]> Git Repo - linux.git/blame - mm/ksm.c
mm/ksm: use folio in remove_stable_node
[linux.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
4e5fa4f5 24#include <linux/sched/cputime.h>
31dbd01f
IE
25#include <linux/rwsem.h>
26#include <linux/pagemap.h>
27#include <linux/rmap.h>
28#include <linux/spinlock.h>
59e1a2f4 29#include <linux/xxhash.h>
31dbd01f
IE
30#include <linux/delay.h>
31#include <linux/kthread.h>
32#include <linux/wait.h>
33#include <linux/slab.h>
34#include <linux/rbtree.h>
62b61f61 35#include <linux/memory.h>
31dbd01f 36#include <linux/mmu_notifier.h>
2c6854fd 37#include <linux/swap.h>
f8af4da3 38#include <linux/ksm.h>
4ca3a69b 39#include <linux/hashtable.h>
878aee7d 40#include <linux/freezer.h>
72788c38 41#include <linux/oom.h>
90bd6fd3 42#include <linux/numa.h>
d7c0e68d 43#include <linux/pagewalk.h>
f8af4da3 44
31dbd01f 45#include <asm/tlbflush.h>
73848b46 46#include "internal.h"
58730ab6 47#include "mm_slot.h"
31dbd01f 48
739100c8
SR
49#define CREATE_TRACE_POINTS
50#include <trace/events/ksm.h>
51
e850dcf5
HD
52#ifdef CONFIG_NUMA
53#define NUMA(x) (x)
54#define DO_NUMA(x) do { (x); } while (0)
55#else
56#define NUMA(x) (0)
57#define DO_NUMA(x) do { } while (0)
58#endif
59
5e924ff5
SR
60typedef u8 rmap_age_t;
61
5a2ca3ef
MR
62/**
63 * DOC: Overview
64 *
31dbd01f
IE
65 * A few notes about the KSM scanning process,
66 * to make it easier to understand the data structures below:
67 *
68 * In order to reduce excessive scanning, KSM sorts the memory pages by their
69 * contents into a data structure that holds pointers to the pages' locations.
70 *
71 * Since the contents of the pages may change at any moment, KSM cannot just
72 * insert the pages into a normal sorted tree and expect it to find anything.
73 * Therefore KSM uses two data structures - the stable and the unstable tree.
74 *
75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76 * by their contents. Because each such page is write-protected, searching on
77 * this tree is fully assured to be working (except when pages are unmapped),
78 * and therefore this tree is called the stable tree.
79 *
5a2ca3ef
MR
80 * The stable tree node includes information required for reverse
81 * mapping from a KSM page to virtual addresses that map this page.
82 *
83 * In order to avoid large latencies of the rmap walks on KSM pages,
84 * KSM maintains two types of nodes in the stable tree:
85 *
86 * * the regular nodes that keep the reverse mapping structures in a
87 * linked list
88 * * the "chains" that link nodes ("dups") that represent the same
89 * write protected memory content, but each "dup" corresponds to a
90 * different KSM page copy of that content
91 *
92 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 93 * using the same struct ksm_stable_node structure.
5a2ca3ef 94 *
31dbd01f
IE
95 * In addition to the stable tree, KSM uses a second data structure called the
96 * unstable tree: this tree holds pointers to pages which have been found to
97 * be "unchanged for a period of time". The unstable tree sorts these pages
98 * by their contents, but since they are not write-protected, KSM cannot rely
99 * upon the unstable tree to work correctly - the unstable tree is liable to
100 * be corrupted as its contents are modified, and so it is called unstable.
101 *
102 * KSM solves this problem by several techniques:
103 *
104 * 1) The unstable tree is flushed every time KSM completes scanning all
105 * memory areas, and then the tree is rebuilt again from the beginning.
106 * 2) KSM will only insert into the unstable tree, pages whose hash value
107 * has not changed since the previous scan of all memory areas.
108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109 * colors of the nodes and not on their contents, assuring that even when
110 * the tree gets "corrupted" it won't get out of balance, so scanning time
111 * remains the same (also, searching and inserting nodes in an rbtree uses
112 * the same algorithm, so we have no overhead when we flush and rebuild).
113 * 4) KSM never flushes the stable tree, which means that even if it were to
114 * take 10 attempts to find a page in the unstable tree, once it is found,
115 * it is secured in the stable tree. (When we scan a new page, we first
116 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
117 *
118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
120 */
121
122/**
21fbd591 123 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 124 * @slot: hash lookup from mm to mm_slot
6514d511 125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 126 */
21fbd591 127struct ksm_mm_slot {
58730ab6 128 struct mm_slot slot;
21fbd591 129 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
130};
131
132/**
133 * struct ksm_scan - cursor for scanning
134 * @mm_slot: the current mm_slot we are scanning
135 * @address: the next address inside that to be scanned
6514d511 136 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
137 * @seqnr: count of completed full scans (needed when removing unstable node)
138 *
139 * There is only the one ksm_scan instance of this cursor structure.
140 */
141struct ksm_scan {
21fbd591 142 struct ksm_mm_slot *mm_slot;
31dbd01f 143 unsigned long address;
21fbd591 144 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
145 unsigned long seqnr;
146};
147
7b6ba2c7 148/**
21fbd591 149 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 150 * @node: rb node of this ksm page in the stable tree
4146d2d6 151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 153 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 154 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
156 * @chain_prune_time: time of the last full garbage collection
157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 159 */
21fbd591 160struct ksm_stable_node {
4146d2d6
HD
161 union {
162 struct rb_node node; /* when node of stable tree */
163 struct { /* when listed for migration */
164 struct list_head *head;
2c653d0e
AA
165 struct {
166 struct hlist_node hlist_dup;
167 struct list_head list;
168 };
4146d2d6
HD
169 };
170 };
7b6ba2c7 171 struct hlist_head hlist;
2c653d0e
AA
172 union {
173 unsigned long kpfn;
174 unsigned long chain_prune_time;
175 };
176 /*
177 * STABLE_NODE_CHAIN can be any negative number in
178 * rmap_hlist_len negative range, but better not -1 to be able
179 * to reliably detect underflows.
180 */
181#define STABLE_NODE_CHAIN -1024
182 int rmap_hlist_len;
4146d2d6
HD
183#ifdef CONFIG_NUMA
184 int nid;
185#endif
7b6ba2c7
HD
186};
187
31dbd01f 188/**
21fbd591 189 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 192 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
193 * @mm: the memory structure this rmap_item is pointing into
194 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
196 * @node: rb node of this rmap_item in the unstable tree
197 * @head: pointer to stable_node heading this list in the stable tree
198 * @hlist: link into hlist of rmap_items hanging off that stable_node
5e924ff5
SR
199 * @age: number of scan iterations since creation
200 * @remaining_skips: how many scans to skip
31dbd01f 201 */
21fbd591
QZ
202struct ksm_rmap_item {
203 struct ksm_rmap_item *rmap_list;
bc56620b
HD
204 union {
205 struct anon_vma *anon_vma; /* when stable */
206#ifdef CONFIG_NUMA
207 int nid; /* when node of unstable tree */
208#endif
209 };
31dbd01f
IE
210 struct mm_struct *mm;
211 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 212 unsigned int oldchecksum; /* when unstable */
5e924ff5
SR
213 rmap_age_t age;
214 rmap_age_t remaining_skips;
31dbd01f 215 union {
7b6ba2c7
HD
216 struct rb_node node; /* when node of unstable tree */
217 struct { /* when listed from stable tree */
21fbd591 218 struct ksm_stable_node *head;
7b6ba2c7
HD
219 struct hlist_node hlist;
220 };
31dbd01f
IE
221 };
222};
223
224#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
225#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
226#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
227
228/* The stable and unstable tree heads */
ef53d16c
HD
229static struct rb_root one_stable_tree[1] = { RB_ROOT };
230static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231static struct rb_root *root_stable_tree = one_stable_tree;
232static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 233
4146d2d6
HD
234/* Recently migrated nodes of stable tree, pending proper placement */
235static LIST_HEAD(migrate_nodes);
2c653d0e 236#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 237
4ca3a69b
SL
238#define MM_SLOTS_HASH_BITS 10
239static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 240
21fbd591 241static struct ksm_mm_slot ksm_mm_head = {
58730ab6 242 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
243};
244static struct ksm_scan ksm_scan = {
245 .mm_slot = &ksm_mm_head,
246};
247
248static struct kmem_cache *rmap_item_cache;
7b6ba2c7 249static struct kmem_cache *stable_node_cache;
31dbd01f
IE
250static struct kmem_cache *mm_slot_cache;
251
4e5fa4f5
SR
252/* Default number of pages to scan per batch */
253#define DEFAULT_PAGES_TO_SCAN 100
254
b348b5fe
SR
255/* The number of pages scanned */
256static unsigned long ksm_pages_scanned;
257
31dbd01f 258/* The number of nodes in the stable tree */
b4028260 259static unsigned long ksm_pages_shared;
31dbd01f 260
e178dfde 261/* The number of page slots additionally sharing those nodes */
b4028260 262static unsigned long ksm_pages_sharing;
31dbd01f 263
473b0ce4
HD
264/* The number of nodes in the unstable tree */
265static unsigned long ksm_pages_unshared;
266
267/* The number of rmap_items in use: to calculate pages_volatile */
268static unsigned long ksm_rmap_items;
269
2c653d0e
AA
270/* The number of stable_node chains */
271static unsigned long ksm_stable_node_chains;
272
273/* The number of stable_node dups linked to the stable_node chains */
274static unsigned long ksm_stable_node_dups;
275
276/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 277static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
278
279/* Maximum number of page slots sharing a stable node */
280static int ksm_max_page_sharing = 256;
281
31dbd01f 282/* Number of pages ksmd should scan in one batch */
4e5fa4f5 283static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
31dbd01f
IE
284
285/* Milliseconds ksmd should sleep between batches */
2ffd8679 286static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 287
e86c59b1
CI
288/* Checksum of an empty (zeroed) page */
289static unsigned int zero_checksum __read_mostly;
290
291/* Whether to merge empty (zeroed) pages with actual zero pages */
292static bool ksm_use_zero_pages __read_mostly;
293
5e924ff5
SR
294/* Skip pages that couldn't be de-duplicated previously */
295/* Default to true at least temporarily, for testing */
296static bool ksm_smart_scan = true;
297
e2942062 298/* The number of zero pages which is placed by KSM */
299unsigned long ksm_zero_pages;
300
e5a68991
SR
301/* The number of pages that have been skipped due to "smart scanning" */
302static unsigned long ksm_pages_skipped;
303
4e5fa4f5
SR
304/* Don't scan more than max pages per batch. */
305static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307/* Min CPU for scanning pages per scan */
308#define KSM_ADVISOR_MIN_CPU 10
309
310/* Max CPU for scanning pages per scan */
311static unsigned int ksm_advisor_max_cpu = 70;
312
313/* Target scan time in seconds to analyze all KSM candidate pages. */
314static unsigned long ksm_advisor_target_scan_time = 200;
315
316/* Exponentially weighted moving average. */
317#define EWMA_WEIGHT 30
318
319/**
320 * struct advisor_ctx - metadata for KSM advisor
321 * @start_scan: start time of the current scan
322 * @scan_time: scan time of previous scan
323 * @change: change in percent to pages_to_scan parameter
324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325 */
326struct advisor_ctx {
327 ktime_t start_scan;
328 unsigned long scan_time;
329 unsigned long change;
330 unsigned long long cpu_time;
331};
332static struct advisor_ctx advisor_ctx;
333
334/* Define different advisor's */
335enum ksm_advisor_type {
336 KSM_ADVISOR_NONE,
337 KSM_ADVISOR_SCAN_TIME,
338};
339static enum ksm_advisor_type ksm_advisor;
340
66790e9a
SR
341#ifdef CONFIG_SYSFS
342/*
343 * Only called through the sysfs control interface:
344 */
345
346/* At least scan this many pages per batch. */
347static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349static void set_advisor_defaults(void)
350{
351 if (ksm_advisor == KSM_ADVISOR_NONE) {
352 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 advisor_ctx = (const struct advisor_ctx){ 0 };
355 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356 }
357}
358#endif /* CONFIG_SYSFS */
359
4e5fa4f5
SR
360static inline void advisor_start_scan(void)
361{
362 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 advisor_ctx.start_scan = ktime_get();
364}
365
366/*
367 * Use previous scan time if available, otherwise use current scan time as an
368 * approximation for the previous scan time.
369 */
370static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 unsigned long scan_time)
372{
373 return ctx->scan_time ? ctx->scan_time : scan_time;
374}
375
376/* Calculate exponential weighted moving average */
377static unsigned long ewma(unsigned long prev, unsigned long curr)
378{
379 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380}
381
382/*
383 * The scan time advisor is based on the current scan rate and the target
384 * scan rate.
385 *
386 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387 *
388 * To avoid perturbations it calculates a change factor of previous changes.
389 * A new change factor is calculated for each iteration and it uses an
390 * exponentially weighted moving average. The new pages_to_scan value is
391 * multiplied with that change factor:
392 *
393 * new_pages_to_scan *= change facor
394 *
395 * The new_pages_to_scan value is limited by the cpu min and max values. It
396 * calculates the cpu percent for the last scan and calculates the new
397 * estimated cpu percent cost for the next scan. That value is capped by the
398 * cpu min and max setting.
399 *
400 * In addition the new pages_to_scan value is capped by the max and min
401 * limits.
402 */
403static void scan_time_advisor(void)
404{
405 unsigned int cpu_percent;
406 unsigned long cpu_time;
407 unsigned long cpu_time_diff;
408 unsigned long cpu_time_diff_ms;
409 unsigned long pages;
410 unsigned long per_page_cost;
411 unsigned long factor;
412 unsigned long change;
413 unsigned long last_scan_time;
414 unsigned long scan_time;
415
416 /* Convert scan time to seconds */
417 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418 MSEC_PER_SEC);
419 scan_time = scan_time ? scan_time : 1;
420
421 /* Calculate CPU consumption of ksmd background thread */
422 cpu_time = task_sched_runtime(current);
423 cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 cpu_percent = cpu_percent ? cpu_percent : 1;
428 last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430 /* Calculate scan time as percentage of target scan time */
431 factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 factor = factor ? factor : 1;
433
434 /*
435 * Calculate scan time as percentage of last scan time and use
436 * exponentially weighted average to smooth it
437 */
438 change = scan_time * 100 / last_scan_time;
439 change = change ? change : 1;
440 change = ewma(advisor_ctx.change, change);
441
442 /* Calculate new scan rate based on target scan rate. */
443 pages = ksm_thread_pages_to_scan * 100 / factor;
444 /* Update pages_to_scan by weighted change percentage. */
445 pages = pages * change / 100;
446
447 /* Cap new pages_to_scan value */
448 per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 per_page_cost = per_page_cost ? per_page_cost : 1;
450
451 pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455 /* Update advisor context */
456 advisor_ctx.change = change;
457 advisor_ctx.scan_time = scan_time;
458 advisor_ctx.cpu_time = cpu_time;
459
460 ksm_thread_pages_to_scan = pages;
5088b497 461 trace_ksm_advisor(scan_time, pages, cpu_percent);
4e5fa4f5
SR
462}
463
464static void advisor_stop_scan(void)
465{
466 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467 scan_time_advisor();
468}
469
e850dcf5 470#ifdef CONFIG_NUMA
90bd6fd3
PH
471/* Zeroed when merging across nodes is not allowed */
472static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 473static int ksm_nr_node_ids = 1;
e850dcf5
HD
474#else
475#define ksm_merge_across_nodes 1U
ef53d16c 476#define ksm_nr_node_ids 1
e850dcf5 477#endif
90bd6fd3 478
31dbd01f
IE
479#define KSM_RUN_STOP 0
480#define KSM_RUN_MERGE 1
481#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
482#define KSM_RUN_OFFLINE 4
483static unsigned long ksm_run = KSM_RUN_STOP;
484static void wait_while_offlining(void);
31dbd01f
IE
485
486static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 487static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
488static DEFINE_MUTEX(ksm_thread_mutex);
489static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
21fbd591 491#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
31dbd01f
IE
492 sizeof(struct __struct), __alignof__(struct __struct),\
493 (__flags), NULL)
494
495static int __init ksm_slab_init(void)
496{
21fbd591 497 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
498 if (!rmap_item_cache)
499 goto out;
500
21fbd591 501 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
502 if (!stable_node_cache)
503 goto out_free1;
504
21fbd591 505 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 506 if (!mm_slot_cache)
7b6ba2c7 507 goto out_free2;
31dbd01f
IE
508
509 return 0;
510
7b6ba2c7
HD
511out_free2:
512 kmem_cache_destroy(stable_node_cache);
513out_free1:
31dbd01f
IE
514 kmem_cache_destroy(rmap_item_cache);
515out:
516 return -ENOMEM;
517}
518
519static void __init ksm_slab_free(void)
520{
521 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 522 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
523 kmem_cache_destroy(rmap_item_cache);
524 mm_slot_cache = NULL;
525}
526
21fbd591 527static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
528{
529 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
530}
531
21fbd591 532static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
533{
534 return dup->head == STABLE_NODE_DUP_HEAD;
535}
536
21fbd591
QZ
537static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
538 struct ksm_stable_node *chain)
2c653d0e
AA
539{
540 VM_BUG_ON(is_stable_node_dup(dup));
541 dup->head = STABLE_NODE_DUP_HEAD;
542 VM_BUG_ON(!is_stable_node_chain(chain));
543 hlist_add_head(&dup->hlist_dup, &chain->hlist);
544 ksm_stable_node_dups++;
545}
546
21fbd591 547static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 548{
b4fecc67 549 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
550 hlist_del(&dup->hlist_dup);
551 ksm_stable_node_dups--;
552}
553
21fbd591 554static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
555{
556 VM_BUG_ON(is_stable_node_chain(dup));
557 if (is_stable_node_dup(dup))
558 __stable_node_dup_del(dup);
559 else
560 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
561#ifdef CONFIG_DEBUG_VM
562 dup->head = NULL;
563#endif
564}
565
21fbd591 566static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 567{
21fbd591 568 struct ksm_rmap_item *rmap_item;
473b0ce4 569
5b398e41 570 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
571 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
572 if (rmap_item)
573 ksm_rmap_items++;
574 return rmap_item;
31dbd01f
IE
575}
576
21fbd591 577static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 578{
473b0ce4 579 ksm_rmap_items--;
cb4df4ca 580 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
581 rmap_item->mm = NULL; /* debug safety */
582 kmem_cache_free(rmap_item_cache, rmap_item);
583}
584
21fbd591 585static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 586{
6213055f 587 /*
588 * The allocation can take too long with GFP_KERNEL when memory is under
589 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
590 * grants access to memory reserves, helping to avoid this problem.
