]>
Commit | Line | Data |
---|---|---|
7d9884b9 JG |
1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
2 | Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc. | |
dd3b648e RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
99a7de40 | 6 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 7 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
dd3b648e | 10 | |
99a7de40 | 11 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e | 19 | |
dd3b648e | 20 | #include "defs.h" |
d747e0af | 21 | #include <string.h> |
dd3b648e | 22 | #include "symtab.h" |
1ab3bf1b | 23 | #include "gdbtypes.h" |
dd3b648e RP |
24 | #include "value.h" |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "command.h" | |
f266e564 | 28 | #include "gdbcmd.h" |
ac88ca20 | 29 | #include "target.h" |
8050a57b | 30 | #include "demangle.h" |
dd3b648e | 31 | |
1ab3bf1b JG |
32 | /* Local function prototypes. */ |
33 | ||
34 | static value | |
35 | value_headof PARAMS ((value, struct type *, struct type *)); | |
36 | ||
37 | static void | |
38 | show_values PARAMS ((char *, int)); | |
39 | ||
40 | static void | |
ac88ca20 | 41 | show_convenience PARAMS ((char *, int)); |
71b16efa | 42 | |
dd3b648e RP |
43 | /* The value-history records all the values printed |
44 | by print commands during this session. Each chunk | |
45 | records 60 consecutive values. The first chunk on | |
46 | the chain records the most recent values. | |
47 | The total number of values is in value_history_count. */ | |
48 | ||
49 | #define VALUE_HISTORY_CHUNK 60 | |
50 | ||
51 | struct value_history_chunk | |
52 | { | |
53 | struct value_history_chunk *next; | |
54 | value values[VALUE_HISTORY_CHUNK]; | |
55 | }; | |
56 | ||
57 | /* Chain of chunks now in use. */ | |
58 | ||
59 | static struct value_history_chunk *value_history_chain; | |
60 | ||
61 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
62 | \f |
63 | /* List of all value objects currently allocated | |
64 | (except for those released by calls to release_value) | |
65 | This is so they can be freed after each command. */ | |
66 | ||
67 | static value all_values; | |
68 | ||
69 | /* Allocate a value that has the correct length for type TYPE. */ | |
70 | ||
71 | value | |
72 | allocate_value (type) | |
73 | struct type *type; | |
74 | { | |
75 | register value val; | |
76 | ||
77 | check_stub_type (type); | |
78 | ||
79 | val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type)); | |
80 | VALUE_NEXT (val) = all_values; | |
81 | all_values = val; | |
82 | VALUE_TYPE (val) = type; | |
83 | VALUE_LVAL (val) = not_lval; | |
84 | VALUE_ADDRESS (val) = 0; | |
85 | VALUE_FRAME (val) = 0; | |
86 | VALUE_OFFSET (val) = 0; | |
87 | VALUE_BITPOS (val) = 0; | |
88 | VALUE_BITSIZE (val) = 0; | |
89 | VALUE_REPEATED (val) = 0; | |
90 | VALUE_REPETITIONS (val) = 0; | |
91 | VALUE_REGNO (val) = -1; | |
92 | VALUE_LAZY (val) = 0; | |
93 | VALUE_OPTIMIZED_OUT (val) = 0; | |
94 | return val; | |
95 | } | |
96 | ||
97 | /* Allocate a value that has the correct length | |
98 | for COUNT repetitions type TYPE. */ | |
99 | ||
100 | value | |
101 | allocate_repeat_value (type, count) | |
102 | struct type *type; | |
103 | int count; | |
104 | { | |
105 | register value val; | |
106 | ||
107 | val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count); | |
108 | VALUE_NEXT (val) = all_values; | |
109 | all_values = val; | |
110 | VALUE_TYPE (val) = type; | |
111 | VALUE_LVAL (val) = not_lval; | |
112 | VALUE_ADDRESS (val) = 0; | |
113 | VALUE_FRAME (val) = 0; | |
114 | VALUE_OFFSET (val) = 0; | |
115 | VALUE_BITPOS (val) = 0; | |
116 | VALUE_BITSIZE (val) = 0; | |
117 | VALUE_REPEATED (val) = 1; | |
118 | VALUE_REPETITIONS (val) = count; | |
119 | VALUE_REGNO (val) = -1; | |
120 | VALUE_LAZY (val) = 0; | |
121 | VALUE_OPTIMIZED_OUT (val) = 0; | |
122 | return val; | |
123 | } | |
124 | ||
fcb887ff JK |
125 | /* Return a mark in the value chain. All values allocated after the |
126 | mark is obtained (except for those released) are subject to being freed | |
127 | if a subsequent value_free_to_mark is passed the mark. */ | |
128 | value | |
129 | value_mark () | |
130 | { | |
131 | return all_values; | |
132 | } | |
133 | ||
134 | /* Free all values allocated since MARK was obtained by value_mark | |
135 | (except for those released). */ | |
136 | void | |
137 | value_free_to_mark (mark) | |
138 | value mark; | |
139 | { | |
140 | value val, next; | |
141 | ||
142 | for (val = all_values; val && val != mark; val = next) | |
143 | { | |
144 | next = VALUE_NEXT (val); | |
145 | value_free (val); | |
146 | } | |
147 | all_values = val; | |
148 | } | |
149 | ||
dd3b648e RP |
150 | /* Free all the values that have been allocated (except for those released). |
151 | Called after each command, successful or not. */ | |
152 | ||
153 | void | |
154 | free_all_values () | |
155 | { | |
156 | register value val, next; | |
157 | ||
158 | for (val = all_values; val; val = next) | |
159 | { | |
160 | next = VALUE_NEXT (val); | |
161 | value_free (val); | |
162 | } | |
163 | ||
164 | all_values = 0; | |
165 | } | |
166 | ||
167 | /* Remove VAL from the chain all_values | |
168 | so it will not be freed automatically. */ | |
169 | ||
170 | void | |
171 | release_value (val) | |
172 | register value val; | |
173 | { | |
174 | register value v; | |
175 | ||
176 | if (all_values == val) | |
177 | { | |
178 | all_values = val->next; | |
179 | return; | |
180 | } | |
181 | ||
182 | for (v = all_values; v; v = v->next) | |
183 | { | |
184 | if (v->next == val) | |
185 | { | |
186 | v->next = val->next; | |
187 | break; | |
188 | } | |
189 | } | |
190 | } | |
191 | ||
192 | /* Return a copy of the value ARG. | |
193 | It contains the same contents, for same memory address, | |
194 | but it's a different block of storage. */ | |
195 | ||
8e9a3f3b | 196 | value |
dd3b648e RP |
197 | value_copy (arg) |
198 | value arg; | |
199 | { | |
200 | register value val; | |
201 | register struct type *type = VALUE_TYPE (arg); | |
202 | if (VALUE_REPEATED (arg)) | |
203 | val = allocate_repeat_value (type, VALUE_REPETITIONS (arg)); | |
204 | else | |
205 | val = allocate_value (type); | |
206 | VALUE_LVAL (val) = VALUE_LVAL (arg); | |
207 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
208 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
209 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
210 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
211 | VALUE_REGNO (val) = VALUE_REGNO (arg); | |
212 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
213 | if (!VALUE_LAZY (val)) | |
214 | { | |
51b57ded FF |
215 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), |
216 | TYPE_LENGTH (VALUE_TYPE (arg)) | |
217 | * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1)); | |
dd3b648e RP |
218 | } |
219 | return val; | |
220 | } | |
221 | \f | |
222 | /* Access to the value history. */ | |
