]> Git Repo - linux.git/blame - mm/ksm.c
mm/damon/lru_sort: remove unnecessary online tuning handling code
[linux.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
4e5fa4f5 24#include <linux/sched/cputime.h>
31dbd01f
IE
25#include <linux/rwsem.h>
26#include <linux/pagemap.h>
27#include <linux/rmap.h>
28#include <linux/spinlock.h>
59e1a2f4 29#include <linux/xxhash.h>
31dbd01f
IE
30#include <linux/delay.h>
31#include <linux/kthread.h>
32#include <linux/wait.h>
33#include <linux/slab.h>
34#include <linux/rbtree.h>
62b61f61 35#include <linux/memory.h>
31dbd01f 36#include <linux/mmu_notifier.h>
2c6854fd 37#include <linux/swap.h>
f8af4da3 38#include <linux/ksm.h>
4ca3a69b 39#include <linux/hashtable.h>
878aee7d 40#include <linux/freezer.h>
72788c38 41#include <linux/oom.h>
90bd6fd3 42#include <linux/numa.h>
d7c0e68d 43#include <linux/pagewalk.h>
f8af4da3 44
31dbd01f 45#include <asm/tlbflush.h>
73848b46 46#include "internal.h"
58730ab6 47#include "mm_slot.h"
31dbd01f 48
739100c8
SR
49#define CREATE_TRACE_POINTS
50#include <trace/events/ksm.h>
51
e850dcf5
HD
52#ifdef CONFIG_NUMA
53#define NUMA(x) (x)
54#define DO_NUMA(x) do { (x); } while (0)
55#else
56#define NUMA(x) (0)
57#define DO_NUMA(x) do { } while (0)
58#endif
59
5e924ff5
SR
60typedef u8 rmap_age_t;
61
5a2ca3ef
MR
62/**
63 * DOC: Overview
64 *
31dbd01f
IE
65 * A few notes about the KSM scanning process,
66 * to make it easier to understand the data structures below:
67 *
68 * In order to reduce excessive scanning, KSM sorts the memory pages by their
69 * contents into a data structure that holds pointers to the pages' locations.
70 *
71 * Since the contents of the pages may change at any moment, KSM cannot just
72 * insert the pages into a normal sorted tree and expect it to find anything.
73 * Therefore KSM uses two data structures - the stable and the unstable tree.
74 *
75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76 * by their contents. Because each such page is write-protected, searching on
77 * this tree is fully assured to be working (except when pages are unmapped),
78 * and therefore this tree is called the stable tree.
79 *
5a2ca3ef
MR
80 * The stable tree node includes information required for reverse
81 * mapping from a KSM page to virtual addresses that map this page.
82 *
83 * In order to avoid large latencies of the rmap walks on KSM pages,
84 * KSM maintains two types of nodes in the stable tree:
85 *
86 * * the regular nodes that keep the reverse mapping structures in a
87 * linked list
88 * * the "chains" that link nodes ("dups") that represent the same
89 * write protected memory content, but each "dup" corresponds to a
90 * different KSM page copy of that content
91 *
92 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 93 * using the same struct ksm_stable_node structure.
5a2ca3ef 94 *
31dbd01f
IE
95 * In addition to the stable tree, KSM uses a second data structure called the
96 * unstable tree: this tree holds pointers to pages which have been found to
97 * be "unchanged for a period of time". The unstable tree sorts these pages
98 * by their contents, but since they are not write-protected, KSM cannot rely
99 * upon the unstable tree to work correctly - the unstable tree is liable to
100 * be corrupted as its contents are modified, and so it is called unstable.
101 *
102 * KSM solves this problem by several techniques:
103 *
104 * 1) The unstable tree is flushed every time KSM completes scanning all
105 * memory areas, and then the tree is rebuilt again from the beginning.
106 * 2) KSM will only insert into the unstable tree, pages whose hash value
107 * has not changed since the previous scan of all memory areas.
108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109 * colors of the nodes and not on their contents, assuring that even when
110 * the tree gets "corrupted" it won't get out of balance, so scanning time
111 * remains the same (also, searching and inserting nodes in an rbtree uses
112 * the same algorithm, so we have no overhead when we flush and rebuild).
113 * 4) KSM never flushes the stable tree, which means that even if it were to
114 * take 10 attempts to find a page in the unstable tree, once it is found,
115 * it is secured in the stable tree. (When we scan a new page, we first
116 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
117 *
118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
120 */
121
122/**
21fbd591 123 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 124 * @slot: hash lookup from mm to mm_slot
6514d511 125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 126 */
21fbd591 127struct ksm_mm_slot {
58730ab6 128 struct mm_slot slot;
21fbd591 129 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
130};
131
132/**
133 * struct ksm_scan - cursor for scanning
134 * @mm_slot: the current mm_slot we are scanning
135 * @address: the next address inside that to be scanned
6514d511 136 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
137 * @seqnr: count of completed full scans (needed when removing unstable node)
138 *
139 * There is only the one ksm_scan instance of this cursor structure.
140 */
141struct ksm_scan {
21fbd591 142 struct ksm_mm_slot *mm_slot;
31dbd01f 143 unsigned long address;
21fbd591 144 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
145 unsigned long seqnr;
146};
147
7b6ba2c7 148/**
21fbd591 149 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 150 * @node: rb node of this ksm page in the stable tree
4146d2d6 151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 153 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 154 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
156 * @chain_prune_time: time of the last full garbage collection
157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 159 */
21fbd591 160struct ksm_stable_node {
4146d2d6
HD
161 union {
162 struct rb_node node; /* when node of stable tree */
163 struct { /* when listed for migration */
164 struct list_head *head;
2c653d0e
AA
165 struct {
166 struct hlist_node hlist_dup;
167 struct list_head list;
168 };
4146d2d6
HD
169 };
170 };
7b6ba2c7 171 struct hlist_head hlist;
2c653d0e
AA
172 union {
173 unsigned long kpfn;
174 unsigned long chain_prune_time;
175 };
176 /*
177 * STABLE_NODE_CHAIN can be any negative number in
178 * rmap_hlist_len negative range, but better not -1 to be able
179 * to reliably detect underflows.
180 */
181#define STABLE_NODE_CHAIN -1024
182 int rmap_hlist_len;
4146d2d6
HD
183#ifdef CONFIG_NUMA
184 int nid;
185#endif
7b6ba2c7
HD
186};
187
31dbd01f 188/**
21fbd591 189 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 192 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
193 * @mm: the memory structure this rmap_item is pointing into
194 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
196 * @node: rb node of this rmap_item in the unstable tree
197 * @head: pointer to stable_node heading this list in the stable tree
198 * @hlist: link into hlist of rmap_items hanging off that stable_node
5e924ff5
SR
199 * @age: number of scan iterations since creation
200 * @remaining_skips: how many scans to skip
31dbd01f 201 */
21fbd591
QZ
202struct ksm_rmap_item {
203 struct ksm_rmap_item *rmap_list;
bc56620b
HD
204 union {
205 struct anon_vma *anon_vma; /* when stable */
206#ifdef CONFIG_NUMA
207 int nid; /* when node of unstable tree */
208#endif
209 };
31dbd01f
IE
210 struct mm_struct *mm;
211 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 212 unsigned int oldchecksum; /* when unstable */
5e924ff5
SR
213 rmap_age_t age;
214 rmap_age_t remaining_skips;
31dbd01f 215 union {
7b6ba2c7
HD
216 struct rb_node node; /* when node of unstable tree */
217 struct { /* when listed from stable tree */
21fbd591 218 struct ksm_stable_node *head;
7b6ba2c7
HD
219 struct hlist_node hlist;
220 };
31dbd01f
IE
221 };
222};
223
224#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
225#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
226#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
227
228/* The stable and unstable tree heads */
ef53d16c
HD
229static struct rb_root one_stable_tree[1] = { RB_ROOT };
230static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231static struct rb_root *root_stable_tree = one_stable_tree;
232static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 233
4146d2d6
HD
234/* Recently migrated nodes of stable tree, pending proper placement */
235static LIST_HEAD(migrate_nodes);
2c653d0e 236#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 237
4ca3a69b
SL
238#define MM_SLOTS_HASH_BITS 10
239static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 240
21fbd591 241static struct ksm_mm_slot ksm_mm_head = {
58730ab6 242 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
243};
244static struct ksm_scan ksm_scan = {
245 .mm_slot = &ksm_mm_head,
246};
247
248static struct kmem_cache *rmap_item_cache;
7b6ba2c7 249static struct kmem_cache *stable_node_cache;
31dbd01f
IE
250static struct kmem_cache *mm_slot_cache;
251
4e5fa4f5
SR
252/* Default number of pages to scan per batch */
253#define DEFAULT_PAGES_TO_SCAN 100
254
b348b5fe
SR
255/* The number of pages scanned */
256static unsigned long ksm_pages_scanned;
257
31dbd01f 258/* The number of nodes in the stable tree */
b4028260 259static unsigned long ksm_pages_shared;
31dbd01f 260
e178dfde 261/* The number of page slots additionally sharing those nodes */
b4028260 262static unsigned long ksm_pages_sharing;
31dbd01f 263
473b0ce4
HD
264/* The number of nodes in the unstable tree */
265static unsigned long ksm_pages_unshared;
266
267/* The number of rmap_items in use: to calculate pages_volatile */
268static unsigned long ksm_rmap_items;
269
2c653d0e
AA
270/* The number of stable_node chains */
271static unsigned long ksm_stable_node_chains;
272
273/* The number of stable_node dups linked to the stable_node chains */
274static unsigned long ksm_stable_node_dups;
275
276/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 277static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
278
279/* Maximum number of page slots sharing a stable node */
280static int ksm_max_page_sharing = 256;
281
31dbd01f 282/* Number of pages ksmd should scan in one batch */
4e5fa4f5 283static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
31dbd01f
IE
284
285/* Milliseconds ksmd should sleep between batches */
2ffd8679 286static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 287
e86c59b1
CI
288/* Checksum of an empty (zeroed) page */
289static unsigned int zero_checksum __read_mostly;
290
291/* Whether to merge empty (zeroed) pages with actual zero pages */
292static bool ksm_use_zero_pages __read_mostly;
293
5e924ff5
SR
294/* Skip pages that couldn't be de-duplicated previously */
295/* Default to true at least temporarily, for testing */
296static bool ksm_smart_scan = true;
297
e2942062 298/* The number of zero pages which is placed by KSM */
c2dc78b8 299atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
e2942062 300
e5a68991
SR
301/* The number of pages that have been skipped due to "smart scanning" */
302static unsigned long ksm_pages_skipped;
303
4e5fa4f5
SR
304/* Don't scan more than max pages per batch. */
305static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307/* Min CPU for scanning pages per scan */
308#define KSM_ADVISOR_MIN_CPU 10
309
310/* Max CPU for scanning pages per scan */
311static unsigned int ksm_advisor_max_cpu = 70;
312
313/* Target scan time in seconds to analyze all KSM candidate pages. */
314static unsigned long ksm_advisor_target_scan_time = 200;
315
316/* Exponentially weighted moving average. */
317#define EWMA_WEIGHT 30
318
319/**
320 * struct advisor_ctx - metadata for KSM advisor
321 * @start_scan: start time of the current scan
322 * @scan_time: scan time of previous scan
323 * @change: change in percent to pages_to_scan parameter
324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325 */
326struct advisor_ctx {
327 ktime_t start_scan;
328 unsigned long scan_time;
329 unsigned long change;
330 unsigned long long cpu_time;
331};
332static struct advisor_ctx advisor_ctx;
333
334/* Define different advisor's */
335enum ksm_advisor_type {
336 KSM_ADVISOR_NONE,
337 KSM_ADVISOR_SCAN_TIME,
338};
339static enum ksm_advisor_type ksm_advisor;
340
66790e9a
SR
341#ifdef CONFIG_SYSFS
342/*
343 * Only called through the sysfs control interface:
344 */
345
346/* At least scan this many pages per batch. */
347static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349static void set_advisor_defaults(void)
350{
351 if (ksm_advisor == KSM_ADVISOR_NONE) {
352 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 advisor_ctx = (const struct advisor_ctx){ 0 };
355 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356 }
357}
358#endif /* CONFIG_SYSFS */
359
4e5fa4f5
SR
360static inline void advisor_start_scan(void)
361{
362 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 advisor_ctx.start_scan = ktime_get();
364}
365
366/*
367 * Use previous scan time if available, otherwise use current scan time as an
368 * approximation for the previous scan time.
369 */
370static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 unsigned long scan_time)
372{
373 return ctx->scan_time ? ctx->scan_time : scan_time;
374}
375
376/* Calculate exponential weighted moving average */
377static unsigned long ewma(unsigned long prev, unsigned long curr)
378{
379 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380}
381
382/*
383 * The scan time advisor is based on the current scan rate and the target
384 * scan rate.
385 *
386 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387 *
388 * To avoid perturbations it calculates a change factor of previous changes.
389 * A new change factor is calculated for each iteration and it uses an
390 * exponentially weighted moving average. The new pages_to_scan value is
391 * multiplied with that change factor:
392 *
393 * new_pages_to_scan *= change facor
394 *
395 * The new_pages_to_scan value is limited by the cpu min and max values. It
396 * calculates the cpu percent for the last scan and calculates the new
397 * estimated cpu percent cost for the next scan. That value is capped by the
398 * cpu min and max setting.
399 *
400 * In addition the new pages_to_scan value is capped by the max and min
401 * limits.
402 */
403static void scan_time_advisor(void)
404{
405 unsigned int cpu_percent;
406 unsigned long cpu_time;
407 unsigned long cpu_time_diff;
408 unsigned long cpu_time_diff_ms;
409 unsigned long pages;
410 unsigned long per_page_cost;
411 unsigned long factor;
412 unsigned long change;
413 unsigned long last_scan_time;
414 unsigned long scan_time;
415
416 /* Convert scan time to seconds */
417 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418 MSEC_PER_SEC);
419 scan_time = scan_time ? scan_time : 1;
420
421 /* Calculate CPU consumption of ksmd background thread */
422 cpu_time = task_sched_runtime(current);
423 cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 cpu_percent = cpu_percent ? cpu_percent : 1;
428 last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430 /* Calculate scan time as percentage of target scan time */
431 factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 factor = factor ? factor : 1;
433
434 /*
435 * Calculate scan time as percentage of last scan time and use
436 * exponentially weighted average to smooth it
437 */
438 change = scan_time * 100 / last_scan_time;
439 change = change ? change : 1;
440 change = ewma(advisor_ctx.change, change);
441
442 /* Calculate new scan rate based on target scan rate. */
443 pages = ksm_thread_pages_to_scan * 100 / factor;
444 /* Update pages_to_scan by weighted change percentage. */
445 pages = pages * change / 100;
446
447 /* Cap new pages_to_scan value */
448 per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 per_page_cost = per_page_cost ? per_page_cost : 1;
450
451 pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455 /* Update advisor context */
456 advisor_ctx.change = change;
457 advisor_ctx.scan_time = scan_time;
458 advisor_ctx.cpu_time = cpu_time;
459
460 ksm_thread_pages_to_scan = pages;
5088b497 461 trace_ksm_advisor(scan_time, pages, cpu_percent);
4e5fa4f5
SR
462}
463
464static void advisor_stop_scan(void)
465{
466 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467 scan_time_advisor();
468}
469
e850dcf5 470#ifdef CONFIG_NUMA
90bd6fd3
PH
471/* Zeroed when merging across nodes is not allowed */
472static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 473static int ksm_nr_node_ids = 1;
e850dcf5
HD
474#else
475#define ksm_merge_across_nodes 1U
ef53d16c 476#define ksm_nr_node_ids 1
e850dcf5 477#endif
90bd6fd3 478
31dbd01f
IE
479#define KSM_RUN_STOP 0
480#define KSM_RUN_MERGE 1
481#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
482#define KSM_RUN_OFFLINE 4
483static unsigned long ksm_run = KSM_RUN_STOP;
484static void wait_while_offlining(void);
31dbd01f
IE
485
486static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 487static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
488static DEFINE_MUTEX(ksm_thread_mutex);
489static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
21fbd591 491#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
31dbd01f
IE
492 sizeof(struct __struct), __alignof__(struct __struct),\
493 (__flags), NULL)
494
495static int __init ksm_slab_init(void)
496{
21fbd591 497 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
498 if (!rmap_item_cache)
499 goto out;
500
21fbd591 501 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
502 if (!stable_node_cache)
503 goto out_free1;
504
21fbd591 505 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 506 if (!mm_slot_cache)
7b6ba2c7 507 goto out_free2;
31dbd01f
IE
508
509 return 0;
510
7b6ba2c7
HD
511out_free2:
512 kmem_cache_destroy(stable_node_cache);
513out_free1:
31dbd01f
IE
514 kmem_cache_destroy(rmap_item_cache);
515out:
516 return -ENOMEM;
517}
518
519static void __init ksm_slab_free(void)
520{
521 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 522 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
523 kmem_cache_destroy(rmap_item_cache);
524 mm_slot_cache = NULL;
525}
526
21fbd591 527static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
528{
529 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
530}
531
21fbd591 532static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
533{
534 return dup->head == STABLE_NODE_DUP_HEAD;
535}
536
21fbd591
QZ
537static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
538 struct ksm_stable_node *chain)
2c653d0e
AA
539{
540 VM_BUG_ON(is_stable_node_dup(dup));
541 dup->head = STABLE_NODE_DUP_HEAD;
542 VM_BUG_ON(!is_stable_node_chain(chain));
543 hlist_add_head(&dup->hlist_dup, &chain->hlist);
544 ksm_stable_node_dups++;
545}
546
21fbd591 547static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 548{
b4fecc67 549 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
550 hlist_del(&dup->hlist_dup);
551 ksm_stable_node_dups--;
552}
553
21fbd591 554static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
555{
556 VM_BUG_ON(is_stable_node_chain(dup));
557 if (is_stable_node_dup(dup))
558 __stable_node_dup_del(dup);
559 else
560 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
561#ifdef CONFIG_DEBUG_VM
562 dup->head = NULL;
563#endif
564}
565
21fbd591 566static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 567{
21fbd591 568 struct ksm_rmap_item *rmap_item;
473b0ce4 569
5b398e41 570 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
571 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
572 if (rmap_item)
573 ksm_rmap_items++;
574 return rmap_item;
31dbd01f
IE
575}
576
21fbd591 577static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 578{
473b0ce4 579 ksm_rmap_items--;
cb4df4ca 580 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
581 rmap_item->mm = NULL; /* debug safety */
582 kmem_cache_free(rmap_item_cache, rmap_item);
583}
584
21fbd591 585static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 586{
6213055f 587 /*
588 * The allocation can take too long with GFP_KERNEL when memory is under
589 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
590 * grants access to memory reserves, helping to avoid this problem.