591 */
592 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
593}
594
21fbd591 595static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 596{
2c653d0e
AA
597 VM_BUG_ON(stable_node->rmap_hlist_len &&
598 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
599 kmem_cache_free(stable_node_cache, stable_node);
600}
601
a913e182
HD
602/*
603 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
604 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 605 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
606 * a special flag: they can just back out as soon as mm_users goes to zero.
607 * ksm_test_exit() is used throughout to make this test for exit: in some
608 * places for correctness, in some places just to avoid unnecessary work.
609 */
610static inline bool ksm_test_exit(struct mm_struct *mm)
611{
612 return atomic_read(&mm->mm_users) == 0;
613}
614
d7c0e68d
DH
615static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
616 struct mm_walk *walk)
617{
618 struct page *page = NULL;
619 spinlock_t *ptl;
620 pte_t *pte;
c33c7948 621 pte_t ptent;
d7c0e68d
DH
622 int ret;
623
d7c0e68d 624 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
04dee9e8
HD
625 if (!pte)
626 return 0;
c33c7948
RR
627 ptent = ptep_get(pte);
628 if (pte_present(ptent)) {
629 page = vm_normal_page(walk->vma, addr, ptent);
630 } else if (!pte_none(ptent)) {
631 swp_entry_t entry = pte_to_swp_entry(ptent);
d7c0e68d
DH
632
633 /*
634 * As KSM pages remain KSM pages until freed, no need to wait
635 * here for migration to end.
636 */
637 if (is_migration_entry(entry))
638 page = pfn_swap_entry_to_page(entry);
639 }
79271476 640 /* return 1 if the page is an normal ksm page or KSM-placed zero page */
afccb080 641 ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
d7c0e68d
DH
642 pte_unmap_unlock(pte, ptl);
643 return ret;
644}
645
646static const struct mm_walk_ops break_ksm_ops = {
647 .pmd_entry = break_ksm_pmd_entry,
49b06385
SB
648 .walk_lock = PGWALK_RDLOCK,
649};
650
651static const struct mm_walk_ops break_ksm_lock_vma_ops = {
652 .pmd_entry = break_ksm_pmd_entry,
653 .walk_lock = PGWALK_WRLOCK,
d7c0e68d
DH
654};
655
31dbd01f 656/*
6cce3314
DH
657 * We use break_ksm to break COW on a ksm page by triggering unsharing,
658 * such that the ksm page will get replaced by an exclusive anonymous page.
31dbd01f 659 *
6cce3314 660 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
31dbd01f
IE
661 * in case the application has unmapped and remapped mm,addr meanwhile.
662 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 663 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126 664 *
6cce3314 665 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
1b2ee126
DH
666 * of the process that owns 'vma'. We also do not want to enforce
667 * protection keys here anyway.
31dbd01f 668 */
49b06385 669static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
31dbd01f 670{
50a7ca3c 671 vm_fault_t ret = 0;
49b06385
SB
672 const struct mm_walk_ops *ops = lock_vma ?
673 &break_ksm_lock_vma_ops : &break_ksm_ops;
31dbd01f
IE
674
675 do {
d7c0e68d 676 int ksm_page;
58f595c6 677
31dbd01f 678 cond_resched();
49b06385 679 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
d7c0e68d
DH
680 if (WARN_ON_ONCE(ksm_page < 0))
681 return ksm_page;
58f595c6
DH
682 if (!ksm_page)
683 return 0;
684 ret = handle_mm_fault(vma, addr,
6cce3314 685 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
58f595c6
DH
686 NULL);
687 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 688 /*
58f595c6
DH
689 * We must loop until we no longer find a KSM page because
690 * handle_mm_fault() may back out if there's any difficulty e.g. if
691 * pte accessed bit gets updated concurrently.
d952b791
HD
692 *
693 * VM_FAULT_SIGBUS could occur if we race with truncation of the
694 * backing file, which also invalidates anonymous pages: that's
695 * okay, that truncation will have unmapped the PageKsm for us.
696 *
697 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
698 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
699 * current task has TIF_MEMDIE set, and will be OOM killed on return
700 * to user; and ksmd, having no mm, would never be chosen for that.
701 *
702 * But if the mm is in a limited mem_cgroup, then the fault may fail
703 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
704 * even ksmd can fail in this way - though it's usually breaking ksm
705 * just to undo a merge it made a moment before, so unlikely to oom.
706 *
707 * That's a pity: we might therefore have more kernel pages allocated
708 * than we're counting as nodes in the stable tree; but ksm_do_scan
709 * will retry to break_cow on each pass, so should recover the page
710 * in due course. The important thing is to not let VM_MERGEABLE
711 * be cleared while any such pages might remain in the area.
712 */
713 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
714}
715
d7597f59
SR
716static bool vma_ksm_compatible(struct vm_area_struct *vma)
717{
718 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
719 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
720 VM_MIXEDMAP))
721 return false; /* just ignore the advice */
722
723 if (vma_is_dax(vma))
724 return false;
725
726#ifdef VM_SAO
727 if (vma->vm_flags & VM_SAO)
728 return false;
729#endif
730#ifdef VM_SPARC_ADI
731 if (vma->vm_flags & VM_SPARC_ADI)
732 return false;
733#endif
734
735 return true;
736}
737
ef694222
BL
738static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
739 unsigned long addr)
740{
741 struct vm_area_struct *vma;
742 if (ksm_test_exit(mm))
743 return NULL;
ff69fb81
LH
744 vma = vma_lookup(mm, addr);
745 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
746 return NULL;
747 return vma;
748}
749
21fbd591 750static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 751{
8dd3557a
HD
752 struct mm_struct *mm = rmap_item->mm;
753 unsigned long addr = rmap_item->address;
31dbd01f
IE
754 struct vm_area_struct *vma;
755
4035c07a
HD
756 /*
757 * It is not an accident that whenever we want to break COW
758 * to undo, we also need to drop a reference to the anon_vma.
759 */
9e60109f 760 put_anon_vma(rmap_item->anon_vma);
4035c07a 761
d8ed45c5 762 mmap_read_lock(mm);
ef694222
BL
763 vma = find_mergeable_vma(mm, addr);
764 if (vma)
49b06385 765 break_ksm(vma, addr, false);
d8ed45c5 766 mmap_read_unlock(mm);
31dbd01f
IE
767}
768
21fbd591 769static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
770{
771 struct mm_struct *mm = rmap_item->mm;
772 unsigned long addr = rmap_item->address;
773 struct vm_area_struct *vma;
774 struct page *page;
775
d8ed45c5 776 mmap_read_lock(mm);
ef694222
BL
777 vma = find_mergeable_vma(mm, addr);
778 if (!vma)
31dbd01f
IE
779 goto out;
780
781 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 782 if (IS_ERR_OR_NULL(page))
31dbd01f 783 goto out;
f7091ed6
HW
784 if (is_zone_device_page(page))
785 goto out_putpage;
f765f540 786 if (PageAnon(page)) {
31dbd01f
IE
787 flush_anon_page(vma, page, addr);
788 flush_dcache_page(page);
789 } else {
f7091ed6 790out_putpage:
31dbd01f 791 put_page(page);
c8f95ed1
AA
792out:
793 page = NULL;
31dbd01f 794 }
d8ed45c5 795 mmap_read_unlock(mm);
31dbd01f
IE
796 return page;
797}
798
90bd6fd3
PH
799/*
800 * This helper is used for getting right index into array of tree roots.
801 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
802 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
803 * every node has its own stable and unstable tree.
804 */
805static inline int get_kpfn_nid(unsigned long kpfn)
806{
d8fc16a8 807 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
808}
809
21fbd591 810static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
811 struct rb_root *root)
812{
21fbd591 813 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
814 VM_BUG_ON(is_stable_node_chain(dup));
815 if (likely(chain)) {
816 INIT_HLIST_HEAD(&chain->hlist);
817 chain->chain_prune_time = jiffies;
818 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
819#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 820 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
821#endif
822 ksm_stable_node_chains++;
823
824 /*
825 * Put the stable node chain in the first dimension of
826 * the stable tree and at the same time remove the old
827 * stable node.
828 */
829 rb_replace_node(&dup->node, &chain->node, root);
830
831 /*
832 * Move the old stable node to the second dimension
833 * queued in the hlist_dup. The invariant is that all
834 * dup stable_nodes in the chain->hlist point to pages
457aef94 835 * that are write protected and have the exact same
2c653d0e
AA
836 * content.
837 */
838 stable_node_chain_add_dup(dup, chain);
839 }
840 return chain;
841}
842
21fbd591 843static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
844 struct rb_root *root)
845{
846 rb_erase(&chain->node, root);
847 free_stable_node(chain);
848 ksm_stable_node_chains--;
849}
850
21fbd591 851static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 852{
21fbd591 853 struct ksm_rmap_item *rmap_item;
4035c07a 854
2c653d0e
AA
855 /* check it's not STABLE_NODE_CHAIN or negative */
856 BUG_ON(stable_node->rmap_hlist_len < 0);
857
b67bfe0d 858 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
739100c8 859 if (rmap_item->hlist.next) {
4035c07a 860 ksm_pages_sharing--;
739100c8
SR
861 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
862 } else {
4035c07a 863 ksm_pages_shared--;
739100c8 864 }
76093853 865
866 rmap_item->mm->ksm_merging_pages--;
867
2c653d0e
AA
868 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
869 stable_node->rmap_hlist_len--;
9e60109f 870 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
871 rmap_item->address &= PAGE_MASK;
872 cond_resched();
873 }
874
2c653d0e
AA
875 /*
876 * We need the second aligned pointer of the migrate_nodes
877 * list_head to stay clear from the rb_parent_color union
878 * (aligned and different than any node) and also different
879 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 880 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 881 */
2c653d0e
AA
882 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
883 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 884
739100c8 885 trace_ksm_remove_ksm_page(stable_node->kpfn);
4146d2d6
HD
886 if (stable_node->head == &migrate_nodes)
887 list_del(&stable_node->list);
888 else
2c653d0e 889 stable_node_dup_del(stable_node);
4035c07a
HD
890 free_stable_node(stable_node);
891}
892
2cee57d1
YS
893enum get_ksm_page_flags {
894 GET_KSM_PAGE_NOLOCK,
895 GET_KSM_PAGE_LOCK,
896 GET_KSM_PAGE_TRYLOCK
897};
898
4035c07a 899/*
b91f9472 900 * ksm_get_folio: checks if the page indicated by the stable node
4035c07a
HD
901 * is still its ksm page, despite having held no reference to it.
902 * In which case we can trust the content of the page, and it
903 * returns the gotten page; but if the page has now been zapped,
904 * remove the stale node from the stable tree and return NULL.
c8d6553b 905 * But beware, the stable node's page might be being migrated.
4035c07a
HD
906 *
907 * You would expect the stable_node to hold a reference to the ksm page.
908 * But if it increments the page's count, swapping out has to wait for
909 * ksmd to come around again before it can free the page, which may take
910 * seconds or even minutes: much too unresponsive. So instead we use a
911 * "keyhole reference": access to the ksm page from the stable node peeps
912 * out through its keyhole to see if that page still holds the right key,
913 * pointing back to this stable node. This relies on freeing a PageAnon
914 * page to reset its page->mapping to NULL, and relies on no other use of
915 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
916 * is on its way to being freed; but it is an anomaly to bear in mind.
917 */
b91f9472 918static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
2cee57d1 919 enum get_ksm_page_flags flags)
4035c07a 920{
b91f9472 921 struct folio *folio;
4035c07a 922 void *expected_mapping;
c8d6553b 923 unsigned long kpfn;
4035c07a 924
bda807d4
MK
925 expected_mapping = (void *)((unsigned long)stable_node |
926 PAGE_MAPPING_KSM);
c8d6553b 927again:
08df4774 928 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
b91f9472
AS
929 folio = pfn_folio(kpfn);
930 if (READ_ONCE(folio->mapping) != expected_mapping)
4035c07a 931 goto stale;
c8d6553b
HD
932
933 /*
934 * We cannot do anything with the page while its refcount is 0.
935 * Usually 0 means free, or tail of a higher-order page: in which
936 * case this node is no longer referenced, and should be freed;
1c4c3b99 937 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 938 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 939 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 940 * in folio_migrate_mapping(), it might still be our page,
52d1e606 941 * in which case it's essential to keep the node.
c8d6553b 942 */
b91f9472 943 while (!folio_try_get(folio)) {
c8d6553b
HD
944 /*
945 * Another check for page->mapping != expected_mapping would
946 * work here too. We have chosen the !PageSwapCache test to
947 * optimize the common case, when the page is or is about to
948 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 949 * in the ref_freeze section of __remove_mapping(); but Anon
b91f9472 950 * folio->mapping reset to NULL later, in free_pages_prepare().
c8d6553b 951 */
b91f9472 952 if (!folio_test_swapcache(folio))
c8d6553b
HD
953 goto stale;
954 cpu_relax();
955 }
956
b91f9472
AS
957 if (READ_ONCE(folio->mapping) != expected_mapping) {
958 folio_put(folio);
4035c07a
HD
959 goto stale;
960 }
c8d6553b 961
2cee57d1 962 if (flags == GET_KSM_PAGE_TRYLOCK) {
b91f9472
AS
963 if (!folio_trylock(folio)) {
964 folio_put(folio);
2cee57d1
YS
965 return ERR_PTR(-EBUSY);
966 }
967 } else if (flags == GET_KSM_PAGE_LOCK)
b91f9472 968 folio_lock(folio);
2cee57d1
YS
969
970 if (flags != GET_KSM_PAGE_NOLOCK) {
b91f9472
AS
971 if (READ_ONCE(folio->mapping) != expected_mapping) {
972 folio_unlock(folio);
973 folio_put(folio);
8aafa6a4
HD
974 goto stale;
975 }
976 }
b91f9472 977 return folio;
c8d6553b 978
4035c07a 979stale:
c8d6553b
HD
980 /*
981 * We come here from above when page->mapping or !PageSwapCache
982 * suggests that the node is stale; but it might be under migration.
19138349 983 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
984 * before checking whether node->kpfn has been changed.
985 */
986 smp_rmb();
4db0c3c2 987 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 988 goto again;
4035c07a
HD
989 remove_node_from_stable_tree(stable_node);
990 return NULL;
991}
992
b91f9472
AS
993static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
994 enum get_ksm_page_flags flags)
995{
996 struct folio *folio = ksm_get_folio(stable_node, flags);
997
998 return &folio->page;
999}
1000
31dbd01f
IE
1001/*
1002 * Removing rmap_item from stable or unstable tree.
1003 * This function will clean the information from the stable/unstable tree.
