]>
Commit | Line | Data |
---|---|---|
7d9884b9 JG |
1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
2 | Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc. | |
dd3b648e RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
99a7de40 | 6 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 7 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
dd3b648e | 10 | |
99a7de40 | 11 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e | 19 | |
dd3b648e | 20 | #include "defs.h" |
d747e0af | 21 | #include <string.h> |
dd3b648e | 22 | #include "symtab.h" |
1ab3bf1b | 23 | #include "gdbtypes.h" |
dd3b648e RP |
24 | #include "value.h" |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "command.h" | |
f266e564 | 28 | #include "gdbcmd.h" |
ac88ca20 | 29 | #include "target.h" |
8050a57b | 30 | #include "demangle.h" |
dd3b648e | 31 | |
1ab3bf1b JG |
32 | /* Local function prototypes. */ |
33 | ||
34 | static value | |
35 | value_headof PARAMS ((value, struct type *, struct type *)); | |
36 | ||
37 | static void | |
38 | show_values PARAMS ((char *, int)); | |
39 | ||
40 | static void | |
ac88ca20 | 41 | show_convenience PARAMS ((char *, int)); |
71b16efa | 42 | |
dd3b648e RP |
43 | /* The value-history records all the values printed |
44 | by print commands during this session. Each chunk | |
45 | records 60 consecutive values. The first chunk on | |
46 | the chain records the most recent values. | |
47 | The total number of values is in value_history_count. */ | |
48 | ||
49 | #define VALUE_HISTORY_CHUNK 60 | |
50 | ||
51 | struct value_history_chunk | |
52 | { | |
53 | struct value_history_chunk *next; | |
54 | value values[VALUE_HISTORY_CHUNK]; | |
55 | }; | |
56 | ||
57 | /* Chain of chunks now in use. */ | |
58 | ||
59 | static struct value_history_chunk *value_history_chain; | |
60 | ||
61 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
62 | \f |
63 | /* List of all value objects currently allocated | |
64 | (except for those released by calls to release_value) | |
65 | This is so they can be freed after each command. */ | |
66 | ||
67 | static value all_values; | |
68 | ||
69 | /* Allocate a value that has the correct length for type TYPE. */ | |
70 | ||
71 | value | |
72 | allocate_value (type) | |
73 | struct type *type; | |
74 | { | |
75 | register value val; | |
76 | ||
77 | check_stub_type (type); | |
78 | ||
79 | val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type)); | |
80 | VALUE_NEXT (val) = all_values; | |
81 | all_values = val; | |
82 | VALUE_TYPE (val) = type; | |
83 | VALUE_LVAL (val) = not_lval; | |
84 | VALUE_ADDRESS (val) = 0; | |
85 | VALUE_FRAME (val) = 0; | |
86 | VALUE_OFFSET (val) = 0; | |
87 | VALUE_BITPOS (val) = 0; | |
88 | VALUE_BITSIZE (val) = 0; | |
89 | VALUE_REPEATED (val) = 0; | |
90 | VALUE_REPETITIONS (val) = 0; | |
91 | VALUE_REGNO (val) = -1; | |
92 | VALUE_LAZY (val) = 0; | |
93 | VALUE_OPTIMIZED_OUT (val) = 0; | |
94 | return val; | |
95 | } | |
96 | ||
97 | /* Allocate a value that has the correct length | |
98 | for COUNT repetitions type TYPE. */ | |
99 | ||
100 | value | |
101 | allocate_repeat_value (type, count) | |
102 | struct type *type; | |
103 | int count; | |
104 | { | |
105 | register value val; | |
106 | ||
107 | val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count); | |
108 | VALUE_NEXT (val) = all_values; | |
109 | all_values = val; | |
110 | VALUE_TYPE (val) = type; | |
111 | VALUE_LVAL (val) = not_lval; | |
112 | VALUE_ADDRESS (val) = 0; | |
113 | VALUE_FRAME (val) = 0; | |
114 | VALUE_OFFSET (val) = 0; | |
115 | VALUE_BITPOS (val) = 0; | |
116 | VALUE_BITSIZE (val) = 0; | |
117 | VALUE_REPEATED (val) = 1; | |
118 | VALUE_REPETITIONS (val) = count; | |
119 | VALUE_REGNO (val) = -1; | |
120 | VALUE_LAZY (val) = 0; | |
121 | VALUE_OPTIMIZED_OUT (val) = 0; | |
122 | return val; | |
123 | } | |
124 | ||
fcb887ff JK |
125 | /* Return a mark in the value chain. All values allocated after the |
126 | mark is obtained (except for those released) are subject to being freed | |
127 | if a subsequent value_free_to_mark is passed the mark. */ | |
128 | value | |
129 | value_mark () | |
130 | { | |
131 | return all_values; | |
132 | } | |
133 | ||
134 | /* Free all values allocated since MARK was obtained by value_mark | |
135 | (except for those released). */ | |
136 | void | |
137 | value_free_to_mark (mark) | |
138 | value mark; | |
139 | { | |
140 | value val, next; | |
141 | ||
142 | for (val = all_values; val && val != mark; val = next) | |
143 | { | |
144 | next = VALUE_NEXT (val); | |
145 | value_free (val); | |
146 | } | |
147 | all_values = val; | |
148 | } | |
149 | ||
dd3b648e RP |
150 | /* Free all the values that have been allocated (except for those released). |
151 | Called after each command, successful or not. */ | |
152 | ||
153 | void | |
154 | free_all_values () | |
155 | { | |
156 | register value val, next; | |
157 | ||
158 | for (val = all_values; val; val = next) | |
159 | { | |
160 | next = VALUE_NEXT (val); | |
161 | value_free (val); | |
162 | } | |
163 | ||
164 | all_values = 0; | |
165 | } | |
166 | ||
167 | /* Remove VAL from the chain all_values | |
168 | so it will not be freed automatically. */ | |
169 | ||
170 | void | |
171 | release_value (val) | |
172 | register value val; | |
173 | { | |
174 | register value v; | |
175 | ||
176 | if (all_values == val) | |
177 | { | |
178 | all_values = val->next; | |
179 | return; | |
180 | } | |
181 | ||
182 | for (v = all_values; v; v = v->next) | |
183 | { | |
184 | if (v->next == val) | |
185 | { | |
186 | v->next = val->next; | |
187 | break; | |
188 | } | |
189 | } | |
190 | } | |
191 | ||
192 | /* Return a copy of the value ARG. | |
193 | It contains the same contents, for same memory address, | |
194 | but it's a different block of storage. */ | |
195 | ||
8e9a3f3b | 196 | value |
dd3b648e RP |
197 | value_copy (arg) |
198 | value arg; | |
199 | { | |
200 | register value val; | |
201 | register struct type *type = VALUE_TYPE (arg); | |
202 | if (VALUE_REPEATED (arg)) | |
203 | val = allocate_repeat_value (type, VALUE_REPETITIONS (arg)); | |
204 | else | |
205 | val = allocate_value (type); | |
206 | VALUE_LVAL (val) = VALUE_LVAL (arg); | |
207 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
208 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
209 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
210 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
211 | VALUE_REGNO (val) = VALUE_REGNO (arg); | |
212 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
213 | if (!VALUE_LAZY (val)) | |
214 | { | |
51b57ded FF |
215 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), |
216 | TYPE_LENGTH (VALUE_TYPE (arg)) | |
217 | * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1)); | |
dd3b648e RP |
218 | } |
219 | return val; | |
220 | } | |
221 | \f | |
222 | /* Access to the value history. */ | |
223 | ||
224 | /* Record a new value in the value history. | |