591 */
592 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
593}
594
21fbd591 595static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 596{
2c653d0e
AA
597 VM_BUG_ON(stable_node->rmap_hlist_len &&
598 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
599 kmem_cache_free(stable_node_cache, stable_node);
600}
601
a913e182
HD
602/*
603 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
604 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 605 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
606 * a special flag: they can just back out as soon as mm_users goes to zero.
607 * ksm_test_exit() is used throughout to make this test for exit: in some
608 * places for correctness, in some places just to avoid unnecessary work.
609 */
610static inline bool ksm_test_exit(struct mm_struct *mm)
611{
612 return atomic_read(&mm->mm_users) == 0;
613}
614
d7c0e68d
DH
615static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
616 struct mm_walk *walk)
617{
618 struct page *page = NULL;
619 spinlock_t *ptl;
620 pte_t *pte;
c33c7948 621 pte_t ptent;
d7c0e68d
DH
622 int ret;
623
d7c0e68d 624 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
04dee9e8
HD
625 if (!pte)
626 return 0;
c33c7948
RR
627 ptent = ptep_get(pte);
628 if (pte_present(ptent)) {
629 page = vm_normal_page(walk->vma, addr, ptent);
630 } else if (!pte_none(ptent)) {
631 swp_entry_t entry = pte_to_swp_entry(ptent);
d7c0e68d
DH
632
633 /*
634 * As KSM pages remain KSM pages until freed, no need to wait
635 * here for migration to end.
636 */
637 if (is_migration_entry(entry))
638 page = pfn_swap_entry_to_page(entry);
639 }
79271476 640 /* return 1 if the page is an normal ksm page or KSM-placed zero page */
afccb080 641 ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
d7c0e68d
DH
642 pte_unmap_unlock(pte, ptl);
643 return ret;
644}
645
646static const struct mm_walk_ops break_ksm_ops = {
647 .pmd_entry = break_ksm_pmd_entry,
49b06385
SB
648 .walk_lock = PGWALK_RDLOCK,
649};
650
651static const struct mm_walk_ops break_ksm_lock_vma_ops = {
652 .pmd_entry = break_ksm_pmd_entry,
653 .walk_lock = PGWALK_WRLOCK,
d7c0e68d
DH
654};
655
31dbd01f 656/*
6cce3314
DH
657 * We use break_ksm to break COW on a ksm page by triggering unsharing,
658 * such that the ksm page will get replaced by an exclusive anonymous page.
31dbd01f 659 *
6cce3314 660 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
31dbd01f
IE
661 * in case the application has unmapped and remapped mm,addr meanwhile.
662 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 663 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126 664 *
6cce3314 665 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
1b2ee126
DH
666 * of the process that owns 'vma'. We also do not want to enforce
667 * protection keys here anyway.
31dbd01f 668 */
49b06385 669static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
31dbd01f 670{
50a7ca3c 671 vm_fault_t ret = 0;
49b06385
SB
672 const struct mm_walk_ops *ops = lock_vma ?
673 &break_ksm_lock_vma_ops : &break_ksm_ops;
31dbd01f
IE
674
675 do {
d7c0e68d 676 int ksm_page;
58f595c6 677
31dbd01f 678 cond_resched();
49b06385 679 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
d7c0e68d
DH
680 if (WARN_ON_ONCE(ksm_page < 0))
681 return ksm_page;
58f595c6
DH
682 if (!ksm_page)
683 return 0;
684 ret = handle_mm_fault(vma, addr,
6cce3314 685 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
58f595c6
DH
686 NULL);
687 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 688 /*
58f595c6
DH
689 * We must loop until we no longer find a KSM page because
690 * handle_mm_fault() may back out if there's any difficulty e.g. if
691 * pte accessed bit gets updated concurrently.
d952b791
HD
692 *
693 * VM_FAULT_SIGBUS could occur if we race with truncation of the
694 * backing file, which also invalidates anonymous pages: that's
695 * okay, that truncation will have unmapped the PageKsm for us.
696 *
697 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
698 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
699 * current task has TIF_MEMDIE set, and will be OOM killed on return
700 * to user; and ksmd, having no mm, would never be chosen for that.
701 *
702 * But if the mm is in a limited mem_cgroup, then the fault may fail
703 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
704 * even ksmd can fail in this way - though it's usually breaking ksm
705 * just to undo a merge it made a moment before, so unlikely to oom.
706 *
707 * That's a pity: we might therefore have more kernel pages allocated
708 * than we're counting as nodes in the stable tree; but ksm_do_scan
709 * will retry to break_cow on each pass, so should recover the page
710 * in due course. The important thing is to not let VM_MERGEABLE
711 * be cleared while any such pages might remain in the area.
712 */
713 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
714}
715
d7597f59
SR
716static bool vma_ksm_compatible(struct vm_area_struct *vma)
717{
718 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
719 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
720 VM_MIXEDMAP))
721 return false; /* just ignore the advice */
722
723 if (vma_is_dax(vma))
724 return false;
725
726#ifdef VM_SAO
727 if (vma->vm_flags & VM_SAO)
728 return false;
729#endif
730#ifdef VM_SPARC_ADI
731 if (vma->vm_flags & VM_SPARC_ADI)
732 return false;
733#endif
734
735 return true;
736}
737
ef694222
BL
738static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
739 unsigned long addr)
740{
741 struct vm_area_struct *vma;
742 if (ksm_test_exit(mm))
743 return NULL;
ff69fb81
LH
744 vma = vma_lookup(mm, addr);
745 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
746 return NULL;
747 return vma;
748}
749
21fbd591 750static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 751{
8dd3557a
HD
752 struct mm_struct *mm = rmap_item->mm;
753 unsigned long addr = rmap_item->address;
31dbd01f
IE
754 struct vm_area_struct *vma;
755
4035c07a
HD
756 /*
757 * It is not an accident that whenever we want to break COW
758 * to undo, we also need to drop a reference to the anon_vma.
759 */
9e60109f 760 put_anon_vma(rmap_item->anon_vma);
4035c07a 761
d8ed45c5 762 mmap_read_lock(mm);
ef694222
BL
763 vma = find_mergeable_vma(mm, addr);
764 if (vma)
49b06385 765 break_ksm(vma, addr, false);
d8ed45c5 766 mmap_read_unlock(mm);
31dbd01f
IE
767}
768
21fbd591 769static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
770{
771 struct mm_struct *mm = rmap_item->mm;
772 unsigned long addr = rmap_item->address;
773 struct vm_area_struct *vma;
774 struct page *page;
775
d8ed45c5 776 mmap_read_lock(mm);
ef694222
BL
777 vma = find_mergeable_vma(mm, addr);
778 if (!vma)
31dbd01f
IE
779 goto out;
780
781 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 782 if (IS_ERR_OR_NULL(page))
31dbd01f 783 goto out;
f7091ed6
HW
784 if (is_zone_device_page(page))
785 goto out_putpage;
f765f540 786 if (PageAnon(page)) {
31dbd01f
IE
787 flush_anon_page(vma, page, addr);
788 flush_dcache_page(page);
789 } else {
f7091ed6 790out_putpage:
31dbd01f 791 put_page(page);
c8f95ed1
AA
792out:
793 page = NULL;
31dbd01f 794 }
d8ed45c5 795 mmap_read_unlock(mm);
31dbd01f
IE
796 return page;
797}
798
90bd6fd3
PH
799/*
800 * This helper is used for getting right index into array of tree roots.
801 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
802 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
803 * every node has its own stable and unstable tree.
804 */
805static inline int get_kpfn_nid(unsigned long kpfn)
806{
d8fc16a8 807 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
808}
809
21fbd591 810static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
811 struct rb_root *root)
812{
21fbd591 813 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
814 VM_BUG_ON(is_stable_node_chain(dup));
815 if (likely(chain)) {
816 INIT_HLIST_HEAD(&chain->hlist);
817 chain->chain_prune_time = jiffies;
818 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
819#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 820 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
821#endif
822 ksm_stable_node_chains++;
823
824 /*
825 * Put the stable node chain in the first dimension of
826 * the stable tree and at the same time remove the old
827 * stable node.
828 */
829 rb_replace_node(&dup->node, &chain->node, root);
830
831 /*
832 * Move the old stable node to the second dimension
833 * queued in the hlist_dup. The invariant is that all
834 * dup stable_nodes in the chain->hlist point to pages
457aef94 835 * that are write protected and have the exact same
2c653d0e
AA
836 * content.
837 */
838 stable_node_chain_add_dup(dup, chain);
839 }
840 return chain;
841}
842
21fbd591 843static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
844 struct rb_root *root)
845{
846 rb_erase(&chain->node, root);
847 free_stable_node(chain);
848 ksm_stable_node_chains--;
849}
850
21fbd591 851static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 852{
21fbd591 853 struct ksm_rmap_item *rmap_item;
4035c07a 854
2c653d0e
AA
855 /* check it's not STABLE_NODE_CHAIN or negative */
856 BUG_ON(stable_node->rmap_hlist_len < 0);
857
b67bfe0d 858 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
739100c8 859 if (rmap_item->hlist.next) {
4035c07a 860 ksm_pages_sharing--;
739100c8
SR
861 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
862 } else {
4035c07a 863 ksm_pages_shared--;
739100c8 864 }
76093853 865
866 rmap_item->mm->ksm_merging_pages--;
867
2c653d0e
AA
868 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
869 stable_node->rmap_hlist_len--;
9e60109f 870 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
871 rmap_item->address &= PAGE_MASK;
872 cond_resched();
873 }
874
2c653d0e
AA
875 /*
876 * We need the second aligned pointer of the migrate_nodes
877 * list_head to stay clear from the rb_parent_color union
878 * (aligned and different than any node) and also different
879 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 880 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 881 */
2c653d0e
AA
882 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
883 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 884
739100c8 885 trace_ksm_remove_ksm_page(stable_node->kpfn);
4146d2d6
HD
886 if (stable_node->head == &migrate_nodes)
887 list_del(&stable_node->list);
888 else
2c653d0e 889 stable_node_dup_del(stable_node);
4035c07a
HD
890 free_stable_node(stable_node);
891}
892
85b67b01
DH
893enum ksm_get_folio_flags {
894 KSM_GET_FOLIO_NOLOCK,
895 KSM_GET_FOLIO_LOCK,
896 KSM_GET_FOLIO_TRYLOCK
2cee57d1
YS
897};
898
4035c07a 899/*
b91f9472 900 * ksm_get_folio: checks if the page indicated by the stable node
4035c07a
HD
901 * is still its ksm page, despite having held no reference to it.
902 * In which case we can trust the content of the page, and it
903 * returns the gotten page; but if the page has now been zapped,
904 * remove the stale node from the stable tree and return NULL.
c8d6553b 905 * But beware, the stable node's page might be being migrated.
4035c07a
HD
906 *
907 * You would expect the stable_node to hold a reference to the ksm page.
908 * But if it increments the page's count, swapping out has to wait for
909 * ksmd to come around again before it can free the page, which may take
910 * seconds or even minutes: much too unresponsive. So instead we use a
911 * "keyhole reference": access to the ksm page from the stable node peeps
912 * out through its keyhole to see if that page still holds the right key,
913 * pointing back to this stable node. This relies on freeing a PageAnon
914 * page to reset its page->mapping to NULL, and relies on no other use of
915 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
916 * is on its way to being freed; but it is an anomaly to bear in mind.
917 */
b91f9472 918static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
85b67b01 919 enum ksm_get_folio_flags flags)
4035c07a 920{
b91f9472 921 struct folio *folio;
4035c07a 922 void *expected_mapping;
c8d6553b 923 unsigned long kpfn;
4035c07a 924
bda807d4
MK
925 expected_mapping = (void *)((unsigned long)stable_node |
926 PAGE_MAPPING_KSM);
c8d6553b 927again:
08df4774 928 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
b91f9472
AS
929 folio = pfn_folio(kpfn);
930 if (READ_ONCE(folio->mapping) != expected_mapping)
4035c07a 931 goto stale;
c8d6553b
HD
932
933 /*
934 * We cannot do anything with the page while its refcount is 0.
935 * Usually 0 means free, or tail of a higher-order page: in which
936 * case this node is no longer referenced, and should be freed;
1c4c3b99 937 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 938 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 939 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 940 * in folio_migrate_mapping(), it might still be our page,
52d1e606 941 * in which case it's essential to keep the node.
c8d6553b 942 */
b91f9472 943 while (!folio_try_get(folio)) {
c8d6553b
HD
944 /*
945 * Another check for page->mapping != expected_mapping would
946 * work here too. We have chosen the !PageSwapCache test to
947 * optimize the common case, when the page is or is about to
948 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 949 * in the ref_freeze section of __remove_mapping(); but Anon
b91f9472 950 * folio->mapping reset to NULL later, in free_pages_prepare().
c8d6553b 951 */
b91f9472 952 if (!folio_test_swapcache(folio))
c8d6553b
HD
953 goto stale;
954 cpu_relax();
955 }
956
b91f9472
AS
957 if (READ_ONCE(folio->mapping) != expected_mapping) {
958 folio_put(folio);
4035c07a
HD
959 goto stale;
960 }
c8d6553b 961
85b67b01 962 if (flags == KSM_GET_FOLIO_TRYLOCK) {
b91f9472
AS
963 if (!folio_trylock(folio)) {
964 folio_put(folio);
2cee57d1
YS
965 return ERR_PTR(-EBUSY);
966 }
85b67b01 967 } else if (flags == KSM_GET_FOLIO_LOCK)
b91f9472 968 folio_lock(folio);
2cee57d1 969
85b67b01 970 if (flags != KSM_GET_FOLIO_NOLOCK) {
b91f9472
AS
971 if (READ_ONCE(folio->mapping) != expected_mapping) {
972 folio_unlock(folio);
973 folio_put(folio);
8aafa6a4
HD
974 goto stale;
975 }
976 }
b91f9472 977 return folio;
c8d6553b 978
4035c07a 979stale:
c8d6553b
HD
980 /*
981 * We come here from above when page->mapping or !PageSwapCache
982 * suggests that the node is stale; but it might be under migration.
19138349 983 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
984 * before checking whether node->kpfn has been changed.
985 */
986 smp_rmb();
4db0c3c2 987 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 988 goto again;
4035c07a
HD
989 remove_node_from_stable_tree(stable_node);
990 return NULL;
991}
992
31dbd01f
IE
993/*
994 * Removing rmap_item from stable or unstable tree.
995 * This function will clean the information from the stable/unstable tree.
996 */
21fbd591 997static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 998{
7b6ba2c7 999 if (rmap_item->address & STABLE_FLAG) {
21fbd591 1000 struct ksm_stable_node *stable_node;
f39b6e2d 1001 struct folio *folio;
31dbd01f 1002
7b6ba2c7 1003 stable_node = rmap_item->head;
85b67b01 1004 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
f39b6e2d 1005 if (!folio)
4035c07a 1006 goto out;
5ad64688 1007
7b6ba2c7 1008 hlist_del(&rmap_item->hlist);
f39b6e2d
AS
1009 folio_unlock(folio);
1010 folio_put(folio);
08beca44 1011
98666f8a 1012 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
1013 ksm_pages_sharing--;
1014 else
7b6ba2c7 1015 ksm_pages_shared--;
76093853 1016
1017 rmap_item->mm->ksm_merging_pages--;
1018
2c653d0e
AA
1019 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1020 stable_node->rmap_hlist_len--;
31dbd01f 1021
9e60109f 1022 put_anon_vma(rmap_item->anon_vma);
c89a384e 1023 rmap_item->head = NULL;
93d17715 1024 rmap_item->address &= PAGE_MASK;
31dbd01f 1025
7b6ba2c7 1026 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
1027 unsigned char age;
1028 /*
9ba69294 1029 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 1030 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
1031 * But be careful when an mm is exiting: do the rb_erase
1032 * if this rmap_item was inserted by this scan, rather
1033 * than left over from before.
