]> Git Repo - linux.git/blame - mm/ksm.c
mm/khugepaged: page_remove_rmap() -> folio_remove_rmap_pte()
[linux.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
4e5fa4f5 24#include <linux/sched/cputime.h>
31dbd01f
IE
25#include <linux/rwsem.h>
26#include <linux/pagemap.h>
27#include <linux/rmap.h>
28#include <linux/spinlock.h>
59e1a2f4 29#include <linux/xxhash.h>
31dbd01f
IE
30#include <linux/delay.h>
31#include <linux/kthread.h>
32#include <linux/wait.h>
33#include <linux/slab.h>
34#include <linux/rbtree.h>
62b61f61 35#include <linux/memory.h>
31dbd01f 36#include <linux/mmu_notifier.h>
2c6854fd 37#include <linux/swap.h>
f8af4da3 38#include <linux/ksm.h>
4ca3a69b 39#include <linux/hashtable.h>
878aee7d 40#include <linux/freezer.h>
72788c38 41#include <linux/oom.h>
90bd6fd3 42#include <linux/numa.h>
d7c0e68d 43#include <linux/pagewalk.h>
f8af4da3 44
31dbd01f 45#include <asm/tlbflush.h>
73848b46 46#include "internal.h"
58730ab6 47#include "mm_slot.h"
31dbd01f 48
739100c8
SR
49#define CREATE_TRACE_POINTS
50#include <trace/events/ksm.h>
51
e850dcf5
HD
52#ifdef CONFIG_NUMA
53#define NUMA(x) (x)
54#define DO_NUMA(x) do { (x); } while (0)
55#else
56#define NUMA(x) (0)
57#define DO_NUMA(x) do { } while (0)
58#endif
59
5e924ff5
SR
60typedef u8 rmap_age_t;
61
5a2ca3ef
MR
62/**
63 * DOC: Overview
64 *
31dbd01f
IE
65 * A few notes about the KSM scanning process,
66 * to make it easier to understand the data structures below:
67 *
68 * In order to reduce excessive scanning, KSM sorts the memory pages by their
69 * contents into a data structure that holds pointers to the pages' locations.
70 *
71 * Since the contents of the pages may change at any moment, KSM cannot just
72 * insert the pages into a normal sorted tree and expect it to find anything.
73 * Therefore KSM uses two data structures - the stable and the unstable tree.
74 *
75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76 * by their contents. Because each such page is write-protected, searching on
77 * this tree is fully assured to be working (except when pages are unmapped),
78 * and therefore this tree is called the stable tree.
79 *
5a2ca3ef
MR
80 * The stable tree node includes information required for reverse
81 * mapping from a KSM page to virtual addresses that map this page.
82 *
83 * In order to avoid large latencies of the rmap walks on KSM pages,
84 * KSM maintains two types of nodes in the stable tree:
85 *
86 * * the regular nodes that keep the reverse mapping structures in a
87 * linked list
88 * * the "chains" that link nodes ("dups") that represent the same
89 * write protected memory content, but each "dup" corresponds to a
90 * different KSM page copy of that content
91 *
92 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 93 * using the same struct ksm_stable_node structure.
5a2ca3ef 94 *
31dbd01f
IE
95 * In addition to the stable tree, KSM uses a second data structure called the
96 * unstable tree: this tree holds pointers to pages which have been found to
97 * be "unchanged for a period of time". The unstable tree sorts these pages
98 * by their contents, but since they are not write-protected, KSM cannot rely
99 * upon the unstable tree to work correctly - the unstable tree is liable to
100 * be corrupted as its contents are modified, and so it is called unstable.
101 *
102 * KSM solves this problem by several techniques:
103 *
104 * 1) The unstable tree is flushed every time KSM completes scanning all
105 * memory areas, and then the tree is rebuilt again from the beginning.
106 * 2) KSM will only insert into the unstable tree, pages whose hash value
107 * has not changed since the previous scan of all memory areas.
108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109 * colors of the nodes and not on their contents, assuring that even when
110 * the tree gets "corrupted" it won't get out of balance, so scanning time
111 * remains the same (also, searching and inserting nodes in an rbtree uses
112 * the same algorithm, so we have no overhead when we flush and rebuild).
113 * 4) KSM never flushes the stable tree, which means that even if it were to
114 * take 10 attempts to find a page in the unstable tree, once it is found,
115 * it is secured in the stable tree. (When we scan a new page, we first
116 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
117 *
118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
120 */
121
122/**
21fbd591 123 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 124 * @slot: hash lookup from mm to mm_slot
6514d511 125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 126 */
21fbd591 127struct ksm_mm_slot {
58730ab6 128 struct mm_slot slot;
21fbd591 129 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
130};
131
132/**
133 * struct ksm_scan - cursor for scanning
134 * @mm_slot: the current mm_slot we are scanning
135 * @address: the next address inside that to be scanned
6514d511 136 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
137 * @seqnr: count of completed full scans (needed when removing unstable node)
138 *
139 * There is only the one ksm_scan instance of this cursor structure.
140 */
141struct ksm_scan {
21fbd591 142 struct ksm_mm_slot *mm_slot;
31dbd01f 143 unsigned long address;
21fbd591 144 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
145 unsigned long seqnr;
146};
147
7b6ba2c7 148/**
21fbd591 149 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 150 * @node: rb node of this ksm page in the stable tree
4146d2d6 151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 153 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 154 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
156 * @chain_prune_time: time of the last full garbage collection
157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 159 */
21fbd591 160struct ksm_stable_node {
4146d2d6
HD
161 union {
162 struct rb_node node; /* when node of stable tree */
163 struct { /* when listed for migration */
164 struct list_head *head;
2c653d0e
AA
165 struct {
166 struct hlist_node hlist_dup;
167 struct list_head list;
168 };
4146d2d6
HD
169 };
170 };
7b6ba2c7 171 struct hlist_head hlist;
2c653d0e
AA
172 union {
173 unsigned long kpfn;
174 unsigned long chain_prune_time;
175 };
176 /*
177 * STABLE_NODE_CHAIN can be any negative number in
178 * rmap_hlist_len negative range, but better not -1 to be able
179 * to reliably detect underflows.
180 */
181#define STABLE_NODE_CHAIN -1024
182 int rmap_hlist_len;
4146d2d6
HD
183#ifdef CONFIG_NUMA
184 int nid;
185#endif
7b6ba2c7
HD
186};
187
31dbd01f 188/**
21fbd591 189 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 192 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
193 * @mm: the memory structure this rmap_item is pointing into
194 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
196 * @node: rb node of this rmap_item in the unstable tree
197 * @head: pointer to stable_node heading this list in the stable tree
198 * @hlist: link into hlist of rmap_items hanging off that stable_node
5e924ff5
SR
199 * @age: number of scan iterations since creation
200 * @remaining_skips: how many scans to skip
31dbd01f 201 */
21fbd591
QZ
202struct ksm_rmap_item {
203 struct ksm_rmap_item *rmap_list;
bc56620b
HD
204 union {
205 struct anon_vma *anon_vma; /* when stable */
206#ifdef CONFIG_NUMA
207 int nid; /* when node of unstable tree */
208#endif
209 };
31dbd01f
IE
210 struct mm_struct *mm;
211 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 212 unsigned int oldchecksum; /* when unstable */
5e924ff5
SR
213 rmap_age_t age;
214 rmap_age_t remaining_skips;
31dbd01f 215 union {
7b6ba2c7
HD
216 struct rb_node node; /* when node of unstable tree */
217 struct { /* when listed from stable tree */
21fbd591 218 struct ksm_stable_node *head;
7b6ba2c7
HD
219 struct hlist_node hlist;
220 };
31dbd01f
IE
221 };
222};
223
224#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
225#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
226#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
227
228/* The stable and unstable tree heads */
ef53d16c
HD
229static struct rb_root one_stable_tree[1] = { RB_ROOT };
230static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231static struct rb_root *root_stable_tree = one_stable_tree;
232static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 233
4146d2d6
HD
234/* Recently migrated nodes of stable tree, pending proper placement */
235static LIST_HEAD(migrate_nodes);
2c653d0e 236#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 237
4ca3a69b
SL
238#define MM_SLOTS_HASH_BITS 10
239static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 240
21fbd591 241static struct ksm_mm_slot ksm_mm_head = {
58730ab6 242 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
243};
244static struct ksm_scan ksm_scan = {
245 .mm_slot = &ksm_mm_head,
246};
247
248static struct kmem_cache *rmap_item_cache;
7b6ba2c7 249static struct kmem_cache *stable_node_cache;
31dbd01f
IE
250static struct kmem_cache *mm_slot_cache;
251
4e5fa4f5
SR
252/* Default number of pages to scan per batch */
253#define DEFAULT_PAGES_TO_SCAN 100
254
b348b5fe
SR
255/* The number of pages scanned */
256static unsigned long ksm_pages_scanned;
257
31dbd01f 258/* The number of nodes in the stable tree */
b4028260 259static unsigned long ksm_pages_shared;
31dbd01f 260
e178dfde 261/* The number of page slots additionally sharing those nodes */
b4028260 262static unsigned long ksm_pages_sharing;
31dbd01f 263
473b0ce4
HD
264/* The number of nodes in the unstable tree */
265static unsigned long ksm_pages_unshared;
266
267/* The number of rmap_items in use: to calculate pages_volatile */
268static unsigned long ksm_rmap_items;
269
2c653d0e
AA
270/* The number of stable_node chains */
271static unsigned long ksm_stable_node_chains;
272
273/* The number of stable_node dups linked to the stable_node chains */
274static unsigned long ksm_stable_node_dups;
275
276/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 277static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
278
279/* Maximum number of page slots sharing a stable node */
280static int ksm_max_page_sharing = 256;
281
31dbd01f 282/* Number of pages ksmd should scan in one batch */
4e5fa4f5 283static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
31dbd01f
IE
284
285/* Milliseconds ksmd should sleep between batches */
2ffd8679 286static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 287
e86c59b1
CI
288/* Checksum of an empty (zeroed) page */
289static unsigned int zero_checksum __read_mostly;
290
291/* Whether to merge empty (zeroed) pages with actual zero pages */
292static bool ksm_use_zero_pages __read_mostly;
293
5e924ff5
SR
294/* Skip pages that couldn't be de-duplicated previously */
295/* Default to true at least temporarily, for testing */
296static bool ksm_smart_scan = true;
297
e2942062 298/* The number of zero pages which is placed by KSM */
299unsigned long ksm_zero_pages;
300
e5a68991
SR
301/* The number of pages that have been skipped due to "smart scanning" */
302static unsigned long ksm_pages_skipped;
303
4e5fa4f5
SR
304/* Don't scan more than max pages per batch. */
305static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307/* Min CPU for scanning pages per scan */
308#define KSM_ADVISOR_MIN_CPU 10
309
310/* Max CPU for scanning pages per scan */
311static unsigned int ksm_advisor_max_cpu = 70;
312
313/* Target scan time in seconds to analyze all KSM candidate pages. */
314static unsigned long ksm_advisor_target_scan_time = 200;
315
316/* Exponentially weighted moving average. */
317#define EWMA_WEIGHT 30
318
319/**
320 * struct advisor_ctx - metadata for KSM advisor
321 * @start_scan: start time of the current scan
322 * @scan_time: scan time of previous scan
323 * @change: change in percent to pages_to_scan parameter
324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325 */
326struct advisor_ctx {
327 ktime_t start_scan;
328 unsigned long scan_time;
329 unsigned long change;
330 unsigned long long cpu_time;
331};
332static struct advisor_ctx advisor_ctx;
333
334/* Define different advisor's */
335enum ksm_advisor_type {
336 KSM_ADVISOR_NONE,
337 KSM_ADVISOR_SCAN_TIME,
338};
339static enum ksm_advisor_type ksm_advisor;
340
66790e9a
SR
341#ifdef CONFIG_SYSFS
342/*
343 * Only called through the sysfs control interface:
344 */
345
346/* At least scan this many pages per batch. */
347static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349static void set_advisor_defaults(void)
350{
351 if (ksm_advisor == KSM_ADVISOR_NONE) {
352 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 advisor_ctx = (const struct advisor_ctx){ 0 };
355 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356 }
357}
358#endif /* CONFIG_SYSFS */
359
4e5fa4f5
SR
360static inline void advisor_start_scan(void)
361{
362 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 advisor_ctx.start_scan = ktime_get();
364}
365
366/*
367 * Use previous scan time if available, otherwise use current scan time as an
368 * approximation for the previous scan time.
369 */
370static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 unsigned long scan_time)
372{
373 return ctx->scan_time ? ctx->scan_time : scan_time;
374}
375
376/* Calculate exponential weighted moving average */
377static unsigned long ewma(unsigned long prev, unsigned long curr)
378{
379 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380}
381
382/*
383 * The scan time advisor is based on the current scan rate and the target
384 * scan rate.
385 *
386 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387 *
388 * To avoid perturbations it calculates a change factor of previous changes.
389 * A new change factor is calculated for each iteration and it uses an
390 * exponentially weighted moving average. The new pages_to_scan value is
391 * multiplied with that change factor:
392 *
393 * new_pages_to_scan *= change facor
394 *
395 * The new_pages_to_scan value is limited by the cpu min and max values. It
396 * calculates the cpu percent for the last scan and calculates the new
397 * estimated cpu percent cost for the next scan. That value is capped by the
398 * cpu min and max setting.
399 *
400 * In addition the new pages_to_scan value is capped by the max and min
401 * limits.
402 */
403static void scan_time_advisor(void)
404{
405 unsigned int cpu_percent;
406 unsigned long cpu_time;
407 unsigned long cpu_time_diff;
408 unsigned long cpu_time_diff_ms;
409 unsigned long pages;
410 unsigned long per_page_cost;
411 unsigned long factor;
412 unsigned long change;
413 unsigned long last_scan_time;
414 unsigned long scan_time;
415
416 /* Convert scan time to seconds */
417 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418 MSEC_PER_SEC);
419 scan_time = scan_time ? scan_time : 1;
420
421 /* Calculate CPU consumption of ksmd background thread */
422 cpu_time = task_sched_runtime(current);
423 cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 cpu_percent = cpu_percent ? cpu_percent : 1;
428 last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430 /* Calculate scan time as percentage of target scan time */
431 factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 factor = factor ? factor : 1;
433
434 /*
435 * Calculate scan time as percentage of last scan time and use
436 * exponentially weighted average to smooth it
437 */
438 change = scan_time * 100 / last_scan_time;
439 change = change ? change : 1;
440 change = ewma(advisor_ctx.change, change);
441
442 /* Calculate new scan rate based on target scan rate. */
443 pages = ksm_thread_pages_to_scan * 100 / factor;
444 /* Update pages_to_scan by weighted change percentage. */
445 pages = pages * change / 100;
446
447 /* Cap new pages_to_scan value */
448 per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 per_page_cost = per_page_cost ? per_page_cost : 1;
450
451 pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455 /* Update advisor context */
456 advisor_ctx.change = change;
457 advisor_ctx.scan_time = scan_time;
458 advisor_ctx.cpu_time = cpu_time;
459
460 ksm_thread_pages_to_scan = pages;
5088b497 461 trace_ksm_advisor(scan_time, pages, cpu_percent);
4e5fa4f5
SR
462}
463
464static void advisor_stop_scan(void)
465{
466 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467 scan_time_advisor();
468}
469
e850dcf5 470#ifdef CONFIG_NUMA
90bd6fd3
PH
471/* Zeroed when merging across nodes is not allowed */
472static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 473static int ksm_nr_node_ids = 1;
e850dcf5
HD
474#else
475#define ksm_merge_across_nodes 1U
ef53d16c 476#define ksm_nr_node_ids 1
e850dcf5 477#endif
90bd6fd3 478
31dbd01f
IE
479#define KSM_RUN_STOP 0
480#define KSM_RUN_MERGE 1
481#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
482#define KSM_RUN_OFFLINE 4
483static unsigned long ksm_run = KSM_RUN_STOP;
484static void wait_while_offlining(void);
31dbd01f
IE
485
486static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 487static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
488static DEFINE_MUTEX(ksm_thread_mutex);
489static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
21fbd591 491#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
31dbd01f
IE
492 sizeof(struct __struct), __alignof__(struct __struct),\
493 (__flags), NULL)
494
495static int __init ksm_slab_init(void)
496{
21fbd591 497 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
498 if (!rmap_item_cache)
499 goto out;
500
21fbd591 501 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
502 if (!stable_node_cache)
503 goto out_free1;
504
21fbd591 505 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 506 if (!mm_slot_cache)
7b6ba2c7 507 goto out_free2;
31dbd01f
IE
508
509 return 0;
510
7b6ba2c7
HD
511out_free2:
512 kmem_cache_destroy(stable_node_cache);
513out_free1:
31dbd01f
IE
514 kmem_cache_destroy(rmap_item_cache);
515out:
516 return -ENOMEM;
517}
518
519static void __init ksm_slab_free(void)
520{
521 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 522 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
523 kmem_cache_destroy(rmap_item_cache);
524 mm_slot_cache = NULL;
525}
526
21fbd591 527static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
528{
529 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
530}
531
21fbd591 532static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
533{
534 return dup->head == STABLE_NODE_DUP_HEAD;
535}
536
21fbd591
QZ
537static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
538 struct ksm_stable_node *chain)
2c653d0e
AA
539{
540 VM_BUG_ON(is_stable_node_dup(dup));
541 dup->head = STABLE_NODE_DUP_HEAD;
542 VM_BUG_ON(!is_stable_node_chain(chain));
543 hlist_add_head(&dup->hlist_dup, &chain->hlist);
544 ksm_stable_node_dups++;
545}
546
21fbd591 547static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 548{
b4fecc67 549 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
550 hlist_del(&dup->hlist_dup);
551 ksm_stable_node_dups--;
552}
553
21fbd591 554static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
555{
556 VM_BUG_ON(is_stable_node_chain(dup));
557 if (is_stable_node_dup(dup))
558 __stable_node_dup_del(dup);
559 else
560 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
561#ifdef CONFIG_DEBUG_VM
562 dup->head = NULL;
563#endif
564}
565
21fbd591 566static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 567{
21fbd591 568 struct ksm_rmap_item *rmap_item;
473b0ce4 569
5b398e41 570 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
571 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
572 if (rmap_item)
573 ksm_rmap_items++;
574 return rmap_item;
31dbd01f
IE
575}
576
21fbd591 577static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 578{
473b0ce4 579 ksm_rmap_items--;
cb4df4ca 580 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
581 rmap_item->mm = NULL; /* debug safety */
582 kmem_cache_free(rmap_item_cache, rmap_item);
583}
584
21fbd591 585static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 586{
6213055f 587 /*
588 * The allocation can take too long with GFP_KERNEL when memory is under
589 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
590 * grants access to memory reserves, helping to avoid this problem.