225 | Returns the absolute history index of the entry. | |
226 | Result of -1 indicates the value was not saved; otherwise it is the | |
227 | value history index of this new item. */ | |
228 | ||
229 | int | |
230 | record_latest_value (val) | |
231 | value val; | |
232 | { | |
233 | int i; | |
234 | ||
235 | /* Check error now if about to store an invalid float. We return -1 | |
236 | to the caller, but allow them to continue, e.g. to print it as "Nan". */ | |
4ed3a9ea FF |
237 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) |
238 | { | |
239 | unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i); | |
240 | if (i) return -1; /* Indicate value not saved in history */ | |
241 | } | |
dd3b648e RP |
242 | |
243 | /* Here we treat value_history_count as origin-zero | |
244 | and applying to the value being stored now. */ | |
245 | ||
246 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
247 | if (i == 0) | |
248 | { | |
249 | register struct value_history_chunk *new | |
250 | = (struct value_history_chunk *) | |
251 | xmalloc (sizeof (struct value_history_chunk)); | |
4ed3a9ea | 252 | memset (new->values, 0, sizeof new->values); |
dd3b648e RP |
253 | new->next = value_history_chain; |
254 | value_history_chain = new; | |
255 | } | |
256 | ||
257 | value_history_chain->values[i] = val; | |
258 | release_value (val); | |
259 | ||
260 | /* Now we regard value_history_count as origin-one | |
261 | and applying to the value just stored. */ | |
262 | ||
263 | return ++value_history_count; | |
264 | } | |
265 | ||
266 | /* Return a copy of the value in the history with sequence number NUM. */ | |
267 | ||
268 | value | |
269 | access_value_history (num) | |
270 | int num; | |
271 | { | |
272 | register struct value_history_chunk *chunk; | |
273 | register int i; | |
274 | register int absnum = num; | |
275 | ||
276 | if (absnum <= 0) | |
277 | absnum += value_history_count; | |
278 | ||
279 | if (absnum <= 0) | |
280 | { | |
281 | if (num == 0) | |
282 | error ("The history is empty."); | |
283 | else if (num == 1) | |
284 | error ("There is only one value in the history."); | |
285 | else | |
286 | error ("History does not go back to $$%d.", -num); | |
287 | } | |
288 | if (absnum > value_history_count) | |
289 | error ("History has not yet reached $%d.", absnum); | |
290 | ||
291 | absnum--; | |
292 | ||
293 | /* Now absnum is always absolute and origin zero. */ | |
294 | ||
295 | chunk = value_history_chain; | |
296 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
297 | i > 0; i--) | |
298 | chunk = chunk->next; | |
299 | ||
300 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
301 | } | |
302 | ||
303 | /* Clear the value history entirely. | |
304 | Must be done when new symbol tables are loaded, | |
305 | because the type pointers become invalid. */ | |
306 | ||
307 | void | |
308 | clear_value_history () | |
309 | { | |
310 | register struct value_history_chunk *next; | |
311 | register int i; | |
312 | register value val; | |
313 | ||
314 | while (value_history_chain) | |
315 | { | |
316 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
a8a69e63 | 317 | if ((val = value_history_chain->values[i]) != NULL) |
be772100 | 318 | free ((PTR)val); |
dd3b648e | 319 | next = value_history_chain->next; |
be772100 | 320 | free ((PTR)value_history_chain); |
dd3b648e RP |
321 | value_history_chain = next; |
322 | } | |
323 | value_history_count = 0; | |
324 | } | |
325 | ||
326 | static void | |
f266e564 | 327 | show_values (num_exp, from_tty) |
dd3b648e RP |
328 | char *num_exp; |
329 | int from_tty; | |
330 | { | |
331 | register int i; | |
332 | register value val; | |
333 | static int num = 1; | |
334 | ||
335 | if (num_exp) | |
336 | { | |
46c28185 RP |
337 | /* "info history +" should print from the stored position. |
338 | "info history <exp>" should print around value number <exp>. */ | |
339 | if (num_exp[0] != '+' || num_exp[1] != '\0') | |
dd3b648e RP |
340 | num = parse_and_eval_address (num_exp) - 5; |
341 | } | |
342 | else | |
343 | { | |
344 | /* "info history" means print the last 10 values. */ | |
345 | num = value_history_count - 9; | |
346 | } | |
347 | ||
348 | if (num <= 0) | |
349 | num = 1; | |
350 | ||
351 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
352 | { | |
353 | val = access_value_history (i); | |
354 | printf_filtered ("$%d = ", i); | |
355 | value_print (val, stdout, 0, Val_pretty_default); | |
356 | printf_filtered ("\n"); | |
357 | } | |
358 | ||
359 | /* The next "info history +" should start after what we just printed. */ | |
360 | num += 10; | |
361 | ||
362 | /* Hitting just return after this command should do the same thing as | |
363 | "info history +". If num_exp is null, this is unnecessary, since | |
364 | "info history +" is not useful after "info history". */ | |
365 | if (from_tty && num_exp) | |
366 | { | |
367 | num_exp[0] = '+'; | |
368 | num_exp[1] = '\0'; | |
369 | } | |
370 | } | |
371 | \f | |
372 | /* Internal variables. These are variables within the debugger | |
373 | that hold values assigned by debugger commands. | |
374 | The user refers to them with a '$' prefix | |
375 | that does not appear in the variable names stored internally. */ | |
376 | ||
377 | static struct internalvar *internalvars; | |
378 | ||
379 | /* Look up an internal variable with name NAME. NAME should not | |
380 | normally include a dollar sign. | |
381 | ||
382 | If the specified internal variable does not exist, | |
383 | one is created, with a void value. */ | |
384 | ||
385 | struct internalvar * | |
386 | lookup_internalvar (name) | |
387 | char *name; | |
388 | { | |
389 | register struct internalvar *var; | |
390 | ||
391 | for (var = internalvars; var; var = var->next) | |
2e4964ad | 392 | if (STREQ (var->name, name)) |
dd3b648e RP |
393 | return var; |
394 | ||
395 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
58ae87f6 | 396 | var->name = concat (name, NULL); |
dd3b648e RP |
397 | var->value = allocate_value (builtin_type_void); |
398 | release_value (var->value); | |
399 | var->next = internalvars; | |
400 | internalvars = var; | |
401 | return var; | |
402 | } | |
403 | ||
404 | value | |
405 | value_of_internalvar (var) | |
406 | struct internalvar *var; | |
407 | { | |
408 | register value val; | |
409 | ||
410 | #ifdef IS_TRAPPED_INTERNALVAR | |
411 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
412 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
413 | #endif | |
414 | ||
415 | val = value_copy (var->value); | |
416 | if (VALUE_LAZY (val)) | |
417 | value_fetch_lazy (val); | |
418 | VALUE_LVAL (val) = lval_internalvar; | |
419 | VALUE_INTERNALVAR (val) = var; | |
420 | return val; | |
421 | } | |
422 | ||
423 | void | |
424 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
425 | struct internalvar *var; | |
426 | int offset, bitpos, bitsize; | |
427 | value newval; | |
428 | { | |
429 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