31dbd01f
IE
1034 */
1035 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 1036 BUG_ON(age > 1);
31dbd01f 1037 if (!age)
90bd6fd3 1038 rb_erase(&rmap_item->node,
ef53d16c 1039 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 1040 ksm_pages_unshared--;
93d17715 1041 rmap_item->address &= PAGE_MASK;
31dbd01f 1042 }
4035c07a 1043out:
31dbd01f
IE
1044 cond_resched(); /* we're called from many long loops */
1045}
1046
21fbd591 1047static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 1048{
6514d511 1049 while (*rmap_list) {
21fbd591 1050 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 1051 *rmap_list = rmap_item->rmap_list;
31dbd01f 1052 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1053 free_rmap_item(rmap_item);
1054 }
1055}
1056
1057/*
e850dcf5 1058 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
1059 * than check every pte of a given vma, the locking doesn't quite work for
1060 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 1061 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
1062 * rmap_items from parent to child at fork time (so as not to waste time
1063 * if exit comes before the next scan reaches it).
81464e30
HD
1064 *
1065 * Similarly, although we'd like to remove rmap_items (so updating counts
1066 * and freeing memory) when unmerging an area, it's easier to leave that
1067 * to the next pass of ksmd - consider, for example, how ksmd might be
1068 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 1069 */
d952b791 1070static int unmerge_ksm_pages(struct vm_area_struct *vma,
49b06385 1071 unsigned long start, unsigned long end, bool lock_vma)
31dbd01f
IE
1072{
1073 unsigned long addr;
d952b791 1074 int err = 0;
31dbd01f 1075
d952b791 1076 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
1077 if (ksm_test_exit(vma->vm_mm))
1078 break;
d952b791
HD
1079 if (signal_pending(current))
1080 err = -ERESTARTSYS;
1081 else
49b06385 1082 err = break_ksm(vma, addr, lock_vma);
d952b791
HD
1083 }
1084 return err;
31dbd01f
IE
1085}
1086
21fbd591 1087static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
1088{
1089 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090}
1091
21fbd591 1092static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 1093{
19138349 1094 return folio_stable_node(page_folio(page));
88484826
MR
1095}
1096
b8b0ff24
AS
1097static inline void folio_set_stable_node(struct folio *folio,
1098 struct ksm_stable_node *stable_node)
88484826 1099{
452e862f
AS
1100 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1101 folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
88484826
MR
1102}
1103
2ffd8679
HD
1104#ifdef CONFIG_SYSFS
1105/*
1106 * Only called through the sysfs control interface:
1107 */
21fbd591 1108static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe 1109{
9d5cc140 1110 struct folio *folio;
cbf86cfe
HD
1111 int err;
1112
85b67b01 1113 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
9d5cc140 1114 if (!folio) {
cbf86cfe 1115 /*
9d5cc140 1116 * ksm_get_folio did remove_node_from_stable_tree itself.
cbf86cfe
HD
1117 */
1118 return 0;
1119 }
1120
9a63236f
AR
1121 /*
1122 * Page could be still mapped if this races with __mmput() running in
1123 * between ksm_exit() and exit_mmap(). Just refuse to let
1124 * merge_across_nodes/max_page_sharing be switched.
1125 */
1126 err = -EBUSY;
9d5cc140 1127 if (!folio_mapped(folio)) {
cbf86cfe 1128 /*
9d5cc140
AS
1129 * The stable node did not yet appear stale to ksm_get_folio(),
1130 * since that allows for an unmapped ksm folio to be recognized
8fdb3dbf 1131 * right up until it is freed; but the node is safe to remove.
9d5cc140
AS
1132 * This folio might be in an LRU cache waiting to be freed,
1133 * or it might be in the swapcache (perhaps under writeback),
cbf86cfe
HD
1134 * or it might have been removed from swapcache a moment ago.
1135 */
9d5cc140 1136 folio_set_stable_node(folio, NULL);
cbf86cfe
HD
1137 remove_node_from_stable_tree(stable_node);
1138 err = 0;
1139 }
1140
9d5cc140
AS
1141 folio_unlock(folio);
1142 folio_put(folio);
cbf86cfe
HD
1143 return err;
1144}
1145
21fbd591 1146static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
1147 struct rb_root *root)
1148{
21fbd591 1149 struct ksm_stable_node *dup;
2c653d0e
AA
1150 struct hlist_node *hlist_safe;
1151
1152 if (!is_stable_node_chain(stable_node)) {
1153 VM_BUG_ON(is_stable_node_dup(stable_node));
1154 if (remove_stable_node(stable_node))
1155 return true;
1156 else
1157 return false;
1158 }
1159
1160 hlist_for_each_entry_safe(dup, hlist_safe,
1161 &stable_node->hlist, hlist_dup) {
1162 VM_BUG_ON(!is_stable_node_dup(dup));
1163 if (remove_stable_node(dup))
1164 return true;
1165 }
1166 BUG_ON(!hlist_empty(&stable_node->hlist));
1167 free_stable_node_chain(stable_node, root);
1168 return false;
1169}
1170
cbf86cfe
HD
1171static int remove_all_stable_nodes(void)
1172{
21fbd591 1173 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
1174 int nid;
1175 int err = 0;
1176
ef53d16c 1177 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
1178 while (root_stable_tree[nid].rb_node) {
1179 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 1180 struct ksm_stable_node, node);
2c653d0e
AA
1181 if (remove_stable_node_chain(stable_node,
1182 root_stable_tree + nid)) {
cbf86cfe
HD
1183 err = -EBUSY;
1184 break; /* proceed to next nid */
1185 }
1186 cond_resched();
1187 }
1188 }
03640418 1189 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
1190 if (remove_stable_node(stable_node))
1191 err = -EBUSY;
1192 cond_resched();
1193 }
cbf86cfe
HD
1194 return err;
1195}
1196
d952b791 1197static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 1198{
21fbd591 1199 struct ksm_mm_slot *mm_slot;
58730ab6 1200 struct mm_slot *slot;
31dbd01f
IE
1201 struct mm_struct *mm;
1202 struct vm_area_struct *vma;
d952b791
HD
1203 int err = 0;
1204
1205 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1206 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1207 struct mm_slot, mm_node);
1208 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 1209 spin_unlock(&ksm_mmlist_lock);
31dbd01f 1210
a5f18ba0
MWO
1211 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1212 mm_slot = ksm_scan.mm_slot) {
58730ab6 1213 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 1214
58730ab6 1215 mm = mm_slot->slot.mm;
d8ed45c5 1216 mmap_read_lock(mm);
6db504ce
LH
1217
1218 /*
1219 * Exit right away if mm is exiting to avoid lockdep issue in
1220 * the maple tree
1221 */
1222 if (ksm_test_exit(mm))
1223 goto mm_exiting;
1224
a5f18ba0 1225 for_each_vma(vmi, vma) {
31dbd01f
IE
1226 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1227 continue;
d952b791 1228 err = unmerge_ksm_pages(vma,
49b06385 1229 vma->vm_start, vma->vm_end, false);
9ba69294
HD
1230 if (err)
1231 goto error;
31dbd01f 1232 }
9ba69294 1233
6db504ce 1234mm_exiting:
420be4ed 1235 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1236 mmap_read_unlock(mm);
d952b791
HD
1237
1238 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1239 slot = list_entry(mm_slot->slot.mm_node.next,
1240 struct mm_slot, mm_node);
1241 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 1242 if (ksm_test_exit(mm)) {
58730ab6
QZ
1243 hash_del(&mm_slot->slot.hash);
1244 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
1245 spin_unlock(&ksm_mmlist_lock);
1246
58730ab6 1247 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 1248 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 1249 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294 1250 mmdrop(mm);
7496fea9 1251 } else
9ba69294 1252 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1253 }
1254
cbf86cfe
HD
1255 /* Clean up stable nodes, but don't worry if some are still busy */
1256 remove_all_stable_nodes();
d952b791 1257 ksm_scan.seqnr = 0;
9ba69294
HD
1258 return 0;
1259
1260error:
d8ed45c5 1261 mmap_read_unlock(mm);
31dbd01f 1262 spin_lock(&ksm_mmlist_lock);
d952b791 1263 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1264 spin_unlock(&ksm_mmlist_lock);
d952b791 1265 return err;
31dbd01f 1266}
2ffd8679 1267#endif /* CONFIG_SYSFS */
31dbd01f 1268
31dbd01f
IE
1269static u32 calc_checksum(struct page *page)
1270{
1271 u32 checksum;
b3351989 1272 void *addr = kmap_local_page(page);
59e1a2f4 1273 checksum = xxhash(addr, PAGE_SIZE, 0);
b3351989 1274 kunmap_local(addr);
31dbd01f
IE
1275 return checksum;
1276}
1277
40d707f3 1278static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
31dbd01f
IE
1279 pte_t *orig_pte)
1280{
1281 struct mm_struct *mm = vma->vm_mm;
40d707f3 1282 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
31dbd01f
IE
1283 int swapped;
1284 int err = -EFAULT;
ac46d4f3 1285 struct mmu_notifier_range range;
6c287605 1286 bool anon_exclusive;
c33c7948 1287 pte_t entry;
31dbd01f 1288
40d707f3
AS
1289 if (WARN_ON_ONCE(folio_test_large(folio)))
1290 return err;
1291
1292 pvmw.address = page_address_in_vma(&folio->page, vma);
36eaff33 1293 if (pvmw.address == -EFAULT)
31dbd01f
IE
1294 goto out;
1295
7d4a8be0 1296 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
ac46d4f3
JG
1297 pvmw.address + PAGE_SIZE);
1298 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1299
36eaff33 1300 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1301 goto out_mn;
36eaff33
KS
1302 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1303 goto out_unlock;
31dbd01f 1304
40d707f3 1305 anon_exclusive = PageAnonExclusive(&folio->page);
c33c7948
RR
1306 entry = ptep_get(pvmw.pte);
1307 if (pte_write(entry) || pte_dirty(entry) ||
6c287605 1308 anon_exclusive || mm_tlb_flush_pending(mm)) {
40d707f3
AS
1309 swapped = folio_test_swapcache(folio);
1310 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
31dbd01f 1311 /*
25985edc 1312 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1313 * take any lock, therefore the check that we are going to make
f0953a1b 1314 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1315 * O_DIRECT can happen right after the check.
1316 * So we clear the pte and flush the tlb before the check
1317 * this assure us that no O_DIRECT can happen after the check
1318 * or in the middle of the check.
0f10851e
JG
1319 *
1320 * No need to notify as we are downgrading page table to read
1321 * only not changing it to point to a new page.
1322 *
ee65728e 1323 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1324 */
0f10851e 1325 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1326 /*
1327 * Check that no O_DIRECT or similar I/O is in progress on the
1328 * page
1329 */
40d707f3 1330 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
36eaff33 1331 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1332 goto out_unlock;
1333 }
6c287605 1334
e3b4b137
DH
1335 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1336 if (anon_exclusive &&
40d707f3 1337 folio_try_share_anon_rmap_pte(folio, &folio->page)) {
6c287605
DH
1338 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1339 goto out_unlock;
1340 }
1341
4e31635c 1342 if (pte_dirty(entry))
40d707f3 1343 folio_mark_dirty(folio);
6a56ccbc
DH
1344 entry = pte_mkclean(entry);
1345
1346 if (pte_write(entry))
1347 entry = pte_wrprotect(entry);
595cd8f2 1348
f7842747 1349 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1350 }
c33c7948 1351 *orig_pte = entry;
31dbd01f
IE
1352 err = 0;
1353
1354out_unlock:
36eaff33 1355 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1356out_mn:
ac46d4f3 1357 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1358out:
1359 return err;
1360}
1361
1362/**
1363 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1364 * @vma: vma that holds the pte pointing to page
1365 * @page: the page we are replacing by kpage
1366 * @kpage: the ksm page we replace page by
31dbd01f
IE
1367 * @orig_pte: the original value of the pte
1368 *
1369 * Returns 0 on success, -EFAULT on failure.
1370 */
8dd3557a
HD
1371static int replace_page(struct vm_area_struct *vma, struct page *page,
1372 struct page *kpage, pte_t orig_pte)
31dbd01f 1373{
97729534 1374 struct folio *kfolio = page_folio(kpage);
31dbd01f 1375 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1376 struct folio *folio;
31dbd01f 1377 pmd_t *pmd;
50722804 1378 pmd_t pmde;
31dbd01f 1379 pte_t *ptep;
e86c59b1 1380 pte_t newpte;
31dbd01f
IE
1381 spinlock_t *ptl;
1382 unsigned long addr;
31dbd01f 1383 int err = -EFAULT;
ac46d4f3 1384 struct mmu_notifier_range range;
31dbd01f 1385
8dd3557a 1386 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1387 if (addr == -EFAULT)
1388 goto out;
1389
6219049a
BL
1390 pmd = mm_find_pmd(mm, addr);
1391 if (!pmd)
31dbd01f 1392 goto out;
50722804
ZK
1393 /*
1394 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1395 * without holding anon_vma lock for write. So when looking for a
1396 * genuine pmde (in which to find pte), test present and !THP together.
1397 */
26e1a0c3 1398 pmde = pmdp_get_lockless(pmd);
50722804
ZK
1399 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1400 goto out;
31dbd01f 1401
7d4a8be0 1402 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
6f4f13e8 1403 addr + PAGE_SIZE);
ac46d4f3 1404 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1405
31dbd01f 1406 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
04dee9e8
HD
1407 if (!ptep)
1408 goto out_mn;
c33c7948 1409 if (!pte_same(ptep_get(ptep), orig_pte)) {
31dbd01f 1410 pte_unmap_unlock(ptep, ptl);
6bdb913f 1411 goto out_mn;
31dbd01f 1412 }
6c287605 1413 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
97729534
DH
1414 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1415 kfolio);
31dbd01f 1416
e86c59b1
CI
1417 /*
1418 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1419 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1420 */
1421 if (!is_zero_pfn(page_to_pfn(kpage))) {
97729534
DH
1422 folio_get(kfolio);
1423 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1424 newpte = mk_pte(kpage, vma->vm_page_prot);
1425 } else {
79271476 1426 /*
1427 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1428 * we can easily track all KSM-placed zero pages by checking if
1429 * the dirty bit in zero page's PTE is set.
1430 */
1431 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
c2dc78b8 1432 ksm_map_zero_page(mm);
a38c015f
CI
1433 /*
1434 * We're replacing an anonymous page with a zero page, which is
1435 * not anonymous. We need to do proper accounting otherwise we
1436 * will get wrong values in /proc, and a BUG message in dmesg
1437 * when tearing down the mm.
1438 */
1439 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1440 }
31dbd01f 1441
c33c7948 1442 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
0f10851e
JG
1443 /*
1444 * No need to notify as we are replacing a read only page with another
1445 * read only page with the same content.
1446 *
ee65728e 1447 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1448 */
1449 ptep_clear_flush(vma, addr, ptep);
f7842747 1450 set_pte_at(mm, addr, ptep, newpte);
31dbd01f 1451
b4e6f66e 1452 folio = page_folio(page);
18e8612e 1453 folio_remove_rmap_pte(folio, page, vma);
b4e6f66e
MWO
1454 if (!folio_mapped(folio))
1455 folio_free_swap(folio);
1456 folio_put(folio);
31dbd01f
IE
1457
1458 pte_unmap_unlock(ptep, ptl);
1459 err = 0;
6bdb913f 1460out_mn:
ac46d4f3 1461 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1462out:
1463 return err;
1464}
1465
1466/*
1467 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1468 * @vma: the vma that holds the pte pointing to page
1469 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1470 * @kpage: the PageKsm page that we want to map instead of page,
1471 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1472 *
1473 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1474 */
1475static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1476 struct page *page, struct page *kpage)
31dbd01f
IE
1477{
1478 pte_t orig_pte = __pte(0);
1479 int err = -EFAULT;
1480
db114b83
HD
1481 if (page == kpage) /* ksm page forked */
1482 return 0;
1483
8dd3557a 1484 if (!PageAnon(page))
31dbd01f
IE
1485 goto out;
1486
31dbd01f
IE
1487 /*
1488 * We need the page lock to read a stable PageSwapCache in
1489 * write_protect_page(). We use trylock_page() instead of
1490 * lock_page() because we don't want to wait here - we
1491 * prefer to continue scanning and merging different pages,
1492 * then come back to this page when it is unlocked.