1004 */
21fbd591 1005static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 1006{
7b6ba2c7 1007 if (rmap_item->address & STABLE_FLAG) {
21fbd591 1008 struct ksm_stable_node *stable_node;
f39b6e2d 1009 struct folio *folio;
31dbd01f 1010
7b6ba2c7 1011 stable_node = rmap_item->head;
f39b6e2d
AS
1012 folio = ksm_get_folio(stable_node, GET_KSM_PAGE_LOCK);
1013 if (!folio)
4035c07a 1014 goto out;
5ad64688 1015
7b6ba2c7 1016 hlist_del(&rmap_item->hlist);
f39b6e2d
AS
1017 folio_unlock(folio);
1018 folio_put(folio);
08beca44 1019
98666f8a 1020 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
1021 ksm_pages_sharing--;
1022 else
7b6ba2c7 1023 ksm_pages_shared--;
76093853 1024
1025 rmap_item->mm->ksm_merging_pages--;
1026
2c653d0e
AA
1027 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1028 stable_node->rmap_hlist_len--;
31dbd01f 1029
9e60109f 1030 put_anon_vma(rmap_item->anon_vma);
c89a384e 1031 rmap_item->head = NULL;
93d17715 1032 rmap_item->address &= PAGE_MASK;
31dbd01f 1033
7b6ba2c7 1034 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
1035 unsigned char age;
1036 /*
9ba69294 1037 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 1038 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
1039 * But be careful when an mm is exiting: do the rb_erase
1040 * if this rmap_item was inserted by this scan, rather
1041 * than left over from before.
31dbd01f
IE
1042 */
1043 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 1044 BUG_ON(age > 1);
31dbd01f 1045 if (!age)
90bd6fd3 1046 rb_erase(&rmap_item->node,
ef53d16c 1047 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 1048 ksm_pages_unshared--;
93d17715 1049 rmap_item->address &= PAGE_MASK;
31dbd01f 1050 }
4035c07a 1051out:
31dbd01f
IE
1052 cond_resched(); /* we're called from many long loops */
1053}
1054
21fbd591 1055static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 1056{
6514d511 1057 while (*rmap_list) {
21fbd591 1058 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 1059 *rmap_list = rmap_item->rmap_list;
31dbd01f 1060 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1061 free_rmap_item(rmap_item);
1062 }
1063}
1064
1065/*
e850dcf5 1066 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
1067 * than check every pte of a given vma, the locking doesn't quite work for
1068 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 1069 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
1070 * rmap_items from parent to child at fork time (so as not to waste time
1071 * if exit comes before the next scan reaches it).
81464e30
HD
1072 *
1073 * Similarly, although we'd like to remove rmap_items (so updating counts
1074 * and freeing memory) when unmerging an area, it's easier to leave that
1075 * to the next pass of ksmd - consider, for example, how ksmd might be
1076 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 1077 */
d952b791 1078static int unmerge_ksm_pages(struct vm_area_struct *vma,
49b06385 1079 unsigned long start, unsigned long end, bool lock_vma)
31dbd01f
IE
1080{
1081 unsigned long addr;
d952b791 1082 int err = 0;
31dbd01f 1083
d952b791 1084 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
1085 if (ksm_test_exit(vma->vm_mm))
1086 break;
d952b791
HD
1087 if (signal_pending(current))
1088 err = -ERESTARTSYS;
1089 else
49b06385 1090 err = break_ksm(vma, addr, lock_vma);
d952b791
HD
1091 }
1092 return err;
31dbd01f
IE
1093}
1094
21fbd591 1095static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
1096{
1097 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1098}
1099
21fbd591 1100static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 1101{
19138349 1102 return folio_stable_node(page_folio(page));
88484826
MR
1103}
1104
1105static inline void set_page_stable_node(struct page *page,
21fbd591 1106 struct ksm_stable_node *stable_node)
88484826 1107{
6c287605 1108 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
1109 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1110}
1111
b8b0ff24
AS
1112static inline void folio_set_stable_node(struct folio *folio,
1113 struct ksm_stable_node *stable_node)
1114{
1115 set_page_stable_node(&folio->page, stable_node);
1116}
1117
2ffd8679
HD
1118#ifdef CONFIG_SYSFS
1119/*
1120 * Only called through the sysfs control interface:
1121 */
21fbd591 1122static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe 1123{
9d5cc140 1124 struct folio *folio;
cbf86cfe
HD
1125 int err;
1126
9d5cc140
AS
1127 folio = ksm_get_folio(stable_node, GET_KSM_PAGE_LOCK);
1128 if (!folio) {
cbf86cfe 1129 /*
9d5cc140 1130 * ksm_get_folio did remove_node_from_stable_tree itself.
cbf86cfe
HD
1131 */
1132 return 0;
1133 }
1134
9a63236f
AR
1135 /*
1136 * Page could be still mapped if this races with __mmput() running in
1137 * between ksm_exit() and exit_mmap(). Just refuse to let
1138 * merge_across_nodes/max_page_sharing be switched.
1139 */
1140 err = -EBUSY;
9d5cc140 1141 if (!folio_mapped(folio)) {
cbf86cfe 1142 /*
9d5cc140
AS
1143 * The stable node did not yet appear stale to ksm_get_folio(),
1144 * since that allows for an unmapped ksm folio to be recognized
8fdb3dbf 1145 * right up until it is freed; but the node is safe to remove.
9d5cc140
AS
1146 * This folio might be in an LRU cache waiting to be freed,
1147 * or it might be in the swapcache (perhaps under writeback),
cbf86cfe
HD
1148 * or it might have been removed from swapcache a moment ago.
1149 */
9d5cc140 1150 folio_set_stable_node(folio, NULL);
cbf86cfe
HD
1151 remove_node_from_stable_tree(stable_node);
1152 err = 0;
1153 }
1154
9d5cc140
AS
1155 folio_unlock(folio);
1156 folio_put(folio);
cbf86cfe
HD
1157 return err;
1158}
1159
21fbd591 1160static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
1161 struct rb_root *root)
1162{
21fbd591 1163 struct ksm_stable_node *dup;
2c653d0e
AA
1164 struct hlist_node *hlist_safe;
1165
1166 if (!is_stable_node_chain(stable_node)) {
1167 VM_BUG_ON(is_stable_node_dup(stable_node));
1168 if (remove_stable_node(stable_node))
1169 return true;
1170 else
1171 return false;
1172 }
1173
1174 hlist_for_each_entry_safe(dup, hlist_safe,
1175 &stable_node->hlist, hlist_dup) {
1176 VM_BUG_ON(!is_stable_node_dup(dup));
1177 if (remove_stable_node(dup))
1178 return true;
1179 }
1180 BUG_ON(!hlist_empty(&stable_node->hlist));
1181 free_stable_node_chain(stable_node, root);
1182 return false;
1183}
1184
cbf86cfe
HD
1185static int remove_all_stable_nodes(void)
1186{
21fbd591 1187 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
1188 int nid;
1189 int err = 0;
1190
ef53d16c 1191 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
1192 while (root_stable_tree[nid].rb_node) {
1193 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 1194 struct ksm_stable_node, node);
2c653d0e
AA
1195 if (remove_stable_node_chain(stable_node,
1196 root_stable_tree + nid)) {
cbf86cfe
HD
1197 err = -EBUSY;
1198 break; /* proceed to next nid */
1199 }
1200 cond_resched();
1201 }
1202 }
03640418 1203 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
1204 if (remove_stable_node(stable_node))
1205 err = -EBUSY;
1206 cond_resched();
1207 }
cbf86cfe
HD
1208 return err;
1209}
1210
d952b791 1211static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 1212{
21fbd591 1213 struct ksm_mm_slot *mm_slot;
58730ab6 1214 struct mm_slot *slot;
31dbd01f
IE
1215 struct mm_struct *mm;
1216 struct vm_area_struct *vma;
d952b791
HD
1217 int err = 0;
1218
1219 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1220 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1221 struct mm_slot, mm_node);
1222 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 1223 spin_unlock(&ksm_mmlist_lock);
31dbd01f 1224
a5f18ba0
MWO
1225 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1226 mm_slot = ksm_scan.mm_slot) {
58730ab6 1227 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 1228
58730ab6 1229 mm = mm_slot->slot.mm;
d8ed45c5 1230 mmap_read_lock(mm);
6db504ce
LH
1231
1232 /*
1233 * Exit right away if mm is exiting to avoid lockdep issue in
1234 * the maple tree
1235 */
1236 if (ksm_test_exit(mm))
1237 goto mm_exiting;
1238
a5f18ba0 1239 for_each_vma(vmi, vma) {
31dbd01f
IE
1240 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1241 continue;
d952b791 1242 err = unmerge_ksm_pages(vma,
49b06385 1243 vma->vm_start, vma->vm_end, false);
9ba69294
HD
1244 if (err)
1245 goto error;
31dbd01f 1246 }
9ba69294 1247
6db504ce 1248mm_exiting:
420be4ed 1249 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1250 mmap_read_unlock(mm);
d952b791
HD
1251
1252 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1253 slot = list_entry(mm_slot->slot.mm_node.next,
1254 struct mm_slot, mm_node);
1255 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 1256 if (ksm_test_exit(mm)) {
58730ab6
QZ
1257 hash_del(&mm_slot->slot.hash);
1258 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
1259 spin_unlock(&ksm_mmlist_lock);
1260
58730ab6 1261 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 1262 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 1263 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294 1264 mmdrop(mm);
7496fea9 1265 } else
9ba69294 1266 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1267 }
1268
cbf86cfe
HD
1269 /* Clean up stable nodes, but don't worry if some are still busy */
1270 remove_all_stable_nodes();
d952b791 1271 ksm_scan.seqnr = 0;
9ba69294
HD
1272 return 0;
1273
1274error:
d8ed45c5 1275 mmap_read_unlock(mm);
31dbd01f 1276 spin_lock(&ksm_mmlist_lock);
d952b791 1277 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1278 spin_unlock(&ksm_mmlist_lock);
d952b791 1279 return err;
31dbd01f 1280}
2ffd8679 1281#endif /* CONFIG_SYSFS */
31dbd01f 1282
31dbd01f
IE
1283static u32 calc_checksum(struct page *page)
1284{
1285 u32 checksum;
b3351989 1286 void *addr = kmap_local_page(page);
59e1a2f4 1287 checksum = xxhash(addr, PAGE_SIZE, 0);
b3351989 1288 kunmap_local(addr);
31dbd01f
IE
1289 return checksum;
1290}
1291
31dbd01f
IE
1292static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1293 pte_t *orig_pte)
1294{
1295 struct mm_struct *mm = vma->vm_mm;
eed05e54 1296 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1297 int swapped;
1298 int err = -EFAULT;
ac46d4f3 1299 struct mmu_notifier_range range;
6c287605 1300 bool anon_exclusive;
c33c7948 1301 pte_t entry;
31dbd01f 1302
36eaff33
KS
1303 pvmw.address = page_address_in_vma(page, vma);
1304 if (pvmw.address == -EFAULT)
31dbd01f
IE
1305 goto out;
1306
29ad768c 1307 BUG_ON(PageTransCompound(page));
6bdb913f 1308
7d4a8be0 1309 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
ac46d4f3
JG
1310 pvmw.address + PAGE_SIZE);
1311 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1312
36eaff33 1313 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1314 goto out_mn;
36eaff33
KS
1315 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1316 goto out_unlock;
31dbd01f 1317
6c287605 1318 anon_exclusive = PageAnonExclusive(page);
c33c7948
RR
1319 entry = ptep_get(pvmw.pte);
1320 if (pte_write(entry) || pte_dirty(entry) ||
6c287605 1321 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f 1322 swapped = PageSwapCache(page);
36eaff33 1323 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1324 /*
25985edc 1325 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1326 * take any lock, therefore the check that we are going to make
f0953a1b 1327 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1328 * O_DIRECT can happen right after the check.
1329 * So we clear the pte and flush the tlb before the check
1330 * this assure us that no O_DIRECT can happen after the check
1331 * or in the middle of the check.
0f10851e
JG
1332 *
1333 * No need to notify as we are downgrading page table to read
1334 * only not changing it to point to a new page.
1335 *
ee65728e 1336 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1337 */
0f10851e 1338 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1339 /*
1340 * Check that no O_DIRECT or similar I/O is in progress on the
1341 * page
1342 */
31e855ea 1343 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1344 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1345 goto out_unlock;
1346 }
6c287605 1347
e3b4b137
DH
1348 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1349 if (anon_exclusive &&
1350 folio_try_share_anon_rmap_pte(page_folio(page), page)) {
6c287605
DH
1351 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1352 goto out_unlock;
1353 }
1354
4e31635c
HD
1355 if (pte_dirty(entry))
1356 set_page_dirty(page);
6a56ccbc
DH
1357 entry = pte_mkclean(entry);
1358
1359 if (pte_write(entry))
1360 entry = pte_wrprotect(entry);
595cd8f2 1361
36eaff33 1362 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1363 }
c33c7948 1364 *orig_pte = entry;
31dbd01f
IE
1365 err = 0;
1366
1367out_unlock:
36eaff33 1368 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1369out_mn:
ac46d4f3 1370 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1371out:
1372 return err;
1373}
1374
1375/**
1376 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1377 * @vma: vma that holds the pte pointing to page
1378 * @page: the page we are replacing by kpage
1379 * @kpage: the ksm page we replace page by
31dbd01f
IE
1380 * @orig_pte: the original value of the pte
1381 *
1382 * Returns 0 on success, -EFAULT on failure.
1383 */
8dd3557a
HD
1384static int replace_page(struct vm_area_struct *vma, struct page *page,
1385 struct page *kpage, pte_t orig_pte)
31dbd01f 1386{
97729534 1387 struct folio *kfolio = page_folio(kpage);
31dbd01f 1388 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1389 struct folio *folio;
31dbd01f 1390 pmd_t *pmd;
50722804 1391 pmd_t pmde;
31dbd01f 1392 pte_t *ptep;
e86c59b1 1393 pte_t newpte;
31dbd01f
IE
1394 spinlock_t *ptl;
1395 unsigned long addr;
31dbd01f 1396 int err = -EFAULT;
ac46d4f3 1397 struct mmu_notifier_range range;
31dbd01f 1398
8dd3557a 1399 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1400 if (addr == -EFAULT)
1401 goto out;
1402
6219049a
BL
1403 pmd = mm_find_pmd(mm, addr);
1404 if (!pmd)
31dbd01f 1405 goto out;
50722804
ZK
1406 /*
1407 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1408 * without holding anon_vma lock for write. So when looking for a
1409 * genuine pmde (in which to find pte), test present and !THP together.
1410 */
26e1a0c3 1411 pmde = pmdp_get_lockless(pmd);
50722804
ZK
1412 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1413 goto out;
31dbd01f 1414
7d4a8be0 1415 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
6f4f13e8 1416 addr + PAGE_SIZE);
ac46d4f3 1417 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1418
31dbd01f 1419 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
04dee9e8
HD
1420 if (!ptep)
1421 goto out_mn;
c33c7948 1422 if (!pte_same(ptep_get(ptep), orig_pte)) {
31dbd01f 1423 pte_unmap_unlock(ptep, ptl);
6bdb913f 1424 goto out_mn;
31dbd01f 1425 }
6c287605 1426 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
97729534
DH
1427 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1428 kfolio);
31dbd01f 1429
e86c59b1
CI
1430 /*
1431 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1432 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1433 */
1434 if (!is_zero_pfn(page_to_pfn(kpage))) {
97729534
DH
1435 folio_get(kfolio);
1436 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1437 newpte = mk_pte(kpage, vma->vm_page_prot);
1438 } else {
79271476 1439 /*
1440 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1441 * we can easily track all KSM-placed zero pages by checking if
1442 * the dirty bit in zero page's PTE is set.
1443 */
1444 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
e2942062 1445 ksm_zero_pages++;
6080d19f 1446 mm->ksm_zero_pages++;
a38c015f
CI
1447 /*
1448 * We're replacing an anonymous page with a zero page, which is
1449 * not anonymous. We need to do proper accounting otherwise we
1450 * will get wrong values in /proc, and a BUG message in dmesg
1451 * when tearing down the mm.
1452 */
1453 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1454 }
31dbd01f 1455
c33c7948 1456 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
0f10851e
JG
1457 /*
1458 * No need to notify as we are replacing a read only page with another
1459 * read only page with the same content.
1460 *
ee65728e 1461 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1462 */
1463 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1464 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1465
b4e6f66e 1466 folio = page_folio(page);
18e8612e 1467 folio_remove_rmap_pte(folio, page, vma);
b4e6f66e
MWO
1468 if (!folio_mapped(folio))
1469 folio_free_swap(folio);
1470 folio_put(folio);
31dbd01f
IE
1471
1472 pte_unmap_unlock(ptep, ptl);
1473 err = 0;
6bdb913f 1474out_mn:
ac46d4f3 1475 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1476out:
1477 return err;
1478}
1479
1480/*
1481 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1482 * @vma: the vma that holds the pte pointing to page
1483 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1484 * @kpage: the PageKsm page that we want to map instead of page,
1485 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1486 *
1487 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1488 */
1489static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1490 struct page *page, struct page *kpage)
31dbd01f
IE
1491{
1492 pte_t orig_pte = __pte(0);
1493 int err = -EFAULT;
1494
db114b83
HD
1495 if (page == kpage) /* ksm page forked */
1496 return 0;
1497
8dd3557a 1498 if (!PageAnon(page))
31dbd01f
IE
1499 goto out;
1500
31dbd01f
IE
1501 /*
1502 * We need the page lock to read a stable PageSwapCache in
1503 * write_protect_page(). We use trylock_page() instead of
1504 * lock_page() because we don't want to wait here - we
1505 * prefer to continue scanning and merging different pages,
1506 * then come back to this page when it is unlocked.
