *buf)
3567{
ae7a927d 3568 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3569}
3570
3571static ssize_t max_page_sharing_store(struct kobject *kobj,
3572 struct kobj_attribute *attr,
3573 const char *buf, size_t count)
3574{
3575 int err;
3576 int knob;
3577
3578 err = kstrtoint(buf, 10, &knob);
3579 if (err)
3580 return err;
3581 /*
3582 * When a KSM page is created it is shared by 2 mappings. This
3583 * being a signed comparison, it implicitly verifies it's not
3584 * negative.
3585 */
3586 if (knob < 2)
3587 return -EINVAL;
3588
3589 if (READ_ONCE(ksm_max_page_sharing) == knob)
3590 return count;
3591
3592 mutex_lock(&ksm_thread_mutex);
3593 wait_while_offlining();
3594 if (ksm_max_page_sharing != knob) {
3595 if (ksm_pages_shared || remove_all_stable_nodes())
3596 err = -EBUSY;
3597 else
3598 ksm_max_page_sharing = knob;
3599 }
3600 mutex_unlock(&ksm_thread_mutex);
3601
3602 return err ? err : count;
3603}
3604KSM_ATTR(max_page_sharing);
3605
b348b5fe
SR
3606static ssize_t pages_scanned_show(struct kobject *kobj,
3607 struct kobj_attribute *attr, char *buf)
3608{
3609 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3610}
3611KSM_ATTR_RO(pages_scanned);
3612
b4028260
HD
3613static ssize_t pages_shared_show(struct kobject *kobj,
3614 struct kobj_attribute *attr, char *buf)
3615{
ae7a927d 3616 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3617}
3618KSM_ATTR_RO(pages_shared);
3619
3620static ssize_t pages_sharing_show(struct kobject *kobj,
3621 struct kobj_attribute *attr, char *buf)
3622{
ae7a927d 3623 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3624}
3625KSM_ATTR_RO(pages_sharing);
3626
473b0ce4
HD
3627static ssize_t pages_unshared_show(struct kobject *kobj,
3628 struct kobj_attribute *attr, char *buf)
3629{
ae7a927d 3630 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3631}
3632KSM_ATTR_RO(pages_unshared);
3633
3634static ssize_t pages_volatile_show(struct kobject *kobj,
3635 struct kobj_attribute *attr, char *buf)
3636{
3637 long ksm_pages_volatile;
3638
3639 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3640 - ksm_pages_sharing - ksm_pages_unshared;
3641 /*
3642 * It was not worth any locking to calculate that statistic,
3643 * but it might therefore sometimes be negative: conceal that.
3644 */
3645 if (ksm_pages_volatile < 0)
3646 ksm_pages_volatile = 0;
ae7a927d 3647 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3648}
3649KSM_ATTR_RO(pages_volatile);
3650
e5a68991
SR
3651static ssize_t pages_skipped_show(struct kobject *kobj,
3652 struct kobj_attribute *attr, char *buf)
3653{
3654 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3655}
3656KSM_ATTR_RO(pages_skipped);
3657
e2942062 3658static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3659 struct kobj_attribute *attr, char *buf)
3660{
c2dc78b8 3661 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
e2942062 3662}
3663KSM_ATTR_RO(ksm_zero_pages);
3664
d21077fb
SR
3665static ssize_t general_profit_show(struct kobject *kobj,
3666 struct kobj_attribute *attr, char *buf)
3667{
3668 long general_profit;
3669
c2dc78b8 3670 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
d21077fb
SR
3671 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3672
3673 return sysfs_emit(buf, "%ld\n", general_profit);
3674}
3675KSM_ATTR_RO(general_profit);
3676
2c653d0e
AA
3677static ssize_t stable_node_dups_show(struct kobject *kobj,
3678 struct kobj_attribute *attr, char *buf)
3679{
ae7a927d 3680 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3681}
3682KSM_ATTR_RO(stable_node_dups);
3683
3684static ssize_t stable_node_chains_show(struct kobject *kobj,
3685 struct kobj_attribute *attr, char *buf)
3686{
ae7a927d 3687 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3688}