1493 */
8dd3557a 1494 if (!trylock_page(page))
31e855ea 1495 goto out;
f765f540
KS
1496
1497 if (PageTransCompound(page)) {
a7306c34 1498 if (split_huge_page(page))
f765f540
KS
1499 goto out_unlock;
1500 }
1501
31dbd01f
IE
1502 /*
1503 * If this anonymous page is mapped only here, its pte may need
1504 * to be write-protected. If it's mapped elsewhere, all of its
1505 * ptes are necessarily already write-protected. But in either
1506 * case, we need to lock and check page_count is not raised.
1507 */
40d707f3 1508 if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
80e14822
HD
1509 if (!kpage) {
1510 /*
1511 * While we hold page lock, upgrade page from
1512 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1513 * stable_tree_insert() will update stable_node.
1514 */
452e862f 1515 folio_set_stable_node(page_folio(page), NULL);
80e14822 1516 mark_page_accessed(page);
337ed7eb
MK
1517 /*
1518 * Page reclaim just frees a clean page with no dirty
1519 * ptes: make sure that the ksm page would be swapped.
1520 */
1521 if (!PageDirty(page))
1522 SetPageDirty(page);
80e14822
HD
1523 err = 0;
1524 } else if (pages_identical(page, kpage))
1525 err = replace_page(vma, page, kpage, orig_pte);
1526 }
31dbd01f 1527
f765f540 1528out_unlock:
8dd3557a 1529 unlock_page(page);
31dbd01f
IE
1530out:
1531 return err;
1532}
1533
81464e30
HD
1534/*
1535 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1536 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1537 *
1538 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1539 */
21fbd591 1540static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1541 struct page *page, struct page *kpage)
81464e30 1542{
8dd3557a 1543 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1544 struct vm_area_struct *vma;
1545 int err = -EFAULT;
1546
d8ed45c5 1547 mmap_read_lock(mm);
85c6e8dd
AA
1548 vma = find_mergeable_vma(mm, rmap_item->address);
1549 if (!vma)
81464e30
HD
1550 goto out;
1551
8dd3557a 1552 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1553 if (err)
1554 goto out;
1555
bc56620b
HD
1556 /* Unstable nid is in union with stable anon_vma: remove first */
1557 remove_rmap_item_from_tree(rmap_item);
1558
c1e8d7c6 1559 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1560 rmap_item->anon_vma = vma->anon_vma;
1561 get_anon_vma(vma->anon_vma);
81464e30 1562out:
d8ed45c5 1563 mmap_read_unlock(mm);
739100c8
SR
1564 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1565 rmap_item, mm, err);
81464e30
HD
1566 return err;
1567}
1568
31dbd01f
IE
1569/*
1570 * try_to_merge_two_pages - take two identical pages and prepare them
1571 * to be merged into one page.
1572 *
8dd3557a
HD
1573 * This function returns the kpage if we successfully merged two identical
1574 * pages into one ksm page, NULL otherwise.
31dbd01f 1575 *
80e14822 1576 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1577 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1578 */
21fbd591 1579static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1580 struct page *page,
21fbd591 1581 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1582 struct page *tree_page)
31dbd01f 1583{
80e14822 1584 int err;
31dbd01f 1585
80e14822 1586 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1587 if (!err) {
8dd3557a 1588 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1589 tree_page, page);
31dbd01f 1590 /*
81464e30
HD
1591 * If that fails, we have a ksm page with only one pte
1592 * pointing to it: so break it.
31dbd01f 1593 */
4035c07a 1594 if (err)
8dd3557a 1595 break_cow(rmap_item);
31dbd01f 1596 }
80e14822 1597 return err ? NULL : page;
31dbd01f
IE
1598}
1599
2c653d0e 1600static __always_inline
21fbd591 1601bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1602{
1603 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1604 /*
1605 * Check that at least one mapping still exists, otherwise
1606 * there's no much point to merge and share with this
1607 * stable_node, as the underlying tree_page of the other
1608 * sharer is going to be freed soon.
1609 */
1610 return stable_node->rmap_hlist_len &&
1611 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1612}
1613
1614static __always_inline
21fbd591 1615bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1616{
1617 return __is_page_sharing_candidate(stable_node, 0);
1618}
1619
79899cce
AS
1620static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1621 struct ksm_stable_node **_stable_node,
1622 struct rb_root *root,
1623 bool prune_stale_stable_nodes)
2c653d0e 1624{
21fbd591 1625 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1626 struct hlist_node *hlist_safe;
6f528de2 1627 struct folio *folio, *tree_folio = NULL;
2c653d0e
AA
1628 int nr = 0;
1629 int found_rmap_hlist_len;
1630
1631 if (!prune_stale_stable_nodes ||
1632 time_before(jiffies, stable_node->chain_prune_time +
1633 msecs_to_jiffies(
1634 ksm_stable_node_chains_prune_millisecs)))
1635 prune_stale_stable_nodes = false;
1636 else
1637 stable_node->chain_prune_time = jiffies;
1638
1639 hlist_for_each_entry_safe(dup, hlist_safe,
1640 &stable_node->hlist, hlist_dup) {
1641 cond_resched();
1642 /*
1643 * We must walk all stable_node_dup to prune the stale
1644 * stable nodes during lookup.
1645 *
6f528de2 1646 * ksm_get_folio can drop the nodes from the
2c653d0e
AA
1647 * stable_node->hlist if they point to freed pages
1648 * (that's why we do a _safe walk). The "dup"
1649 * stable_node parameter itself will be freed from
1650 * under us if it returns NULL.
1651 */
85b67b01 1652 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
6f528de2 1653 if (!folio)
2c653d0e
AA
1654 continue;
1655 nr += 1;
1656 if (is_page_sharing_candidate(dup)) {
1657 if (!found ||
1658 dup->rmap_hlist_len > found_rmap_hlist_len) {
1659 if (found)
6f528de2 1660 folio_put(tree_folio);
2c653d0e
AA
1661 found = dup;
1662 found_rmap_hlist_len = found->rmap_hlist_len;
6f528de2 1663 tree_folio = folio;
2c653d0e 1664
8dc5ffcd 1665 /* skip put_page for found dup */
2c653d0e
AA
1666 if (!prune_stale_stable_nodes)
1667 break;
2c653d0e
AA
1668 continue;
1669 }
1670 }
6f528de2 1671 folio_put(folio);
2c653d0e
AA
1672 }
1673
80b18dfa
AA
1674 if (found) {
1675 /*
1676 * nr is counting all dups in the chain only if
1677 * prune_stale_stable_nodes is true, otherwise we may
1678 * break the loop at nr == 1 even if there are
1679 * multiple entries.
1680 */
1681 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1682 /*
1683 * If there's not just one entry it would
1684 * corrupt memory, better BUG_ON. In KSM
1685 * context with no lock held it's not even
1686 * fatal.
1687 */
1688 BUG_ON(stable_node->hlist.first->next);
1689
1690 /*
1691 * There's just one entry and it is below the
1692 * deduplication limit so drop the chain.
1693 */
1694 rb_replace_node(&stable_node->node, &found->node,
1695 root);
1696 free_stable_node(stable_node);
1697 ksm_stable_node_chains--;
1698 ksm_stable_node_dups--;
b4fecc67 1699 /*
0ba1d0f7
AA
1700 * NOTE: the caller depends on the stable_node
1701 * to be equal to stable_node_dup if the chain
1702 * was collapsed.
b4fecc67 1703 */
0ba1d0f7
AA
1704 *_stable_node = found;
1705 /*
f0953a1b 1706 * Just for robustness, as stable_node is
0ba1d0f7
AA
1707 * otherwise left as a stable pointer, the
1708 * compiler shall optimize it away at build
1709 * time.
1710 */
1711 stable_node = NULL;
80b18dfa
AA
1712 } else if (stable_node->hlist.first != &found->hlist_dup &&
1713 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1714 /*
80b18dfa
AA
1715 * If the found stable_node dup can accept one
1716 * more future merge (in addition to the one
1717 * that is underway) and is not at the head of
1718 * the chain, put it there so next search will
1719 * be quicker in the !prune_stale_stable_nodes
1720 * case.
1721 *
1722 * NOTE: it would be inaccurate to use nr > 1
1723 * instead of checking the hlist.first pointer
1724 * directly, because in the
1725 * prune_stale_stable_nodes case "nr" isn't
1726 * the position of the found dup in the chain,
1727 * but the total number of dups in the chain.
2c653d0e
AA
1728 */
1729 hlist_del(&found->hlist_dup);
1730 hlist_add_head(&found->hlist_dup,
1731 &stable_node->hlist);
1732 }
1733 }
1734
8dc5ffcd 1735 *_stable_node_dup = found;
79899cce 1736 return tree_folio;
2c653d0e
AA
1737}
1738
21fbd591 1739static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1740 struct rb_root *root)
1741{
1742 if (!is_stable_node_chain(stable_node))
1743 return stable_node;
1744 if (hlist_empty(&stable_node->hlist)) {
1745 free_stable_node_chain(stable_node, root);
1746 return NULL;
1747 }
1748 return hlist_entry(stable_node->hlist.first,
1749 typeof(*stable_node), hlist_dup);
1750}
1751
8dc5ffcd 1752/*
79899cce 1753 * Like for ksm_get_folio, this function can free the *_stable_node and
8dc5ffcd
AA
1754 * *_stable_node_dup if the returned tree_page is NULL.
1755 *
1756 * It can also free and overwrite *_stable_node with the found
1757 * stable_node_dup if the chain is collapsed (in which case
1758 * *_stable_node will be equal to *_stable_node_dup like if the chain
1759 * never existed). It's up to the caller to verify tree_page is not
1760 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1761 *
1762 * *_stable_node_dup is really a second output parameter of this
1763 * function and will be overwritten in all cases, the caller doesn't
1764 * need to initialize it.
1765 */
79899cce
AS
1766static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1767 struct ksm_stable_node **_stable_node,
1768 struct rb_root *root,
1769 bool prune_stale_stable_nodes)
2c653d0e 1770{
21fbd591 1771 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1772 if (!is_stable_node_chain(stable_node)) {
1773 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1774 *_stable_node_dup = stable_node;
85b67b01 1775 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
2c653d0e 1776 }
8dc5ffcd
AA
1777 /*
1778 * _stable_node_dup set to NULL means the stable_node
1779 * reached the ksm_max_page_sharing limit.
1780 */
1781 *_stable_node_dup = NULL;
2c653d0e
AA
1782 return NULL;
1783 }
8dc5ffcd 1784 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1785 prune_stale_stable_nodes);
1786}
1787
79899cce
AS
1788static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1789 struct ksm_stable_node **s_n,
1790 struct rb_root *root)
2c653d0e 1791{
8dc5ffcd 1792 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1793}
1794
79899cce
AS
1795static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1796 struct ksm_stable_node *s_n,
1797 struct rb_root *root)
2c653d0e 1798{
21fbd591 1799 struct ksm_stable_node *old_stable_node = s_n;
79899cce 1800 struct folio *tree_folio;
8dc5ffcd 1801
79899cce 1802 tree_folio = __stable_node_chain(s_n_d, &s_n, root, false);
8dc5ffcd
AA
1803 /* not pruning dups so s_n cannot have changed */
1804 VM_BUG_ON(s_n != old_stable_node);
79899cce 1805 return tree_folio;
2c653d0e
AA
1806}
1807
31dbd01f 1808/*
8dd3557a 1809 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1810 *
1811 * This function checks if there is a page inside the stable tree
1812 * with identical content to the page that we are scanning right now.
1813 *
7b6ba2c7 1814 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1815 * NULL otherwise.
1816 */
62b61f61 1817static struct page *stable_tree_search(struct page *page)
31dbd01f 1818{
90bd6fd3 1819 int nid;
ef53d16c 1820 struct rb_root *root;
4146d2d6
HD
1821 struct rb_node **new;
1822 struct rb_node *parent;
21fbd591
QZ
1823 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1824 struct ksm_stable_node *page_node;
79899cce 1825 struct folio *folio;
31dbd01f 1826
79899cce
AS
1827 folio = page_folio(page);
1828 page_node = folio_stable_node(folio);
4146d2d6
HD
1829 if (page_node && page_node->head != &migrate_nodes) {
1830 /* ksm page forked */
79899cce
AS
1831 folio_get(folio);
1832 return &folio->page;
08beca44
HD
1833 }
1834
79899cce 1835 nid = get_kpfn_nid(folio_pfn(folio));
ef53d16c 1836 root = root_stable_tree + nid;
4146d2d6 1837again:
ef53d16c 1838 new = &root->rb_node;
4146d2d6 1839 parent = NULL;
90bd6fd3 1840
4146d2d6 1841 while (*new) {
79899cce 1842 struct folio *tree_folio;
31dbd01f
IE
1843 int ret;
1844
08beca44 1845 cond_resched();
21fbd591 1846 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1847 stable_node_any = NULL;
79899cce 1848 tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1849 /*
1850 * NOTE: stable_node may have been freed by
1851 * chain_prune() if the returned stable_node_dup is
1852 * not NULL. stable_node_dup may have been inserted in
1853 * the rbtree instead as a regular stable_node (in
1854 * order to collapse the stable_node chain if a single
0ba1d0f7 1855 * stable_node dup was found in it). In such case the
3413b2c8 1856 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1857 * to the stable_node_dup that was collapsed in the
1858 * stable rbtree and stable_node will be equal to
1859 * stable_node_dup like if the chain never existed.
b4fecc67 1860 */
2c653d0e
AA
1861 if (!stable_node_dup) {
1862 /*
1863 * Either all stable_node dups were full in
1864 * this stable_node chain, or this chain was
1865 * empty and should be rb_erased.
1866 */
1867 stable_node_any = stable_node_dup_any(stable_node,
1868 root);
1869 if (!stable_node_any) {
1870 /* rb_erase just run */
1871 goto again;
1872 }
1873 /*
1874 * Take any of the stable_node dups page of
1875 * this stable_node chain to let the tree walk
1876 * continue. All KSM pages belonging to the
1877 * stable_node dups in a stable_node chain
1878 * have the same content and they're
457aef94 1879 * write protected at all times. Any will work
2c653d0e
AA
1880 * fine to continue the walk.
1881 */
79899cce 1882 tree_folio = ksm_get_folio(stable_node_any,
85b67b01 1883 KSM_GET_FOLIO_NOLOCK);
2c653d0e
AA
1884 }
1885 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
79899cce 1886 if (!tree_folio) {
f2e5ff85
AA
1887 /*
1888 * If we walked over a stale stable_node,
79899cce 1889 * ksm_get_folio() will call rb_erase() and it
f2e5ff85
AA
1890 * may rebalance the tree from under us. So
1891 * restart the search from scratch. Returning
1892 * NULL would be safe too, but we'd generate
1893 * false negative insertions just because some
1894 * stable_node was stale.
1895 */
1896 goto again;
1897 }
31dbd01f 1898
79899cce
AS
1899 ret = memcmp_pages(page, &tree_folio->page);
1900 folio_put(tree_folio);
31dbd01f 1901
4146d2d6 1902 parent = *new;
c8d6553b 1903 if (ret < 0)
4146d2d6 1904 new = &parent->rb_left;
c8d6553b 1905 else if (ret > 0)
4146d2d6 1906 new = &parent->rb_right;
c8d6553b 1907 else {
2c653d0e
AA
1908 if (page_node) {
1909 VM_BUG_ON(page_node->head != &migrate_nodes);
1910 /*
2aa33912
DH
1911 * If the mapcount of our migrated KSM folio is
1912 * at most 1, we can merge it with another
1913 * KSM folio where we know that we have space
1914 * for one more mapping without exceeding the
1915 * ksm_max_page_sharing limit: see
1916 * chain_prune(). This way, we can avoid adding
1917 * this stable node to the chain.
2c653d0e 1918 */
2aa33912 1919 if (folio_mapcount(folio) > 1)
2c653d0e
AA
1920 goto chain_append;
1921 }
1922
1923 if (!stable_node_dup) {
1924 /*
1925 * If the stable_node is a chain and
1926 * we got a payload match in memcmp
1927 * but we cannot merge the scanned
1928 * page in any of the existing
1929 * stable_node dups because they're
1930 * all full, we need to wait the
1931 * scanned page to find itself a match
1932 * in the unstable tree to create a
1933 * brand new KSM page to add later to
1934 * the dups of this stable_node.
1935 */
1936 return NULL;
1937 }
1938
c8d6553b
HD
1939 /*
1940 * Lock and unlock the stable_node's page (which
1941 * might already have been migrated) so that page
1942 * migration is sure to notice its raised count.
1943 * It would be more elegant to return stable_node
1944 * than kpage, but that involves more changes.
1945 */
79899cce 1946 tree_folio = ksm_get_folio(stable_node_dup,
85b67b01 1947 KSM_GET_FOLIO_TRYLOCK);
2cee57d1 1948
79899cce 1949 if (PTR_ERR(tree_folio) == -EBUSY)
2cee57d1
YS
1950 return ERR_PTR(-EBUSY);
1951
79899cce 1952 if (unlikely(!tree_folio))
2c653d0e
AA
1953 /*
1954 * The tree may have been rebalanced,
1955 * so re-evaluate parent and new.