1507 */
8dd3557a 1508 if (!trylock_page(page))
31e855ea 1509 goto out;
f765f540
KS
1510
1511 if (PageTransCompound(page)) {
a7306c34 1512 if (split_huge_page(page))
f765f540
KS
1513 goto out_unlock;
1514 }
1515
31dbd01f
IE
1516 /*
1517 * If this anonymous page is mapped only here, its pte may need
1518 * to be write-protected. If it's mapped elsewhere, all of its
1519 * ptes are necessarily already write-protected. But in either
1520 * case, we need to lock and check page_count is not raised.
1521 */
80e14822
HD
1522 if (write_protect_page(vma, page, &orig_pte) == 0) {
1523 if (!kpage) {
1524 /*
1525 * While we hold page lock, upgrade page from
1526 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1527 * stable_tree_insert() will update stable_node.
1528 */
1529 set_page_stable_node(page, NULL);
1530 mark_page_accessed(page);
337ed7eb
MK
1531 /*
1532 * Page reclaim just frees a clean page with no dirty
1533 * ptes: make sure that the ksm page would be swapped.
1534 */
1535 if (!PageDirty(page))
1536 SetPageDirty(page);
80e14822
HD
1537 err = 0;
1538 } else if (pages_identical(page, kpage))
1539 err = replace_page(vma, page, kpage, orig_pte);
1540 }
31dbd01f 1541
f765f540 1542out_unlock:
8dd3557a 1543 unlock_page(page);
31dbd01f
IE
1544out:
1545 return err;
1546}
1547
81464e30
HD
1548/*
1549 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1550 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1551 *
1552 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1553 */
21fbd591 1554static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1555 struct page *page, struct page *kpage)
81464e30 1556{
8dd3557a 1557 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1558 struct vm_area_struct *vma;
1559 int err = -EFAULT;
1560
d8ed45c5 1561 mmap_read_lock(mm);
85c6e8dd
AA
1562 vma = find_mergeable_vma(mm, rmap_item->address);
1563 if (!vma)
81464e30
HD
1564 goto out;
1565
8dd3557a 1566 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1567 if (err)
1568 goto out;
1569
bc56620b
HD
1570 /* Unstable nid is in union with stable anon_vma: remove first */
1571 remove_rmap_item_from_tree(rmap_item);
1572
c1e8d7c6 1573 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1574 rmap_item->anon_vma = vma->anon_vma;
1575 get_anon_vma(vma->anon_vma);
81464e30 1576out:
d8ed45c5 1577 mmap_read_unlock(mm);
739100c8
SR
1578 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1579 rmap_item, mm, err);
81464e30
HD
1580 return err;
1581}
1582
31dbd01f
IE
1583/*
1584 * try_to_merge_two_pages - take two identical pages and prepare them
1585 * to be merged into one page.
1586 *
8dd3557a
HD
1587 * This function returns the kpage if we successfully merged two identical
1588 * pages into one ksm page, NULL otherwise.
31dbd01f 1589 *
80e14822 1590 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1591 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1592 */
21fbd591 1593static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1594 struct page *page,
21fbd591 1595 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1596 struct page *tree_page)
31dbd01f 1597{
80e14822 1598 int err;
31dbd01f 1599
80e14822 1600 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1601 if (!err) {
8dd3557a 1602 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1603 tree_page, page);
31dbd01f 1604 /*
81464e30
HD
1605 * If that fails, we have a ksm page with only one pte
1606 * pointing to it: so break it.
31dbd01f 1607 */
4035c07a 1608 if (err)
8dd3557a 1609 break_cow(rmap_item);
31dbd01f 1610 }
80e14822 1611 return err ? NULL : page;
31dbd01f
IE
1612}
1613
2c653d0e 1614static __always_inline
21fbd591 1615bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1616{
1617 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1618 /*
1619 * Check that at least one mapping still exists, otherwise
1620 * there's no much point to merge and share with this
1621 * stable_node, as the underlying tree_page of the other
1622 * sharer is going to be freed soon.
1623 */
1624 return stable_node->rmap_hlist_len &&
1625 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1626}
1627
1628static __always_inline
21fbd591 1629bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1630{
1631 return __is_page_sharing_candidate(stable_node, 0);
1632}
1633
21fbd591
QZ
1634static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1635 struct ksm_stable_node **_stable_node,
c01f0b54
CIK
1636 struct rb_root *root,
1637 bool prune_stale_stable_nodes)
2c653d0e 1638{
21fbd591 1639 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1640 struct hlist_node *hlist_safe;
8dc5ffcd 1641 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1642 int nr = 0;
1643 int found_rmap_hlist_len;
1644
1645 if (!prune_stale_stable_nodes ||
1646 time_before(jiffies, stable_node->chain_prune_time +
1647 msecs_to_jiffies(
1648 ksm_stable_node_chains_prune_millisecs)))
1649 prune_stale_stable_nodes = false;
1650 else
1651 stable_node->chain_prune_time = jiffies;
1652
1653 hlist_for_each_entry_safe(dup, hlist_safe,
1654 &stable_node->hlist, hlist_dup) {
1655 cond_resched();
1656 /*
1657 * We must walk all stable_node_dup to prune the stale
1658 * stable nodes during lookup.
1659 *
1660 * get_ksm_page can drop the nodes from the
1661 * stable_node->hlist if they point to freed pages
1662 * (that's why we do a _safe walk). The "dup"
1663 * stable_node parameter itself will be freed from
1664 * under us if it returns NULL.
1665 */
2cee57d1 1666 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1667 if (!_tree_page)
1668 continue;
1669 nr += 1;
1670 if (is_page_sharing_candidate(dup)) {
1671 if (!found ||
1672 dup->rmap_hlist_len > found_rmap_hlist_len) {
1673 if (found)
8dc5ffcd 1674 put_page(tree_page);
2c653d0e
AA
1675 found = dup;
1676 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1677 tree_page = _tree_page;
2c653d0e 1678
8dc5ffcd 1679 /* skip put_page for found dup */
2c653d0e
AA
1680 if (!prune_stale_stable_nodes)
1681 break;
2c653d0e
AA
1682 continue;
1683 }
1684 }
1685 put_page(_tree_page);
1686 }
1687
80b18dfa
AA
1688 if (found) {
1689 /*
1690 * nr is counting all dups in the chain only if
1691 * prune_stale_stable_nodes is true, otherwise we may
1692 * break the loop at nr == 1 even if there are
1693 * multiple entries.
1694 */
1695 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1696 /*
1697 * If there's not just one entry it would
1698 * corrupt memory, better BUG_ON. In KSM
1699 * context with no lock held it's not even
1700 * fatal.
1701 */
1702 BUG_ON(stable_node->hlist.first->next);
1703
1704 /*
1705 * There's just one entry and it is below the
1706 * deduplication limit so drop the chain.
1707 */
1708 rb_replace_node(&stable_node->node, &found->node,
1709 root);
1710 free_stable_node(stable_node);
1711 ksm_stable_node_chains--;
1712 ksm_stable_node_dups--;
b4fecc67 1713 /*
0ba1d0f7
AA
1714 * NOTE: the caller depends on the stable_node
1715 * to be equal to stable_node_dup if the chain
1716 * was collapsed.
b4fecc67 1717 */
0ba1d0f7
AA
1718 *_stable_node = found;
1719 /*
f0953a1b 1720 * Just for robustness, as stable_node is
0ba1d0f7
AA
1721 * otherwise left as a stable pointer, the
1722 * compiler shall optimize it away at build
1723 * time.
1724 */
1725 stable_node = NULL;
80b18dfa
AA
1726 } else if (stable_node->hlist.first != &found->hlist_dup &&
1727 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1728 /*
80b18dfa
AA
1729 * If the found stable_node dup can accept one
1730 * more future merge (in addition to the one
1731 * that is underway) and is not at the head of
1732 * the chain, put it there so next search will
1733 * be quicker in the !prune_stale_stable_nodes
1734 * case.
1735 *
1736 * NOTE: it would be inaccurate to use nr > 1
1737 * instead of checking the hlist.first pointer
1738 * directly, because in the
1739 * prune_stale_stable_nodes case "nr" isn't
1740 * the position of the found dup in the chain,
1741 * but the total number of dups in the chain.
2c653d0e
AA
1742 */
1743 hlist_del(&found->hlist_dup);
1744 hlist_add_head(&found->hlist_dup,
1745 &stable_node->hlist);
1746 }
1747 }
1748
8dc5ffcd
AA
1749 *_stable_node_dup = found;
1750 return tree_page;
2c653d0e
AA
1751}
1752
21fbd591 1753static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1754 struct rb_root *root)
1755{
1756 if (!is_stable_node_chain(stable_node))
1757 return stable_node;
1758 if (hlist_empty(&stable_node->hlist)) {
1759 free_stable_node_chain(stable_node, root);
1760 return NULL;
1761 }
1762 return hlist_entry(stable_node->hlist.first,
1763 typeof(*stable_node), hlist_dup);
1764}
1765
8dc5ffcd
AA
1766/*
1767 * Like for get_ksm_page, this function can free the *_stable_node and
1768 * *_stable_node_dup if the returned tree_page is NULL.
1769 *
1770 * It can also free and overwrite *_stable_node with the found
1771 * stable_node_dup if the chain is collapsed (in which case
1772 * *_stable_node will be equal to *_stable_node_dup like if the chain
1773 * never existed). It's up to the caller to verify tree_page is not
1774 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1775 *
1776 * *_stable_node_dup is really a second output parameter of this
1777 * function and will be overwritten in all cases, the caller doesn't
1778 * need to initialize it.
1779 */
21fbd591
QZ
1780static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1781 struct ksm_stable_node **_stable_node,
8dc5ffcd
AA
1782 struct rb_root *root,
1783 bool prune_stale_stable_nodes)
2c653d0e 1784{
21fbd591 1785 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1786 if (!is_stable_node_chain(stable_node)) {
1787 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1788 *_stable_node_dup = stable_node;
2cee57d1 1789 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1790 }
8dc5ffcd
AA
1791 /*
1792 * _stable_node_dup set to NULL means the stable_node
1793 * reached the ksm_max_page_sharing limit.
1794 */
1795 *_stable_node_dup = NULL;
2c653d0e
AA
1796 return NULL;
1797 }
8dc5ffcd 1798 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1799 prune_stale_stable_nodes);
1800}
1801
21fbd591
QZ
1802static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1803 struct ksm_stable_node **s_n,
8dc5ffcd 1804 struct rb_root *root)
2c653d0e 1805{
8dc5ffcd 1806 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1807}
1808
21fbd591
QZ
1809static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1810 struct ksm_stable_node *s_n,
8dc5ffcd 1811 struct rb_root *root)
2c653d0e 1812{
21fbd591 1813 struct ksm_stable_node *old_stable_node = s_n;
8dc5ffcd
AA
1814 struct page *tree_page;
1815
1816 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1817 /* not pruning dups so s_n cannot have changed */
1818 VM_BUG_ON(s_n != old_stable_node);
1819 return tree_page;
2c653d0e
AA
1820}
1821
31dbd01f 1822/*
8dd3557a 1823 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1824 *
1825 * This function checks if there is a page inside the stable tree
1826 * with identical content to the page that we are scanning right now.
1827 *
7b6ba2c7 1828 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1829 * NULL otherwise.
1830 */
62b61f61 1831static struct page *stable_tree_search(struct page *page)
31dbd01f 1832{
90bd6fd3 1833 int nid;
ef53d16c 1834 struct rb_root *root;
4146d2d6
HD
1835 struct rb_node **new;
1836 struct rb_node *parent;
21fbd591
QZ
1837 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1838 struct ksm_stable_node *page_node;
31dbd01f 1839
4146d2d6
HD
1840 page_node = page_stable_node(page);
1841 if (page_node && page_node->head != &migrate_nodes) {
1842 /* ksm page forked */
08beca44 1843 get_page(page);
62b61f61 1844 return page;
08beca44
HD
1845 }
1846
90bd6fd3 1847 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1848 root = root_stable_tree + nid;
4146d2d6 1849again:
ef53d16c 1850 new = &root->rb_node;
4146d2d6 1851 parent = NULL;
90bd6fd3 1852
4146d2d6 1853 while (*new) {
4035c07a 1854 struct page *tree_page;
31dbd01f
IE
1855 int ret;
1856
08beca44 1857 cond_resched();
21fbd591 1858 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1859 stable_node_any = NULL;
8dc5ffcd 1860 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1861 /*
1862 * NOTE: stable_node may have been freed by
1863 * chain_prune() if the returned stable_node_dup is
1864 * not NULL. stable_node_dup may have been inserted in
1865 * the rbtree instead as a regular stable_node (in
1866 * order to collapse the stable_node chain if a single
0ba1d0f7 1867 * stable_node dup was found in it). In such case the
3413b2c8 1868 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1869 * to the stable_node_dup that was collapsed in the
1870 * stable rbtree and stable_node will be equal to
1871 * stable_node_dup like if the chain never existed.
b4fecc67 1872 */
2c653d0e
AA
1873 if (!stable_node_dup) {
1874 /*
1875 * Either all stable_node dups were full in
1876 * this stable_node chain, or this chain was
1877 * empty and should be rb_erased.
1878 */
1879 stable_node_any = stable_node_dup_any(stable_node,
1880 root);
1881 if (!stable_node_any) {
1882 /* rb_erase just run */
1883 goto again;
1884 }
1885 /*
1886 * Take any of the stable_node dups page of
1887 * this stable_node chain to let the tree walk
1888 * continue. All KSM pages belonging to the
1889 * stable_node dups in a stable_node chain
1890 * have the same content and they're
457aef94 1891 * write protected at all times. Any will work
2c653d0e
AA
1892 * fine to continue the walk.
1893 */
2cee57d1
YS
1894 tree_page = get_ksm_page(stable_node_any,
1895 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1896 }
1897 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1898 if (!tree_page) {
1899 /*
1900 * If we walked over a stale stable_node,
1901 * get_ksm_page() will call rb_erase() and it
1902 * may rebalance the tree from under us. So
1903 * restart the search from scratch. Returning
1904 * NULL would be safe too, but we'd generate
1905 * false negative insertions just because some
1906 * stable_node was stale.
1907 */
1908 goto again;
1909 }
31dbd01f 1910
4035c07a 1911 ret = memcmp_pages(page, tree_page);
c8d6553b 1912 put_page(tree_page);
31dbd01f 1913
4146d2d6 1914 parent = *new;
c8d6553b 1915 if (ret < 0)
4146d2d6 1916 new = &parent->rb_left;
c8d6553b 1917 else if (ret > 0)
4146d2d6 1918 new = &parent->rb_right;
c8d6553b 1919 else {
2c653d0e
AA
1920 if (page_node) {
1921 VM_BUG_ON(page_node->head != &migrate_nodes);
1922 /*
1923 * Test if the migrated page should be merged
1924 * into a stable node dup. If the mapcount is
1925 * 1 we can migrate it with another KSM page
1926 * without adding it to the chain.
1927 */
1928 if (page_mapcount(page) > 1)
1929 goto chain_append;
1930 }
1931
1932 if (!stable_node_dup) {
1933 /*
1934 * If the stable_node is a chain and
1935 * we got a payload match in memcmp
1936 * but we cannot merge the scanned
1937 * page in any of the existing
1938 * stable_node dups because they're
1939 * all full, we need to wait the
1940 * scanned page to find itself a match
1941 * in the unstable tree to create a
1942 * brand new KSM page to add later to
1943 * the dups of this stable_node.
1944 */
1945 return NULL;
1946 }
1947
c8d6553b
HD
1948 /*
1949 * Lock and unlock the stable_node's page (which
1950 * might already have been migrated) so that page
1951 * migration is sure to notice its raised count.
1952 * It would be more elegant to return stable_node
1953 * than kpage, but that involves more changes.
1954 */
2cee57d1
YS
1955 tree_page = get_ksm_page(stable_node_dup,
1956 GET_KSM_PAGE_TRYLOCK);
1957
1958 if (PTR_ERR(tree_page) == -EBUSY)
1959 return ERR_PTR(-EBUSY);
1960
2c653d0e
AA
1961 if (unlikely(!tree_page))
1962 /*
1963 * The tree may have been rebalanced,
1964 * so re-evaluate parent and new.
