]>
Commit | Line | Data |
---|---|---|
f8af4da3 | 1 | /* |
31dbd01f IE |
2 | * Memory merging support. |
3 | * | |
4 | * This code enables dynamic sharing of identical pages found in different | |
5 | * memory areas, even if they are not shared by fork() | |
6 | * | |
36b2528d | 7 | * Copyright (C) 2008-2009 Red Hat, Inc. |
31dbd01f IE |
8 | * Authors: |
9 | * Izik Eidus | |
10 | * Andrea Arcangeli | |
11 | * Chris Wright | |
36b2528d | 12 | * Hugh Dickins |
31dbd01f IE |
13 | * |
14 | * This work is licensed under the terms of the GNU GPL, version 2. | |
f8af4da3 HD |
15 | */ |
16 | ||
17 | #include <linux/errno.h> | |
31dbd01f IE |
18 | #include <linux/mm.h> |
19 | #include <linux/fs.h> | |
f8af4da3 | 20 | #include <linux/mman.h> |
31dbd01f | 21 | #include <linux/sched.h> |
6e84f315 | 22 | #include <linux/sched/mm.h> |
f7ccbae4 | 23 | #include <linux/sched/coredump.h> |
31dbd01f IE |
24 | #include <linux/rwsem.h> |
25 | #include <linux/pagemap.h> | |
26 | #include <linux/rmap.h> | |
27 | #include <linux/spinlock.h> | |
28 | #include <linux/jhash.h> | |
29 | #include <linux/delay.h> | |
30 | #include <linux/kthread.h> | |
31 | #include <linux/wait.h> | |
32 | #include <linux/slab.h> | |
33 | #include <linux/rbtree.h> | |
62b61f61 | 34 | #include <linux/memory.h> |
31dbd01f | 35 | #include <linux/mmu_notifier.h> |
2c6854fd | 36 | #include <linux/swap.h> |
f8af4da3 | 37 | #include <linux/ksm.h> |
4ca3a69b | 38 | #include <linux/hashtable.h> |
878aee7d | 39 | #include <linux/freezer.h> |
72788c38 | 40 | #include <linux/oom.h> |
90bd6fd3 | 41 | #include <linux/numa.h> |
f8af4da3 | 42 | |
31dbd01f | 43 | #include <asm/tlbflush.h> |
73848b46 | 44 | #include "internal.h" |
31dbd01f | 45 | |
e850dcf5 HD |
46 | #ifdef CONFIG_NUMA |
47 | #define NUMA(x) (x) | |
48 | #define DO_NUMA(x) do { (x); } while (0) | |
49 | #else | |
50 | #define NUMA(x) (0) | |
51 | #define DO_NUMA(x) do { } while (0) | |
52 | #endif | |
53 | ||
5a2ca3ef MR |
54 | /** |
55 | * DOC: Overview | |
56 | * | |
31dbd01f IE |
57 | * A few notes about the KSM scanning process, |
58 | * to make it easier to understand the data structures below: | |
59 | * | |
60 | * In order to reduce excessive scanning, KSM sorts the memory pages by their | |
61 | * contents into a data structure that holds pointers to the pages' locations. | |
62 | * | |
63 | * Since the contents of the pages may change at any moment, KSM cannot just | |
64 | * insert the pages into a normal sorted tree and expect it to find anything. | |
65 | * Therefore KSM uses two data structures - the stable and the unstable tree. | |
66 | * | |
67 | * The stable tree holds pointers to all the merged pages (ksm pages), sorted | |
68 | * by their contents. Because each such page is write-protected, searching on | |
69 | * this tree is fully assured to be working (except when pages are unmapped), | |
70 | * and therefore this tree is called the stable tree. | |
71 | * | |
5a2ca3ef MR |
72 | * The stable tree node includes information required for reverse |
73 | * mapping from a KSM page to virtual addresses that map this page. | |
74 | * | |
75 | * In order to avoid large latencies of the rmap walks on KSM pages, | |
76 | * KSM maintains two types of nodes in the stable tree: | |
77 | * | |
78 | * * the regular nodes that keep the reverse mapping structures in a | |
79 | * linked list | |
80 | * * the "chains" that link nodes ("dups") that represent the same | |
81 | * write protected memory content, but each "dup" corresponds to a | |
82 | * different KSM page copy of that content | |
83 | * | |
84 | * Internally, the regular nodes, "dups" and "chains" are represented | |
85 | * using the same :c:type:`struct stable_node` structure. | |
86 | * | |
31dbd01f IE |
87 | * In addition to the stable tree, KSM uses a second data structure called the |
88 | * unstable tree: this tree holds pointers to pages which have been found to | |
89 | * be "unchanged for a period of time". The unstable tree sorts these pages | |
90 | * by their contents, but since they are not write-protected, KSM cannot rely | |
91 | * upon the unstable tree to work correctly - the unstable tree is liable to | |
92 | * be corrupted as its contents are modified, and so it is called unstable. | |
93 | * | |
94 | * KSM solves this problem by several techniques: | |
95 | * | |
96 | * 1) The unstable tree is flushed every time KSM completes scanning all | |
97 | * memory areas, and then the tree is rebuilt again from the beginning. | |
98 | * 2) KSM will only insert into the unstable tree, pages whose hash value | |
99 | * has not changed since the previous scan of all memory areas. | |
100 | * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the | |
101 | * colors of the nodes and not on their contents, assuring that even when | |
102 | * the tree gets "corrupted" it won't get out of balance, so scanning time | |
103 | * remains the same (also, searching and inserting nodes in an rbtree uses | |
104 | * the same algorithm, so we have no overhead when we flush and rebuild). | |
105 | * 4) KSM never flushes the stable tree, which means that even if it were to | |
106 | * take 10 attempts to find a page in the unstable tree, once it is found, | |
107 | * it is secured in the stable tree. (When we scan a new page, we first | |
108 | * compare it against the stable tree, and then against the unstable tree.) | |
8fdb3dbf HD |
109 | * |
110 | * If the merge_across_nodes tunable is unset, then KSM maintains multiple | |
111 | * stable trees and multiple unstable trees: one of each for each NUMA node. | |
31dbd01f IE |
112 | */ |
113 | ||
114 | /** | |
115 | * struct mm_slot - ksm information per mm that is being scanned | |
116 | * @link: link to the mm_slots hash list | |
117 | * @mm_list: link into the mm_slots list, rooted in ksm_mm_head | |
6514d511 | 118 | * @rmap_list: head for this mm_slot's singly-linked list of rmap_items |
31dbd01f IE |
119 | * @mm: the mm that this information is valid for |
120 | */ | |
121 | struct mm_slot { | |
122 | struct hlist_node link; | |
123 | struct list_head mm_list; | |
6514d511 | 124 | struct rmap_item *rmap_list; |
31dbd01f IE |
125 | struct mm_struct *mm; |
126 | }; | |
127 | ||
128 | /** | |
129 | * struct ksm_scan - cursor for scanning | |
130 | * @mm_slot: the current mm_slot we are scanning | |
131 | * @address: the next address inside that to be scanned | |
6514d511 | 132 | * @rmap_list: link to the next rmap to be scanned in the rmap_list |
31dbd01f IE |
133 | * @seqnr: count of completed full scans (needed when removing unstable node) |
134 | * | |
135 | * There is only the one ksm_scan instance of this cursor structure. | |
136 | */ | |
137 | struct ksm_scan { | |
138 | struct mm_slot *mm_slot; | |
139 | unsigned long address; | |
6514d511 | 140 | struct rmap_item **rmap_list; |
31dbd01f IE |
141 | unsigned long seqnr; |
142 | }; | |
143 | ||
7b6ba2c7 HD |
144 | /** |
145 | * struct stable_node - node of the stable rbtree | |
146 | * @node: rb node of this ksm page in the stable tree | |
4146d2d6 | 147 | * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list |
2c653d0e | 148 | * @hlist_dup: linked into the stable_node->hlist with a stable_node chain |
4146d2d6 | 149 | * @list: linked into migrate_nodes, pending placement in the proper node tree |
7b6ba2c7 | 150 | * @hlist: hlist head of rmap_items using this ksm page |
4146d2d6 | 151 | * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) |
2c653d0e AA |
152 | * @chain_prune_time: time of the last full garbage collection |
153 | * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN | |
4146d2d6 | 154 | * @nid: NUMA node id of stable tree in which linked (may not match kpfn) |
7b6ba2c7 HD |
155 | */ |
156 | struct stable_node { | |
4146d2d6 HD |
157 | union { |
158 | struct rb_node node; /* when node of stable tree */ | |
159 | struct { /* when listed for migration */ | |
160 | struct list_head *head; | |
2c653d0e AA |
161 | struct { |
162 | struct hlist_node hlist_dup; | |
163 | struct list_head list; | |
164 | }; | |
4146d2d6 HD |
165 | }; |
166 | }; | |
7b6ba2c7 | 167 | struct hlist_head hlist; |
2c653d0e AA |
168 | union { |
169 | unsigned long kpfn; | |
170 | unsigned long chain_prune_time; | |
171 | }; | |
172 | /* | |
173 | * STABLE_NODE_CHAIN can be any negative number in | |
174 | * rmap_hlist_len negative range, but better not -1 to be able | |
175 | * to reliably detect underflows. | |
176 | */ | |
177 | #define STABLE_NODE_CHAIN -1024 | |
178 | int rmap_hlist_len; | |
4146d2d6 HD |
179 | #ifdef CONFIG_NUMA |
180 | int nid; | |
181 | #endif | |
7b6ba2c7 HD |
182 | }; |
183 | ||
31dbd01f IE |
184 | /** |
185 | * struct rmap_item - reverse mapping item for virtual addresses | |
6514d511 | 186 | * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list |
db114b83 | 187 | * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree |
bc56620b | 188 | * @nid: NUMA node id of unstable tree in which linked (may not match page) |
31dbd01f IE |
189 | * @mm: the memory structure this rmap_item is pointing into |
190 | * @address: the virtual address this rmap_item tracks (+ flags in low bits) | |
191 | * @oldchecksum: previous checksum of the page at that virtual address | |
7b6ba2c7 HD |
192 | * @node: rb node of this rmap_item in the unstable tree |
193 | * @head: pointer to stable_node heading this list in the stable tree | |
194 | * @hlist: link into hlist of rmap_items hanging off that stable_node | |
31dbd01f IE |
195 | */ |
196 | struct rmap_item { | |
6514d511 | 197 | struct rmap_item *rmap_list; |
bc56620b HD |
198 | union { |
199 | struct anon_vma *anon_vma; /* when stable */ | |
200 | #ifdef CONFIG_NUMA | |
201 | int nid; /* when node of unstable tree */ | |
202 | #endif | |
203 | }; | |
31dbd01f IE |
204 | struct mm_struct *mm; |
205 | unsigned long address; /* + low bits used for flags below */ | |
7b6ba2c7 | 206 | unsigned int oldchecksum; /* when unstable */ |
31dbd01f | 207 | union { |
7b6ba2c7 HD |
208 | struct rb_node node; /* when node of unstable tree */ |
209 | struct { /* when listed from stable tree */ | |
210 | struct stable_node *head; | |
211 | struct hlist_node hlist; | |
212 | }; | |
31dbd01f IE |
213 | }; |
214 | }; | |
215 | ||
216 | #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ | |
7b6ba2c7 HD |
217 | #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ |
218 | #define STABLE_FLAG 0x200 /* is listed from the stable tree */ | |
31dbd01f IE |
219 | |
220 | /* The stable and unstable tree heads */ | |
ef53d16c HD |
221 | static struct rb_root one_stable_tree[1] = { RB_ROOT }; |
222 | static struct rb_root one_unstable_tree[1] = { RB_ROOT }; | |
223 | static struct rb_root *root_stable_tree = one_stable_tree; | |
224 | static struct rb_root *root_unstable_tree = one_unstable_tree; | |
31dbd01f | 225 | |
4146d2d6 HD |
226 | /* Recently migrated nodes of stable tree, pending proper placement */ |
227 | static LIST_HEAD(migrate_nodes); | |
2c653d0e | 228 | #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) |
4146d2d6 | 229 | |
4ca3a69b SL |
230 | #define MM_SLOTS_HASH_BITS 10 |
231 | static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | |
31dbd01f IE |
232 | |
233 | static struct mm_slot ksm_mm_head = { | |
234 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), | |
235 | }; | |
236 | static struct ksm_scan ksm_scan = { | |
237 | .mm_slot = &ksm_mm_head, | |
238 | }; | |
239 | ||
240 | static struct kmem_cache *rmap_item_cache; | |
7b6ba2c7 | 241 | static struct kmem_cache *stable_node_cache; |
31dbd01f IE |
242 | static struct kmem_cache *mm_slot_cache; |
243 | ||
244 | /* The number of nodes in the stable tree */ | |
b4028260 | 245 | static unsigned long ksm_pages_shared; |
31dbd01f | 246 | |
e178dfde | 247 | /* The number of page slots additionally sharing those nodes */ |
b4028260 | 248 | static unsigned long ksm_pages_sharing; |
31dbd01f | 249 | |
473b0ce4 HD |
250 | /* The number of nodes in the unstable tree */ |
251 | static unsigned long ksm_pages_unshared; | |
252 | ||
253 | /* The number of rmap_items in use: to calculate pages_volatile */ | |
254 | static unsigned long ksm_rmap_items; | |
255 | ||
2c653d0e AA |
256 | /* The number of stable_node chains */ |
257 | static unsigned long ksm_stable_node_chains; | |
258 | ||
259 | /* The number of stable_node dups linked to the stable_node chains */ | |
260 | static unsigned long ksm_stable_node_dups; | |
261 | ||
262 | /* Delay in pruning stale stable_node_dups in the stable_node_chains */ | |
263 | static int ksm_stable_node_chains_prune_millisecs = 2000; | |
264 | ||
265 | /* Maximum number of page slots sharing a stable node */ | |
266 | static int ksm_max_page_sharing = 256; | |
267 | ||
31dbd01f | 268 | /* Number of pages ksmd should scan in one batch */ |
2c6854fd | 269 | static unsigned int ksm_thread_pages_to_scan = 100; |
31dbd01f IE |
270 | |
271 | /* Milliseconds ksmd should sleep between batches */ | |
2ffd8679 | 272 | static unsigned int ksm_thread_sleep_millisecs = 20; |
31dbd01f | 273 | |
e86c59b1 CI |
274 | /* Checksum of an empty (zeroed) page */ |
275 | static unsigned int zero_checksum __read_mostly; | |
276 | ||
277 | /* Whether to merge empty (zeroed) pages with actual zero pages */ | |
278 | static bool ksm_use_zero_pages __read_mostly; | |
279 | ||
e850dcf5 | 280 | #ifdef CONFIG_NUMA |
90bd6fd3 PH |
281 | /* Zeroed when merging across nodes is not allowed */ |
282 | static unsigned int ksm_merge_across_nodes = 1; | |
ef53d16c | 283 | static int ksm_nr_node_ids = 1; |
e850dcf5 HD |
284 | #else |
285 | #define ksm_merge_across_nodes 1U | |
ef53d16c | 286 | #define ksm_nr_node_ids 1 |
e850dcf5 | 287 | #endif |
90bd6fd3 | 288 | |
31dbd01f IE |
289 | #define KSM_RUN_STOP 0 |
290 | #define KSM_RUN_MERGE 1 | |
291 | #define KSM_RUN_UNMERGE 2 | |
ef4d43a8 HD |
292 | #define KSM_RUN_OFFLINE 4 |
293 | static unsigned long ksm_run = KSM_RUN_STOP; | |
294 | static void wait_while_offlining(void); | |
31dbd01f IE |
295 | |
296 | static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); | |
297 | static DEFINE_MUTEX(ksm_thread_mutex); | |
298 | static DEFINE_SPINLOCK(ksm_mmlist_lock); | |
299 | ||
300 | #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ | |
301 | sizeof(struct __struct), __alignof__(struct __struct),\ | |
302 | (__flags), NULL) | |
303 | ||
304 | static int __init ksm_slab_init(void) | |
305 | { | |
306 | rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); | |
307 | if (!rmap_item_cache) | |
308 | goto out; | |
309 | ||
7b6ba2c7 HD |
310 | stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); |
311 | if (!stable_node_cache) | |
312 | goto out_free1; | |
313 | ||
31dbd01f IE |
314 | mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); |
315 | if (!mm_slot_cache) | |
7b6ba2c7 | 316 | goto out_free2; |
31dbd01f IE |
317 | |
318 | return 0; | |
319 | ||
7b6ba2c7 HD |
320 | out_free2: |
321 | kmem_cache_destroy(stable_node_cache); | |
322 | out_free1: | |
31dbd01f IE |
323 | kmem_cache_destroy(rmap_item_cache); |
324 | out: | |
325 | return -ENOMEM; | |
326 | } | |
327 | ||
328 | static void __init ksm_slab_free(void) | |
329 | { | |
330 | kmem_cache_destroy(mm_slot_cache); | |
7b6ba2c7 | 331 | kmem_cache_destroy(stable_node_cache); |
31dbd01f IE |
332 | kmem_cache_destroy(rmap_item_cache); |
333 | mm_slot_cache = NULL; | |
334 | } | |
335 | ||
2c653d0e AA |
336 | static __always_inline bool is_stable_node_chain(struct stable_node *chain) |
337 | { | |
338 | return chain->rmap_hlist_len == STABLE_NODE_CHAIN; | |
339 | } | |
340 | ||
341 | static __always_inline bool is_stable_node_dup(struct stable_node *dup) | |
342 | { | |
343 | return dup->head == STABLE_NODE_DUP_HEAD; | |
344 | } | |
345 | ||
346 | static inline void stable_node_chain_add_dup(struct stable_node *dup, | |
347 | struct stable_node *chain) | |
348 | { | |
349 | VM_BUG_ON(is_stable_node_dup(dup)); | |
350 | dup->head = STABLE_NODE_DUP_HEAD; | |
351 | VM_BUG_ON(!is_stable_node_chain(chain)); | |
352 | hlist_add_head(&dup->hlist_dup, &chain->hlist); | |