430 | ||
431 | #ifdef IS_TRAPPED_INTERNALVAR | |
432 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
433 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
434 | #endif | |
435 | ||
436 | if (bitsize) | |
58e49e21 | 437 | modify_field (addr, value_as_long (newval), |
dd3b648e RP |
438 | bitpos, bitsize); |
439 | else | |
4ed3a9ea | 440 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); |
dd3b648e RP |
441 | } |
442 | ||
443 | void | |
444 | set_internalvar (var, val) | |
445 | struct internalvar *var; | |
446 | value val; | |
447 | { | |
448 | #ifdef IS_TRAPPED_INTERNALVAR | |
449 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
450 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
451 | #endif | |
452 | ||
be772100 | 453 | free ((PTR)var->value); |
dd3b648e | 454 | var->value = value_copy (val); |
6fab5bef JG |
455 | /* Force the value to be fetched from the target now, to avoid problems |
456 | later when this internalvar is referenced and the target is gone or | |
457 | has changed. */ | |
458 | if (VALUE_LAZY (var->value)) | |
459 | value_fetch_lazy (var->value); | |
dd3b648e RP |
460 | release_value (var->value); |
461 | } | |
462 | ||
463 | char * | |
464 | internalvar_name (var) | |
465 | struct internalvar *var; | |
466 | { | |
467 | return var->name; | |
468 | } | |
469 | ||
470 | /* Free all internalvars. Done when new symtabs are loaded, | |
471 | because that makes the values invalid. */ | |
472 | ||
473 | void | |
474 | clear_internalvars () | |
475 | { | |
476 | register struct internalvar *var; | |
477 | ||
478 | while (internalvars) | |
479 | { | |
480 | var = internalvars; | |
481 | internalvars = var->next; | |
be772100 JG |
482 | free ((PTR)var->name); |
483 | free ((PTR)var->value); | |
484 | free ((PTR)var); | |
dd3b648e RP |
485 | } |
486 | } | |
487 | ||
488 | static void | |
ac88ca20 JG |
489 | show_convenience (ignore, from_tty) |
490 | char *ignore; | |
491 | int from_tty; | |
dd3b648e RP |
492 | { |
493 | register struct internalvar *var; | |
494 | int varseen = 0; | |
495 | ||
496 | for (var = internalvars; var; var = var->next) | |
497 | { | |
498 | #ifdef IS_TRAPPED_INTERNALVAR | |
499 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
500 | continue; | |
501 | #endif | |
502 | if (!varseen) | |
503 | { | |
dd3b648e RP |
504 | varseen = 1; |
505 | } | |
afe4ca15 | 506 | printf_filtered ("$%s = ", var->name); |
dd3b648e | 507 | value_print (var->value, stdout, 0, Val_pretty_default); |
afe4ca15 | 508 | printf_filtered ("\n"); |
dd3b648e RP |
509 | } |
510 | if (!varseen) | |
511 | printf ("No debugger convenience variables now defined.\n\ | |
512 | Convenience variables have names starting with \"$\";\n\ | |
513 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
514 | } | |
515 | \f | |
516 | /* Extract a value as a C number (either long or double). | |
517 | Knows how to convert fixed values to double, or | |
518 | floating values to long. | |
519 | Does not deallocate the value. */ | |
520 | ||
521 | LONGEST | |
522 | value_as_long (val) | |
523 | register value val; | |
524 | { | |
525 | /* This coerces arrays and functions, which is necessary (e.g. | |
526 | in disassemble_command). It also dereferences references, which | |
527 | I suspect is the most logical thing to do. */ | |
528 | if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM) | |
529 | COERCE_ARRAY (val); | |
530 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); | |
531 | } | |
532 | ||
533 | double | |
534 | value_as_double (val) | |
535 | register value val; | |
536 | { | |
537 | double foo; | |
538 | int inv; | |
539 | ||
540 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
541 | if (inv) | |
542 | error ("Invalid floating value found in program."); | |
543 | return foo; | |
544 | } | |
e1ce8aa5 JK |
545 | /* Extract a value as a C pointer. |
546 | Does not deallocate the value. */ | |
547 | CORE_ADDR | |
548 | value_as_pointer (val) | |
549 | value val; | |
550 | { | |
2bff8e38 JK |
551 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
552 | whether we want this to be true eventually. */ | |
b2ccb6a4 JK |
553 | #if 0 |
554 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
555 | non-address (e.g. argument to "signal", "info break", etc.), or | |
556 | for pointers to char, in which the low bits *are* significant. */ | |
ae0ea72e | 557 | return ADDR_BITS_REMOVE(value_as_long (val)); |
b2ccb6a4 JK |
558 | #else |
559 | return value_as_long (val); | |
560 | #endif | |
e1ce8aa5 | 561 | } |
dd3b648e RP |
562 | \f |
563 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
564 | as a long, or as a double, assuming the raw data is described | |
565 | by type TYPE. Knows how to convert different sizes of values | |
566 | and can convert between fixed and floating point. We don't assume | |
567 | any alignment for the raw data. Return value is in host byte order. | |
568 | ||
569 | If you want functions and arrays to be coerced to pointers, and | |
570 | references to be dereferenced, call value_as_long() instead. | |
571 | ||
572 | C++: It is assumed that the front-end has taken care of | |
573 | all matters concerning pointers to members. A pointer | |
574 | to member which reaches here is considered to be equivalent | |
575 | to an INT (or some size). After all, it is only an offset. */ | |
576 | ||
35505d07 JG |
577 | /* FIXME: This should be rewritten as a switch statement for speed and |
578 | ease of comprehension. */ | |
579 | ||
dd3b648e RP |
580 | LONGEST |
581 | unpack_long (type, valaddr) | |
582 | struct type *type; | |
583 | char *valaddr; | |
584 | { | |
585 | register enum type_code code = TYPE_CODE (type); | |
586 | register int len = TYPE_LENGTH (type); | |
587 | register int nosign = TYPE_UNSIGNED (type); | |
588 | ||
35505d07 | 589 | if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL) |
dd3b648e RP |
590 | code = TYPE_CODE_INT; |
591 | if (code == TYPE_CODE_FLT) | |
592 | { | |
593 | if (len == sizeof (float)) | |
594 | { | |
595 | float retval; | |
4ed3a9ea | 596 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
597 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
598 | return retval; | |
599 | } | |
600 | ||
601 | if (len == sizeof (double)) | |
602 | { | |
603 | double retval; | |
4ed3a9ea | 604 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
605 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
606 | return retval; | |
607 | } | |
608 | else | |
609 | { | |
610 | error ("Unexpected type of floating point number."); | |
611 | } | |
612 | } | |
34df79fc | 613 | else if ((code == TYPE_CODE_INT || code == TYPE_CODE_CHAR) && nosign) |
dd3b648e | 614 | { |
34df79fc | 615 | return extract_unsigned_integer (valaddr, len); |
dd3b648e | 616 | } |
34df79fc | 617 | else if (code == TYPE_CODE_INT || code == TYPE_CODE_CHAR) |
dd3b648e | 618 | { |
34df79fc | 619 | return extract_signed_integer (valaddr, len); |
dd3b648e | 620 | } |
2bff8e38 JK |