1965 */
4146d2d6 1966 goto again;
2c653d0e
AA
1967 unlock_page(tree_page);
1968
1969 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1970 NUMA(stable_node_dup->nid)) {
1971 put_page(tree_page);
1972 goto replace;
1973 }
1974 return tree_page;
c8d6553b 1975 }
31dbd01f
IE
1976 }
1977
4146d2d6
HD
1978 if (!page_node)
1979 return NULL;
1980
1981 list_del(&page_node->list);
1982 DO_NUMA(page_node->nid = nid);
1983 rb_link_node(&page_node->node, parent, new);
ef53d16c 1984 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1985out:
1986 if (is_page_sharing_candidate(page_node)) {
1987 get_page(page);
1988 return page;
1989 } else
1990 return NULL;
4146d2d6
HD
1991
1992replace:
b4fecc67
AA
1993 /*
1994 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1995 * stable_node has been updated to be the new regular
1996 * stable_node. A collapse of the chain is indistinguishable
1997 * from the case there was no chain in the stable
1998 * rbtree. Otherwise stable_node is the chain and
1999 * stable_node_dup is the dup to replace.
b4fecc67 2000 */
0ba1d0f7 2001 if (stable_node_dup == stable_node) {
b4fecc67
AA
2002 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
2003 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2004 /* there is no chain */
2005 if (page_node) {
2006 VM_BUG_ON(page_node->head != &migrate_nodes);
2007 list_del(&page_node->list);
2008 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
2009 rb_replace_node(&stable_node_dup->node,
2010 &page_node->node,
2c653d0e
AA
2011 root);
2012 if (is_page_sharing_candidate(page_node))
2013 get_page(page);
2014 else
2015 page = NULL;
2016 } else {
b4fecc67 2017 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
2018 page = NULL;
2019 }
4146d2d6 2020 } else {
2c653d0e
AA
2021 VM_BUG_ON(!is_stable_node_chain(stable_node));
2022 __stable_node_dup_del(stable_node_dup);
2023 if (page_node) {
2024 VM_BUG_ON(page_node->head != &migrate_nodes);
2025 list_del(&page_node->list);
2026 DO_NUMA(page_node->nid = nid);
2027 stable_node_chain_add_dup(page_node, stable_node);
2028 if (is_page_sharing_candidate(page_node))
2029 get_page(page);
2030 else
2031 page = NULL;
2032 } else {
2033 page = NULL;
2034 }
4146d2d6 2035 }
2c653d0e
AA
2036 stable_node_dup->head = &migrate_nodes;
2037 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 2038 return page;
2c653d0e
AA
2039
2040chain_append:
2041 /* stable_node_dup could be null if it reached the limit */
2042 if (!stable_node_dup)
2043 stable_node_dup = stable_node_any;
b4fecc67
AA
2044 /*
2045 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
2046 * stable_node has been updated to be the new regular
2047 * stable_node. A collapse of the chain is indistinguishable
2048 * from the case there was no chain in the stable
2049 * rbtree. Otherwise stable_node is the chain and
2050 * stable_node_dup is the dup to replace.
b4fecc67 2051 */
0ba1d0f7 2052 if (stable_node_dup == stable_node) {
b4fecc67 2053 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2054 /* chain is missing so create it */
2055 stable_node = alloc_stable_node_chain(stable_node_dup,
2056 root);
2057 if (!stable_node)
2058 return NULL;
2059 }
2060 /*
2061 * Add this stable_node dup that was
2062 * migrated to the stable_node chain
2063 * of the current nid for this page
2064 * content.
2065 */
b4fecc67 2066 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2067 VM_BUG_ON(page_node->head != &migrate_nodes);
2068 list_del(&page_node->list);
2069 DO_NUMA(page_node->nid = nid);
2070 stable_node_chain_add_dup(page_node, stable_node);
2071 goto out;
31dbd01f
IE
2072}
2073
2074/*
e850dcf5 2075 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
2076 * into the stable tree.
2077 *
7b6ba2c7
HD
2078 * This function returns the stable tree node just allocated on success,
2079 * NULL otherwise.
31dbd01f 2080 */
21fbd591 2081static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 2082{
90bd6fd3
PH
2083 int nid;
2084 unsigned long kpfn;
ef53d16c 2085 struct rb_root *root;
90bd6fd3 2086 struct rb_node **new;
f2e5ff85 2087 struct rb_node *parent;
21fbd591 2088 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 2089 bool need_chain = false;
31dbd01f 2090
90bd6fd3
PH
2091 kpfn = page_to_pfn(kpage);
2092 nid = get_kpfn_nid(kpfn);
ef53d16c 2093 root = root_stable_tree + nid;
f2e5ff85
AA
2094again:
2095 parent = NULL;
ef53d16c 2096 new = &root->rb_node;
90bd6fd3 2097
31dbd01f 2098 while (*new) {
4035c07a 2099 struct page *tree_page;
31dbd01f
IE
2100 int ret;
2101
08beca44 2102 cond_resched();
21fbd591 2103 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 2104 stable_node_any = NULL;
8dc5ffcd 2105 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
2106 if (!stable_node_dup) {
2107 /*
2108 * Either all stable_node dups were full in
2109 * this stable_node chain, or this chain was
2110 * empty and should be rb_erased.
2111 */
2112 stable_node_any = stable_node_dup_any(stable_node,
2113 root);
2114 if (!stable_node_any) {
2115 /* rb_erase just run */
2116 goto again;
2117 }
2118 /*
2119 * Take any of the stable_node dups page of
2120 * this stable_node chain to let the tree walk
2121 * continue. All KSM pages belonging to the
2122 * stable_node dups in a stable_node chain
2123 * have the same content and they're
457aef94 2124 * write protected at all times. Any will work
2c653d0e
AA
2125 * fine to continue the walk.
2126 */
2cee57d1
YS
2127 tree_page = get_ksm_page(stable_node_any,
2128 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
2129 }
2130 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
2131 if (!tree_page) {
2132 /*
2133 * If we walked over a stale stable_node,
2134 * get_ksm_page() will call rb_erase() and it
2135 * may rebalance the tree from under us. So
2136 * restart the search from scratch. Returning
2137 * NULL would be safe too, but we'd generate
2138 * false negative insertions just because some
2139 * stable_node was stale.
2140 */
2141 goto again;
2142 }
31dbd01f 2143
4035c07a
HD
2144 ret = memcmp_pages(kpage, tree_page);
2145 put_page(tree_page);
31dbd01f
IE
2146
2147 parent = *new;
2148 if (ret < 0)
2149 new = &parent->rb_left;
2150 else if (ret > 0)
2151 new = &parent->rb_right;
2152 else {
2c653d0e
AA
2153 need_chain = true;
2154 break;
31dbd01f
IE
2155 }
2156 }
2157
2c653d0e
AA
2158 stable_node_dup = alloc_stable_node();
2159 if (!stable_node_dup)
7b6ba2c7 2160 return NULL;
31dbd01f 2161
2c653d0e
AA
2162 INIT_HLIST_HEAD(&stable_node_dup->hlist);
2163 stable_node_dup->kpfn = kpfn;
2164 set_page_stable_node(kpage, stable_node_dup);
2165 stable_node_dup->rmap_hlist_len = 0;
2166 DO_NUMA(stable_node_dup->nid = nid);
2167 if (!need_chain) {
2168 rb_link_node(&stable_node_dup->node, parent, new);
2169 rb_insert_color(&stable_node_dup->node, root);
2170 } else {
2171 if (!is_stable_node_chain(stable_node)) {
21fbd591 2172 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
2173 /* chain is missing so create it */
2174 stable_node = alloc_stable_node_chain(orig, root);
2175 if (!stable_node) {
2176 free_stable_node(stable_node_dup);
2177 return NULL;
2178 }
2179 }
2180 stable_node_chain_add_dup(stable_node_dup, stable_node);
2181 }
08beca44 2182
2c653d0e 2183 return stable_node_dup;
31dbd01f
IE
2184}
2185
2186/*
8dd3557a
HD
2187 * unstable_tree_search_insert - search for identical page,
2188 * else insert rmap_item into the unstable tree.
31dbd01f
IE
2189 *
2190 * This function searches for a page in the unstable tree identical to the
2191 * page currently being scanned; and if no identical page is found in the
2192 * tree, we insert rmap_item as a new object into the unstable tree.
2193 *
2194 * This function returns pointer to rmap_item found to be identical
2195 * to the currently scanned page, NULL otherwise.
2196 *
2197 * This function does both searching and inserting, because they share
2198 * the same walking algorithm in an rbtree.
2199 */
8dd3557a 2200static
21fbd591 2201struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
2202 struct page *page,
2203 struct page **tree_pagep)
31dbd01f 2204{
90bd6fd3
PH
2205 struct rb_node **new;
2206 struct rb_root *root;
31dbd01f 2207 struct rb_node *parent = NULL;
90bd6fd3
PH
2208 int nid;
2209
2210 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 2211 root = root_unstable_tree + nid;
90bd6fd3 2212 new = &root->rb_node;
31dbd01f
IE
2213
2214 while (*new) {
21fbd591 2215 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2216 struct page *tree_page;
31dbd01f
IE
2217 int ret;
2218
d178f27f 2219 cond_resched();
21fbd591 2220 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 2221 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 2222 if (!tree_page)
31dbd01f
IE
2223 return NULL;
2224
2225 /*
8dd3557a 2226 * Don't substitute a ksm page for a forked page.
31dbd01f 2227 */
8dd3557a
HD
2228 if (page == tree_page) {
2229 put_page(tree_page);
31dbd01f
IE
2230 return NULL;
2231 }
2232
8dd3557a 2233 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
2234
2235 parent = *new;
2236 if (ret < 0) {
8dd3557a 2237 put_page(tree_page);
31dbd01f
IE
2238 new = &parent->rb_left;
2239 } else if (ret > 0) {
8dd3557a 2240 put_page(tree_page);
31dbd01f 2241 new = &parent->rb_right;
b599cbdf
HD
2242 } else if (!ksm_merge_across_nodes &&
2243 page_to_nid(tree_page) != nid) {
2244 /*
2245 * If tree_page has been migrated to another NUMA node,
2246 * it will be flushed out and put in the right unstable
2247 * tree next time: only merge with it when across_nodes.
2248 */
2249 put_page(tree_page);
2250 return NULL;
31dbd01f 2251 } else {
8dd3557a 2252 *tree_pagep = tree_page;
31dbd01f
IE
2253 return tree_rmap_item;
2254 }
2255 }
2256
7b6ba2c7 2257 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 2258 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 2259 DO_NUMA(rmap_item->nid = nid);
31dbd01f 2260 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 2261 rb_insert_color(&rmap_item->node, root);
31dbd01f 2262
473b0ce4 2263 ksm_pages_unshared++;
31dbd01f
IE
2264 return NULL;
2265}
2266
2267/*
2268 * stable_tree_append - add another rmap_item to the linked list of
2269 * rmap_items hanging off a given node of the stable tree, all sharing
2270 * the same ksm page.
2271 */
21fbd591
QZ
2272static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2273 struct ksm_stable_node *stable_node,
2c653d0e 2274 bool max_page_sharing_bypass)
31dbd01f 2275{
2c653d0e
AA
2276 /*
2277 * rmap won't find this mapping if we don't insert the
2278 * rmap_item in the right stable_node
2279 * duplicate. page_migration could break later if rmap breaks,
2280 * so we can as well crash here. We really need to check for
2281 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2282 * for other negative values as an underflow if detected here
2c653d0e
AA
2283 * for the first time (and not when decreasing rmap_hlist_len)
2284 * would be sign of memory corruption in the stable_node.
2285 */
2286 BUG_ON(stable_node->rmap_hlist_len < 0);
2287
2288 stable_node->rmap_hlist_len++;
2289 if (!max_page_sharing_bypass)
2290 /* possibly non fatal but unexpected overflow, only warn */
2291 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2292 ksm_max_page_sharing);
2293
7b6ba2c7 2294 rmap_item->head = stable_node;
31dbd01f 2295 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2296 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2297
7b6ba2c7
HD
2298 if (rmap_item->hlist.next)
2299 ksm_pages_sharing++;
2300 else
2301 ksm_pages_shared++;
76093853 2302
2303 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2304}
2305
2306/*
81464e30
HD
2307 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2308 * if not, compare checksum to previous and if it's the same, see if page can
2309 * be inserted into the unstable tree, or merged with a page already there and
2310 * both transferred to the stable tree.
31dbd01f
IE
2311 *
2312 * @page: the page that we are searching identical page to.
2313 * @rmap_item: the reverse mapping into the virtual address of this page
2314 */
21fbd591 2315static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2316{
4b22927f 2317 struct mm_struct *mm = rmap_item->mm;
21fbd591 2318 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2319 struct page *tree_page = NULL;
21fbd591 2320 struct ksm_stable_node *stable_node;
8dd3557a 2321 struct page *kpage;
31dbd01f
IE
2322 unsigned int checksum;
2323 int err;
2c653d0e 2324 bool max_page_sharing_bypass = false;
31dbd01f 2325
4146d2d6
HD
2326 stable_node = page_stable_node(page);
2327 if (stable_node) {
2328 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2329 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2330 NUMA(stable_node->nid)) {
2331 stable_node_dup_del(stable_node);
4146d2d6
HD
2332 stable_node->head = &migrate_nodes;
2333 list_add(&stable_node->list, stable_node->head);
2334 }
2335 if (stable_node->head != &migrate_nodes &&
2336 rmap_item->head == stable_node)
2337 return;
2c653d0e
AA
2338 /*
2339 * If it's a KSM fork, allow it to go over the sharing limit
2340 * without warnings.
2341 */
2342 if (!is_page_sharing_candidate(stable_node))
2343 max_page_sharing_bypass = true;
4146d2d6 2344 }
31dbd01f
IE
2345
2346 /* We first start with searching the page inside the stable tree */
62b61f61 2347 kpage = stable_tree_search(page);
4146d2d6
HD
2348 if (kpage == page && rmap_item->head == stable_node) {
2349 put_page(kpage);
2350 return;
2351 }
2352
2353 remove_rmap_item_from_tree(rmap_item);
2354
62b61f61 2355 if (kpage) {
2cee57d1
YS
2356 if (PTR_ERR(kpage) == -EBUSY)
2357 return;
2358
08beca44 2359 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2360 if (!err) {
2361 /*
2362 * The page was successfully merged:
2363 * add its rmap_item to the stable tree.
2364 */
5ad64688 2365 lock_page(kpage);
2c653d0e
AA
2366 stable_tree_append(rmap_item, page_stable_node(kpage),
2367 max_page_sharing_bypass);
5ad64688 2368 unlock_page(kpage);
31dbd01f 2369 }
8dd3557a 2370 put_page(kpage);
31dbd01f
IE
2371 return;
2372 }
2373
2374 /*
4035c07a
HD
2375 * If the hash value of the page has changed from the last time
2376 * we calculated it, this page is changing frequently: therefore we
2377 * don't want to insert it in the unstable tree, and we don't want
2378 * to waste our time searching for something identical to it there.
31dbd01f
IE
2379 */
2380 checksum = calc_checksum(page);
2381 if (rmap_item->oldchecksum != checksum) {
2382 rmap_item->oldchecksum = checksum;
2383 return;
2384 }
2385
e86c59b1
CI
2386 /*
2387 * Same checksum as an empty page. We attempt to merge it with the
2388 * appropriate zero page if the user enabled this via sysfs.
2389 */
2390 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2391 struct vm_area_struct *vma;
2392
d8ed45c5 2393 mmap_read_lock(mm);
4b22927f 2394 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2395 if (vma) {
2396 err = try_to_merge_one_page(vma, page,
2397 ZERO_PAGE(rmap_item->address));
739100c8
SR
2398 trace_ksm_merge_one_page(
2399 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2400 rmap_item, mm, err);
56df70a6
MS
2401 } else {
2402 /*
2403 * If the vma is out of date, we do not need to
2404 * continue.
2405 */
2406 err = 0;
2407 }
d8ed45c5 2408 mmap_read_unlock(mm);
e86c59b1
CI
2409 /*
2410 * In case of failure, the page was not really empty, so we
2411 * need to continue. Otherwise we're done.
2412 */
2413 if (!err)
2414 return;
2415 }
8dd3557a
HD
2416 tree_rmap_item =
2417 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2418 if (tree_rmap_item) {
77da2ba0
CI
2419 bool split;
2420
8dd3557a
HD
2421 kpage = try_to_merge_two_pages(rmap_item, page,
2422 tree_rmap_item, tree_page);
77da2ba0
CI
2423 /*
2424 * If both pages we tried to merge belong to the same compound
2425 * page, then we actually ended up increasing the reference
2426 * count of the same compound page twice, and split_huge_page
2427 * failed.
2428 * Here we set a flag if that happened, and we use it later to
2429 * try split_huge_page again. Since we call put_page right
2430 * afterwards, the reference count will be correct and
2431 * split_huge_page should succeed.