223 | ||
224 | /* Record a new value in the value history. | |
225 | Returns the absolute history index of the entry. | |
226 | Result of -1 indicates the value was not saved; otherwise it is the | |
227 | value history index of this new item. */ | |
228 | ||
229 | int | |
230 | record_latest_value (val) | |
231 | value val; | |
232 | { | |
233 | int i; | |
234 | ||
235 | /* Check error now if about to store an invalid float. We return -1 | |
236 | to the caller, but allow them to continue, e.g. to print it as "Nan". */ | |
4ed3a9ea FF |
237 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) |
238 | { | |
239 | unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i); | |
240 | if (i) return -1; /* Indicate value not saved in history */ | |
241 | } | |
dd3b648e RP |
242 | |
243 | /* Here we treat value_history_count as origin-zero | |
244 | and applying to the value being stored now. */ | |
245 | ||
246 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
247 | if (i == 0) | |
248 | { | |
249 | register struct value_history_chunk *new | |
250 | = (struct value_history_chunk *) | |
251 | xmalloc (sizeof (struct value_history_chunk)); | |
4ed3a9ea | 252 | memset (new->values, 0, sizeof new->values); |
dd3b648e RP |
253 | new->next = value_history_chain; |
254 | value_history_chain = new; | |
255 | } | |
256 | ||
257 | value_history_chain->values[i] = val; | |
258 | release_value (val); | |
259 | ||
260 | /* Now we regard value_history_count as origin-one | |
261 | and applying to the value just stored. */ | |
262 | ||
263 | return ++value_history_count; | |
264 | } | |
265 | ||
266 | /* Return a copy of the value in the history with sequence number NUM. */ | |
267 | ||
268 | value | |
269 | access_value_history (num) | |
270 | int num; | |
271 | { | |
272 | register struct value_history_chunk *chunk; | |
273 | register int i; | |
274 | register int absnum = num; | |
275 | ||
276 | if (absnum <= 0) | |
277 | absnum += value_history_count; | |
278 | ||
279 | if (absnum <= 0) | |
280 | { | |
281 | if (num == 0) | |
282 | error ("The history is empty."); | |
283 | else if (num == 1) | |
284 | error ("There is only one value in the history."); | |
285 | else | |
286 | error ("History does not go back to $$%d.", -num); | |
287 | } | |
288 | if (absnum > value_history_count) | |
289 | error ("History has not yet reached $%d.", absnum); | |
290 | ||
291 | absnum--; | |
292 | ||
293 | /* Now absnum is always absolute and origin zero. */ | |
294 | ||
295 | chunk = value_history_chain; | |
296 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
297 | i > 0; i--) | |
298 | chunk = chunk->next; | |
299 | ||
300 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
301 | } | |
302 | ||
303 | /* Clear the value history entirely. | |
304 | Must be done when new symbol tables are loaded, | |
305 | because the type pointers become invalid. */ | |
306 | ||
307 | void | |
308 | clear_value_history () | |
309 | { | |
310 | register struct value_history_chunk *next; | |
311 | register int i; | |
312 | register value val; | |
313 | ||
314 | while (value_history_chain) | |
315 | { | |
316 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
a8a69e63 | 317 | if ((val = value_history_chain->values[i]) != NULL) |
be772100 | 318 | free ((PTR)val); |
dd3b648e | 319 | next = value_history_chain->next; |
be772100 | 320 | free ((PTR)value_history_chain); |
dd3b648e RP |
321 | value_history_chain = next; |
322 | } | |
323 | value_history_count = 0; | |
324 | } | |
325 | ||
326 | static void | |
f266e564 | 327 | show_values (num_exp, from_tty) |
dd3b648e RP |
328 | char *num_exp; |
329 | int from_tty; | |
330 | { | |
331 | register int i; | |
332 | register value val; | |
333 | static int num = 1; | |
334 | ||
335 | if (num_exp) | |
336 | { | |
337 | if (num_exp[0] == '+' && num_exp[1] == '\0') | |
338 | /* "info history +" should print from the stored position. */ | |
339 | ; | |
340 | else | |
341 | /* "info history <exp>" should print around value number <exp>. */ | |
342 | num = parse_and_eval_address (num_exp) - 5; | |
343 | } | |
344 | else | |
345 | { | |
346 | /* "info history" means print the last 10 values. */ | |
347 | num = value_history_count - 9; | |
348 | } | |
349 | ||
350 | if (num <= 0) | |
351 | num = 1; | |
352 | ||
353 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
354 | { | |
355 | val = access_value_history (i); | |
356 | printf_filtered ("$%d = ", i); | |
357 | value_print (val, stdout, 0, Val_pretty_default); | |
358 | printf_filtered ("\n"); | |
359 | } | |
360 | ||
361 | /* The next "info history +" should start after what we just printed. */ | |
362 | num += 10; | |
363 | ||
364 | /* Hitting just return after this command should do the same thing as | |
365 | "info history +". If num_exp is null, this is unnecessary, since | |
366 | "info history +" is not useful after "info history". */ | |
367 | if (from_tty && num_exp) | |
368 | { | |
369 | num_exp[0] = '+'; | |
370 | num_exp[1] = '\0'; | |
371 | } | |
372 | } | |
373 | \f | |
374 | /* Internal variables. These are variables within the debugger | |
375 | that hold values assigned by debugger commands. | |
376 | The user refers to them with a '$' prefix | |
377 | that does not appear in the variable names stored internally. */ | |
378 | ||
379 | static struct internalvar *internalvars; | |
380 | ||
381 | /* Look up an internal variable with name NAME. NAME should not | |
382 | normally include a dollar sign. | |
383 | ||
384 | If the specified internal variable does not exist, | |
385 | one is created, with a void value. */ | |
386 | ||
387 | struct internalvar * | |
388 | lookup_internalvar (name) | |
389 | char *name; | |
390 | { | |
391 | register struct internalvar *var; | |
392 | ||
393 | for (var = internalvars; var; var = var->next) | |
2e4964ad | 394 | if (STREQ (var->name, name)) |
dd3b648e RP |
395 | return var; |
396 | ||
397 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
58ae87f6 | 398 | var->name = concat (name, NULL); |
dd3b648e RP |
399 | var->value = allocate_value (builtin_type_void); |
400 | release_value (var->value); | |
401 | var->next = internalvars; | |
402 | internalvars = var; | |
403 | return var; | |
404 | } | |
405 | ||
406 | value | |
407 | value_of_internalvar (var) | |
408 | struct internalvar *var; | |
409 | { | |
410 | register value val; | |
411 | ||
412 | #ifdef IS_TRAPPED_INTERNALVAR | |
413 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
414 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
415 | #endif | |
416 | ||
417 | val = value_copy (var->value); | |
418 | if (VALUE_LAZY (val)) | |
419 | value_fetch_lazy (val); | |
420 | VALUE_LVAL (val) = lval_internalvar; | |
421 | VALUE_INTERNALVAR (val) = var; | |
422 | return val; | |
423 | } | |
424 | ||
425 | void | |
426 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