621 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
622 | whether we want this to be true eventually. */ | |
c4413e2c | 623 | else if (code == TYPE_CODE_PTR || code == TYPE_CODE_REF) |
dd3b648e | 624 | { |
34df79fc | 625 | return extract_address (valaddr, len); |
dd3b648e RP |
626 | } |
627 | else if (code == TYPE_CODE_MEMBER) | |
628 | error ("not implemented: member types in unpack_long"); | |
629 | ||
630 | error ("Value not integer or pointer."); | |
631 | return 0; /* For lint -- never reached */ | |
632 | } | |
633 | ||
634 | /* Return a double value from the specified type and address. | |
635 | INVP points to an int which is set to 0 for valid value, | |
636 | 1 for invalid value (bad float format). In either case, | |
637 | the returned double is OK to use. Argument is in target | |
638 | format, result is in host format. */ | |
639 | ||
640 | double | |
641 | unpack_double (type, valaddr, invp) | |
642 | struct type *type; | |
643 | char *valaddr; | |
644 | int *invp; | |
645 | { | |
646 | register enum type_code code = TYPE_CODE (type); | |
647 | register int len = TYPE_LENGTH (type); | |
648 | register int nosign = TYPE_UNSIGNED (type); | |
649 | ||
650 | *invp = 0; /* Assume valid. */ | |
651 | if (code == TYPE_CODE_FLT) | |
652 | { | |
653 | if (INVALID_FLOAT (valaddr, len)) | |
654 | { | |
655 | *invp = 1; | |
656 | return 1.234567891011121314; | |
657 | } | |
658 | ||
659 | if (len == sizeof (float)) | |
660 | { | |
661 | float retval; | |
4ed3a9ea | 662 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
663 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
664 | return retval; | |
665 | } | |
666 | ||
667 | if (len == sizeof (double)) | |
668 | { | |
669 | double retval; | |
4ed3a9ea | 670 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
671 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
672 | return retval; | |
673 | } | |
674 | else | |
675 | { | |
676 | error ("Unexpected type of floating point number."); | |
e1ce8aa5 | 677 | return 0; /* Placate lint. */ |
dd3b648e RP |
678 | } |
679 | } | |
680 | else if (nosign) { | |
681 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
7efb57c3 | 682 | return (unsigned LONGEST) unpack_long (type, valaddr); |
dd3b648e RP |
683 | } else { |
684 | /* Signed -- we are OK with unpack_long. */ | |
685 | return unpack_long (type, valaddr); | |
686 | } | |
687 | } | |
e1ce8aa5 JK |
688 | |
689 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
690 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
691 | We don't assume any alignment for the raw data. Return value is in | |
692 | host byte order. | |
693 | ||
694 | If you want functions and arrays to be coerced to pointers, and | |
695 | references to be dereferenced, call value_as_pointer() instead. | |
696 | ||
697 | C++: It is assumed that the front-end has taken care of | |
698 | all matters concerning pointers to members. A pointer | |
699 | to member which reaches here is considered to be equivalent | |
700 | to an INT (or some size). After all, it is only an offset. */ | |
701 | ||
702 | CORE_ADDR | |
703 | unpack_pointer (type, valaddr) | |
704 | struct type *type; | |
705 | char *valaddr; | |
706 | { | |
2bff8e38 JK |
707 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
708 | whether we want this to be true eventually. */ | |
709 | return unpack_long (type, valaddr); | |
e1ce8aa5 | 710 | } |
dd3b648e RP |
711 | \f |
712 | /* Given a value ARG1 (offset by OFFSET bytes) | |
713 | of a struct or union type ARG_TYPE, | |
714 | extract and return the value of one of its fields. | |
715 | FIELDNO says which field. | |
716 | ||
717 | For C++, must also be able to return values from static fields */ | |
718 | ||
719 | value | |
720 | value_primitive_field (arg1, offset, fieldno, arg_type) | |
721 | register value arg1; | |
722 | int offset; | |
723 | register int fieldno; | |
724 | register struct type *arg_type; | |
725 | { | |
726 | register value v; | |
727 | register struct type *type; | |
728 | ||
729 | check_stub_type (arg_type); | |
730 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
731 | ||
732 | /* Handle packed fields */ | |
733 | ||
734 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
735 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
736 | { | |
96b2f51c | 737 | v = value_from_longest (type, |
dd3b648e RP |
738 | unpack_field_as_long (arg_type, |
739 | VALUE_CONTENTS (arg1), | |
740 | fieldno)); | |
741 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
742 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
743 | } | |
744 | else | |
745 | { | |
746 | v = allocate_value (type); | |
747 | if (VALUE_LAZY (arg1)) | |
748 | VALUE_LAZY (v) = 1; | |
749 | else | |
4ed3a9ea FF |
750 | memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, |
751 | TYPE_LENGTH (type)); | |
dd3b648e RP |
752 | } |
753 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
754 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
755 | VALUE_LVAL (v) = lval_internalvar_component; | |
756 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
757 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
758 | return v; | |
759 | } | |
760 | ||
761 | /* Given a value ARG1 of a struct or union type, | |
762 | extract and return the value of one of its fields. | |
763 | FIELDNO says which field. | |
764 | ||
765 | For C++, must also be able to return values from static fields */ | |
766 | ||
767 | value | |
768 | value_field (arg1, fieldno) | |
769 | register value arg1; | |
770 | register int fieldno; | |
771 | { | |
772 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
773 | } | |
774 | ||
545af6ce PB |
775 | /* Return a non-virtual function as a value. |
776 | F is the list of member functions which contains the desired method. | |
777 | J is an index into F which provides the desired method. */ | |
778 | ||
dd3b648e | 779 | value |
94603999 JG |
780 | value_fn_field (arg1p, f, j, type, offset) |
781 | value *arg1p; | |
545af6ce PB |
782 | struct fn_field *f; |
783 | int j; | |
94603999 JG |
784 | struct type *type; |
785 | int offset; | |
dd3b648e RP |
786 | { |
787 | register value v; | |
94603999 | 788 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
dd3b648e RP |
789 | struct symbol *sym; |
790 | ||
545af6ce | 791 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), |
dd3b648e RP |
792 | 0, VAR_NAMESPACE, 0, NULL); |
793 | if (! sym) error ("Internal error: could not find physical method named %s", | |
545af6ce | 794 | TYPE_FN_FIELD_PHYSNAME (f, j)); |
dd3b648e | 795 | |
94603999 | 796 | v = allocate_value (ftype); |
dd3b648e | 797 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); |
94603999 JG |
798 | VALUE_TYPE (v) = ftype; |
799 | ||
800 | if (arg1p) | |
801 | { | |
802 | if (type != VALUE_TYPE (*arg1p)) | |
803 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
804 | value_addr (*arg1p))); | |
805 | ||
806 | /* Move the `this' pointer according to the offset. */ | |