591 */
592 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
593}
594
21fbd591 595static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 596{
2c653d0e
AA
597 VM_BUG_ON(stable_node->rmap_hlist_len &&
598 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
599 kmem_cache_free(stable_node_cache, stable_node);
600}
601
a913e182
HD
602/*
603 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
604 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 605 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
606 * a special flag: they can just back out as soon as mm_users goes to zero.
607 * ksm_test_exit() is used throughout to make this test for exit: in some
608 * places for correctness, in some places just to avoid unnecessary work.
609 */
610static inline bool ksm_test_exit(struct mm_struct *mm)
611{
612 return atomic_read(&mm->mm_users) == 0;
613}
614
d7c0e68d
DH
615static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
616 struct mm_walk *walk)
617{
618 struct page *page = NULL;
619 spinlock_t *ptl;
620 pte_t *pte;
c33c7948 621 pte_t ptent;
d7c0e68d
DH
622 int ret;
623
d7c0e68d 624 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
04dee9e8
HD
625 if (!pte)
626 return 0;
c33c7948
RR
627 ptent = ptep_get(pte);
628 if (pte_present(ptent)) {
629 page = vm_normal_page(walk->vma, addr, ptent);
630 } else if (!pte_none(ptent)) {
631 swp_entry_t entry = pte_to_swp_entry(ptent);
d7c0e68d
DH
632
633 /*
634 * As KSM pages remain KSM pages until freed, no need to wait
635 * here for migration to end.
636 */
637 if (is_migration_entry(entry))
638 page = pfn_swap_entry_to_page(entry);
639 }
79271476 640 /* return 1 if the page is an normal ksm page or KSM-placed zero page */
afccb080 641 ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
d7c0e68d
DH
642 pte_unmap_unlock(pte, ptl);
643 return ret;
644}
645
646static const struct mm_walk_ops break_ksm_ops = {
647 .pmd_entry = break_ksm_pmd_entry,
49b06385
SB
648 .walk_lock = PGWALK_RDLOCK,
649};
650
651static const struct mm_walk_ops break_ksm_lock_vma_ops = {
652 .pmd_entry = break_ksm_pmd_entry,
653 .walk_lock = PGWALK_WRLOCK,
d7c0e68d
DH
654};
655
31dbd01f 656/*
6cce3314
DH
657 * We use break_ksm to break COW on a ksm page by triggering unsharing,
658 * such that the ksm page will get replaced by an exclusive anonymous page.
31dbd01f 659 *
6cce3314 660 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
31dbd01f
IE
661 * in case the application has unmapped and remapped mm,addr meanwhile.
662 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 663 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126 664 *
6cce3314 665 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
1b2ee126
DH
666 * of the process that owns 'vma'. We also do not want to enforce
667 * protection keys here anyway.
31dbd01f 668 */
49b06385 669static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
31dbd01f 670{
50a7ca3c 671 vm_fault_t ret = 0;
49b06385
SB
672 const struct mm_walk_ops *ops = lock_vma ?
673 &break_ksm_lock_vma_ops : &break_ksm_ops;
31dbd01f
IE
674
675 do {
d7c0e68d 676 int ksm_page;
58f595c6 677
31dbd01f 678 cond_resched();
49b06385 679 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
d7c0e68d
DH
680 if (WARN_ON_ONCE(ksm_page < 0))
681 return ksm_page;
58f595c6
DH
682 if (!ksm_page)
683 return 0;
684 ret = handle_mm_fault(vma, addr,
6cce3314 685 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
58f595c6
DH
686 NULL);
687 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 688 /*
58f595c6
DH
689 * We must loop until we no longer find a KSM page because
690 * handle_mm_fault() may back out if there's any difficulty e.g. if
691 * pte accessed bit gets updated concurrently.
d952b791
HD
692 *
693 * VM_FAULT_SIGBUS could occur if we race with truncation of the
694 * backing file, which also invalidates anonymous pages: that's
695 * okay, that truncation will have unmapped the PageKsm for us.
696 *
697 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
698 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
699 * current task has TIF_MEMDIE set, and will be OOM killed on return
700 * to user; and ksmd, having no mm, would never be chosen for that.
701 *
702 * But if the mm is in a limited mem_cgroup, then the fault may fail
703 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
704 * even ksmd can fail in this way - though it's usually breaking ksm
705 * just to undo a merge it made a moment before, so unlikely to oom.
706 *
707 * That's a pity: we might therefore have more kernel pages allocated
708 * than we're counting as nodes in the stable tree; but ksm_do_scan
709 * will retry to break_cow on each pass, so should recover the page
710 * in due course. The important thing is to not let VM_MERGEABLE
711 * be cleared while any such pages might remain in the area.
712 */
713 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
714}
715
d7597f59
SR
716static bool vma_ksm_compatible(struct vm_area_struct *vma)
717{
718 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
719 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
720 VM_MIXEDMAP))
721 return false; /* just ignore the advice */
722
723 if (vma_is_dax(vma))
724 return false;
725
726#ifdef VM_SAO
727 if (vma->vm_flags & VM_SAO)
728 return false;
729#endif
730#ifdef VM_SPARC_ADI
731 if (vma->vm_flags & VM_SPARC_ADI)
732 return false;
733#endif
734
735 return true;
736}
737
ef694222
BL
738static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
739 unsigned long addr)
740{
741 struct vm_area_struct *vma;
742 if (ksm_test_exit(mm))
743 return NULL;
ff69fb81
LH
744 vma = vma_lookup(mm, addr);
745 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
746 return NULL;
747 return vma;
748}
749
21fbd591 750static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 751{
8dd3557a
HD
752 struct mm_struct *mm = rmap_item->mm;
753 unsigned long addr = rmap_item->address;
31dbd01f
IE
754 struct vm_area_struct *vma;
755
4035c07a
HD
756 /*
757 * It is not an accident that whenever we want to break COW
758 * to undo, we also need to drop a reference to the anon_vma.
759 */
9e60109f 760 put_anon_vma(rmap_item->anon_vma);
4035c07a 761
d8ed45c5 762 mmap_read_lock(mm);
ef694222
BL
763 vma = find_mergeable_vma(mm, addr);
764 if (vma)
49b06385 765 break_ksm(vma, addr, false);
d8ed45c5 766 mmap_read_unlock(mm);
31dbd01f
IE
767}
768
21fbd591 769static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
770{
771 struct mm_struct *mm = rmap_item->mm;
772 unsigned long addr = rmap_item->address;
773 struct vm_area_struct *vma;
774 struct page *page;
775
d8ed45c5 776 mmap_read_lock(mm);
ef694222
BL
777 vma = find_mergeable_vma(mm, addr);
778 if (!vma)
31dbd01f
IE
779 goto out;
780
781 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 782 if (IS_ERR_OR_NULL(page))
31dbd01f 783 goto out;
f7091ed6
HW
784 if (is_zone_device_page(page))
785 goto out_putpage;
f765f540 786 if (PageAnon(page)) {
31dbd01f
IE
787 flush_anon_page(vma, page, addr);
788 flush_dcache_page(page);
789 } else {
f7091ed6 790out_putpage:
31dbd01f 791 put_page(page);
c8f95ed1
AA
792out:
793 page = NULL;
31dbd01f 794 }
d8ed45c5 795 mmap_read_unlock(mm);
31dbd01f
IE
796 return page;
797}
798
90bd6fd3
PH
799/*
800 * This helper is used for getting right index into array of tree roots.
801 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
802 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
803 * every node has its own stable and unstable tree.
804 */
805static inline int get_kpfn_nid(unsigned long kpfn)
806{
d8fc16a8 807 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
808}
809
21fbd591 810static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
811 struct rb_root *root)
812{
21fbd591 813 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
814 VM_BUG_ON(is_stable_node_chain(dup));
815 if (likely(chain)) {
816 INIT_HLIST_HEAD(&chain->hlist);
817 chain->chain_prune_time = jiffies;
818 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
819#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 820 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
821#endif
822 ksm_stable_node_chains++;
823
824 /*
825 * Put the stable node chain in the first dimension of
826 * the stable tree and at the same time remove the old
827 * stable node.
828 */
829 rb_replace_node(&dup->node, &chain->node, root);
830
831 /*
832 * Move the old stable node to the second dimension
833 * queued in the hlist_dup. The invariant is that all
834 * dup stable_nodes in the chain->hlist point to pages
457aef94 835 * that are write protected and have the exact same
2c653d0e
AA
836 * content.
837 */
838 stable_node_chain_add_dup(dup, chain);
839 }
840 return chain;
841}
842
21fbd591 843static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
844 struct rb_root *root)
845{
846 rb_erase(&chain->node, root);
847 free_stable_node(chain);
848 ksm_stable_node_chains--;
849}
850
21fbd591 851static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 852{
21fbd591 853 struct ksm_rmap_item *rmap_item;
4035c07a 854
2c653d0e
AA
855 /* check it's not STABLE_NODE_CHAIN or negative */
856 BUG_ON(stable_node->rmap_hlist_len < 0);
857
b67bfe0d 858 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
739100c8 859 if (rmap_item->hlist.next) {
4035c07a 860 ksm_pages_sharing--;
739100c8
SR
861 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
862 } else {
4035c07a 863 ksm_pages_shared--;
739100c8 864 }
76093853 865
866 rmap_item->mm->ksm_merging_pages--;
867
2c653d0e
AA
868 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
869 stable_node->rmap_hlist_len--;
9e60109f 870 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
871 rmap_item->address &= PAGE_MASK;
872 cond_resched();
873 }
874
2c653d0e
AA
875 /*
876 * We need the second aligned pointer of the migrate_nodes
877 * list_head to stay clear from the rb_parent_color union
878 * (aligned and different than any node) and also different
879 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 880 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 881 */
2c653d0e
AA
882 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
883 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 884
739100c8 885 trace_ksm_remove_ksm_page(stable_node->kpfn);
4146d2d6
HD
886 if (stable_node->head == &migrate_nodes)
887 list_del(&stable_node->list);
888 else
2c653d0e 889 stable_node_dup_del(stable_node);
4035c07a
HD
890 free_stable_node(stable_node);
891}
892
2cee57d1
YS
893enum get_ksm_page_flags {
894 GET_KSM_PAGE_NOLOCK,
895 GET_KSM_PAGE_LOCK,
896 GET_KSM_PAGE_TRYLOCK
897};
898
4035c07a
HD
899/*
900 * get_ksm_page: checks if the page indicated by the stable node
901 * is still its ksm page, despite having held no reference to it.
902 * In which case we can trust the content of the page, and it
903 * returns the gotten page; but if the page has now been zapped,
904 * remove the stale node from the stable tree and return NULL.
c8d6553b 905 * But beware, the stable node's page might be being migrated.
4035c07a
HD
906 *
907 * You would expect the stable_node to hold a reference to the ksm page.
908 * But if it increments the page's count, swapping out has to wait for
909 * ksmd to come around again before it can free the page, which may take
910 * seconds or even minutes: much too unresponsive. So instead we use a
911 * "keyhole reference": access to the ksm page from the stable node peeps
912 * out through its keyhole to see if that page still holds the right key,
913 * pointing back to this stable node. This relies on freeing a PageAnon
914 * page to reset its page->mapping to NULL, and relies on no other use of
915 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
916 * is on its way to being freed; but it is an anomaly to bear in mind.
917 */
21fbd591 918static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
2cee57d1 919 enum get_ksm_page_flags flags)
4035c07a
HD
920{
921 struct page *page;
922 void *expected_mapping;
c8d6553b 923 unsigned long kpfn;
4035c07a 924
bda807d4
MK
925 expected_mapping = (void *)((unsigned long)stable_node |
926 PAGE_MAPPING_KSM);
c8d6553b 927again:
08df4774 928 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 929 page = pfn_to_page(kpfn);
4db0c3c2 930 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 931 goto stale;
c8d6553b
HD
932
933 /*
934 * We cannot do anything with the page while its refcount is 0.
935 * Usually 0 means free, or tail of a higher-order page: in which
936 * case this node is no longer referenced, and should be freed;
1c4c3b99 937 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 938 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 939 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 940 * in folio_migrate_mapping(), it might still be our page,
52d1e606 941 * in which case it's essential to keep the node.
c8d6553b
HD
942 */
943 while (!get_page_unless_zero(page)) {
944 /*
945 * Another check for page->mapping != expected_mapping would
946 * work here too. We have chosen the !PageSwapCache test to
947 * optimize the common case, when the page is or is about to
948 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 949 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
950 * page->mapping reset to NULL later, in free_pages_prepare().
951 */
952 if (!PageSwapCache(page))
953 goto stale;
954 cpu_relax();
955 }
956
4db0c3c2 957 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
958 put_page(page);
959 goto stale;
960 }
c8d6553b 961
2cee57d1
YS
962 if (flags == GET_KSM_PAGE_TRYLOCK) {
963 if (!trylock_page(page)) {
964 put_page(page);
965 return ERR_PTR(-EBUSY);
966 }
967 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 968 lock_page(page);
2cee57d1
YS
969
970 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 971 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
972 unlock_page(page);
973 put_page(page);
974 goto stale;
975 }
976 }
4035c07a 977 return page;
c8d6553b 978
4035c07a 979stale:
c8d6553b
HD
980 /*
981 * We come here from above when page->mapping or !PageSwapCache
982 * suggests that the node is stale; but it might be under migration.
19138349 983 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
984 * before checking whether node->kpfn has been changed.
985 */
986 smp_rmb();
4db0c3c2 987 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 988 goto again;
4035c07a
HD
989 remove_node_from_stable_tree(stable_node);
990 return NULL;
991}
992
31dbd01f
IE
993/*
994 * Removing rmap_item from stable or unstable tree.
995 * This function will clean the information from the stable/unstable tree.
996 */
21fbd591 997static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 998{
7b6ba2c7 999 if (rmap_item->address & STABLE_FLAG) {
21fbd591 1000 struct ksm_stable_node *stable_node;
5ad64688 1001 struct page *page;
31dbd01f 1002
7b6ba2c7 1003 stable_node = rmap_item->head;
62862290 1004 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
1005 if (!page)
1006 goto out;
5ad64688 1007
7b6ba2c7 1008 hlist_del(&rmap_item->hlist);
62862290 1009 unlock_page(page);
4035c07a 1010 put_page(page);
08beca44 1011
98666f8a 1012 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
1013 ksm_pages_sharing--;
1014 else
7b6ba2c7 1015 ksm_pages_shared--;
76093853 1016
1017 rmap_item->mm->ksm_merging_pages--;
1018
2c653d0e
AA
1019 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1020 stable_node->rmap_hlist_len--;
31dbd01f 1021
9e60109f 1022 put_anon_vma(rmap_item->anon_vma);
c89a384e 1023 rmap_item->head = NULL;
93d17715 1024 rmap_item->address &= PAGE_MASK;
31dbd01f 1025
7b6ba2c7 1026 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
1027 unsigned char age;
1028 /*
9ba69294 1029 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 1030 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
1031 * But be careful when an mm is exiting: do the rb_erase
1032 * if this rmap_item was inserted by this scan, rather
1033 * than left over from before.
