]>
Commit | Line | Data |
---|---|---|
7d9884b9 | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
81afee37 | 2 | Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996 |
8918bce0 | 3 | Free Software Foundation, Inc. |
dd3b648e RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
99a7de40 | 7 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 8 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
dd3b648e | 11 | |
99a7de40 | 12 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
99a7de40 | 18 | along with this program; if not, write to the Free Software |
6c9638b4 | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
dd3b648e | 20 | |
dd3b648e | 21 | #include "defs.h" |
2b576293 | 22 | #include "gdb_string.h" |
dd3b648e | 23 | #include "symtab.h" |
1ab3bf1b | 24 | #include "gdbtypes.h" |
dd3b648e RP |
25 | #include "value.h" |
26 | #include "gdbcore.h" | |
27 | #include "frame.h" | |
28 | #include "command.h" | |
f266e564 | 29 | #include "gdbcmd.h" |
ac88ca20 | 30 | #include "target.h" |
acc4efde | 31 | #include "language.h" |
b52cac6b | 32 | #include "scm-lang.h" |
8050a57b | 33 | #include "demangle.h" |
dd3b648e | 34 | |
1ab3bf1b JG |
35 | /* Local function prototypes. */ |
36 | ||
849d0896 PS |
37 | static value_ptr value_headof PARAMS ((value_ptr, struct type *, |
38 | struct type *)); | |
1ab3bf1b | 39 | |
82a2edfb | 40 | static void show_values PARAMS ((char *, int)); |
1ab3bf1b | 41 | |
82a2edfb | 42 | static void show_convenience PARAMS ((char *, int)); |
71b16efa | 43 | |
b607efe7 FF |
44 | static int vb_match PARAMS ((struct type *, int, struct type *)); |
45 | ||
dd3b648e RP |
46 | /* The value-history records all the values printed |
47 | by print commands during this session. Each chunk | |
48 | records 60 consecutive values. The first chunk on | |
49 | the chain records the most recent values. | |
50 | The total number of values is in value_history_count. */ | |
51 | ||
52 | #define VALUE_HISTORY_CHUNK 60 | |
53 | ||
54 | struct value_history_chunk | |
55 | { | |
56 | struct value_history_chunk *next; | |
82a2edfb | 57 | value_ptr values[VALUE_HISTORY_CHUNK]; |
dd3b648e RP |
58 | }; |
59 | ||
60 | /* Chain of chunks now in use. */ | |
61 | ||
62 | static struct value_history_chunk *value_history_chain; | |
63 | ||
64 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
65 | \f |
66 | /* List of all value objects currently allocated | |
67 | (except for those released by calls to release_value) | |
68 | This is so they can be freed after each command. */ | |
69 | ||
82a2edfb | 70 | static value_ptr all_values; |
dd3b648e RP |
71 | |
72 | /* Allocate a value that has the correct length for type TYPE. */ | |
73 | ||
82a2edfb | 74 | value_ptr |
dd3b648e RP |
75 | allocate_value (type) |
76 | struct type *type; | |
77 | { | |
82a2edfb | 78 | register value_ptr val; |
5e548861 | 79 | struct type *atype = check_typedef (type); |
dd3b648e | 80 | |
5e548861 | 81 | val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype)); |
dd3b648e RP |
82 | VALUE_NEXT (val) = all_values; |
83 | all_values = val; | |
84 | VALUE_TYPE (val) = type; | |
85 | VALUE_LVAL (val) = not_lval; | |
86 | VALUE_ADDRESS (val) = 0; | |
87 | VALUE_FRAME (val) = 0; | |
88 | VALUE_OFFSET (val) = 0; | |
89 | VALUE_BITPOS (val) = 0; | |
90 | VALUE_BITSIZE (val) = 0; | |
dd3b648e RP |
91 | VALUE_REGNO (val) = -1; |
92 | VALUE_LAZY (val) = 0; | |
93 | VALUE_OPTIMIZED_OUT (val) = 0; | |
6c310da8 | 94 | VALUE_BFD_SECTION (val) = NULL; |
30974778 | 95 | val->modifiable = 1; |
dd3b648e RP |
96 | return val; |
97 | } | |
98 | ||
99 | /* Allocate a value that has the correct length | |
100 | for COUNT repetitions type TYPE. */ | |
101 | ||
82a2edfb | 102 | value_ptr |
dd3b648e RP |
103 | allocate_repeat_value (type, count) |
104 | struct type *type; | |
105 | int count; | |
106 | { | |
398f584f PB |
107 | int low_bound = current_language->string_lower_bound; /* ??? */ |
108 | /* FIXME-type-allocation: need a way to free this type when we are | |
109 | done with it. */ | |
110 | struct type *range_type | |
111 | = create_range_type ((struct type *) NULL, builtin_type_int, | |
112 | low_bound, count + low_bound - 1); | |
113 | /* FIXME-type-allocation: need a way to free this type when we are | |
114 | done with it. */ | |
115 | return allocate_value (create_array_type ((struct type *) NULL, | |
116 | type, range_type)); | |
dd3b648e RP |
117 | } |
118 | ||
fcb887ff JK |
119 | /* Return a mark in the value chain. All values allocated after the |
120 | mark is obtained (except for those released) are subject to being freed | |
121 | if a subsequent value_free_to_mark is passed the mark. */ | |
82a2edfb | 122 | value_ptr |
fcb887ff JK |
123 | value_mark () |
124 | { | |
125 | return all_values; | |
126 | } | |
127 | ||
128 | /* Free all values allocated since MARK was obtained by value_mark | |
129 | (except for those released). */ | |
130 | void | |
131 | value_free_to_mark (mark) | |
82a2edfb | 132 | value_ptr mark; |
fcb887ff | 133 | { |
82a2edfb | 134 | value_ptr val, next; |
fcb887ff JK |
135 | |
136 | for (val = all_values; val && val != mark; val = next) | |
137 | { | |
138 | next = VALUE_NEXT (val); | |
139 | value_free (val); | |
140 | } | |
141 | all_values = val; | |
142 | } | |
143 | ||
dd3b648e RP |
144 | /* Free all the values that have been allocated (except for those released). |
145 | Called after each command, successful or not. */ | |
146 | ||
147 | void | |
148 | free_all_values () | |
149 | { | |
82a2edfb | 150 | register value_ptr val, next; |
dd3b648e RP |
151 | |
152 | for (val = all_values; val; val = next) | |
153 | { | |
154 | next = VALUE_NEXT (val); | |
155 | value_free (val); | |
156 | } | |
157 | ||
158 | all_values = 0; | |
159 | } | |
160 | ||
161 | /* Remove VAL from the chain all_values | |
162 | so it will not be freed automatically. */ | |
163 | ||
164 | void | |
165 | release_value (val) | |
82a2edfb | 166 | register value_ptr val; |
dd3b648e | 167 | { |
82a2edfb | 168 | register value_ptr v; |
dd3b648e RP |
169 | |
170 | if (all_values == val) | |
171 | { | |
172 | all_values = val->next; | |
173 | return; | |
174 | } | |
175 | ||
176 | for (v = all_values; v; v = v->next) | |
177 | { | |
178 | if (v->next == val) | |
179 | { | |
180 | v->next = val->next; | |
181 | break; | |
182 | } | |
183 | } | |
184 | } | |
185 | ||
999dd04b JL |
186 | /* Release all values up to mark */ |
187 | value_ptr | |
188 | value_release_to_mark (mark) | |
189 | value_ptr mark; | |
190 | { | |
191 | value_ptr val, next; | |
192 | ||
193 | for (val = next = all_values; next; next = VALUE_NEXT (next)) | |
194 | if (VALUE_NEXT (next) == mark) | |
195 | { | |
196 | all_values = VALUE_NEXT (next); | |
197 | VALUE_NEXT (next) = 0; | |
198 | return val; | |
199 | } | |
200 | all_values = 0; | |
201 | return val; | |
202 | } | |
203 | ||
dd3b648e RP |
204 | /* Return a copy of the value ARG. |
205 | It contains the same contents, for same memory address, | |
206 | but it's a different block of storage. */ | |
207 | ||
82a2edfb | 208 | value_ptr |