427 | struct internalvar *var; | |
428 | int offset, bitpos, bitsize; | |
429 | value newval; | |
430 | { | |
431 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
432 | ||
433 | #ifdef IS_TRAPPED_INTERNALVAR | |
434 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
435 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
436 | #endif | |
437 | ||
438 | if (bitsize) | |
439 | modify_field (addr, (int) value_as_long (newval), | |
440 | bitpos, bitsize); | |
441 | else | |
4ed3a9ea | 442 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); |
dd3b648e RP |
443 | } |
444 | ||
445 | void | |
446 | set_internalvar (var, val) | |
447 | struct internalvar *var; | |
448 | value val; | |
449 | { | |
450 | #ifdef IS_TRAPPED_INTERNALVAR | |
451 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
452 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
453 | #endif | |
454 | ||
be772100 | 455 | free ((PTR)var->value); |
dd3b648e | 456 | var->value = value_copy (val); |
6fab5bef JG |
457 | /* Force the value to be fetched from the target now, to avoid problems |
458 | later when this internalvar is referenced and the target is gone or | |
459 | has changed. */ | |
460 | if (VALUE_LAZY (var->value)) | |
461 | value_fetch_lazy (var->value); | |
dd3b648e RP |
462 | release_value (var->value); |
463 | } | |
464 | ||
465 | char * | |
466 | internalvar_name (var) | |
467 | struct internalvar *var; | |
468 | { | |
469 | return var->name; | |
470 | } | |
471 | ||
472 | /* Free all internalvars. Done when new symtabs are loaded, | |
473 | because that makes the values invalid. */ | |
474 | ||
475 | void | |
476 | clear_internalvars () | |
477 | { | |
478 | register struct internalvar *var; | |
479 | ||
480 | while (internalvars) | |
481 | { | |
482 | var = internalvars; | |
483 | internalvars = var->next; | |
be772100 JG |
484 | free ((PTR)var->name); |
485 | free ((PTR)var->value); | |
486 | free ((PTR)var); | |
dd3b648e RP |
487 | } |
488 | } | |
489 | ||
490 | static void | |
ac88ca20 JG |
491 | show_convenience (ignore, from_tty) |
492 | char *ignore; | |
493 | int from_tty; | |
dd3b648e RP |
494 | { |
495 | register struct internalvar *var; | |
496 | int varseen = 0; | |
497 | ||
498 | for (var = internalvars; var; var = var->next) | |
499 | { | |
500 | #ifdef IS_TRAPPED_INTERNALVAR | |
501 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
502 | continue; | |
503 | #endif | |
504 | if (!varseen) | |
505 | { | |
dd3b648e RP |
506 | varseen = 1; |
507 | } | |
afe4ca15 | 508 | printf_filtered ("$%s = ", var->name); |
dd3b648e | 509 | value_print (var->value, stdout, 0, Val_pretty_default); |
afe4ca15 | 510 | printf_filtered ("\n"); |
dd3b648e RP |
511 | } |
512 | if (!varseen) | |
513 | printf ("No debugger convenience variables now defined.\n\ | |
514 | Convenience variables have names starting with \"$\";\n\ | |
515 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
516 | } | |
517 | \f | |
518 | /* Extract a value as a C number (either long or double). | |
519 | Knows how to convert fixed values to double, or | |
520 | floating values to long. | |
521 | Does not deallocate the value. */ | |
522 | ||
523 | LONGEST | |
524 | value_as_long (val) | |
525 | register value val; | |
526 | { | |
527 | /* This coerces arrays and functions, which is necessary (e.g. | |
528 | in disassemble_command). It also dereferences references, which | |
529 | I suspect is the most logical thing to do. */ | |
530 | if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM) | |
531 | COERCE_ARRAY (val); | |
532 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); | |
533 | } | |
534 | ||
535 | double | |
536 | value_as_double (val) | |
537 | register value val; | |
538 | { | |
539 | double foo; | |
540 | int inv; | |
541 | ||
542 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
543 | if (inv) | |
544 | error ("Invalid floating value found in program."); | |
545 | return foo; | |
546 | } | |
e1ce8aa5 JK |
547 | /* Extract a value as a C pointer. |
548 | Does not deallocate the value. */ | |
549 | CORE_ADDR | |
550 | value_as_pointer (val) | |
551 | value val; | |
552 | { | |
2bff8e38 JK |
553 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
554 | whether we want this to be true eventually. */ | |
ae0ea72e | 555 | return ADDR_BITS_REMOVE(value_as_long (val)); |
e1ce8aa5 | 556 | } |
dd3b648e RP |
557 | \f |
558 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
559 | as a long, or as a double, assuming the raw data is described | |
560 | by type TYPE. Knows how to convert different sizes of values | |
561 | and can convert between fixed and floating point. We don't assume | |
562 | any alignment for the raw data. Return value is in host byte order. | |
563 | ||
564 | If you want functions and arrays to be coerced to pointers, and | |
565 | references to be dereferenced, call value_as_long() instead. | |
566 | ||
567 | C++: It is assumed that the front-end has taken care of | |
568 | all matters concerning pointers to members. A pointer | |
569 | to member which reaches here is considered to be equivalent | |
570 | to an INT (or some size). After all, it is only an offset. */ | |
571 | ||
35505d07 JG |
572 | /* FIXME: This should be rewritten as a switch statement for speed and |
573 | ease of comprehension. */ | |
574 | ||
dd3b648e RP |
575 | LONGEST |
576 | unpack_long (type, valaddr) | |
577 | struct type *type; | |
578 | char *valaddr; | |
579 | { | |
580 | register enum type_code code = TYPE_CODE (type); | |
581 | register int len = TYPE_LENGTH (type); | |
582 | register int nosign = TYPE_UNSIGNED (type); | |
583 | ||
35505d07 | 584 | if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL) |
dd3b648e RP |
585 | code = TYPE_CODE_INT; |
586 | if (code == TYPE_CODE_FLT) | |
587 | { | |
588 | if (len == sizeof (float)) | |
589 | { | |
590 | float retval; | |
4ed3a9ea | 591 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
592 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
593 | return retval; | |
594 | } | |
595 | ||
596 | if (len == sizeof (double)) | |
597 | { | |
598 | double retval; | |
4ed3a9ea | 599 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
600 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
601 | return retval; | |
602 | } | |
603 | else | |
604 | { | |
605 | error ("Unexpected type of floating point number."); | |
606 | } | |
607 | } | |
608 | else if (code == TYPE_CODE_INT && nosign) | |
609 | { | |
610 | if (len == sizeof (char)) | |
611 | { | |
612 | unsigned char retval = * (unsigned char *) valaddr; | |
613 | /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */ | |
614 | return retval; | |
615 | } | |
616 | ||
617 | if (len == sizeof (short)) | |
618 | { | |
619 | unsigned short retval; | |
4ed3a9ea | 620 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
621 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