31dbd01f
IE
1034 */
1035 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 1036 BUG_ON(age > 1);
31dbd01f 1037 if (!age)
90bd6fd3 1038 rb_erase(&rmap_item->node,
ef53d16c 1039 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 1040 ksm_pages_unshared--;
93d17715 1041 rmap_item->address &= PAGE_MASK;
31dbd01f 1042 }
4035c07a 1043out:
31dbd01f
IE
1044 cond_resched(); /* we're called from many long loops */
1045}
1046
21fbd591 1047static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 1048{
6514d511 1049 while (*rmap_list) {
21fbd591 1050 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 1051 *rmap_list = rmap_item->rmap_list;
31dbd01f 1052 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1053 free_rmap_item(rmap_item);
1054 }
1055}
1056
1057/*
e850dcf5 1058 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
1059 * than check every pte of a given vma, the locking doesn't quite work for
1060 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 1061 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
1062 * rmap_items from parent to child at fork time (so as not to waste time
1063 * if exit comes before the next scan reaches it).
81464e30
HD
1064 *
1065 * Similarly, although we'd like to remove rmap_items (so updating counts
1066 * and freeing memory) when unmerging an area, it's easier to leave that
1067 * to the next pass of ksmd - consider, for example, how ksmd might be
1068 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 1069 */
d952b791 1070static int unmerge_ksm_pages(struct vm_area_struct *vma,
49b06385 1071 unsigned long start, unsigned long end, bool lock_vma)
31dbd01f
IE
1072{
1073 unsigned long addr;
d952b791 1074 int err = 0;
31dbd01f 1075
d952b791 1076 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
1077 if (ksm_test_exit(vma->vm_mm))
1078 break;
d952b791
HD
1079 if (signal_pending(current))
1080 err = -ERESTARTSYS;
1081 else
49b06385 1082 err = break_ksm(vma, addr, lock_vma);
d952b791
HD
1083 }
1084 return err;
31dbd01f
IE
1085}
1086
21fbd591 1087static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
1088{
1089 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090}
1091
21fbd591 1092static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 1093{
19138349 1094 return folio_stable_node(page_folio(page));
88484826
MR
1095}
1096
1097static inline void set_page_stable_node(struct page *page,
21fbd591 1098 struct ksm_stable_node *stable_node)
88484826 1099{
6c287605 1100 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
1101 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1102}
1103
2ffd8679
HD
1104#ifdef CONFIG_SYSFS
1105/*
1106 * Only called through the sysfs control interface:
1107 */
21fbd591 1108static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe
HD
1109{
1110 struct page *page;
1111 int err;
1112
2cee57d1 1113 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
1114 if (!page) {
1115 /*
1116 * get_ksm_page did remove_node_from_stable_tree itself.
1117 */
1118 return 0;
1119 }
1120
9a63236f
AR
1121 /*
1122 * Page could be still mapped if this races with __mmput() running in
1123 * between ksm_exit() and exit_mmap(). Just refuse to let
1124 * merge_across_nodes/max_page_sharing be switched.
1125 */
1126 err = -EBUSY;
1127 if (!page_mapped(page)) {
cbf86cfe 1128 /*
8fdb3dbf
HD
1129 * The stable node did not yet appear stale to get_ksm_page(),
1130 * since that allows for an unmapped ksm page to be recognized
1131 * right up until it is freed; but the node is safe to remove.
1fec6890 1132 * This page might be in an LRU cache waiting to be freed,
cbf86cfe
HD
1133 * or it might be PageSwapCache (perhaps under writeback),
1134 * or it might have been removed from swapcache a moment ago.
1135 */
1136 set_page_stable_node(page, NULL);
1137 remove_node_from_stable_tree(stable_node);
1138 err = 0;
1139 }
1140
1141 unlock_page(page);
1142 put_page(page);
1143 return err;
1144}
1145
21fbd591 1146static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
1147 struct rb_root *root)
1148{
21fbd591 1149 struct ksm_stable_node *dup;
2c653d0e
AA
1150 struct hlist_node *hlist_safe;
1151
1152 if (!is_stable_node_chain(stable_node)) {
1153 VM_BUG_ON(is_stable_node_dup(stable_node));
1154 if (remove_stable_node(stable_node))
1155 return true;
1156 else
1157 return false;
1158 }
1159
1160 hlist_for_each_entry_safe(dup, hlist_safe,
1161 &stable_node->hlist, hlist_dup) {
1162 VM_BUG_ON(!is_stable_node_dup(dup));
1163 if (remove_stable_node(dup))
1164 return true;
1165 }
1166 BUG_ON(!hlist_empty(&stable_node->hlist));
1167 free_stable_node_chain(stable_node, root);
1168 return false;
1169}
1170
cbf86cfe
HD
1171static int remove_all_stable_nodes(void)
1172{
21fbd591 1173 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
1174 int nid;
1175 int err = 0;
1176
ef53d16c 1177 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
1178 while (root_stable_tree[nid].rb_node) {
1179 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 1180 struct ksm_stable_node, node);
2c653d0e
AA
1181 if (remove_stable_node_chain(stable_node,
1182 root_stable_tree + nid)) {
cbf86cfe
HD
1183 err = -EBUSY;
1184 break; /* proceed to next nid */
1185 }
1186 cond_resched();
1187 }
1188 }
03640418 1189 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
1190 if (remove_stable_node(stable_node))
1191 err = -EBUSY;
1192 cond_resched();
1193 }
cbf86cfe
HD
1194 return err;
1195}
1196
d952b791 1197static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 1198{
21fbd591 1199 struct ksm_mm_slot *mm_slot;
58730ab6 1200 struct mm_slot *slot;
31dbd01f
IE
1201 struct mm_struct *mm;
1202 struct vm_area_struct *vma;
d952b791
HD
1203 int err = 0;
1204
1205 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1206 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1207 struct mm_slot, mm_node);
1208 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 1209 spin_unlock(&ksm_mmlist_lock);
31dbd01f 1210
a5f18ba0
MWO
1211 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1212 mm_slot = ksm_scan.mm_slot) {
58730ab6 1213 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 1214
58730ab6 1215 mm = mm_slot->slot.mm;
d8ed45c5 1216 mmap_read_lock(mm);
6db504ce
LH
1217
1218 /*
1219 * Exit right away if mm is exiting to avoid lockdep issue in
1220 * the maple tree
1221 */
1222 if (ksm_test_exit(mm))
1223 goto mm_exiting;
1224
a5f18ba0 1225 for_each_vma(vmi, vma) {
31dbd01f
IE
1226 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1227 continue;
d952b791 1228 err = unmerge_ksm_pages(vma,
49b06385 1229 vma->vm_start, vma->vm_end, false);
9ba69294
HD
1230 if (err)
1231 goto error;
31dbd01f 1232 }
9ba69294 1233
6db504ce 1234mm_exiting:
420be4ed 1235 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1236 mmap_read_unlock(mm);
d952b791
HD
1237
1238 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1239 slot = list_entry(mm_slot->slot.mm_node.next,
1240 struct mm_slot, mm_node);
1241 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 1242 if (ksm_test_exit(mm)) {
58730ab6
QZ
1243 hash_del(&mm_slot->slot.hash);
1244 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
1245 spin_unlock(&ksm_mmlist_lock);
1246
58730ab6 1247 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 1248 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 1249 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294 1250 mmdrop(mm);
7496fea9 1251 } else
9ba69294 1252 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1253 }
1254
cbf86cfe
HD
1255 /* Clean up stable nodes, but don't worry if some are still busy */
1256 remove_all_stable_nodes();
d952b791 1257 ksm_scan.seqnr = 0;
9ba69294
HD
1258 return 0;
1259
1260error:
d8ed45c5 1261 mmap_read_unlock(mm);
31dbd01f 1262 spin_lock(&ksm_mmlist_lock);
d952b791 1263 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1264 spin_unlock(&ksm_mmlist_lock);
d952b791 1265 return err;
31dbd01f 1266}
2ffd8679 1267#endif /* CONFIG_SYSFS */
31dbd01f 1268
31dbd01f
IE
1269static u32 calc_checksum(struct page *page)
1270{
1271 u32 checksum;
b3351989 1272 void *addr = kmap_local_page(page);
59e1a2f4 1273 checksum = xxhash(addr, PAGE_SIZE, 0);
b3351989 1274 kunmap_local(addr);
31dbd01f
IE
1275 return checksum;
1276}
1277
31dbd01f
IE
1278static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1279 pte_t *orig_pte)
1280{
1281 struct mm_struct *mm = vma->vm_mm;
eed05e54 1282 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1283 int swapped;
1284 int err = -EFAULT;
ac46d4f3 1285 struct mmu_notifier_range range;
6c287605 1286 bool anon_exclusive;
c33c7948 1287 pte_t entry;
31dbd01f 1288
36eaff33
KS
1289 pvmw.address = page_address_in_vma(page, vma);
1290 if (pvmw.address == -EFAULT)
31dbd01f
IE
1291 goto out;
1292
29ad768c 1293 BUG_ON(PageTransCompound(page));
6bdb913f 1294
7d4a8be0 1295 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
ac46d4f3
JG
1296 pvmw.address + PAGE_SIZE);
1297 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1298
36eaff33 1299 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1300 goto out_mn;
36eaff33
KS
1301 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1302 goto out_unlock;
31dbd01f 1303
6c287605 1304 anon_exclusive = PageAnonExclusive(page);
c33c7948
RR
1305 entry = ptep_get(pvmw.pte);
1306 if (pte_write(entry) || pte_dirty(entry) ||
6c287605 1307 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f 1308 swapped = PageSwapCache(page);
36eaff33 1309 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1310 /*
25985edc 1311 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1312 * take any lock, therefore the check that we are going to make
f0953a1b 1313 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1314 * O_DIRECT can happen right after the check.
1315 * So we clear the pte and flush the tlb before the check
1316 * this assure us that no O_DIRECT can happen after the check
1317 * or in the middle of the check.
0f10851e
JG
1318 *
1319 * No need to notify as we are downgrading page table to read
1320 * only not changing it to point to a new page.
1321 *
ee65728e 1322 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1323 */
0f10851e 1324 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1325 /*
1326 * Check that no O_DIRECT or similar I/O is in progress on the
1327 * page
1328 */
31e855ea 1329 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1330 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1331 goto out_unlock;
1332 }
6c287605 1333
088b8aa5 1334 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1335 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1336 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1337 goto out_unlock;
1338 }
1339
4e31635c
HD
1340 if (pte_dirty(entry))
1341 set_page_dirty(page);
6a56ccbc
DH
1342 entry = pte_mkclean(entry);
1343
1344 if (pte_write(entry))
1345 entry = pte_wrprotect(entry);
595cd8f2 1346
36eaff33 1347 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1348 }
c33c7948 1349 *orig_pte = entry;
31dbd01f
IE
1350 err = 0;
1351
1352out_unlock:
36eaff33 1353 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1354out_mn:
ac46d4f3 1355 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1356out:
1357 return err;
1358}
1359
1360/**
1361 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1362 * @vma: vma that holds the pte pointing to page
1363 * @page: the page we are replacing by kpage
1364 * @kpage: the ksm page we replace page by
31dbd01f
IE
1365 * @orig_pte: the original value of the pte
1366 *
1367 * Returns 0 on success, -EFAULT on failure.
1368 */
8dd3557a
HD
1369static int replace_page(struct vm_area_struct *vma, struct page *page,
1370 struct page *kpage, pte_t orig_pte)
31dbd01f 1371{
97729534 1372 struct folio *kfolio = page_folio(kpage);
31dbd01f 1373 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1374 struct folio *folio;
31dbd01f 1375 pmd_t *pmd;
50722804 1376 pmd_t pmde;
31dbd01f 1377 pte_t *ptep;
e86c59b1 1378 pte_t newpte;
31dbd01f
IE
1379 spinlock_t *ptl;
1380 unsigned long addr;
31dbd01f 1381 int err = -EFAULT;
ac46d4f3 1382 struct mmu_notifier_range range;
31dbd01f 1383
8dd3557a 1384 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1385 if (addr == -EFAULT)
1386 goto out;
1387
6219049a
BL
1388 pmd = mm_find_pmd(mm, addr);
1389 if (!pmd)
31dbd01f 1390 goto out;
50722804
ZK
1391 /*
1392 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1393 * without holding anon_vma lock for write. So when looking for a
1394 * genuine pmde (in which to find pte), test present and !THP together.
1395 */
26e1a0c3 1396 pmde = pmdp_get_lockless(pmd);
50722804
ZK
1397 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1398 goto out;
31dbd01f 1399
7d4a8be0 1400 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
6f4f13e8 1401 addr + PAGE_SIZE);
ac46d4f3 1402 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1403
31dbd01f 1404 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
04dee9e8
HD
1405 if (!ptep)
1406 goto out_mn;
c33c7948 1407 if (!pte_same(ptep_get(ptep), orig_pte)) {
31dbd01f 1408 pte_unmap_unlock(ptep, ptl);
6bdb913f 1409 goto out_mn;
31dbd01f 1410 }
6c287605 1411 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
97729534
DH
1412 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1413 kfolio);
31dbd01f 1414
e86c59b1
CI
1415 /*
1416 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1417 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1418 */
1419 if (!is_zero_pfn(page_to_pfn(kpage))) {
97729534
DH
1420 folio_get(kfolio);
1421 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1422 newpte = mk_pte(kpage, vma->vm_page_prot);
1423 } else {
79271476 1424 /*
1425 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1426 * we can easily track all KSM-placed zero pages by checking if
1427 * the dirty bit in zero page's PTE is set.
1428 */
1429 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
e2942062 1430 ksm_zero_pages++;
6080d19f 1431 mm->ksm_zero_pages++;
a38c015f
CI
1432 /*
1433 * We're replacing an anonymous page with a zero page, which is
1434 * not anonymous. We need to do proper accounting otherwise we
1435 * will get wrong values in /proc, and a BUG message in dmesg
1436 * when tearing down the mm.
1437 */
1438 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1439 }
31dbd01f 1440
c33c7948 1441 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
0f10851e
JG
1442 /*
1443 * No need to notify as we are replacing a read only page with another
1444 * read only page with the same content.
1445 *
ee65728e 1446 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1447 */
1448 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1449 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1450
b4e6f66e 1451 folio = page_folio(page);
cea86fe2 1452 page_remove_rmap(page, vma, false);
b4e6f66e
MWO
1453 if (!folio_mapped(folio))
1454 folio_free_swap(folio);
1455 folio_put(folio);
31dbd01f
IE
1456
1457 pte_unmap_unlock(ptep, ptl);
1458 err = 0;
6bdb913f 1459out_mn:
ac46d4f3 1460 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1461out:
1462 return err;
1463}
1464
1465/*
1466 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1467 * @vma: the vma that holds the pte pointing to page
1468 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1469 * @kpage: the PageKsm page that we want to map instead of page,
1470 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1471 *
1472 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1473 */
1474static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1475 struct page *page, struct page *kpage)
31dbd01f
IE
1476{
1477 pte_t orig_pte = __pte(0);
1478 int err = -EFAULT;
1479
db114b83
HD
1480 if (page == kpage) /* ksm page forked */
1481 return 0;
1482
8dd3557a 1483 if (!PageAnon(page))
31dbd01f
IE
1484 goto out;
1485
31dbd01f
IE
1486 /*
1487 * We need the page lock to read a stable PageSwapCache in
1488 * write_protect_page(). We use trylock_page() instead of
1489 * lock_page() because we don't want to wait here - we
1490 * prefer to continue scanning and merging different pages,
1491 * then come back to this page when it is unlocked.
1492 */
8dd3557a 1493 if (!trylock_page(page))
31e855ea 1494 goto out;
f765f540
KS
1495
1496 if (PageTransCompound(page)) {
a7306c34 1497 if (split_huge_page(page))
f765f540
KS
1498 goto out_unlock;
1499 }
1500
31dbd01f
IE
1501 /*
1502 * If this anonymous page is mapped only here, its pte may need
1503 * to be write-protected. If it's mapped elsewhere, all of its
1504 * ptes are necessarily already write-protected. But in either
1505 * case, we need to lock and check page_count is not raised.