353 | ksm_stable_node_dups++; | |
354 | } | |
355 | ||
356 | static inline void __stable_node_dup_del(struct stable_node *dup) | |
357 | { | |
b4fecc67 | 358 | VM_BUG_ON(!is_stable_node_dup(dup)); |
2c653d0e AA |
359 | hlist_del(&dup->hlist_dup); |
360 | ksm_stable_node_dups--; | |
361 | } | |
362 | ||
363 | static inline void stable_node_dup_del(struct stable_node *dup) | |
364 | { | |
365 | VM_BUG_ON(is_stable_node_chain(dup)); | |
366 | if (is_stable_node_dup(dup)) | |
367 | __stable_node_dup_del(dup); | |
368 | else | |
369 | rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); | |
370 | #ifdef CONFIG_DEBUG_VM | |
371 | dup->head = NULL; | |
372 | #endif | |
373 | } | |
374 | ||
31dbd01f IE |
375 | static inline struct rmap_item *alloc_rmap_item(void) |
376 | { | |
473b0ce4 HD |
377 | struct rmap_item *rmap_item; |
378 | ||
5b398e41 | 379 | rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | |
380 | __GFP_NORETRY | __GFP_NOWARN); | |
473b0ce4 HD |
381 | if (rmap_item) |
382 | ksm_rmap_items++; | |
383 | return rmap_item; | |
31dbd01f IE |
384 | } |
385 | ||
386 | static inline void free_rmap_item(struct rmap_item *rmap_item) | |
387 | { | |
473b0ce4 | 388 | ksm_rmap_items--; |
31dbd01f IE |
389 | rmap_item->mm = NULL; /* debug safety */ |
390 | kmem_cache_free(rmap_item_cache, rmap_item); | |
391 | } | |
392 | ||
7b6ba2c7 HD |
393 | static inline struct stable_node *alloc_stable_node(void) |
394 | { | |
6213055f | 395 | /* |
396 | * The allocation can take too long with GFP_KERNEL when memory is under | |
397 | * pressure, which may lead to hung task warnings. Adding __GFP_HIGH | |
398 | * grants access to memory reserves, helping to avoid this problem. | |
399 | */ | |
400 | return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); | |
7b6ba2c7 HD |
401 | } |
402 | ||
403 | static inline void free_stable_node(struct stable_node *stable_node) | |
404 | { | |
2c653d0e AA |
405 | VM_BUG_ON(stable_node->rmap_hlist_len && |
406 | !is_stable_node_chain(stable_node)); | |
7b6ba2c7 HD |
407 | kmem_cache_free(stable_node_cache, stable_node); |
408 | } | |
409 | ||
31dbd01f IE |
410 | static inline struct mm_slot *alloc_mm_slot(void) |
411 | { | |
412 | if (!mm_slot_cache) /* initialization failed */ | |
413 | return NULL; | |
414 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | |
415 | } | |
416 | ||
417 | static inline void free_mm_slot(struct mm_slot *mm_slot) | |
418 | { | |
419 | kmem_cache_free(mm_slot_cache, mm_slot); | |
420 | } | |
421 | ||
31dbd01f IE |
422 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) |
423 | { | |
4ca3a69b SL |
424 | struct mm_slot *slot; |
425 | ||
b67bfe0d | 426 | hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) |
4ca3a69b SL |
427 | if (slot->mm == mm) |
428 | return slot; | |
31dbd01f | 429 | |
31dbd01f IE |
430 | return NULL; |
431 | } | |
432 | ||
433 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | |
434 | struct mm_slot *mm_slot) | |
435 | { | |
31dbd01f | 436 | mm_slot->mm = mm; |
4ca3a69b | 437 | hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); |
31dbd01f IE |
438 | } |
439 | ||
a913e182 HD |
440 | /* |
441 | * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's | |
442 | * page tables after it has passed through ksm_exit() - which, if necessary, | |
443 | * takes mmap_sem briefly to serialize against them. ksm_exit() does not set | |
444 | * a special flag: they can just back out as soon as mm_users goes to zero. | |
445 | * ksm_test_exit() is used throughout to make this test for exit: in some | |
446 | * places for correctness, in some places just to avoid unnecessary work. | |
447 | */ | |
448 | static inline bool ksm_test_exit(struct mm_struct *mm) | |
449 | { | |
450 | return atomic_read(&mm->mm_users) == 0; | |
451 | } | |
452 | ||
31dbd01f IE |
453 | /* |
454 | * We use break_ksm to break COW on a ksm page: it's a stripped down | |
455 | * | |
d4edcf0d | 456 | * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) |
31dbd01f IE |
457 | * put_page(page); |
458 | * | |
459 | * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, | |
460 | * in case the application has unmapped and remapped mm,addr meanwhile. | |
461 | * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP | |
462 | * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. | |
1b2ee126 DH |
463 | * |
464 | * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context | |
465 | * of the process that owns 'vma'. We also do not want to enforce | |
466 | * protection keys here anyway. | |
31dbd01f | 467 | */ |
d952b791 | 468 | static int break_ksm(struct vm_area_struct *vma, unsigned long addr) |
31dbd01f IE |
469 | { |
470 | struct page *page; | |
d952b791 | 471 | int ret = 0; |
31dbd01f IE |
472 | |
473 | do { | |
474 | cond_resched(); | |
1b2ee126 DH |
475 | page = follow_page(vma, addr, |
476 | FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); | |
22eccdd7 | 477 | if (IS_ERR_OR_NULL(page)) |
31dbd01f IE |
478 | break; |
479 | if (PageKsm(page)) | |
dcddffd4 KS |
480 | ret = handle_mm_fault(vma, addr, |
481 | FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); | |
31dbd01f IE |
482 | else |
483 | ret = VM_FAULT_WRITE; | |
484 | put_page(page); | |
33692f27 | 485 | } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); |
d952b791 HD |
486 | /* |
487 | * We must loop because handle_mm_fault() may back out if there's | |
488 | * any difficulty e.g. if pte accessed bit gets updated concurrently. | |
489 | * | |
490 | * VM_FAULT_WRITE is what we have been hoping for: it indicates that | |
491 | * COW has been broken, even if the vma does not permit VM_WRITE; | |
492 | * but note that a concurrent fault might break PageKsm for us. | |
493 | * | |
494 | * VM_FAULT_SIGBUS could occur if we race with truncation of the | |
495 | * backing file, which also invalidates anonymous pages: that's | |
496 | * okay, that truncation will have unmapped the PageKsm for us. | |
497 | * | |
498 | * VM_FAULT_OOM: at the time of writing (late July 2009), setting | |
499 | * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the | |
500 | * current task has TIF_MEMDIE set, and will be OOM killed on return | |
501 | * to user; and ksmd, having no mm, would never be chosen for that. | |
502 | * | |
503 | * But if the mm is in a limited mem_cgroup, then the fault may fail | |
504 | * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and | |
505 | * even ksmd can fail in this way - though it's usually breaking ksm | |
506 | * just to undo a merge it made a moment before, so unlikely to oom. | |
507 | * | |
508 | * That's a pity: we might therefore have more kernel pages allocated | |
509 | * than we're counting as nodes in the stable tree; but ksm_do_scan | |
510 | * will retry to break_cow on each pass, so should recover the page | |
511 | * in due course. The important thing is to not let VM_MERGEABLE | |
512 | * be cleared while any such pages might remain in the area. | |
513 | */ | |
514 | return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; | |
31dbd01f IE |
515 | } |
516 | ||
ef694222 BL |
517 | static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, |
518 | unsigned long addr) | |
519 | { | |
520 | struct vm_area_struct *vma; | |
521 | if (ksm_test_exit(mm)) | |
522 | return NULL; | |
523 | vma = find_vma(mm, addr); | |
524 | if (!vma || vma->vm_start > addr) | |
525 | return NULL; | |
526 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | |
527 | return NULL; | |
528 | return vma; | |
529 | } | |
530 | ||
8dd3557a | 531 | static void break_cow(struct rmap_item *rmap_item) |
31dbd01f | 532 | { |
8dd3557a HD |
533 | struct mm_struct *mm = rmap_item->mm; |
534 | unsigned long addr = rmap_item->address; | |
31dbd01f IE |
535 | struct vm_area_struct *vma; |
536 | ||
4035c07a HD |
537 | /* |
538 | * It is not an accident that whenever we want to break COW | |
539 | * to undo, we also need to drop a reference to the anon_vma. | |
540 | */ | |
9e60109f | 541 | put_anon_vma(rmap_item->anon_vma); |
4035c07a | 542 | |
81464e30 | 543 | down_read(&mm->mmap_sem); |
ef694222 BL |
544 | vma = find_mergeable_vma(mm, addr); |
545 | if (vma) | |
546 | break_ksm(vma, addr); | |
31dbd01f IE |
547 | up_read(&mm->mmap_sem); |
548 | } | |
549 | ||
550 | static struct page *get_mergeable_page(struct rmap_item *rmap_item) | |
551 | { | |
552 | struct mm_struct *mm = rmap_item->mm; | |
553 | unsigned long addr = rmap_item->address; | |
554 | struct vm_area_struct *vma; | |
555 | struct page *page; | |
556 | ||
557 | down_read(&mm->mmap_sem); | |
ef694222 BL |
558 | vma = find_mergeable_vma(mm, addr); |
559 | if (!vma) | |
31dbd01f IE |
560 | goto out; |
561 | ||
562 | page = follow_page(vma, addr, FOLL_GET); | |
22eccdd7 | 563 | if (IS_ERR_OR_NULL(page)) |
31dbd01f | 564 | goto out; |
f765f540 | 565 | if (PageAnon(page)) { |
31dbd01f IE |
566 | flush_anon_page(vma, page, addr); |
567 | flush_dcache_page(page); | |
568 | } else { | |
569 | put_page(page); | |
c8f95ed1 AA |
570 | out: |
571 | page = NULL; | |
31dbd01f IE |
572 | } |
573 | up_read(&mm->mmap_sem); | |
574 | return page; | |
575 | } | |
576 | ||
90bd6fd3 PH |
577 | /* |
578 | * This helper is used for getting right index into array of tree roots. | |
579 | * When merge_across_nodes knob is set to 1, there are only two rb-trees for | |
580 | * stable and unstable pages from all nodes with roots in index 0. Otherwise, | |
581 | * every node has its own stable and unstable tree. | |
582 | */ | |
583 | static inline int get_kpfn_nid(unsigned long kpfn) | |
584 | { | |
d8fc16a8 | 585 | return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); |
90bd6fd3 PH |
586 | } |
587 | ||
2c653d0e AA |
588 | static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, |
589 | struct rb_root *root) | |
590 | { | |
591 | struct stable_node *chain = alloc_stable_node(); | |
592 | VM_BUG_ON(is_stable_node_chain(dup)); | |
593 | if (likely(chain)) { | |
594 | INIT_HLIST_HEAD(&chain->hlist); | |
595 | chain->chain_prune_time = jiffies; | |
596 | chain->rmap_hlist_len = STABLE_NODE_CHAIN; | |
597 | #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) | |
598 | chain->nid = -1; /* debug */ | |
599 | #endif | |
600 | ksm_stable_node_chains++; | |
601 | ||
602 | /* | |
603 | * Put the stable node chain in the first dimension of | |
604 | * the stable tree and at the same time remove the old | |
605 | * stable node. | |
606 | */ | |
607 | rb_replace_node(&dup->node, &chain->node, root); | |
608 | ||
609 | /* | |
610 | * Move the old stable node to the second dimension | |
611 | * queued in the hlist_dup. The invariant is that all | |
612 | * dup stable_nodes in the chain->hlist point to pages | |
613 | * that are wrprotected and have the exact same | |
614 | * content. | |
615 | */ | |
616 | stable_node_chain_add_dup(dup, chain); | |
617 | } | |
618 | return chain; | |
619 | } | |
620 | ||
621 | static inline void free_stable_node_chain(struct stable_node *chain, | |
622 | struct rb_root *root) | |
623 | { | |
624 | rb_erase(&chain->node, root); | |
625 | free_stable_node(chain); | |
626 | ksm_stable_node_chains--; | |
627 | } | |
628 | ||
4035c07a HD |
629 | static void remove_node_from_stable_tree(struct stable_node *stable_node) |
630 | { | |
631 | struct rmap_item *rmap_item; | |
4035c07a | 632 | |
2c653d0e AA |
633 | /* check it's not STABLE_NODE_CHAIN or negative */ |
634 | BUG_ON(stable_node->rmap_hlist_len < 0); | |
635 | ||
b67bfe0d | 636 | hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { |
4035c07a HD |
637 | if (rmap_item->hlist.next) |
638 | ksm_pages_sharing--; | |
639 | else | |
640 | ksm_pages_shared--; | |
2c653d0e AA |
641 | VM_BUG_ON(stable_node->rmap_hlist_len <= 0); |
642 | stable_node->rmap_hlist_len--; | |
9e60109f | 643 | put_anon_vma(rmap_item->anon_vma); |
4035c07a HD |
644 | rmap_item->address &= PAGE_MASK; |
645 | cond_resched(); | |
646 | } | |
647 | ||
2c653d0e AA |
648 | /* |
649 | * We need the second aligned pointer of the migrate_nodes | |
650 | * list_head to stay clear from the rb_parent_color union | |
651 | * (aligned and different than any node) and also different | |
652 | * from &migrate_nodes. This will verify that future list.h changes | |
653 | * don't break STABLE_NODE_DUP_HEAD. | |
654 | */ | |
655 | #if GCC_VERSION >= 40903 /* only recent gcc can handle it */ | |
656 | BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); | |
657 | BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); | |
658 | #endif | |
659 | ||
4146d2d6 HD |
660 | if (stable_node->head == &migrate_nodes) |
661 | list_del(&stable_node->list); | |
662 | else | |
2c653d0e | 663 | stable_node_dup_del(stable_node); |
4035c07a HD |
664 | free_stable_node(stable_node); |
665 | } | |
666 | ||
667 | /* | |
668 | * get_ksm_page: checks if the page indicated by the stable node | |
669 | * is still its ksm page, despite having held no reference to it. | |
670 | * In which case we can trust the content of the page, and it | |
671 | * returns the gotten page; but if the page has now been zapped, | |
672 | * remove the stale node from the stable tree and return NULL. | |
c8d6553b | 673 | * But beware, the stable node's page might be being migrated. |
4035c07a HD |
674 | * |
675 | * You would expect the stable_node to hold a reference to the ksm page. | |
676 | * But if it increments the page's count, swapping out has to wait for | |
677 | * ksmd to come around again before it can free the page, which may take | |
678 | * seconds or even minutes: much too unresponsive. So instead we use a | |
679 | * "keyhole reference": access to the ksm page from the stable node peeps | |
680 | * out through its keyhole to see if that page still holds the right key, | |
681 | * pointing back to this stable node. This relies on freeing a PageAnon | |
682 | * page to reset its page->mapping to NULL, and relies on no other use of | |
683 | * a page to put something that might look like our key in page->mapping. | |
4035c07a HD |
684 | * is on its way to being freed; but it is an anomaly to bear in mind. |
685 | */ | |
8fdb3dbf | 686 | static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) |
4035c07a HD |
687 | { |
688 | struct page *page; | |
689 | void *expected_mapping; | |
c8d6553b | 690 | unsigned long kpfn; |
4035c07a | 691 | |
bda807d4 MK |
692 | expected_mapping = (void *)((unsigned long)stable_node | |
693 | PAGE_MAPPING_KSM); | |
c8d6553b | 694 | again: |
08df4774 | 695 | kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ |
c8d6553b | 696 | page = pfn_to_page(kpfn); |
4db0c3c2 | 697 | if (READ_ONCE(page->mapping) != expected_mapping) |
4035c07a | 698 | goto stale; |
c8d6553b HD |
699 | |
700 | /* | |
701 | * We cannot do anything with the page while its refcount is 0. | |
702 | * Usually 0 means free, or tail of a higher-order page: in which | |
703 | * case this node is no longer referenced, and should be freed; | |
704 | * however, it might mean that the page is under page_freeze_refs(). | |
705 | * The __remove_mapping() case is easy, again the node is now stale; | |
706 | * but if page is swapcache in migrate_page_move_mapping(), it might | |
707 | * still be our page, in which case it's essential to keep the node. | |
708 | */ | |
709 | while (!get_page_unless_zero(page)) { | |
710 | /* | |
711 | * Another check for page->mapping != expected_mapping would | |
712 | * work here too. We have chosen the !PageSwapCache test to | |
713 | * optimize the common case, when the page is or is about to | |
714 | * be freed: PageSwapCache is cleared (under spin_lock_irq) | |
715 | * in the freeze_refs section of __remove_mapping(); but Anon | |
716 | * page->mapping reset to NULL later, in free_pages_prepare(). | |
717 | */ | |
718 | if (!PageSwapCache(page)) | |
719 | goto stale; | |
720 | cpu_relax(); | |
721 | } | |
722 | ||
4db0c3c2 | 723 | if (READ_ONCE(page->mapping) != expected_mapping) { |
4035c07a HD |
724 | put_page(page); |
725 | goto stale; | |
726 | } | |
c8d6553b | 727 | |
8fdb3dbf | 728 | if (lock_it) { |