807 | VALUE_OFFSET (*arg1p) += offset; | |
808 | } | |
809 | ||
dd3b648e RP |
810 | return v; |
811 | } | |
812 | ||
813 | /* Return a virtual function as a value. | |
814 | ARG1 is the object which provides the virtual function | |
94603999 | 815 | table pointer. *ARG1P is side-effected in calling this function. |
dd3b648e RP |
816 | F is the list of member functions which contains the desired virtual |
817 | function. | |
e532974c JK |
818 | J is an index into F which provides the desired virtual function. |
819 | ||
820 | TYPE is the type in which F is located. */ | |
dd3b648e | 821 | value |
94603999 JG |
822 | value_virtual_fn_field (arg1p, f, j, type, offset) |
823 | value *arg1p; | |
dd3b648e RP |
824 | struct fn_field *f; |
825 | int j; | |
e532974c | 826 | struct type *type; |
94603999 | 827 | int offset; |
dd3b648e | 828 | { |
94603999 | 829 | value arg1 = *arg1p; |
dd3b648e RP |
830 | /* First, get the virtual function table pointer. That comes |
831 | with a strange type, so cast it to type `pointer to long' (which | |
832 | should serve just fine as a function type). Then, index into | |
833 | the table, and convert final value to appropriate function type. */ | |
834 | value entry, vfn, vtbl; | |
96b2f51c | 835 | value vi = value_from_longest (builtin_type_int, |
dd3b648e | 836 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); |
e532974c JK |
837 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
838 | struct type *context; | |
839 | if (fcontext == NULL) | |
840 | /* We don't have an fcontext (e.g. the program was compiled with | |
841 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
842 | This won't work right for multiple inheritance, but at least we | |
843 | should do as well as GDB 3.x did. */ | |
844 | fcontext = TYPE_VPTR_BASETYPE (type); | |
845 | context = lookup_pointer_type (fcontext); | |
846 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
dd3b648e RP |
847 | if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1)) |
848 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
849 | ||
850 | context = VALUE_TYPE (arg1); | |
e532974c | 851 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
852 | |
853 | /* This type may have been defined before its virtual function table | |
854 | was. If so, fill in the virtual function table entry for the | |
855 | type now. */ | |
856 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 857 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
858 | |
859 | /* The virtual function table is now an array of structures | |
860 | which have the form { int16 offset, delta; void *pfn; }. */ | |
94603999 JG |
861 | vtbl = value_ind (value_primitive_field (arg1, 0, |
862 | TYPE_VPTR_FIELDNO (context), | |
863 | TYPE_VPTR_BASETYPE (context))); | |
dd3b648e RP |
864 | |
865 | /* Index into the virtual function table. This is hard-coded because | |
866 | looking up a field is not cheap, and it may be important to save | |
867 | time, e.g. if the user has set a conditional breakpoint calling | |
868 | a virtual function. */ | |
869 | entry = value_subscript (vtbl, vi); | |
870 | ||
871 | /* Move the `this' pointer according to the virtual function table. */ | |
94603999 | 872 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)) + offset; |
dd3b648e RP |
873 | if (! VALUE_LAZY (arg1)) |
874 | { | |
875 | VALUE_LAZY (arg1) = 1; | |
876 | value_fetch_lazy (arg1); | |
877 | } | |
878 | ||
879 | vfn = value_field (entry, 2); | |
880 | /* Reinstantiate the function pointer with the correct type. */ | |
881 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
882 | ||
94603999 | 883 | *arg1p = arg1; |
dd3b648e RP |
884 | return vfn; |
885 | } | |
886 | ||
71b16efa JK |
887 | /* ARG is a pointer to an object we know to be at least |
888 | a DTYPE. BTYPE is the most derived basetype that has | |
889 | already been searched (and need not be searched again). | |
890 | After looking at the vtables between BTYPE and DTYPE, | |
891 | return the most derived type we find. The caller must | |
892 | be satisfied when the return value == DTYPE. | |
893 | ||
894 | FIXME-tiemann: should work with dossier entries as well. */ | |
895 | ||
896 | static value | |
7cb0f870 MT |
897 | value_headof (in_arg, btype, dtype) |
898 | value in_arg; | |
71b16efa JK |
899 | struct type *btype, *dtype; |
900 | { | |
901 | /* First collect the vtables we must look at for this object. */ | |
902 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
7cb0f870 | 903 | value arg, vtbl, entry, best_entry = 0; |
71b16efa JK |
904 | int i, nelems; |
905 | int offset, best_offset = 0; | |
906 | struct symbol *sym; | |
907 | CORE_ADDR pc_for_sym; | |
908 | char *demangled_name; | |
1ab3bf1b JG |
909 | struct minimal_symbol *msymbol; |
910 | ||
aec4cb91 MT |
911 | btype = TYPE_VPTR_BASETYPE (dtype); |
912 | check_stub_type (btype); | |
7cb0f870 | 913 | arg = in_arg; |
aec4cb91 | 914 | if (btype != dtype) |
7cb0f870 MT |
915 | arg = value_cast (lookup_pointer_type (btype), arg); |
916 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
917 | |
918 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1ab3bf1b JG |
919 | msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); |
920 | if (msymbol == NULL | |
2e4964ad | 921 | || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol))) |
71b16efa JK |
922 | { |
923 | /* If we expected to find a vtable, but did not, let the user | |
924 | know that we aren't happy, but don't throw an error. | |
925 | FIXME: there has to be a better way to do this. */ | |
926 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
7cb0f870 | 927 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); |
71b16efa | 928 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); |
7cb0f870 MT |
929 | VALUE_TYPE (in_arg) = error_type; |
930 | return in_arg; | |
71b16efa JK |
931 | } |
932 | ||
933 | /* Now search through the virtual function table. */ | |
934 | entry = value_ind (vtbl); | |
e1ce8aa5 | 935 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
936 | for (i = 1; i <= nelems; i++) |
937 | { | |
96b2f51c JG |
938 | entry = value_subscript (vtbl, value_from_longest (builtin_type_int, |
939 | (LONGEST) i)); | |
e1ce8aa5 | 940 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
bcccec8c PB |
941 | /* If we use '<=' we can handle single inheritance |
942 | * where all offsets are zero - just use the first entry found. */ | |
943 | if (offset <= best_offset) | |
71b16efa JK |
944 | { |
945 | best_offset = offset; | |
946 | best_entry = entry; | |
947 | } | |
948 | } | |
71b16efa JK |
949 | /* Move the pointer according to BEST_ENTRY's offset, and figure |
950 | out what type we should return as the new pointer. */ | |
bcccec8c PB |
951 | if (best_entry == 0) |
952 | { | |
953 | /* An alternative method (which should no longer be necessary). | |
954 | * But we leave it in for future use, when we will hopefully | |
955 | * have optimizes the vtable to use thunks instead of offsets. */ | |