1506 */
80e14822
HD
1507 if (write_protect_page(vma, page, &orig_pte) == 0) {
1508 if (!kpage) {
1509 /*
1510 * While we hold page lock, upgrade page from
1511 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1512 * stable_tree_insert() will update stable_node.
1513 */
1514 set_page_stable_node(page, NULL);
1515 mark_page_accessed(page);
337ed7eb
MK
1516 /*
1517 * Page reclaim just frees a clean page with no dirty
1518 * ptes: make sure that the ksm page would be swapped.
1519 */
1520 if (!PageDirty(page))
1521 SetPageDirty(page);
80e14822
HD
1522 err = 0;
1523 } else if (pages_identical(page, kpage))
1524 err = replace_page(vma, page, kpage, orig_pte);
1525 }
31dbd01f 1526
f765f540 1527out_unlock:
8dd3557a 1528 unlock_page(page);
31dbd01f
IE
1529out:
1530 return err;
1531}
1532
81464e30
HD
1533/*
1534 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1535 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1536 *
1537 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1538 */
21fbd591 1539static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1540 struct page *page, struct page *kpage)
81464e30 1541{
8dd3557a 1542 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1543 struct vm_area_struct *vma;
1544 int err = -EFAULT;
1545
d8ed45c5 1546 mmap_read_lock(mm);
85c6e8dd
AA
1547 vma = find_mergeable_vma(mm, rmap_item->address);
1548 if (!vma)
81464e30
HD
1549 goto out;
1550
8dd3557a 1551 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1552 if (err)
1553 goto out;
1554
bc56620b
HD
1555 /* Unstable nid is in union with stable anon_vma: remove first */
1556 remove_rmap_item_from_tree(rmap_item);
1557
c1e8d7c6 1558 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1559 rmap_item->anon_vma = vma->anon_vma;
1560 get_anon_vma(vma->anon_vma);
81464e30 1561out:
d8ed45c5 1562 mmap_read_unlock(mm);
739100c8
SR
1563 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1564 rmap_item, mm, err);
81464e30
HD
1565 return err;
1566}
1567
31dbd01f
IE
1568/*
1569 * try_to_merge_two_pages - take two identical pages and prepare them
1570 * to be merged into one page.
1571 *
8dd3557a
HD
1572 * This function returns the kpage if we successfully merged two identical
1573 * pages into one ksm page, NULL otherwise.
31dbd01f 1574 *
80e14822 1575 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1576 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1577 */
21fbd591 1578static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1579 struct page *page,
21fbd591 1580 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1581 struct page *tree_page)
31dbd01f 1582{
80e14822 1583 int err;
31dbd01f 1584
80e14822 1585 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1586 if (!err) {
8dd3557a 1587 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1588 tree_page, page);
31dbd01f 1589 /*
81464e30
HD
1590 * If that fails, we have a ksm page with only one pte
1591 * pointing to it: so break it.
31dbd01f 1592 */
4035c07a 1593 if (err)
8dd3557a 1594 break_cow(rmap_item);
31dbd01f 1595 }
80e14822 1596 return err ? NULL : page;
31dbd01f
IE
1597}
1598
2c653d0e 1599static __always_inline
21fbd591 1600bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1601{
1602 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1603 /*
1604 * Check that at least one mapping still exists, otherwise
1605 * there's no much point to merge and share with this
1606 * stable_node, as the underlying tree_page of the other
1607 * sharer is going to be freed soon.
1608 */
1609 return stable_node->rmap_hlist_len &&
1610 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1611}
1612
1613static __always_inline
21fbd591 1614bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1615{
1616 return __is_page_sharing_candidate(stable_node, 0);
1617}
1618
21fbd591
QZ
1619static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1620 struct ksm_stable_node **_stable_node,
c01f0b54
CIK
1621 struct rb_root *root,
1622 bool prune_stale_stable_nodes)
2c653d0e 1623{
21fbd591 1624 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1625 struct hlist_node *hlist_safe;
8dc5ffcd 1626 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1627 int nr = 0;
1628 int found_rmap_hlist_len;
1629
1630 if (!prune_stale_stable_nodes ||
1631 time_before(jiffies, stable_node->chain_prune_time +
1632 msecs_to_jiffies(
1633 ksm_stable_node_chains_prune_millisecs)))
1634 prune_stale_stable_nodes = false;
1635 else
1636 stable_node->chain_prune_time = jiffies;
1637
1638 hlist_for_each_entry_safe(dup, hlist_safe,
1639 &stable_node->hlist, hlist_dup) {
1640 cond_resched();
1641 /*
1642 * We must walk all stable_node_dup to prune the stale
1643 * stable nodes during lookup.
1644 *
1645 * get_ksm_page can drop the nodes from the
1646 * stable_node->hlist if they point to freed pages
1647 * (that's why we do a _safe walk). The "dup"
1648 * stable_node parameter itself will be freed from
1649 * under us if it returns NULL.
1650 */
2cee57d1 1651 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1652 if (!_tree_page)
1653 continue;
1654 nr += 1;
1655 if (is_page_sharing_candidate(dup)) {
1656 if (!found ||
1657 dup->rmap_hlist_len > found_rmap_hlist_len) {
1658 if (found)
8dc5ffcd 1659 put_page(tree_page);
2c653d0e
AA
1660 found = dup;
1661 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1662 tree_page = _tree_page;
2c653d0e 1663
8dc5ffcd 1664 /* skip put_page for found dup */
2c653d0e
AA
1665 if (!prune_stale_stable_nodes)
1666 break;
2c653d0e
AA
1667 continue;
1668 }
1669 }
1670 put_page(_tree_page);
1671 }
1672
80b18dfa
AA
1673 if (found) {
1674 /*
1675 * nr is counting all dups in the chain only if
1676 * prune_stale_stable_nodes is true, otherwise we may
1677 * break the loop at nr == 1 even if there are
1678 * multiple entries.
1679 */
1680 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1681 /*
1682 * If there's not just one entry it would
1683 * corrupt memory, better BUG_ON. In KSM
1684 * context with no lock held it's not even
1685 * fatal.
1686 */
1687 BUG_ON(stable_node->hlist.first->next);
1688
1689 /*
1690 * There's just one entry and it is below the
1691 * deduplication limit so drop the chain.
1692 */
1693 rb_replace_node(&stable_node->node, &found->node,
1694 root);
1695 free_stable_node(stable_node);
1696 ksm_stable_node_chains--;
1697 ksm_stable_node_dups--;
b4fecc67 1698 /*
0ba1d0f7
AA
1699 * NOTE: the caller depends on the stable_node
1700 * to be equal to stable_node_dup if the chain
1701 * was collapsed.
b4fecc67 1702 */
0ba1d0f7
AA
1703 *_stable_node = found;
1704 /*
f0953a1b 1705 * Just for robustness, as stable_node is
0ba1d0f7
AA
1706 * otherwise left as a stable pointer, the
1707 * compiler shall optimize it away at build
1708 * time.
1709 */
1710 stable_node = NULL;
80b18dfa
AA
1711 } else if (stable_node->hlist.first != &found->hlist_dup &&
1712 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1713 /*
80b18dfa
AA
1714 * If the found stable_node dup can accept one
1715 * more future merge (in addition to the one
1716 * that is underway) and is not at the head of
1717 * the chain, put it there so next search will
1718 * be quicker in the !prune_stale_stable_nodes
1719 * case.
1720 *
1721 * NOTE: it would be inaccurate to use nr > 1
1722 * instead of checking the hlist.first pointer
1723 * directly, because in the
1724 * prune_stale_stable_nodes case "nr" isn't
1725 * the position of the found dup in the chain,
1726 * but the total number of dups in the chain.
2c653d0e
AA
1727 */
1728 hlist_del(&found->hlist_dup);
1729 hlist_add_head(&found->hlist_dup,
1730 &stable_node->hlist);
1731 }
1732 }
1733
8dc5ffcd
AA
1734 *_stable_node_dup = found;
1735 return tree_page;
2c653d0e
AA
1736}
1737
21fbd591 1738static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1739 struct rb_root *root)
1740{
1741 if (!is_stable_node_chain(stable_node))
1742 return stable_node;
1743 if (hlist_empty(&stable_node->hlist)) {
1744 free_stable_node_chain(stable_node, root);
1745 return NULL;
1746 }
1747 return hlist_entry(stable_node->hlist.first,
1748 typeof(*stable_node), hlist_dup);
1749}
1750
8dc5ffcd
AA
1751/*
1752 * Like for get_ksm_page, this function can free the *_stable_node and
1753 * *_stable_node_dup if the returned tree_page is NULL.
1754 *
1755 * It can also free and overwrite *_stable_node with the found
1756 * stable_node_dup if the chain is collapsed (in which case
1757 * *_stable_node will be equal to *_stable_node_dup like if the chain
1758 * never existed). It's up to the caller to verify tree_page is not
1759 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1760 *
1761 * *_stable_node_dup is really a second output parameter of this
1762 * function and will be overwritten in all cases, the caller doesn't
1763 * need to initialize it.
1764 */
21fbd591
QZ
1765static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1766 struct ksm_stable_node **_stable_node,
8dc5ffcd
AA
1767 struct rb_root *root,
1768 bool prune_stale_stable_nodes)
2c653d0e 1769{
21fbd591 1770 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1771 if (!is_stable_node_chain(stable_node)) {
1772 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1773 *_stable_node_dup = stable_node;
2cee57d1 1774 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1775 }
8dc5ffcd
AA
1776 /*
1777 * _stable_node_dup set to NULL means the stable_node
1778 * reached the ksm_max_page_sharing limit.
1779 */
1780 *_stable_node_dup = NULL;
2c653d0e
AA
1781 return NULL;
1782 }
8dc5ffcd 1783 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1784 prune_stale_stable_nodes);
1785}
1786
21fbd591
QZ
1787static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1788 struct ksm_stable_node **s_n,
8dc5ffcd 1789 struct rb_root *root)
2c653d0e 1790{
8dc5ffcd 1791 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1792}
1793
21fbd591
QZ
1794static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1795 struct ksm_stable_node *s_n,
8dc5ffcd 1796 struct rb_root *root)
2c653d0e 1797{
21fbd591 1798 struct ksm_stable_node *old_stable_node = s_n;
8dc5ffcd
AA
1799 struct page *tree_page;
1800
1801 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1802 /* not pruning dups so s_n cannot have changed */
1803 VM_BUG_ON(s_n != old_stable_node);
1804 return tree_page;
2c653d0e
AA
1805}
1806
31dbd01f 1807/*
8dd3557a 1808 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1809 *
1810 * This function checks if there is a page inside the stable tree
1811 * with identical content to the page that we are scanning right now.
1812 *
7b6ba2c7 1813 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1814 * NULL otherwise.
1815 */
62b61f61 1816static struct page *stable_tree_search(struct page *page)
31dbd01f 1817{
90bd6fd3 1818 int nid;
ef53d16c 1819 struct rb_root *root;
4146d2d6
HD
1820 struct rb_node **new;
1821 struct rb_node *parent;
21fbd591
QZ
1822 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1823 struct ksm_stable_node *page_node;
31dbd01f 1824
4146d2d6
HD
1825 page_node = page_stable_node(page);
1826 if (page_node && page_node->head != &migrate_nodes) {
1827 /* ksm page forked */
08beca44 1828 get_page(page);
62b61f61 1829 return page;
08beca44
HD
1830 }
1831
90bd6fd3 1832 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1833 root = root_stable_tree + nid;
4146d2d6 1834again:
ef53d16c 1835 new = &root->rb_node;
4146d2d6 1836 parent = NULL;
90bd6fd3 1837
4146d2d6 1838 while (*new) {
4035c07a 1839 struct page *tree_page;
31dbd01f
IE
1840 int ret;
1841
08beca44 1842 cond_resched();
21fbd591 1843 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1844 stable_node_any = NULL;
8dc5ffcd 1845 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1846 /*
1847 * NOTE: stable_node may have been freed by
1848 * chain_prune() if the returned stable_node_dup is
1849 * not NULL. stable_node_dup may have been inserted in
1850 * the rbtree instead as a regular stable_node (in
1851 * order to collapse the stable_node chain if a single
0ba1d0f7 1852 * stable_node dup was found in it). In such case the
3413b2c8 1853 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1854 * to the stable_node_dup that was collapsed in the
1855 * stable rbtree and stable_node will be equal to
1856 * stable_node_dup like if the chain never existed.
b4fecc67 1857 */
2c653d0e
AA
1858 if (!stable_node_dup) {
1859 /*
1860 * Either all stable_node dups were full in
1861 * this stable_node chain, or this chain was
1862 * empty and should be rb_erased.
1863 */
1864 stable_node_any = stable_node_dup_any(stable_node,
1865 root);
1866 if (!stable_node_any) {
1867 /* rb_erase just run */
1868 goto again;
1869 }
1870 /*
1871 * Take any of the stable_node dups page of
1872 * this stable_node chain to let the tree walk
1873 * continue. All KSM pages belonging to the
1874 * stable_node dups in a stable_node chain
1875 * have the same content and they're
457aef94 1876 * write protected at all times. Any will work
2c653d0e
AA
1877 * fine to continue the walk.
1878 */
2cee57d1
YS
1879 tree_page = get_ksm_page(stable_node_any,
1880 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1881 }
1882 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1883 if (!tree_page) {
1884 /*
1885 * If we walked over a stale stable_node,
1886 * get_ksm_page() will call rb_erase() and it
1887 * may rebalance the tree from under us. So
1888 * restart the search from scratch. Returning
1889 * NULL would be safe too, but we'd generate
1890 * false negative insertions just because some
1891 * stable_node was stale.
1892 */
1893 goto again;
1894 }
31dbd01f 1895
4035c07a 1896 ret = memcmp_pages(page, tree_page);
c8d6553b 1897 put_page(tree_page);
31dbd01f 1898
4146d2d6 1899 parent = *new;
c8d6553b 1900 if (ret < 0)
4146d2d6 1901 new = &parent->rb_left;
c8d6553b 1902 else if (ret > 0)
4146d2d6 1903 new = &parent->rb_right;
c8d6553b 1904 else {
2c653d0e
AA
1905 if (page_node) {
1906 VM_BUG_ON(page_node->head != &migrate_nodes);
1907 /*
1908 * Test if the migrated page should be merged
1909 * into a stable node dup. If the mapcount is
1910 * 1 we can migrate it with another KSM page
1911 * without adding it to the chain.
1912 */
1913 if (page_mapcount(page) > 1)
1914 goto chain_append;
1915 }
1916
1917 if (!stable_node_dup) {
1918 /*
1919 * If the stable_node is a chain and
1920 * we got a payload match in memcmp
1921 * but we cannot merge the scanned
1922 * page in any of the existing
1923 * stable_node dups because they're
1924 * all full, we need to wait the
1925 * scanned page to find itself a match
1926 * in the unstable tree to create a
1927 * brand new KSM page to add later to
1928 * the dups of this stable_node.
1929 */
1930 return NULL;
1931 }
1932
c8d6553b
HD
1933 /*
1934 * Lock and unlock the stable_node's page (which
1935 * might already have been migrated) so that page
1936 * migration is sure to notice its raised count.
1937 * It would be more elegant to return stable_node
1938 * than kpage, but that involves more changes.
1939 */
2cee57d1
YS
1940 tree_page = get_ksm_page(stable_node_dup,
1941 GET_KSM_PAGE_TRYLOCK);
1942
1943 if (PTR_ERR(tree_page) == -EBUSY)
1944 return ERR_PTR(-EBUSY);
1945
2c653d0e
AA
1946 if (unlikely(!tree_page))
1947 /*
1948 * The tree may have been rebalanced,
1949 * so re-evaluate parent and new.