8aafa6a4 | 729 | lock_page(page); |
4db0c3c2 | 730 | if (READ_ONCE(page->mapping) != expected_mapping) { |
8aafa6a4 HD |
731 | unlock_page(page); |
732 | put_page(page); | |
733 | goto stale; | |
734 | } | |
735 | } | |
4035c07a | 736 | return page; |
c8d6553b | 737 | |
4035c07a | 738 | stale: |
c8d6553b HD |
739 | /* |
740 | * We come here from above when page->mapping or !PageSwapCache | |
741 | * suggests that the node is stale; but it might be under migration. | |
742 | * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), | |
743 | * before checking whether node->kpfn has been changed. | |
744 | */ | |
745 | smp_rmb(); | |
4db0c3c2 | 746 | if (READ_ONCE(stable_node->kpfn) != kpfn) |
c8d6553b | 747 | goto again; |
4035c07a HD |
748 | remove_node_from_stable_tree(stable_node); |
749 | return NULL; | |
750 | } | |
751 | ||
31dbd01f IE |
752 | /* |
753 | * Removing rmap_item from stable or unstable tree. | |
754 | * This function will clean the information from the stable/unstable tree. | |
755 | */ | |
756 | static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) | |
757 | { | |
7b6ba2c7 HD |
758 | if (rmap_item->address & STABLE_FLAG) { |
759 | struct stable_node *stable_node; | |
5ad64688 | 760 | struct page *page; |
31dbd01f | 761 | |
7b6ba2c7 | 762 | stable_node = rmap_item->head; |
8aafa6a4 | 763 | page = get_ksm_page(stable_node, true); |
4035c07a HD |
764 | if (!page) |
765 | goto out; | |
5ad64688 | 766 | |
7b6ba2c7 | 767 | hlist_del(&rmap_item->hlist); |
4035c07a HD |
768 | unlock_page(page); |
769 | put_page(page); | |
08beca44 | 770 | |
98666f8a | 771 | if (!hlist_empty(&stable_node->hlist)) |
4035c07a HD |
772 | ksm_pages_sharing--; |
773 | else | |
7b6ba2c7 | 774 | ksm_pages_shared--; |
2c653d0e AA |
775 | VM_BUG_ON(stable_node->rmap_hlist_len <= 0); |
776 | stable_node->rmap_hlist_len--; | |
31dbd01f | 777 | |
9e60109f | 778 | put_anon_vma(rmap_item->anon_vma); |
93d17715 | 779 | rmap_item->address &= PAGE_MASK; |
31dbd01f | 780 | |
7b6ba2c7 | 781 | } else if (rmap_item->address & UNSTABLE_FLAG) { |
31dbd01f IE |
782 | unsigned char age; |
783 | /* | |
9ba69294 | 784 | * Usually ksmd can and must skip the rb_erase, because |
31dbd01f | 785 | * root_unstable_tree was already reset to RB_ROOT. |
9ba69294 HD |
786 | * But be careful when an mm is exiting: do the rb_erase |
787 | * if this rmap_item was inserted by this scan, rather | |
788 | * than left over from before. | |
31dbd01f IE |
789 | */ |
790 | age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); | |
cd551f97 | 791 | BUG_ON(age > 1); |
31dbd01f | 792 | if (!age) |
90bd6fd3 | 793 | rb_erase(&rmap_item->node, |
ef53d16c | 794 | root_unstable_tree + NUMA(rmap_item->nid)); |
473b0ce4 | 795 | ksm_pages_unshared--; |
93d17715 | 796 | rmap_item->address &= PAGE_MASK; |
31dbd01f | 797 | } |
4035c07a | 798 | out: |
31dbd01f IE |
799 | cond_resched(); /* we're called from many long loops */ |
800 | } | |
801 | ||
31dbd01f | 802 | static void remove_trailing_rmap_items(struct mm_slot *mm_slot, |
6514d511 | 803 | struct rmap_item **rmap_list) |
31dbd01f | 804 | { |
6514d511 HD |
805 | while (*rmap_list) { |
806 | struct rmap_item *rmap_item = *rmap_list; | |
807 | *rmap_list = rmap_item->rmap_list; | |
31dbd01f | 808 | remove_rmap_item_from_tree(rmap_item); |
31dbd01f IE |
809 | free_rmap_item(rmap_item); |
810 | } | |
811 | } | |
812 | ||
813 | /* | |
e850dcf5 | 814 | * Though it's very tempting to unmerge rmap_items from stable tree rather |
31dbd01f IE |
815 | * than check every pte of a given vma, the locking doesn't quite work for |
816 | * that - an rmap_item is assigned to the stable tree after inserting ksm | |
817 | * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing | |
818 | * rmap_items from parent to child at fork time (so as not to waste time | |
819 | * if exit comes before the next scan reaches it). | |
81464e30 HD |
820 | * |
821 | * Similarly, although we'd like to remove rmap_items (so updating counts | |
822 | * and freeing memory) when unmerging an area, it's easier to leave that | |
823 | * to the next pass of ksmd - consider, for example, how ksmd might be | |
824 | * in cmp_and_merge_page on one of the rmap_items we would be removing. | |
31dbd01f | 825 | */ |
d952b791 HD |
826 | static int unmerge_ksm_pages(struct vm_area_struct *vma, |
827 | unsigned long start, unsigned long end) | |
31dbd01f IE |
828 | { |
829 | unsigned long addr; | |
d952b791 | 830 | int err = 0; |
31dbd01f | 831 | |
d952b791 | 832 | for (addr = start; addr < end && !err; addr += PAGE_SIZE) { |
9ba69294 HD |
833 | if (ksm_test_exit(vma->vm_mm)) |
834 | break; | |
d952b791 HD |
835 | if (signal_pending(current)) |
836 | err = -ERESTARTSYS; | |
837 | else | |
838 | err = break_ksm(vma, addr); | |
839 | } | |
840 | return err; | |
31dbd01f IE |
841 | } |
842 | ||
88484826 MR |
843 | static inline struct stable_node *page_stable_node(struct page *page) |
844 | { | |
845 | return PageKsm(page) ? page_rmapping(page) : NULL; | |
846 | } | |
847 | ||
848 | static inline void set_page_stable_node(struct page *page, | |
849 | struct stable_node *stable_node) | |
850 | { | |
851 | page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); | |
852 | } | |
853 | ||
2ffd8679 HD |
854 | #ifdef CONFIG_SYSFS |
855 | /* | |
856 | * Only called through the sysfs control interface: | |
857 | */ | |
cbf86cfe HD |
858 | static int remove_stable_node(struct stable_node *stable_node) |
859 | { | |
860 | struct page *page; | |
861 | int err; | |
862 | ||
863 | page = get_ksm_page(stable_node, true); | |
864 | if (!page) { | |
865 | /* | |
866 | * get_ksm_page did remove_node_from_stable_tree itself. | |
867 | */ | |
868 | return 0; | |
869 | } | |
870 | ||
8fdb3dbf HD |
871 | if (WARN_ON_ONCE(page_mapped(page))) { |
872 | /* | |
873 | * This should not happen: but if it does, just refuse to let | |
874 | * merge_across_nodes be switched - there is no need to panic. | |
875 | */ | |
cbf86cfe | 876 | err = -EBUSY; |
8fdb3dbf | 877 | } else { |
cbf86cfe | 878 | /* |
8fdb3dbf HD |
879 | * The stable node did not yet appear stale to get_ksm_page(), |
880 | * since that allows for an unmapped ksm page to be recognized | |
881 | * right up until it is freed; but the node is safe to remove. | |
cbf86cfe HD |
882 | * This page might be in a pagevec waiting to be freed, |
883 | * or it might be PageSwapCache (perhaps under writeback), | |
884 | * or it might have been removed from swapcache a moment ago. | |
885 | */ | |
886 | set_page_stable_node(page, NULL); | |
887 | remove_node_from_stable_tree(stable_node); | |
888 | err = 0; | |
889 | } | |
890 | ||
891 | unlock_page(page); | |
892 | put_page(page); | |
893 | return err; | |
894 | } | |
895 | ||
2c653d0e AA |
896 | static int remove_stable_node_chain(struct stable_node *stable_node, |
897 | struct rb_root *root) | |
898 | { | |
899 | struct stable_node *dup; | |
900 | struct hlist_node *hlist_safe; | |
901 | ||
902 | if (!is_stable_node_chain(stable_node)) { | |
903 | VM_BUG_ON(is_stable_node_dup(stable_node)); | |
904 | if (remove_stable_node(stable_node)) | |
905 | return true; | |
906 | else | |
907 | return false; | |
908 | } | |
909 | ||
910 | hlist_for_each_entry_safe(dup, hlist_safe, | |
911 | &stable_node->hlist, hlist_dup) { | |
912 | VM_BUG_ON(!is_stable_node_dup(dup)); | |
913 | if (remove_stable_node(dup)) | |
914 | return true; | |
915 | } | |
916 | BUG_ON(!hlist_empty(&stable_node->hlist)); | |
917 | free_stable_node_chain(stable_node, root); | |
918 | return false; | |
919 | } | |
920 | ||
cbf86cfe HD |
921 | static int remove_all_stable_nodes(void) |
922 | { | |
03640418 | 923 | struct stable_node *stable_node, *next; |
cbf86cfe HD |
924 | int nid; |
925 | int err = 0; | |
926 | ||
ef53d16c | 927 | for (nid = 0; nid < ksm_nr_node_ids; nid++) { |
cbf86cfe HD |
928 | while (root_stable_tree[nid].rb_node) { |
929 | stable_node = rb_entry(root_stable_tree[nid].rb_node, | |
930 | struct stable_node, node); | |
2c653d0e AA |
931 | if (remove_stable_node_chain(stable_node, |
932 | root_stable_tree + nid)) { | |
cbf86cfe HD |
933 | err = -EBUSY; |
934 | break; /* proceed to next nid */ | |
935 | } | |
936 | cond_resched(); | |
937 | } | |
938 | } | |
03640418 | 939 | list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { |
4146d2d6 HD |
940 | if (remove_stable_node(stable_node)) |
941 | err = -EBUSY; | |
942 | cond_resched(); | |
943 | } | |
cbf86cfe HD |
944 | return err; |
945 | } | |
946 | ||
d952b791 | 947 | static int unmerge_and_remove_all_rmap_items(void) |
31dbd01f IE |
948 | { |
949 | struct mm_slot *mm_slot; | |
950 | struct mm_struct *mm; | |
951 | struct vm_area_struct *vma; | |
d952b791 HD |
952 | int err = 0; |
953 | ||
954 | spin_lock(&ksm_mmlist_lock); | |
9ba69294 | 955 | ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, |
d952b791 HD |
956 | struct mm_slot, mm_list); |
957 | spin_unlock(&ksm_mmlist_lock); | |
31dbd01f | 958 | |
9ba69294 HD |
959 | for (mm_slot = ksm_scan.mm_slot; |
960 | mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { | |
31dbd01f IE |
961 | mm = mm_slot->mm; |
962 | down_read(&mm->mmap_sem); | |
963 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
9ba69294 HD |
964 | if (ksm_test_exit(mm)) |
965 | break; | |
31dbd01f IE |
966 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) |
967 | continue; | |
d952b791 HD |
968 | err = unmerge_ksm_pages(vma, |
969 | vma->vm_start, vma->vm_end); | |
9ba69294 HD |
970 | if (err) |
971 | goto error; | |
31dbd01f | 972 | } |
9ba69294 | 973 | |
6514d511 | 974 | remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); |
7496fea9 | 975 | up_read(&mm->mmap_sem); |
d952b791 HD |
976 | |
977 | spin_lock(&ksm_mmlist_lock); | |
9ba69294 | 978 | ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, |
d952b791 | 979 | struct mm_slot, mm_list); |
9ba69294 | 980 | if (ksm_test_exit(mm)) { |
4ca3a69b | 981 | hash_del(&mm_slot->link); |
9ba69294 HD |
982 | list_del(&mm_slot->mm_list); |
983 | spin_unlock(&ksm_mmlist_lock); | |
984 | ||
985 | free_mm_slot(mm_slot); | |
986 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | |
9ba69294 | 987 | mmdrop(mm); |
7496fea9 | 988 | } else |
9ba69294 | 989 | spin_unlock(&ksm_mmlist_lock); |
31dbd01f IE |
990 | } |
991 | ||
cbf86cfe HD |
992 | /* Clean up stable nodes, but don't worry if some are still busy */ |
993 | remove_all_stable_nodes(); | |
d952b791 | 994 | ksm_scan.seqnr = 0; |
9ba69294 HD |
995 | return 0; |
996 | ||
997 | error: | |
998 | up_read(&mm->mmap_sem); | |
31dbd01f | 999 | spin_lock(&ksm_mmlist_lock); |
d952b791 | 1000 | ksm_scan.mm_slot = &ksm_mm_head; |
31dbd01f | 1001 | spin_unlock(&ksm_mmlist_lock); |
d952b791 | 1002 | return err; |
31dbd01f | 1003 | } |
2ffd8679 | 1004 | #endif /* CONFIG_SYSFS */ |
31dbd01f | 1005 | |
31dbd01f IE |
1006 | static u32 calc_checksum(struct page *page) |
1007 | { | |
1008 | u32 checksum; | |
9b04c5fe | 1009 | void *addr = kmap_atomic(page); |
31dbd01f | 1010 | checksum = jhash2(addr, PAGE_SIZE / 4, 17); |
9b04c5fe | 1011 | kunmap_atomic(addr); |
31dbd01f IE |
1012 | return checksum; |
1013 | } | |
1014 | ||
1015 | static int memcmp_pages(struct page *page1, struct page *page2) | |
1016 | { | |
1017 | char *addr1, *addr2; | |
1018 | int ret; | |
1019 | ||
9b04c5fe CW |
1020 | addr1 = kmap_atomic(page1); |
1021 | addr2 = kmap_atomic(page2); | |
31dbd01f | 1022 | ret = memcmp(addr1, addr2, PAGE_SIZE); |
9b04c5fe CW |
1023 | kunmap_atomic(addr2); |
1024 | kunmap_atomic(addr1); | |
31dbd01f IE |
1025 | return ret; |
1026 | } | |
1027 | ||
1028 | static inline int pages_identical(struct page *page1, struct page *page2) | |
1029 | { | |
1030 | return !memcmp_pages(page1, page2); | |
1031 | } | |
1032 | ||
1033 | static int write_protect_page(struct vm_area_struct *vma, struct page *page, | |
1034 | pte_t *orig_pte) | |
1035 | { | |
1036 | struct mm_struct *mm = vma->vm_mm; | |
36eaff33 KS |
1037 | struct page_vma_mapped_walk pvmw = { |
1038 | .page = page, | |
1039 | .vma = vma, | |
1040 | }; | |
31dbd01f IE |
1041 | int swapped; |
1042 | int err = -EFAULT; | |
6bdb913f HE |
1043 | unsigned long mmun_start; /* For mmu_notifiers */ |
1044 | unsigned long mmun_end; /* For mmu_notifiers */ | |
31dbd01f | 1045 | |
36eaff33 KS |
1046 | pvmw.address = page_address_in_vma(page, vma); |
1047 | if (pvmw.address == -EFAULT) | |
31dbd01f IE |
1048 | goto out; |
1049 | ||
29ad768c | 1050 | BUG_ON(PageTransCompound(page)); |
6bdb913f | 1051 | |
36eaff33 KS |
1052 | mmun_start = pvmw.address; |
1053 | mmun_end = pvmw.address + PAGE_SIZE; | |
6bdb913f HE |
1054 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
1055 | ||
36eaff33 | 1056 | if (!page_vma_mapped_walk(&pvmw)) |
6bdb913f | 1057 | goto out_mn; |
36eaff33 KS |
1058 | if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) |
1059 | goto out_unlock; | |
31dbd01f | 1060 | |
595cd8f2 | 1061 | if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || |
b3a81d08 MK |
1062 | (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || |
1063 | mm_tlb_flush_pending(mm)) { | |
31dbd01f IE |
1064 | pte_t entry; |
1065 | ||
1066 | swapped = PageSwapCache(page); | |
36eaff33 | 1067 | flush_cache_page(vma, pvmw.address, page_to_pfn(page)); |
31dbd01f | 1068 | /* |
25985edc | 1069 | * Ok this is tricky, when get_user_pages_fast() run it doesn't |
31dbd01f IE |
1070 | * take any lock, therefore the check that we are going to make |
1071 | * with the pagecount against the mapcount is racey and | |
1072 | * O_DIRECT can happen right after the check. | |
1073 | * So we clear the pte and flush the tlb before the check | |
1074 | * this assure us that no O_DIRECT can happen after the check | |
1075 | * or in the middle of the check. | |
0f10851e JG |
1076 | * |
1077 | * No need to notify as we are downgrading page table to read | |
1078 | * only not changing it to point to a new page. | |
1079 | * | |
ad56b738 | 1080 | * See Documentation/vm/mmu_notifier.rst |
31dbd01f | 1081 | */ |
0f10851e | 1082 | entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); |
31dbd01f IE |
1083 | /* |
1084 | * Check that no O_DIRECT or similar I/O is in progress on the | |
1085 | * page | |
1086 | */ | |
31e855ea | 1087 | if (page_mapcount(page) + 1 + swapped != page_count(page)) { |
36eaff33 | 1088 | set_pte_at(mm, pvmw.address, pvmw.pte, entry); |
31dbd01f IE |
1089 | goto out_unlock; |
1090 | } | |
4e31635c HD |
1091 | if (pte_dirty(entry)) |
1092 | set_page_dirty(page); | |
595cd8f2 AK |
1093 | |
1094 | if (pte_protnone(entry)) | |
1095 | entry = pte_mkclean(pte_clear_savedwrite(entry)); | |
1096 | else | |
1097 | entry = pte_mkclean(pte_wrprotect(entry)); | |
36eaff33 | 1098 | set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); |
31dbd01f | 1099 | } |
36eaff33 | 1100 | *orig_pte = *pvmw.pte; |
31dbd01f IE |
1101 | err = 0; |
1102 | ||
1103 | out_unlock: | |
36eaff33 | 1104 | page_vma_mapped_walk_done(&pvmw); |
6bdb913f HE |
1105 | out_mn: |
1106 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | |
31dbd01f IE |
1107 | out: |
1108 | return err; | |
1109 | } | |
1110 | ||
1111 | /** | |
1112 | * replace_page - replace page in vma by new ksm page | |
8dd3557a HD |
1113 | * @vma: vma that holds the pte pointing to page |
1114 | * @page: the page we are replacing by kpage | |
1115 | * @kpage: the ksm page we replace page by | |
31dbd01f IE |
1116 | * @orig_pte: the original value of the pte |
1117 | * | |
1118 | * Returns 0 on success, -EFAULT on failure. | |
1119 | */ | |
8dd3557a HD |
1120 | static int replace_page(struct vm_area_struct *vma, struct page *page, |
1121 | struct page *kpage, pte_t orig_pte) | |
31dbd01f IE |
1122 | { |
1123 | struct mm_struct *mm = vma->vm_mm; | |
31dbd01f IE |
1124 | pmd_t *pmd; |
1125 | pte_t *ptep; | |
e86c59b1 | 1126 | pte_t newpte; |
31dbd01f IE |
1127 | spinlock_t *ptl; |
1128 | unsigned long addr; | |
31dbd01f | 1129 | int err = -EFAULT; |
6bdb913f HE |
1130 | unsigned long mmun_start; /* For mmu_notifiers */ |
1131 | unsigned long mmun_end; /* For mmu_notifiers */ | |
31dbd01f | 1132 | |