622 | return retval; | |
623 | } | |
624 | ||
625 | if (len == sizeof (int)) | |
626 | { | |
627 | unsigned int retval; | |
4ed3a9ea | 628 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
629 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
630 | return retval; | |
631 | } | |
632 | ||
633 | if (len == sizeof (long)) | |
634 | { | |
635 | unsigned long retval; | |
4ed3a9ea | 636 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
637 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
638 | return retval; | |
639 | } | |
640 | #ifdef LONG_LONG | |
641 | if (len == sizeof (long long)) | |
642 | { | |
643 | unsigned long long retval; | |
4ed3a9ea | 644 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
645 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
646 | return retval; | |
647 | } | |
648 | #endif | |
649 | else | |
650 | { | |
651 | error ("That operation is not possible on an integer of that size."); | |
652 | } | |
653 | } | |
654 | else if (code == TYPE_CODE_INT) | |
655 | { | |
656 | if (len == sizeof (char)) | |
657 | { | |
5c1c5e67 | 658 | SIGNED char retval; /* plain chars might be unsigned on host */ |
4ed3a9ea | 659 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
660 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
661 | return retval; | |
662 | } | |
663 | ||
664 | if (len == sizeof (short)) | |
665 | { | |
666 | short retval; | |
4ed3a9ea | 667 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
668 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
669 | return retval; | |
670 | } | |
671 | ||
672 | if (len == sizeof (int)) | |
673 | { | |
674 | int retval; | |
4ed3a9ea | 675 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
676 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
677 | return retval; | |
678 | } | |
679 | ||
680 | if (len == sizeof (long)) | |
681 | { | |
682 | long retval; | |
4ed3a9ea | 683 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
684 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
685 | return retval; | |
686 | } | |
687 | ||
688 | #ifdef LONG_LONG | |
689 | if (len == sizeof (long long)) | |
690 | { | |
691 | long long retval; | |
4ed3a9ea | 692 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
693 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
694 | return retval; | |
695 | } | |
696 | #endif | |
697 | else | |
698 | { | |
699 | error ("That operation is not possible on an integer of that size."); | |
700 | } | |
701 | } | |
2bff8e38 JK |
702 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
703 | whether we want this to be true eventually. */ | |
c4413e2c | 704 | else if (code == TYPE_CODE_PTR || code == TYPE_CODE_REF) |
dd3b648e | 705 | { |
1f46923f SC |
706 | if (len == sizeof(long)) |
707 | { | |
ae0ea72e | 708 | unsigned long retval; |
4ed3a9ea | 709 | memcpy (&retval, valaddr, sizeof(retval)); |
1f46923f SC |
710 | SWAP_TARGET_AND_HOST (&retval, sizeof(retval)); |
711 | return retval; | |
712 | } | |
713 | else if (len == sizeof(short)) | |
714 | { | |
ae0ea72e | 715 | unsigned short retval; |
4ed3a9ea | 716 | memcpy (&retval, valaddr, len); |
1f46923f SC |
717 | SWAP_TARGET_AND_HOST (&retval, len); |
718 | return retval; | |
719 | } | |
dd3b648e RP |
720 | } |
721 | else if (code == TYPE_CODE_MEMBER) | |
722 | error ("not implemented: member types in unpack_long"); | |
35505d07 JG |
723 | else if (code == TYPE_CODE_CHAR) |
724 | return *(unsigned char *)valaddr; | |
dd3b648e RP |
725 | |
726 | error ("Value not integer or pointer."); | |
727 | return 0; /* For lint -- never reached */ | |
728 | } | |
729 | ||
730 | /* Return a double value from the specified type and address. | |
731 | INVP points to an int which is set to 0 for valid value, | |
732 | 1 for invalid value (bad float format). In either case, | |
733 | the returned double is OK to use. Argument is in target | |
734 | format, result is in host format. */ | |
735 | ||
736 | double | |
737 | unpack_double (type, valaddr, invp) | |
738 | struct type *type; | |
739 | char *valaddr; | |
740 | int *invp; | |
741 | { | |
742 | register enum type_code code = TYPE_CODE (type); | |
743 | register int len = TYPE_LENGTH (type); | |
744 | register int nosign = TYPE_UNSIGNED (type); | |
745 | ||
746 | *invp = 0; /* Assume valid. */ | |
747 | if (code == TYPE_CODE_FLT) | |
748 | { | |
749 | if (INVALID_FLOAT (valaddr, len)) | |
750 | { | |
751 | *invp = 1; | |
752 | return 1.234567891011121314; | |
753 | } | |
754 | ||
755 | if (len == sizeof (float)) | |
756 | { | |
757 | float retval; | |
4ed3a9ea | 758 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
759 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
760 | return retval; | |
761 | } | |
762 | ||
763 | if (len == sizeof (double)) | |
764 | { | |
765 | double retval; | |
4ed3a9ea | 766 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
767 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
768 | return retval; | |
769 | } | |
770 | else | |
771 | { | |
772 | error ("Unexpected type of floating point number."); | |
e1ce8aa5 | 773 | return 0; /* Placate lint. */ |
dd3b648e RP |
774 | } |
775 | } | |
776 | else if (nosign) { | |
777 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
778 | #ifdef LONG_LONG | |
779 | return (unsigned long long) unpack_long (type, valaddr); | |
780 | #else | |
781 | return (unsigned long ) unpack_long (type, valaddr); | |
782 | #endif | |
783 | } else { | |
784 | /* Signed -- we are OK with unpack_long. */ | |
785 | return unpack_long (type, valaddr); | |
786 | } | |
787 | } | |
e1ce8aa5 JK |
788 | |
789 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
790 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
791 | We don't assume any alignment for the raw data. Return value is in | |
792 | host byte order. | |
793 | ||
794 | If you want functions and arrays to be coerced to pointers, and | |
795 | references to be dereferenced, call value_as_pointer() instead. | |
796 | ||
797 | C++: It is assumed that the front-end has taken care of | |
798 | all matters concerning pointers to members. A pointer | |
799 | to member which reaches here is considered to be equivalent | |
800 | to an INT (or some size). After all, it is only an offset. */ | |
801 | ||
802 | CORE_ADDR | |
803 | unpack_pointer (type, valaddr) | |
804 | struct type *type; | |
805 | char *valaddr; | |
806 | { | |
2bff8e38 JK |
807 | #if 0 |
808 | /* The user should be able to use an int (e.g. 0x7892) in contexts | |
809 | where a pointer is expected. So this doesn't do enough. */ | |
e1ce8aa5 JK |
810 | register enum type_code code = TYPE_CODE (type); |
811 | register int len = TYPE_LENGTH (type); | |
812 | ||
813 | if (code == TYPE_CODE_PTR | |
814 | || code == TYPE_CODE_REF) | |
815 | { | |
816 | if (len == sizeof (CORE_ADDR)) | |
817 | { | |
818 | CORE_ADDR retval; | |
4ed3a9ea | 819 | memcpy (&retval, valaddr, sizeof (retval)); |