1956 */
4146d2d6 1957 goto again;
79899cce 1958 folio_unlock(tree_folio);
2c653d0e
AA
1959
1960 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1961 NUMA(stable_node_dup->nid)) {
79899cce 1962 folio_put(tree_folio);
2c653d0e
AA
1963 goto replace;
1964 }
79899cce 1965 return &tree_folio->page;
c8d6553b 1966 }
31dbd01f
IE
1967 }
1968
4146d2d6
HD
1969 if (!page_node)
1970 return NULL;
1971
1972 list_del(&page_node->list);
1973 DO_NUMA(page_node->nid = nid);
1974 rb_link_node(&page_node->node, parent, new);
ef53d16c 1975 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1976out:
1977 if (is_page_sharing_candidate(page_node)) {
79899cce
AS
1978 folio_get(folio);
1979 return &folio->page;
2c653d0e
AA
1980 } else
1981 return NULL;
4146d2d6
HD
1982
1983replace:
b4fecc67
AA
1984 /*
1985 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1986 * stable_node has been updated to be the new regular
1987 * stable_node. A collapse of the chain is indistinguishable
1988 * from the case there was no chain in the stable
1989 * rbtree. Otherwise stable_node is the chain and
1990 * stable_node_dup is the dup to replace.
b4fecc67 1991 */
0ba1d0f7 1992 if (stable_node_dup == stable_node) {
b4fecc67
AA
1993 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1994 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1995 /* there is no chain */
1996 if (page_node) {
1997 VM_BUG_ON(page_node->head != &migrate_nodes);
1998 list_del(&page_node->list);
1999 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
2000 rb_replace_node(&stable_node_dup->node,
2001 &page_node->node,
2c653d0e
AA
2002 root);
2003 if (is_page_sharing_candidate(page_node))
79899cce 2004 folio_get(folio);
2c653d0e 2005 else
79899cce 2006 folio = NULL;
2c653d0e 2007 } else {
b4fecc67 2008 rb_erase(&stable_node_dup->node, root);
79899cce 2009 folio = NULL;
2c653d0e 2010 }
4146d2d6 2011 } else {
2c653d0e
AA
2012 VM_BUG_ON(!is_stable_node_chain(stable_node));
2013 __stable_node_dup_del(stable_node_dup);
2014 if (page_node) {
2015 VM_BUG_ON(page_node->head != &migrate_nodes);
2016 list_del(&page_node->list);
2017 DO_NUMA(page_node->nid = nid);
2018 stable_node_chain_add_dup(page_node, stable_node);
2019 if (is_page_sharing_candidate(page_node))
79899cce 2020 folio_get(folio);
2c653d0e 2021 else
79899cce 2022 folio = NULL;
2c653d0e 2023 } else {
79899cce 2024 folio = NULL;
2c653d0e 2025 }
4146d2d6 2026 }
2c653d0e
AA
2027 stable_node_dup->head = &migrate_nodes;
2028 list_add(&stable_node_dup->list, stable_node_dup->head);
79899cce 2029 return &folio->page;
2c653d0e
AA
2030
2031chain_append:
2032 /* stable_node_dup could be null if it reached the limit */
2033 if (!stable_node_dup)
2034 stable_node_dup = stable_node_any;
b4fecc67
AA
2035 /*
2036 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
2037 * stable_node has been updated to be the new regular
2038 * stable_node. A collapse of the chain is indistinguishable
2039 * from the case there was no chain in the stable
2040 * rbtree. Otherwise stable_node is the chain and
2041 * stable_node_dup is the dup to replace.
b4fecc67 2042 */
0ba1d0f7 2043 if (stable_node_dup == stable_node) {
b4fecc67 2044 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2045 /* chain is missing so create it */
2046 stable_node = alloc_stable_node_chain(stable_node_dup,
2047 root);
2048 if (!stable_node)
2049 return NULL;
2050 }
2051 /*
2052 * Add this stable_node dup that was
2053 * migrated to the stable_node chain
2054 * of the current nid for this page
2055 * content.
2056 */
b4fecc67 2057 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2058 VM_BUG_ON(page_node->head != &migrate_nodes);
2059 list_del(&page_node->list);
2060 DO_NUMA(page_node->nid = nid);
2061 stable_node_chain_add_dup(page_node, stable_node);
2062 goto out;
31dbd01f
IE
2063}
2064
2065/*
e850dcf5 2066 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
2067 * into the stable tree.
2068 *
7b6ba2c7
HD
2069 * This function returns the stable tree node just allocated on success,
2070 * NULL otherwise.
31dbd01f 2071 */
79899cce 2072static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
31dbd01f 2073{
90bd6fd3
PH
2074 int nid;
2075 unsigned long kpfn;
ef53d16c 2076 struct rb_root *root;
90bd6fd3 2077 struct rb_node **new;
f2e5ff85 2078 struct rb_node *parent;
21fbd591 2079 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 2080 bool need_chain = false;
31dbd01f 2081
79899cce 2082 kpfn = folio_pfn(kfolio);
90bd6fd3 2083 nid = get_kpfn_nid(kpfn);
ef53d16c 2084 root = root_stable_tree + nid;
f2e5ff85
AA
2085again:
2086 parent = NULL;
ef53d16c 2087 new = &root->rb_node;
90bd6fd3 2088
31dbd01f 2089 while (*new) {
79899cce 2090 struct folio *tree_folio;
31dbd01f
IE
2091 int ret;
2092
08beca44 2093 cond_resched();
21fbd591 2094 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 2095 stable_node_any = NULL;
79899cce 2096 tree_folio = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
2097 if (!stable_node_dup) {
2098 /*
2099 * Either all stable_node dups were full in
2100 * this stable_node chain, or this chain was
2101 * empty and should be rb_erased.
2102 */
2103 stable_node_any = stable_node_dup_any(stable_node,
2104 root);
2105 if (!stable_node_any) {
2106 /* rb_erase just run */
2107 goto again;
2108 }
2109 /*
2110 * Take any of the stable_node dups page of
2111 * this stable_node chain to let the tree walk
2112 * continue. All KSM pages belonging to the
2113 * stable_node dups in a stable_node chain
2114 * have the same content and they're
457aef94 2115 * write protected at all times. Any will work
2c653d0e
AA
2116 * fine to continue the walk.
2117 */
79899cce 2118 tree_folio = ksm_get_folio(stable_node_any,
85b67b01 2119 KSM_GET_FOLIO_NOLOCK);
2c653d0e
AA
2120 }
2121 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
79899cce 2122 if (!tree_folio) {
f2e5ff85
AA
2123 /*
2124 * If we walked over a stale stable_node,
79899cce 2125 * ksm_get_folio() will call rb_erase() and it
f2e5ff85
AA
2126 * may rebalance the tree from under us. So
2127 * restart the search from scratch. Returning
2128 * NULL would be safe too, but we'd generate
2129 * false negative insertions just because some
2130 * stable_node was stale.
2131 */
2132 goto again;
2133 }
31dbd01f 2134
79899cce
AS
2135 ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2136 folio_put(tree_folio);
31dbd01f
IE
2137
2138 parent = *new;
2139 if (ret < 0)
2140 new = &parent->rb_left;
2141 else if (ret > 0)
2142 new = &parent->rb_right;
2143 else {
2c653d0e
AA
2144 need_chain = true;
2145 break;
31dbd01f
IE
2146 }
2147 }
2148
2c653d0e
AA
2149 stable_node_dup = alloc_stable_node();
2150 if (!stable_node_dup)
7b6ba2c7 2151 return NULL;
31dbd01f 2152
2c653d0e
AA
2153 INIT_HLIST_HEAD(&stable_node_dup->hlist);
2154 stable_node_dup->kpfn = kpfn;
2c653d0e
AA
2155 stable_node_dup->rmap_hlist_len = 0;
2156 DO_NUMA(stable_node_dup->nid = nid);
2157 if (!need_chain) {
2158 rb_link_node(&stable_node_dup->node, parent, new);
2159 rb_insert_color(&stable_node_dup->node, root);
2160 } else {
2161 if (!is_stable_node_chain(stable_node)) {
21fbd591 2162 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
2163 /* chain is missing so create it */
2164 stable_node = alloc_stable_node_chain(orig, root);
2165 if (!stable_node) {
2166 free_stable_node(stable_node_dup);
2167 return NULL;
2168 }
2169 }
2170 stable_node_chain_add_dup(stable_node_dup, stable_node);
2171 }
08beca44 2172
90e82349
CZ
2173 folio_set_stable_node(kfolio, stable_node_dup);
2174
2c653d0e 2175 return stable_node_dup;
31dbd01f
IE
2176}
2177
2178/*
8dd3557a
HD
2179 * unstable_tree_search_insert - search for identical page,
2180 * else insert rmap_item into the unstable tree.
31dbd01f
IE
2181 *
2182 * This function searches for a page in the unstable tree identical to the
2183 * page currently being scanned; and if no identical page is found in the
2184 * tree, we insert rmap_item as a new object into the unstable tree.
2185 *
2186 * This function returns pointer to rmap_item found to be identical
2187 * to the currently scanned page, NULL otherwise.
2188 *
2189 * This function does both searching and inserting, because they share
2190 * the same walking algorithm in an rbtree.
2191 */
8dd3557a 2192static
21fbd591 2193struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
2194 struct page *page,
2195 struct page **tree_pagep)
31dbd01f 2196{
90bd6fd3
PH
2197 struct rb_node **new;
2198 struct rb_root *root;
31dbd01f 2199 struct rb_node *parent = NULL;
90bd6fd3
PH
2200 int nid;
2201
2202 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 2203 root = root_unstable_tree + nid;
90bd6fd3 2204 new = &root->rb_node;
31dbd01f
IE
2205
2206 while (*new) {
21fbd591 2207 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2208 struct page *tree_page;
31dbd01f
IE
2209 int ret;
2210
d178f27f 2211 cond_resched();
21fbd591 2212 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 2213 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 2214 if (!tree_page)
31dbd01f
IE
2215 return NULL;
2216
2217 /*
8dd3557a 2218 * Don't substitute a ksm page for a forked page.
31dbd01f 2219 */
8dd3557a
HD
2220 if (page == tree_page) {
2221 put_page(tree_page);
31dbd01f
IE
2222 return NULL;
2223 }
2224
8dd3557a 2225 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
2226
2227 parent = *new;
2228 if (ret < 0) {
8dd3557a 2229 put_page(tree_page);
31dbd01f
IE
2230 new = &parent->rb_left;
2231 } else if (ret > 0) {
8dd3557a 2232 put_page(tree_page);
31dbd01f 2233 new = &parent->rb_right;
b599cbdf
HD
2234 } else if (!ksm_merge_across_nodes &&
2235 page_to_nid(tree_page) != nid) {
2236 /*
2237 * If tree_page has been migrated to another NUMA node,
2238 * it will be flushed out and put in the right unstable
2239 * tree next time: only merge with it when across_nodes.
2240 */
2241 put_page(tree_page);
2242 return NULL;
31dbd01f 2243 } else {
8dd3557a 2244 *tree_pagep = tree_page;
31dbd01f
IE
2245 return tree_rmap_item;
2246 }
2247 }
2248
7b6ba2c7 2249 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 2250 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 2251 DO_NUMA(rmap_item->nid = nid);
31dbd01f 2252 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 2253 rb_insert_color(&rmap_item->node, root);
31dbd01f 2254
473b0ce4 2255 ksm_pages_unshared++;
31dbd01f
IE
2256 return NULL;
2257}
2258
2259/*
2260 * stable_tree_append - add another rmap_item to the linked list of
2261 * rmap_items hanging off a given node of the stable tree, all sharing
2262 * the same ksm page.
2263 */
21fbd591
QZ
2264static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2265 struct ksm_stable_node *stable_node,
2c653d0e 2266 bool max_page_sharing_bypass)
31dbd01f 2267{
2c653d0e
AA
2268 /*
2269 * rmap won't find this mapping if we don't insert the
2270 * rmap_item in the right stable_node
2271 * duplicate. page_migration could break later if rmap breaks,
2272 * so we can as well crash here. We really need to check for
2273 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2274 * for other negative values as an underflow if detected here
2c653d0e
AA
2275 * for the first time (and not when decreasing rmap_hlist_len)
2276 * would be sign of memory corruption in the stable_node.
2277 */
2278 BUG_ON(stable_node->rmap_hlist_len < 0);
2279
2280 stable_node->rmap_hlist_len++;
2281 if (!max_page_sharing_bypass)
2282 /* possibly non fatal but unexpected overflow, only warn */
2283 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2284 ksm_max_page_sharing);
2285
7b6ba2c7 2286 rmap_item->head = stable_node;
31dbd01f 2287 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2288 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2289
7b6ba2c7
HD
2290 if (rmap_item->hlist.next)
2291 ksm_pages_sharing++;
2292 else
2293 ksm_pages_shared++;
76093853 2294
2295 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2296}
2297
2298/*
81464e30
HD
2299 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2300 * if not, compare checksum to previous and if it's the same, see if page can
2301 * be inserted into the unstable tree, or merged with a page already there and
2302 * both transferred to the stable tree.
31dbd01f
IE
2303 *
2304 * @page: the page that we are searching identical page to.
2305 * @rmap_item: the reverse mapping into the virtual address of this page
2306 */
21fbd591 2307static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2308{
4b22927f 2309 struct mm_struct *mm = rmap_item->mm;
21fbd591 2310 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2311 struct page *tree_page = NULL;
21fbd591 2312 struct ksm_stable_node *stable_node;
8dd3557a 2313 struct page *kpage;
31dbd01f
IE
2314 unsigned int checksum;
2315 int err;
2c653d0e 2316 bool max_page_sharing_bypass = false;
31dbd01f 2317
4146d2d6
HD
2318 stable_node = page_stable_node(page);
2319 if (stable_node) {
2320 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2321 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2322 NUMA(stable_node->nid)) {
2323 stable_node_dup_del(stable_node);
4146d2d6
HD
2324 stable_node->head = &migrate_nodes;
2325 list_add(&stable_node->list, stable_node->head);
2326 }
2327 if (stable_node->head != &migrate_nodes &&
2328 rmap_item->head == stable_node)
2329 return;
2c653d0e
AA
2330 /*
2331 * If it's a KSM fork, allow it to go over the sharing limit
2332 * without warnings.
2333 */
2334 if (!is_page_sharing_candidate(stable_node))
2335 max_page_sharing_bypass = true;
4146d2d6 2336 }
31dbd01f
IE
2337
2338 /* We first start with searching the page inside the stable tree */
62b61f61 2339 kpage = stable_tree_search(page);
4146d2d6
HD
2340 if (kpage == page && rmap_item->head == stable_node) {
2341 put_page(kpage);
2342 return;
2343 }
2344
2345 remove_rmap_item_from_tree(rmap_item);
2346
62b61f61 2347 if (kpage) {
2cee57d1
YS
2348 if (PTR_ERR(kpage) == -EBUSY)
2349 return;
2350
08beca44 2351 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2352 if (!err) {
2353 /*
2354 * The page was successfully merged:
2355 * add its rmap_item to the stable tree.
2356 */
5ad64688 2357 lock_page(kpage);
2c653d0e
AA
2358 stable_tree_append(rmap_item, page_stable_node(kpage),
2359 max_page_sharing_bypass);
5ad64688 2360 unlock_page(kpage);
31dbd01f 2361 }
8dd3557a 2362 put_page(kpage);
31dbd01f
IE
2363 return;
2364 }
2365
2366 /*
4035c07a
HD
2367 * If the hash value of the page has changed from the last time
2368 * we calculated it, this page is changing frequently: therefore we
2369 * don't want to insert it in the unstable tree, and we don't want
2370 * to waste our time searching for something identical to it there.
31dbd01f
IE
2371 */
2372 checksum = calc_checksum(page);
2373 if (rmap_item->oldchecksum != checksum) {
2374 rmap_item->oldchecksum = checksum;
2375 return;
2376 }
2377
e86c59b1
CI
2378 /*
2379 * Same checksum as an empty page. We attempt to merge it with the
2380 * appropriate zero page if the user enabled this via sysfs.
2381 */
2382 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2383 struct vm_area_struct *vma;
2384
d8ed45c5 2385 mmap_read_lock(mm);
4b22927f 2386 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2387 if (vma) {
2388 err = try_to_merge_one_page(vma, page,
2389 ZERO_PAGE(rmap_item->address));
739100c8
SR
2390 trace_ksm_merge_one_page(
2391 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2392 rmap_item, mm, err);
56df70a6
MS
2393 } else {
2394 /*
2395 * If the vma is out of date, we do not need to
2396 * continue.
2397 */
2398 err = 0;
2399 }
d8ed45c5 2400 mmap_read_unlock(mm);
e86c59b1
CI
2401 /*
2402 * In case of failure, the page was not really empty, so we
2403 * need to continue. Otherwise we're done.
2404 */
2405 if (!err)
2406 return;
2407 }
8dd3557a
HD
2408 tree_rmap_item =
2409 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2410 if (tree_rmap_item) {
77da2ba0
CI
2411 bool split;
2412
8dd3557a
HD
2413 kpage = try_to_merge_two_pages(rmap_item, page,
2414 tree_rmap_item, tree_page);
77da2ba0
CI
2415 /*
2416 * If both pages we tried to merge belong to the same compound
2417 * page, then we actually ended up increasing the reference
2418 * count of the same compound page twice, and split_huge_page
2419 * failed.