8dd3557a | 1133 | addr = page_address_in_vma(page, vma); |
31dbd01f IE |
1134 | if (addr == -EFAULT) |
1135 | goto out; | |
1136 | ||
6219049a BL |
1137 | pmd = mm_find_pmd(mm, addr); |
1138 | if (!pmd) | |
31dbd01f | 1139 | goto out; |
31dbd01f | 1140 | |
6bdb913f HE |
1141 | mmun_start = addr; |
1142 | mmun_end = addr + PAGE_SIZE; | |
1143 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
1144 | ||
31dbd01f IE |
1145 | ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1146 | if (!pte_same(*ptep, orig_pte)) { | |
1147 | pte_unmap_unlock(ptep, ptl); | |
6bdb913f | 1148 | goto out_mn; |
31dbd01f IE |
1149 | } |
1150 | ||
e86c59b1 CI |
1151 | /* |
1152 | * No need to check ksm_use_zero_pages here: we can only have a | |
1153 | * zero_page here if ksm_use_zero_pages was enabled alreaady. | |
1154 | */ | |
1155 | if (!is_zero_pfn(page_to_pfn(kpage))) { | |
1156 | get_page(kpage); | |
1157 | page_add_anon_rmap(kpage, vma, addr, false); | |
1158 | newpte = mk_pte(kpage, vma->vm_page_prot); | |
1159 | } else { | |
1160 | newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), | |
1161 | vma->vm_page_prot)); | |
a38c015f CI |
1162 | /* |
1163 | * We're replacing an anonymous page with a zero page, which is | |
1164 | * not anonymous. We need to do proper accounting otherwise we | |
1165 | * will get wrong values in /proc, and a BUG message in dmesg | |
1166 | * when tearing down the mm. | |
1167 | */ | |
1168 | dec_mm_counter(mm, MM_ANONPAGES); | |
e86c59b1 | 1169 | } |
31dbd01f IE |
1170 | |
1171 | flush_cache_page(vma, addr, pte_pfn(*ptep)); | |
0f10851e JG |
1172 | /* |
1173 | * No need to notify as we are replacing a read only page with another | |
1174 | * read only page with the same content. | |
1175 | * | |
ad56b738 | 1176 | * See Documentation/vm/mmu_notifier.rst |
0f10851e JG |
1177 | */ |
1178 | ptep_clear_flush(vma, addr, ptep); | |
e86c59b1 | 1179 | set_pte_at_notify(mm, addr, ptep, newpte); |
31dbd01f | 1180 | |
d281ee61 | 1181 | page_remove_rmap(page, false); |
ae52a2ad HD |
1182 | if (!page_mapped(page)) |
1183 | try_to_free_swap(page); | |
8dd3557a | 1184 | put_page(page); |
31dbd01f IE |
1185 | |
1186 | pte_unmap_unlock(ptep, ptl); | |
1187 | err = 0; | |
6bdb913f HE |
1188 | out_mn: |
1189 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | |
31dbd01f IE |
1190 | out: |
1191 | return err; | |
1192 | } | |
1193 | ||
1194 | /* | |
1195 | * try_to_merge_one_page - take two pages and merge them into one | |
8dd3557a HD |
1196 | * @vma: the vma that holds the pte pointing to page |
1197 | * @page: the PageAnon page that we want to replace with kpage | |
80e14822 HD |
1198 | * @kpage: the PageKsm page that we want to map instead of page, |
1199 | * or NULL the first time when we want to use page as kpage. | |
31dbd01f IE |
1200 | * |
1201 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | |
1202 | */ | |
1203 | static int try_to_merge_one_page(struct vm_area_struct *vma, | |
8dd3557a | 1204 | struct page *page, struct page *kpage) |
31dbd01f IE |
1205 | { |
1206 | pte_t orig_pte = __pte(0); | |
1207 | int err = -EFAULT; | |
1208 | ||
db114b83 HD |
1209 | if (page == kpage) /* ksm page forked */ |
1210 | return 0; | |
1211 | ||
8dd3557a | 1212 | if (!PageAnon(page)) |
31dbd01f IE |
1213 | goto out; |
1214 | ||
31dbd01f IE |
1215 | /* |
1216 | * We need the page lock to read a stable PageSwapCache in | |
1217 | * write_protect_page(). We use trylock_page() instead of | |
1218 | * lock_page() because we don't want to wait here - we | |
1219 | * prefer to continue scanning and merging different pages, | |
1220 | * then come back to this page when it is unlocked. | |
1221 | */ | |
8dd3557a | 1222 | if (!trylock_page(page)) |
31e855ea | 1223 | goto out; |
f765f540 KS |
1224 | |
1225 | if (PageTransCompound(page)) { | |
a7306c34 | 1226 | if (split_huge_page(page)) |
f765f540 KS |
1227 | goto out_unlock; |
1228 | } | |
1229 | ||
31dbd01f IE |
1230 | /* |
1231 | * If this anonymous page is mapped only here, its pte may need | |
1232 | * to be write-protected. If it's mapped elsewhere, all of its | |
1233 | * ptes are necessarily already write-protected. But in either | |
1234 | * case, we need to lock and check page_count is not raised. | |
1235 | */ | |
80e14822 HD |
1236 | if (write_protect_page(vma, page, &orig_pte) == 0) { |
1237 | if (!kpage) { | |
1238 | /* | |
1239 | * While we hold page lock, upgrade page from | |
1240 | * PageAnon+anon_vma to PageKsm+NULL stable_node: | |
1241 | * stable_tree_insert() will update stable_node. | |
1242 | */ | |
1243 | set_page_stable_node(page, NULL); | |
1244 | mark_page_accessed(page); | |
337ed7eb MK |
1245 | /* |
1246 | * Page reclaim just frees a clean page with no dirty | |
1247 | * ptes: make sure that the ksm page would be swapped. | |
1248 | */ | |
1249 | if (!PageDirty(page)) | |
1250 | SetPageDirty(page); | |
80e14822 HD |
1251 | err = 0; |
1252 | } else if (pages_identical(page, kpage)) | |
1253 | err = replace_page(vma, page, kpage, orig_pte); | |
1254 | } | |
31dbd01f | 1255 | |
80e14822 | 1256 | if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { |
73848b46 | 1257 | munlock_vma_page(page); |
5ad64688 HD |
1258 | if (!PageMlocked(kpage)) { |
1259 | unlock_page(page); | |
5ad64688 HD |
1260 | lock_page(kpage); |
1261 | mlock_vma_page(kpage); | |
1262 | page = kpage; /* for final unlock */ | |
1263 | } | |
1264 | } | |
73848b46 | 1265 | |
f765f540 | 1266 | out_unlock: |
8dd3557a | 1267 | unlock_page(page); |
31dbd01f IE |
1268 | out: |
1269 | return err; | |
1270 | } | |
1271 | ||
81464e30 HD |
1272 | /* |
1273 | * try_to_merge_with_ksm_page - like try_to_merge_two_pages, | |
1274 | * but no new kernel page is allocated: kpage must already be a ksm page. | |
8dd3557a HD |
1275 | * |
1276 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | |
81464e30 | 1277 | */ |
8dd3557a HD |
1278 | static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, |
1279 | struct page *page, struct page *kpage) | |
81464e30 | 1280 | { |
8dd3557a | 1281 | struct mm_struct *mm = rmap_item->mm; |
81464e30 HD |
1282 | struct vm_area_struct *vma; |
1283 | int err = -EFAULT; | |
1284 | ||
8dd3557a | 1285 | down_read(&mm->mmap_sem); |
85c6e8dd AA |
1286 | vma = find_mergeable_vma(mm, rmap_item->address); |
1287 | if (!vma) | |
81464e30 HD |
1288 | goto out; |
1289 | ||
8dd3557a | 1290 | err = try_to_merge_one_page(vma, page, kpage); |
db114b83 HD |
1291 | if (err) |
1292 | goto out; | |
1293 | ||
bc56620b HD |
1294 | /* Unstable nid is in union with stable anon_vma: remove first */ |
1295 | remove_rmap_item_from_tree(rmap_item); | |
1296 | ||
db114b83 | 1297 | /* Must get reference to anon_vma while still holding mmap_sem */ |
9e60109f PZ |
1298 | rmap_item->anon_vma = vma->anon_vma; |
1299 | get_anon_vma(vma->anon_vma); | |
81464e30 | 1300 | out: |
8dd3557a | 1301 | up_read(&mm->mmap_sem); |
81464e30 HD |
1302 | return err; |
1303 | } | |
1304 | ||
31dbd01f IE |
1305 | /* |
1306 | * try_to_merge_two_pages - take two identical pages and prepare them | |
1307 | * to be merged into one page. | |
1308 | * | |
8dd3557a HD |
1309 | * This function returns the kpage if we successfully merged two identical |
1310 | * pages into one ksm page, NULL otherwise. | |
31dbd01f | 1311 | * |
80e14822 | 1312 | * Note that this function upgrades page to ksm page: if one of the pages |
31dbd01f IE |
1313 | * is already a ksm page, try_to_merge_with_ksm_page should be used. |
1314 | */ | |
8dd3557a HD |
1315 | static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, |
1316 | struct page *page, | |
1317 | struct rmap_item *tree_rmap_item, | |
1318 | struct page *tree_page) | |
31dbd01f | 1319 | { |
80e14822 | 1320 | int err; |
31dbd01f | 1321 | |
80e14822 | 1322 | err = try_to_merge_with_ksm_page(rmap_item, page, NULL); |
31dbd01f | 1323 | if (!err) { |
8dd3557a | 1324 | err = try_to_merge_with_ksm_page(tree_rmap_item, |
80e14822 | 1325 | tree_page, page); |
31dbd01f | 1326 | /* |
81464e30 HD |
1327 | * If that fails, we have a ksm page with only one pte |
1328 | * pointing to it: so break it. | |
31dbd01f | 1329 | */ |
4035c07a | 1330 | if (err) |
8dd3557a | 1331 | break_cow(rmap_item); |
31dbd01f | 1332 | } |
80e14822 | 1333 | return err ? NULL : page; |
31dbd01f IE |
1334 | } |
1335 | ||
2c653d0e AA |
1336 | static __always_inline |
1337 | bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) | |
1338 | { | |
1339 | VM_BUG_ON(stable_node->rmap_hlist_len < 0); | |
1340 | /* | |
1341 | * Check that at least one mapping still exists, otherwise | |
1342 | * there's no much point to merge and share with this | |
1343 | * stable_node, as the underlying tree_page of the other | |
1344 | * sharer is going to be freed soon. | |
1345 | */ | |
1346 | return stable_node->rmap_hlist_len && | |
1347 | stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; | |
1348 | } | |
1349 | ||
1350 | static __always_inline | |
1351 | bool is_page_sharing_candidate(struct stable_node *stable_node) | |
1352 | { | |
1353 | return __is_page_sharing_candidate(stable_node, 0); | |
1354 | } | |
1355 | ||
c01f0b54 CIK |
1356 | static struct page *stable_node_dup(struct stable_node **_stable_node_dup, |
1357 | struct stable_node **_stable_node, | |
1358 | struct rb_root *root, | |
1359 | bool prune_stale_stable_nodes) | |
2c653d0e | 1360 | { |
b4fecc67 | 1361 | struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; |
2c653d0e | 1362 | struct hlist_node *hlist_safe; |
8dc5ffcd | 1363 | struct page *_tree_page, *tree_page = NULL; |
2c653d0e AA |
1364 | int nr = 0; |
1365 | int found_rmap_hlist_len; | |
1366 | ||
1367 | if (!prune_stale_stable_nodes || | |
1368 | time_before(jiffies, stable_node->chain_prune_time + | |
1369 | msecs_to_jiffies( | |
1370 | ksm_stable_node_chains_prune_millisecs))) | |
1371 | prune_stale_stable_nodes = false; | |
1372 | else | |
1373 | stable_node->chain_prune_time = jiffies; | |
1374 | ||
1375 | hlist_for_each_entry_safe(dup, hlist_safe, | |
1376 | &stable_node->hlist, hlist_dup) { | |
1377 | cond_resched(); | |
1378 | /* | |
1379 | * We must walk all stable_node_dup to prune the stale | |
1380 | * stable nodes during lookup. | |
1381 | * | |
1382 | * get_ksm_page can drop the nodes from the | |
1383 | * stable_node->hlist if they point to freed pages | |
1384 | * (that's why we do a _safe walk). The "dup" | |
1385 | * stable_node parameter itself will be freed from | |
1386 | * under us if it returns NULL. | |
1387 | */ | |
1388 | _tree_page = get_ksm_page(dup, false); | |
1389 | if (!_tree_page) | |
1390 | continue; | |
1391 | nr += 1; | |
1392 | if (is_page_sharing_candidate(dup)) { | |
1393 | if (!found || | |
1394 | dup->rmap_hlist_len > found_rmap_hlist_len) { | |
1395 | if (found) | |
8dc5ffcd | 1396 | put_page(tree_page); |
2c653d0e AA |
1397 | found = dup; |
1398 | found_rmap_hlist_len = found->rmap_hlist_len; | |
8dc5ffcd | 1399 | tree_page = _tree_page; |
2c653d0e | 1400 | |
8dc5ffcd | 1401 | /* skip put_page for found dup */ |
2c653d0e AA |
1402 | if (!prune_stale_stable_nodes) |
1403 | break; | |
2c653d0e AA |
1404 | continue; |
1405 | } | |
1406 | } | |
1407 | put_page(_tree_page); | |
1408 | } | |
1409 | ||
80b18dfa AA |
1410 | if (found) { |
1411 | /* | |
1412 | * nr is counting all dups in the chain only if | |
1413 | * prune_stale_stable_nodes is true, otherwise we may | |
1414 | * break the loop at nr == 1 even if there are | |
1415 | * multiple entries. | |
1416 | */ | |
1417 | if (prune_stale_stable_nodes && nr == 1) { | |
2c653d0e AA |
1418 | /* |
1419 | * If there's not just one entry it would | |
1420 | * corrupt memory, better BUG_ON. In KSM | |
1421 | * context with no lock held it's not even | |
1422 | * fatal. | |
1423 | */ | |
1424 | BUG_ON(stable_node->hlist.first->next); | |
1425 | ||
1426 | /* | |
1427 | * There's just one entry and it is below the | |
1428 | * deduplication limit so drop the chain. | |
1429 | */ | |
1430 | rb_replace_node(&stable_node->node, &found->node, | |
1431 | root); | |
1432 | free_stable_node(stable_node); | |
1433 | ksm_stable_node_chains--; | |
1434 | ksm_stable_node_dups--; | |
b4fecc67 | 1435 | /* |
0ba1d0f7 AA |
1436 | * NOTE: the caller depends on the stable_node |
1437 | * to be equal to stable_node_dup if the chain | |
1438 | * was collapsed. | |
b4fecc67 | 1439 | */ |
0ba1d0f7 AA |
1440 | *_stable_node = found; |
1441 | /* | |
1442 | * Just for robustneess as stable_node is | |
1443 | * otherwise left as a stable pointer, the | |
1444 | * compiler shall optimize it away at build | |
1445 | * time. | |
1446 | */ | |
1447 | stable_node = NULL; | |
80b18dfa AA |
1448 | } else if (stable_node->hlist.first != &found->hlist_dup && |
1449 | __is_page_sharing_candidate(found, 1)) { | |
2c653d0e | 1450 | /* |
80b18dfa AA |
1451 | * If the found stable_node dup can accept one |
1452 | * more future merge (in addition to the one | |
1453 | * that is underway) and is not at the head of | |
1454 | * the chain, put it there so next search will | |
1455 | * be quicker in the !prune_stale_stable_nodes | |
1456 | * case. | |
1457 | * | |
1458 | * NOTE: it would be inaccurate to use nr > 1 | |
1459 | * instead of checking the hlist.first pointer | |
1460 | * directly, because in the | |
1461 | * prune_stale_stable_nodes case "nr" isn't | |
1462 | * the position of the found dup in the chain, | |
1463 | * but the total number of dups in the chain. | |
2c653d0e AA |
1464 | */ |
1465 | hlist_del(&found->hlist_dup); | |
1466 | hlist_add_head(&found->hlist_dup, | |
1467 | &stable_node->hlist); | |
1468 | } | |
1469 | } | |
1470 | ||
8dc5ffcd AA |
1471 | *_stable_node_dup = found; |
1472 | return tree_page; | |
2c653d0e AA |
1473 | } |
1474 | ||
1475 | static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, | |
1476 | struct rb_root *root) | |
1477 | { | |
1478 | if (!is_stable_node_chain(stable_node)) | |
1479 | return stable_node; | |
1480 | if (hlist_empty(&stable_node->hlist)) { | |
1481 | free_stable_node_chain(stable_node, root); | |
1482 | return NULL; | |
1483 | } | |
1484 | return hlist_entry(stable_node->hlist.first, | |
1485 | typeof(*stable_node), hlist_dup); | |
1486 | } | |
1487 | ||
8dc5ffcd AA |
1488 | /* |
1489 | * Like for get_ksm_page, this function can free the *_stable_node and | |
1490 | * *_stable_node_dup if the returned tree_page is NULL. | |
1491 | * | |
1492 | * It can also free and overwrite *_stable_node with the found | |
1493 | * stable_node_dup if the chain is collapsed (in which case | |
1494 | * *_stable_node will be equal to *_stable_node_dup like if the chain | |
1495 | * never existed). It's up to the caller to verify tree_page is not | |
1496 | * NULL before dereferencing *_stable_node or *_stable_node_dup. | |
1497 | * | |
1498 | * *_stable_node_dup is really a second output parameter of this | |
1499 | * function and will be overwritten in all cases, the caller doesn't | |
1500 | * need to initialize it. | |
1501 | */ | |
1502 | static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, | |
1503 | struct stable_node **_stable_node, | |
1504 | struct rb_root *root, | |
1505 | bool prune_stale_stable_nodes) | |
2c653d0e | 1506 | { |
b4fecc67 | 1507 | struct stable_node *stable_node = *_stable_node; |
2c653d0e AA |
1508 | if (!is_stable_node_chain(stable_node)) { |
1509 | if (is_page_sharing_candidate(stable_node)) { | |
8dc5ffcd AA |
1510 | *_stable_node_dup = stable_node; |
1511 | return get_ksm_page(stable_node, false); | |
2c653d0e | 1512 | } |
8dc5ffcd AA |
1513 | /* |
1514 | * _stable_node_dup set to NULL means the stable_node | |
1515 | * reached the ksm_max_page_sharing limit. | |
1516 | */ | |
1517 | *_stable_node_dup = NULL; | |
2c653d0e AA |
1518 | return NULL; |
1519 | } | |
8dc5ffcd | 1520 | return stable_node_dup(_stable_node_dup, _stable_node, root, |
2c653d0e AA |
1521 | prune_stale_stable_nodes); |
1522 | } | |
1523 | ||
8dc5ffcd AA |
1524 | static __always_inline struct page *chain_prune(struct stable_node **s_n_d, |
1525 | struct stable_node **s_n, | |
1526 | struct rb_root *root) | |