2432 */
2433 split = PageTransCompound(page)
2434 && compound_head(page) == compound_head(tree_page);
8dd3557a 2435 put_page(tree_page);
8dd3557a 2436 if (kpage) {
bc56620b
HD
2437 /*
2438 * The pages were successfully merged: insert new
2439 * node in the stable tree and add both rmap_items.
2440 */
5ad64688 2441 lock_page(kpage);
7b6ba2c7
HD
2442 stable_node = stable_tree_insert(kpage);
2443 if (stable_node) {
2c653d0e
AA
2444 stable_tree_append(tree_rmap_item, stable_node,
2445 false);
2446 stable_tree_append(rmap_item, stable_node,
2447 false);
7b6ba2c7 2448 }
5ad64688 2449 unlock_page(kpage);
7b6ba2c7 2450
31dbd01f
IE
2451 /*
2452 * If we fail to insert the page into the stable tree,
2453 * we will have 2 virtual addresses that are pointing
2454 * to a ksm page left outside the stable tree,
2455 * in which case we need to break_cow on both.
2456 */
7b6ba2c7 2457 if (!stable_node) {
8dd3557a
HD
2458 break_cow(tree_rmap_item);
2459 break_cow(rmap_item);
31dbd01f 2460 }
77da2ba0
CI
2461 } else if (split) {
2462 /*
2463 * We are here if we tried to merge two pages and
2464 * failed because they both belonged to the same
2465 * compound page. We will split the page now, but no
2466 * merging will take place.
2467 * We do not want to add the cost of a full lock; if
2468 * the page is locked, it is better to skip it and
2469 * perhaps try again later.
2470 */
2471 if (!trylock_page(page))
2472 return;
2473 split_huge_page(page);
2474 unlock_page(page);
31dbd01f 2475 }
31dbd01f
IE
2476 }
2477}
2478
21fbd591
QZ
2479static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2480 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2481 unsigned long addr)
2482{
21fbd591 2483 struct ksm_rmap_item *rmap_item;
31dbd01f 2484
6514d511
HD
2485 while (*rmap_list) {
2486 rmap_item = *rmap_list;
93d17715 2487 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2488 return rmap_item;
31dbd01f
IE
2489 if (rmap_item->address > addr)
2490 break;
6514d511 2491 *rmap_list = rmap_item->rmap_list;
31dbd01f 2492 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2493 free_rmap_item(rmap_item);
2494 }
2495
2496 rmap_item = alloc_rmap_item();
2497 if (rmap_item) {
2498 /* It has already been zeroed */
58730ab6 2499 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2500 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2501 rmap_item->address = addr;
6514d511
HD
2502 rmap_item->rmap_list = *rmap_list;
2503 *rmap_list = rmap_item;
31dbd01f
IE
2504 }
2505 return rmap_item;
2506}
2507
5e924ff5
SR
2508/*
2509 * Calculate skip age for the ksm page age. The age determines how often
2510 * de-duplicating has already been tried unsuccessfully. If the age is
2511 * smaller, the scanning of this page is skipped for less scans.
2512 *
2513 * @age: rmap_item age of page
2514 */
2515static unsigned int skip_age(rmap_age_t age)
2516{
2517 if (age <= 3)
2518 return 1;
2519 if (age <= 5)
2520 return 2;
2521 if (age <= 8)
2522 return 4;
2523
2524 return 8;
2525}
2526
2527/*
2528 * Determines if a page should be skipped for the current scan.
2529 *
2530 * @page: page to check
2531 * @rmap_item: associated rmap_item of page
2532 */
2533static bool should_skip_rmap_item(struct page *page,
2534 struct ksm_rmap_item *rmap_item)
2535{
2536 rmap_age_t age;
2537
2538 if (!ksm_smart_scan)
2539 return false;
2540
2541 /*
2542 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2543 * will essentially ignore them, but we still have to process them
2544 * properly.
2545 */
2546 if (PageKsm(page))
2547 return false;
2548
2549 age = rmap_item->age;
2550 if (age != U8_MAX)
2551 rmap_item->age++;
2552
2553 /*
2554 * Smaller ages are not skipped, they need to get a chance to go
2555 * through the different phases of the KSM merging.
2556 */
2557 if (age < 3)
2558 return false;
2559
2560 /*
2561 * Are we still allowed to skip? If not, then don't skip it
2562 * and determine how much more often we are allowed to skip next.
2563 */
2564 if (!rmap_item->remaining_skips) {
2565 rmap_item->remaining_skips = skip_age(age);
2566 return false;
2567 }
2568
2569 /* Skip this page */
e5a68991 2570 ksm_pages_skipped++;
5e924ff5
SR
2571 rmap_item->remaining_skips--;
2572 remove_rmap_item_from_tree(rmap_item);
2573 return true;
2574}
2575
21fbd591 2576static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2577{
2578 struct mm_struct *mm;
58730ab6
QZ
2579 struct ksm_mm_slot *mm_slot;
2580 struct mm_slot *slot;
31dbd01f 2581 struct vm_area_struct *vma;
21fbd591 2582 struct ksm_rmap_item *rmap_item;
a5f18ba0 2583 struct vma_iterator vmi;
90bd6fd3 2584 int nid;
31dbd01f 2585
58730ab6 2586 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2587 return NULL;
2588
58730ab6
QZ
2589 mm_slot = ksm_scan.mm_slot;
2590 if (mm_slot == &ksm_mm_head) {
4e5fa4f5 2591 advisor_start_scan();
739100c8
SR
2592 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2593
2919bfd0 2594 /*
1fec6890
MWO
2595 * A number of pages can hang around indefinitely in per-cpu
2596 * LRU cache, raised page count preventing write_protect_page
2919bfd0
HD
2597 * from merging them. Though it doesn't really matter much,
2598 * it is puzzling to see some stuck in pages_volatile until
2599 * other activity jostles them out, and they also prevented
2600 * LTP's KSM test from succeeding deterministically; so drain
2601 * them here (here rather than on entry to ksm_do_scan(),
2602 * so we don't IPI too often when pages_to_scan is set low).
2603 */
2604 lru_add_drain_all();
2605
4146d2d6
HD
2606 /*
2607 * Whereas stale stable_nodes on the stable_tree itself
2608 * get pruned in the regular course of stable_tree_search(),
2609 * those moved out to the migrate_nodes list can accumulate:
2610 * so prune them once before each full scan.
2611 */
2612 if (!ksm_merge_across_nodes) {
21fbd591 2613 struct ksm_stable_node *stable_node, *next;
4146d2d6
HD
2614 struct page *page;
2615
03640418
GT
2616 list_for_each_entry_safe(stable_node, next,
2617 &migrate_nodes, list) {
2cee57d1
YS
2618 page = get_ksm_page(stable_node,
2619 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2620 if (page)
2621 put_page(page);
2622 cond_resched();
2623 }
2624 }
2625
ef53d16c 2626 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2627 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2628
2629 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2630 slot = list_entry(mm_slot->slot.mm_node.next,
2631 struct mm_slot, mm_node);
2632 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2633 ksm_scan.mm_slot = mm_slot;
31dbd01f 2634 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2635 /*
2636 * Although we tested list_empty() above, a racing __ksm_exit
2637 * of the last mm on the list may have removed it since then.
2638 */
58730ab6 2639 if (mm_slot == &ksm_mm_head)
2b472611 2640 return NULL;
31dbd01f
IE
2641next_mm:
2642 ksm_scan.address = 0;
58730ab6 2643 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2644 }
2645
58730ab6 2646 slot = &mm_slot->slot;
31dbd01f 2647 mm = slot->mm;
a5f18ba0
MWO
2648 vma_iter_init(&vmi, mm, ksm_scan.address);
2649
d8ed45c5 2650 mmap_read_lock(mm);
9ba69294 2651 if (ksm_test_exit(mm))
a5f18ba0 2652 goto no_vmas;
9ba69294 2653
a5f18ba0 2654 for_each_vma(vmi, vma) {
31dbd01f
IE
2655 if (!(vma->vm_flags & VM_MERGEABLE))
2656 continue;
2657 if (ksm_scan.address < vma->vm_start)
2658 ksm_scan.address = vma->vm_start;
2659 if (!vma->anon_vma)
2660 ksm_scan.address = vma->vm_end;
2661
2662 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2663 if (ksm_test_exit(mm))
2664 break;
31dbd01f 2665 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2666 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2667 ksm_scan.address += PAGE_SIZE;
2668 cond_resched();
2669 continue;
2670 }
f7091ed6
HW
2671 if (is_zone_device_page(*page))
2672 goto next_page;
f765f540 2673 if (PageAnon(*page)) {
31dbd01f
IE
2674 flush_anon_page(vma, *page, ksm_scan.address);
2675 flush_dcache_page(*page);
58730ab6 2676 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2677 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2678 if (rmap_item) {
6514d511
HD
2679 ksm_scan.rmap_list =
2680 &rmap_item->rmap_list;
5e924ff5
SR
2681
2682 if (should_skip_rmap_item(*page, rmap_item))
2683 goto next_page;
2684
31dbd01f
IE
2685 ksm_scan.address += PAGE_SIZE;
2686 } else
2687 put_page(*page);
d8ed45c5 2688 mmap_read_unlock(mm);
31dbd01f
IE
2689 return rmap_item;
2690 }
f7091ed6 2691next_page:
21ae5b01 2692 put_page(*page);
31dbd01f
IE
2693 ksm_scan.address += PAGE_SIZE;
2694 cond_resched();
2695 }
2696 }
2697
9ba69294 2698 if (ksm_test_exit(mm)) {
a5f18ba0 2699no_vmas:
9ba69294 2700 ksm_scan.address = 0;
58730ab6 2701 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2702 }
31dbd01f
IE
2703 /*
2704 * Nuke all the rmap_items that are above this current rmap:
2705 * because there were no VM_MERGEABLE vmas with such addresses.
2706 */
420be4ed 2707 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2708
2709 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2710 slot = list_entry(mm_slot->slot.mm_node.next,
2711 struct mm_slot, mm_node);
2712 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2713 if (ksm_scan.address == 0) {
2714 /*
c1e8d7c6 2715 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2716 * throughout, and found no VM_MERGEABLE: so do the same as
2717 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2718 * This applies either when cleaning up after __ksm_exit
2719 * (but beware: we can reach here even before __ksm_exit),
2720 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2721 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2722 */
58730ab6
QZ
2723 hash_del(&mm_slot->slot.hash);
2724 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2725 spin_unlock(&ksm_mmlist_lock);
2726
58730ab6 2727 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2728 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 2729 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
d8ed45c5 2730 mmap_read_unlock(mm);
9ba69294
HD
2731 mmdrop(mm);
2732 } else {
d8ed45c5 2733 mmap_read_unlock(mm);
7496fea9 2734 /*
3e4e28c5 2735 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2736 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2737 * already have been freed under us by __ksm_exit()
2738 * because the "mm_slot" is still hashed and
2739 * ksm_scan.mm_slot doesn't point to it anymore.
2740 */
2741 spin_unlock(&ksm_mmlist_lock);
cd551f97 2742 }
31dbd01f
IE
2743
2744 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2745 mm_slot = ksm_scan.mm_slot;
2746 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2747 goto next_mm;
2748
4e5fa4f5
SR
2749 advisor_stop_scan();
2750
739100c8 2751 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
31dbd01f
IE
2752 ksm_scan.seqnr++;
2753 return NULL;
2754}
2755
2756/**
2757 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2758 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2759 */
2760static void ksm_do_scan(unsigned int scan_npages)
2761{
21fbd591 2762 struct ksm_rmap_item *rmap_item;
3f649ab7 2763 struct page *page;
b348b5fe 2764 unsigned int npages = scan_npages;
31dbd01f 2765
b348b5fe 2766 while (npages-- && likely(!freezing(current))) {
31dbd01f
IE
2767 cond_resched();
2768 rmap_item = scan_get_next_rmap_item(&page);
2769 if (!rmap_item)
2770 return;
4146d2d6 2771 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2772 put_page(page);
2773 }
b348b5fe
SR
2774
2775 ksm_pages_scanned += scan_npages - npages;
31dbd01f
IE
2776}
2777
6e158384
HD
2778static int ksmd_should_run(void)
2779{
58730ab6 2780 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2781}
2782
31dbd01f
IE
2783static int ksm_scan_thread(void *nothing)
2784{
fcf9a0ef
KT
2785 unsigned int sleep_ms;
2786
878aee7d 2787 set_freezable();
339aa624 2788 set_user_nice(current, 5);
31dbd01f
IE
2789
2790 while (!kthread_should_stop()) {
6e158384 2791 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2792 wait_while_offlining();
6e158384 2793 if (ksmd_should_run())
31dbd01f 2794 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2795 mutex_unlock(&ksm_thread_mutex);
2796
2797 if (ksmd_should_run()) {
fcf9a0ef 2798 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
f55afd95 2799 wait_event_freezable_timeout(ksm_iter_wait,
fcf9a0ef
KT
2800 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2801 msecs_to_jiffies(sleep_ms));
31dbd01f 2802 } else {
878aee7d 2803 wait_event_freezable(ksm_thread_wait,
6e158384 2804 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2805 }
2806 }
2807 return 0;
2808}
2809
d7597f59
SR
2810static void __ksm_add_vma(struct vm_area_struct *vma)
2811{
2812 unsigned long vm_flags = vma->vm_flags;
2813
2814 if (vm_flags & VM_MERGEABLE)
2815 return;
2816
2817 if (vma_ksm_compatible(vma))
2818 vm_flags_set(vma, VM_MERGEABLE);
2819}
2820
24139c07
DH
2821static int __ksm_del_vma(struct vm_area_struct *vma)
2822{
2823 int err;
2824
2825 if (!(vma->vm_flags & VM_MERGEABLE))
2826 return 0;
2827
2828 if (vma->anon_vma) {
49b06385 2829 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
24139c07
DH
2830 if (err)
2831 return err;
2832 }
2833
2834 vm_flags_clear(vma, VM_MERGEABLE);
2835 return 0;
2836}
d7597f59
SR
2837/**
2838 * ksm_add_vma - Mark vma as mergeable if compatible
2839 *
2840 * @vma: Pointer to vma
2841 */
2842void ksm_add_vma(struct vm_area_struct *vma)
2843{
2844 struct mm_struct *mm = vma->vm_mm;
2845
2846 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2847 __ksm_add_vma(vma);
2848}
2849
2850static void ksm_add_vmas(struct mm_struct *mm)
2851{
2852 struct vm_area_struct *vma;
2853
2854 VMA_ITERATOR(vmi, mm, 0);
2855 for_each_vma(vmi, vma)
2856 __ksm_add_vma(vma);
2857}
2858
24139c07
DH
2859static int ksm_del_vmas(struct mm_struct *mm)
2860{
2861 struct vm_area_struct *vma;
2862 int err;
2863
2864 VMA_ITERATOR(vmi, mm, 0);
2865 for_each_vma(vmi, vma) {
2866 err = __ksm_del_vma(vma);
2867 if (err)
2868 return err;
2869 }
2870 return 0;
2871}
2872
d7597f59
SR
2873/**
2874 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2875 * compatible VMA's
2876 *
2877 * @mm: Pointer to mm
2878 *
2879 * Returns 0 on success, otherwise error code
2880 */
2881int ksm_enable_merge_any(struct mm_struct *mm)
2882{
2883 int err;
2884
2885 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2886 return 0;
2887
2888 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2889 err = __ksm_enter(mm);
2890 if (err)
2891 return err;
2892 }
2893
2894 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2895 ksm_add_vmas(mm);
2896
2897 return 0;
2898}
2899
24139c07
DH
2900/**
2901 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2902 * previously enabled via ksm_enable_merge_any().
2903 *
2904 * Disabling merging implies unmerging any merged pages, like setting
2905 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2906 * merging on all compatible VMA's remains enabled.