dd3b648e | 209 | value_copy (arg) |
82a2edfb | 210 | value_ptr arg; |
dd3b648e | 211 | { |
dd3b648e | 212 | register struct type *type = VALUE_TYPE (arg); |
398f584f | 213 | register value_ptr val = allocate_value (type); |
dd3b648e RP |
214 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
215 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
216 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
217 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
218 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
5e711e7f | 219 | VALUE_FRAME (val) = VALUE_FRAME (arg); |
dd3b648e RP |
220 | VALUE_REGNO (val) = VALUE_REGNO (arg); |
221 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
5e711e7f | 222 | VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg); |
6c310da8 | 223 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg); |
30974778 | 224 | val->modifiable = arg->modifiable; |
dd3b648e RP |
225 | if (!VALUE_LAZY (val)) |
226 | { | |
51b57ded | 227 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), |
398f584f | 228 | TYPE_LENGTH (VALUE_TYPE (arg))); |
dd3b648e RP |
229 | } |
230 | return val; | |
231 | } | |
232 | \f | |
233 | /* Access to the value history. */ | |
234 | ||
235 | /* Record a new value in the value history. | |
236 | Returns the absolute history index of the entry. | |
237 | Result of -1 indicates the value was not saved; otherwise it is the | |
238 | value history index of this new item. */ | |
239 | ||
240 | int | |
241 | record_latest_value (val) | |
82a2edfb | 242 | value_ptr val; |
dd3b648e RP |
243 | { |
244 | int i; | |
245 | ||
26a859ec PS |
246 | /* We don't want this value to have anything to do with the inferior anymore. |
247 | In particular, "set $1 = 50" should not affect the variable from which | |
248 | the value was taken, and fast watchpoints should be able to assume that | |
249 | a value on the value history never changes. */ | |
250 | if (VALUE_LAZY (val)) | |
251 | value_fetch_lazy (val); | |
252 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
253 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
254 | but the current contents of that location. c'est la vie... */ | |
255 | val->modifiable = 0; | |
256 | release_value (val); | |
257 | ||
dd3b648e RP |
258 | /* Here we treat value_history_count as origin-zero |
259 | and applying to the value being stored now. */ | |
260 | ||
261 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
262 | if (i == 0) | |
263 | { | |
264 | register struct value_history_chunk *new | |
265 | = (struct value_history_chunk *) | |
266 | xmalloc (sizeof (struct value_history_chunk)); | |
4ed3a9ea | 267 | memset (new->values, 0, sizeof new->values); |
dd3b648e RP |
268 | new->next = value_history_chain; |
269 | value_history_chain = new; | |
270 | } | |
271 | ||
272 | value_history_chain->values[i] = val; | |
4abc83b9 | 273 | |
dd3b648e RP |
274 | /* Now we regard value_history_count as origin-one |
275 | and applying to the value just stored. */ | |
276 | ||
277 | return ++value_history_count; | |
278 | } | |
279 | ||
280 | /* Return a copy of the value in the history with sequence number NUM. */ | |
281 | ||
82a2edfb | 282 | value_ptr |
dd3b648e RP |
283 | access_value_history (num) |
284 | int num; | |
285 | { | |
286 | register struct value_history_chunk *chunk; | |
287 | register int i; | |
288 | register int absnum = num; | |
289 | ||
290 | if (absnum <= 0) | |
291 | absnum += value_history_count; | |
292 | ||
293 | if (absnum <= 0) | |
294 | { | |
295 | if (num == 0) | |
296 | error ("The history is empty."); | |
297 | else if (num == 1) | |
298 | error ("There is only one value in the history."); | |
299 | else | |
300 | error ("History does not go back to $$%d.", -num); | |
301 | } | |
302 | if (absnum > value_history_count) | |
303 | error ("History has not yet reached $%d.", absnum); | |
304 | ||
305 | absnum--; | |
306 | ||
307 | /* Now absnum is always absolute and origin zero. */ | |
308 | ||
309 | chunk = value_history_chain; | |
310 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
311 | i > 0; i--) | |
312 | chunk = chunk->next; | |
313 | ||
314 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
315 | } | |
316 | ||
317 | /* Clear the value history entirely. | |
318 | Must be done when new symbol tables are loaded, | |
319 | because the type pointers become invalid. */ | |
320 | ||
321 | void | |
322 | clear_value_history () | |
323 | { | |
324 | register struct value_history_chunk *next; | |
325 | register int i; | |
82a2edfb | 326 | register value_ptr val; |
dd3b648e RP |
327 | |
328 | while (value_history_chain) | |
329 | { | |
330 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
a8a69e63 | 331 | if ((val = value_history_chain->values[i]) != NULL) |
be772100 | 332 | free ((PTR)val); |
dd3b648e | 333 | next = value_history_chain->next; |
be772100 | 334 | free ((PTR)value_history_chain); |
dd3b648e RP |
335 | value_history_chain = next; |
336 | } | |
337 | value_history_count = 0; | |
338 | } | |
339 | ||
340 | static void | |
f266e564 | 341 | show_values (num_exp, from_tty) |
dd3b648e RP |
342 | char *num_exp; |
343 | int from_tty; | |
344 | { | |
345 | register int i; | |
82a2edfb | 346 | register value_ptr val; |
dd3b648e RP |
347 | static int num = 1; |
348 | ||
349 | if (num_exp) | |
350 | { | |
46c28185 RP |
351 | /* "info history +" should print from the stored position. |
352 | "info history <exp>" should print around value number <exp>. */ | |
353 | if (num_exp[0] != '+' || num_exp[1] != '\0') | |
dd3b648e RP |
354 | num = parse_and_eval_address (num_exp) - 5; |
355 | } | |
356 | else | |
357 | { | |
358 | /* "info history" means print the last 10 values. */ | |
359 | num = value_history_count - 9; | |
360 | } | |
361 | ||
362 | if (num <= 0) | |
363 | num = 1; | |
364 | ||
365 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
366 | { | |
367 | val = access_value_history (i); | |
368 | printf_filtered ("$%d = ", i); | |
199b2450 | 369 | value_print (val, gdb_stdout, 0, Val_pretty_default); |
dd3b648e RP |
370 | printf_filtered ("\n"); |
371 | } | |
372 | ||
373 | /* The next "info history +" should start after what we just printed. */ | |
374 | num += 10; | |
375 | ||
376 | /* Hitting just return after this command should do the same thing as | |
377 | "info history +". If num_exp is null, this is unnecessary, since | |
378 | "info history +" is not useful after "info history". */ | |
379 | if (from_tty && num_exp) | |
380 | { | |
381 | num_exp[0] = '+'; | |
382 | num_exp[1] = '\0'; | |
383 | } | |
384 | } | |
385 | \f | |
386 | /* Internal variables. These are variables within the debugger | |
387 | that hold values assigned by debugger commands. | |
388 | The user refers to them with a '$' prefix | |
389 | that does not appear in the variable names stored internally. */ | |
390 | ||
391 | static struct internalvar *internalvars; | |
392 | ||
393 | /* Look up an internal variable with name NAME. NAME should not | |
394 | normally include a dollar sign. | |
395 | ||