2c653d0e | 1527 | { |
8dc5ffcd | 1528 | return __stable_node_chain(s_n_d, s_n, root, true); |
2c653d0e AA |
1529 | } |
1530 | ||
8dc5ffcd AA |
1531 | static __always_inline struct page *chain(struct stable_node **s_n_d, |
1532 | struct stable_node *s_n, | |
1533 | struct rb_root *root) | |
2c653d0e | 1534 | { |
8dc5ffcd AA |
1535 | struct stable_node *old_stable_node = s_n; |
1536 | struct page *tree_page; | |
1537 | ||
1538 | tree_page = __stable_node_chain(s_n_d, &s_n, root, false); | |
1539 | /* not pruning dups so s_n cannot have changed */ | |
1540 | VM_BUG_ON(s_n != old_stable_node); | |
1541 | return tree_page; | |
2c653d0e AA |
1542 | } |
1543 | ||
31dbd01f | 1544 | /* |
8dd3557a | 1545 | * stable_tree_search - search for page inside the stable tree |
31dbd01f IE |
1546 | * |
1547 | * This function checks if there is a page inside the stable tree | |
1548 | * with identical content to the page that we are scanning right now. | |
1549 | * | |
7b6ba2c7 | 1550 | * This function returns the stable tree node of identical content if found, |
31dbd01f IE |
1551 | * NULL otherwise. |
1552 | */ | |
62b61f61 | 1553 | static struct page *stable_tree_search(struct page *page) |
31dbd01f | 1554 | { |
90bd6fd3 | 1555 | int nid; |
ef53d16c | 1556 | struct rb_root *root; |
4146d2d6 HD |
1557 | struct rb_node **new; |
1558 | struct rb_node *parent; | |
2c653d0e | 1559 | struct stable_node *stable_node, *stable_node_dup, *stable_node_any; |
4146d2d6 | 1560 | struct stable_node *page_node; |
31dbd01f | 1561 | |
4146d2d6 HD |
1562 | page_node = page_stable_node(page); |
1563 | if (page_node && page_node->head != &migrate_nodes) { | |
1564 | /* ksm page forked */ | |
08beca44 | 1565 | get_page(page); |
62b61f61 | 1566 | return page; |
08beca44 HD |
1567 | } |
1568 | ||
90bd6fd3 | 1569 | nid = get_kpfn_nid(page_to_pfn(page)); |
ef53d16c | 1570 | root = root_stable_tree + nid; |
4146d2d6 | 1571 | again: |
ef53d16c | 1572 | new = &root->rb_node; |
4146d2d6 | 1573 | parent = NULL; |
90bd6fd3 | 1574 | |
4146d2d6 | 1575 | while (*new) { |
4035c07a | 1576 | struct page *tree_page; |
31dbd01f IE |
1577 | int ret; |
1578 | ||
08beca44 | 1579 | cond_resched(); |
4146d2d6 | 1580 | stable_node = rb_entry(*new, struct stable_node, node); |
2c653d0e | 1581 | stable_node_any = NULL; |
8dc5ffcd | 1582 | tree_page = chain_prune(&stable_node_dup, &stable_node, root); |
b4fecc67 AA |
1583 | /* |
1584 | * NOTE: stable_node may have been freed by | |
1585 | * chain_prune() if the returned stable_node_dup is | |
1586 | * not NULL. stable_node_dup may have been inserted in | |
1587 | * the rbtree instead as a regular stable_node (in | |
1588 | * order to collapse the stable_node chain if a single | |
0ba1d0f7 AA |
1589 | * stable_node dup was found in it). In such case the |
1590 | * stable_node is overwritten by the calleee to point | |
1591 | * to the stable_node_dup that was collapsed in the | |
1592 | * stable rbtree and stable_node will be equal to | |
1593 | * stable_node_dup like if the chain never existed. | |
b4fecc67 | 1594 | */ |
2c653d0e AA |
1595 | if (!stable_node_dup) { |
1596 | /* | |
1597 | * Either all stable_node dups were full in | |
1598 | * this stable_node chain, or this chain was | |
1599 | * empty and should be rb_erased. | |
1600 | */ | |
1601 | stable_node_any = stable_node_dup_any(stable_node, | |
1602 | root); | |
1603 | if (!stable_node_any) { | |
1604 | /* rb_erase just run */ | |
1605 | goto again; | |
1606 | } | |
1607 | /* | |
1608 | * Take any of the stable_node dups page of | |
1609 | * this stable_node chain to let the tree walk | |
1610 | * continue. All KSM pages belonging to the | |
1611 | * stable_node dups in a stable_node chain | |
1612 | * have the same content and they're | |
1613 | * wrprotected at all times. Any will work | |
1614 | * fine to continue the walk. | |
1615 | */ | |
1616 | tree_page = get_ksm_page(stable_node_any, false); | |
1617 | } | |
1618 | VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); | |
f2e5ff85 AA |
1619 | if (!tree_page) { |
1620 | /* | |
1621 | * If we walked over a stale stable_node, | |
1622 | * get_ksm_page() will call rb_erase() and it | |
1623 | * may rebalance the tree from under us. So | |
1624 | * restart the search from scratch. Returning | |
1625 | * NULL would be safe too, but we'd generate | |
1626 | * false negative insertions just because some | |
1627 | * stable_node was stale. | |
1628 | */ | |
1629 | goto again; | |
1630 | } | |
31dbd01f | 1631 | |
4035c07a | 1632 | ret = memcmp_pages(page, tree_page); |
c8d6553b | 1633 | put_page(tree_page); |
31dbd01f | 1634 | |
4146d2d6 | 1635 | parent = *new; |
c8d6553b | 1636 | if (ret < 0) |
4146d2d6 | 1637 | new = &parent->rb_left; |
c8d6553b | 1638 | else if (ret > 0) |
4146d2d6 | 1639 | new = &parent->rb_right; |
c8d6553b | 1640 | else { |
2c653d0e AA |
1641 | if (page_node) { |
1642 | VM_BUG_ON(page_node->head != &migrate_nodes); | |
1643 | /* | |
1644 | * Test if the migrated page should be merged | |
1645 | * into a stable node dup. If the mapcount is | |
1646 | * 1 we can migrate it with another KSM page | |
1647 | * without adding it to the chain. | |
1648 | */ | |
1649 | if (page_mapcount(page) > 1) | |
1650 | goto chain_append; | |
1651 | } | |
1652 | ||
1653 | if (!stable_node_dup) { | |
1654 | /* | |
1655 | * If the stable_node is a chain and | |
1656 | * we got a payload match in memcmp | |
1657 | * but we cannot merge the scanned | |
1658 | * page in any of the existing | |
1659 | * stable_node dups because they're | |
1660 | * all full, we need to wait the | |
1661 | * scanned page to find itself a match | |
1662 | * in the unstable tree to create a | |
1663 | * brand new KSM page to add later to | |
1664 | * the dups of this stable_node. | |
1665 | */ | |
1666 | return NULL; | |
1667 | } | |
1668 | ||
c8d6553b HD |
1669 | /* |
1670 | * Lock and unlock the stable_node's page (which | |
1671 | * might already have been migrated) so that page | |
1672 | * migration is sure to notice its raised count. | |
1673 | * It would be more elegant to return stable_node | |
1674 | * than kpage, but that involves more changes. | |
1675 | */ | |
2c653d0e AA |
1676 | tree_page = get_ksm_page(stable_node_dup, true); |
1677 | if (unlikely(!tree_page)) | |
1678 | /* | |
1679 | * The tree may have been rebalanced, | |
1680 | * so re-evaluate parent and new. | |
1681 | */ | |
4146d2d6 | 1682 | goto again; |
2c653d0e AA |
1683 | unlock_page(tree_page); |
1684 | ||
1685 | if (get_kpfn_nid(stable_node_dup->kpfn) != | |
1686 | NUMA(stable_node_dup->nid)) { | |
1687 | put_page(tree_page); | |
1688 | goto replace; | |
1689 | } | |
1690 | return tree_page; | |
c8d6553b | 1691 | } |
31dbd01f IE |
1692 | } |
1693 | ||
4146d2d6 HD |
1694 | if (!page_node) |
1695 | return NULL; | |
1696 | ||
1697 | list_del(&page_node->list); | |
1698 | DO_NUMA(page_node->nid = nid); | |
1699 | rb_link_node(&page_node->node, parent, new); | |
ef53d16c | 1700 | rb_insert_color(&page_node->node, root); |
2c653d0e AA |
1701 | out: |
1702 | if (is_page_sharing_candidate(page_node)) { | |
1703 | get_page(page); | |
1704 | return page; | |
1705 | } else | |
1706 | return NULL; | |
4146d2d6 HD |
1707 | |
1708 | replace: | |
b4fecc67 AA |
1709 | /* |
1710 | * If stable_node was a chain and chain_prune collapsed it, | |
0ba1d0f7 AA |
1711 | * stable_node has been updated to be the new regular |
1712 | * stable_node. A collapse of the chain is indistinguishable | |
1713 | * from the case there was no chain in the stable | |
1714 | * rbtree. Otherwise stable_node is the chain and | |
1715 | * stable_node_dup is the dup to replace. | |
b4fecc67 | 1716 | */ |
0ba1d0f7 | 1717 | if (stable_node_dup == stable_node) { |
b4fecc67 AA |
1718 | VM_BUG_ON(is_stable_node_chain(stable_node_dup)); |
1719 | VM_BUG_ON(is_stable_node_dup(stable_node_dup)); | |
2c653d0e AA |
1720 | /* there is no chain */ |
1721 | if (page_node) { | |
1722 | VM_BUG_ON(page_node->head != &migrate_nodes); | |
1723 | list_del(&page_node->list); | |
1724 | DO_NUMA(page_node->nid = nid); | |
b4fecc67 AA |
1725 | rb_replace_node(&stable_node_dup->node, |
1726 | &page_node->node, | |
2c653d0e AA |
1727 | root); |
1728 | if (is_page_sharing_candidate(page_node)) | |
1729 | get_page(page); | |
1730 | else | |
1731 | page = NULL; | |
1732 | } else { | |
b4fecc67 | 1733 | rb_erase(&stable_node_dup->node, root); |
2c653d0e AA |
1734 | page = NULL; |
1735 | } | |
4146d2d6 | 1736 | } else { |
2c653d0e AA |
1737 | VM_BUG_ON(!is_stable_node_chain(stable_node)); |
1738 | __stable_node_dup_del(stable_node_dup); | |
1739 | if (page_node) { | |
1740 | VM_BUG_ON(page_node->head != &migrate_nodes); | |
1741 | list_del(&page_node->list); | |
1742 | DO_NUMA(page_node->nid = nid); | |
1743 | stable_node_chain_add_dup(page_node, stable_node); | |
1744 | if (is_page_sharing_candidate(page_node)) | |
1745 | get_page(page); | |
1746 | else | |
1747 | page = NULL; | |
1748 | } else { | |
1749 | page = NULL; | |
1750 | } | |
4146d2d6 | 1751 | } |
2c653d0e AA |
1752 | stable_node_dup->head = &migrate_nodes; |
1753 | list_add(&stable_node_dup->list, stable_node_dup->head); | |
4146d2d6 | 1754 | return page; |
2c653d0e AA |
1755 | |
1756 | chain_append: | |
1757 | /* stable_node_dup could be null if it reached the limit */ | |
1758 | if (!stable_node_dup) | |
1759 | stable_node_dup = stable_node_any; | |
b4fecc67 AA |
1760 | /* |
1761 | * If stable_node was a chain and chain_prune collapsed it, | |
0ba1d0f7 AA |
1762 | * stable_node has been updated to be the new regular |
1763 | * stable_node. A collapse of the chain is indistinguishable | |
1764 | * from the case there was no chain in the stable | |
1765 | * rbtree. Otherwise stable_node is the chain and | |
1766 | * stable_node_dup is the dup to replace. | |
b4fecc67 | 1767 | */ |
0ba1d0f7 | 1768 | if (stable_node_dup == stable_node) { |
b4fecc67 AA |
1769 | VM_BUG_ON(is_stable_node_chain(stable_node_dup)); |
1770 | VM_BUG_ON(is_stable_node_dup(stable_node_dup)); | |
2c653d0e AA |
1771 | /* chain is missing so create it */ |
1772 | stable_node = alloc_stable_node_chain(stable_node_dup, | |
1773 | root); | |
1774 | if (!stable_node) | |
1775 | return NULL; | |
1776 | } | |
1777 | /* | |
1778 | * Add this stable_node dup that was | |
1779 | * migrated to the stable_node chain | |
1780 | * of the current nid for this page | |
1781 | * content. | |
1782 | */ | |
b4fecc67 AA |
1783 | VM_BUG_ON(!is_stable_node_chain(stable_node)); |
1784 | VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); | |
2c653d0e AA |
1785 | VM_BUG_ON(page_node->head != &migrate_nodes); |
1786 | list_del(&page_node->list); | |
1787 | DO_NUMA(page_node->nid = nid); | |
1788 | stable_node_chain_add_dup(page_node, stable_node); | |
1789 | goto out; | |
31dbd01f IE |
1790 | } |
1791 | ||
1792 | /* | |
e850dcf5 | 1793 | * stable_tree_insert - insert stable tree node pointing to new ksm page |
31dbd01f IE |
1794 | * into the stable tree. |
1795 | * | |
7b6ba2c7 HD |
1796 | * This function returns the stable tree node just allocated on success, |
1797 | * NULL otherwise. | |
31dbd01f | 1798 | */ |
7b6ba2c7 | 1799 | static struct stable_node *stable_tree_insert(struct page *kpage) |
31dbd01f | 1800 | { |
90bd6fd3 PH |
1801 | int nid; |
1802 | unsigned long kpfn; | |
ef53d16c | 1803 | struct rb_root *root; |
90bd6fd3 | 1804 | struct rb_node **new; |
f2e5ff85 | 1805 | struct rb_node *parent; |
2c653d0e AA |
1806 | struct stable_node *stable_node, *stable_node_dup, *stable_node_any; |
1807 | bool need_chain = false; | |
31dbd01f | 1808 | |
90bd6fd3 PH |
1809 | kpfn = page_to_pfn(kpage); |
1810 | nid = get_kpfn_nid(kpfn); | |
ef53d16c | 1811 | root = root_stable_tree + nid; |
f2e5ff85 AA |
1812 | again: |
1813 | parent = NULL; | |
ef53d16c | 1814 | new = &root->rb_node; |
90bd6fd3 | 1815 | |
31dbd01f | 1816 | while (*new) { |
4035c07a | 1817 | struct page *tree_page; |
31dbd01f IE |
1818 | int ret; |
1819 | ||
08beca44 | 1820 | cond_resched(); |
7b6ba2c7 | 1821 | stable_node = rb_entry(*new, struct stable_node, node); |
2c653d0e | 1822 | stable_node_any = NULL; |
8dc5ffcd | 1823 | tree_page = chain(&stable_node_dup, stable_node, root); |
2c653d0e AA |
1824 | if (!stable_node_dup) { |
1825 | /* | |
1826 | * Either all stable_node dups were full in | |
1827 | * this stable_node chain, or this chain was | |
1828 | * empty and should be rb_erased. | |
1829 | */ | |
1830 | stable_node_any = stable_node_dup_any(stable_node, | |
1831 | root); | |
1832 | if (!stable_node_any) { | |
1833 | /* rb_erase just run */ | |
1834 | goto again; | |
1835 | } | |
1836 | /* | |
1837 | * Take any of the stable_node dups page of | |
1838 | * this stable_node chain to let the tree walk | |
1839 | * continue. All KSM pages belonging to the | |
1840 | * stable_node dups in a stable_node chain | |
1841 | * have the same content and they're | |
1842 | * wrprotected at all times. Any will work | |
1843 | * fine to continue the walk. | |
1844 | */ | |
1845 | tree_page = get_ksm_page(stable_node_any, false); | |
1846 | } | |
1847 | VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); | |
f2e5ff85 AA |
1848 | if (!tree_page) { |
1849 | /* | |
1850 | * If we walked over a stale stable_node, | |
1851 | * get_ksm_page() will call rb_erase() and it | |
1852 | * may rebalance the tree from under us. So | |
1853 | * restart the search from scratch. Returning | |
1854 | * NULL would be safe too, but we'd generate | |
1855 | * false negative insertions just because some | |
1856 | * stable_node was stale. | |
1857 | */ | |
1858 | goto again; | |
1859 | } | |
31dbd01f | 1860 | |
4035c07a HD |
1861 | ret = memcmp_pages(kpage, tree_page); |
1862 | put_page(tree_page); | |
31dbd01f IE |
1863 | |
1864 | parent = *new; | |
1865 | if (ret < 0) | |
1866 | new = &parent->rb_left; | |
1867 | else if (ret > 0) | |
1868 | new = &parent->rb_right; | |
1869 | else { | |
2c653d0e AA |
1870 | need_chain = true; |
1871 | break; | |
31dbd01f IE |
1872 | } |
1873 | } | |
1874 | ||
2c653d0e AA |
1875 | stable_node_dup = alloc_stable_node(); |
1876 | if (!stable_node_dup) | |
7b6ba2c7 | 1877 | return NULL; |
31dbd01f | 1878 | |
2c653d0e AA |
1879 | INIT_HLIST_HEAD(&stable_node_dup->hlist); |
1880 | stable_node_dup->kpfn = kpfn; | |
1881 | set_page_stable_node(kpage, stable_node_dup); | |
1882 | stable_node_dup->rmap_hlist_len = 0; | |
1883 | DO_NUMA(stable_node_dup->nid = nid); | |
1884 | if (!need_chain) { | |
1885 | rb_link_node(&stable_node_dup->node, parent, new); | |
1886 | rb_insert_color(&stable_node_dup->node, root); | |
1887 | } else { | |
1888 | if (!is_stable_node_chain(stable_node)) { | |
1889 | struct stable_node *orig = stable_node; | |
1890 | /* chain is missing so create it */ | |
1891 | stable_node = alloc_stable_node_chain(orig, root); | |
1892 | if (!stable_node) { | |
1893 | free_stable_node(stable_node_dup); | |
1894 | return NULL; | |
1895 | } | |
1896 | } | |
1897 | stable_node_chain_add_dup(stable_node_dup, stable_node); | |
1898 | } | |
08beca44 | 1899 | |
2c653d0e | 1900 | return stable_node_dup; |
31dbd01f IE |
1901 | } |
1902 | ||
1903 | /* | |
8dd3557a HD |
1904 | * unstable_tree_search_insert - search for identical page, |
1905 | * else insert rmap_item into the unstable tree. | |
31dbd01f IE |
1906 | * |
1907 | * This function searches for a page in the unstable tree identical to the | |
1908 | * page currently being scanned; and if no identical page is found in the | |
1909 | * tree, we insert rmap_item as a new object into the unstable tree. | |
1910 | * | |
1911 | * This function returns pointer to rmap_item found to be identical | |
1912 | * to the currently scanned page, NULL otherwise. | |
1913 | * | |
1914 | * This function does both searching and inserting, because they share | |
1915 | * the same walking algorithm in an rbtree. | |
1916 | */ | |
8dd3557a HD |
1917 | static |
1918 | struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, | |
1919 | struct page *page, | |
1920 | struct page **tree_pagep) | |
31dbd01f | 1921 | { |
90bd6fd3 PH |