e1ce8aa5 JK |
820 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
821 | return retval; | |
822 | } | |
823 | error ("Unrecognized pointer size."); | |
824 | } | |
825 | else if (code == TYPE_CODE_MEMBER) | |
826 | error ("not implemented: member types in unpack_pointer"); | |
827 | ||
828 | error ("Value is not a pointer."); | |
829 | return 0; /* For lint -- never reached */ | |
2bff8e38 JK |
830 | #else |
831 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
832 | whether we want this to be true eventually. */ | |
833 | return unpack_long (type, valaddr); | |
834 | #endif | |
e1ce8aa5 | 835 | } |
dd3b648e RP |
836 | \f |
837 | /* Given a value ARG1 (offset by OFFSET bytes) | |
838 | of a struct or union type ARG_TYPE, | |
839 | extract and return the value of one of its fields. | |
840 | FIELDNO says which field. | |
841 | ||
842 | For C++, must also be able to return values from static fields */ | |
843 | ||
844 | value | |
845 | value_primitive_field (arg1, offset, fieldno, arg_type) | |
846 | register value arg1; | |
847 | int offset; | |
848 | register int fieldno; | |
849 | register struct type *arg_type; | |
850 | { | |
851 | register value v; | |
852 | register struct type *type; | |
853 | ||
854 | check_stub_type (arg_type); | |
855 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
856 | ||
857 | /* Handle packed fields */ | |
858 | ||
859 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
860 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
861 | { | |
96b2f51c | 862 | v = value_from_longest (type, |
dd3b648e RP |
863 | unpack_field_as_long (arg_type, |
864 | VALUE_CONTENTS (arg1), | |
865 | fieldno)); | |
866 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
867 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
868 | } | |
869 | else | |
870 | { | |
871 | v = allocate_value (type); | |
872 | if (VALUE_LAZY (arg1)) | |
873 | VALUE_LAZY (v) = 1; | |
874 | else | |
4ed3a9ea FF |
875 | memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, |
876 | TYPE_LENGTH (type)); | |
dd3b648e RP |
877 | } |
878 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
879 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
880 | VALUE_LVAL (v) = lval_internalvar_component; | |
881 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
882 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
883 | return v; | |
884 | } | |
885 | ||
886 | /* Given a value ARG1 of a struct or union type, | |
887 | extract and return the value of one of its fields. | |
888 | FIELDNO says which field. | |
889 | ||
890 | For C++, must also be able to return values from static fields */ | |
891 | ||
892 | value | |
893 | value_field (arg1, fieldno) | |
894 | register value arg1; | |
895 | register int fieldno; | |
896 | { | |
897 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
898 | } | |
899 | ||
545af6ce PB |
900 | /* Return a non-virtual function as a value. |
901 | F is the list of member functions which contains the desired method. | |
902 | J is an index into F which provides the desired method. */ | |
903 | ||
dd3b648e | 904 | value |
94603999 JG |
905 | value_fn_field (arg1p, f, j, type, offset) |
906 | value *arg1p; | |
545af6ce PB |
907 | struct fn_field *f; |
908 | int j; | |
94603999 JG |
909 | struct type *type; |
910 | int offset; | |
dd3b648e RP |
911 | { |
912 | register value v; | |
94603999 | 913 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
dd3b648e RP |
914 | struct symbol *sym; |
915 | ||
545af6ce | 916 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), |
dd3b648e RP |
917 | 0, VAR_NAMESPACE, 0, NULL); |
918 | if (! sym) error ("Internal error: could not find physical method named %s", | |
545af6ce | 919 | TYPE_FN_FIELD_PHYSNAME (f, j)); |
dd3b648e | 920 | |
94603999 | 921 | v = allocate_value (ftype); |
dd3b648e | 922 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); |
94603999 JG |
923 | VALUE_TYPE (v) = ftype; |
924 | ||
925 | if (arg1p) | |
926 | { | |
927 | if (type != VALUE_TYPE (*arg1p)) | |
928 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
929 | value_addr (*arg1p))); | |
930 | ||
931 | /* Move the `this' pointer according to the offset. */ | |
932 | VALUE_OFFSET (*arg1p) += offset; | |
933 | } | |
934 | ||
dd3b648e RP |
935 | return v; |
936 | } | |
937 | ||
938 | /* Return a virtual function as a value. | |
939 | ARG1 is the object which provides the virtual function | |
94603999 | 940 | table pointer. *ARG1P is side-effected in calling this function. |
dd3b648e RP |
941 | F is the list of member functions which contains the desired virtual |
942 | function. | |
e532974c JK |
943 | J is an index into F which provides the desired virtual function. |
944 | ||
945 | TYPE is the type in which F is located. */ | |
dd3b648e | 946 | value |
94603999 JG |
947 | value_virtual_fn_field (arg1p, f, j, type, offset) |
948 | value *arg1p; | |
dd3b648e RP |
949 | struct fn_field *f; |
950 | int j; | |
e532974c | 951 | struct type *type; |
94603999 | 952 | int offset; |
dd3b648e | 953 | { |
94603999 | 954 | value arg1 = *arg1p; |
dd3b648e RP |
955 | /* First, get the virtual function table pointer. That comes |
956 | with a strange type, so cast it to type `pointer to long' (which | |
957 | should serve just fine as a function type). Then, index into | |
958 | the table, and convert final value to appropriate function type. */ | |
959 | value entry, vfn, vtbl; | |
96b2f51c | 960 | value vi = value_from_longest (builtin_type_int, |
dd3b648e | 961 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); |
e532974c JK |
962 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
963 | struct type *context; | |
964 | if (fcontext == NULL) | |
965 | /* We don't have an fcontext (e.g. the program was compiled with | |
966 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
967 | This won't work right for multiple inheritance, but at least we | |
968 | should do as well as GDB 3.x did. */ | |
969 | fcontext = TYPE_VPTR_BASETYPE (type); | |
970 | context = lookup_pointer_type (fcontext); | |
971 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
dd3b648e RP |
972 | if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1)) |
973 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
974 | ||
975 | context = VALUE_TYPE (arg1); | |
e532974c | 976 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
977 | |
978 | /* This type may have been defined before its virtual function table | |
979 | was. If so, fill in the virtual function table entry for the | |
980 | type now. */ | |
981 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 982 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
983 | |
984 | /* The virtual function table is now an array of structures | |
985 | which have the form { int16 offset, delta; void *pfn; }. */ | |
94603999 JG |
986 | vtbl = value_ind (value_primitive_field (arg1, 0, |