1950 */
4146d2d6 1951 goto again;
2c653d0e
AA
1952 unlock_page(tree_page);
1953
1954 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1955 NUMA(stable_node_dup->nid)) {
1956 put_page(tree_page);
1957 goto replace;
1958 }
1959 return tree_page;
c8d6553b 1960 }
31dbd01f
IE
1961 }
1962
4146d2d6
HD
1963 if (!page_node)
1964 return NULL;
1965
1966 list_del(&page_node->list);
1967 DO_NUMA(page_node->nid = nid);
1968 rb_link_node(&page_node->node, parent, new);
ef53d16c 1969 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1970out:
1971 if (is_page_sharing_candidate(page_node)) {
1972 get_page(page);
1973 return page;
1974 } else
1975 return NULL;
4146d2d6
HD
1976
1977replace:
b4fecc67
AA
1978 /*
1979 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1980 * stable_node has been updated to be the new regular
1981 * stable_node. A collapse of the chain is indistinguishable
1982 * from the case there was no chain in the stable
1983 * rbtree. Otherwise stable_node is the chain and
1984 * stable_node_dup is the dup to replace.
b4fecc67 1985 */
0ba1d0f7 1986 if (stable_node_dup == stable_node) {
b4fecc67
AA
1987 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1988 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1989 /* there is no chain */
1990 if (page_node) {
1991 VM_BUG_ON(page_node->head != &migrate_nodes);
1992 list_del(&page_node->list);
1993 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1994 rb_replace_node(&stable_node_dup->node,
1995 &page_node->node,
2c653d0e
AA
1996 root);
1997 if (is_page_sharing_candidate(page_node))
1998 get_page(page);
1999 else
2000 page = NULL;
2001 } else {
b4fecc67 2002 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
2003 page = NULL;
2004 }
4146d2d6 2005 } else {
2c653d0e
AA
2006 VM_BUG_ON(!is_stable_node_chain(stable_node));
2007 __stable_node_dup_del(stable_node_dup);
2008 if (page_node) {
2009 VM_BUG_ON(page_node->head != &migrate_nodes);
2010 list_del(&page_node->list);
2011 DO_NUMA(page_node->nid = nid);
2012 stable_node_chain_add_dup(page_node, stable_node);
2013 if (is_page_sharing_candidate(page_node))
2014 get_page(page);
2015 else
2016 page = NULL;
2017 } else {
2018 page = NULL;
2019 }
4146d2d6 2020 }
2c653d0e
AA
2021 stable_node_dup->head = &migrate_nodes;
2022 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 2023 return page;
2c653d0e
AA
2024
2025chain_append:
2026 /* stable_node_dup could be null if it reached the limit */
2027 if (!stable_node_dup)
2028 stable_node_dup = stable_node_any;
b4fecc67
AA
2029 /*
2030 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
2031 * stable_node has been updated to be the new regular
2032 * stable_node. A collapse of the chain is indistinguishable
2033 * from the case there was no chain in the stable
2034 * rbtree. Otherwise stable_node is the chain and
2035 * stable_node_dup is the dup to replace.
b4fecc67 2036 */
0ba1d0f7 2037 if (stable_node_dup == stable_node) {
b4fecc67 2038 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2039 /* chain is missing so create it */
2040 stable_node = alloc_stable_node_chain(stable_node_dup,
2041 root);
2042 if (!stable_node)
2043 return NULL;
2044 }
2045 /*
2046 * Add this stable_node dup that was
2047 * migrated to the stable_node chain
2048 * of the current nid for this page
2049 * content.
2050 */
b4fecc67 2051 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2052 VM_BUG_ON(page_node->head != &migrate_nodes);
2053 list_del(&page_node->list);
2054 DO_NUMA(page_node->nid = nid);
2055 stable_node_chain_add_dup(page_node, stable_node);
2056 goto out;
31dbd01f
IE
2057}
2058
2059/*
e850dcf5 2060 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
2061 * into the stable tree.
2062 *
7b6ba2c7
HD
2063 * This function returns the stable tree node just allocated on success,
2064 * NULL otherwise.
31dbd01f 2065 */
21fbd591 2066static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 2067{
90bd6fd3
PH
2068 int nid;
2069 unsigned long kpfn;
ef53d16c 2070 struct rb_root *root;
90bd6fd3 2071 struct rb_node **new;
f2e5ff85 2072 struct rb_node *parent;
21fbd591 2073 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 2074 bool need_chain = false;
31dbd01f 2075
90bd6fd3
PH
2076 kpfn = page_to_pfn(kpage);
2077 nid = get_kpfn_nid(kpfn);
ef53d16c 2078 root = root_stable_tree + nid;
f2e5ff85
AA
2079again:
2080 parent = NULL;
ef53d16c 2081 new = &root->rb_node;
90bd6fd3 2082
31dbd01f 2083 while (*new) {
4035c07a 2084 struct page *tree_page;
31dbd01f
IE
2085 int ret;
2086
08beca44 2087 cond_resched();
21fbd591 2088 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 2089 stable_node_any = NULL;
8dc5ffcd 2090 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
2091 if (!stable_node_dup) {
2092 /*
2093 * Either all stable_node dups were full in
2094 * this stable_node chain, or this chain was
2095 * empty and should be rb_erased.
2096 */
2097 stable_node_any = stable_node_dup_any(stable_node,
2098 root);
2099 if (!stable_node_any) {
2100 /* rb_erase just run */
2101 goto again;
2102 }
2103 /*
2104 * Take any of the stable_node dups page of
2105 * this stable_node chain to let the tree walk
2106 * continue. All KSM pages belonging to the
2107 * stable_node dups in a stable_node chain
2108 * have the same content and they're
457aef94 2109 * write protected at all times. Any will work
2c653d0e
AA
2110 * fine to continue the walk.
2111 */
2cee57d1
YS
2112 tree_page = get_ksm_page(stable_node_any,
2113 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
2114 }
2115 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
2116 if (!tree_page) {
2117 /*
2118 * If we walked over a stale stable_node,
2119 * get_ksm_page() will call rb_erase() and it
2120 * may rebalance the tree from under us. So
2121 * restart the search from scratch. Returning
2122 * NULL would be safe too, but we'd generate
2123 * false negative insertions just because some
2124 * stable_node was stale.
2125 */
2126 goto again;
2127 }
31dbd01f 2128
4035c07a
HD
2129 ret = memcmp_pages(kpage, tree_page);
2130 put_page(tree_page);
31dbd01f
IE
2131
2132 parent = *new;
2133 if (ret < 0)
2134 new = &parent->rb_left;
2135 else if (ret > 0)
2136 new = &parent->rb_right;
2137 else {
2c653d0e
AA
2138 need_chain = true;
2139 break;
31dbd01f
IE
2140 }
2141 }
2142
2c653d0e
AA
2143 stable_node_dup = alloc_stable_node();
2144 if (!stable_node_dup)
7b6ba2c7 2145 return NULL;
31dbd01f 2146
2c653d0e
AA
2147 INIT_HLIST_HEAD(&stable_node_dup->hlist);
2148 stable_node_dup->kpfn = kpfn;
2149 set_page_stable_node(kpage, stable_node_dup);
2150 stable_node_dup->rmap_hlist_len = 0;
2151 DO_NUMA(stable_node_dup->nid = nid);
2152 if (!need_chain) {
2153 rb_link_node(&stable_node_dup->node, parent, new);
2154 rb_insert_color(&stable_node_dup->node, root);
2155 } else {
2156 if (!is_stable_node_chain(stable_node)) {
21fbd591 2157 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
2158 /* chain is missing so create it */
2159 stable_node = alloc_stable_node_chain(orig, root);
2160 if (!stable_node) {
2161 free_stable_node(stable_node_dup);
2162 return NULL;
2163 }
2164 }
2165 stable_node_chain_add_dup(stable_node_dup, stable_node);
2166 }
08beca44 2167
2c653d0e 2168 return stable_node_dup;
31dbd01f
IE
2169}
2170
2171/*
8dd3557a
HD
2172 * unstable_tree_search_insert - search for identical page,
2173 * else insert rmap_item into the unstable tree.
31dbd01f
IE
2174 *
2175 * This function searches for a page in the unstable tree identical to the
2176 * page currently being scanned; and if no identical page is found in the
2177 * tree, we insert rmap_item as a new object into the unstable tree.
2178 *
2179 * This function returns pointer to rmap_item found to be identical
2180 * to the currently scanned page, NULL otherwise.
2181 *
2182 * This function does both searching and inserting, because they share
2183 * the same walking algorithm in an rbtree.
2184 */
8dd3557a 2185static
21fbd591 2186struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
2187 struct page *page,
2188 struct page **tree_pagep)
31dbd01f 2189{
90bd6fd3
PH
2190 struct rb_node **new;
2191 struct rb_root *root;
31dbd01f 2192 struct rb_node *parent = NULL;
90bd6fd3
PH
2193 int nid;
2194
2195 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 2196 root = root_unstable_tree + nid;
90bd6fd3 2197 new = &root->rb_node;
31dbd01f
IE
2198
2199 while (*new) {
21fbd591 2200 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2201 struct page *tree_page;
31dbd01f
IE
2202 int ret;
2203
d178f27f 2204 cond_resched();
21fbd591 2205 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 2206 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 2207 if (!tree_page)
31dbd01f
IE
2208 return NULL;
2209
2210 /*
8dd3557a 2211 * Don't substitute a ksm page for a forked page.
31dbd01f 2212 */
8dd3557a
HD
2213 if (page == tree_page) {
2214 put_page(tree_page);
31dbd01f
IE
2215 return NULL;
2216 }
2217
8dd3557a 2218 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
2219
2220 parent = *new;
2221 if (ret < 0) {
8dd3557a 2222 put_page(tree_page);
31dbd01f
IE
2223 new = &parent->rb_left;
2224 } else if (ret > 0) {
8dd3557a 2225 put_page(tree_page);
31dbd01f 2226 new = &parent->rb_right;
b599cbdf
HD
2227 } else if (!ksm_merge_across_nodes &&
2228 page_to_nid(tree_page) != nid) {
2229 /*
2230 * If tree_page has been migrated to another NUMA node,
2231 * it will be flushed out and put in the right unstable
2232 * tree next time: only merge with it when across_nodes.
2233 */
2234 put_page(tree_page);
2235 return NULL;
31dbd01f 2236 } else {
8dd3557a 2237 *tree_pagep = tree_page;
31dbd01f
IE
2238 return tree_rmap_item;
2239 }
2240 }
2241
7b6ba2c7 2242 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 2243 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 2244 DO_NUMA(rmap_item->nid = nid);
31dbd01f 2245 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 2246 rb_insert_color(&rmap_item->node, root);
31dbd01f 2247
473b0ce4 2248 ksm_pages_unshared++;
31dbd01f
IE
2249 return NULL;
2250}
2251
2252/*
2253 * stable_tree_append - add another rmap_item to the linked list of
2254 * rmap_items hanging off a given node of the stable tree, all sharing
2255 * the same ksm page.
2256 */
21fbd591
QZ
2257static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2258 struct ksm_stable_node *stable_node,
2c653d0e 2259 bool max_page_sharing_bypass)
31dbd01f 2260{
2c653d0e
AA
2261 /*
2262 * rmap won't find this mapping if we don't insert the
2263 * rmap_item in the right stable_node
2264 * duplicate. page_migration could break later if rmap breaks,
2265 * so we can as well crash here. We really need to check for
2266 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2267 * for other negative values as an underflow if detected here
2c653d0e
AA
2268 * for the first time (and not when decreasing rmap_hlist_len)
2269 * would be sign of memory corruption in the stable_node.
2270 */
2271 BUG_ON(stable_node->rmap_hlist_len < 0);
2272
2273 stable_node->rmap_hlist_len++;
2274 if (!max_page_sharing_bypass)
2275 /* possibly non fatal but unexpected overflow, only warn */
2276 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2277 ksm_max_page_sharing);
2278
7b6ba2c7 2279 rmap_item->head = stable_node;
31dbd01f 2280 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2281 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2282
7b6ba2c7
HD
2283 if (rmap_item->hlist.next)
2284 ksm_pages_sharing++;
2285 else
2286 ksm_pages_shared++;
76093853 2287
2288 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2289}
2290
2291/*
81464e30
HD
2292 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2293 * if not, compare checksum to previous and if it's the same, see if page can
2294 * be inserted into the unstable tree, or merged with a page already there and
2295 * both transferred to the stable tree.
31dbd01f
IE
2296 *
2297 * @page: the page that we are searching identical page to.
2298 * @rmap_item: the reverse mapping into the virtual address of this page
2299 */
21fbd591 2300static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2301{
4b22927f 2302 struct mm_struct *mm = rmap_item->mm;
21fbd591 2303 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2304 struct page *tree_page = NULL;
21fbd591 2305 struct ksm_stable_node *stable_node;
8dd3557a 2306 struct page *kpage;
31dbd01f
IE
2307 unsigned int checksum;
2308 int err;
2c653d0e 2309 bool max_page_sharing_bypass = false;
31dbd01f 2310
4146d2d6
HD
2311 stable_node = page_stable_node(page);
2312 if (stable_node) {
2313 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2314 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2315 NUMA(stable_node->nid)) {
2316 stable_node_dup_del(stable_node);
4146d2d6
HD
2317 stable_node->head = &migrate_nodes;
2318 list_add(&stable_node->list, stable_node->head);
2319 }
2320 if (stable_node->head != &migrate_nodes &&
2321 rmap_item->head == stable_node)
2322 return;
2c653d0e
AA
2323 /*
2324 * If it's a KSM fork, allow it to go over the sharing limit
2325 * without warnings.
2326 */
2327 if (!is_page_sharing_candidate(stable_node))
2328 max_page_sharing_bypass = true;
4146d2d6 2329 }
31dbd01f
IE
2330
2331 /* We first start with searching the page inside the stable tree */
62b61f61 2332 kpage = stable_tree_search(page);
4146d2d6
HD
2333 if (kpage == page && rmap_item->head == stable_node) {
2334 put_page(kpage);
2335 return;
2336 }
2337
2338 remove_rmap_item_from_tree(rmap_item);
2339
62b61f61 2340 if (kpage) {
2cee57d1
YS
2341 if (PTR_ERR(kpage) == -EBUSY)
2342 return;
2343
08beca44 2344 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2345 if (!err) {
2346 /*
2347 * The page was successfully merged:
2348 * add its rmap_item to the stable tree.
2349 */
5ad64688 2350 lock_page(kpage);
2c653d0e
AA
2351 stable_tree_append(rmap_item, page_stable_node(kpage),
2352 max_page_sharing_bypass);
5ad64688 2353 unlock_page(kpage);
31dbd01f 2354 }
8dd3557a 2355 put_page(kpage);
31dbd01f
IE
2356 return;
2357 }
2358
2359 /*
4035c07a
HD
2360 * If the hash value of the page has changed from the last time
2361 * we calculated it, this page is changing frequently: therefore we
2362 * don't want to insert it in the unstable tree, and we don't want
2363 * to waste our time searching for something identical to it there.
31dbd01f
IE
2364 */
2365 checksum = calc_checksum(page);
2366 if (rmap_item->oldchecksum != checksum) {
2367 rmap_item->oldchecksum = checksum;
2368 return;
2369 }
2370
e86c59b1
CI
2371 /*
2372 * Same checksum as an empty page. We attempt to merge it with the
2373 * appropriate zero page if the user enabled this via sysfs.
2374 */
2375 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2376 struct vm_area_struct *vma;
2377
d8ed45c5 2378 mmap_read_lock(mm);
4b22927f 2379 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2380 if (vma) {
2381 err = try_to_merge_one_page(vma, page,
2382 ZERO_PAGE(rmap_item->address));
739100c8
SR
2383 trace_ksm_merge_one_page(
2384 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2385 rmap_item, mm, err);
56df70a6
MS
2386 } else {
2387 /*
2388 * If the vma is out of date, we do not need to
2389 * continue.
2390 */
2391 err = 0;
2392 }
d8ed45c5 2393 mmap_read_unlock(mm);
e86c59b1
CI
2394 /*
2395 * In case of failure, the page was not really empty, so we
2396 * need to continue. Otherwise we're done.
2397 */
2398 if (!err)
2399 return;
2400 }
8dd3557a
HD
2401 tree_rmap_item =
2402 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2403 if (tree_rmap_item) {
77da2ba0
CI
2404 bool split;
2405
8dd3557a
HD
2406 kpage = try_to_merge_two_pages(rmap_item, page,
2407 tree_rmap_item, tree_page);
77da2ba0
CI
2408 /*
2409 * If both pages we tried to merge belong to the same compound
2410 * page, then we actually ended up increasing the reference
2411 * count of the same compound page twice, and split_huge_page
2412 * failed.
2413 * Here we set a flag if that happened, and we use it later to
2414 * try split_huge_page again. Since we call put_page right
2415 * afterwards, the reference count will be correct and
2416 * split_huge_page should succeed.
2417 */
2418 split = PageTransCompound(page)
2419 && compound_head(page) == compound_head(tree_page);
8dd3557a 2420 put_page(tree_page);
8dd3557a 2421 if (kpage) {
bc56620b
HD
2422 /*
2423 * The pages were successfully merged: insert new
2424 * node in the stable tree and add both rmap_items.