1922 | struct rb_node **new; |
1923 | struct rb_root *root; | |
31dbd01f | 1924 | struct rb_node *parent = NULL; |
90bd6fd3 PH |
1925 | int nid; |
1926 | ||
1927 | nid = get_kpfn_nid(page_to_pfn(page)); | |
ef53d16c | 1928 | root = root_unstable_tree + nid; |
90bd6fd3 | 1929 | new = &root->rb_node; |
31dbd01f IE |
1930 | |
1931 | while (*new) { | |
1932 | struct rmap_item *tree_rmap_item; | |
8dd3557a | 1933 | struct page *tree_page; |
31dbd01f IE |
1934 | int ret; |
1935 | ||
d178f27f | 1936 | cond_resched(); |
31dbd01f | 1937 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); |
8dd3557a | 1938 | tree_page = get_mergeable_page(tree_rmap_item); |
c8f95ed1 | 1939 | if (!tree_page) |
31dbd01f IE |
1940 | return NULL; |
1941 | ||
1942 | /* | |
8dd3557a | 1943 | * Don't substitute a ksm page for a forked page. |
31dbd01f | 1944 | */ |
8dd3557a HD |
1945 | if (page == tree_page) { |
1946 | put_page(tree_page); | |
31dbd01f IE |
1947 | return NULL; |
1948 | } | |
1949 | ||
8dd3557a | 1950 | ret = memcmp_pages(page, tree_page); |
31dbd01f IE |
1951 | |
1952 | parent = *new; | |
1953 | if (ret < 0) { | |
8dd3557a | 1954 | put_page(tree_page); |
31dbd01f IE |
1955 | new = &parent->rb_left; |
1956 | } else if (ret > 0) { | |
8dd3557a | 1957 | put_page(tree_page); |
31dbd01f | 1958 | new = &parent->rb_right; |
b599cbdf HD |
1959 | } else if (!ksm_merge_across_nodes && |
1960 | page_to_nid(tree_page) != nid) { | |
1961 | /* | |
1962 | * If tree_page has been migrated to another NUMA node, | |
1963 | * it will be flushed out and put in the right unstable | |
1964 | * tree next time: only merge with it when across_nodes. | |
1965 | */ | |
1966 | put_page(tree_page); | |
1967 | return NULL; | |
31dbd01f | 1968 | } else { |
8dd3557a | 1969 | *tree_pagep = tree_page; |
31dbd01f IE |
1970 | return tree_rmap_item; |
1971 | } | |
1972 | } | |
1973 | ||
7b6ba2c7 | 1974 | rmap_item->address |= UNSTABLE_FLAG; |
31dbd01f | 1975 | rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); |
e850dcf5 | 1976 | DO_NUMA(rmap_item->nid = nid); |
31dbd01f | 1977 | rb_link_node(&rmap_item->node, parent, new); |
90bd6fd3 | 1978 | rb_insert_color(&rmap_item->node, root); |
31dbd01f | 1979 | |
473b0ce4 | 1980 | ksm_pages_unshared++; |
31dbd01f IE |
1981 | return NULL; |
1982 | } | |
1983 | ||
1984 | /* | |
1985 | * stable_tree_append - add another rmap_item to the linked list of | |
1986 | * rmap_items hanging off a given node of the stable tree, all sharing | |
1987 | * the same ksm page. | |
1988 | */ | |
1989 | static void stable_tree_append(struct rmap_item *rmap_item, | |
2c653d0e AA |
1990 | struct stable_node *stable_node, |
1991 | bool max_page_sharing_bypass) | |
31dbd01f | 1992 | { |
2c653d0e AA |
1993 | /* |
1994 | * rmap won't find this mapping if we don't insert the | |
1995 | * rmap_item in the right stable_node | |
1996 | * duplicate. page_migration could break later if rmap breaks, | |
1997 | * so we can as well crash here. We really need to check for | |
1998 | * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check | |
1999 | * for other negative values as an undeflow if detected here | |
2000 | * for the first time (and not when decreasing rmap_hlist_len) | |
2001 | * would be sign of memory corruption in the stable_node. | |
2002 | */ | |
2003 | BUG_ON(stable_node->rmap_hlist_len < 0); | |
2004 | ||
2005 | stable_node->rmap_hlist_len++; | |
2006 | if (!max_page_sharing_bypass) | |
2007 | /* possibly non fatal but unexpected overflow, only warn */ | |
2008 | WARN_ON_ONCE(stable_node->rmap_hlist_len > | |
2009 | ksm_max_page_sharing); | |
2010 | ||
7b6ba2c7 | 2011 | rmap_item->head = stable_node; |
31dbd01f | 2012 | rmap_item->address |= STABLE_FLAG; |
7b6ba2c7 | 2013 | hlist_add_head(&rmap_item->hlist, &stable_node->hlist); |
e178dfde | 2014 | |
7b6ba2c7 HD |
2015 | if (rmap_item->hlist.next) |
2016 | ksm_pages_sharing++; | |
2017 | else | |
2018 | ksm_pages_shared++; | |
31dbd01f IE |
2019 | } |
2020 | ||
2021 | /* | |
81464e30 HD |
2022 | * cmp_and_merge_page - first see if page can be merged into the stable tree; |
2023 | * if not, compare checksum to previous and if it's the same, see if page can | |
2024 | * be inserted into the unstable tree, or merged with a page already there and | |
2025 | * both transferred to the stable tree. | |
31dbd01f IE |
2026 | * |
2027 | * @page: the page that we are searching identical page to. | |
2028 | * @rmap_item: the reverse mapping into the virtual address of this page | |
2029 | */ | |
2030 | static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) | |
2031 | { | |
4b22927f | 2032 | struct mm_struct *mm = rmap_item->mm; |
31dbd01f | 2033 | struct rmap_item *tree_rmap_item; |
8dd3557a | 2034 | struct page *tree_page = NULL; |
7b6ba2c7 | 2035 | struct stable_node *stable_node; |
8dd3557a | 2036 | struct page *kpage; |
31dbd01f IE |
2037 | unsigned int checksum; |
2038 | int err; | |
2c653d0e | 2039 | bool max_page_sharing_bypass = false; |
31dbd01f | 2040 | |
4146d2d6 HD |
2041 | stable_node = page_stable_node(page); |
2042 | if (stable_node) { | |
2043 | if (stable_node->head != &migrate_nodes && | |
2c653d0e AA |
2044 | get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != |
2045 | NUMA(stable_node->nid)) { | |
2046 | stable_node_dup_del(stable_node); | |
4146d2d6 HD |
2047 | stable_node->head = &migrate_nodes; |
2048 | list_add(&stable_node->list, stable_node->head); | |
2049 | } | |
2050 | if (stable_node->head != &migrate_nodes && | |
2051 | rmap_item->head == stable_node) | |
2052 | return; | |
2c653d0e AA |
2053 | /* |
2054 | * If it's a KSM fork, allow it to go over the sharing limit | |
2055 | * without warnings. | |
2056 | */ | |
2057 | if (!is_page_sharing_candidate(stable_node)) | |
2058 | max_page_sharing_bypass = true; | |
4146d2d6 | 2059 | } |
31dbd01f IE |
2060 | |
2061 | /* We first start with searching the page inside the stable tree */ | |
62b61f61 | 2062 | kpage = stable_tree_search(page); |
4146d2d6 HD |
2063 | if (kpage == page && rmap_item->head == stable_node) { |
2064 | put_page(kpage); | |
2065 | return; | |
2066 | } | |
2067 | ||
2068 | remove_rmap_item_from_tree(rmap_item); | |
2069 | ||
62b61f61 | 2070 | if (kpage) { |
08beca44 | 2071 | err = try_to_merge_with_ksm_page(rmap_item, page, kpage); |
31dbd01f IE |
2072 | if (!err) { |
2073 | /* | |
2074 | * The page was successfully merged: | |
2075 | * add its rmap_item to the stable tree. | |
2076 | */ | |
5ad64688 | 2077 | lock_page(kpage); |
2c653d0e AA |
2078 | stable_tree_append(rmap_item, page_stable_node(kpage), |
2079 | max_page_sharing_bypass); | |
5ad64688 | 2080 | unlock_page(kpage); |
31dbd01f | 2081 | } |
8dd3557a | 2082 | put_page(kpage); |
31dbd01f IE |
2083 | return; |
2084 | } | |
2085 | ||
2086 | /* | |
4035c07a HD |
2087 | * If the hash value of the page has changed from the last time |
2088 | * we calculated it, this page is changing frequently: therefore we | |
2089 | * don't want to insert it in the unstable tree, and we don't want | |
2090 | * to waste our time searching for something identical to it there. | |
31dbd01f IE |
2091 | */ |
2092 | checksum = calc_checksum(page); | |
2093 | if (rmap_item->oldchecksum != checksum) { | |
2094 | rmap_item->oldchecksum = checksum; | |
2095 | return; | |
2096 | } | |
2097 | ||
e86c59b1 CI |
2098 | /* |
2099 | * Same checksum as an empty page. We attempt to merge it with the | |
2100 | * appropriate zero page if the user enabled this via sysfs. | |
2101 | */ | |
2102 | if (ksm_use_zero_pages && (checksum == zero_checksum)) { | |
2103 | struct vm_area_struct *vma; | |
2104 | ||
4b22927f KT |
2105 | down_read(&mm->mmap_sem); |
2106 | vma = find_mergeable_vma(mm, rmap_item->address); | |
e86c59b1 CI |
2107 | err = try_to_merge_one_page(vma, page, |
2108 | ZERO_PAGE(rmap_item->address)); | |
4b22927f | 2109 | up_read(&mm->mmap_sem); |
e86c59b1 CI |
2110 | /* |
2111 | * In case of failure, the page was not really empty, so we | |
2112 | * need to continue. Otherwise we're done. | |
2113 | */ | |
2114 | if (!err) | |
2115 | return; | |
2116 | } | |
8dd3557a HD |
2117 | tree_rmap_item = |
2118 | unstable_tree_search_insert(rmap_item, page, &tree_page); | |
31dbd01f | 2119 | if (tree_rmap_item) { |
77da2ba0 CI |
2120 | bool split; |
2121 | ||
8dd3557a HD |
2122 | kpage = try_to_merge_two_pages(rmap_item, page, |
2123 | tree_rmap_item, tree_page); | |
77da2ba0 CI |
2124 | /* |
2125 | * If both pages we tried to merge belong to the same compound | |
2126 | * page, then we actually ended up increasing the reference | |
2127 | * count of the same compound page twice, and split_huge_page | |
2128 | * failed. | |
2129 | * Here we set a flag if that happened, and we use it later to | |
2130 | * try split_huge_page again. Since we call put_page right | |
2131 | * afterwards, the reference count will be correct and | |
2132 | * split_huge_page should succeed. | |
2133 | */ | |
2134 | split = PageTransCompound(page) | |
2135 | && compound_head(page) == compound_head(tree_page); | |
8dd3557a | 2136 | put_page(tree_page); |
8dd3557a | 2137 | if (kpage) { |
bc56620b HD |
2138 | /* |
2139 | * The pages were successfully merged: insert new | |
2140 | * node in the stable tree and add both rmap_items. | |
2141 | */ | |
5ad64688 | 2142 | lock_page(kpage); |
7b6ba2c7 HD |
2143 | stable_node = stable_tree_insert(kpage); |
2144 | if (stable_node) { | |
2c653d0e AA |
2145 | stable_tree_append(tree_rmap_item, stable_node, |
2146 | false); | |
2147 | stable_tree_append(rmap_item, stable_node, | |
2148 | false); | |
7b6ba2c7 | 2149 | } |
5ad64688 | 2150 | unlock_page(kpage); |
7b6ba2c7 | 2151 | |
31dbd01f IE |
2152 | /* |
2153 | * If we fail to insert the page into the stable tree, | |
2154 | * we will have 2 virtual addresses that are pointing | |
2155 | * to a ksm page left outside the stable tree, | |
2156 | * in which case we need to break_cow on both. | |
2157 | */ | |
7b6ba2c7 | 2158 | if (!stable_node) { |
8dd3557a HD |
2159 | break_cow(tree_rmap_item); |
2160 | break_cow(rmap_item); | |
31dbd01f | 2161 | } |
77da2ba0 CI |
2162 | } else if (split) { |
2163 | /* | |
2164 | * We are here if we tried to merge two pages and | |
2165 | * failed because they both belonged to the same | |
2166 | * compound page. We will split the page now, but no | |
2167 | * merging will take place. | |
2168 | * We do not want to add the cost of a full lock; if | |
2169 | * the page is locked, it is better to skip it and | |
2170 | * perhaps try again later. | |
2171 | */ | |
2172 | if (!trylock_page(page)) | |
2173 | return; | |
2174 | split_huge_page(page); | |
2175 | unlock_page(page); | |
31dbd01f | 2176 | } |
31dbd01f IE |
2177 | } |
2178 | } | |
2179 | ||
2180 | static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, | |
6514d511 | 2181 | struct rmap_item **rmap_list, |
31dbd01f IE |
2182 | unsigned long addr) |
2183 | { | |
2184 | struct rmap_item *rmap_item; | |
2185 | ||
6514d511 HD |
2186 | while (*rmap_list) { |
2187 | rmap_item = *rmap_list; | |
93d17715 | 2188 | if ((rmap_item->address & PAGE_MASK) == addr) |
31dbd01f | 2189 | return rmap_item; |
31dbd01f IE |
2190 | if (rmap_item->address > addr) |
2191 | break; | |
6514d511 | 2192 | *rmap_list = rmap_item->rmap_list; |
31dbd01f | 2193 | remove_rmap_item_from_tree(rmap_item); |
31dbd01f IE |
2194 | free_rmap_item(rmap_item); |
2195 | } | |
2196 | ||
2197 | rmap_item = alloc_rmap_item(); | |
2198 | if (rmap_item) { | |
2199 | /* It has already been zeroed */ | |
2200 | rmap_item->mm = mm_slot->mm; | |
2201 | rmap_item->address = addr; | |
6514d511 HD |
2202 | rmap_item->rmap_list = *rmap_list; |
2203 | *rmap_list = rmap_item; | |
31dbd01f IE |
2204 | } |
2205 | return rmap_item; | |
2206 | } | |
2207 | ||
2208 | static struct rmap_item *scan_get_next_rmap_item(struct page **page) | |
2209 | { | |
2210 | struct mm_struct *mm; | |
2211 | struct mm_slot *slot; | |
2212 | struct vm_area_struct *vma; | |
2213 | struct rmap_item *rmap_item; | |
90bd6fd3 | 2214 | int nid; |
31dbd01f IE |
2215 | |
2216 | if (list_empty(&ksm_mm_head.mm_list)) | |
2217 | return NULL; | |
2218 | ||
2219 | slot = ksm_scan.mm_slot; | |
2220 | if (slot == &ksm_mm_head) { | |
2919bfd0 HD |
2221 | /* |
2222 | * A number of pages can hang around indefinitely on per-cpu | |
2223 | * pagevecs, raised page count preventing write_protect_page | |
2224 | * from merging them. Though it doesn't really matter much, | |
2225 | * it is puzzling to see some stuck in pages_volatile until | |
2226 | * other activity jostles them out, and they also prevented | |
2227 | * LTP's KSM test from succeeding deterministically; so drain | |
2228 | * them here (here rather than on entry to ksm_do_scan(), | |
2229 | * so we don't IPI too often when pages_to_scan is set low). | |
2230 | */ | |
2231 | lru_add_drain_all(); | |
2232 | ||
4146d2d6 HD |
2233 | /* |
2234 | * Whereas stale stable_nodes on the stable_tree itself | |
2235 | * get pruned in the regular course of stable_tree_search(), | |
2236 | * those moved out to the migrate_nodes list can accumulate: | |
2237 | * so prune them once before each full scan. | |
2238 | */ | |
2239 | if (!ksm_merge_across_nodes) { | |
03640418 | 2240 | struct stable_node *stable_node, *next; |
4146d2d6 HD |
2241 | struct page *page; |
2242 | ||
03640418 GT |
2243 | list_for_each_entry_safe(stable_node, next, |
2244 | &migrate_nodes, list) { | |
4146d2d6 HD |
2245 | page = get_ksm_page(stable_node, false); |
2246 | if (page) | |
2247 | put_page(page); | |
2248 | cond_resched(); | |
2249 | } | |
2250 | } | |
2251 | ||
ef53d16c | 2252 | for (nid = 0; nid < ksm_nr_node_ids; nid++) |
90bd6fd3 | 2253 | root_unstable_tree[nid] = RB_ROOT; |
31dbd01f IE |
2254 | |
2255 | spin_lock(&ksm_mmlist_lock); | |
2256 | slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); | |
2257 | ksm_scan.mm_slot = slot; | |
2258 | spin_unlock(&ksm_mmlist_lock); | |
2b472611 HD |
2259 | /* |
2260 | * Although we tested list_empty() above, a racing __ksm_exit | |
2261 | * of the last mm on the list may have removed it since then. | |
2262 | */ | |
2263 | if (slot == &ksm_mm_head) | |
2264 | return NULL; | |
31dbd01f IE |
2265 | next_mm: |
2266 | ksm_scan.address = 0; | |
6514d511 | 2267 | ksm_scan.rmap_list = &slot->rmap_list; |
31dbd01f IE |
2268 | } |
2269 | ||
2270 | mm = slot->mm; | |
2271 | down_read(&mm->mmap_sem); | |
9ba69294 HD |
2272 | if (ksm_test_exit(mm)) |
2273 | vma = NULL; | |
2274 | else | |
2275 | vma = find_vma(mm, ksm_scan.address); | |
2276 | ||
2277 | for (; vma; vma = vma->vm_next) { | |
31dbd01f IE |
2278 | if (!(vma->vm_flags & VM_MERGEABLE)) |
2279 | continue; | |
2280 | if (ksm_scan.address < vma->vm_start) | |
2281 | ksm_scan.address = vma->vm_start; | |
2282 | if (!vma->anon_vma) | |
2283 | ksm_scan.address = vma->vm_end; | |
2284 | ||
2285 | while (ksm_scan.address < vma->vm_end) { | |
9ba69294 HD |
2286 | if (ksm_test_exit(mm)) |
2287 | break; | |
31dbd01f | 2288 | *page = follow_page(vma, ksm_scan.address, FOLL_GET); |
21ae5b01 AA |
2289 | if (IS_ERR_OR_NULL(*page)) { |
2290 | ksm_scan.address += PAGE_SIZE; | |
2291 | cond_resched(); | |
2292 | continue; | |
2293 | } | |
f765f540 | 2294 | if (PageAnon(*page)) { |
31dbd01f IE |
2295 | flush_anon_page(vma, *page, ksm_scan.address); |
2296 | flush_dcache_page(*page); | |
2297 | rmap_item = get_next_rmap_item(slot, | |
6514d511 | 2298 | ksm_scan.rmap_list, ksm_scan.address); |
31dbd01f | 2299 | if (rmap_item) { |
6514d511 HD |
2300 | ksm_scan.rmap_list = |
2301 | &rmap_item->rmap_list; | |
31dbd01f IE |
2302 | ksm_scan.address += PAGE_SIZE; |
2303 | } else | |
2304 | put_page(*page); | |
2305 | up_read(&mm->mmap_sem); | |
2306 | return rmap_item; | |
2307 | } | |
21ae5b01 | 2308 | put_page(*page); |
31dbd01f IE |
2309 | ksm_scan.address += PAGE_SIZE; |
2310 | cond_resched(); | |
2311 | } | |
2312 | } | |
2313 | ||
9ba69294 HD |
2314 | if (ksm_test_exit(mm)) { |
2315 | ksm_scan.address = 0; | |
6514d511 | 2316 | ksm_scan.rmap_list = &slot->rmap_list; |
9ba69294 | 2317 | } |
31dbd01f IE |
2318 | /* |