396 | If the specified internal variable does not exist, | |
397 | one is created, with a void value. */ | |
398 | ||
399 | struct internalvar * | |
400 | lookup_internalvar (name) | |
401 | char *name; | |
402 | { | |
403 | register struct internalvar *var; | |
404 | ||
405 | for (var = internalvars; var; var = var->next) | |
2e4964ad | 406 | if (STREQ (var->name, name)) |
dd3b648e RP |
407 | return var; |
408 | ||
409 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
58ae87f6 | 410 | var->name = concat (name, NULL); |
dd3b648e RP |
411 | var->value = allocate_value (builtin_type_void); |
412 | release_value (var->value); | |
413 | var->next = internalvars; | |
414 | internalvars = var; | |
415 | return var; | |
416 | } | |
417 | ||
82a2edfb | 418 | value_ptr |
dd3b648e RP |
419 | value_of_internalvar (var) |
420 | struct internalvar *var; | |
421 | { | |
82a2edfb | 422 | register value_ptr val; |
dd3b648e RP |
423 | |
424 | #ifdef IS_TRAPPED_INTERNALVAR | |
425 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
426 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
427 | #endif | |
428 | ||
429 | val = value_copy (var->value); | |
430 | if (VALUE_LAZY (val)) | |
431 | value_fetch_lazy (val); | |
432 | VALUE_LVAL (val) = lval_internalvar; | |
433 | VALUE_INTERNALVAR (val) = var; | |
434 | return val; | |
435 | } | |
436 | ||
437 | void | |
438 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
439 | struct internalvar *var; | |
440 | int offset, bitpos, bitsize; | |
82a2edfb | 441 | value_ptr newval; |
dd3b648e RP |
442 | { |
443 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
444 | ||
445 | #ifdef IS_TRAPPED_INTERNALVAR | |
446 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
447 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
448 | #endif | |
449 | ||
450 | if (bitsize) | |
58e49e21 | 451 | modify_field (addr, value_as_long (newval), |
dd3b648e RP |
452 | bitpos, bitsize); |
453 | else | |
4ed3a9ea | 454 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); |
dd3b648e RP |
455 | } |
456 | ||
457 | void | |
458 | set_internalvar (var, val) | |
459 | struct internalvar *var; | |
82a2edfb | 460 | value_ptr val; |
dd3b648e | 461 | { |
51f83933 JK |
462 | value_ptr newval; |
463 | ||
dd3b648e RP |
464 | #ifdef IS_TRAPPED_INTERNALVAR |
465 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
466 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
467 | #endif | |
468 | ||
51f83933 | 469 | newval = value_copy (val); |
ade01652 | 470 | newval->modifiable = 1; |
51f83933 | 471 | |
6fab5bef JG |
472 | /* Force the value to be fetched from the target now, to avoid problems |
473 | later when this internalvar is referenced and the target is gone or | |
474 | has changed. */ | |
51f83933 JK |
475 | if (VALUE_LAZY (newval)) |
476 | value_fetch_lazy (newval); | |
477 | ||
478 | /* Begin code which must not call error(). If var->value points to | |
479 | something free'd, an error() obviously leaves a dangling pointer. | |
480 | But we also get a danling pointer if var->value points to | |
481 | something in the value chain (i.e., before release_value is | |
482 | called), because after the error free_all_values will get called before | |
483 | long. */ | |
484 | free ((PTR)var->value); | |
485 | var->value = newval; | |
486 | release_value (newval); | |
487 | /* End code which must not call error(). */ | |
dd3b648e RP |
488 | } |
489 | ||
490 | char * | |
491 | internalvar_name (var) | |
492 | struct internalvar *var; | |
493 | { | |
494 | return var->name; | |
495 | } | |
496 | ||
497 | /* Free all internalvars. Done when new symtabs are loaded, | |
498 | because that makes the values invalid. */ | |
499 | ||
500 | void | |
501 | clear_internalvars () | |
502 | { | |
503 | register struct internalvar *var; | |
504 | ||
505 | while (internalvars) | |
506 | { | |
507 | var = internalvars; | |
508 | internalvars = var->next; | |
be772100 JG |
509 | free ((PTR)var->name); |
510 | free ((PTR)var->value); | |
511 | free ((PTR)var); | |
dd3b648e RP |
512 | } |
513 | } | |
514 | ||
515 | static void | |
ac88ca20 JG |
516 | show_convenience (ignore, from_tty) |
517 | char *ignore; | |
518 | int from_tty; | |
dd3b648e RP |
519 | { |
520 | register struct internalvar *var; | |
521 | int varseen = 0; | |
522 | ||
523 | for (var = internalvars; var; var = var->next) | |
524 | { | |
525 | #ifdef IS_TRAPPED_INTERNALVAR | |
526 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
527 | continue; | |
528 | #endif | |
529 | if (!varseen) | |
530 | { | |
dd3b648e RP |
531 | varseen = 1; |
532 | } | |
afe4ca15 | 533 | printf_filtered ("$%s = ", var->name); |
199b2450 | 534 | value_print (var->value, gdb_stdout, 0, Val_pretty_default); |
afe4ca15 | 535 | printf_filtered ("\n"); |
dd3b648e RP |
536 | } |
537 | if (!varseen) | |
199b2450 | 538 | printf_unfiltered ("No debugger convenience variables now defined.\n\ |
dd3b648e RP |
539 | Convenience variables have names starting with \"$\";\n\ |
540 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
541 | } | |
542 | \f | |
543 | /* Extract a value as a C number (either long or double). | |
544 | Knows how to convert fixed values to double, or | |
545 | floating values to long. | |
546 | Does not deallocate the value. */ | |
547 | ||
548 | LONGEST | |
549 | value_as_long (val) | |
82a2edfb | 550 | register value_ptr val; |
dd3b648e RP |
551 | { |
552 | /* This coerces arrays and functions, which is necessary (e.g. | |
553 | in disassemble_command). It also dereferences references, which | |
554 | I suspect is the most logical thing to do. */ | |
533bda77 | 555 | COERCE_ARRAY (val); |
dd3b648e RP |
556 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); |
557 | } | |
558 | ||
aa220473 | 559 | DOUBLEST |
dd3b648e | 560 | value_as_double (val) |
82a2edfb | 561 | register value_ptr val; |
dd3b648e | 562 | { |
aa220473 | 563 | DOUBLEST foo; |
dd3b648e RP |
564 | int inv; |
565 | ||
566 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
567 | if (inv) | |
568 | error ("Invalid floating value found in program."); | |
569 | return foo; | |
570 | } | |
e1ce8aa5 JK |
571 | /* Extract a value as a C pointer. |
572 | Does not deallocate the value. */ | |
573 | CORE_ADDR | |
574 | value_as_pointer (val) | |
82a2edfb | 575 | value_ptr val; |
e1ce8aa5 | 576 | { |
2bff8e38 JK |
577 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
578 | whether we want this to be true eventually. */ | |
b2ccb6a4 JK |
579 | #if 0 |
580 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
581 | non-address (e.g. argument to "signal", "info break", etc.), or | |
582 | for pointers to char, in which the low bits *are* significant. */ | |
ae0ea72e | 583 | return ADDR_BITS_REMOVE(value_as_long (val)); |
b2ccb6a4 JK |
584 | #else |
585 | return value_as_long (val); | |
586 | #endif | |
e1ce8aa5 | 587 | } |
dd3b648e RP |
588 | \f |
589 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
590 | as a long, or as a double, assuming the raw data is described | |
591 | by type TYPE. Knows how to convert different sizes of values | |