2907 *
2908 * @mm: Pointer to mm
2909 *
2910 * Returns 0 on success, otherwise error code
2911 */
2912int ksm_disable_merge_any(struct mm_struct *mm)
2913{
2914 int err;
2915
2916 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2917 return 0;
2918
2919 err = ksm_del_vmas(mm);
2920 if (err) {
2921 ksm_add_vmas(mm);
2922 return err;
2923 }
2924
2925 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2926 return 0;
2927}
2928
2c281f54
DH
2929int ksm_disable(struct mm_struct *mm)
2930{
2931 mmap_assert_write_locked(mm);
2932
2933 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2934 return 0;
2935 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2936 return ksm_disable_merge_any(mm);
2937 return ksm_del_vmas(mm);
2938}
2939
f8af4da3
HD
2940int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2941 unsigned long end, int advice, unsigned long *vm_flags)
2942{
2943 struct mm_struct *mm = vma->vm_mm;
d952b791 2944 int err;
f8af4da3
HD
2945
2946 switch (advice) {
2947 case MADV_MERGEABLE:
d7597f59 2948 if (vma->vm_flags & VM_MERGEABLE)
e1fb4a08 2949 return 0;
d7597f59 2950 if (!vma_ksm_compatible(vma))
74a04967 2951 return 0;
cc2383ec 2952
d952b791
HD
2953 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2954 err = __ksm_enter(mm);
2955 if (err)
2956 return err;
2957 }
f8af4da3
HD
2958
2959 *vm_flags |= VM_MERGEABLE;
2960 break;
2961
2962 case MADV_UNMERGEABLE:
2963 if (!(*vm_flags & VM_MERGEABLE))
2964 return 0; /* just ignore the advice */
2965
d952b791 2966 if (vma->anon_vma) {
49b06385 2967 err = unmerge_ksm_pages(vma, start, end, true);
d952b791
HD
2968 if (err)
2969 return err;
2970 }
f8af4da3
HD
2971
2972 *vm_flags &= ~VM_MERGEABLE;
2973 break;
2974 }
2975
2976 return 0;
2977}
33cf1707 2978EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2979
2980int __ksm_enter(struct mm_struct *mm)
2981{
21fbd591 2982 struct ksm_mm_slot *mm_slot;
58730ab6 2983 struct mm_slot *slot;
6e158384
HD
2984 int needs_wakeup;
2985
58730ab6 2986 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2987 if (!mm_slot)
2988 return -ENOMEM;
2989
58730ab6
QZ
2990 slot = &mm_slot->slot;
2991
6e158384 2992 /* Check ksm_run too? Would need tighter locking */
58730ab6 2993 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2994
31dbd01f 2995 spin_lock(&ksm_mmlist_lock);
58730ab6 2996 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2997 /*
cbf86cfe
HD
2998 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2999 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
3000 * down a little; when fork is followed by immediate exec, we don't
3001 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
3002 *
3003 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
3004 * scanning cursor, otherwise KSM pages in newly forked mms will be
3005 * missed: then we might as well insert at the end of the list.
31dbd01f 3006 */
cbf86cfe 3007 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 3008 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 3009 else
58730ab6 3010 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
3011 spin_unlock(&ksm_mmlist_lock);
3012
f8af4da3 3013 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 3014 mmgrab(mm);
6e158384
HD
3015
3016 if (needs_wakeup)
3017 wake_up_interruptible(&ksm_thread_wait);
3018
739100c8 3019 trace_ksm_enter(mm);
f8af4da3
HD
3020 return 0;
3021}
3022
1c2fb7a4 3023void __ksm_exit(struct mm_struct *mm)
f8af4da3 3024{
21fbd591 3025 struct ksm_mm_slot *mm_slot;
58730ab6 3026 struct mm_slot *slot;
9ba69294 3027 int easy_to_free = 0;
cd551f97 3028
31dbd01f 3029 /*
9ba69294
HD
3030 * This process is exiting: if it's straightforward (as is the
3031 * case when ksmd was never running), free mm_slot immediately.
3032 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 3033 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
3034 * are freed, and leave the mm_slot on the list for ksmd to free.
3035 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 3036 */
9ba69294 3037
cd551f97 3038 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
3039 slot = mm_slot_lookup(mm_slots_hash, mm);
3040 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 3041 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 3042 if (!mm_slot->rmap_list) {
58730ab6
QZ
3043 hash_del(&slot->hash);
3044 list_del(&slot->mm_node);
9ba69294
HD
3045 easy_to_free = 1;
3046 } else {
58730ab6
QZ
3047 list_move(&slot->mm_node,
3048 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 3049 }
cd551f97 3050 }
cd551f97
HD
3051 spin_unlock(&ksm_mmlist_lock);
3052
9ba69294 3053 if (easy_to_free) {
58730ab6 3054 mm_slot_free(mm_slot_cache, mm_slot);
d7597f59 3055 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294
HD
3056 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3057 mmdrop(mm);
3058 } else if (mm_slot) {
d8ed45c5
ML
3059 mmap_write_lock(mm);
3060 mmap_write_unlock(mm);
9ba69294 3061 }
739100c8
SR
3062
3063 trace_ksm_exit(mm);
31dbd01f
IE
3064}
3065
96db66d9 3066struct folio *ksm_might_need_to_copy(struct folio *folio,
1486fb50 3067 struct vm_area_struct *vma, unsigned long addr)
5ad64688 3068{
96db66d9 3069 struct page *page = folio_page(folio, 0);
e05b3453 3070 struct anon_vma *anon_vma = folio_anon_vma(folio);
1486fb50 3071 struct folio *new_folio;
5ad64688 3072
1486fb50 3073 if (folio_test_large(folio))
96db66d9 3074 return folio;
1486fb50
KW
3075
3076 if (folio_test_ksm(folio)) {
3077 if (folio_stable_node(folio) &&
cbf86cfe 3078 !(ksm_run & KSM_RUN_UNMERGE))
96db66d9 3079 return folio; /* no need to copy it */
cbf86cfe 3080 } else if (!anon_vma) {
96db66d9 3081 return folio; /* no need to copy it */
1486fb50 3082 } else if (folio->index == linear_page_index(vma, addr) &&
e1c63e11 3083 anon_vma->root == vma->anon_vma->root) {
96db66d9 3084 return folio; /* still no need to copy it */
cbf86cfe 3085 }
f985fc32
ML
3086 if (PageHWPoison(page))
3087 return ERR_PTR(-EHWPOISON);
1486fb50 3088 if (!folio_test_uptodate(folio))
96db66d9 3089 return folio; /* let do_swap_page report the error */
cbf86cfe 3090
1486fb50
KW
3091 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3092 if (new_folio &&
3093 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3094 folio_put(new_folio);
3095 new_folio = NULL;
62fdb163 3096 }
1486fb50 3097 if (new_folio) {
96db66d9
MWO
3098 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3099 addr, vma)) {
1486fb50 3100 folio_put(new_folio);
96db66d9 3101 memory_failure_queue(folio_pfn(folio), 0);
6b970599
KW
3102 return ERR_PTR(-EHWPOISON);
3103 }
1486fb50
KW
3104 folio_set_dirty(new_folio);
3105 __folio_mark_uptodate(new_folio);
3106 __folio_set_locked(new_folio);
4d45c3af
YY
3107#ifdef CONFIG_SWAP
3108 count_vm_event(KSM_SWPIN_COPY);
3109#endif
5ad64688
HD
3110 }
3111
96db66d9 3112 return new_folio;
5ad64688
HD
3113}
3114
6d4675e6 3115void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 3116{
21fbd591
QZ
3117 struct ksm_stable_node *stable_node;
3118 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
3119 int search_new_forks = 0;
3120
2f031c6f 3121 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
3122
3123 /*
3124 * Rely on the page lock to protect against concurrent modifications
3125 * to that page's node of the stable tree.
3126 */
2f031c6f 3127 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 3128
2f031c6f 3129 stable_node = folio_stable_node(folio);
e9995ef9 3130 if (!stable_node)
1df631ae 3131 return;
e9995ef9 3132again:
b67bfe0d 3133 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 3134 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 3135 struct anon_vma_chain *vmac;
e9995ef9
HD
3136 struct vm_area_struct *vma;
3137
ad12695f 3138 cond_resched();
6d4675e6
MK
3139 if (!anon_vma_trylock_read(anon_vma)) {
3140 if (rwc->try_lock) {
3141 rwc->contended = true;
3142 return;
3143 }
3144 anon_vma_lock_read(anon_vma);
3145 }
bf181b9f
ML
3146 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3147 0, ULONG_MAX) {
1105a2fc
JH
3148 unsigned long addr;
3149
ad12695f 3150 cond_resched();
5beb4930 3151 vma = vmac->vma;
1105a2fc
JH
3152
3153 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 3154 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
3155
3156 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
3157 continue;
3158 /*
3159 * Initially we examine only the vma which covers this
3160 * rmap_item; but later, if there is still work to do,
3161 * we examine covering vmas in other mms: in case they
3162 * were forked from the original since ksmd passed.
3163 */
3164 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3165 continue;
3166
0dd1c7bb
JK
3167 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3168 continue;
3169
2f031c6f 3170 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 3171 anon_vma_unlock_read(anon_vma);
1df631ae 3172 return;
e9995ef9 3173 }
2f031c6f 3174 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 3175 anon_vma_unlock_read(anon_vma);
1df631ae 3176 return;
0dd1c7bb 3177 }
e9995ef9 3178 }
b6b19f25 3179 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
3180 }
3181 if (!search_new_forks++)
3182 goto again;
e9995ef9
HD
3183}
3184
4248d008
LX
3185#ifdef CONFIG_MEMORY_FAILURE
3186/*
3187 * Collect processes when the error hit an ksm page.
3188 */
3189void collect_procs_ksm(struct page *page, struct list_head *to_kill,
3190 int force_early)
3191{
3192 struct ksm_stable_node *stable_node;
3193 struct ksm_rmap_item *rmap_item;
3194 struct folio *folio = page_folio(page);
3195 struct vm_area_struct *vma;
3196 struct task_struct *tsk;
3197
3198 stable_node = folio_stable_node(folio);
3199 if (!stable_node)
3200 return;
3201 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3202 struct anon_vma *av = rmap_item->anon_vma;
3203
3204 anon_vma_lock_read(av);
d256d1cd 3205 rcu_read_lock();
4248d008
LX
3206 for_each_process(tsk) {
3207 struct anon_vma_chain *vmac;
3208 unsigned long addr;
3209 struct task_struct *t =
3210 task_early_kill(tsk, force_early);
3211 if (!t)
3212 continue;
3213 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3214 ULONG_MAX)
3215 {
3216 vma = vmac->vma;
3217 if (vma->vm_mm == t->mm) {
3218 addr = rmap_item->address & PAGE_MASK;
3219 add_to_kill_ksm(t, page, vma, to_kill,
3220 addr);
3221 }
3222 }
3223 }
d256d1cd 3224 rcu_read_unlock();
4248d008
LX
3225 anon_vma_unlock_read(av);
3226 }
3227}
3228#endif
3229
52629506 3230#ifdef CONFIG_MIGRATION
19138349 3231void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 3232{
21fbd591 3233 struct ksm_stable_node *stable_node;
e9995ef9 3234
19138349
MWO
3235 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3236 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3237 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 3238
19138349 3239 stable_node = folio_stable_node(folio);
e9995ef9 3240 if (stable_node) {
19138349
MWO
3241 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3242 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 3243 /*
19138349 3244 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 3245 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
3246 * to get_ksm_page() before it can see that folio->mapping
3247 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
3248 */
3249 smp_wmb();
b8b0ff24 3250 folio_set_stable_node(folio, NULL);
e9995ef9
HD
3251 }
3252}
3253#endif /* CONFIG_MIGRATION */
3254
62b61f61 3255#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
3256static void wait_while_offlining(void)
3257{
3258 while (ksm_run & KSM_RUN_OFFLINE) {
3259 mutex_unlock(&ksm_thread_mutex);
3260 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 3261 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
3262 mutex_lock(&ksm_thread_mutex);
3263 }
3264}
3265
21fbd591 3266static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3267 unsigned long start_pfn,
3268 unsigned long end_pfn)
3269{
3270 if (stable_node->kpfn >= start_pfn &&
3271 stable_node->kpfn < end_pfn) {
3272 /*
3273 * Don't get_ksm_page, page has already gone:
3274 * which is why we keep kpfn instead of page*
3275 */
3276 remove_node_from_stable_tree(stable_node);
3277 return true;
3278 }
3279 return false;
3280}
3281
21fbd591 3282static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3283 unsigned long start_pfn,
3284 unsigned long end_pfn,
3285 struct rb_root *root)
3286{
21fbd591 3287 struct ksm_stable_node *dup;
2c653d0e
AA
3288 struct hlist_node *hlist_safe;
3289
3290 if (!is_stable_node_chain(stable_node)) {
3291 VM_BUG_ON(is_stable_node_dup(stable_node));
3292 return stable_node_dup_remove_range(stable_node, start_pfn,
3293 end_pfn);
3294 }
3295
3296 hlist_for_each_entry_safe(dup, hlist_safe,
3297 &stable_node->hlist, hlist_dup) {
3298 VM_BUG_ON(!is_stable_node_dup(dup));
3299 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3300 }
3301 if (hlist_empty(&stable_node->hlist)) {
3302 free_stable_node_chain(stable_node, root);
3303 return true; /* notify caller that tree was rebalanced */
3304 } else
3305 return false;
3306}
3307
ee0ea59c
HD
3308static void ksm_check_stable_tree(unsigned long start_pfn,
3309 unsigned long end_pfn)
62b61f61 3310{
21fbd591 3311 struct ksm_stable_node *stable_node, *next;
62b61f61 3312 struct rb_node *node;
90bd6fd3 3313 int nid;
62b61f61 3314
ef53d16c
HD
3315 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3316 node = rb_first(root_stable_tree + nid);
ee0ea59c 3317 while (node) {
21fbd591 3318 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
3319 if (stable_node_chain_remove_range(stable_node,
3320 start_pfn, end_pfn,
3321 root_stable_tree +
3322 nid))
ef53d16c 3323 node = rb_first(root_stable_tree + nid);
2c653d0e 3324 else
ee0ea59c
HD
3325 node = rb_next(node);
3326 cond_resched();
90bd6fd3 3327 }
ee0ea59c 3328 }
03640418 3329 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
3330 if (stable_node->kpfn >= start_pfn &&
3331 stable_node->kpfn < end_pfn)
3332 remove_node_from_stable_tree(stable_node);
3333 cond_resched();
3334 }
62b61f61
HD
3335}
3336
3337static int ksm_memory_callback(struct notifier_block *self,
3338 unsigned long action, void *arg)
3339{
3340 struct memory_notify *mn = arg;
62b61f61
HD
3341
3342 switch (action) {
3343 case MEM_GOING_OFFLINE:
3344 /*
ef4d43a8
HD
3345 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3346 * and remove_all_stable_nodes() while memory is going offline:
3347 * it is unsafe for them to touch the stable tree at this time.
3348 * But unmerge_ksm_pages(), rmap lookups and other entry points
3349 * which do not need the ksm_thread_mutex are all safe.
62b61f61 3350 */
ef4d43a8
HD
3351 mutex_lock(&ksm_thread_mutex);
3352 ksm_run |= KSM_RUN_OFFLINE;
3353 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
3354 break;
3355
3356 case MEM_OFFLINE:
3357 /*
3358 * Most of the work is done by page migration; but there might
3359 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
3360 * pages which have been offlined: prune those from the tree,
3361 * otherwise get_ksm_page() might later try to access a
3362 * non-existent struct page.
62b61f61 3363 */
ee0ea59c
HD
3364 ksm_check_stable_tree(mn->start_pfn,
3365 mn->start_pfn + mn->nr_pages);
e4a9bc58 3366 fallthrough;
62b61f61 3367 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
3368 mutex_lock(&ksm_thread_mutex);
3369 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 3370 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
3371
3372 smp_mb(); /* wake_up_bit advises this */
3373 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
3374 break;
3375 }
3376 return NOTIFY_OK;
3377}
ef4d43a8
HD
3378#else
3379static void wait_while_offlining(void)
3380{
3381}
62b61f61
HD
3382#endif /* CONFIG_MEMORY_HOTREMOVE */
3383
d21077fb
SR
3384#ifdef CONFIG_PROC_FS
3385long ksm_process_profit(struct mm_struct *mm)
3386{
1a8e8430 3387 return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
d21077fb
SR
3388 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3389}
3390#endif /* CONFIG_PROC_FS */
3391
2ffd8679
HD
3392#ifdef CONFIG_SYSFS
3393/*
3394 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3395 */
3396
31dbd01f
IE
3397#define KSM_ATTR_RO(_name) \
3398 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3399#define KSM_ATTR(_name) \
1bad2e5c 3400 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
3401
3402static ssize_t sleep_millisecs_show(struct kobject *kobj,
3403 struct kobj_attribute *attr, char *buf)
3404{
ae7a927d 3405 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
3406}
3407
3408static ssize_t sleep_millisecs_store(struct kobject *kobj,
3409 struct kobj_attribute *attr,
3410 const char *buf, size_t count)
3411{
dfefd226 3412 unsigned int msecs;
31dbd01f
IE
3413 int err;
3414
dfefd226
AD
3415 err = kstrtouint(buf, 10, &msecs);
3416 if (err)
31dbd01f
IE
3417 return -EINVAL;
3418
3419 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 3420 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
3421
3422 return count;
3423}
3424KSM_ATTR(sleep_millisecs);
3425
3426static ssize_t pages_to_scan_show(struct kobject *kobj,
3427 struct kobj_attribute *attr, char *buf)
3428{
ae7a927d 3429 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
3430}
3431
3432static ssize_t pages_to_scan_store(struct kobject *kobj,
3433 struct kobj_attribute *attr,
3434 const char *buf, size_t count)
3435{
dfefd226 3436 unsigned int nr_pages;
31dbd01f 3437 int err;
31dbd01f 3438
4e5fa4f5
SR
3439 if (ksm_advisor != KSM_ADVISOR_NONE)
3440 return -EINVAL;
3441
dfefd226
AD
3442 err = kstrtouint(buf, 10, &nr_pages);
3443 if (err)
31dbd01f
IE
3444 return -EINVAL;
3445
3446 ksm_thread_pages_to_scan = nr_pages;
3447
3448 return count;
3449}
3450KSM_ATTR(pages_to_scan);
3451
3452static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3453 char *buf)
3454{
ae7a927d 3455 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
3456}
3457
3458static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3459 const char *buf, size_t count)
3460{
dfefd226 3461 unsigned int flags;
31dbd01f 3462 int err;
31dbd01f 3463
dfefd226
AD
3464 err = kstrtouint(buf, 10, &flags);
3465 if (err)
31dbd01f
IE
3466 return -EINVAL;
3467 if (flags > KSM_RUN_UNMERGE)
3468 return -EINVAL;
3469
3470 /*
3471 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3472 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
3473 * breaking COW to free the pages_shared (but leaves mm_slots
3474 * on the list for when ksmd may be set running again).