2319 | * Nuke all the rmap_items that are above this current rmap: | |
2320 | * because there were no VM_MERGEABLE vmas with such addresses. | |
2321 | */ | |
6514d511 | 2322 | remove_trailing_rmap_items(slot, ksm_scan.rmap_list); |
31dbd01f IE |
2323 | |
2324 | spin_lock(&ksm_mmlist_lock); | |
cd551f97 HD |
2325 | ksm_scan.mm_slot = list_entry(slot->mm_list.next, |
2326 | struct mm_slot, mm_list); | |
2327 | if (ksm_scan.address == 0) { | |
2328 | /* | |
2329 | * We've completed a full scan of all vmas, holding mmap_sem | |
2330 | * throughout, and found no VM_MERGEABLE: so do the same as | |
2331 | * __ksm_exit does to remove this mm from all our lists now. | |
9ba69294 HD |
2332 | * This applies either when cleaning up after __ksm_exit |
2333 | * (but beware: we can reach here even before __ksm_exit), | |
2334 | * or when all VM_MERGEABLE areas have been unmapped (and | |
2335 | * mmap_sem then protects against race with MADV_MERGEABLE). | |
cd551f97 | 2336 | */ |
4ca3a69b | 2337 | hash_del(&slot->link); |
cd551f97 | 2338 | list_del(&slot->mm_list); |
9ba69294 HD |
2339 | spin_unlock(&ksm_mmlist_lock); |
2340 | ||
cd551f97 HD |
2341 | free_mm_slot(slot); |
2342 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | |
9ba69294 HD |
2343 | up_read(&mm->mmap_sem); |
2344 | mmdrop(mm); | |
2345 | } else { | |
9ba69294 | 2346 | up_read(&mm->mmap_sem); |
7496fea9 ZC |
2347 | /* |
2348 | * up_read(&mm->mmap_sem) first because after | |
2349 | * spin_unlock(&ksm_mmlist_lock) run, the "mm" may | |
2350 | * already have been freed under us by __ksm_exit() | |
2351 | * because the "mm_slot" is still hashed and | |
2352 | * ksm_scan.mm_slot doesn't point to it anymore. | |
2353 | */ | |
2354 | spin_unlock(&ksm_mmlist_lock); | |
cd551f97 | 2355 | } |
31dbd01f IE |
2356 | |
2357 | /* Repeat until we've completed scanning the whole list */ | |
cd551f97 | 2358 | slot = ksm_scan.mm_slot; |
31dbd01f IE |
2359 | if (slot != &ksm_mm_head) |
2360 | goto next_mm; | |
2361 | ||
31dbd01f IE |
2362 | ksm_scan.seqnr++; |
2363 | return NULL; | |
2364 | } | |
2365 | ||
2366 | /** | |
2367 | * ksm_do_scan - the ksm scanner main worker function. | |
b7701a5f | 2368 | * @scan_npages: number of pages we want to scan before we return. |
31dbd01f IE |
2369 | */ |
2370 | static void ksm_do_scan(unsigned int scan_npages) | |
2371 | { | |
2372 | struct rmap_item *rmap_item; | |
22eccdd7 | 2373 | struct page *uninitialized_var(page); |
31dbd01f | 2374 | |
878aee7d | 2375 | while (scan_npages-- && likely(!freezing(current))) { |
31dbd01f IE |
2376 | cond_resched(); |
2377 | rmap_item = scan_get_next_rmap_item(&page); | |
2378 | if (!rmap_item) | |
2379 | return; | |
4146d2d6 | 2380 | cmp_and_merge_page(page, rmap_item); |
31dbd01f IE |
2381 | put_page(page); |
2382 | } | |
2383 | } | |
2384 | ||
6e158384 HD |
2385 | static int ksmd_should_run(void) |
2386 | { | |
2387 | return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); | |
2388 | } | |
2389 | ||
31dbd01f IE |
2390 | static int ksm_scan_thread(void *nothing) |
2391 | { | |
878aee7d | 2392 | set_freezable(); |
339aa624 | 2393 | set_user_nice(current, 5); |
31dbd01f IE |
2394 | |
2395 | while (!kthread_should_stop()) { | |
6e158384 | 2396 | mutex_lock(&ksm_thread_mutex); |
ef4d43a8 | 2397 | wait_while_offlining(); |
6e158384 | 2398 | if (ksmd_should_run()) |
31dbd01f | 2399 | ksm_do_scan(ksm_thread_pages_to_scan); |
6e158384 HD |
2400 | mutex_unlock(&ksm_thread_mutex); |
2401 | ||
878aee7d AA |
2402 | try_to_freeze(); |
2403 | ||
6e158384 | 2404 | if (ksmd_should_run()) { |
31dbd01f IE |
2405 | schedule_timeout_interruptible( |
2406 | msecs_to_jiffies(ksm_thread_sleep_millisecs)); | |
2407 | } else { | |
878aee7d | 2408 | wait_event_freezable(ksm_thread_wait, |
6e158384 | 2409 | ksmd_should_run() || kthread_should_stop()); |
31dbd01f IE |
2410 | } |
2411 | } | |
2412 | return 0; | |
2413 | } | |
2414 | ||
f8af4da3 HD |
2415 | int ksm_madvise(struct vm_area_struct *vma, unsigned long start, |
2416 | unsigned long end, int advice, unsigned long *vm_flags) | |
2417 | { | |
2418 | struct mm_struct *mm = vma->vm_mm; | |
d952b791 | 2419 | int err; |
f8af4da3 HD |
2420 | |
2421 | switch (advice) { | |
2422 | case MADV_MERGEABLE: | |
2423 | /* | |
2424 | * Be somewhat over-protective for now! | |
2425 | */ | |
2426 | if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | | |
2427 | VM_PFNMAP | VM_IO | VM_DONTEXPAND | | |
0661a336 | 2428 | VM_HUGETLB | VM_MIXEDMAP)) |
f8af4da3 HD |
2429 | return 0; /* just ignore the advice */ |
2430 | ||
cc2383ec KK |
2431 | #ifdef VM_SAO |
2432 | if (*vm_flags & VM_SAO) | |
2433 | return 0; | |
2434 | #endif | |
74a04967 KA |
2435 | #ifdef VM_SPARC_ADI |
2436 | if (*vm_flags & VM_SPARC_ADI) | |
2437 | return 0; | |
2438 | #endif | |
cc2383ec | 2439 | |
d952b791 HD |
2440 | if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { |
2441 | err = __ksm_enter(mm); | |
2442 | if (err) | |
2443 | return err; | |
2444 | } | |
f8af4da3 HD |
2445 | |
2446 | *vm_flags |= VM_MERGEABLE; | |
2447 | break; | |
2448 | ||
2449 | case MADV_UNMERGEABLE: | |
2450 | if (!(*vm_flags & VM_MERGEABLE)) | |
2451 | return 0; /* just ignore the advice */ | |
2452 | ||
d952b791 HD |
2453 | if (vma->anon_vma) { |
2454 | err = unmerge_ksm_pages(vma, start, end); | |
2455 | if (err) | |
2456 | return err; | |
2457 | } | |
f8af4da3 HD |
2458 | |
2459 | *vm_flags &= ~VM_MERGEABLE; | |
2460 | break; | |
2461 | } | |
2462 | ||
2463 | return 0; | |
2464 | } | |
2465 | ||
2466 | int __ksm_enter(struct mm_struct *mm) | |
2467 | { | |
6e158384 HD |
2468 | struct mm_slot *mm_slot; |
2469 | int needs_wakeup; | |
2470 | ||
2471 | mm_slot = alloc_mm_slot(); | |
31dbd01f IE |
2472 | if (!mm_slot) |
2473 | return -ENOMEM; | |
2474 | ||
6e158384 HD |
2475 | /* Check ksm_run too? Would need tighter locking */ |
2476 | needs_wakeup = list_empty(&ksm_mm_head.mm_list); | |
2477 | ||
31dbd01f IE |
2478 | spin_lock(&ksm_mmlist_lock); |
2479 | insert_to_mm_slots_hash(mm, mm_slot); | |
2480 | /* | |
cbf86cfe HD |
2481 | * When KSM_RUN_MERGE (or KSM_RUN_STOP), |
2482 | * insert just behind the scanning cursor, to let the area settle | |
31dbd01f IE |
2483 | * down a little; when fork is followed by immediate exec, we don't |
2484 | * want ksmd to waste time setting up and tearing down an rmap_list. | |
cbf86cfe HD |
2485 | * |
2486 | * But when KSM_RUN_UNMERGE, it's important to insert ahead of its | |
2487 | * scanning cursor, otherwise KSM pages in newly forked mms will be | |
2488 | * missed: then we might as well insert at the end of the list. | |
31dbd01f | 2489 | */ |
cbf86cfe HD |
2490 | if (ksm_run & KSM_RUN_UNMERGE) |
2491 | list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); | |
2492 | else | |
2493 | list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); | |
31dbd01f IE |
2494 | spin_unlock(&ksm_mmlist_lock); |
2495 | ||
f8af4da3 | 2496 | set_bit(MMF_VM_MERGEABLE, &mm->flags); |
f1f10076 | 2497 | mmgrab(mm); |
6e158384 HD |
2498 | |
2499 | if (needs_wakeup) | |
2500 | wake_up_interruptible(&ksm_thread_wait); | |
2501 | ||
f8af4da3 HD |
2502 | return 0; |
2503 | } | |
2504 | ||
1c2fb7a4 | 2505 | void __ksm_exit(struct mm_struct *mm) |
f8af4da3 | 2506 | { |
cd551f97 | 2507 | struct mm_slot *mm_slot; |
9ba69294 | 2508 | int easy_to_free = 0; |
cd551f97 | 2509 | |
31dbd01f | 2510 | /* |
9ba69294 HD |
2511 | * This process is exiting: if it's straightforward (as is the |
2512 | * case when ksmd was never running), free mm_slot immediately. | |
2513 | * But if it's at the cursor or has rmap_items linked to it, use | |
2514 | * mmap_sem to synchronize with any break_cows before pagetables | |
2515 | * are freed, and leave the mm_slot on the list for ksmd to free. | |
2516 | * Beware: ksm may already have noticed it exiting and freed the slot. | |
31dbd01f | 2517 | */ |
9ba69294 | 2518 | |
cd551f97 HD |
2519 | spin_lock(&ksm_mmlist_lock); |
2520 | mm_slot = get_mm_slot(mm); | |
9ba69294 | 2521 | if (mm_slot && ksm_scan.mm_slot != mm_slot) { |
6514d511 | 2522 | if (!mm_slot->rmap_list) { |
4ca3a69b | 2523 | hash_del(&mm_slot->link); |
9ba69294 HD |
2524 | list_del(&mm_slot->mm_list); |
2525 | easy_to_free = 1; | |
2526 | } else { | |
2527 | list_move(&mm_slot->mm_list, | |
2528 | &ksm_scan.mm_slot->mm_list); | |
2529 | } | |
cd551f97 | 2530 | } |
cd551f97 HD |
2531 | spin_unlock(&ksm_mmlist_lock); |
2532 | ||
9ba69294 HD |
2533 | if (easy_to_free) { |
2534 | free_mm_slot(mm_slot); | |
2535 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | |
2536 | mmdrop(mm); | |
2537 | } else if (mm_slot) { | |
9ba69294 HD |
2538 | down_write(&mm->mmap_sem); |
2539 | up_write(&mm->mmap_sem); | |
9ba69294 | 2540 | } |
31dbd01f IE |
2541 | } |
2542 | ||
cbf86cfe | 2543 | struct page *ksm_might_need_to_copy(struct page *page, |
5ad64688 HD |
2544 | struct vm_area_struct *vma, unsigned long address) |
2545 | { | |
cbf86cfe | 2546 | struct anon_vma *anon_vma = page_anon_vma(page); |
5ad64688 HD |
2547 | struct page *new_page; |
2548 | ||
cbf86cfe HD |
2549 | if (PageKsm(page)) { |
2550 | if (page_stable_node(page) && | |
2551 | !(ksm_run & KSM_RUN_UNMERGE)) | |
2552 | return page; /* no need to copy it */ | |
2553 | } else if (!anon_vma) { | |
2554 | return page; /* no need to copy it */ | |
2555 | } else if (anon_vma->root == vma->anon_vma->root && | |
2556 | page->index == linear_page_index(vma, address)) { | |
2557 | return page; /* still no need to copy it */ | |
2558 | } | |
2559 | if (!PageUptodate(page)) | |
2560 | return page; /* let do_swap_page report the error */ | |
2561 | ||
5ad64688 HD |
2562 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); |
2563 | if (new_page) { | |
2564 | copy_user_highpage(new_page, page, address, vma); | |
2565 | ||
2566 | SetPageDirty(new_page); | |
2567 | __SetPageUptodate(new_page); | |
48c935ad | 2568 | __SetPageLocked(new_page); |
5ad64688 HD |
2569 | } |
2570 | ||
5ad64688 HD |
2571 | return new_page; |
2572 | } | |
2573 | ||
1df631ae | 2574 | void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 HD |
2575 | { |
2576 | struct stable_node *stable_node; | |
e9995ef9 | 2577 | struct rmap_item *rmap_item; |
e9995ef9 HD |
2578 | int search_new_forks = 0; |
2579 | ||
309381fe | 2580 | VM_BUG_ON_PAGE(!PageKsm(page), page); |
9f32624b JK |
2581 | |
2582 | /* | |
2583 | * Rely on the page lock to protect against concurrent modifications | |
2584 | * to that page's node of the stable tree. | |
2585 | */ | |
309381fe | 2586 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9995ef9 HD |
2587 | |
2588 | stable_node = page_stable_node(page); | |
2589 | if (!stable_node) | |
1df631ae | 2590 | return; |
e9995ef9 | 2591 | again: |
b67bfe0d | 2592 | hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { |
e9995ef9 | 2593 | struct anon_vma *anon_vma = rmap_item->anon_vma; |
5beb4930 | 2594 | struct anon_vma_chain *vmac; |
e9995ef9 HD |
2595 | struct vm_area_struct *vma; |
2596 | ||
ad12695f | 2597 | cond_resched(); |
b6b19f25 | 2598 | anon_vma_lock_read(anon_vma); |
bf181b9f ML |
2599 | anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, |
2600 | 0, ULONG_MAX) { | |
ad12695f | 2601 | cond_resched(); |
5beb4930 | 2602 | vma = vmac->vma; |
e9995ef9 HD |
2603 | if (rmap_item->address < vma->vm_start || |
2604 | rmap_item->address >= vma->vm_end) | |
2605 | continue; | |
2606 | /* | |
2607 | * Initially we examine only the vma which covers this | |
2608 | * rmap_item; but later, if there is still work to do, | |
2609 | * we examine covering vmas in other mms: in case they | |
2610 | * were forked from the original since ksmd passed. | |
2611 | */ | |
2612 | if ((rmap_item->mm == vma->vm_mm) == search_new_forks) | |
2613 | continue; | |
2614 | ||
0dd1c7bb JK |
2615 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2616 | continue; | |
2617 | ||
e4b82222 | 2618 | if (!rwc->rmap_one(page, vma, |
1df631ae | 2619 | rmap_item->address, rwc->arg)) { |
b6b19f25 | 2620 | anon_vma_unlock_read(anon_vma); |
1df631ae | 2621 | return; |
e9995ef9 | 2622 | } |
0dd1c7bb JK |
2623 | if (rwc->done && rwc->done(page)) { |
2624 | anon_vma_unlock_read(anon_vma); | |
1df631ae | 2625 | return; |
0dd1c7bb | 2626 | } |
e9995ef9 | 2627 | } |
b6b19f25 | 2628 | anon_vma_unlock_read(anon_vma); |
e9995ef9 HD |
2629 | } |
2630 | if (!search_new_forks++) | |
2631 | goto again; | |
e9995ef9 HD |
2632 | } |
2633 | ||
52629506 | 2634 | #ifdef CONFIG_MIGRATION |
e9995ef9 HD |
2635 | void ksm_migrate_page(struct page *newpage, struct page *oldpage) |
2636 | { | |
2637 | struct stable_node *stable_node; | |
2638 | ||
309381fe SL |
2639 | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); |
2640 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | |
2641 | VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); | |
e9995ef9 HD |
2642 | |
2643 | stable_node = page_stable_node(newpage); | |
2644 | if (stable_node) { | |
309381fe | 2645 | VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); |
62b61f61 | 2646 | stable_node->kpfn = page_to_pfn(newpage); |
c8d6553b HD |
2647 | /* |
2648 | * newpage->mapping was set in advance; now we need smp_wmb() | |
2649 | * to make sure that the new stable_node->kpfn is visible | |
2650 | * to get_ksm_page() before it can see that oldpage->mapping | |
2651 | * has gone stale (or that PageSwapCache has been cleared). | |
2652 | */ | |
2653 | smp_wmb(); | |
2654 | set_page_stable_node(oldpage, NULL); | |
e9995ef9 HD |
2655 | } |
2656 | } | |
2657 | #endif /* CONFIG_MIGRATION */ | |
2658 | ||
62b61f61 | 2659 | #ifdef CONFIG_MEMORY_HOTREMOVE |
ef4d43a8 HD |
2660 | static void wait_while_offlining(void) |
2661 | { | |
2662 | while (ksm_run & KSM_RUN_OFFLINE) { | |
2663 | mutex_unlock(&ksm_thread_mutex); | |
2664 | wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), | |
74316201 | 2665 | TASK_UNINTERRUPTIBLE); |
ef4d43a8 HD |
2666 | mutex_lock(&ksm_thread_mutex); |
2667 | } | |
2668 | } | |
2669 | ||
2c653d0e AA |
2670 | static bool stable_node_dup_remove_range(struct stable_node *stable_node, |
2671 | unsigned long start_pfn, | |
2672 | unsigned long end_pfn) | |
2673 | { | |
2674 | if (stable_node->kpfn >= start_pfn && | |
2675 | stable_node->kpfn < end_pfn) { | |
2676 | /* | |
2677 | * Don't get_ksm_page, page has already gone: | |
2678 | * which is why we keep kpfn instead of page* | |
2679 | */ | |
2680 | remove_node_from_stable_tree(stable_node); | |
2681 | return true; | |
2682 | } | |
2683 | return false; | |
2684 | } | |
2685 | ||
2686 | static bool stable_node_chain_remove_range(struct stable_node *stable_node, | |
2687 | unsigned long start_pfn, | |
2688 | unsigned long end_pfn, | |
2689 | struct rb_root *root) | |
2690 | { | |
2691 | struct stable_node *dup; | |
2692 | struct hlist_node *hlist_safe; | |
2693 | ||
2694 | if (!is_stable_node_chain(stable_node)) { | |
2695 | VM_BUG_ON(is_stable_node_dup(stable_node)); | |
2696 | return stable_node_dup_remove_range(stable_node, start_pfn, | |
2697 | end_pfn); | |
2698 | } | |
2699 | ||
2700 | hlist_for_each_entry_safe(dup, hlist_safe, | |
2701 | &stable_node->hlist, hlist_dup) { | |
2702 | VM_BUG_ON(!is_stable_node_dup(dup)); | |
2703 | stable_node_dup_remove_range(dup, start_pfn, end_pfn); | |
2704 | } | |
2705 | if (hlist_empty(&stable_node->hlist)) { | |
2706 | free_stable_node_chain(stable_node, root); | |
2707 | return true; /* notify caller that tree was rebalanced */ | |
2708 | } else | |
2709 | return false; | |
2710 | } | |
2711 | ||
ee0ea59c HD |
2712 | static void ksm_check_stable_tree(unsigned long start_pfn, |
2713 | unsigned long end_pfn) | |
62b61f61 | 2714 | { |
03640418 | 2715 | struct stable_node *stable_node, *next; |
62b61f61 | 2716 | struct rb_node *node; |
90bd6fd3 | 2717 | int nid; |
62b61f61 | 2718 | |
ef53d16c HD |
2719 | for (nid = 0; nid < ksm_nr_node_ids; nid++) { |
2720 | node = rb_first(root_stable_tree + nid); | |
ee0ea59c | 2721 | while (node) { |
90bd6fd3 | 2722 | stable_node = rb_entry(node, struct stable_node, node); |
2c653d0e AA |
2723 | if (stable_node_chain_remove_range(stable_node, |