592 | and can convert between fixed and floating point. We don't assume | |
593 | any alignment for the raw data. Return value is in host byte order. | |
594 | ||
595 | If you want functions and arrays to be coerced to pointers, and | |
596 | references to be dereferenced, call value_as_long() instead. | |
597 | ||
598 | C++: It is assumed that the front-end has taken care of | |
599 | all matters concerning pointers to members. A pointer | |
600 | to member which reaches here is considered to be equivalent | |
601 | to an INT (or some size). After all, it is only an offset. */ | |
602 | ||
603 | LONGEST | |
604 | unpack_long (type, valaddr) | |
605 | struct type *type; | |
606 | char *valaddr; | |
607 | { | |
608 | register enum type_code code = TYPE_CODE (type); | |
609 | register int len = TYPE_LENGTH (type); | |
610 | register int nosign = TYPE_UNSIGNED (type); | |
611 | ||
3c02944a PB |
612 | if (current_language->la_language == language_scm |
613 | && is_scmvalue_type (type)) | |
614 | return scm_unpack (type, valaddr, TYPE_CODE_INT); | |
615 | ||
bf5c0d64 | 616 | switch (code) |
dd3b648e | 617 | { |
5e548861 PB |
618 | case TYPE_CODE_TYPEDEF: |
619 | return unpack_long (check_typedef (type), valaddr); | |
bf5c0d64 JK |
620 | case TYPE_CODE_ENUM: |
621 | case TYPE_CODE_BOOL: | |
622 | case TYPE_CODE_INT: | |
623 | case TYPE_CODE_CHAR: | |
b96bc1e4 | 624 | case TYPE_CODE_RANGE: |
bf5c0d64 JK |
625 | if (nosign) |
626 | return extract_unsigned_integer (valaddr, len); | |
dd3b648e | 627 | else |
bf5c0d64 JK |
628 | return extract_signed_integer (valaddr, len); |
629 | ||
630 | case TYPE_CODE_FLT: | |
631 | return extract_floating (valaddr, len); | |
632 | ||
633 | case TYPE_CODE_PTR: | |
634 | case TYPE_CODE_REF: | |
635 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
636 | whether we want this to be true eventually. */ | |
34df79fc | 637 | return extract_address (valaddr, len); |
dd3b648e | 638 | |
bf5c0d64 JK |
639 | case TYPE_CODE_MEMBER: |
640 | error ("not implemented: member types in unpack_long"); | |
641 | ||
642 | default: | |
ca0865db | 643 | error ("Value can't be converted to integer."); |
bf5c0d64 JK |
644 | } |
645 | return 0; /* Placate lint. */ | |
dd3b648e RP |
646 | } |
647 | ||
648 | /* Return a double value from the specified type and address. | |
649 | INVP points to an int which is set to 0 for valid value, | |
650 | 1 for invalid value (bad float format). In either case, | |
651 | the returned double is OK to use. Argument is in target | |
652 | format, result is in host format. */ | |
653 | ||
aa220473 | 654 | DOUBLEST |
dd3b648e RP |
655 | unpack_double (type, valaddr, invp) |
656 | struct type *type; | |
657 | char *valaddr; | |
658 | int *invp; | |
659 | { | |
660 | register enum type_code code = TYPE_CODE (type); | |
661 | register int len = TYPE_LENGTH (type); | |
662 | register int nosign = TYPE_UNSIGNED (type); | |
663 | ||
664 | *invp = 0; /* Assume valid. */ | |
5e548861 | 665 | CHECK_TYPEDEF (type); |
dd3b648e RP |
666 | if (code == TYPE_CODE_FLT) |
667 | { | |
ac57e5ad | 668 | #ifdef INVALID_FLOAT |
dd3b648e RP |
669 | if (INVALID_FLOAT (valaddr, len)) |
670 | { | |
671 | *invp = 1; | |
672 | return 1.234567891011121314; | |
673 | } | |
ac57e5ad | 674 | #endif |
89ce0c8f JK |
675 | return extract_floating (valaddr, len); |
676 | } | |
677 | else if (nosign) | |
678 | { | |
679 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
6c310da8 | 680 | #if !defined (_MSC_VER) || (_MSC_VER > 900) |
119dfbb7 | 681 | return (ULONGEST) unpack_long (type, valaddr); |
28444bf3 DP |
682 | #else |
683 | /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */ | |
684 | return (LONGEST) unpack_long (type, valaddr); | |
28444bf3 | 685 | #endif /* _MSC_VER */ |
89ce0c8f JK |
686 | } |
687 | else | |
688 | { | |
689 | /* Signed -- we are OK with unpack_long. */ | |
690 | return unpack_long (type, valaddr); | |
dd3b648e | 691 | } |
dd3b648e | 692 | } |
e1ce8aa5 JK |
693 | |
694 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
695 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
696 | We don't assume any alignment for the raw data. Return value is in | |
697 | host byte order. | |
698 | ||
699 | If you want functions and arrays to be coerced to pointers, and | |
700 | references to be dereferenced, call value_as_pointer() instead. | |
701 | ||
702 | C++: It is assumed that the front-end has taken care of | |
703 | all matters concerning pointers to members. A pointer | |
704 | to member which reaches here is considered to be equivalent | |
705 | to an INT (or some size). After all, it is only an offset. */ | |
706 | ||
707 | CORE_ADDR | |
708 | unpack_pointer (type, valaddr) | |
709 | struct type *type; | |
710 | char *valaddr; | |
711 | { | |
2bff8e38 JK |
712 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
713 | whether we want this to be true eventually. */ | |
714 | return unpack_long (type, valaddr); | |
e1ce8aa5 | 715 | } |
dd3b648e RP |
716 | \f |
717 | /* Given a value ARG1 (offset by OFFSET bytes) | |
718 | of a struct or union type ARG_TYPE, | |
719 | extract and return the value of one of its fields. | |
720 | FIELDNO says which field. | |
721 | ||
722 | For C++, must also be able to return values from static fields */ | |
723 | ||
82a2edfb | 724 | value_ptr |
dd3b648e | 725 | value_primitive_field (arg1, offset, fieldno, arg_type) |
82a2edfb | 726 | register value_ptr arg1; |
dd3b648e RP |
727 | int offset; |
728 | register int fieldno; | |
729 | register struct type *arg_type; | |
730 | { | |
82a2edfb | 731 | register value_ptr v; |
dd3b648e RP |
732 | register struct type *type; |
733 | ||
5e548861 | 734 | CHECK_TYPEDEF (arg_type); |
dd3b648e RP |
735 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
736 | ||
737 | /* Handle packed fields */ | |
738 | ||
739 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
740 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
741 | { | |
96b2f51c | 742 | v = value_from_longest (type, |
dd3b648e RP |
743 | unpack_field_as_long (arg_type, |
744 | VALUE_CONTENTS (arg1), | |
745 | fieldno)); | |
746 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
747 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
748 | } | |
749 | else | |
750 | { | |
751 | v = allocate_value (type); | |
752 | if (VALUE_LAZY (arg1)) | |
753 | VALUE_LAZY (v) = 1; | |
754 | else | |
4ed3a9ea FF |
755 | memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, |
756 | TYPE_LENGTH (type)); | |
dd3b648e RP |
757 | } |
758 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
759 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
760 | VALUE_LVAL (v) = lval_internalvar_component; | |
761 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
762 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
763 | return v; | |
764 | } | |
765 | ||
766 | /* Given a value ARG1 of a struct or union type, | |
767 | extract and return the value of one of its fields. | |
768 | FIELDNO says which field. | |
769 | ||
770 | For C++, must also be able to return values from static fields */ | |