987 | TYPE_VPTR_FIELDNO (context), | |
988 | TYPE_VPTR_BASETYPE (context))); | |
dd3b648e RP |
989 | |
990 | /* Index into the virtual function table. This is hard-coded because | |
991 | looking up a field is not cheap, and it may be important to save | |
992 | time, e.g. if the user has set a conditional breakpoint calling | |
993 | a virtual function. */ | |
994 | entry = value_subscript (vtbl, vi); | |
995 | ||
996 | /* Move the `this' pointer according to the virtual function table. */ | |
94603999 | 997 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)) + offset; |
dd3b648e RP |
998 | if (! VALUE_LAZY (arg1)) |
999 | { | |
1000 | VALUE_LAZY (arg1) = 1; | |
1001 | value_fetch_lazy (arg1); | |
1002 | } | |
1003 | ||
1004 | vfn = value_field (entry, 2); | |
1005 | /* Reinstantiate the function pointer with the correct type. */ | |
1006 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
1007 | ||
94603999 | 1008 | *arg1p = arg1; |
dd3b648e RP |
1009 | return vfn; |
1010 | } | |
1011 | ||
71b16efa JK |
1012 | /* ARG is a pointer to an object we know to be at least |
1013 | a DTYPE. BTYPE is the most derived basetype that has | |
1014 | already been searched (and need not be searched again). | |
1015 | After looking at the vtables between BTYPE and DTYPE, | |
1016 | return the most derived type we find. The caller must | |
1017 | be satisfied when the return value == DTYPE. | |
1018 | ||
1019 | FIXME-tiemann: should work with dossier entries as well. */ | |
1020 | ||
1021 | static value | |
7cb0f870 MT |
1022 | value_headof (in_arg, btype, dtype) |
1023 | value in_arg; | |
71b16efa JK |
1024 | struct type *btype, *dtype; |
1025 | { | |
1026 | /* First collect the vtables we must look at for this object. */ | |
1027 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
7cb0f870 | 1028 | value arg, vtbl, entry, best_entry = 0; |
71b16efa JK |
1029 | int i, nelems; |
1030 | int offset, best_offset = 0; | |
1031 | struct symbol *sym; | |
1032 | CORE_ADDR pc_for_sym; | |
1033 | char *demangled_name; | |
1ab3bf1b JG |
1034 | struct minimal_symbol *msymbol; |
1035 | ||
aec4cb91 MT |
1036 | btype = TYPE_VPTR_BASETYPE (dtype); |
1037 | check_stub_type (btype); | |
7cb0f870 | 1038 | arg = in_arg; |
aec4cb91 | 1039 | if (btype != dtype) |
7cb0f870 MT |
1040 | arg = value_cast (lookup_pointer_type (btype), arg); |
1041 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
1042 | |
1043 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1ab3bf1b JG |
1044 | msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); |
1045 | if (msymbol == NULL | |
2e4964ad | 1046 | || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol))) |
71b16efa JK |
1047 | { |
1048 | /* If we expected to find a vtable, but did not, let the user | |
1049 | know that we aren't happy, but don't throw an error. | |
1050 | FIXME: there has to be a better way to do this. */ | |
1051 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
7cb0f870 | 1052 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); |
71b16efa | 1053 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); |
7cb0f870 MT |
1054 | VALUE_TYPE (in_arg) = error_type; |
1055 | return in_arg; | |
71b16efa JK |
1056 | } |
1057 | ||
1058 | /* Now search through the virtual function table. */ | |
1059 | entry = value_ind (vtbl); | |
e1ce8aa5 | 1060 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
1061 | for (i = 1; i <= nelems; i++) |
1062 | { | |
96b2f51c JG |
1063 | entry = value_subscript (vtbl, value_from_longest (builtin_type_int, |
1064 | (LONGEST) i)); | |
e1ce8aa5 | 1065 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
bcccec8c PB |
1066 | /* If we use '<=' we can handle single inheritance |
1067 | * where all offsets are zero - just use the first entry found. */ | |
1068 | if (offset <= best_offset) | |
71b16efa JK |
1069 | { |
1070 | best_offset = offset; | |
1071 | best_entry = entry; | |
1072 | } | |
1073 | } | |
71b16efa JK |
1074 | /* Move the pointer according to BEST_ENTRY's offset, and figure |
1075 | out what type we should return as the new pointer. */ | |
bcccec8c PB |
1076 | if (best_entry == 0) |
1077 | { | |
1078 | /* An alternative method (which should no longer be necessary). | |
1079 | * But we leave it in for future use, when we will hopefully | |
1080 | * have optimizes the vtable to use thunks instead of offsets. */ | |
1081 | /* Use the name of vtable itself to extract a base type. */ | |
1082 | demangled_name += 4; /* Skip _vt$ prefix. */ | |
1083 | } | |
1084 | else | |
1085 | { | |
1086 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); | |
1087 | sym = find_pc_function (pc_for_sym); | |
8050a57b | 1088 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); |
bcccec8c PB |
1089 | *(strchr (demangled_name, ':')) = '\0'; |
1090 | } | |
71b16efa | 1091 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
2e4964ad FF |
1092 | if (sym == NULL) |
1093 | error ("could not find type declaration for `%s'", demangled_name); | |
bcccec8c PB |
1094 | if (best_entry) |
1095 | { | |
1096 | free (demangled_name); | |
1097 | arg = value_add (value_cast (builtin_type_int, arg), | |
1098 | value_field (best_entry, 0)); | |
1099 | } | |
7cb0f870 | 1100 | else arg = in_arg; |
71b16efa JK |
1101 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
1102 | return arg; | |
1103 | } | |
1104 | ||
1105 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
1106 | function tables, probe ARG's tables (including the vtables | |
1107 | of its baseclasses) to figure out the most derived type that ARG | |
1108 | could actually be a pointer to. */ | |
1109 | ||
1110 | value | |
1111 | value_from_vtable_info (arg, type) | |
1112 | value arg; | |
1113 | struct type *type; | |
1114 | { | |
1115 | /* Take care of preliminaries. */ | |
1116 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1117 | fill_in_vptr_fieldno (type); | |
1118 | if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg)) | |
1119 | return 0; | |
1120 | ||
1121 | return value_headof (arg, 0, type); | |
1122 | } | |
1123 | ||
94603999 JG |
1124 | /* Compute the offset of the baseclass which is |
1125 | the INDEXth baseclass of class TYPE, for a value ARG, | |
1126 | wih extra offset of OFFSET. | |
1127 | The result is the offste of the baseclass value relative | |
1128 | to (the address of)(ARG) + OFFSET. | |
1129 | ||
1130 | -1 is returned on error. */ | |
1131 | ||
1132 | int | |
1133 | baseclass_offset (type, index, arg, offset) | |
1134 | struct type *type; | |
1135 | int index; | |
1136 | value arg; | |
1137 | int offset; | |
1138 | { | |
1139 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1140 | ||
1141 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1142 | { | |
1143 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1144 | register int i, len = TYPE_NFIELDS (type); | |
1145 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