956 | /* Use the name of vtable itself to extract a base type. */ | |
957 | demangled_name += 4; /* Skip _vt$ prefix. */ | |
958 | } | |
959 | else | |
960 | { | |
961 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); | |
962 | sym = find_pc_function (pc_for_sym); | |
8050a57b | 963 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); |
bcccec8c PB |
964 | *(strchr (demangled_name, ':')) = '\0'; |
965 | } | |
71b16efa | 966 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
2e4964ad FF |
967 | if (sym == NULL) |
968 | error ("could not find type declaration for `%s'", demangled_name); | |
bcccec8c PB |
969 | if (best_entry) |
970 | { | |
971 | free (demangled_name); | |
972 | arg = value_add (value_cast (builtin_type_int, arg), | |
973 | value_field (best_entry, 0)); | |
974 | } | |
7cb0f870 | 975 | else arg = in_arg; |
71b16efa JK |
976 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
977 | return arg; | |
978 | } | |
979 | ||
980 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
981 | function tables, probe ARG's tables (including the vtables | |
982 | of its baseclasses) to figure out the most derived type that ARG | |
983 | could actually be a pointer to. */ | |
984 | ||
985 | value | |
986 | value_from_vtable_info (arg, type) | |
987 | value arg; | |
988 | struct type *type; | |
989 | { | |
990 | /* Take care of preliminaries. */ | |
991 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
992 | fill_in_vptr_fieldno (type); | |
993 | if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg)) | |
994 | return 0; | |
995 | ||
996 | return value_headof (arg, 0, type); | |
997 | } | |
998 | ||
1410f5f1 JK |
999 | /* Return true if the INDEXth field of TYPE is a virtual baseclass |
1000 | pointer which is for the base class whose type is BASECLASS. */ | |
1001 | ||
1002 | static int | |
1003 | vb_match (type, index, basetype) | |
1004 | struct type *type; | |
1005 | int index; | |
1006 | struct type *basetype; | |
1007 | { | |
1008 | struct type *fieldtype; | |
1410f5f1 JK |
1009 | char *name = TYPE_FIELD_NAME (type, index); |
1010 | char *field_class_name = NULL; | |
1011 | ||
1012 | if (*name != '_') | |
1013 | return 0; | |
1014 | /* gcc 2.4 uses _vb$. */ | |
1015 | if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER) | |
1016 | field_class_name = name + 4; | |
1017 | /* gcc 2.5 will use __vb_. */ | |
1018 | if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') | |
1019 | field_class_name = name + 5; | |
1020 | ||
1021 | if (field_class_name == NULL) | |
1022 | /* This field is not a virtual base class pointer. */ | |
1023 | return 0; | |
1024 | ||
1025 | /* It's a virtual baseclass pointer, now we just need to find out whether | |
1026 | it is for this baseclass. */ | |
1027 | fieldtype = TYPE_FIELD_TYPE (type, index); | |
1028 | if (fieldtype == NULL | |
1029 | || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) | |
1030 | /* "Can't happen". */ | |
1031 | return 0; | |
1032 | ||
1033 | /* What we check for is that either the types are equal (needed for | |
1034 | nameless types) or have the same name. This is ugly, and a more | |
1035 | elegant solution should be devised (which would probably just push | |
1036 | the ugliness into symbol reading unless we change the stabs format). */ | |
1037 | if (TYPE_TARGET_TYPE (fieldtype) == basetype) | |
1038 | return 1; | |
1039 | ||
1040 | if (TYPE_NAME (basetype) != NULL | |
1041 | && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL | |
1042 | && STREQ (TYPE_NAME (basetype), | |
1043 | TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) | |
1044 | return 1; | |
1045 | return 0; | |
1046 | } | |
1047 | ||
94603999 JG |
1048 | /* Compute the offset of the baseclass which is |
1049 | the INDEXth baseclass of class TYPE, for a value ARG, | |
1050 | wih extra offset of OFFSET. | |
1051 | The result is the offste of the baseclass value relative | |
1052 | to (the address of)(ARG) + OFFSET. | |
1053 | ||
1054 | -1 is returned on error. */ | |
1055 | ||
1056 | int | |
1057 | baseclass_offset (type, index, arg, offset) | |
1058 | struct type *type; | |
1059 | int index; | |
1060 | value arg; | |
1061 | int offset; | |
1062 | { | |
1063 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1064 | ||
1065 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1066 | { | |
1067 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1068 | register int i, len = TYPE_NFIELDS (type); | |
1069 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
94603999 | 1070 | |
94603999 JG |
1071 | /* First look for the virtual baseclass pointer |
1072 | in the fields. */ | |
1073 | for (i = n_baseclasses; i < len; i++) | |
1074 | { | |
1410f5f1 | 1075 | if (vb_match (type, i, basetype)) |
94603999 JG |
1076 | { |
1077 | CORE_ADDR addr | |
1078 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
1079 | VALUE_CONTENTS (arg) + VALUE_OFFSET (arg) | |
1080 | + offset | |
1081 | + (TYPE_FIELD_BITPOS (type, i) / 8)); | |
1082 | ||
1083 | if (VALUE_LVAL (arg) != lval_memory) | |
1084 | return -1; | |
1085 | ||
1086 | return addr - | |
1087 | (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset); | |
1088 | } | |
1089 | } | |
1090 | /* Not in the fields, so try looking through the baseclasses. */ | |
1091 | for (i = index+1; i < n_baseclasses; i++) | |
1092 | { | |
1093 | int boffset = | |
1094 | baseclass_offset (type, i, arg, offset); | |
1095 | if (boffset) | |
1096 | return boffset; | |
1097 | } | |
1098 | /* Not found. */ | |
1099 | return -1; | |
1100 | } | |
1101 | ||
1102 | /* Baseclass is easily computed. */ | |
1103 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1104 | } | |
1105 | ||
dd3b648e | 1106 | /* Compute the address of the baseclass which is |
f1d77e90 | 1107 | the INDEXth baseclass of class TYPE. The TYPE base |
71b16efa JK |
1108 | of the object is at VALADDR. |
1109 | ||
1110 | If ERRP is non-NULL, set *ERRP to be the errno code of any error, | |
1111 | or 0 if no error. In that case the return value is not the address | |
1112 | of the baseclasss, but the address which could not be read | |
1113 | successfully. */ | |
dd3b648e | 1114 | |
94603999 JG |
1115 | /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */ |
1116 | ||
dd3b648e | 1117 | char * |
71b16efa | 1118 | baseclass_addr (type, index, valaddr, valuep, errp) |
dd3b648e RP |
1119 | struct type *type; |
1120 | int index; | |
1121 | char *valaddr; | |
1122 | value *valuep; | |
71b16efa | 1123 | int *errp; |
dd3b648e RP |
1124 | { |
1125 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1126 | ||
71b16efa JK |
1127 | if (errp) |
1128 | *errp = 0; | |
aec4cb91 | 1129 | |
dd3b648e RP |
1130 | if (BASETYPE_VIA_VIRTUAL (type, index)) |
1131 | { | |
1132 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1133 | register int i, len = TYPE_NFIELDS (type); | |
1134 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
dd3b648e | 1135 | |
dd3b648e RP |