771 | ||
82a2edfb | 772 | value_ptr |
dd3b648e | 773 | value_field (arg1, fieldno) |
82a2edfb | 774 | register value_ptr arg1; |
dd3b648e RP |
775 | register int fieldno; |
776 | { | |
777 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
778 | } | |
779 | ||
545af6ce PB |
780 | /* Return a non-virtual function as a value. |
781 | F is the list of member functions which contains the desired method. | |
782 | J is an index into F which provides the desired method. */ | |
783 | ||
82a2edfb | 784 | value_ptr |
94603999 | 785 | value_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 786 | value_ptr *arg1p; |
545af6ce PB |
787 | struct fn_field *f; |
788 | int j; | |
94603999 JG |
789 | struct type *type; |
790 | int offset; | |
dd3b648e | 791 | { |
82a2edfb | 792 | register value_ptr v; |
94603999 | 793 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
dd3b648e RP |
794 | struct symbol *sym; |
795 | ||
545af6ce | 796 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), |
dd3b648e | 797 | 0, VAR_NAMESPACE, 0, NULL); |
f1c6dbf6 | 798 | if (! sym) |
82a2edfb | 799 | return NULL; |
f1c6dbf6 KH |
800 | /* |
801 | error ("Internal error: could not find physical method named %s", | |
545af6ce | 802 | TYPE_FN_FIELD_PHYSNAME (f, j)); |
f1c6dbf6 | 803 | */ |
dd3b648e | 804 | |
94603999 | 805 | v = allocate_value (ftype); |
dd3b648e | 806 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); |
94603999 JG |
807 | VALUE_TYPE (v) = ftype; |
808 | ||
809 | if (arg1p) | |
810 | { | |
811 | if (type != VALUE_TYPE (*arg1p)) | |
812 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
813 | value_addr (*arg1p))); | |
814 | ||
dcd8fd8c | 815 | /* Move the `this' pointer according to the offset. |
94603999 | 816 | VALUE_OFFSET (*arg1p) += offset; |
dcd8fd8c | 817 | */ |
94603999 JG |
818 | } |
819 | ||
dd3b648e RP |
820 | return v; |
821 | } | |
822 | ||
823 | /* Return a virtual function as a value. | |
824 | ARG1 is the object which provides the virtual function | |
94603999 | 825 | table pointer. *ARG1P is side-effected in calling this function. |
dd3b648e RP |
826 | F is the list of member functions which contains the desired virtual |
827 | function. | |
e532974c JK |
828 | J is an index into F which provides the desired virtual function. |
829 | ||
830 | TYPE is the type in which F is located. */ | |
82a2edfb | 831 | value_ptr |
94603999 | 832 | value_virtual_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 833 | value_ptr *arg1p; |
dd3b648e RP |
834 | struct fn_field *f; |
835 | int j; | |
e532974c | 836 | struct type *type; |
94603999 | 837 | int offset; |
dd3b648e | 838 | { |
82a2edfb | 839 | value_ptr arg1 = *arg1p; |
5e548861 PB |
840 | struct type *type1 = check_typedef (VALUE_TYPE (arg1)); |
841 | struct type *entry_type; | |
dd3b648e RP |
842 | /* First, get the virtual function table pointer. That comes |
843 | with a strange type, so cast it to type `pointer to long' (which | |
844 | should serve just fine as a function type). Then, index into | |
845 | the table, and convert final value to appropriate function type. */ | |
82a2edfb JK |
846 | value_ptr entry, vfn, vtbl; |
847 | value_ptr vi = value_from_longest (builtin_type_int, | |
848 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); | |
e532974c JK |
849 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
850 | struct type *context; | |
851 | if (fcontext == NULL) | |
852 | /* We don't have an fcontext (e.g. the program was compiled with | |
853 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
854 | This won't work right for multiple inheritance, but at least we | |
855 | should do as well as GDB 3.x did. */ | |
856 | fcontext = TYPE_VPTR_BASETYPE (type); | |
857 | context = lookup_pointer_type (fcontext); | |
858 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
5e548861 PB |
859 | if (TYPE_TARGET_TYPE (context) != type1) |
860 | { | |
861 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
862 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
863 | } | |
dd3b648e | 864 | |
5e548861 | 865 | context = type1; |
e532974c | 866 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
867 | |
868 | /* This type may have been defined before its virtual function table | |
869 | was. If so, fill in the virtual function table entry for the | |
870 | type now. */ | |
871 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 872 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
873 | |
874 | /* The virtual function table is now an array of structures | |
875 | which have the form { int16 offset, delta; void *pfn; }. */ | |
94603999 JG |
876 | vtbl = value_ind (value_primitive_field (arg1, 0, |
877 | TYPE_VPTR_FIELDNO (context), | |
878 | TYPE_VPTR_BASETYPE (context))); | |
dd3b648e RP |
879 | |
880 | /* Index into the virtual function table. This is hard-coded because | |
881 | looking up a field is not cheap, and it may be important to save | |
882 | time, e.g. if the user has set a conditional breakpoint calling | |
883 | a virtual function. */ | |
884 | entry = value_subscript (vtbl, vi); | |
5e548861 | 885 | entry_type = check_typedef (VALUE_TYPE (entry)); |
dd3b648e | 886 | |
5e548861 | 887 | if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT) |
dd3b648e | 888 | { |
36a2283d PB |
889 | /* Move the `this' pointer according to the virtual function table. */ |
890 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)); | |
891 | ||
892 | if (! VALUE_LAZY (arg1)) | |
893 | { | |
894 | VALUE_LAZY (arg1) = 1; | |
895 | value_fetch_lazy (arg1); | |
896 | } | |
dd3b648e | 897 | |
36a2283d PB |
898 | vfn = value_field (entry, 2); |
899 | } | |
5e548861 | 900 | else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR) |
36a2283d PB |
901 | vfn = entry; |
902 | else | |
903 | error ("I'm confused: virtual function table has bad type"); | |
dd3b648e RP |
904 | /* Reinstantiate the function pointer with the correct type. */ |
905 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
906 | ||
94603999 | 907 | *arg1p = arg1; |
dd3b648e RP |
908 | return vfn; |
909 | } | |
910 | ||
71b16efa JK |
911 | /* ARG is a pointer to an object we know to be at least |
912 | a DTYPE. BTYPE is the most derived basetype that has | |
913 | already been searched (and need not be searched again). | |
914 | After looking at the vtables between BTYPE and DTYPE, | |
915 | return the most derived type we find. The caller must | |
916 | be satisfied when the return value == DTYPE. | |
917 | ||
918 | FIXME-tiemann: should work with dossier entries as well. */ | |
919 | ||
82a2edfb | 920 | static value_ptr |
7cb0f870 | 921 | value_headof (in_arg, btype, dtype) |
82a2edfb | 922 | value_ptr in_arg; |
71b16efa JK |
923 | struct type *btype, *dtype; |
924 | { | |
925 | /* First collect the vtables we must look at for this object. */ | |
926 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
82a2edfb | 927 | value_ptr arg, vtbl, entry, best_entry = 0; |
71b16efa JK |
928 | int i, nelems; |
929 | int offset, best_offset = 0; | |
930 | struct symbol *sym; | |