3689KSM_ATTR_RO(stable_node_chains);
3690
3691static ssize_t
3692stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3693 struct kobj_attribute *attr,
3694 char *buf)
3695{
ae7a927d 3696 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3697}
3698
3699static ssize_t
3700stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3701 struct kobj_attribute *attr,
3702 const char *buf, size_t count)
3703{
584ff0df 3704 unsigned int msecs;
2c653d0e
AA
3705 int err;
3706
584ff0df
ZB
3707 err = kstrtouint(buf, 10, &msecs);
3708 if (err)
2c653d0e
AA
3709 return -EINVAL;
3710
3711 ksm_stable_node_chains_prune_millisecs = msecs;
3712
3713 return count;
3714}
3715KSM_ATTR(stable_node_chains_prune_millisecs);
3716
473b0ce4
HD
3717static ssize_t full_scans_show(struct kobject *kobj,
3718 struct kobj_attribute *attr, char *buf)
3719{
ae7a927d 3720 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3721}
3722KSM_ATTR_RO(full_scans);
3723
5e924ff5
SR
3724static ssize_t smart_scan_show(struct kobject *kobj,
3725 struct kobj_attribute *attr, char *buf)
3726{
3727 return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3728}
3729
3730static ssize_t smart_scan_store(struct kobject *kobj,
3731 struct kobj_attribute *attr,
3732 const char *buf, size_t count)
3733{
3734 int err;
3735 bool value;
3736
3737 err = kstrtobool(buf, &value);
3738 if (err)
3739 return -EINVAL;
3740
3741 ksm_smart_scan = value;
3742 return count;
3743}
3744KSM_ATTR(smart_scan);
3745
66790e9a
SR
3746static ssize_t advisor_mode_show(struct kobject *kobj,
3747 struct kobj_attribute *attr, char *buf)
3748{
3749 const char *output;
3750
3751 if (ksm_advisor == KSM_ADVISOR_NONE)
3752 output = "[none] scan-time";
3753 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3754 output = "none [scan-time]";
3755
3756 return sysfs_emit(buf, "%s\n", output);
3757}
3758
3759static ssize_t advisor_mode_store(struct kobject *kobj,
3760 struct kobj_attribute *attr, const char *buf,
3761 size_t count)
3762{
3763 enum ksm_advisor_type curr_advisor = ksm_advisor;
3764
3765 if (sysfs_streq("scan-time", buf))
3766 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3767 else if (sysfs_streq("none", buf))
3768 ksm_advisor = KSM_ADVISOR_NONE;
3769 else
3770 return -EINVAL;
3771
3772 /* Set advisor default values */
3773 if (curr_advisor != ksm_advisor)
3774 set_advisor_defaults();
3775
3776 return count;
3777}
3778KSM_ATTR(advisor_mode);
3779
3780static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3781 struct kobj_attribute *attr, char *buf)
3782{
3783 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3784}
3785
3786static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3787 struct kobj_attribute *attr,
3788 const char *buf, size_t count)
3789{
3790 int err;
3791 unsigned long value;
3792
3793 err = kstrtoul(buf, 10, &value);
3794 if (err)
3795 return -EINVAL;
3796
3797 ksm_advisor_max_cpu = value;
3798 return count;
3799}
3800KSM_ATTR(advisor_max_cpu);
3801
3802static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3803 struct kobj_attribute *attr, char *buf)
3804{
3805 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3806}
3807
3808static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3809 struct kobj_attribute *attr,
3810 const char *buf, size_t count)
3811{
3812 int err;
3813 unsigned long value;
3814
3815 err = kstrtoul(buf, 10, &value);
3816 if (err)
3817 return -EINVAL;
3818
3819 ksm_advisor_min_pages_to_scan = value;
3820 return count;
3821}
3822KSM_ATTR(advisor_min_pages_to_scan);
3823
3824static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3825 struct kobj_attribute *attr, char *buf)
3826{
3827 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3828}