1136 | /* First look for the virtual baseclass pointer |
1137 | in the fields. */ | |
1138 | for (i = n_baseclasses; i < len; i++) | |
1139 | { | |
1410f5f1 | 1140 | if (vb_match (type, i, basetype)) |
dd3b648e | 1141 | { |
71b16efa JK |
1142 | value val = allocate_value (basetype); |
1143 | CORE_ADDR addr; | |
1144 | int status; | |
1145 | ||
e1ce8aa5 JK |
1146 | addr |
1147 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
71b16efa JK |
1148 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
1149 | ||
1150 | status = target_read_memory (addr, | |
1151 | VALUE_CONTENTS_RAW (val), | |
4f6f12f9 | 1152 | TYPE_LENGTH (basetype)); |
71b16efa JK |
1153 | VALUE_LVAL (val) = lval_memory; |
1154 | VALUE_ADDRESS (val) = addr; | |
1155 | ||
1156 | if (status != 0) | |
1157 | { | |
1158 | if (valuep) | |
1159 | *valuep = NULL; | |
1160 | release_value (val); | |
1161 | value_free (val); | |
1162 | if (errp) | |
1163 | *errp = status; | |
1164 | return (char *)addr; | |
1165 | } | |
1166 | else | |
1167 | { | |
1168 | if (valuep) | |
1169 | *valuep = val; | |
1170 | return (char *) VALUE_CONTENTS (val); | |
1171 | } | |
dd3b648e RP |
1172 | } |
1173 | } | |
1174 | /* Not in the fields, so try looking through the baseclasses. */ | |
1175 | for (i = index+1; i < n_baseclasses; i++) | |
1176 | { | |
1177 | char *baddr; | |
1178 | ||
e1ce8aa5 | 1179 | baddr = baseclass_addr (type, i, valaddr, valuep, errp); |
dd3b648e RP |
1180 | if (baddr) |
1181 | return baddr; | |
1182 | } | |
1183 | /* Not found. */ | |
1184 | if (valuep) | |
1185 | *valuep = 0; | |
1186 | return 0; | |
1187 | } | |
1188 | ||
1189 | /* Baseclass is easily computed. */ | |
1190 | if (valuep) | |
1191 | *valuep = 0; | |
1192 | return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1193 | } | |
dd3b648e | 1194 | \f |
4db8e515 FF |
1195 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
1196 | VALADDR. | |
1197 | ||
1198 | Extracting bits depends on endianness of the machine. Compute the | |
1199 | number of least significant bits to discard. For big endian machines, | |
1200 | we compute the total number of bits in the anonymous object, subtract | |
1201 | off the bit count from the MSB of the object to the MSB of the | |
1202 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1203 | count. For little endian machines, the discard count is simply the | |
1204 | number of bits from the LSB of the anonymous object to the LSB of the | |
1205 | bitfield. | |
1206 | ||
1207 | If the field is signed, we also do sign extension. */ | |
1208 | ||
1209 | LONGEST | |
dd3b648e RP |
1210 | unpack_field_as_long (type, valaddr, fieldno) |
1211 | struct type *type; | |
1212 | char *valaddr; | |
1213 | int fieldno; | |
1214 | { | |
4db8e515 FF |
1215 | unsigned LONGEST val; |
1216 | unsigned LONGEST valmask; | |
dd3b648e RP |
1217 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
1218 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
4db8e515 | 1219 | int lsbcount; |
dd3b648e | 1220 | |
34df79fc | 1221 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); |
4db8e515 FF |
1222 | |
1223 | /* Extract bits. See comment above. */ | |
dd3b648e | 1224 | |
122ad9ab | 1225 | #if BITS_BIG_ENDIAN |
4db8e515 | 1226 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); |
dd3b648e | 1227 | #else |
4db8e515 | 1228 | lsbcount = (bitpos % 8); |
dd3b648e | 1229 | #endif |
4db8e515 | 1230 | val >>= lsbcount; |
dd3b648e | 1231 | |
4db8e515 FF |
1232 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
1233 | If the field is signed, and is negative, then sign extend. */ | |
1234 | ||
1235 | if ((bitsize > 0) && (bitsize < 8 * sizeof (val))) | |
1236 | { | |
1237 | valmask = (((unsigned LONGEST) 1) << bitsize) - 1; | |
1238 | val &= valmask; | |
1239 | if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) | |
1240 | { | |
1241 | if (val & (valmask ^ (valmask >> 1))) | |
1242 | { | |
1243 | val |= ~valmask; | |
1244 | } | |
1245 | } | |
1246 | } | |
1247 | return (val); | |
dd3b648e RP |
1248 | } |
1249 | ||
3f2e006b JG |
1250 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1251 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1252 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1253 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1254 | ||
dd3b648e RP |
1255 | void |
1256 | modify_field (addr, fieldval, bitpos, bitsize) | |
1257 | char *addr; | |
58e49e21 | 1258 | LONGEST fieldval; |
dd3b648e RP |
1259 | int bitpos, bitsize; |
1260 | { | |
58e49e21 | 1261 | LONGEST oword; |
dd3b648e | 1262 | |
c3a21801 JG |
1263 | /* Reject values too big to fit in the field in question, |
1264 | otherwise adjoining fields may be corrupted. */ | |
61a7292f SG |
1265 | if (bitsize < (8 * sizeof (fieldval)) |
1266 | && 0 != (fieldval & ~((1<<bitsize)-1))) | |
58e49e21 JK |
1267 | { |
1268 | /* FIXME: would like to include fieldval in the message, but | |
1269 | we don't have a sprintf_longest. */ | |
1270 | error ("Value does not fit in %d bits.", bitsize); | |
1271 | } | |
34df79fc JK |
1272 | |
1273 | oword = extract_signed_integer (addr, sizeof oword); | |
dd3b648e | 1274 | |
3f2e006b | 1275 | /* Shifting for bit field depends on endianness of the target machine. */ |
122ad9ab | 1276 | #if BITS_BIG_ENDIAN |
dd3b648e RP |
1277 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; |
1278 | #endif | |
1279 | ||
58e49e21 | 1280 | /* Mask out old value, while avoiding shifts >= size of oword */ |
c3a21801 | 1281 | if (bitsize < 8 * sizeof (oword)) |
58e49e21 | 1282 | oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos); |
c3a21801 | 1283 | else |
58e49e21 | 1284 | oword &= ~((~(unsigned LONGEST)0) << bitpos); |
dd3b648e | 1285 | oword |= fieldval << bitpos; |
3f2e006b | 1286 | |
34df79fc | 1287 | store_signed_integer (addr, sizeof oword, oword); |
dd3b648e RP |
1288 | } |
1289 | \f | |
1290 | /* Convert C numbers into newly allocated values */ | |
1291 | ||
1292 | value | |
96b2f51c | 1293 | value_from_longest (type, num) |
dd3b648e RP |
1294 | struct type *type; |
1295 | register LONGEST num; | |
1296 | { | |
1297 | register value val = allocate_value (type); | |
1298 | register enum type_code code = TYPE_CODE (type); | |
1299 | register int len = TYPE_LENGTH (type); | |
1300 | ||
34df79fc | 1301 | switch (code) |
dd3b648e | 1302 | { |
34df79fc JK |
1303 | case TYPE_CODE_INT: |
1304 | case TYPE_CODE_CHAR: | |
1305 | case TYPE_CODE_ENUM: | |
1306 | case TYPE_CODE_BOOL: | |
1307 | store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); | |
1308 | break; | |
1309 | ||
1310 | case TYPE_CODE_REF: | |
1311 | case TYPE_CODE_PTR: | |
1312 | /* This assumes that all pointers of a given length | |
1313 | have the same form. */ | |
1314 | store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num); | |
1315 | break; | |
1316 | ||
1317 | default: | |
1318 | error ("Unexpected type encountered for integer constant."); | |
dd3b648e | 1319 | } |
dd3b648e RP |
1320 | return val; |
1321 | } | |
1322 | ||