1146 | char *vbase_name, *type_name = type_name_no_tag (basetype); | |
1147 | ||
1148 | vbase_name = (char *)alloca (strlen (type_name) + 8); | |
1149 | sprintf (vbase_name, "_vb%c%s", CPLUS_MARKER, type_name); | |
1150 | /* First look for the virtual baseclass pointer | |
1151 | in the fields. */ | |
1152 | for (i = n_baseclasses; i < len; i++) | |
1153 | { | |
2e4964ad | 1154 | if (STREQ (vbase_name, TYPE_FIELD_NAME (type, i))) |
94603999 JG |
1155 | { |
1156 | CORE_ADDR addr | |
1157 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
1158 | VALUE_CONTENTS (arg) + VALUE_OFFSET (arg) | |
1159 | + offset | |
1160 | + (TYPE_FIELD_BITPOS (type, i) / 8)); | |
1161 | ||
1162 | if (VALUE_LVAL (arg) != lval_memory) | |
1163 | return -1; | |
1164 | ||
1165 | return addr - | |
1166 | (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset); | |
1167 | } | |
1168 | } | |
1169 | /* Not in the fields, so try looking through the baseclasses. */ | |
1170 | for (i = index+1; i < n_baseclasses; i++) | |
1171 | { | |
1172 | int boffset = | |
1173 | baseclass_offset (type, i, arg, offset); | |
1174 | if (boffset) | |
1175 | return boffset; | |
1176 | } | |
1177 | /* Not found. */ | |
1178 | return -1; | |
1179 | } | |
1180 | ||
1181 | /* Baseclass is easily computed. */ | |
1182 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1183 | } | |
1184 | ||
dd3b648e | 1185 | /* Compute the address of the baseclass which is |
f1d77e90 | 1186 | the INDEXth baseclass of class TYPE. The TYPE base |
71b16efa JK |
1187 | of the object is at VALADDR. |
1188 | ||
1189 | If ERRP is non-NULL, set *ERRP to be the errno code of any error, | |
1190 | or 0 if no error. In that case the return value is not the address | |
1191 | of the baseclasss, but the address which could not be read | |
1192 | successfully. */ | |
dd3b648e | 1193 | |
94603999 JG |
1194 | /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */ |
1195 | ||
dd3b648e | 1196 | char * |
71b16efa | 1197 | baseclass_addr (type, index, valaddr, valuep, errp) |
dd3b648e RP |
1198 | struct type *type; |
1199 | int index; | |
1200 | char *valaddr; | |
1201 | value *valuep; | |
71b16efa | 1202 | int *errp; |
dd3b648e RP |
1203 | { |
1204 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1205 | ||
71b16efa JK |
1206 | if (errp) |
1207 | *errp = 0; | |
aec4cb91 | 1208 | |
dd3b648e RP |
1209 | if (BASETYPE_VIA_VIRTUAL (type, index)) |
1210 | { | |
1211 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1212 | register int i, len = TYPE_NFIELDS (type); | |
1213 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
1214 | char *vbase_name, *type_name = type_name_no_tag (basetype); | |
1215 | ||
dd3b648e | 1216 | vbase_name = (char *)alloca (strlen (type_name) + 8); |
394171ac | 1217 | sprintf (vbase_name, "_vb%c%s", CPLUS_MARKER, type_name); |
dd3b648e RP |
1218 | /* First look for the virtual baseclass pointer |
1219 | in the fields. */ | |
1220 | for (i = n_baseclasses; i < len; i++) | |
1221 | { | |
2e4964ad | 1222 | if (STREQ (vbase_name, TYPE_FIELD_NAME (type, i))) |
dd3b648e | 1223 | { |
71b16efa JK |
1224 | value val = allocate_value (basetype); |
1225 | CORE_ADDR addr; | |
1226 | int status; | |
1227 | ||
e1ce8aa5 JK |
1228 | addr |
1229 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
71b16efa JK |
1230 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
1231 | ||
1232 | status = target_read_memory (addr, | |
1233 | VALUE_CONTENTS_RAW (val), | |
4f6f12f9 | 1234 | TYPE_LENGTH (basetype)); |
71b16efa JK |
1235 | VALUE_LVAL (val) = lval_memory; |
1236 | VALUE_ADDRESS (val) = addr; | |
1237 | ||
1238 | if (status != 0) | |
1239 | { | |
1240 | if (valuep) | |
1241 | *valuep = NULL; | |
1242 | release_value (val); | |
1243 | value_free (val); | |
1244 | if (errp) | |
1245 | *errp = status; | |
1246 | return (char *)addr; | |
1247 | } | |
1248 | else | |
1249 | { | |
1250 | if (valuep) | |
1251 | *valuep = val; | |
1252 | return (char *) VALUE_CONTENTS (val); | |
1253 | } | |
dd3b648e RP |
1254 | } |
1255 | } | |
1256 | /* Not in the fields, so try looking through the baseclasses. */ | |
1257 | for (i = index+1; i < n_baseclasses; i++) | |
1258 | { | |
1259 | char *baddr; | |
1260 | ||
e1ce8aa5 | 1261 | baddr = baseclass_addr (type, i, valaddr, valuep, errp); |
dd3b648e RP |
1262 | if (baddr) |
1263 | return baddr; | |
1264 | } | |
1265 | /* Not found. */ | |
1266 | if (valuep) | |
1267 | *valuep = 0; | |
1268 | return 0; | |
1269 | } | |
1270 | ||
1271 | /* Baseclass is easily computed. */ | |
1272 | if (valuep) | |
1273 | *valuep = 0; | |
1274 | return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1275 | } | |
dd3b648e | 1276 | \f |
4db8e515 FF |
1277 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
1278 | VALADDR. | |
1279 | ||
1280 | Extracting bits depends on endianness of the machine. Compute the | |
1281 | number of least significant bits to discard. For big endian machines, | |
1282 | we compute the total number of bits in the anonymous object, subtract | |
1283 | off the bit count from the MSB of the object to the MSB of the | |
1284 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1285 | count. For little endian machines, the discard count is simply the | |
1286 | number of bits from the LSB of the anonymous object to the LSB of the | |
1287 | bitfield. | |
1288 | ||
1289 | If the field is signed, we also do sign extension. */ | |
1290 | ||
1291 | LONGEST | |
dd3b648e RP |
1292 | unpack_field_as_long (type, valaddr, fieldno) |
1293 | struct type *type; | |
1294 | char *valaddr; | |
1295 | int fieldno; | |
1296 | { | |
4db8e515 FF |
1297 | unsigned LONGEST val; |
1298 | unsigned LONGEST valmask; | |
dd3b648e RP |
1299 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
1300 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
4db8e515 | 1301 | int lsbcount; |
dd3b648e | 1302 | |
4ed3a9ea | 1303 | memcpy (&val, valaddr + bitpos / 8, sizeof (val)); |
4db8e515 FF |
1304 | SWAP_TARGET_AND_HOST (&val, sizeof (val)); |
1305 | ||
1306 | /* Extract bits. See comment above. */ | |
dd3b648e | 1307 | |
122ad9ab | 1308 | #if BITS_BIG_ENDIAN |
4db8e515 | 1309 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); |
dd3b648e | 1310 | #else |
4db8e515 | 1311 | lsbcount = (bitpos % 8); |
dd3b648e | 1312 | #endif |
4db8e515 | 1313 | val >>= lsbcount; |
dd3b648e | 1314 | |
4db8e515 FF |
1315 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
1316 | If the field is signed, and is negative, then sign extend. */ | |
1317 | ||
1318 | if ((bitsize > 0) && (bitsize < 8 * sizeof (val))) | |
1319 | { | |
1320 | valmask = (((unsigned LONGEST) 1) << bitsize) - 1; | |
1321 | val &= valmask; | |
1322 | if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) | |
1323 | { | |
1324 | if (val & (valmask ^ (valmask >> 1))) | |
1325 | { | |
1326 | val |= ~valmask; | |
1327 | } | |
1328 | } | |