2420 * Here we set a flag if that happened, and we use it later to
2421 * try split_huge_page again. Since we call put_page right
2422 * afterwards, the reference count will be correct and
2423 * split_huge_page should succeed.
2424 */
2425 split = PageTransCompound(page)
2426 && compound_head(page) == compound_head(tree_page);
8dd3557a 2427 put_page(tree_page);
8dd3557a 2428 if (kpage) {
bc56620b
HD
2429 /*
2430 * The pages were successfully merged: insert new
2431 * node in the stable tree and add both rmap_items.
2432 */
5ad64688 2433 lock_page(kpage);
79899cce 2434 stable_node = stable_tree_insert(page_folio(kpage));
7b6ba2c7 2435 if (stable_node) {
2c653d0e
AA
2436 stable_tree_append(tree_rmap_item, stable_node,
2437 false);
2438 stable_tree_append(rmap_item, stable_node,
2439 false);
7b6ba2c7 2440 }
5ad64688 2441 unlock_page(kpage);
7b6ba2c7 2442
31dbd01f
IE
2443 /*
2444 * If we fail to insert the page into the stable tree,
2445 * we will have 2 virtual addresses that are pointing
2446 * to a ksm page left outside the stable tree,
2447 * in which case we need to break_cow on both.
2448 */
7b6ba2c7 2449 if (!stable_node) {
8dd3557a
HD
2450 break_cow(tree_rmap_item);
2451 break_cow(rmap_item);
31dbd01f 2452 }
77da2ba0
CI
2453 } else if (split) {
2454 /*
2455 * We are here if we tried to merge two pages and
2456 * failed because they both belonged to the same
2457 * compound page. We will split the page now, but no
2458 * merging will take place.
2459 * We do not want to add the cost of a full lock; if
2460 * the page is locked, it is better to skip it and
2461 * perhaps try again later.
2462 */
2463 if (!trylock_page(page))
2464 return;
2465 split_huge_page(page);
2466 unlock_page(page);
31dbd01f 2467 }
31dbd01f
IE
2468 }
2469}
2470
21fbd591
QZ
2471static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2472 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2473 unsigned long addr)
2474{
21fbd591 2475 struct ksm_rmap_item *rmap_item;
31dbd01f 2476
6514d511
HD
2477 while (*rmap_list) {
2478 rmap_item = *rmap_list;
93d17715 2479 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2480 return rmap_item;
31dbd01f
IE
2481 if (rmap_item->address > addr)
2482 break;
6514d511 2483 *rmap_list = rmap_item->rmap_list;
31dbd01f 2484 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2485 free_rmap_item(rmap_item);
2486 }
2487
2488 rmap_item = alloc_rmap_item();
2489 if (rmap_item) {
2490 /* It has already been zeroed */
58730ab6 2491 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2492 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2493 rmap_item->address = addr;
6514d511
HD
2494 rmap_item->rmap_list = *rmap_list;
2495 *rmap_list = rmap_item;
31dbd01f
IE
2496 }
2497 return rmap_item;
2498}
2499
5e924ff5
SR
2500/*
2501 * Calculate skip age for the ksm page age. The age determines how often
2502 * de-duplicating has already been tried unsuccessfully. If the age is
2503 * smaller, the scanning of this page is skipped for less scans.
2504 *
2505 * @age: rmap_item age of page
2506 */
2507static unsigned int skip_age(rmap_age_t age)
2508{
2509 if (age <= 3)
2510 return 1;
2511 if (age <= 5)
2512 return 2;
2513 if (age <= 8)
2514 return 4;
2515
2516 return 8;
2517}
2518
2519/*
2520 * Determines if a page should be skipped for the current scan.
2521 *
2522 * @page: page to check
2523 * @rmap_item: associated rmap_item of page
2524 */
2525static bool should_skip_rmap_item(struct page *page,
2526 struct ksm_rmap_item *rmap_item)
2527{
2528 rmap_age_t age;
2529
2530 if (!ksm_smart_scan)
2531 return false;
2532
2533 /*
2534 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2535 * will essentially ignore them, but we still have to process them
2536 * properly.
2537 */
2538 if (PageKsm(page))
2539 return false;
2540
2541 age = rmap_item->age;
2542 if (age != U8_MAX)
2543 rmap_item->age++;
2544
2545 /*
2546 * Smaller ages are not skipped, they need to get a chance to go
2547 * through the different phases of the KSM merging.
2548 */
2549 if (age < 3)
2550 return false;
2551
2552 /*
2553 * Are we still allowed to skip? If not, then don't skip it
2554 * and determine how much more often we are allowed to skip next.
2555 */
2556 if (!rmap_item->remaining_skips) {
2557 rmap_item->remaining_skips = skip_age(age);
2558 return false;
2559 }
2560
2561 /* Skip this page */
e5a68991 2562 ksm_pages_skipped++;
5e924ff5
SR
2563 rmap_item->remaining_skips--;
2564 remove_rmap_item_from_tree(rmap_item);
2565 return true;
2566}
2567
21fbd591 2568static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2569{
2570 struct mm_struct *mm;
58730ab6
QZ
2571 struct ksm_mm_slot *mm_slot;
2572 struct mm_slot *slot;
31dbd01f 2573 struct vm_area_struct *vma;
21fbd591 2574 struct ksm_rmap_item *rmap_item;
a5f18ba0 2575 struct vma_iterator vmi;
90bd6fd3 2576 int nid;
31dbd01f 2577
58730ab6 2578 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2579 return NULL;
2580
58730ab6
QZ
2581 mm_slot = ksm_scan.mm_slot;
2582 if (mm_slot == &ksm_mm_head) {
4e5fa4f5 2583 advisor_start_scan();
739100c8
SR
2584 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2585
2919bfd0 2586 /*
1fec6890
MWO
2587 * A number of pages can hang around indefinitely in per-cpu
2588 * LRU cache, raised page count preventing write_protect_page
2919bfd0
HD
2589 * from merging them. Though it doesn't really matter much,
2590 * it is puzzling to see some stuck in pages_volatile until
2591 * other activity jostles them out, and they also prevented
2592 * LTP's KSM test from succeeding deterministically; so drain
2593 * them here (here rather than on entry to ksm_do_scan(),
2594 * so we don't IPI too often when pages_to_scan is set low).
2595 */
2596 lru_add_drain_all();
2597
4146d2d6
HD
2598 /*
2599 * Whereas stale stable_nodes on the stable_tree itself
2600 * get pruned in the regular course of stable_tree_search(),
2601 * those moved out to the migrate_nodes list can accumulate:
2602 * so prune them once before each full scan.
2603 */
2604 if (!ksm_merge_across_nodes) {
21fbd591 2605 struct ksm_stable_node *stable_node, *next;
72556a4c 2606 struct folio *folio;
4146d2d6 2607
03640418
GT
2608 list_for_each_entry_safe(stable_node, next,
2609 &migrate_nodes, list) {
72556a4c 2610 folio = ksm_get_folio(stable_node,
85b67b01 2611 KSM_GET_FOLIO_NOLOCK);
72556a4c
AS
2612 if (folio)
2613 folio_put(folio);
4146d2d6
HD
2614 cond_resched();
2615 }
2616 }
2617
ef53d16c 2618 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2619 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2620
2621 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2622 slot = list_entry(mm_slot->slot.mm_node.next,
2623 struct mm_slot, mm_node);
2624 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2625 ksm_scan.mm_slot = mm_slot;
31dbd01f 2626 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2627 /*
2628 * Although we tested list_empty() above, a racing __ksm_exit
2629 * of the last mm on the list may have removed it since then.
2630 */
58730ab6 2631 if (mm_slot == &ksm_mm_head)
2b472611 2632 return NULL;
31dbd01f
IE
2633next_mm:
2634 ksm_scan.address = 0;
58730ab6 2635 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2636 }
2637
58730ab6 2638 slot = &mm_slot->slot;
31dbd01f 2639 mm = slot->mm;
a5f18ba0
MWO
2640 vma_iter_init(&vmi, mm, ksm_scan.address);
2641
d8ed45c5 2642 mmap_read_lock(mm);
9ba69294 2643 if (ksm_test_exit(mm))
a5f18ba0 2644 goto no_vmas;
9ba69294 2645
a5f18ba0 2646 for_each_vma(vmi, vma) {
31dbd01f
IE
2647 if (!(vma->vm_flags & VM_MERGEABLE))
2648 continue;
2649 if (ksm_scan.address < vma->vm_start)
2650 ksm_scan.address = vma->vm_start;
2651 if (!vma->anon_vma)
2652 ksm_scan.address = vma->vm_end;
2653
2654 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2655 if (ksm_test_exit(mm))
2656 break;
31dbd01f 2657 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2658 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2659 ksm_scan.address += PAGE_SIZE;
2660 cond_resched();
2661 continue;
2662 }
f7091ed6
HW
2663 if (is_zone_device_page(*page))
2664 goto next_page;
f765f540 2665 if (PageAnon(*page)) {
31dbd01f
IE
2666 flush_anon_page(vma, *page, ksm_scan.address);
2667 flush_dcache_page(*page);
58730ab6 2668 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2669 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2670 if (rmap_item) {
6514d511
HD
2671 ksm_scan.rmap_list =
2672 &rmap_item->rmap_list;
5e924ff5
SR
2673
2674 if (should_skip_rmap_item(*page, rmap_item))
2675 goto next_page;
2676
31dbd01f
IE
2677 ksm_scan.address += PAGE_SIZE;
2678 } else
2679 put_page(*page);
d8ed45c5 2680 mmap_read_unlock(mm);
31dbd01f
IE
2681 return rmap_item;
2682 }
f7091ed6 2683next_page:
21ae5b01 2684 put_page(*page);
31dbd01f
IE
2685 ksm_scan.address += PAGE_SIZE;
2686 cond_resched();
2687 }
2688 }
2689
9ba69294 2690 if (ksm_test_exit(mm)) {
a5f18ba0 2691no_vmas:
9ba69294 2692 ksm_scan.address = 0;
58730ab6 2693 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2694 }
31dbd01f
IE
2695 /*
2696 * Nuke all the rmap_items that are above this current rmap:
2697 * because there were no VM_MERGEABLE vmas with such addresses.
2698 */
420be4ed 2699 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2700
2701 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2702 slot = list_entry(mm_slot->slot.mm_node.next,
2703 struct mm_slot, mm_node);
2704 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2705 if (ksm_scan.address == 0) {
2706 /*
c1e8d7c6 2707 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2708 * throughout, and found no VM_MERGEABLE: so do the same as
2709 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2710 * This applies either when cleaning up after __ksm_exit
2711 * (but beware: we can reach here even before __ksm_exit),
2712 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2713 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2714 */
58730ab6
QZ
2715 hash_del(&mm_slot->slot.hash);
2716 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2717 spin_unlock(&ksm_mmlist_lock);
2718
58730ab6 2719 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2720 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 2721 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
d8ed45c5 2722 mmap_read_unlock(mm);
9ba69294
HD
2723 mmdrop(mm);
2724 } else {
d8ed45c5 2725 mmap_read_unlock(mm);
7496fea9 2726 /*
3e4e28c5 2727 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2728 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2729 * already have been freed under us by __ksm_exit()
2730 * because the "mm_slot" is still hashed and
2731 * ksm_scan.mm_slot doesn't point to it anymore.
2732 */
2733 spin_unlock(&ksm_mmlist_lock);
cd551f97 2734 }
31dbd01f
IE
2735
2736 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2737 mm_slot = ksm_scan.mm_slot;
2738 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2739 goto next_mm;
2740
4e5fa4f5
SR
2741 advisor_stop_scan();
2742
739100c8 2743 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
31dbd01f
IE
2744 ksm_scan.seqnr++;
2745 return NULL;
2746}
2747
2748/**
2749 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2750 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2751 */
2752static void ksm_do_scan(unsigned int scan_npages)
2753{
21fbd591 2754 struct ksm_rmap_item *rmap_item;
3f649ab7 2755 struct page *page;
31dbd01f 2756
730cdc2c 2757 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2758 cond_resched();
2759 rmap_item = scan_get_next_rmap_item(&page);
2760 if (!rmap_item)
2761 return;
4146d2d6 2762 cmp_and_merge_page(page, rmap_item);
31dbd01f 2763 put_page(page);
730cdc2c 2764 ksm_pages_scanned++;
31dbd01f
IE
2765 }
2766}
2767
6e158384
HD
2768static int ksmd_should_run(void)
2769{
58730ab6 2770 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2771}
2772
31dbd01f
IE
2773static int ksm_scan_thread(void *nothing)
2774{
fcf9a0ef
KT
2775 unsigned int sleep_ms;
2776
878aee7d 2777 set_freezable();
339aa624 2778 set_user_nice(current, 5);
31dbd01f
IE
2779
2780 while (!kthread_should_stop()) {
6e158384 2781 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2782 wait_while_offlining();
6e158384 2783 if (ksmd_should_run())
31dbd01f 2784 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2785 mutex_unlock(&ksm_thread_mutex);
2786
2787 if (ksmd_should_run()) {
fcf9a0ef 2788 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
f55afd95 2789 wait_event_freezable_timeout(ksm_iter_wait,
fcf9a0ef
KT
2790 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2791 msecs_to_jiffies(sleep_ms));
31dbd01f 2792 } else {
878aee7d 2793 wait_event_freezable(ksm_thread_wait,
6e158384 2794 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2795 }
2796 }
2797 return 0;
2798}
2799
d7597f59
SR
2800static void __ksm_add_vma(struct vm_area_struct *vma)
2801{
2802 unsigned long vm_flags = vma->vm_flags;
2803
2804 if (vm_flags & VM_MERGEABLE)
2805 return;
2806
2807 if (vma_ksm_compatible(vma))
2808 vm_flags_set(vma, VM_MERGEABLE);
2809}
2810
24139c07
DH
2811static int __ksm_del_vma(struct vm_area_struct *vma)
2812{
2813 int err;
2814
2815 if (!(vma->vm_flags & VM_MERGEABLE))
2816 return 0;
2817
2818 if (vma->anon_vma) {
49b06385 2819 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
24139c07
DH
2820 if (err)
2821 return err;
2822 }
2823
2824 vm_flags_clear(vma, VM_MERGEABLE);
2825 return 0;
2826}
d7597f59
SR
2827/**
2828 * ksm_add_vma - Mark vma as mergeable if compatible
2829 *
2830 * @vma: Pointer to vma
2831 */
2832void ksm_add_vma(struct vm_area_struct *vma)
2833{
2834 struct mm_struct *mm = vma->vm_mm;
2835
2836 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2837 __ksm_add_vma(vma);
2838}
2839
2840static void ksm_add_vmas(struct mm_struct *mm)
2841{
2842 struct vm_area_struct *vma;
2843
2844 VMA_ITERATOR(vmi, mm, 0);
2845 for_each_vma(vmi, vma)
2846 __ksm_add_vma(vma);
2847}
2848
24139c07
DH
2849static int ksm_del_vmas(struct mm_struct *mm)
2850{
2851 struct vm_area_struct *vma;
2852 int err;
2853
2854 VMA_ITERATOR(vmi, mm, 0);
2855 for_each_vma(vmi, vma) {
2856 err = __ksm_del_vma(vma);
2857 if (err)
2858 return err;
2859 }
2860 return 0;
2861}
2862
d7597f59
SR
2863/**
2864 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2865 * compatible VMA's
2866 *
2867 * @mm: Pointer to mm
2868 *
2869 * Returns 0 on success, otherwise error code
2870 */
2871int ksm_enable_merge_any(struct mm_struct *mm)
2872{
2873 int err;
2874
2875 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2876 return 0;
2877
2878 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2879 err = __ksm_enter(mm);
2880 if (err)
2881 return err;
2882 }
2883
2884 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2885 ksm_add_vmas(mm);
2886
2887 return 0;
2888}
2889
24139c07
DH
2890/**
2891 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2892 * previously enabled via ksm_enable_merge_any().
2893 *
2894 * Disabling merging implies unmerging any merged pages, like setting
2895 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2896 * merging on all compatible VMA's remains enabled.