3829
3830static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3831 struct kobj_attribute *attr,
3832 const char *buf, size_t count)
3833{
3834 int err;
3835 unsigned long value;
3836
3837 err = kstrtoul(buf, 10, &value);
3838 if (err)
3839 return -EINVAL;
3840
3841 ksm_advisor_max_pages_to_scan = value;
3842 return count;
3843}
3844KSM_ATTR(advisor_max_pages_to_scan);
3845
3846static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3847 struct kobj_attribute *attr, char *buf)
3848{
3849 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3850}
3851
3852static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3853 struct kobj_attribute *attr,
3854 const char *buf, size_t count)
3855{
3856 int err;
3857 unsigned long value;
3858
3859 err = kstrtoul(buf, 10, &value);
3860 if (err)
3861 return -EINVAL;
3862 if (value < 1)
3863 return -EINVAL;
3864
3865 ksm_advisor_target_scan_time = value;
3866 return count;
3867}
3868KSM_ATTR(advisor_target_scan_time);
3869
31dbd01f
IE
3870static struct attribute *ksm_attrs[] = {
3871 &sleep_millisecs_attr.attr,
3872 &pages_to_scan_attr.attr,
3873 &run_attr.attr,
b348b5fe 3874 &pages_scanned_attr.attr,
b4028260
HD
3875 &pages_shared_attr.attr,
3876 &pages_sharing_attr.attr,
473b0ce4
HD
3877 &pages_unshared_attr.attr,
3878 &pages_volatile_attr.attr,
e5a68991 3879 &pages_skipped_attr.attr,
e2942062 3880 &ksm_zero_pages_attr.attr,
473b0ce4 3881 &full_scans_attr.attr,
90bd6fd3
PH
3882#ifdef CONFIG_NUMA
3883 &merge_across_nodes_attr.attr,
3884#endif
2c653d0e
AA
3885 &max_page_sharing_attr.attr,
3886 &stable_node_chains_attr.attr,
3887 &stable_node_dups_attr.attr,
3888 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3889 &use_zero_pages_attr.attr,
d21077fb 3890 &general_profit_attr.attr,
5e924ff5 3891 &smart_scan_attr.attr,
66790e9a
SR
3892 &advisor_mode_attr.attr,
3893 &advisor_max_cpu_attr.attr,
3894 &advisor_min_pages_to_scan_attr.attr,
3895 &advisor_max_pages_to_scan_attr.attr,
3896 &advisor_target_scan_time_attr.attr,
31dbd01f
IE
3897 NULL,
3898};
3899
f907c26a 3900static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3901 .attrs = ksm_attrs,
3902 .name = "ksm",
3903};
2ffd8679 3904#endif /* CONFIG_SYSFS */
31dbd01f
IE
3905
3906static int __init ksm_init(void)
3907{
3908 struct task_struct *ksm_thread;
3909 int err;
3910
e86c59b1
CI
3911 /* The correct value depends on page size and endianness */
3912 zero_checksum = calc_checksum(ZERO_PAGE(0));
3913 /* Default to false for backwards compatibility */
3914 ksm_use_zero_pages = false;
3915
31dbd01f
IE
3916 err = ksm_slab_init();
3917 if (err)
3918 goto out;
3919
31dbd01f
IE
3920 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3921 if (IS_ERR(ksm_thread)) {
25acde31 3922 pr_err("ksm: creating kthread failed\n");
31dbd01f 3923 err = PTR_ERR(ksm_thread);
d9f8984c 3924 goto out_free;
31dbd01f
IE
3925 }
3926
2ffd8679 3927#ifdef CONFIG_SYSFS
31dbd01f
IE
3928 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3929 if (err) {
25acde31 3930 pr_err("ksm: register sysfs failed\n");
2ffd8679 3931 kthread_stop(ksm_thread);
d9f8984c 3932 goto out_free;
31dbd01f 3933 }
c73602ad
HD
3934#else
3935 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3936
2ffd8679 3937#endif /* CONFIG_SYSFS */
31dbd01f 3938
62b61f61 3939#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3940 /* There is no significance to this priority 100 */
1eeaa4fd 3941 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3942#endif
31dbd01f
IE
3943 return 0;
3944
d9f8984c 3945out_free:
31dbd01f
IE
3946 ksm_slab_free();
3947out:
3948 return err;
f8af4da3 3949}
a64fb3cd 3950subsys_initcall(ksm_init);
This page took 1.632826 seconds and 4 git commands to generate.