2724 | start_pfn, end_pfn, | |
2725 | root_stable_tree + | |
2726 | nid)) | |
ef53d16c | 2727 | node = rb_first(root_stable_tree + nid); |
2c653d0e | 2728 | else |
ee0ea59c HD |
2729 | node = rb_next(node); |
2730 | cond_resched(); | |
90bd6fd3 | 2731 | } |
ee0ea59c | 2732 | } |
03640418 | 2733 | list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { |
4146d2d6 HD |
2734 | if (stable_node->kpfn >= start_pfn && |
2735 | stable_node->kpfn < end_pfn) | |
2736 | remove_node_from_stable_tree(stable_node); | |
2737 | cond_resched(); | |
2738 | } | |
62b61f61 HD |
2739 | } |
2740 | ||
2741 | static int ksm_memory_callback(struct notifier_block *self, | |
2742 | unsigned long action, void *arg) | |
2743 | { | |
2744 | struct memory_notify *mn = arg; | |
62b61f61 HD |
2745 | |
2746 | switch (action) { | |
2747 | case MEM_GOING_OFFLINE: | |
2748 | /* | |
ef4d43a8 HD |
2749 | * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() |
2750 | * and remove_all_stable_nodes() while memory is going offline: | |
2751 | * it is unsafe for them to touch the stable tree at this time. | |
2752 | * But unmerge_ksm_pages(), rmap lookups and other entry points | |
2753 | * which do not need the ksm_thread_mutex are all safe. | |
62b61f61 | 2754 | */ |
ef4d43a8 HD |
2755 | mutex_lock(&ksm_thread_mutex); |
2756 | ksm_run |= KSM_RUN_OFFLINE; | |
2757 | mutex_unlock(&ksm_thread_mutex); | |
62b61f61 HD |
2758 | break; |
2759 | ||
2760 | case MEM_OFFLINE: | |
2761 | /* | |
2762 | * Most of the work is done by page migration; but there might | |
2763 | * be a few stable_nodes left over, still pointing to struct | |
ee0ea59c HD |
2764 | * pages which have been offlined: prune those from the tree, |
2765 | * otherwise get_ksm_page() might later try to access a | |
2766 | * non-existent struct page. | |
62b61f61 | 2767 | */ |
ee0ea59c HD |
2768 | ksm_check_stable_tree(mn->start_pfn, |
2769 | mn->start_pfn + mn->nr_pages); | |
62b61f61 HD |
2770 | /* fallthrough */ |
2771 | ||
2772 | case MEM_CANCEL_OFFLINE: | |
ef4d43a8 HD |
2773 | mutex_lock(&ksm_thread_mutex); |
2774 | ksm_run &= ~KSM_RUN_OFFLINE; | |
62b61f61 | 2775 | mutex_unlock(&ksm_thread_mutex); |
ef4d43a8 HD |
2776 | |
2777 | smp_mb(); /* wake_up_bit advises this */ | |
2778 | wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); | |
62b61f61 HD |
2779 | break; |
2780 | } | |
2781 | return NOTIFY_OK; | |
2782 | } | |
ef4d43a8 HD |
2783 | #else |
2784 | static void wait_while_offlining(void) | |
2785 | { | |
2786 | } | |
62b61f61 HD |
2787 | #endif /* CONFIG_MEMORY_HOTREMOVE */ |
2788 | ||
2ffd8679 HD |
2789 | #ifdef CONFIG_SYSFS |
2790 | /* | |
2791 | * This all compiles without CONFIG_SYSFS, but is a waste of space. | |
2792 | */ | |
2793 | ||
31dbd01f IE |
2794 | #define KSM_ATTR_RO(_name) \ |
2795 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
2796 | #define KSM_ATTR(_name) \ | |
2797 | static struct kobj_attribute _name##_attr = \ | |
2798 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
2799 | ||
2800 | static ssize_t sleep_millisecs_show(struct kobject *kobj, | |
2801 | struct kobj_attribute *attr, char *buf) | |
2802 | { | |
2803 | return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); | |
2804 | } | |
2805 | ||
2806 | static ssize_t sleep_millisecs_store(struct kobject *kobj, | |
2807 | struct kobj_attribute *attr, | |
2808 | const char *buf, size_t count) | |
2809 | { | |
2810 | unsigned long msecs; | |
2811 | int err; | |
2812 | ||
3dbb95f7 | 2813 | err = kstrtoul(buf, 10, &msecs); |
31dbd01f IE |
2814 | if (err || msecs > UINT_MAX) |
2815 | return -EINVAL; | |
2816 | ||
2817 | ksm_thread_sleep_millisecs = msecs; | |
2818 | ||
2819 | return count; | |
2820 | } | |
2821 | KSM_ATTR(sleep_millisecs); | |
2822 | ||
2823 | static ssize_t pages_to_scan_show(struct kobject *kobj, | |
2824 | struct kobj_attribute *attr, char *buf) | |
2825 | { | |
2826 | return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); | |
2827 | } | |
2828 | ||
2829 | static ssize_t pages_to_scan_store(struct kobject *kobj, | |
2830 | struct kobj_attribute *attr, | |
2831 | const char *buf, size_t count) | |
2832 | { | |
2833 | int err; | |
2834 | unsigned long nr_pages; | |
2835 | ||
3dbb95f7 | 2836 | err = kstrtoul(buf, 10, &nr_pages); |
31dbd01f IE |
2837 | if (err || nr_pages > UINT_MAX) |
2838 | return -EINVAL; | |
2839 | ||
2840 | ksm_thread_pages_to_scan = nr_pages; | |
2841 | ||
2842 | return count; | |
2843 | } | |
2844 | KSM_ATTR(pages_to_scan); | |
2845 | ||
2846 | static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, | |
2847 | char *buf) | |
2848 | { | |
ef4d43a8 | 2849 | return sprintf(buf, "%lu\n", ksm_run); |
31dbd01f IE |
2850 | } |
2851 | ||
2852 | static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, | |
2853 | const char *buf, size_t count) | |
2854 | { | |
2855 | int err; | |
2856 | unsigned long flags; | |
2857 | ||
3dbb95f7 | 2858 | err = kstrtoul(buf, 10, &flags); |
31dbd01f IE |
2859 | if (err || flags > UINT_MAX) |
2860 | return -EINVAL; | |
2861 | if (flags > KSM_RUN_UNMERGE) | |
2862 | return -EINVAL; | |
2863 | ||
2864 | /* | |
2865 | * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. | |
2866 | * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, | |
d0f209f6 HD |
2867 | * breaking COW to free the pages_shared (but leaves mm_slots |
2868 | * on the list for when ksmd may be set running again). | |
31dbd01f IE |
2869 | */ |
2870 | ||
2871 | mutex_lock(&ksm_thread_mutex); | |
ef4d43a8 | 2872 | wait_while_offlining(); |
31dbd01f IE |
2873 | if (ksm_run != flags) { |
2874 | ksm_run = flags; | |
d952b791 | 2875 | if (flags & KSM_RUN_UNMERGE) { |
e1e12d2f | 2876 | set_current_oom_origin(); |
d952b791 | 2877 | err = unmerge_and_remove_all_rmap_items(); |
e1e12d2f | 2878 | clear_current_oom_origin(); |
d952b791 HD |
2879 | if (err) { |
2880 | ksm_run = KSM_RUN_STOP; | |
2881 | count = err; | |
2882 | } | |
2883 | } | |
31dbd01f IE |
2884 | } |
2885 | mutex_unlock(&ksm_thread_mutex); | |
2886 | ||
2887 | if (flags & KSM_RUN_MERGE) | |
2888 | wake_up_interruptible(&ksm_thread_wait); | |
2889 | ||
2890 | return count; | |
2891 | } | |
2892 | KSM_ATTR(run); | |
2893 | ||
90bd6fd3 PH |
2894 | #ifdef CONFIG_NUMA |
2895 | static ssize_t merge_across_nodes_show(struct kobject *kobj, | |
2896 | struct kobj_attribute *attr, char *buf) | |
2897 | { | |
2898 | return sprintf(buf, "%u\n", ksm_merge_across_nodes); | |
2899 | } | |
2900 | ||
2901 | static ssize_t merge_across_nodes_store(struct kobject *kobj, | |
2902 | struct kobj_attribute *attr, | |
2903 | const char *buf, size_t count) | |
2904 | { | |
2905 | int err; | |
2906 | unsigned long knob; | |
2907 | ||
2908 | err = kstrtoul(buf, 10, &knob); | |
2909 | if (err) | |
2910 | return err; | |
2911 | if (knob > 1) | |
2912 | return -EINVAL; | |
2913 | ||
2914 | mutex_lock(&ksm_thread_mutex); | |
ef4d43a8 | 2915 | wait_while_offlining(); |
90bd6fd3 | 2916 | if (ksm_merge_across_nodes != knob) { |
cbf86cfe | 2917 | if (ksm_pages_shared || remove_all_stable_nodes()) |
90bd6fd3 | 2918 | err = -EBUSY; |
ef53d16c HD |
2919 | else if (root_stable_tree == one_stable_tree) { |
2920 | struct rb_root *buf; | |
2921 | /* | |
2922 | * This is the first time that we switch away from the | |
2923 | * default of merging across nodes: must now allocate | |
2924 | * a buffer to hold as many roots as may be needed. | |
2925 | * Allocate stable and unstable together: | |
2926 | * MAXSMP NODES_SHIFT 10 will use 16kB. | |
2927 | */ | |
bafe1e14 JP |
2928 | buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), |
2929 | GFP_KERNEL); | |
ef53d16c HD |
2930 | /* Let us assume that RB_ROOT is NULL is zero */ |
2931 | if (!buf) | |
2932 | err = -ENOMEM; | |
2933 | else { | |
2934 | root_stable_tree = buf; | |
2935 | root_unstable_tree = buf + nr_node_ids; | |
2936 | /* Stable tree is empty but not the unstable */ | |
2937 | root_unstable_tree[0] = one_unstable_tree[0]; | |
2938 | } | |
2939 | } | |
2940 | if (!err) { | |
90bd6fd3 | 2941 | ksm_merge_across_nodes = knob; |
ef53d16c HD |
2942 | ksm_nr_node_ids = knob ? 1 : nr_node_ids; |
2943 | } | |
90bd6fd3 PH |
2944 | } |
2945 | mutex_unlock(&ksm_thread_mutex); | |
2946 | ||
2947 | return err ? err : count; | |
2948 | } | |
2949 | KSM_ATTR(merge_across_nodes); | |
2950 | #endif | |
2951 | ||
e86c59b1 CI |
2952 | static ssize_t use_zero_pages_show(struct kobject *kobj, |
2953 | struct kobj_attribute *attr, char *buf) | |
2954 | { | |
2955 | return sprintf(buf, "%u\n", ksm_use_zero_pages); | |
2956 | } | |
2957 | static ssize_t use_zero_pages_store(struct kobject *kobj, | |
2958 | struct kobj_attribute *attr, | |
2959 | const char *buf, size_t count) | |
2960 | { | |
2961 | int err; | |
2962 | bool value; | |
2963 | ||
2964 | err = kstrtobool(buf, &value); | |
2965 | if (err) | |
2966 | return -EINVAL; | |
2967 | ||
2968 | ksm_use_zero_pages = value; | |
2969 | ||
2970 | return count; | |
2971 | } | |
2972 | KSM_ATTR(use_zero_pages); | |
2973 | ||
2c653d0e AA |
2974 | static ssize_t max_page_sharing_show(struct kobject *kobj, |
2975 | struct kobj_attribute *attr, char *buf) | |
2976 | { | |
2977 | return sprintf(buf, "%u\n", ksm_max_page_sharing); | |
2978 | } | |
2979 | ||
2980 | static ssize_t max_page_sharing_store(struct kobject *kobj, | |
2981 | struct kobj_attribute *attr, | |
2982 | const char *buf, size_t count) | |
2983 | { | |
2984 | int err; | |
2985 | int knob; | |
2986 | ||
2987 | err = kstrtoint(buf, 10, &knob); | |
2988 | if (err) | |
2989 | return err; | |
2990 | /* | |
2991 | * When a KSM page is created it is shared by 2 mappings. This | |
2992 | * being a signed comparison, it implicitly verifies it's not | |
2993 | * negative. | |
2994 | */ | |
2995 | if (knob < 2) | |
2996 | return -EINVAL; | |
2997 | ||
2998 | if (READ_ONCE(ksm_max_page_sharing) == knob) | |
2999 | return count; | |
3000 | ||
3001 | mutex_lock(&ksm_thread_mutex); | |
3002 | wait_while_offlining(); | |
3003 | if (ksm_max_page_sharing != knob) { | |
3004 | if (ksm_pages_shared || remove_all_stable_nodes()) | |
3005 | err = -EBUSY; | |
3006 | else | |
3007 | ksm_max_page_sharing = knob; | |
3008 | } | |
3009 | mutex_unlock(&ksm_thread_mutex); | |
3010 | ||
3011 | return err ? err : count; | |
3012 | } | |
3013 | KSM_ATTR(max_page_sharing); | |
3014 | ||
b4028260 HD |
3015 | static ssize_t pages_shared_show(struct kobject *kobj, |
3016 | struct kobj_attribute *attr, char *buf) | |
3017 | { | |
3018 | return sprintf(buf, "%lu\n", ksm_pages_shared); | |
3019 | } | |
3020 | KSM_ATTR_RO(pages_shared); | |
3021 | ||
3022 | static ssize_t pages_sharing_show(struct kobject *kobj, | |
3023 | struct kobj_attribute *attr, char *buf) | |
3024 | { | |
e178dfde | 3025 | return sprintf(buf, "%lu\n", ksm_pages_sharing); |
b4028260 HD |
3026 | } |
3027 | KSM_ATTR_RO(pages_sharing); | |
3028 | ||
473b0ce4 HD |
3029 | static ssize_t pages_unshared_show(struct kobject *kobj, |
3030 | struct kobj_attribute *attr, char *buf) | |
3031 | { | |
3032 | return sprintf(buf, "%lu\n", ksm_pages_unshared); | |
3033 | } | |
3034 | KSM_ATTR_RO(pages_unshared); | |
3035 | ||
3036 | static ssize_t pages_volatile_show(struct kobject *kobj, | |
3037 | struct kobj_attribute *attr, char *buf) | |
3038 | { | |
3039 | long ksm_pages_volatile; | |
3040 | ||
3041 | ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared | |
3042 | - ksm_pages_sharing - ksm_pages_unshared; | |
3043 | /* | |
3044 | * It was not worth any locking to calculate that statistic, | |
3045 | * but it might therefore sometimes be negative: conceal that. | |
3046 | */ | |
3047 | if (ksm_pages_volatile < 0) | |
3048 | ksm_pages_volatile = 0; | |
3049 | return sprintf(buf, "%ld\n", ksm_pages_volatile); | |
3050 | } | |
3051 | KSM_ATTR_RO(pages_volatile); | |
3052 | ||
2c653d0e AA |
3053 | static ssize_t stable_node_dups_show(struct kobject *kobj, |
3054 | struct kobj_attribute *attr, char *buf) | |
3055 | { | |
3056 | return sprintf(buf, "%lu\n", ksm_stable_node_dups); | |
3057 | } | |
3058 | KSM_ATTR_RO(stable_node_dups); | |
3059 | ||
3060 | static ssize_t stable_node_chains_show(struct kobject *kobj, | |
3061 | struct kobj_attribute *attr, char *buf) | |
3062 | { | |
3063 | return sprintf(buf, "%lu\n", ksm_stable_node_chains); | |
3064 | } | |
3065 | KSM_ATTR_RO(stable_node_chains); | |
3066 | ||
3067 | static ssize_t | |
3068 | stable_node_chains_prune_millisecs_show(struct kobject *kobj, | |
3069 | struct kobj_attribute *attr, | |
3070 | char *buf) | |
3071 | { | |
3072 | return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); | |
3073 | } | |
3074 | ||
3075 | static ssize_t | |
3076 | stable_node_chains_prune_millisecs_store(struct kobject *kobj, | |
3077 | struct kobj_attribute *attr, | |
3078 | const char *buf, size_t count) | |
3079 | { | |
3080 | unsigned long msecs; | |
3081 | int err; | |
3082 | ||
3083 | err = kstrtoul(buf, 10, &msecs); | |
3084 | if (err || msecs > UINT_MAX) | |
3085 | return -EINVAL; | |
3086 | ||
3087 | ksm_stable_node_chains_prune_millisecs = msecs; | |
3088 | ||
3089 | return count; | |
3090 | } | |
3091 | KSM_ATTR(stable_node_chains_prune_millisecs); | |
3092 | ||
473b0ce4 HD |
3093 | static ssize_t full_scans_show(struct kobject *kobj, |
3094 | struct kobj_attribute *attr, char *buf) | |
3095 | { | |
3096 | return sprintf(buf, "%lu\n", ksm_scan.seqnr); | |
3097 | } | |
3098 | KSM_ATTR_RO(full_scans); | |
3099 | ||
31dbd01f IE |
3100 | static struct attribute *ksm_attrs[] = { |
3101 | &sleep_millisecs_attr.attr, | |
3102 | &pages_to_scan_attr.attr, | |
3103 | &run_attr.attr, | |
b4028260 HD |
3104 | &pages_shared_attr.attr, |
3105 | &pages_sharing_attr.attr, | |
473b0ce4 HD |
3106 | &pages_unshared_attr.attr, |
3107 | &pages_volatile_attr.attr, | |
3108 | &full_scans_attr.attr, | |
90bd6fd3 PH |
3109 | #ifdef CONFIG_NUMA |
3110 | &merge_across_nodes_attr.attr, | |
3111 | #endif | |
2c653d0e AA |
3112 | &max_page_sharing_attr.attr, |
3113 | &stable_node_chains_attr.attr, | |
3114 | &stable_node_dups_attr.attr, | |
3115 | &stable_node_chains_prune_millisecs_attr.attr, | |
e86c59b1 | 3116 | &use_zero_pages_attr.attr, |
31dbd01f IE |
3117 | NULL, |
3118 | }; | |
3119 | ||
f907c26a | 3120 | static const struct attribute_group ksm_attr_group = { |
31dbd01f IE |
3121 | .attrs = ksm_attrs, |
3122 | .name = "ksm", | |
3123 | }; | |
2ffd8679 | 3124 | #endif /* CONFIG_SYSFS */ |
31dbd01f IE |
3125 | |
3126 | static int __init ksm_init(void) | |
3127 | { | |
3128 | struct task_struct *ksm_thread; | |
3129 | int err; | |
3130 | ||
e86c59b1 CI |
3131 | /* The correct value depends on page size and endianness */ |
3132 | zero_checksum = calc_checksum(ZERO_PAGE(0)); | |
3133 | /* Default to false for backwards compatibility */ | |
3134 | ksm_use_zero_pages = false; | |
3135 | ||
31dbd01f IE |
3136 | err = ksm_slab_init(); |
3137 | if (err) | |
3138 | goto out; | |
3139 | ||
31dbd01f IE |
3140 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); |
3141 | if (IS_ERR(ksm_thread)) { | |
25acde31 | 3142 | pr_err("ksm: creating kthread failed\n"); |
31dbd01f | 3143 | err = PTR_ERR(ksm_thread); |
d9f8984c | 3144 | goto out_free; |
31dbd01f IE |
3145 | } |
3146 | ||
2ffd8679 | 3147 | #ifdef CONFIG_SYSFS |
31dbd01f IE |
3148 | err = sysfs_create_group(mm_kobj, &ksm_attr_group); |
3149 | if (err) { | |
25acde31 | 3150 | pr_err("ksm: register sysfs failed\n"); |
2ffd8679 | 3151 | kthread_stop(ksm_thread); |
d9f8984c | 3152 | goto out_free; |
31dbd01f | 3153 | } |
c73602ad HD |
3154 | #else |
3155 | ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ | |
3156 | ||
2ffd8679 | 3157 | #endif /* CONFIG_SYSFS */ |
31dbd01f | 3158 | |
62b61f61 | 3159 | #ifdef CONFIG_MEMORY_HOTREMOVE |
ef4d43a8 | 3160 | /* There is no significance to this priority 100 */ |
62b61f61 HD |
3161 | hotplug_memory_notifier(ksm_memory_callback, 100); |
3162 | #endif | |
31dbd01f IE |
3163 | return 0; |
3164 | ||
d9f8984c | 3165 | out_free: |
31dbd01f IE |
3166 | ksm_slab_free(); |
3167 | out: | |
3168 | return err; | |
f8af4da3 | 3169 | } |
a64fb3cd | 3170 | subsys_initcall(ksm_init); |