931 | CORE_ADDR pc_for_sym; | |
932 | char *demangled_name; | |
1ab3bf1b JG |
933 | struct minimal_symbol *msymbol; |
934 | ||
aec4cb91 | 935 | btype = TYPE_VPTR_BASETYPE (dtype); |
5e548861 | 936 | CHECK_TYPEDEF (btype); |
7cb0f870 | 937 | arg = in_arg; |
aec4cb91 | 938 | if (btype != dtype) |
7cb0f870 MT |
939 | arg = value_cast (lookup_pointer_type (btype), arg); |
940 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
941 | |
942 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1ab3bf1b JG |
943 | msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); |
944 | if (msymbol == NULL | |
36a2283d PB |
945 | || (demangled_name = SYMBOL_NAME (msymbol)) == NULL |
946 | || !VTBL_PREFIX_P (demangled_name)) | |
71b16efa JK |
947 | { |
948 | /* If we expected to find a vtable, but did not, let the user | |
949 | know that we aren't happy, but don't throw an error. | |
950 | FIXME: there has to be a better way to do this. */ | |
951 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
7cb0f870 | 952 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); |
71b16efa | 953 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); |
7cb0f870 MT |
954 | VALUE_TYPE (in_arg) = error_type; |
955 | return in_arg; | |
71b16efa JK |
956 | } |
957 | ||
958 | /* Now search through the virtual function table. */ | |
959 | entry = value_ind (vtbl); | |
e1ce8aa5 | 960 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
961 | for (i = 1; i <= nelems; i++) |
962 | { | |
96b2f51c JG |
963 | entry = value_subscript (vtbl, value_from_longest (builtin_type_int, |
964 | (LONGEST) i)); | |
36a2283d | 965 | /* This won't work if we're using thunks. */ |
5e548861 | 966 | if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT) |
36a2283d | 967 | break; |
e1ce8aa5 | 968 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
bcccec8c PB |
969 | /* If we use '<=' we can handle single inheritance |
970 | * where all offsets are zero - just use the first entry found. */ | |
971 | if (offset <= best_offset) | |
71b16efa JK |
972 | { |
973 | best_offset = offset; | |
974 | best_entry = entry; | |
975 | } | |
976 | } | |
71b16efa JK |
977 | /* Move the pointer according to BEST_ENTRY's offset, and figure |
978 | out what type we should return as the new pointer. */ | |
bcccec8c PB |
979 | if (best_entry == 0) |
980 | { | |
981 | /* An alternative method (which should no longer be necessary). | |
982 | * But we leave it in for future use, when we will hopefully | |
983 | * have optimizes the vtable to use thunks instead of offsets. */ | |
984 | /* Use the name of vtable itself to extract a base type. */ | |
f1c6dbf6 | 985 | demangled_name += 4; /* Skip _vt$ prefix. */ |
bcccec8c PB |
986 | } |
987 | else | |
988 | { | |
989 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); | |
990 | sym = find_pc_function (pc_for_sym); | |
8050a57b | 991 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); |
bcccec8c PB |
992 | *(strchr (demangled_name, ':')) = '\0'; |
993 | } | |
71b16efa | 994 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
2e4964ad FF |
995 | if (sym == NULL) |
996 | error ("could not find type declaration for `%s'", demangled_name); | |
bcccec8c PB |
997 | if (best_entry) |
998 | { | |
999 | free (demangled_name); | |
1000 | arg = value_add (value_cast (builtin_type_int, arg), | |
1001 | value_field (best_entry, 0)); | |
1002 | } | |
7cb0f870 | 1003 | else arg = in_arg; |
71b16efa JK |
1004 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
1005 | return arg; | |
1006 | } | |
1007 | ||
1008 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
1009 | function tables, probe ARG's tables (including the vtables | |
1010 | of its baseclasses) to figure out the most derived type that ARG | |
1011 | could actually be a pointer to. */ | |
1012 | ||
82a2edfb | 1013 | value_ptr |
71b16efa | 1014 | value_from_vtable_info (arg, type) |
82a2edfb | 1015 | value_ptr arg; |
71b16efa JK |
1016 | struct type *type; |
1017 | { | |
1018 | /* Take care of preliminaries. */ | |
1019 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1020 | fill_in_vptr_fieldno (type); | |
398f584f | 1021 | if (TYPE_VPTR_FIELDNO (type) < 0) |
71b16efa JK |
1022 | return 0; |
1023 | ||
1024 | return value_headof (arg, 0, type); | |
1025 | } | |
1026 | ||
1410f5f1 JK |
1027 | /* Return true if the INDEXth field of TYPE is a virtual baseclass |
1028 | pointer which is for the base class whose type is BASECLASS. */ | |
1029 | ||
1030 | static int | |
1031 | vb_match (type, index, basetype) | |
1032 | struct type *type; | |
1033 | int index; | |
1034 | struct type *basetype; | |
1035 | { | |
1036 | struct type *fieldtype; | |
1410f5f1 JK |
1037 | char *name = TYPE_FIELD_NAME (type, index); |
1038 | char *field_class_name = NULL; | |
1039 | ||
1040 | if (*name != '_') | |
1041 | return 0; | |
f1c6dbf6 | 1042 | /* gcc 2.4 uses _vb$. */ |
81afee37 | 1043 | if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3])) |
1410f5f1 | 1044 | field_class_name = name + 4; |
f1c6dbf6 | 1045 | /* gcc 2.5 will use __vb_. */ |
1410f5f1 JK |
1046 | if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') |
1047 | field_class_name = name + 5; | |
1048 | ||
1049 | if (field_class_name == NULL) | |
1050 | /* This field is not a virtual base class pointer. */ | |
1051 | return 0; | |
1052 | ||
1053 | /* It's a virtual baseclass pointer, now we just need to find out whether | |
1054 | it is for this baseclass. */ | |
1055 | fieldtype = TYPE_FIELD_TYPE (type, index); | |
1056 | if (fieldtype == NULL | |
1057 | || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) | |
1058 | /* "Can't happen". */ | |
1059 | return 0; | |
1060 | ||
1061 | /* What we check for is that either the types are equal (needed for | |
1062 | nameless types) or have the same name. This is ugly, and a more | |
1063 | elegant solution should be devised (which would probably just push | |
1064 | the ugliness into symbol reading unless we change the stabs format). */ | |
1065 | if (TYPE_TARGET_TYPE (fieldtype) == basetype) | |
1066 | return 1; | |
1067 | ||
1068 | if (TYPE_NAME (basetype) != NULL | |
1069 | && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL | |
1070 | && STREQ (TYPE_NAME (basetype), | |
1071 | TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) | |
1072 | return 1; | |
1073 | return 0; | |
1074 | } | |
1075 | ||
94603999 | 1076 | /* Compute the offset of the baseclass which is |
5e548861 PB |
1077 | the INDEXth baseclass of class TYPE, |
1078 | for value at VALADDR (in host) at ADDRESS (in target). | |
1079 | The result is the offset of the baseclass value relative | |
94603999 JG |
1080 | to (the address of)(ARG) + OFFSET. |
1081 | ||
1082 | -1 is returned on error. */ | |
1083 | ||
1084 | int | |
5e548861 | 1085 | baseclass_offset (type, index, valaddr, address) |
94603999 JG |
1086 | struct type *type; |
1087 | int index; | |
5e548861 PB |
1088 | char *valaddr; |
1089 | CORE_ADDR address; | |
94603999 JG |
1090 | { |
1091 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1092 | ||