31dbd01f
IE
3475 */
3476
3477 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3478 wait_while_offlining();
31dbd01f
IE
3479 if (ksm_run != flags) {
3480 ksm_run = flags;
d952b791 3481 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 3482 set_current_oom_origin();
d952b791 3483 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 3484 clear_current_oom_origin();
d952b791
HD
3485 if (err) {
3486 ksm_run = KSM_RUN_STOP;
3487 count = err;
3488 }
3489 }
31dbd01f
IE
3490 }
3491 mutex_unlock(&ksm_thread_mutex);
3492
3493 if (flags & KSM_RUN_MERGE)
3494 wake_up_interruptible(&ksm_thread_wait);
3495
3496 return count;
3497}
3498KSM_ATTR(run);
3499
90bd6fd3
PH
3500#ifdef CONFIG_NUMA
3501static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 3502 struct kobj_attribute *attr, char *buf)
90bd6fd3 3503{
ae7a927d 3504 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
3505}
3506
3507static ssize_t merge_across_nodes_store(struct kobject *kobj,
3508 struct kobj_attribute *attr,
3509 const char *buf, size_t count)
3510{
3511 int err;
3512 unsigned long knob;
3513
3514 err = kstrtoul(buf, 10, &knob);
3515 if (err)
3516 return err;
3517 if (knob > 1)
3518 return -EINVAL;
3519
3520 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3521 wait_while_offlining();
90bd6fd3 3522 if (ksm_merge_across_nodes != knob) {
cbf86cfe 3523 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 3524 err = -EBUSY;
ef53d16c
HD
3525 else if (root_stable_tree == one_stable_tree) {
3526 struct rb_root *buf;
3527 /*
3528 * This is the first time that we switch away from the
3529 * default of merging across nodes: must now allocate
3530 * a buffer to hold as many roots as may be needed.
3531 * Allocate stable and unstable together:
3532 * MAXSMP NODES_SHIFT 10 will use 16kB.
3533 */
bafe1e14
JP
3534 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3535 GFP_KERNEL);
ef53d16c
HD
3536 /* Let us assume that RB_ROOT is NULL is zero */
3537 if (!buf)
3538 err = -ENOMEM;
3539 else {
3540 root_stable_tree = buf;
3541 root_unstable_tree = buf + nr_node_ids;
3542 /* Stable tree is empty but not the unstable */
3543 root_unstable_tree[0] = one_unstable_tree[0];
3544 }
3545 }
3546 if (!err) {
90bd6fd3 3547 ksm_merge_across_nodes = knob;
ef53d16c
HD
3548 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3549 }
90bd6fd3
PH
3550 }
3551 mutex_unlock(&ksm_thread_mutex);
3552
3553 return err ? err : count;
3554}
3555KSM_ATTR(merge_across_nodes);
3556#endif
3557
e86c59b1 3558static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3559 struct kobj_attribute *attr, char *buf)
e86c59b1 3560{
ae7a927d 3561 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3562}
3563static ssize_t use_zero_pages_store(struct kobject *kobj,
3564 struct kobj_attribute *attr,
3565 const char *buf, size_t count)
3566{
3567 int err;
3568 bool value;
3569
3570 err = kstrtobool(buf, &value);
3571 if (err)
3572 return -EINVAL;
3573
3574 ksm_use_zero_pages = value;
3575
3576 return count;
3577}
3578KSM_ATTR(use_zero_pages);
3579
2c653d0e
AA
3580static ssize_t max_page_sharing_show(struct kobject *kobj,
3581 struct kobj_attribute *attr, char *buf)
3582{
ae7a927d 3583 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3584}
3585
3586static ssize_t max_page_sharing_store(struct kobject *kobj,
3587 struct kobj_attribute *attr,
3588 const char *buf, size_t count)
3589{
3590 int err;
3591 int knob;
3592
3593 err = kstrtoint(buf, 10, &knob);
3594 if (err)
3595 return err;
3596 /*
3597 * When a KSM page is created it is shared by 2 mappings. This
3598 * being a signed comparison, it implicitly verifies it's not
3599 * negative.
3600 */
3601 if (knob < 2)
3602 return -EINVAL;
3603
3604 if (READ_ONCE(ksm_max_page_sharing) == knob)
3605 return count;
3606
3607 mutex_lock(&ksm_thread_mutex);
3608 wait_while_offlining();
3609 if (ksm_max_page_sharing != knob) {
3610 if (ksm_pages_shared || remove_all_stable_nodes())
3611 err = -EBUSY;
3612 else
3613 ksm_max_page_sharing = knob;
3614 }
3615 mutex_unlock(&ksm_thread_mutex);
3616
3617 return err ? err : count;
3618}
3619KSM_ATTR(max_page_sharing);
3620
b348b5fe
SR
3621static ssize_t pages_scanned_show(struct kobject *kobj,
3622 struct kobj_attribute *attr, char *buf)
3623{
3624 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3625}
3626KSM_ATTR_RO(pages_scanned);
3627
b4028260
HD
3628static ssize_t pages_shared_show(struct kobject *kobj,
3629 struct kobj_attribute *attr, char *buf)
3630{
ae7a927d 3631 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3632}
3633KSM_ATTR_RO(pages_shared);
3634
3635static ssize_t pages_sharing_show(struct kobject *kobj,
3636 struct kobj_attribute *attr, char *buf)
3637{
ae7a927d 3638 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3639}
3640KSM_ATTR_RO(pages_sharing);
3641
473b0ce4
HD
3642static ssize_t pages_unshared_show(struct kobject *kobj,
3643 struct kobj_attribute *attr, char *buf)
3644{
ae7a927d 3645 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3646}
3647KSM_ATTR_RO(pages_unshared);
3648
3649static ssize_t pages_volatile_show(struct kobject *kobj,
3650 struct kobj_attribute *attr, char *buf)
3651{
3652 long ksm_pages_volatile;
3653
3654 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3655 - ksm_pages_sharing - ksm_pages_unshared;
3656 /*
3657 * It was not worth any locking to calculate that statistic,
3658 * but it might therefore sometimes be negative: conceal that.
3659 */
3660 if (ksm_pages_volatile < 0)
3661 ksm_pages_volatile = 0;
ae7a927d 3662 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3663}
3664KSM_ATTR_RO(pages_volatile);
3665
e5a68991
SR
3666static ssize_t pages_skipped_show(struct kobject *kobj,
3667 struct kobj_attribute *attr, char *buf)
3668{
3669 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3670}
3671KSM_ATTR_RO(pages_skipped);
3672
e2942062 3673static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3674 struct kobj_attribute *attr, char *buf)
3675{
3676 return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3677}
3678KSM_ATTR_RO(ksm_zero_pages);
3679
d21077fb
SR
3680static ssize_t general_profit_show(struct kobject *kobj,
3681 struct kobj_attribute *attr, char *buf)
3682{
3683 long general_profit;
3684
1a8e8430 3685 general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
d21077fb
SR
3686 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3687
3688 return sysfs_emit(buf, "%ld\n", general_profit);
3689}
3690KSM_ATTR_RO(general_profit);
3691
2c653d0e
AA
3692static ssize_t stable_node_dups_show(struct kobject *kobj,
3693 struct kobj_attribute *attr, char *buf)
3694{
ae7a927d 3695 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3696}
3697KSM_ATTR_RO(stable_node_dups);
3698
3699static ssize_t stable_node_chains_show(struct kobject *kobj,
3700 struct kobj_attribute *attr, char *buf)
3701{
ae7a927d 3702 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3703}
3704KSM_ATTR_RO(stable_node_chains);
3705
3706static ssize_t
3707stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3708 struct kobj_attribute *attr,
3709 char *buf)
3710{
ae7a927d 3711 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3712}
3713
3714static ssize_t
3715stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3716 struct kobj_attribute *attr,
3717 const char *buf, size_t count)
3718{
584ff0df 3719 unsigned int msecs;
2c653d0e
AA
3720 int err;
3721
584ff0df
ZB
3722 err = kstrtouint(buf, 10, &msecs);
3723 if (err)
2c653d0e
AA
3724 return -EINVAL;
3725
3726 ksm_stable_node_chains_prune_millisecs = msecs;
3727
3728 return count;
3729}
3730KSM_ATTR(stable_node_chains_prune_millisecs);
3731
473b0ce4
HD
3732static ssize_t full_scans_show(struct kobject *kobj,
3733 struct kobj_attribute *attr, char *buf)
3734{
ae7a927d 3735 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3736}
3737KSM_ATTR_RO(full_scans);
3738
5e924ff5
SR
3739static ssize_t smart_scan_show(struct kobject *kobj,
3740 struct kobj_attribute *attr, char *buf)
3741{
3742 return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3743}
3744
3745static ssize_t smart_scan_store(struct kobject *kobj,
3746 struct kobj_attribute *attr,
3747 const char *buf, size_t count)
3748{
3749 int err;
3750 bool value;
3751
3752 err = kstrtobool(buf, &value);
3753 if (err)
3754 return -EINVAL;
3755
3756 ksm_smart_scan = value;
3757 return count;
3758}
3759KSM_ATTR(smart_scan);
3760
66790e9a
SR
3761static ssize_t advisor_mode_show(struct kobject *kobj,
3762 struct kobj_attribute *attr, char *buf)
3763{
3764 const char *output;
3765
3766 if (ksm_advisor == KSM_ADVISOR_NONE)
3767 output = "[none] scan-time";
3768 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3769 output = "none [scan-time]";
3770
3771 return sysfs_emit(buf, "%s\n", output);
3772}
3773
3774static ssize_t advisor_mode_store(struct kobject *kobj,
3775 struct kobj_attribute *attr, const char *buf,
3776 size_t count)
3777{
3778 enum ksm_advisor_type curr_advisor = ksm_advisor;
3779
3780 if (sysfs_streq("scan-time", buf))
3781 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3782 else if (sysfs_streq("none", buf))
3783 ksm_advisor = KSM_ADVISOR_NONE;
3784 else
3785 return -EINVAL;
3786
3787 /* Set advisor default values */
3788 if (curr_advisor != ksm_advisor)
3789 set_advisor_defaults();
3790
3791 return count;
3792}
3793KSM_ATTR(advisor_mode);
3794
3795static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3796 struct kobj_attribute *attr, char *buf)
3797{
3798 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3799}
3800
3801static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3802 struct kobj_attribute *attr,
3803 const char *buf, size_t count)
3804{
3805 int err;
3806 unsigned long value;
3807
3808 err = kstrtoul(buf, 10, &value);
3809 if (err)
3810 return -EINVAL;
3811
3812 ksm_advisor_max_cpu = value;
3813 return count;
3814}
3815KSM_ATTR(advisor_max_cpu);
3816
3817static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3818 struct kobj_attribute *attr, char *buf)
3819{
3820 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3821}
3822
3823static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3824 struct kobj_attribute *attr,
3825 const char *buf, size_t count)
3826{
3827 int err;
3828 unsigned long value;
3829
3830 err = kstrtoul(buf, 10, &value);
3831 if (err)
3832 return -EINVAL;
3833
3834 ksm_advisor_min_pages_to_scan = value;
3835 return count;
3836}
3837KSM_ATTR(advisor_min_pages_to_scan);
3838
3839static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3840 struct kobj_attribute *attr, char *buf)
3841{
3842 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3843}
3844
3845static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3846 struct kobj_attribute *attr,
3847 const char *buf, size_t count)
3848{
3849 int err;
3850 unsigned long value;
3851
3852 err = kstrtoul(buf, 10, &value);
3853 if (err)
3854 return -EINVAL;
3855
3856 ksm_advisor_max_pages_to_scan = value;
3857 return count;
3858}
3859KSM_ATTR(advisor_max_pages_to_scan);
3860
3861static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3862 struct kobj_attribute *attr, char *buf)
3863{
3864 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3865}
3866
3867static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3868 struct kobj_attribute *attr,
3869 const char *buf, size_t count)
3870{
3871 int err;
3872 unsigned long value;
3873
3874 err = kstrtoul(buf, 10, &value);
3875 if (err)
3876 return -EINVAL;
3877 if (value < 1)
3878 return -EINVAL;
3879
3880 ksm_advisor_target_scan_time = value;
3881 return count;
3882}
3883KSM_ATTR(advisor_target_scan_time);
3884
31dbd01f
IE
3885static struct attribute *ksm_attrs[] = {
3886 &sleep_millisecs_attr.attr,
3887 &pages_to_scan_attr.attr,
3888 &run_attr.attr,
b348b5fe 3889 &pages_scanned_attr.attr,
b4028260
HD
3890 &pages_shared_attr.attr,
3891 &pages_sharing_attr.attr,
473b0ce4
HD
3892 &pages_unshared_attr.attr,
3893 &pages_volatile_attr.attr,
e5a68991 3894 &pages_skipped_attr.attr,
e2942062 3895 &ksm_zero_pages_attr.attr,
473b0ce4 3896 &full_scans_attr.attr,
90bd6fd3
PH
3897#ifdef CONFIG_NUMA
3898 &merge_across_nodes_attr.attr,
3899#endif
2c653d0e
AA
3900 &max_page_sharing_attr.attr,
3901 &stable_node_chains_attr.attr,
3902 &stable_node_dups_attr.attr,
3903 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3904 &use_zero_pages_attr.attr,
d21077fb 3905 &general_profit_attr.attr,
5e924ff5 3906 &smart_scan_attr.attr,
66790e9a
SR
3907 &advisor_mode_attr.attr,
3908 &advisor_max_cpu_attr.attr,
3909 &advisor_min_pages_to_scan_attr.attr,
3910 &advisor_max_pages_to_scan_attr.attr,
3911 &advisor_target_scan_time_attr.attr,
31dbd01f
IE
3912 NULL,
3913};
3914
f907c26a 3915static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3916 .attrs = ksm_attrs,
3917 .name = "ksm",
3918};
2ffd8679 3919#endif /* CONFIG_SYSFS */
31dbd01f
IE
3920
3921static int __init ksm_init(void)
3922{
3923 struct task_struct *ksm_thread;
3924 int err;
3925
e86c59b1
CI
3926 /* The correct value depends on page size and endianness */
3927 zero_checksum = calc_checksum(ZERO_PAGE(0));
3928 /* Default to false for backwards compatibility */
3929 ksm_use_zero_pages = false;
3930
31dbd01f
IE
3931 err = ksm_slab_init();
3932 if (err)
3933 goto out;
3934
31dbd01f
IE
3935 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3936 if (IS_ERR(ksm_thread)) {
25acde31 3937 pr_err("ksm: creating kthread failed\n");
31dbd01f 3938 err = PTR_ERR(ksm_thread);
d9f8984c 3939 goto out_free;
31dbd01f
IE
3940 }
3941
2ffd8679 3942#ifdef CONFIG_SYSFS
31dbd01f
IE
3943 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3944 if (err) {
25acde31 3945 pr_err("ksm: register sysfs failed\n");
2ffd8679 3946 kthread_stop(ksm_thread);
d9f8984c 3947 goto out_free;
31dbd01f 3948 }
c73602ad
HD
3949#else
3950 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3951
2ffd8679 3952#endif /* CONFIG_SYSFS */
31dbd01f 3953
62b61f61 3954#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3955 /* There is no significance to this priority 100 */
1eeaa4fd 3956 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3957#endif
31dbd01f
IE
3958 return 0;
3959
d9f8984c 3960out_free:
31dbd01f
IE
3961 ksm_slab_free();
3962out:
3963 return err;
f8af4da3 3964}
a64fb3cd 3965subsys_initcall(ksm_init);
This page took 1.512164 seconds and 4 git commands to generate.