2425 */
5ad64688 2426 lock_page(kpage);
7b6ba2c7
HD
2427 stable_node = stable_tree_insert(kpage);
2428 if (stable_node) {
2c653d0e
AA
2429 stable_tree_append(tree_rmap_item, stable_node,
2430 false);
2431 stable_tree_append(rmap_item, stable_node,
2432 false);
7b6ba2c7 2433 }
5ad64688 2434 unlock_page(kpage);
7b6ba2c7 2435
31dbd01f
IE
2436 /*
2437 * If we fail to insert the page into the stable tree,
2438 * we will have 2 virtual addresses that are pointing
2439 * to a ksm page left outside the stable tree,
2440 * in which case we need to break_cow on both.
2441 */
7b6ba2c7 2442 if (!stable_node) {
8dd3557a
HD
2443 break_cow(tree_rmap_item);
2444 break_cow(rmap_item);
31dbd01f 2445 }
77da2ba0
CI
2446 } else if (split) {
2447 /*
2448 * We are here if we tried to merge two pages and
2449 * failed because they both belonged to the same
2450 * compound page. We will split the page now, but no
2451 * merging will take place.
2452 * We do not want to add the cost of a full lock; if
2453 * the page is locked, it is better to skip it and
2454 * perhaps try again later.
2455 */
2456 if (!trylock_page(page))
2457 return;
2458 split_huge_page(page);
2459 unlock_page(page);
31dbd01f 2460 }
31dbd01f
IE
2461 }
2462}
2463
21fbd591
QZ
2464static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2465 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2466 unsigned long addr)
2467{
21fbd591 2468 struct ksm_rmap_item *rmap_item;
31dbd01f 2469
6514d511
HD
2470 while (*rmap_list) {
2471 rmap_item = *rmap_list;
93d17715 2472 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2473 return rmap_item;
31dbd01f
IE
2474 if (rmap_item->address > addr)
2475 break;
6514d511 2476 *rmap_list = rmap_item->rmap_list;
31dbd01f 2477 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2478 free_rmap_item(rmap_item);
2479 }
2480
2481 rmap_item = alloc_rmap_item();
2482 if (rmap_item) {
2483 /* It has already been zeroed */
58730ab6 2484 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2485 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2486 rmap_item->address = addr;
6514d511
HD
2487 rmap_item->rmap_list = *rmap_list;
2488 *rmap_list = rmap_item;
31dbd01f
IE
2489 }
2490 return rmap_item;
2491}
2492
5e924ff5
SR
2493/*
2494 * Calculate skip age for the ksm page age. The age determines how often
2495 * de-duplicating has already been tried unsuccessfully. If the age is
2496 * smaller, the scanning of this page is skipped for less scans.
2497 *
2498 * @age: rmap_item age of page
2499 */
2500static unsigned int skip_age(rmap_age_t age)
2501{
2502 if (age <= 3)
2503 return 1;
2504 if (age <= 5)
2505 return 2;
2506 if (age <= 8)
2507 return 4;
2508
2509 return 8;
2510}
2511
2512/*
2513 * Determines if a page should be skipped for the current scan.
2514 *
2515 * @page: page to check
2516 * @rmap_item: associated rmap_item of page
2517 */
2518static bool should_skip_rmap_item(struct page *page,
2519 struct ksm_rmap_item *rmap_item)
2520{
2521 rmap_age_t age;
2522
2523 if (!ksm_smart_scan)
2524 return false;
2525
2526 /*
2527 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2528 * will essentially ignore them, but we still have to process them
2529 * properly.
2530 */
2531 if (PageKsm(page))
2532 return false;
2533
2534 age = rmap_item->age;
2535 if (age != U8_MAX)
2536 rmap_item->age++;
2537
2538 /*
2539 * Smaller ages are not skipped, they need to get a chance to go
2540 * through the different phases of the KSM merging.
2541 */
2542 if (age < 3)
2543 return false;
2544
2545 /*
2546 * Are we still allowed to skip? If not, then don't skip it
2547 * and determine how much more often we are allowed to skip next.
2548 */
2549 if (!rmap_item->remaining_skips) {
2550 rmap_item->remaining_skips = skip_age(age);
2551 return false;
2552 }
2553
2554 /* Skip this page */
e5a68991 2555 ksm_pages_skipped++;
5e924ff5
SR
2556 rmap_item->remaining_skips--;
2557 remove_rmap_item_from_tree(rmap_item);
2558 return true;
2559}
2560
21fbd591 2561static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2562{
2563 struct mm_struct *mm;
58730ab6
QZ
2564 struct ksm_mm_slot *mm_slot;
2565 struct mm_slot *slot;
31dbd01f 2566 struct vm_area_struct *vma;
21fbd591 2567 struct ksm_rmap_item *rmap_item;
a5f18ba0 2568 struct vma_iterator vmi;
90bd6fd3 2569 int nid;
31dbd01f 2570
58730ab6 2571 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2572 return NULL;
2573
58730ab6
QZ
2574 mm_slot = ksm_scan.mm_slot;
2575 if (mm_slot == &ksm_mm_head) {
4e5fa4f5 2576 advisor_start_scan();
739100c8
SR
2577 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2578
2919bfd0 2579 /*
1fec6890
MWO
2580 * A number of pages can hang around indefinitely in per-cpu
2581 * LRU cache, raised page count preventing write_protect_page
2919bfd0
HD
2582 * from merging them. Though it doesn't really matter much,
2583 * it is puzzling to see some stuck in pages_volatile until
2584 * other activity jostles them out, and they also prevented
2585 * LTP's KSM test from succeeding deterministically; so drain
2586 * them here (here rather than on entry to ksm_do_scan(),
2587 * so we don't IPI too often when pages_to_scan is set low).
2588 */
2589 lru_add_drain_all();
2590
4146d2d6
HD
2591 /*
2592 * Whereas stale stable_nodes on the stable_tree itself
2593 * get pruned in the regular course of stable_tree_search(),
2594 * those moved out to the migrate_nodes list can accumulate:
2595 * so prune them once before each full scan.
2596 */
2597 if (!ksm_merge_across_nodes) {
21fbd591 2598 struct ksm_stable_node *stable_node, *next;
4146d2d6
HD
2599 struct page *page;
2600
03640418
GT
2601 list_for_each_entry_safe(stable_node, next,
2602 &migrate_nodes, list) {
2cee57d1
YS
2603 page = get_ksm_page(stable_node,
2604 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2605 if (page)
2606 put_page(page);
2607 cond_resched();
2608 }
2609 }
2610
ef53d16c 2611 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2612 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2613
2614 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2615 slot = list_entry(mm_slot->slot.mm_node.next,
2616 struct mm_slot, mm_node);
2617 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2618 ksm_scan.mm_slot = mm_slot;
31dbd01f 2619 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2620 /*
2621 * Although we tested list_empty() above, a racing __ksm_exit
2622 * of the last mm on the list may have removed it since then.
2623 */
58730ab6 2624 if (mm_slot == &ksm_mm_head)
2b472611 2625 return NULL;
31dbd01f
IE
2626next_mm:
2627 ksm_scan.address = 0;
58730ab6 2628 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2629 }
2630
58730ab6 2631 slot = &mm_slot->slot;
31dbd01f 2632 mm = slot->mm;
a5f18ba0
MWO
2633 vma_iter_init(&vmi, mm, ksm_scan.address);
2634
d8ed45c5 2635 mmap_read_lock(mm);
9ba69294 2636 if (ksm_test_exit(mm))
a5f18ba0 2637 goto no_vmas;
9ba69294 2638
a5f18ba0 2639 for_each_vma(vmi, vma) {
31dbd01f
IE
2640 if (!(vma->vm_flags & VM_MERGEABLE))
2641 continue;
2642 if (ksm_scan.address < vma->vm_start)
2643 ksm_scan.address = vma->vm_start;
2644 if (!vma->anon_vma)
2645 ksm_scan.address = vma->vm_end;
2646
2647 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2648 if (ksm_test_exit(mm))
2649 break;
31dbd01f 2650 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2651 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2652 ksm_scan.address += PAGE_SIZE;
2653 cond_resched();
2654 continue;
2655 }
f7091ed6
HW
2656 if (is_zone_device_page(*page))
2657 goto next_page;
f765f540 2658 if (PageAnon(*page)) {
31dbd01f
IE
2659 flush_anon_page(vma, *page, ksm_scan.address);
2660 flush_dcache_page(*page);
58730ab6 2661 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2662 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2663 if (rmap_item) {
6514d511
HD
2664 ksm_scan.rmap_list =
2665 &rmap_item->rmap_list;
5e924ff5
SR
2666
2667 if (should_skip_rmap_item(*page, rmap_item))
2668 goto next_page;
2669
31dbd01f
IE
2670 ksm_scan.address += PAGE_SIZE;
2671 } else
2672 put_page(*page);
d8ed45c5 2673 mmap_read_unlock(mm);
31dbd01f
IE
2674 return rmap_item;
2675 }
f7091ed6 2676next_page:
21ae5b01 2677 put_page(*page);
31dbd01f
IE
2678 ksm_scan.address += PAGE_SIZE;
2679 cond_resched();
2680 }
2681 }
2682
9ba69294 2683 if (ksm_test_exit(mm)) {
a5f18ba0 2684no_vmas:
9ba69294 2685 ksm_scan.address = 0;
58730ab6 2686 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2687 }
31dbd01f
IE
2688 /*
2689 * Nuke all the rmap_items that are above this current rmap:
2690 * because there were no VM_MERGEABLE vmas with such addresses.
2691 */
420be4ed 2692 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2693
2694 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2695 slot = list_entry(mm_slot->slot.mm_node.next,
2696 struct mm_slot, mm_node);
2697 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2698 if (ksm_scan.address == 0) {
2699 /*
c1e8d7c6 2700 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2701 * throughout, and found no VM_MERGEABLE: so do the same as
2702 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2703 * This applies either when cleaning up after __ksm_exit
2704 * (but beware: we can reach here even before __ksm_exit),
2705 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2706 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2707 */
58730ab6
QZ
2708 hash_del(&mm_slot->slot.hash);
2709 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2710 spin_unlock(&ksm_mmlist_lock);
2711
58730ab6 2712 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2713 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 2714 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
d8ed45c5 2715 mmap_read_unlock(mm);
9ba69294
HD
2716 mmdrop(mm);
2717 } else {
d8ed45c5 2718 mmap_read_unlock(mm);
7496fea9 2719 /*
3e4e28c5 2720 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2721 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2722 * already have been freed under us by __ksm_exit()
2723 * because the "mm_slot" is still hashed and
2724 * ksm_scan.mm_slot doesn't point to it anymore.
2725 */
2726 spin_unlock(&ksm_mmlist_lock);
cd551f97 2727 }
31dbd01f
IE
2728
2729 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2730 mm_slot = ksm_scan.mm_slot;
2731 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2732 goto next_mm;
2733
4e5fa4f5
SR
2734 advisor_stop_scan();
2735
739100c8 2736 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
31dbd01f
IE
2737 ksm_scan.seqnr++;
2738 return NULL;
2739}
2740
2741/**
2742 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2743 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2744 */
2745static void ksm_do_scan(unsigned int scan_npages)
2746{
21fbd591 2747 struct ksm_rmap_item *rmap_item;
3f649ab7 2748 struct page *page;
b348b5fe 2749 unsigned int npages = scan_npages;
31dbd01f 2750
b348b5fe 2751 while (npages-- && likely(!freezing(current))) {
31dbd01f
IE
2752 cond_resched();
2753 rmap_item = scan_get_next_rmap_item(&page);
2754 if (!rmap_item)
2755 return;
4146d2d6 2756 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2757 put_page(page);
2758 }
b348b5fe
SR
2759
2760 ksm_pages_scanned += scan_npages - npages;
31dbd01f
IE
2761}
2762
6e158384
HD
2763static int ksmd_should_run(void)
2764{
58730ab6 2765 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2766}
2767
31dbd01f
IE
2768static int ksm_scan_thread(void *nothing)
2769{
fcf9a0ef
KT
2770 unsigned int sleep_ms;
2771
878aee7d 2772 set_freezable();
339aa624 2773 set_user_nice(current, 5);
31dbd01f
IE
2774
2775 while (!kthread_should_stop()) {
6e158384 2776 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2777 wait_while_offlining();
6e158384 2778 if (ksmd_should_run())
31dbd01f 2779 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2780 mutex_unlock(&ksm_thread_mutex);
2781
2782 if (ksmd_should_run()) {
fcf9a0ef 2783 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
f55afd95 2784 wait_event_freezable_timeout(ksm_iter_wait,
fcf9a0ef
KT
2785 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2786 msecs_to_jiffies(sleep_ms));
31dbd01f 2787 } else {
878aee7d 2788 wait_event_freezable(ksm_thread_wait,
6e158384 2789 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2790 }
2791 }
2792 return 0;
2793}
2794
d7597f59
SR
2795static void __ksm_add_vma(struct vm_area_struct *vma)
2796{
2797 unsigned long vm_flags = vma->vm_flags;
2798
2799 if (vm_flags & VM_MERGEABLE)
2800 return;
2801
2802 if (vma_ksm_compatible(vma))
2803 vm_flags_set(vma, VM_MERGEABLE);
2804}
2805
24139c07
DH
2806static int __ksm_del_vma(struct vm_area_struct *vma)
2807{
2808 int err;
2809
2810 if (!(vma->vm_flags & VM_MERGEABLE))
2811 return 0;
2812
2813 if (vma->anon_vma) {
49b06385 2814 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
24139c07
DH
2815 if (err)
2816 return err;
2817 }
2818
2819 vm_flags_clear(vma, VM_MERGEABLE);
2820 return 0;
2821}
d7597f59
SR
2822/**
2823 * ksm_add_vma - Mark vma as mergeable if compatible
2824 *
2825 * @vma: Pointer to vma
2826 */
2827void ksm_add_vma(struct vm_area_struct *vma)
2828{
2829 struct mm_struct *mm = vma->vm_mm;
2830
2831 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2832 __ksm_add_vma(vma);
2833}
2834
2835static void ksm_add_vmas(struct mm_struct *mm)
2836{
2837 struct vm_area_struct *vma;
2838
2839 VMA_ITERATOR(vmi, mm, 0);
2840 for_each_vma(vmi, vma)
2841 __ksm_add_vma(vma);
2842}
2843
24139c07
DH
2844static int ksm_del_vmas(struct mm_struct *mm)
2845{
2846 struct vm_area_struct *vma;
2847 int err;
2848
2849 VMA_ITERATOR(vmi, mm, 0);
2850 for_each_vma(vmi, vma) {
2851 err = __ksm_del_vma(vma);
2852 if (err)
2853 return err;
2854 }
2855 return 0;
2856}
2857
d7597f59
SR
2858/**
2859 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2860 * compatible VMA's
2861 *
2862 * @mm: Pointer to mm
2863 *
2864 * Returns 0 on success, otherwise error code
2865 */
2866int ksm_enable_merge_any(struct mm_struct *mm)
2867{
2868 int err;
2869
2870 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2871 return 0;
2872
2873 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2874 err = __ksm_enter(mm);
2875 if (err)
2876 return err;
2877 }
2878
2879 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2880 ksm_add_vmas(mm);
2881
2882 return 0;
2883}
2884
24139c07
DH
2885/**
2886 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2887 * previously enabled via ksm_enable_merge_any().
2888 *
2889 * Disabling merging implies unmerging any merged pages, like setting
2890 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2891 * merging on all compatible VMA's remains enabled.