2897 *
2898 * @mm: Pointer to mm
2899 *
2900 * Returns 0 on success, otherwise error code
2901 */
2902int ksm_disable_merge_any(struct mm_struct *mm)
2903{
2904 int err;
2905
2906 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2907 return 0;
2908
2909 err = ksm_del_vmas(mm);
2910 if (err) {
2911 ksm_add_vmas(mm);
2912 return err;
2913 }
2914
2915 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2916 return 0;
2917}
2918
2c281f54
DH
2919int ksm_disable(struct mm_struct *mm)
2920{
2921 mmap_assert_write_locked(mm);
2922
2923 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2924 return 0;
2925 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2926 return ksm_disable_merge_any(mm);
2927 return ksm_del_vmas(mm);
2928}
2929
f8af4da3
HD
2930int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2931 unsigned long end, int advice, unsigned long *vm_flags)
2932{
2933 struct mm_struct *mm = vma->vm_mm;
d952b791 2934 int err;
f8af4da3
HD
2935
2936 switch (advice) {
2937 case MADV_MERGEABLE:
d7597f59 2938 if (vma->vm_flags & VM_MERGEABLE)
e1fb4a08 2939 return 0;
d7597f59 2940 if (!vma_ksm_compatible(vma))
74a04967 2941 return 0;
cc2383ec 2942
d952b791
HD
2943 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2944 err = __ksm_enter(mm);
2945 if (err)
2946 return err;
2947 }
f8af4da3
HD
2948
2949 *vm_flags |= VM_MERGEABLE;
2950 break;
2951
2952 case MADV_UNMERGEABLE:
2953 if (!(*vm_flags & VM_MERGEABLE))
2954 return 0; /* just ignore the advice */
2955
d952b791 2956 if (vma->anon_vma) {
49b06385 2957 err = unmerge_ksm_pages(vma, start, end, true);
d952b791
HD
2958 if (err)
2959 return err;
2960 }
f8af4da3
HD
2961
2962 *vm_flags &= ~VM_MERGEABLE;
2963 break;
2964 }
2965
2966 return 0;
2967}
33cf1707 2968EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2969
2970int __ksm_enter(struct mm_struct *mm)
2971{
21fbd591 2972 struct ksm_mm_slot *mm_slot;
58730ab6 2973 struct mm_slot *slot;
6e158384
HD
2974 int needs_wakeup;
2975
58730ab6 2976 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2977 if (!mm_slot)
2978 return -ENOMEM;
2979
58730ab6
QZ
2980 slot = &mm_slot->slot;
2981
6e158384 2982 /* Check ksm_run too? Would need tighter locking */
58730ab6 2983 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2984
31dbd01f 2985 spin_lock(&ksm_mmlist_lock);
58730ab6 2986 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2987 /*
cbf86cfe
HD
2988 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2989 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2990 * down a little; when fork is followed by immediate exec, we don't
2991 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2992 *
2993 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2994 * scanning cursor, otherwise KSM pages in newly forked mms will be
2995 * missed: then we might as well insert at the end of the list.
31dbd01f 2996 */
cbf86cfe 2997 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2998 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2999 else
58730ab6 3000 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
3001 spin_unlock(&ksm_mmlist_lock);
3002
f8af4da3 3003 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 3004 mmgrab(mm);
6e158384
HD
3005
3006 if (needs_wakeup)
3007 wake_up_interruptible(&ksm_thread_wait);
3008
739100c8 3009 trace_ksm_enter(mm);
f8af4da3
HD
3010 return 0;
3011}
3012
1c2fb7a4 3013void __ksm_exit(struct mm_struct *mm)
f8af4da3 3014{
21fbd591 3015 struct ksm_mm_slot *mm_slot;
58730ab6 3016 struct mm_slot *slot;
9ba69294 3017 int easy_to_free = 0;
cd551f97 3018
31dbd01f 3019 /*
9ba69294
HD
3020 * This process is exiting: if it's straightforward (as is the
3021 * case when ksmd was never running), free mm_slot immediately.
3022 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 3023 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
3024 * are freed, and leave the mm_slot on the list for ksmd to free.
3025 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 3026 */
9ba69294 3027
cd551f97 3028 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
3029 slot = mm_slot_lookup(mm_slots_hash, mm);
3030 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 3031 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 3032 if (!mm_slot->rmap_list) {
58730ab6
QZ
3033 hash_del(&slot->hash);
3034 list_del(&slot->mm_node);
9ba69294
HD
3035 easy_to_free = 1;
3036 } else {
58730ab6
QZ
3037 list_move(&slot->mm_node,
3038 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 3039 }
cd551f97 3040 }
cd551f97
HD
3041 spin_unlock(&ksm_mmlist_lock);
3042
9ba69294 3043 if (easy_to_free) {
58730ab6 3044 mm_slot_free(mm_slot_cache, mm_slot);
d7597f59 3045 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294
HD
3046 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3047 mmdrop(mm);
3048 } else if (mm_slot) {
d8ed45c5
ML
3049 mmap_write_lock(mm);
3050 mmap_write_unlock(mm);
9ba69294 3051 }
739100c8
SR
3052
3053 trace_ksm_exit(mm);
31dbd01f
IE
3054}
3055
96db66d9 3056struct folio *ksm_might_need_to_copy(struct folio *folio,
1486fb50 3057 struct vm_area_struct *vma, unsigned long addr)
5ad64688 3058{
96db66d9 3059 struct page *page = folio_page(folio, 0);
e05b3453 3060 struct anon_vma *anon_vma = folio_anon_vma(folio);
1486fb50 3061 struct folio *new_folio;
5ad64688 3062
1486fb50 3063 if (folio_test_large(folio))
96db66d9 3064 return folio;
1486fb50
KW
3065
3066 if (folio_test_ksm(folio)) {
3067 if (folio_stable_node(folio) &&
cbf86cfe 3068 !(ksm_run & KSM_RUN_UNMERGE))
96db66d9 3069 return folio; /* no need to copy it */
cbf86cfe 3070 } else if (!anon_vma) {
96db66d9 3071 return folio; /* no need to copy it */
1486fb50 3072 } else if (folio->index == linear_page_index(vma, addr) &&
e1c63e11 3073 anon_vma->root == vma->anon_vma->root) {
96db66d9 3074 return folio; /* still no need to copy it */
cbf86cfe 3075 }
f985fc32
ML
3076 if (PageHWPoison(page))
3077 return ERR_PTR(-EHWPOISON);
1486fb50 3078 if (!folio_test_uptodate(folio))
96db66d9 3079 return folio; /* let do_swap_page report the error */
cbf86cfe 3080
1486fb50
KW
3081 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3082 if (new_folio &&
3083 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3084 folio_put(new_folio);
3085 new_folio = NULL;
62fdb163 3086 }
1486fb50 3087 if (new_folio) {
96db66d9
MWO
3088 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3089 addr, vma)) {
1486fb50 3090 folio_put(new_folio);
96db66d9 3091 memory_failure_queue(folio_pfn(folio), 0);
6b970599
KW
3092 return ERR_PTR(-EHWPOISON);
3093 }
1486fb50
KW
3094 folio_set_dirty(new_folio);
3095 __folio_mark_uptodate(new_folio);
3096 __folio_set_locked(new_folio);
4d45c3af
YY
3097#ifdef CONFIG_SWAP
3098 count_vm_event(KSM_SWPIN_COPY);
3099#endif
5ad64688
HD
3100 }
3101
96db66d9 3102 return new_folio;
5ad64688
HD
3103}
3104
6d4675e6 3105void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 3106{
21fbd591
QZ
3107 struct ksm_stable_node *stable_node;
3108 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
3109 int search_new_forks = 0;
3110
2f031c6f 3111 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
3112
3113 /*
3114 * Rely on the page lock to protect against concurrent modifications
3115 * to that page's node of the stable tree.
3116 */
2f031c6f 3117 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 3118
2f031c6f 3119 stable_node = folio_stable_node(folio);
e9995ef9 3120 if (!stable_node)
1df631ae 3121 return;
e9995ef9 3122again:
b67bfe0d 3123 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 3124 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 3125 struct anon_vma_chain *vmac;
e9995ef9
HD
3126 struct vm_area_struct *vma;
3127
ad12695f 3128 cond_resched();
6d4675e6
MK
3129 if (!anon_vma_trylock_read(anon_vma)) {
3130 if (rwc->try_lock) {
3131 rwc->contended = true;
3132 return;
3133 }
3134 anon_vma_lock_read(anon_vma);
3135 }
bf181b9f
ML
3136 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3137 0, ULONG_MAX) {
1105a2fc
JH
3138 unsigned long addr;
3139
ad12695f 3140 cond_resched();
5beb4930 3141 vma = vmac->vma;
1105a2fc
JH
3142
3143 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 3144 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
3145
3146 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
3147 continue;
3148 /*
3149 * Initially we examine only the vma which covers this
3150 * rmap_item; but later, if there is still work to do,
3151 * we examine covering vmas in other mms: in case they
3152 * were forked from the original since ksmd passed.
3153 */
3154 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3155 continue;
3156
0dd1c7bb
JK
3157 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3158 continue;
3159
2f031c6f 3160 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 3161 anon_vma_unlock_read(anon_vma);
1df631ae 3162 return;
e9995ef9 3163 }
2f031c6f 3164 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 3165 anon_vma_unlock_read(anon_vma);
1df631ae 3166 return;
0dd1c7bb 3167 }
e9995ef9 3168 }
b6b19f25 3169 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
3170 }
3171 if (!search_new_forks++)
3172 goto again;
e9995ef9
HD
3173}
3174
4248d008
LX
3175#ifdef CONFIG_MEMORY_FAILURE
3176/*
3177 * Collect processes when the error hit an ksm page.
3178 */
b650e1d2
MWO
3179void collect_procs_ksm(struct folio *folio, struct page *page,
3180 struct list_head *to_kill, int force_early)
4248d008
LX
3181{
3182 struct ksm_stable_node *stable_node;
3183 struct ksm_rmap_item *rmap_item;
4248d008
LX
3184 struct vm_area_struct *vma;
3185 struct task_struct *tsk;
3186
3187 stable_node = folio_stable_node(folio);
3188 if (!stable_node)
3189 return;
3190 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3191 struct anon_vma *av = rmap_item->anon_vma;
3192
3193 anon_vma_lock_read(av);
d256d1cd 3194 rcu_read_lock();
4248d008
LX
3195 for_each_process(tsk) {
3196 struct anon_vma_chain *vmac;
3197 unsigned long addr;
3198 struct task_struct *t =
3199 task_early_kill(tsk, force_early);
3200 if (!t)
3201 continue;
3202 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3203 ULONG_MAX)
3204 {
3205 vma = vmac->vma;
3206 if (vma->vm_mm == t->mm) {
3207 addr = rmap_item->address & PAGE_MASK;
3208 add_to_kill_ksm(t, page, vma, to_kill,
3209 addr);
3210 }
3211 }
3212 }
d256d1cd 3213 rcu_read_unlock();
4248d008
LX
3214 anon_vma_unlock_read(av);
3215 }
3216}
3217#endif
3218
52629506 3219#ifdef CONFIG_MIGRATION
19138349 3220void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 3221{
21fbd591 3222 struct ksm_stable_node *stable_node;
e9995ef9 3223
19138349
MWO
3224 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3225 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3226 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 3227
19138349 3228 stable_node = folio_stable_node(folio);
e9995ef9 3229 if (stable_node) {
19138349
MWO
3230 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3231 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 3232 /*
19138349 3233 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 3234 * to make sure that the new stable_node->kpfn is visible
79899cce 3235 * to ksm_get_folio() before it can see that folio->mapping
19138349 3236 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
3237 */
3238 smp_wmb();
b8b0ff24 3239 folio_set_stable_node(folio, NULL);
e9995ef9
HD
3240 }
3241}
3242#endif /* CONFIG_MIGRATION */
3243
62b61f61 3244#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
3245static void wait_while_offlining(void)
3246{
3247 while (ksm_run & KSM_RUN_OFFLINE) {
3248 mutex_unlock(&ksm_thread_mutex);
3249 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 3250 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
3251 mutex_lock(&ksm_thread_mutex);
3252 }
3253}
3254
21fbd591 3255static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3256 unsigned long start_pfn,
3257 unsigned long end_pfn)
3258{
3259 if (stable_node->kpfn >= start_pfn &&
3260 stable_node->kpfn < end_pfn) {
3261 /*
79899cce 3262 * Don't ksm_get_folio, page has already gone:
2c653d0e
AA
3263 * which is why we keep kpfn instead of page*
3264 */
3265 remove_node_from_stable_tree(stable_node);
3266 return true;
3267 }
3268 return false;
3269}
3270
21fbd591 3271static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3272 unsigned long start_pfn,
3273 unsigned long end_pfn,
3274 struct rb_root *root)
3275{
21fbd591 3276 struct ksm_stable_node *dup;
2c653d0e
AA
3277 struct hlist_node *hlist_safe;
3278
3279 if (!is_stable_node_chain(stable_node)) {
3280 VM_BUG_ON(is_stable_node_dup(stable_node));
3281 return stable_node_dup_remove_range(stable_node, start_pfn,
3282 end_pfn);
3283 }
3284
3285 hlist_for_each_entry_safe(dup, hlist_safe,
3286 &stable_node->hlist, hlist_dup) {
3287 VM_BUG_ON(!is_stable_node_dup(dup));
3288 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3289 }
3290 if (hlist_empty(&stable_node->hlist)) {
3291 free_stable_node_chain(stable_node, root);
3292 return true; /* notify caller that tree was rebalanced */
3293 } else
3294 return false;
3295}
3296
ee0ea59c
HD
3297static void ksm_check_stable_tree(unsigned long start_pfn,
3298 unsigned long end_pfn)
62b61f61 3299{
21fbd591 3300 struct ksm_stable_node *stable_node, *next;
62b61f61 3301 struct rb_node *node;
90bd6fd3 3302 int nid;
62b61f61 3303
ef53d16c
HD
3304 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3305 node = rb_first(root_stable_tree + nid);
ee0ea59c 3306 while (node) {
21fbd591 3307 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
3308 if (stable_node_chain_remove_range(stable_node,
3309 start_pfn, end_pfn,
3310 root_stable_tree +
3311 nid))
ef53d16c 3312 node = rb_first(root_stable_tree + nid);
2c653d0e 3313 else
ee0ea59c
HD
3314 node = rb_next(node);
3315 cond_resched();
90bd6fd3 3316 }
ee0ea59c 3317 }
03640418 3318 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
3319 if (stable_node->kpfn >= start_pfn &&
3320 stable_node->kpfn < end_pfn)
3321 remove_node_from_stable_tree(stable_node);
3322 cond_resched();
3323 }
62b61f61
HD
3324}
3325
3326static int ksm_memory_callback(struct notifier_block *self,
3327 unsigned long action, void *arg)
3328{
3329 struct memory_notify *mn = arg;
62b61f61
HD
3330
3331 switch (action) {
3332 case MEM_GOING_OFFLINE:
3333 /*
ef4d43a8
HD
3334 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3335 * and remove_all_stable_nodes() while memory is going offline:
3336 * it is unsafe for them to touch the stable tree at this time.
3337 * But unmerge_ksm_pages(), rmap lookups and other entry points
3338 * which do not need the ksm_thread_mutex are all safe.
62b61f61 3339 */
ef4d43a8
HD
3340 mutex_lock(&ksm_thread_mutex);
3341 ksm_run |= KSM_RUN_OFFLINE;
3342 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
3343 break;
3344
3345 case MEM_OFFLINE:
3346 /*
3347 * Most of the work is done by page migration; but there might
3348 * be a few stable_nodes left over, still pointing to struct
ee0ea59c 3349 * pages which have been offlined: prune those from the tree,
79899cce 3350 * otherwise ksm_get_folio() might later try to access a
ee0ea59c 3351 * non-existent struct page.
62b61f61 3352 */
ee0ea59c
HD
3353 ksm_check_stable_tree(mn->start_pfn,
3354 mn->start_pfn + mn->nr_pages);
e4a9bc58 3355 fallthrough;
62b61f61 3356 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
3357 mutex_lock(&ksm_thread_mutex);
3358 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 3359 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
3360
3361 smp_mb(); /* wake_up_bit advises this */
3362 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
3363 break;
3364 }
3365 return NOTIFY_OK;
3366}
ef4d43a8
HD
3367#else
3368static void wait_while_offlining(void)
3369{
3370}
62b61f61
HD
3371#endif /* CONFIG_MEMORY_HOTREMOVE */
3372
d21077fb
SR
3373#ifdef CONFIG_PROC_FS
3374long ksm_process_profit(struct mm_struct *mm)
3375{
c2dc78b8 3376 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
d21077fb
SR
3377 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3378}
3379#endif /* CONFIG_PROC_FS */
3380
2ffd8679
HD
3381#ifdef CONFIG_SYSFS
3382/*
3383 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3384 */
3385
31dbd01f
IE
3386#define KSM_ATTR_RO(_name) \
3387 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3388#define KSM_ATTR(_name) \
1bad2e5c 3389 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
3390
3391static ssize_t sleep_millisecs_show(struct kobject *kobj,
3392 struct kobj_attribute *attr, char *buf)
3393{
ae7a927d 3394 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
3395}
3396
3397static ssize_t sleep_millisecs_store(struct kobject *kobj,
3398 struct kobj_attribute *attr,
3399 const char *buf, size_t count)
3400{
dfefd226 3401 unsigned int msecs;
31dbd01f
IE
3402 int err;
3403
dfefd226
AD
3404 err = kstrtouint(buf, 10, &msecs);
3405 if (err)
31dbd01f
IE
3406 return -EINVAL;
3407
3408 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 3409 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
3410
3411 return count;
3412}
3413KSM_ATTR(sleep_millisecs);
3414
3415static ssize_t pages_to_scan_show(struct kobject *kobj,
3416 struct kobj_attribute *attr, char *buf)
3417{
ae7a927d 3418 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
3419}
3420
3421static ssize_t pages_to_scan_store(struct kobject *kobj,
3422 struct kobj_attribute *attr,
3423 const char *buf, size_t count)
3424{
dfefd226 3425 unsigned int nr_pages;
31dbd01f 3426 int err;
31dbd01f 3427
4e5fa4f5
SR
3428 if (ksm_advisor != KSM_ADVISOR_NONE)
3429 return -EINVAL;
3430
dfefd226
AD
3431 err = kstrtouint(buf, 10, &nr_pages);
3432 if (err)
31dbd01f
IE
3433 return -EINVAL;
3434
3435 ksm_thread_pages_to_scan = nr_pages;
3436
3437 return count;
3438}
3439KSM_ATTR(pages_to_scan);
3440
3441static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3442 char *buf)
3443{
ae7a927d 3444 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
3445}
3446
3447static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3448 const char *buf, size_t count)
3449{
dfefd226 3450 unsigned int flags;
31dbd01f 3451 int err;
31dbd01f 3452
dfefd226
AD
3453 err = kstrtouint(buf, 10, &flags);
3454 if (err)
31dbd01f
IE
3455 return -EINVAL;
3456 if (flags > KSM_RUN_UNMERGE)
3457 return -EINVAL;
3458
3459 /*
3460 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3461 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
3462 * breaking COW to free the pages_shared (but leaves mm_slots
3463 * on the list for when ksmd may be set running again).