1323 | value | |
1324 | value_from_double (type, num) | |
1325 | struct type *type; | |
1326 | double num; | |
1327 | { | |
1328 | register value val = allocate_value (type); | |
1329 | register enum type_code code = TYPE_CODE (type); | |
1330 | register int len = TYPE_LENGTH (type); | |
1331 | ||
1332 | if (code == TYPE_CODE_FLT) | |
1333 | { | |
1334 | if (len == sizeof (float)) | |
1335 | * (float *) VALUE_CONTENTS_RAW (val) = num; | |
1336 | else if (len == sizeof (double)) | |
1337 | * (double *) VALUE_CONTENTS_RAW (val) = num; | |
1338 | else | |
1339 | error ("Floating type encountered with unexpected data length."); | |
1340 | } | |
1341 | else | |
1342 | error ("Unexpected type encountered for floating constant."); | |
1343 | ||
1344 | /* num was in host byte order. So now put the value's contents | |
1345 | into target byte order. */ | |
1346 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len); | |
1347 | ||
1348 | return val; | |
1349 | } | |
1350 | \f | |
1351 | /* Deal with the value that is "about to be returned". */ | |
1352 | ||
1353 | /* Return the value that a function returning now | |
1354 | would be returning to its caller, assuming its type is VALTYPE. | |
1355 | RETBUF is where we look for what ought to be the contents | |
1356 | of the registers (in raw form). This is because it is often | |
1357 | desirable to restore old values to those registers | |
1358 | after saving the contents of interest, and then call | |
1359 | this function using the saved values. | |
1360 | struct_return is non-zero when the function in question is | |
1361 | using the structure return conventions on the machine in question; | |
1362 | 0 when it is using the value returning conventions (this often | |
1363 | means returning pointer to where structure is vs. returning value). */ | |
1364 | ||
1365 | value | |
1366 | value_being_returned (valtype, retbuf, struct_return) | |
1367 | register struct type *valtype; | |
1368 | char retbuf[REGISTER_BYTES]; | |
1369 | int struct_return; | |
1370 | /*ARGSUSED*/ | |
1371 | { | |
1372 | register value val; | |
1373 | CORE_ADDR addr; | |
1374 | ||
1375 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1376 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1377 | if (struct_return) { | |
1378 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1379 | if (!addr) | |
1380 | error ("Function return value unknown"); | |
1381 | return value_at (valtype, addr); | |
1382 | } | |
1383 | #endif | |
1384 | ||
1385 | val = allocate_value (valtype); | |
1386 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); | |
1387 | ||
1388 | return val; | |
1389 | } | |
1390 | ||
1391 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1392 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1393 | and TYPE is the type (which is known to be struct, union or array). | |
1394 | ||
1395 | On most machines, the struct convention is used unless we are | |
1396 | using gcc and the type is of a special size. */ | |
9925b928 JK |
1397 | /* As of about 31 Mar 93, GCC was changed to be compatible with the |
1398 | native compiler. GCC 2.3.3 was the last release that did it the | |
1399 | old way. Since gcc2_compiled was not changed, we have no | |
1400 | way to correctly win in all cases, so we just do the right thing | |
1401 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1402 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1403 | would cause more chaos than dealing with some struct returns being | |
1404 | handled wrong. */ | |
dd3b648e RP |
1405 | #if !defined (USE_STRUCT_CONVENTION) |
1406 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
9925b928 JK |
1407 | (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \ |
1408 | || TYPE_LENGTH (value_type) == 2 \ | |
1409 | || TYPE_LENGTH (value_type) == 4 \ | |
1410 | || TYPE_LENGTH (value_type) == 8 \ | |
1411 | ) \ | |
dd3b648e RP |
1412 | )) |
1413 | #endif | |
1414 | ||
1415 | /* Return true if the function specified is using the structure returning | |
1416 | convention on this machine to return arguments, or 0 if it is using | |
1417 | the value returning convention. FUNCTION is the value representing | |
1418 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1419 | is the type returned by the function. GCC_P is nonzero if compiled | |
1420 | with GCC. */ | |
1421 | ||
1422 | int | |
1423 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
1424 | value function; | |
1425 | CORE_ADDR funcaddr; | |
1426 | struct type *value_type; | |
1427 | int gcc_p; | |
1428 | /*ARGSUSED*/ | |
1429 | { | |
1430 | register enum type_code code = TYPE_CODE (value_type); | |
1431 | ||
1432 | if (code == TYPE_CODE_ERROR) | |
1433 | error ("Function return type unknown."); | |
1434 | ||
1435 | if (code == TYPE_CODE_STRUCT || | |
1436 | code == TYPE_CODE_UNION || | |
1437 | code == TYPE_CODE_ARRAY) | |
1438 | return USE_STRUCT_CONVENTION (gcc_p, value_type); | |
1439 | ||
1440 | return 0; | |
1441 | } | |
1442 | ||
1443 | /* Store VAL so it will be returned if a function returns now. | |
1444 | Does not verify that VAL's type matches what the current | |
1445 | function wants to return. */ | |
1446 | ||
1447 | void | |
1448 | set_return_value (val) | |
1449 | value val; | |
1450 | { | |
1451 | register enum type_code code = TYPE_CODE (VALUE_TYPE (val)); | |
1452 | double dbuf; | |
1453 | LONGEST lbuf; | |
1454 | ||
1455 | if (code == TYPE_CODE_ERROR) | |
1456 | error ("Function return type unknown."); | |
1457 | ||
f1d77e90 JG |
1458 | if ( code == TYPE_CODE_STRUCT |
1459 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ | |
1460 | error ("GDB does not support specifying a struct or union return value."); | |
dd3b648e RP |
1461 | |
1462 | /* FIXME, this is bogus. We don't know what the return conventions | |
1463 | are, or how values should be promoted.... */ | |
1464 | if (code == TYPE_CODE_FLT) | |
1465 | { | |
1466 | dbuf = value_as_double (val); | |
1467 | ||
1468 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf); | |
1469 | } | |
1470 | else | |
1471 | { | |
1472 | lbuf = value_as_long (val); | |
1473 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf); | |
1474 | } | |
1475 | } | |
1476 | \f | |
1477 | void | |
1478 | _initialize_values () | |
1479 | { | |
f266e564 | 1480 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1481 | "Debugger convenience (\"$foo\") variables.\n\ |
1482 | These variables are created when you assign them values;\n\ | |
1483 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1484 | A few convenience variables are given values automatically:\n\ | |
1485 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1486 | \"$__\" holds the contents of the last address examined with \"x\".", |
1487 | &showlist); | |
dd3b648e | 1488 | |
f266e564 JK |
1489 | add_cmd ("values", no_class, show_values, |
1490 | "Elements of value history around item number IDX (or last ten).", | |
1491 | &showlist); | |
dd3b648e | 1492 | } |