2892 *
2893 * @mm: Pointer to mm
2894 *
2895 * Returns 0 on success, otherwise error code
2896 */
2897int ksm_disable_merge_any(struct mm_struct *mm)
2898{
2899 int err;
2900
2901 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2902 return 0;
2903
2904 err = ksm_del_vmas(mm);
2905 if (err) {
2906 ksm_add_vmas(mm);
2907 return err;
2908 }
2909
2910 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2911 return 0;
2912}
2913
2c281f54
DH
2914int ksm_disable(struct mm_struct *mm)
2915{
2916 mmap_assert_write_locked(mm);
2917
2918 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2919 return 0;
2920 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2921 return ksm_disable_merge_any(mm);
2922 return ksm_del_vmas(mm);
2923}
2924
f8af4da3
HD
2925int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2926 unsigned long end, int advice, unsigned long *vm_flags)
2927{
2928 struct mm_struct *mm = vma->vm_mm;
d952b791 2929 int err;
f8af4da3
HD
2930
2931 switch (advice) {
2932 case MADV_MERGEABLE:
d7597f59 2933 if (vma->vm_flags & VM_MERGEABLE)
e1fb4a08 2934 return 0;
d7597f59 2935 if (!vma_ksm_compatible(vma))
74a04967 2936 return 0;
cc2383ec 2937
d952b791
HD
2938 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2939 err = __ksm_enter(mm);
2940 if (err)
2941 return err;
2942 }
f8af4da3
HD
2943
2944 *vm_flags |= VM_MERGEABLE;
2945 break;
2946
2947 case MADV_UNMERGEABLE:
2948 if (!(*vm_flags & VM_MERGEABLE))
2949 return 0; /* just ignore the advice */
2950
d952b791 2951 if (vma->anon_vma) {
49b06385 2952 err = unmerge_ksm_pages(vma, start, end, true);
d952b791
HD
2953 if (err)
2954 return err;
2955 }
f8af4da3
HD
2956
2957 *vm_flags &= ~VM_MERGEABLE;
2958 break;
2959 }
2960
2961 return 0;
2962}
33cf1707 2963EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2964
2965int __ksm_enter(struct mm_struct *mm)
2966{
21fbd591 2967 struct ksm_mm_slot *mm_slot;
58730ab6 2968 struct mm_slot *slot;
6e158384
HD
2969 int needs_wakeup;
2970
58730ab6 2971 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2972 if (!mm_slot)
2973 return -ENOMEM;
2974
58730ab6
QZ
2975 slot = &mm_slot->slot;
2976
6e158384 2977 /* Check ksm_run too? Would need tighter locking */
58730ab6 2978 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2979
31dbd01f 2980 spin_lock(&ksm_mmlist_lock);
58730ab6 2981 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2982 /*
cbf86cfe
HD
2983 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2984 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2985 * down a little; when fork is followed by immediate exec, we don't
2986 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2987 *
2988 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2989 * scanning cursor, otherwise KSM pages in newly forked mms will be
2990 * missed: then we might as well insert at the end of the list.
31dbd01f 2991 */
cbf86cfe 2992 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2993 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2994 else
58730ab6 2995 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
2996 spin_unlock(&ksm_mmlist_lock);
2997
f8af4da3 2998 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2999 mmgrab(mm);
6e158384
HD
3000
3001 if (needs_wakeup)
3002 wake_up_interruptible(&ksm_thread_wait);
3003
739100c8 3004 trace_ksm_enter(mm);
f8af4da3
HD
3005 return 0;
3006}
3007
1c2fb7a4 3008void __ksm_exit(struct mm_struct *mm)
f8af4da3 3009{
21fbd591 3010 struct ksm_mm_slot *mm_slot;
58730ab6 3011 struct mm_slot *slot;
9ba69294 3012 int easy_to_free = 0;
cd551f97 3013
31dbd01f 3014 /*
9ba69294
HD
3015 * This process is exiting: if it's straightforward (as is the
3016 * case when ksmd was never running), free mm_slot immediately.
3017 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 3018 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
3019 * are freed, and leave the mm_slot on the list for ksmd to free.
3020 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 3021 */
9ba69294 3022
cd551f97 3023 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
3024 slot = mm_slot_lookup(mm_slots_hash, mm);
3025 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 3026 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 3027 if (!mm_slot->rmap_list) {
58730ab6
QZ
3028 hash_del(&slot->hash);
3029 list_del(&slot->mm_node);
9ba69294
HD
3030 easy_to_free = 1;
3031 } else {
58730ab6
QZ
3032 list_move(&slot->mm_node,
3033 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 3034 }
cd551f97 3035 }
cd551f97
HD
3036 spin_unlock(&ksm_mmlist_lock);
3037
9ba69294 3038 if (easy_to_free) {
58730ab6 3039 mm_slot_free(mm_slot_cache, mm_slot);
d7597f59 3040 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294
HD
3041 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3042 mmdrop(mm);
3043 } else if (mm_slot) {
d8ed45c5
ML
3044 mmap_write_lock(mm);
3045 mmap_write_unlock(mm);
9ba69294 3046 }
739100c8
SR
3047
3048 trace_ksm_exit(mm);
31dbd01f
IE
3049}
3050
96db66d9 3051struct folio *ksm_might_need_to_copy(struct folio *folio,
1486fb50 3052 struct vm_area_struct *vma, unsigned long addr)
5ad64688 3053{
96db66d9 3054 struct page *page = folio_page(folio, 0);
e05b3453 3055 struct anon_vma *anon_vma = folio_anon_vma(folio);
1486fb50 3056 struct folio *new_folio;
5ad64688 3057
1486fb50 3058 if (folio_test_large(folio))
96db66d9 3059 return folio;
1486fb50
KW
3060
3061 if (folio_test_ksm(folio)) {
3062 if (folio_stable_node(folio) &&
cbf86cfe 3063 !(ksm_run & KSM_RUN_UNMERGE))
96db66d9 3064 return folio; /* no need to copy it */
cbf86cfe 3065 } else if (!anon_vma) {
96db66d9 3066 return folio; /* no need to copy it */
1486fb50 3067 } else if (folio->index == linear_page_index(vma, addr) &&
e1c63e11 3068 anon_vma->root == vma->anon_vma->root) {
96db66d9 3069 return folio; /* still no need to copy it */
cbf86cfe 3070 }
f985fc32
ML
3071 if (PageHWPoison(page))
3072 return ERR_PTR(-EHWPOISON);
1486fb50 3073 if (!folio_test_uptodate(folio))
96db66d9 3074 return folio; /* let do_swap_page report the error */
cbf86cfe 3075
1486fb50
KW
3076 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3077 if (new_folio &&
3078 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3079 folio_put(new_folio);
3080 new_folio = NULL;
62fdb163 3081 }
1486fb50 3082 if (new_folio) {
96db66d9
MWO
3083 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3084 addr, vma)) {
1486fb50 3085 folio_put(new_folio);
96db66d9 3086 memory_failure_queue(folio_pfn(folio), 0);
6b970599
KW
3087 return ERR_PTR(-EHWPOISON);
3088 }
1486fb50
KW
3089 folio_set_dirty(new_folio);
3090 __folio_mark_uptodate(new_folio);
3091 __folio_set_locked(new_folio);
4d45c3af
YY
3092#ifdef CONFIG_SWAP
3093 count_vm_event(KSM_SWPIN_COPY);
3094#endif
5ad64688
HD
3095 }
3096
96db66d9 3097 return new_folio;
5ad64688
HD
3098}
3099
6d4675e6 3100void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 3101{
21fbd591
QZ
3102 struct ksm_stable_node *stable_node;
3103 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
3104 int search_new_forks = 0;
3105
2f031c6f 3106 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
3107
3108 /*
3109 * Rely on the page lock to protect against concurrent modifications
3110 * to that page's node of the stable tree.
3111 */
2f031c6f 3112 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 3113
2f031c6f 3114 stable_node = folio_stable_node(folio);
e9995ef9 3115 if (!stable_node)
1df631ae 3116 return;
e9995ef9 3117again:
b67bfe0d 3118 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 3119 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 3120 struct anon_vma_chain *vmac;
e9995ef9
HD
3121 struct vm_area_struct *vma;
3122
ad12695f 3123 cond_resched();
6d4675e6
MK
3124 if (!anon_vma_trylock_read(anon_vma)) {
3125 if (rwc->try_lock) {
3126 rwc->contended = true;
3127 return;
3128 }
3129 anon_vma_lock_read(anon_vma);
3130 }
bf181b9f
ML
3131 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3132 0, ULONG_MAX) {
1105a2fc
JH
3133 unsigned long addr;
3134
ad12695f 3135 cond_resched();
5beb4930 3136 vma = vmac->vma;
1105a2fc
JH
3137
3138 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 3139 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
3140
3141 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
3142 continue;
3143 /*
3144 * Initially we examine only the vma which covers this
3145 * rmap_item; but later, if there is still work to do,
3146 * we examine covering vmas in other mms: in case they
3147 * were forked from the original since ksmd passed.
3148 */
3149 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3150 continue;
3151
0dd1c7bb
JK
3152 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3153 continue;
3154
2f031c6f 3155 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 3156 anon_vma_unlock_read(anon_vma);
1df631ae 3157 return;
e9995ef9 3158 }
2f031c6f 3159 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 3160 anon_vma_unlock_read(anon_vma);
1df631ae 3161 return;
0dd1c7bb 3162 }
e9995ef9 3163 }
b6b19f25 3164 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
3165 }
3166 if (!search_new_forks++)
3167 goto again;
e9995ef9
HD
3168}
3169
4248d008
LX
3170#ifdef CONFIG_MEMORY_FAILURE
3171/*
3172 * Collect processes when the error hit an ksm page.
3173 */
3174void collect_procs_ksm(struct page *page, struct list_head *to_kill,
3175 int force_early)
3176{
3177 struct ksm_stable_node *stable_node;
3178 struct ksm_rmap_item *rmap_item;
3179 struct folio *folio = page_folio(page);
3180 struct vm_area_struct *vma;
3181 struct task_struct *tsk;
3182
3183 stable_node = folio_stable_node(folio);
3184 if (!stable_node)
3185 return;
3186 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3187 struct anon_vma *av = rmap_item->anon_vma;
3188
3189 anon_vma_lock_read(av);
d256d1cd 3190 rcu_read_lock();
4248d008
LX
3191 for_each_process(tsk) {
3192 struct anon_vma_chain *vmac;
3193 unsigned long addr;
3194 struct task_struct *t =
3195 task_early_kill(tsk, force_early);
3196 if (!t)
3197 continue;
3198 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3199 ULONG_MAX)
3200 {
3201 vma = vmac->vma;
3202 if (vma->vm_mm == t->mm) {
3203 addr = rmap_item->address & PAGE_MASK;
3204 add_to_kill_ksm(t, page, vma, to_kill,
3205 addr);
3206 }
3207 }
3208 }
d256d1cd 3209 rcu_read_unlock();
4248d008
LX
3210 anon_vma_unlock_read(av);
3211 }
3212}
3213#endif
3214
52629506 3215#ifdef CONFIG_MIGRATION
19138349 3216void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 3217{
21fbd591 3218 struct ksm_stable_node *stable_node;
e9995ef9 3219
19138349
MWO
3220 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3221 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3222 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 3223
19138349 3224 stable_node = folio_stable_node(folio);
e9995ef9 3225 if (stable_node) {
19138349
MWO
3226 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3227 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 3228 /*
19138349 3229 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 3230 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
3231 * to get_ksm_page() before it can see that folio->mapping
3232 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
3233 */
3234 smp_wmb();
19138349 3235 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
3236 }
3237}
3238#endif /* CONFIG_MIGRATION */
3239
62b61f61 3240#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
3241static void wait_while_offlining(void)
3242{
3243 while (ksm_run & KSM_RUN_OFFLINE) {
3244 mutex_unlock(&ksm_thread_mutex);
3245 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 3246 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
3247 mutex_lock(&ksm_thread_mutex);
3248 }
3249}
3250
21fbd591 3251static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3252 unsigned long start_pfn,
3253 unsigned long end_pfn)
3254{
3255 if (stable_node->kpfn >= start_pfn &&
3256 stable_node->kpfn < end_pfn) {
3257 /*
3258 * Don't get_ksm_page, page has already gone:
3259 * which is why we keep kpfn instead of page*
3260 */
3261 remove_node_from_stable_tree(stable_node);
3262 return true;
3263 }
3264 return false;
3265}
3266
21fbd591 3267static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3268 unsigned long start_pfn,
3269 unsigned long end_pfn,
3270 struct rb_root *root)
3271{
21fbd591 3272 struct ksm_stable_node *dup;
2c653d0e
AA
3273 struct hlist_node *hlist_safe;
3274
3275 if (!is_stable_node_chain(stable_node)) {
3276 VM_BUG_ON(is_stable_node_dup(stable_node));
3277 return stable_node_dup_remove_range(stable_node, start_pfn,
3278 end_pfn);
3279 }
3280
3281 hlist_for_each_entry_safe(dup, hlist_safe,
3282 &stable_node->hlist, hlist_dup) {
3283 VM_BUG_ON(!is_stable_node_dup(dup));
3284 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3285 }
3286 if (hlist_empty(&stable_node->hlist)) {
3287 free_stable_node_chain(stable_node, root);
3288 return true; /* notify caller that tree was rebalanced */
3289 } else
3290 return false;
3291}
3292
ee0ea59c
HD
3293static void ksm_check_stable_tree(unsigned long start_pfn,
3294 unsigned long end_pfn)
62b61f61 3295{
21fbd591 3296 struct ksm_stable_node *stable_node, *next;
62b61f61 3297 struct rb_node *node;
90bd6fd3 3298 int nid;
62b61f61 3299
ef53d16c
HD
3300 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3301 node = rb_first(root_stable_tree + nid);
ee0ea59c 3302 while (node) {
21fbd591 3303 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
3304 if (stable_node_chain_remove_range(stable_node,
3305 start_pfn, end_pfn,
3306 root_stable_tree +
3307 nid))
ef53d16c 3308 node = rb_first(root_stable_tree + nid);
2c653d0e 3309 else
ee0ea59c
HD
3310 node = rb_next(node);
3311 cond_resched();
90bd6fd3 3312 }
ee0ea59c 3313 }
03640418 3314 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
3315 if (stable_node->kpfn >= start_pfn &&
3316 stable_node->kpfn < end_pfn)
3317 remove_node_from_stable_tree(stable_node);
3318 cond_resched();
3319 }
62b61f61
HD
3320}
3321
3322static int ksm_memory_callback(struct notifier_block *self,
3323 unsigned long action, void *arg)
3324{
3325 struct memory_notify *mn = arg;
62b61f61
HD
3326
3327 switch (action) {
3328 case MEM_GOING_OFFLINE:
3329 /*
ef4d43a8
HD
3330 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3331 * and remove_all_stable_nodes() while memory is going offline:
3332 * it is unsafe for them to touch the stable tree at this time.
3333 * But unmerge_ksm_pages(), rmap lookups and other entry points
3334 * which do not need the ksm_thread_mutex are all safe.
62b61f61 3335 */
ef4d43a8
HD
3336 mutex_lock(&ksm_thread_mutex);
3337 ksm_run |= KSM_RUN_OFFLINE;
3338 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
3339 break;
3340
3341 case MEM_OFFLINE:
3342 /*
3343 * Most of the work is done by page migration; but there might
3344 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
3345 * pages which have been offlined: prune those from the tree,
3346 * otherwise get_ksm_page() might later try to access a
3347 * non-existent struct page.
62b61f61 3348 */
ee0ea59c
HD
3349 ksm_check_stable_tree(mn->start_pfn,
3350 mn->start_pfn + mn->nr_pages);
e4a9bc58 3351 fallthrough;
62b61f61 3352 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
3353 mutex_lock(&ksm_thread_mutex);
3354 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 3355 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
3356
3357 smp_mb(); /* wake_up_bit advises this */
3358 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
3359 break;
3360 }
3361 return NOTIFY_OK;
3362}
ef4d43a8
HD
3363#else
3364static void wait_while_offlining(void)
3365{
3366}
62b61f61
HD
3367#endif /* CONFIG_MEMORY_HOTREMOVE */
3368
d21077fb
SR
3369#ifdef CONFIG_PROC_FS
3370long ksm_process_profit(struct mm_struct *mm)
3371{
1a8e8430 3372 return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
d21077fb
SR
3373 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3374}
3375#endif /* CONFIG_PROC_FS */
3376
2ffd8679
HD
3377#ifdef CONFIG_SYSFS
3378/*
3379 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3380 */
3381
31dbd01f
IE
3382#define KSM_ATTR_RO(_name) \
3383 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3384#define KSM_ATTR(_name) \
1bad2e5c 3385 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
3386
3387static ssize_t sleep_millisecs_show(struct kobject *kobj,
3388 struct kobj_attribute *attr, char *buf)
3389{
ae7a927d 3390 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
3391}
3392
3393static ssize_t sleep_millisecs_store(struct kobject *kobj,
3394 struct kobj_attribute *attr,
3395 const char *buf, size_t count)
3396{
dfefd226 3397 unsigned int msecs;
31dbd01f
IE
3398 int err;
3399
dfefd226
AD
3400 err = kstrtouint(buf, 10, &msecs);
3401 if (err)
31dbd01f
IE
3402 return -EINVAL;
3403
3404 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 3405 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
3406
3407 return count;
3408}
3409KSM_ATTR(sleep_millisecs);
3410
3411static ssize_t pages_to_scan_show(struct kobject *kobj,
3412 struct kobj_attribute *attr, char *buf)
3413{
ae7a927d 3414 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
3415}
3416
3417static ssize_t pages_to_scan_store(struct kobject *kobj,
3418 struct kobj_attribute *attr,
3419 const char *buf, size_t count)
3420{
dfefd226 3421 unsigned int nr_pages;
31dbd01f 3422 int err;
31dbd01f 3423
4e5fa4f5
SR
3424 if (ksm_advisor != KSM_ADVISOR_NONE)
3425 return -EINVAL;
3426
dfefd226
AD
3427 err = kstrtouint(buf, 10, &nr_pages);
3428 if (err)
31dbd01f
IE
3429 return -EINVAL;
3430
3431 ksm_thread_pages_to_scan = nr_pages;
3432
3433 return count;
3434}
3435KSM_ATTR(pages_to_scan);
3436
3437static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3438 char *buf)
3439{
ae7a927d 3440 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
3441}
3442
3443static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3444 const char *buf, size_t count)
3445{
dfefd226 3446 unsigned int flags;
31dbd01f 3447 int err;
31dbd01f 3448
dfefd226
AD
3449 err = kstrtouint(buf, 10, &flags);
3450 if (err)
31dbd01f
IE
3451 return -EINVAL;
3452 if (flags > KSM_RUN_UNMERGE)
3453 return -EINVAL;
3454
3455 /*
3456 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3457 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
3458 * breaking COW to free the pages_shared (but leaves mm_slots
3459 * on the list for when ksmd may be set running again).