1093 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1094 | { | |
1095 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1096 | register int i, len = TYPE_NFIELDS (type); | |
1097 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
94603999 | 1098 | |
94603999 JG |
1099 | /* First look for the virtual baseclass pointer |
1100 | in the fields. */ | |
1101 | for (i = n_baseclasses; i < len; i++) | |
1102 | { | |
1410f5f1 | 1103 | if (vb_match (type, i, basetype)) |
94603999 JG |
1104 | { |
1105 | CORE_ADDR addr | |
1106 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
5e548861 | 1107 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
94603999 | 1108 | |
5e548861 | 1109 | return addr - (LONGEST) address; |
94603999 JG |
1110 | } |
1111 | } | |
1112 | /* Not in the fields, so try looking through the baseclasses. */ | |
1113 | for (i = index+1; i < n_baseclasses; i++) | |
1114 | { | |
1115 | int boffset = | |
5e548861 | 1116 | baseclass_offset (type, i, valaddr, address); |
94603999 JG |
1117 | if (boffset) |
1118 | return boffset; | |
1119 | } | |
1120 | /* Not found. */ | |
1121 | return -1; | |
1122 | } | |
1123 | ||
1124 | /* Baseclass is easily computed. */ | |
1125 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1126 | } | |
dd3b648e | 1127 | \f |
4db8e515 FF |
1128 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
1129 | VALADDR. | |
1130 | ||
1131 | Extracting bits depends on endianness of the machine. Compute the | |
1132 | number of least significant bits to discard. For big endian machines, | |
1133 | we compute the total number of bits in the anonymous object, subtract | |
1134 | off the bit count from the MSB of the object to the MSB of the | |
1135 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1136 | count. For little endian machines, the discard count is simply the | |
1137 | number of bits from the LSB of the anonymous object to the LSB of the | |
1138 | bitfield. | |
1139 | ||
1140 | If the field is signed, we also do sign extension. */ | |
1141 | ||
1142 | LONGEST | |
dd3b648e RP |
1143 | unpack_field_as_long (type, valaddr, fieldno) |
1144 | struct type *type; | |
1145 | char *valaddr; | |
1146 | int fieldno; | |
1147 | { | |
119dfbb7 JW |
1148 | ULONGEST val; |
1149 | ULONGEST valmask; | |
dd3b648e RP |
1150 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
1151 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
4db8e515 | 1152 | int lsbcount; |
dd3b648e | 1153 | |
34df79fc | 1154 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); |
4db8e515 FF |
1155 | |
1156 | /* Extract bits. See comment above. */ | |
dd3b648e | 1157 | |
b8176214 ILT |
1158 | if (BITS_BIG_ENDIAN) |
1159 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); | |
1160 | else | |
1161 | lsbcount = (bitpos % 8); | |
4db8e515 | 1162 | val >>= lsbcount; |
dd3b648e | 1163 | |
4db8e515 FF |
1164 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
1165 | If the field is signed, and is negative, then sign extend. */ | |
1166 | ||
b52cac6b | 1167 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) |
4db8e515 | 1168 | { |
119dfbb7 | 1169 | valmask = (((ULONGEST) 1) << bitsize) - 1; |
4db8e515 FF |
1170 | val &= valmask; |
1171 | if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) | |
1172 | { | |
1173 | if (val & (valmask ^ (valmask >> 1))) | |
1174 | { | |
1175 | val |= ~valmask; | |
1176 | } | |
1177 | } | |
1178 | } | |
1179 | return (val); | |
dd3b648e RP |
1180 | } |
1181 | ||
3f2e006b JG |
1182 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1183 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1184 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1185 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1186 | ||
dd3b648e RP |
1187 | void |
1188 | modify_field (addr, fieldval, bitpos, bitsize) | |
1189 | char *addr; | |
58e49e21 | 1190 | LONGEST fieldval; |
dd3b648e RP |
1191 | int bitpos, bitsize; |
1192 | { | |
58e49e21 | 1193 | LONGEST oword; |
dd3b648e | 1194 | |
080868b4 PS |
1195 | /* If a negative fieldval fits in the field in question, chop |
1196 | off the sign extension bits. */ | |
b52cac6b | 1197 | if (bitsize < (8 * (int) sizeof (fieldval)) |
080868b4 PS |
1198 | && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0) |
1199 | fieldval = fieldval & ((1 << bitsize) - 1); | |
1200 | ||
1201 | /* Warn if value is too big to fit in the field in question. */ | |
b52cac6b | 1202 | if (bitsize < (8 * (int) sizeof (fieldval)) |
61a7292f | 1203 | && 0 != (fieldval & ~((1<<bitsize)-1))) |
58e49e21 JK |
1204 | { |
1205 | /* FIXME: would like to include fieldval in the message, but | |
1206 | we don't have a sprintf_longest. */ | |
080868b4 PS |
1207 | warning ("Value does not fit in %d bits.", bitsize); |
1208 | ||
1209 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
1210 | fieldval = fieldval & ((1 << bitsize) - 1); | |
58e49e21 | 1211 | } |
34df79fc JK |
1212 | |
1213 | oword = extract_signed_integer (addr, sizeof oword); | |
dd3b648e | 1214 | |
3f2e006b | 1215 | /* Shifting for bit field depends on endianness of the target machine. */ |
b8176214 ILT |
1216 | if (BITS_BIG_ENDIAN) |
1217 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; | |
dd3b648e | 1218 | |
58e49e21 | 1219 | /* Mask out old value, while avoiding shifts >= size of oword */ |
b52cac6b | 1220 | if (bitsize < 8 * (int) sizeof (oword)) |
119dfbb7 | 1221 | oword &= ~(((((ULONGEST)1) << bitsize) - 1) << bitpos); |
c3a21801 | 1222 | else |
119dfbb7 | 1223 | oword &= ~((~(ULONGEST)0) << bitpos); |
dd3b648e | 1224 | oword |= fieldval << bitpos; |
3f2e006b | 1225 | |
34df79fc | 1226 | store_signed_integer (addr, sizeof oword, oword); |
dd3b648e RP |
1227 | } |
1228 | \f | |
1229 | /* Convert C numbers into newly allocated values */ | |
1230 | ||
82a2edfb | 1231 | value_ptr |
96b2f51c | 1232 | value_from_longest (type, num) |
dd3b648e RP |
1233 | struct type *type; |
1234 | register LONGEST num; | |
1235 | { | |
82a2edfb | 1236 | register value_ptr val = allocate_value (type); |
5e548861 PB |
1237 | register enum type_code code; |
1238 | register int len; | |
1239 | retry: | |
1240 | code = TYPE_CODE (type); | |
1241 | len = TYPE_LENGTH (type); | |
dd3b648e | 1242 | |
34df79fc | 1243 | switch (code) |
dd3b648e | 1244 | { |
5e548861 PB |
1245 | case TYPE_CODE_TYPEDEF: |
1246 | type = check_typedef (type); | |
1247 | goto retry; | |
34df79fc JK |
1248 | case TYPE_CODE_INT: |
1249 | case TYPE_CODE_CHAR: | |
1250 | case TYPE_CODE_ENUM: | |
1251 | case TYPE_CODE_BOOL: | |
b96bc1e4 | 1252 | case TYPE_CODE_RANGE: |
34df79fc JK |
1253 | store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); |
1254 | break; | |
1255 | ||
1256 | case TYPE_CODE_REF: | |
1257 | case TYPE_CODE_PTR: | |
1258 | /* This assumes that all pointers of a given length | |
1259 | have the same form. */ | |
1260 | store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num); | |
1261 | break; | |
d9b9cbf3 | 1262 | |
34df79fc JK |
1263 | default: |
1264 | error ("Unexpected type encountered for integer constant."); | |
dd3b648e | 1265 | } |
dd3b648e RP |
1266 | return val; |