31dbd01f
IE
3464 */
3465
3466 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3467 wait_while_offlining();
31dbd01f
IE
3468 if (ksm_run != flags) {
3469 ksm_run = flags;
d952b791 3470 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 3471 set_current_oom_origin();
d952b791 3472 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 3473 clear_current_oom_origin();
d952b791
HD
3474 if (err) {
3475 ksm_run = KSM_RUN_STOP;
3476 count = err;
3477 }
3478 }
31dbd01f
IE
3479 }
3480 mutex_unlock(&ksm_thread_mutex);
3481
3482 if (flags & KSM_RUN_MERGE)
3483 wake_up_interruptible(&ksm_thread_wait);
3484
3485 return count;
3486}
3487KSM_ATTR(run);
3488
90bd6fd3
PH
3489#ifdef CONFIG_NUMA
3490static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 3491 struct kobj_attribute *attr, char *buf)
90bd6fd3 3492{
ae7a927d 3493 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
3494}
3495
3496static ssize_t merge_across_nodes_store(struct kobject *kobj,
3497 struct kobj_attribute *attr,
3498 const char *buf, size_t count)
3499{
3500 int err;
3501 unsigned long knob;
3502
3503 err = kstrtoul(buf, 10, &knob);
3504 if (err)
3505 return err;
3506 if (knob > 1)
3507 return -EINVAL;
3508
3509 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3510 wait_while_offlining();
90bd6fd3 3511 if (ksm_merge_across_nodes != knob) {
cbf86cfe 3512 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 3513 err = -EBUSY;
ef53d16c
HD
3514 else if (root_stable_tree == one_stable_tree) {
3515 struct rb_root *buf;
3516 /*
3517 * This is the first time that we switch away from the
3518 * default of merging across nodes: must now allocate
3519 * a buffer to hold as many roots as may be needed.
3520 * Allocate stable and unstable together:
3521 * MAXSMP NODES_SHIFT 10 will use 16kB.
3522 */
bafe1e14
JP
3523 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3524 GFP_KERNEL);
ef53d16c
HD
3525 /* Let us assume that RB_ROOT is NULL is zero */
3526 if (!buf)
3527 err = -ENOMEM;
3528 else {
3529 root_stable_tree = buf;
3530 root_unstable_tree = buf + nr_node_ids;
3531 /* Stable tree is empty but not the unstable */
3532 root_unstable_tree[0] = one_unstable_tree[0];
3533 }
3534 }
3535 if (!err) {
90bd6fd3 3536 ksm_merge_across_nodes = knob;
ef53d16c
HD
3537 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3538 }
90bd6fd3
PH
3539 }
3540 mutex_unlock(&ksm_thread_mutex);
3541
3542 return err ? err : count;
3543}
3544KSM_ATTR(merge_across_nodes);
3545#endif
3546
e86c59b1 3547static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3548 struct kobj_attribute *attr, char *buf)
e86c59b1 3549{
ae7a927d 3550 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3551}
3552static ssize_t use_zero_pages_store(struct kobject *kobj,
3553 struct kobj_attribute *attr,
3554 const char *buf, size_t count)
3555{
3556 int err;
3557 bool value;
3558
3559 err = kstrtobool(buf, &value);
3560 if (err)
3561 return -EINVAL;
3562
3563 ksm_use_zero_pages = value;
3564
3565 return count;
3566}
3567KSM_ATTR(use_zero_pages);
3568
2c653d0e
AA
3569static ssize_t max_page_sharing_show(struct kobject *kobj,
3570 struct kobj_attribute *attr, char *buf)
3571{
ae7a927d 3572 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3573}
3574
3575static ssize_t max_page_sharing_store(struct kobject *kobj,
3576 struct kobj_attribute *attr,
3577 const char *buf, size_t count)
3578{
3579 int err;
3580 int knob;
3581
3582 err = kstrtoint(buf, 10, &knob);
3583 if (err)
3584 return err;
3585 /*
3586 * When a KSM page is created it is shared by 2 mappings. This
3587 * being a signed comparison, it implicitly verifies it's not
3588 * negative.
3589 */
3590 if (knob < 2)
3591 return -EINVAL;
3592
3593 if (READ_ONCE(ksm_max_page_sharing) == knob)
3594 return count;
3595
3596 mutex_lock(&ksm_thread_mutex);
3597 wait_while_offlining();
3598 if (ksm_max_page_sharing != knob) {
3599 if (ksm_pages_shared || remove_all_stable_nodes())
3600 err = -EBUSY;
3601 else
3602 ksm_max_page_sharing = knob;
3603 }
3604 mutex_unlock(&ksm_thread_mutex);
3605
3606 return err ? err : count;
3607}
3608KSM_ATTR(max_page_sharing);
3609
b348b5fe
SR
3610static ssize_t pages_scanned_show(struct kobject *kobj,
3611 struct kobj_attribute *attr, char *buf)
3612{
3613 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3614}
3615KSM_ATTR_RO(pages_scanned);
3616
b4028260
HD
3617static ssize_t pages_shared_show(struct kobject *kobj,
3618 struct kobj_attribute *attr, char *buf)
3619{
ae7a927d 3620 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3621}
3622KSM_ATTR_RO(pages_shared);
3623
3624static ssize_t pages_sharing_show(struct kobject *kobj,
3625 struct kobj_attribute *attr, char *buf)
3626{
ae7a927d 3627 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3628}
3629KSM_ATTR_RO(pages_sharing);
3630
473b0ce4
HD
3631static ssize_t pages_unshared_show(struct kobject *kobj,
3632 struct kobj_attribute *attr, char *buf)
3633{
ae7a927d 3634 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3635}
3636KSM_ATTR_RO(pages_unshared);
3637
3638static ssize_t pages_volatile_show(struct kobject *kobj,
3639 struct kobj_attribute *attr, char *buf)
3640{
3641 long ksm_pages_volatile;
3642
3643 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3644 - ksm_pages_sharing - ksm_pages_unshared;
3645 /*
3646 * It was not worth any locking to calculate that statistic,
3647 * but it might therefore sometimes be negative: conceal that.
3648 */
3649 if (ksm_pages_volatile < 0)
3650 ksm_pages_volatile = 0;
ae7a927d 3651 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3652}
3653KSM_ATTR_RO(pages_volatile);
3654
e5a68991
SR
3655static ssize_t pages_skipped_show(struct kobject *kobj,
3656 struct kobj_attribute *attr, char *buf)
3657{
3658 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3659}
3660KSM_ATTR_RO(pages_skipped);
3661
e2942062 3662static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3663 struct kobj_attribute *attr, char *buf)
3664{
c2dc78b8 3665 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
e2942062 3666}
3667KSM_ATTR_RO(ksm_zero_pages);
3668
d21077fb
SR
3669static ssize_t general_profit_show(struct kobject *kobj,
3670 struct kobj_attribute *attr, char *buf)
3671{
3672 long general_profit;
3673
c2dc78b8 3674 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
d21077fb
SR
3675 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3676
3677 return sysfs_emit(buf, "%ld\n", general_profit);
3678}
3679KSM_ATTR_RO(general_profit);
3680
2c653d0e
AA
3681static ssize_t stable_node_dups_show(struct kobject *kobj,
3682 struct kobj_attribute *attr, char *buf)
3683{
ae7a927d 3684 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3685}
3686KSM_ATTR_RO(stable_node_dups);
3687
3688static ssize_t stable_node_chains_show(struct kobject *kobj,
3689 struct kobj_attribute *attr, char *buf)
3690{
ae7a927d 3691 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3692}
3693KSM_ATTR_RO(stable_node_chains);
3694
3695static ssize_t
3696stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3697 struct kobj_attribute *attr,
3698 char *buf)
3699{
ae7a927d 3700 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3701}
3702
3703static ssize_t
3704stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3705 struct kobj_attribute *attr,
3706 const char *buf, size_t count)
3707{
584ff0df 3708 unsigned int msecs;
2c653d0e
AA
3709 int err;
3710
584ff0df
ZB
3711 err = kstrtouint(buf, 10, &msecs);
3712 if (err)
2c653d0e
AA
3713 return -EINVAL;
3714
3715 ksm_stable_node_chains_prune_millisecs = msecs;
3716
3717 return count;
3718}
3719KSM_ATTR(stable_node_chains_prune_millisecs);
3720
473b0ce4
HD
3721static ssize_t full_scans_show(struct kobject *kobj,
3722 struct kobj_attribute *attr, char *buf)
3723{
ae7a927d 3724 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3725}
3726KSM_ATTR_RO(full_scans);
3727
5e924ff5
SR
3728static ssize_t smart_scan_show(struct kobject *kobj,
3729 struct kobj_attribute *attr, char *buf)
3730{
3731 return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3732}
3733
3734static ssize_t smart_scan_store(struct kobject *kobj,
3735 struct kobj_attribute *attr,
3736 const char *buf, size_t count)
3737{
3738 int err;
3739 bool value;
3740
3741 err = kstrtobool(buf, &value);
3742 if (err)
3743 return -EINVAL;
3744
3745 ksm_smart_scan = value;
3746 return count;
3747}
3748KSM_ATTR(smart_scan);
3749
66790e9a
SR
3750static ssize_t advisor_mode_show(struct kobject *kobj,
3751 struct kobj_attribute *attr, char *buf)
3752{
3753 const char *output;
3754
3755 if (ksm_advisor == KSM_ADVISOR_NONE)
3756 output = "[none] scan-time";
3757 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3758 output = "none [scan-time]";
3759
3760 return sysfs_emit(buf, "%s\n", output);
3761}
3762
3763static ssize_t advisor_mode_store(struct kobject *kobj,
3764 struct kobj_attribute *attr, const char *buf,
3765 size_t count)
3766{
3767 enum ksm_advisor_type curr_advisor = ksm_advisor;
3768
3769 if (sysfs_streq("scan-time", buf))
3770 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3771 else if (sysfs_streq("none", buf))
3772 ksm_advisor = KSM_ADVISOR_NONE;
3773 else
3774 return -EINVAL;
3775
3776 /* Set advisor default values */
3777 if (curr_advisor != ksm_advisor)
3778 set_advisor_defaults();
3779
3780 return count;
3781}
3782KSM_ATTR(advisor_mode);
3783
3784static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3785 struct kobj_attribute *attr, char *buf)
3786{
3787 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3788}
3789
3790static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3791 struct kobj_attribute *attr,
3792 const char *buf, size_t count)
3793{
3794 int err;
3795 unsigned long value;
3796
3797 err = kstrtoul(buf, 10, &value);
3798 if (err)
3799 return -EINVAL;
3800
3801 ksm_advisor_max_cpu = value;
3802 return count;
3803}
3804KSM_ATTR(advisor_max_cpu);
3805
3806static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3807 struct kobj_attribute *attr, char *buf)
3808{
3809 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3810}
3811
3812static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3813 struct kobj_attribute *attr,
3814 const char *buf, size_t count)
3815{
3816 int err;
3817 unsigned long value;
3818
3819 err = kstrtoul(buf, 10, &value);
3820 if (err)
3821 return -EINVAL;
3822
3823 ksm_advisor_min_pages_to_scan = value;
3824 return count;
3825}
3826KSM_ATTR(advisor_min_pages_to_scan);
3827
3828static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3829 struct kobj_attribute *attr, char *buf)
3830{
3831 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3832}
3833
3834static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3835 struct kobj_attribute *attr,
3836 const char *buf, size_t count)
3837{
3838 int err;
3839 unsigned long value;
3840
3841 err = kstrtoul(buf, 10, &value);
3842 if (err)
3843 return -EINVAL;
3844
3845 ksm_advisor_max_pages_to_scan = value;
3846 return count;
3847}
3848KSM_ATTR(advisor_max_pages_to_scan);
3849
3850static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3851 struct kobj_attribute *attr, char *buf)
3852{
3853 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3854}
3855
3856static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3857 struct kobj_attribute *attr,
3858 const char *buf, size_t count)
3859{
3860 int err;
3861 unsigned long value;
3862
3863 err = kstrtoul(buf, 10, &value);
3864 if (err)
3865 return -EINVAL;
3866 if (value < 1)
3867 return -EINVAL;
3868
3869 ksm_advisor_target_scan_time = value;
3870 return count;
3871}
3872KSM_ATTR(advisor_target_scan_time);
3873
31dbd01f
IE
3874static struct attribute *ksm_attrs[] = {
3875 &sleep_millisecs_attr.attr,
3876 &pages_to_scan_attr.attr,
3877 &run_attr.attr,
b348b5fe 3878 &pages_scanned_attr.attr,
b4028260
HD
3879 &pages_shared_attr.attr,
3880 &pages_sharing_attr.attr,
473b0ce4
HD
3881 &pages_unshared_attr.attr,
3882 &pages_volatile_attr.attr,
e5a68991 3883 &pages_skipped_attr.attr,
e2942062 3884 &ksm_zero_pages_attr.attr,
473b0ce4 3885 &full_scans_attr.attr,
90bd6fd3
PH
3886#ifdef CONFIG_NUMA
3887 &merge_across_nodes_attr.attr,
3888#endif
2c653d0e
AA
3889 &max_page_sharing_attr.attr,
3890 &stable_node_chains_attr.attr,
3891 &stable_node_dups_attr.attr,
3892 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3893 &use_zero_pages_attr.attr,
d21077fb 3894 &general_profit_attr.attr,
5e924ff5 3895 &smart_scan_attr.attr,
66790e9a
SR
3896 &advisor_mode_attr.attr,
3897 &advisor_max_cpu_attr.attr,
3898 &advisor_min_pages_to_scan_attr.attr,
3899 &advisor_max_pages_to_scan_attr.attr,
3900 &advisor_target_scan_time_attr.attr,
31dbd01f
IE
3901 NULL,
3902};
3903
f907c26a 3904static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3905 .attrs = ksm_attrs,
3906 .name = "ksm",
3907};
2ffd8679 3908#endif /* CONFIG_SYSFS */
31dbd01f
IE
3909
3910static int __init ksm_init(void)
3911{
3912 struct task_struct *ksm_thread;
3913 int err;
3914
e86c59b1
CI
3915 /* The correct value depends on page size and endianness */
3916 zero_checksum = calc_checksum(ZERO_PAGE(0));
3917 /* Default to false for backwards compatibility */
3918 ksm_use_zero_pages = false;
3919
31dbd01f
IE
3920 err = ksm_slab_init();
3921 if (err)
3922 goto out;
3923
31dbd01f
IE
3924 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3925 if (IS_ERR(ksm_thread)) {
25acde31 3926 pr_err("ksm: creating kthread failed\n");
31dbd01f 3927 err = PTR_ERR(ksm_thread);
d9f8984c 3928 goto out_free;
31dbd01f
IE
3929 }
3930
2ffd8679 3931#ifdef CONFIG_SYSFS
31dbd01f
IE
3932 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3933 if (err) {
25acde31 3934 pr_err("ksm: register sysfs failed\n");
2ffd8679 3935 kthread_stop(ksm_thread);
d9f8984c 3936 goto out_free;
31dbd01f 3937 }
c73602ad
HD
3938#else
3939 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3940
2ffd8679 3941#endif /* CONFIG_SYSFS */
31dbd01f 3942
62b61f61 3943#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3944 /* There is no significance to this priority 100 */
1eeaa4fd 3945 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3946#endif
31dbd01f
IE
3947 return 0;
3948
d9f8984c 3949out_free:
31dbd01f
IE
3950 ksm_slab_free();
3951out:
3952 return err;
f8af4da3 3953}
a64fb3cd 3954subsys_initcall(ksm_init);
This page took 1.84396 seconds and 4 git commands to generate.