31dbd01f
IE
3460 */
3461
3462 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3463 wait_while_offlining();
31dbd01f
IE
3464 if (ksm_run != flags) {
3465 ksm_run = flags;
d952b791 3466 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 3467 set_current_oom_origin();
d952b791 3468 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 3469 clear_current_oom_origin();
d952b791
HD
3470 if (err) {
3471 ksm_run = KSM_RUN_STOP;
3472 count = err;
3473 }
3474 }
31dbd01f
IE
3475 }
3476 mutex_unlock(&ksm_thread_mutex);
3477
3478 if (flags & KSM_RUN_MERGE)
3479 wake_up_interruptible(&ksm_thread_wait);
3480
3481 return count;
3482}
3483KSM_ATTR(run);
3484
90bd6fd3
PH
3485#ifdef CONFIG_NUMA
3486static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 3487 struct kobj_attribute *attr, char *buf)
90bd6fd3 3488{
ae7a927d 3489 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
3490}
3491
3492static ssize_t merge_across_nodes_store(struct kobject *kobj,
3493 struct kobj_attribute *attr,
3494 const char *buf, size_t count)
3495{
3496 int err;
3497 unsigned long knob;
3498
3499 err = kstrtoul(buf, 10, &knob);
3500 if (err)
3501 return err;
3502 if (knob > 1)
3503 return -EINVAL;
3504
3505 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3506 wait_while_offlining();
90bd6fd3 3507 if (ksm_merge_across_nodes != knob) {
cbf86cfe 3508 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 3509 err = -EBUSY;
ef53d16c
HD
3510 else if (root_stable_tree == one_stable_tree) {
3511 struct rb_root *buf;
3512 /*
3513 * This is the first time that we switch away from the
3514 * default of merging across nodes: must now allocate
3515 * a buffer to hold as many roots as may be needed.
3516 * Allocate stable and unstable together:
3517 * MAXSMP NODES_SHIFT 10 will use 16kB.
3518 */
bafe1e14
JP
3519 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3520 GFP_KERNEL);
ef53d16c
HD
3521 /* Let us assume that RB_ROOT is NULL is zero */
3522 if (!buf)
3523 err = -ENOMEM;
3524 else {
3525 root_stable_tree = buf;
3526 root_unstable_tree = buf + nr_node_ids;
3527 /* Stable tree is empty but not the unstable */
3528 root_unstable_tree[0] = one_unstable_tree[0];
3529 }
3530 }
3531 if (!err) {
90bd6fd3 3532 ksm_merge_across_nodes = knob;
ef53d16c
HD
3533 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3534 }
90bd6fd3
PH
3535 }
3536 mutex_unlock(&ksm_thread_mutex);
3537
3538 return err ? err : count;
3539}
3540KSM_ATTR(merge_across_nodes);
3541#endif
3542
e86c59b1 3543static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3544 struct kobj_attribute *attr, char *buf)
e86c59b1 3545{
ae7a927d 3546 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3547}
3548static ssize_t use_zero_pages_store(struct kobject *kobj,
3549 struct kobj_attribute *attr,
3550 const char *buf, size_t count)
3551{
3552 int err;
3553 bool value;
3554
3555 err = kstrtobool(buf, &value);
3556 if (err)
3557 return -EINVAL;
3558
3559 ksm_use_zero_pages = value;
3560
3561 return count;
3562}
3563KSM_ATTR(use_zero_pages);
3564
2c653d0e
AA
3565static ssize_t max_page_sharing_show(struct kobject *kobj,
3566 struct kobj_attribute *attr, char *buf)
3567{
ae7a927d 3568 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3569}
3570
3571static ssize_t max_page_sharing_store(struct kobject *kobj,
3572 struct kobj_attribute *attr,
3573 const char *buf, size_t count)
3574{
3575 int err;
3576 int knob;
3577
3578 err = kstrtoint(buf, 10, &knob);
3579 if (err)
3580 return err;
3581 /*
3582 * When a KSM page is created it is shared by 2 mappings. This
3583 * being a signed comparison, it implicitly verifies it's not
3584 * negative.
3585 */
3586 if (knob < 2)
3587 return -EINVAL;
3588
3589 if (READ_ONCE(ksm_max_page_sharing) == knob)
3590 return count;
3591
3592 mutex_lock(&ksm_thread_mutex);
3593 wait_while_offlining();
3594 if (ksm_max_page_sharing != knob) {
3595 if (ksm_pages_shared || remove_all_stable_nodes())
3596 err = -EBUSY;
3597 else
3598 ksm_max_page_sharing = knob;
3599 }
3600 mutex_unlock(&ksm_thread_mutex);
3601
3602 return err ? err : count;
3603}
3604KSM_ATTR(max_page_sharing);
3605
b348b5fe
SR
3606static ssize_t pages_scanned_show(struct kobject *kobj,
3607 struct kobj_attribute *attr, char *buf)
3608{
3609 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3610}
3611KSM_ATTR_RO(pages_scanned);
3612
b4028260
HD
3613static ssize_t pages_shared_show(struct kobject *kobj,
3614 struct kobj_attribute *attr, char *buf)
3615{
ae7a927d 3616 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3617}
3618KSM_ATTR_RO(pages_shared);
3619
3620static ssize_t pages_sharing_show(struct kobject *kobj,
3621 struct kobj_attribute *attr, char *buf)
3622{
ae7a927d 3623 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3624}
3625KSM_ATTR_RO(pages_sharing);
3626
473b0ce4
HD
3627static ssize_t pages_unshared_show(struct kobject *kobj,
3628 struct kobj_attribute *attr, char *buf)
3629{
ae7a927d 3630 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3631}
3632KSM_ATTR_RO(pages_unshared);
3633
3634static ssize_t pages_volatile_show(struct kobject *kobj,
3635 struct kobj_attribute *attr, char *buf)
3636{
3637 long ksm_pages_volatile;
3638
3639 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3640 - ksm_pages_sharing - ksm_pages_unshared;
3641 /*
3642 * It was not worth any locking to calculate that statistic,
3643 * but it might therefore sometimes be negative: conceal that.
3644 */
3645 if (ksm_pages_volatile < 0)
3646 ksm_pages_volatile = 0;
ae7a927d 3647 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3648}
3649KSM_ATTR_RO(pages_volatile);
3650
e5a68991
SR
3651static ssize_t pages_skipped_show(struct kobject *kobj,
3652 struct kobj_attribute *attr, char *buf)
3653{
3654 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3655}
3656KSM_ATTR_RO(pages_skipped);
3657
e2942062 3658static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3659 struct kobj_attribute *attr, char *buf)
3660{
3661 return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3662}
3663KSM_ATTR_RO(ksm_zero_pages);
3664
d21077fb
SR
3665static ssize_t general_profit_show(struct kobject *kobj,
3666 struct kobj_attribute *attr, char *buf)
3667{
3668 long general_profit;
3669
1a8e8430 3670 general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
d21077fb
SR
3671 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3672
3673 return sysfs_emit(buf, "%ld\n", general_profit);
3674}
3675KSM_ATTR_RO(general_profit);
3676
2c653d0e
AA
3677static ssize_t stable_node_dups_show(struct kobject *kobj,
3678 struct kobj_attribute *attr, char *buf)
3679{
ae7a927d 3680 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3681}
3682KSM_ATTR_RO(stable_node_dups);
3683
3684static ssize_t stable_node_chains_show(struct kobject *kobj,
3685 struct kobj_attribute *attr, char *buf)
3686{
ae7a927d 3687 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3688}
3689KSM_ATTR_RO(stable_node_chains);
3690
3691static ssize_t
3692stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3693 struct kobj_attribute *attr,
3694 char *buf)
3695{
ae7a927d 3696 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3697}
3698
3699static ssize_t
3700stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3701 struct kobj_attribute *attr,
3702 const char *buf, size_t count)
3703{
584ff0df 3704 unsigned int msecs;
2c653d0e
AA
3705 int err;
3706
584ff0df
ZB
3707 err = kstrtouint(buf, 10, &msecs);
3708 if (err)
2c653d0e
AA
3709 return -EINVAL;
3710
3711 ksm_stable_node_chains_prune_millisecs = msecs;
3712
3713 return count;
3714}
3715KSM_ATTR(stable_node_chains_prune_millisecs);
3716
473b0ce4
HD
3717static ssize_t full_scans_show(struct kobject *kobj,
3718 struct kobj_attribute *attr, char *buf)
3719{
ae7a927d 3720 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3721}
3722KSM_ATTR_RO(full_scans);
3723
5e924ff5
SR
3724static ssize_t smart_scan_show(struct kobject *kobj,
3725 struct kobj_attribute *attr, char *buf)
3726{
3727 return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3728}
3729
3730static ssize_t smart_scan_store(struct kobject *kobj,
3731 struct kobj_attribute *attr,
3732 const char *buf, size_t count)
3733{
3734 int err;
3735 bool value;
3736
3737 err = kstrtobool(buf, &value);
3738 if (err)
3739 return -EINVAL;
3740
3741 ksm_smart_scan = value;
3742 return count;
3743}
3744KSM_ATTR(smart_scan);
3745
66790e9a
SR
3746static ssize_t advisor_mode_show(struct kobject *kobj,
3747 struct kobj_attribute *attr, char *buf)
3748{
3749 const char *output;
3750
3751 if (ksm_advisor == KSM_ADVISOR_NONE)
3752 output = "[none] scan-time";
3753 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3754 output = "none [scan-time]";
3755
3756 return sysfs_emit(buf, "%s\n", output);
3757}
3758
3759static ssize_t advisor_mode_store(struct kobject *kobj,
3760 struct kobj_attribute *attr, const char *buf,
3761 size_t count)
3762{
3763 enum ksm_advisor_type curr_advisor = ksm_advisor;
3764
3765 if (sysfs_streq("scan-time", buf))
3766 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3767 else if (sysfs_streq("none", buf))
3768 ksm_advisor = KSM_ADVISOR_NONE;
3769 else
3770 return -EINVAL;
3771
3772 /* Set advisor default values */
3773 if (curr_advisor != ksm_advisor)
3774 set_advisor_defaults();
3775
3776 return count;
3777}
3778KSM_ATTR(advisor_mode);
3779
3780static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3781 struct kobj_attribute *attr, char *buf)
3782{
3783 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3784}
3785
3786static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3787 struct kobj_attribute *attr,
3788 const char *buf, size_t count)
3789{
3790 int err;
3791 unsigned long value;
3792
3793 err = kstrtoul(buf, 10, &value);
3794 if (err)
3795 return -EINVAL;
3796
3797 ksm_advisor_max_cpu = value;
3798 return count;
3799}
3800KSM_ATTR(advisor_max_cpu);
3801
3802static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3803 struct kobj_attribute *attr, char *buf)
3804{
3805 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3806}
3807
3808static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3809 struct kobj_attribute *attr,
3810 const char *buf, size_t count)
3811{
3812 int err;
3813 unsigned long value;
3814
3815 err = kstrtoul(buf, 10, &value);
3816 if (err)
3817 return -EINVAL;
3818
3819 ksm_advisor_min_pages_to_scan = value;
3820 return count;
3821}
3822KSM_ATTR(advisor_min_pages_to_scan);
3823
3824static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3825 struct kobj_attribute *attr, char *buf)
3826{
3827 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3828}
3829
3830static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3831 struct kobj_attribute *attr,
3832 const char *buf, size_t count)
3833{
3834 int err;
3835 unsigned long value;
3836
3837 err = kstrtoul(buf, 10, &value);
3838 if (err)
3839 return -EINVAL;
3840
3841 ksm_advisor_max_pages_to_scan = value;
3842 return count;
3843}
3844KSM_ATTR(advisor_max_pages_to_scan);
3845
3846static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3847 struct kobj_attribute *attr, char *buf)
3848{
3849 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3850}
3851
3852static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3853 struct kobj_attribute *attr,
3854 const char *buf, size_t count)
3855{
3856 int err;
3857 unsigned long value;
3858
3859 err = kstrtoul(buf, 10, &value);
3860 if (err)
3861 return -EINVAL;
3862 if (value < 1)
3863 return -EINVAL;
3864
3865 ksm_advisor_target_scan_time = value;
3866 return count;
3867}
3868KSM_ATTR(advisor_target_scan_time);
3869
31dbd01f
IE
3870static struct attribute *ksm_attrs[] = {
3871 &sleep_millisecs_attr.attr,
3872 &pages_to_scan_attr.attr,
3873 &run_attr.attr,
b348b5fe 3874 &pages_scanned_attr.attr,
b4028260
HD
3875 &pages_shared_attr.attr,
3876 &pages_sharing_attr.attr,
473b0ce4
HD
3877 &pages_unshared_attr.attr,
3878 &pages_volatile_attr.attr,
e5a68991 3879 &pages_skipped_attr.attr,
e2942062 3880 &ksm_zero_pages_attr.attr,
473b0ce4 3881 &full_scans_attr.attr,
90bd6fd3
PH
3882#ifdef CONFIG_NUMA
3883 &merge_across_nodes_attr.attr,
3884#endif
2c653d0e
AA
3885 &max_page_sharing_attr.attr,
3886 &stable_node_chains_attr.attr,
3887 &stable_node_dups_attr.attr,
3888 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3889 &use_zero_pages_attr.attr,
d21077fb 3890 &general_profit_attr.attr,
5e924ff5 3891 &smart_scan_attr.attr,
66790e9a
SR
3892 &advisor_mode_attr.attr,
3893 &advisor_max_cpu_attr.attr,
3894 &advisor_min_pages_to_scan_attr.attr,
3895 &advisor_max_pages_to_scan_attr.attr,
3896 &advisor_target_scan_time_attr.attr,
31dbd01f
IE
3897 NULL,
3898};
3899
f907c26a 3900static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3901 .attrs = ksm_attrs,
3902 .name = "ksm",
3903};
2ffd8679 3904#endif /* CONFIG_SYSFS */
31dbd01f
IE
3905
3906static int __init ksm_init(void)
3907{
3908 struct task_struct *ksm_thread;
3909 int err;
3910
e86c59b1
CI
3911 /* The correct value depends on page size and endianness */
3912 zero_checksum = calc_checksum(ZERO_PAGE(0));
3913 /* Default to false for backwards compatibility */
3914 ksm_use_zero_pages = false;
3915
31dbd01f
IE
3916 err = ksm_slab_init();
3917 if (err)
3918 goto out;
3919
31dbd01f
IE
3920 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3921 if (IS_ERR(ksm_thread)) {
25acde31 3922 pr_err("ksm: creating kthread failed\n");
31dbd01f 3923 err = PTR_ERR(ksm_thread);
d9f8984c 3924 goto out_free;
31dbd01f
IE
3925 }
3926
2ffd8679 3927#ifdef CONFIG_SYSFS
31dbd01f
IE
3928 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3929 if (err) {
25acde31 3930 pr_err("ksm: register sysfs failed\n");
2ffd8679 3931 kthread_stop(ksm_thread);
d9f8984c 3932 goto out_free;
31dbd01f 3933 }
c73602ad
HD
3934#else
3935 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3936
2ffd8679 3937#endif /* CONFIG_SYSFS */
31dbd01f 3938
62b61f61 3939#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3940 /* There is no significance to this priority 100 */
1eeaa4fd 3941 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3942#endif
31dbd01f
IE
3943 return 0;
3944
d9f8984c 3945out_free:
31dbd01f
IE
3946 ksm_slab_free();
3947out:
3948 return err;
f8af4da3 3949}
a64fb3cd 3950subsys_initcall(ksm_init);
This page took 1.549607 seconds and 4 git commands to generate.