1267 | } | |
1268 | ||
82a2edfb | 1269 | value_ptr |
dd3b648e RP |
1270 | value_from_double (type, num) |
1271 | struct type *type; | |
aa220473 | 1272 | DOUBLEST num; |
dd3b648e | 1273 | { |
82a2edfb | 1274 | register value_ptr val = allocate_value (type); |
5e548861 PB |
1275 | struct type *base_type = check_typedef (type); |
1276 | register enum type_code code = TYPE_CODE (base_type); | |
1277 | register int len = TYPE_LENGTH (base_type); | |
dd3b648e RP |
1278 | |
1279 | if (code == TYPE_CODE_FLT) | |
1280 | { | |
bf5c0d64 | 1281 | store_floating (VALUE_CONTENTS_RAW (val), len, num); |
dd3b648e RP |
1282 | } |
1283 | else | |
1284 | error ("Unexpected type encountered for floating constant."); | |
1285 | ||
dd3b648e RP |
1286 | return val; |
1287 | } | |
1288 | \f | |
1289 | /* Deal with the value that is "about to be returned". */ | |
1290 | ||
1291 | /* Return the value that a function returning now | |
1292 | would be returning to its caller, assuming its type is VALTYPE. | |
1293 | RETBUF is where we look for what ought to be the contents | |
1294 | of the registers (in raw form). This is because it is often | |
1295 | desirable to restore old values to those registers | |
1296 | after saving the contents of interest, and then call | |
1297 | this function using the saved values. | |
1298 | struct_return is non-zero when the function in question is | |
1299 | using the structure return conventions on the machine in question; | |
1300 | 0 when it is using the value returning conventions (this often | |
1301 | means returning pointer to where structure is vs. returning value). */ | |
1302 | ||
82a2edfb | 1303 | value_ptr |
dd3b648e RP |
1304 | value_being_returned (valtype, retbuf, struct_return) |
1305 | register struct type *valtype; | |
1306 | char retbuf[REGISTER_BYTES]; | |
1307 | int struct_return; | |
1308 | /*ARGSUSED*/ | |
1309 | { | |
82a2edfb | 1310 | register value_ptr val; |
dd3b648e RP |
1311 | CORE_ADDR addr; |
1312 | ||
1313 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1314 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1315 | if (struct_return) { | |
1316 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1317 | if (!addr) | |
1318 | error ("Function return value unknown"); | |
6c310da8 | 1319 | return value_at (valtype, addr, NULL); |
dd3b648e RP |
1320 | } |
1321 | #endif | |
1322 | ||
1323 | val = allocate_value (valtype); | |
5e548861 | 1324 | CHECK_TYPEDEF (valtype); |
dd3b648e RP |
1325 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); |
1326 | ||
1327 | return val; | |
1328 | } | |
1329 | ||
1330 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1331 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1332 | and TYPE is the type (which is known to be struct, union or array). | |
1333 | ||
1334 | On most machines, the struct convention is used unless we are | |
1335 | using gcc and the type is of a special size. */ | |
9925b928 JK |
1336 | /* As of about 31 Mar 93, GCC was changed to be compatible with the |
1337 | native compiler. GCC 2.3.3 was the last release that did it the | |
1338 | old way. Since gcc2_compiled was not changed, we have no | |
1339 | way to correctly win in all cases, so we just do the right thing | |
1340 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1341 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1342 | would cause more chaos than dealing with some struct returns being | |
1343 | handled wrong. */ | |
dd3b648e RP |
1344 | #if !defined (USE_STRUCT_CONVENTION) |
1345 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
9925b928 JK |
1346 | (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \ |
1347 | || TYPE_LENGTH (value_type) == 2 \ | |
1348 | || TYPE_LENGTH (value_type) == 4 \ | |
1349 | || TYPE_LENGTH (value_type) == 8 \ | |
1350 | ) \ | |
dd3b648e RP |
1351 | )) |
1352 | #endif | |
1353 | ||
aa220473 SG |
1354 | /* Some fundamental types (such as long double) are returned on the stack for |
1355 | certain architectures. This macro should return true for any type besides | |
1356 | struct, union or array that gets returned on the stack. */ | |
1357 | ||
1358 | #ifndef RETURN_VALUE_ON_STACK | |
1359 | #define RETURN_VALUE_ON_STACK(TYPE) 0 | |
1360 | #endif | |
1361 | ||
dd3b648e RP |
1362 | /* Return true if the function specified is using the structure returning |
1363 | convention on this machine to return arguments, or 0 if it is using | |
1364 | the value returning convention. FUNCTION is the value representing | |
1365 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1366 | is the type returned by the function. GCC_P is nonzero if compiled | |
1367 | with GCC. */ | |
1368 | ||
1369 | int | |
1370 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
82a2edfb | 1371 | value_ptr function; |
dd3b648e RP |
1372 | CORE_ADDR funcaddr; |
1373 | struct type *value_type; | |
1374 | int gcc_p; | |
1375 | /*ARGSUSED*/ | |
1376 | { | |
1377 | register enum type_code code = TYPE_CODE (value_type); | |
1378 | ||
1379 | if (code == TYPE_CODE_ERROR) | |
1380 | error ("Function return type unknown."); | |
1381 | ||
aa220473 SG |
1382 | if (code == TYPE_CODE_STRUCT |
1383 | || code == TYPE_CODE_UNION | |
1384 | || code == TYPE_CODE_ARRAY | |
1385 | || RETURN_VALUE_ON_STACK (value_type)) | |
dd3b648e RP |
1386 | return USE_STRUCT_CONVENTION (gcc_p, value_type); |
1387 | ||
1388 | return 0; | |
1389 | } | |
1390 | ||
1391 | /* Store VAL so it will be returned if a function returns now. | |
1392 | Does not verify that VAL's type matches what the current | |
1393 | function wants to return. */ | |
1394 | ||
1395 | void | |
1396 | set_return_value (val) | |
82a2edfb | 1397 | value_ptr val; |
dd3b648e | 1398 | { |
5e548861 PB |
1399 | struct type *type = check_typedef (VALUE_TYPE (val)); |
1400 | register enum type_code code = TYPE_CODE (type); | |
dd3b648e RP |
1401 | |
1402 | if (code == TYPE_CODE_ERROR) | |
1403 | error ("Function return type unknown."); | |
1404 | ||
f1d77e90 JG |
1405 | if ( code == TYPE_CODE_STRUCT |
1406 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ | |
1407 | error ("GDB does not support specifying a struct or union return value."); | |
dd3b648e | 1408 | |
5e548861 | 1409 | STORE_RETURN_VALUE (type, VALUE_CONTENTS (val)); |
dd3b648e RP |
1410 | } |
1411 | \f | |
1412 | void | |
1413 | _initialize_values () | |
1414 | { | |
f266e564 | 1415 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1416 | "Debugger convenience (\"$foo\") variables.\n\ |
1417 | These variables are created when you assign them values;\n\ | |
1418 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1419 | A few convenience variables are given values automatically:\n\ | |
1420 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1421 | \"$__\" holds the contents of the last address examined with \"x\".", |
1422 | &showlist); | |
dd3b648e | 1423 | |
f266e564 JK |
1424 | add_cmd ("values", no_class, show_values, |
1425 | "Elements of value history around item number IDX (or last ten).", | |
1426 | &showlist); | |
dd3b648e | 1427 | } |