1329 | } | |
1330 | return (val); | |
dd3b648e RP |
1331 | } |
1332 | ||
3f2e006b JG |
1333 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1334 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1335 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1336 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1337 | ||
dd3b648e RP |
1338 | void |
1339 | modify_field (addr, fieldval, bitpos, bitsize) | |
1340 | char *addr; | |
1341 | int fieldval; | |
1342 | int bitpos, bitsize; | |
1343 | { | |
1344 | long oword; | |
1345 | ||
c3a21801 JG |
1346 | /* Reject values too big to fit in the field in question, |
1347 | otherwise adjoining fields may be corrupted. */ | |
61a7292f SG |
1348 | if (bitsize < (8 * sizeof (fieldval)) |
1349 | && 0 != (fieldval & ~((1<<bitsize)-1))) | |
dd3b648e RP |
1350 | error ("Value %d does not fit in %d bits.", fieldval, bitsize); |
1351 | ||
4ed3a9ea | 1352 | memcpy (&oword, addr, sizeof oword); |
3f2e006b | 1353 | SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */ |
dd3b648e | 1354 | |
3f2e006b | 1355 | /* Shifting for bit field depends on endianness of the target machine. */ |
122ad9ab | 1356 | #if BITS_BIG_ENDIAN |
dd3b648e RP |
1357 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; |
1358 | #endif | |
1359 | ||
c3a21801 JG |
1360 | /* Mask out old value, while avoiding shifts >= longword size */ |
1361 | if (bitsize < 8 * sizeof (oword)) | |
1362 | oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos); | |
1363 | else | |
1364 | oword &= ~((-1) << bitpos); | |
dd3b648e | 1365 | oword |= fieldval << bitpos; |
3f2e006b JG |
1366 | |
1367 | SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */ | |
4ed3a9ea | 1368 | memcpy (addr, &oword, sizeof oword); |
dd3b648e RP |
1369 | } |
1370 | \f | |
1371 | /* Convert C numbers into newly allocated values */ | |
1372 | ||
1373 | value | |
96b2f51c | 1374 | value_from_longest (type, num) |
dd3b648e RP |
1375 | struct type *type; |
1376 | register LONGEST num; | |
1377 | { | |
1378 | register value val = allocate_value (type); | |
1379 | register enum type_code code = TYPE_CODE (type); | |
1380 | register int len = TYPE_LENGTH (type); | |
1381 | ||
96b2f51c JG |
1382 | /* FIXME, we assume that pointers have the same form and byte order as |
1383 | integers, and that all pointers have the same form. */ | |
35505d07 | 1384 | if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM || |
01be6913 | 1385 | code == TYPE_CODE_CHAR || code == TYPE_CODE_PTR || |
e58de8a2 | 1386 | code == TYPE_CODE_REF || code == TYPE_CODE_BOOL) |
dd3b648e RP |
1387 | { |
1388 | if (len == sizeof (char)) | |
1389 | * (char *) VALUE_CONTENTS_RAW (val) = num; | |
1390 | else if (len == sizeof (short)) | |
1391 | * (short *) VALUE_CONTENTS_RAW (val) = num; | |
1392 | else if (len == sizeof (int)) | |
1393 | * (int *) VALUE_CONTENTS_RAW (val) = num; | |
1394 | else if (len == sizeof (long)) | |
1395 | * (long *) VALUE_CONTENTS_RAW (val) = num; | |
1396 | #ifdef LONG_LONG | |
1397 | else if (len == sizeof (long long)) | |
1398 | * (long long *) VALUE_CONTENTS_RAW (val) = num; | |
1399 | #endif | |
1400 | else | |
1401 | error ("Integer type encountered with unexpected data length."); | |
1402 | } | |
1403 | else | |
1404 | error ("Unexpected type encountered for integer constant."); | |
1405 | ||
1406 | /* num was in host byte order. So now put the value's contents | |
1407 | into target byte order. */ | |
1408 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len); | |
1409 | ||
1410 | return val; | |
1411 | } | |
1412 | ||
1413 | value | |
1414 | value_from_double (type, num) | |
1415 | struct type *type; | |
1416 | double num; | |
1417 | { | |
1418 | register value val = allocate_value (type); | |
1419 | register enum type_code code = TYPE_CODE (type); | |
1420 | register int len = TYPE_LENGTH (type); | |
1421 | ||
1422 | if (code == TYPE_CODE_FLT) | |
1423 | { | |
1424 | if (len == sizeof (float)) | |
1425 | * (float *) VALUE_CONTENTS_RAW (val) = num; | |
1426 | else if (len == sizeof (double)) | |
1427 | * (double *) VALUE_CONTENTS_RAW (val) = num; | |
1428 | else | |
1429 | error ("Floating type encountered with unexpected data length."); | |
1430 | } | |
1431 | else | |
1432 | error ("Unexpected type encountered for floating constant."); | |
1433 | ||
1434 | /* num was in host byte order. So now put the value's contents | |
1435 | into target byte order. */ | |
1436 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len); | |
1437 | ||
1438 | return val; | |
1439 | } | |
1440 | \f | |
1441 | /* Deal with the value that is "about to be returned". */ | |
1442 | ||
1443 | /* Return the value that a function returning now | |
1444 | would be returning to its caller, assuming its type is VALTYPE. | |
1445 | RETBUF is where we look for what ought to be the contents | |
1446 | of the registers (in raw form). This is because it is often | |
1447 | desirable to restore old values to those registers | |
1448 | after saving the contents of interest, and then call | |
1449 | this function using the saved values. | |
1450 | struct_return is non-zero when the function in question is | |
1451 | using the structure return conventions on the machine in question; | |
1452 | 0 when it is using the value returning conventions (this often | |
1453 | means returning pointer to where structure is vs. returning value). */ | |
1454 | ||
1455 | value | |
1456 | value_being_returned (valtype, retbuf, struct_return) | |
1457 | register struct type *valtype; | |
1458 | char retbuf[REGISTER_BYTES]; | |
1459 | int struct_return; | |
1460 | /*ARGSUSED*/ | |
1461 | { | |
1462 | register value val; | |
1463 | CORE_ADDR addr; | |
1464 | ||
1465 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1466 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1467 | if (struct_return) { | |
1468 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1469 | if (!addr) | |
1470 | error ("Function return value unknown"); | |
1471 | return value_at (valtype, addr); | |
1472 | } | |
1473 | #endif | |
1474 | ||
1475 | val = allocate_value (valtype); | |
1476 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); | |
1477 | ||
1478 | return val; | |
1479 | } | |
1480 | ||
1481 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1482 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1483 | and TYPE is the type (which is known to be struct, union or array). | |
1484 | ||
1485 | On most machines, the struct convention is used unless we are | |
1486 | using gcc and the type is of a special size. */ | |
1487 | #if !defined (USE_STRUCT_CONVENTION) | |
1488 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
1489 | (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \ | |
1490 | || TYPE_LENGTH (value_type) == 2 \ | |
1491 | || TYPE_LENGTH (value_type) == 4 \ | |
1492 | || TYPE_LENGTH (value_type) == 8 \ | |
1493 | ) \ | |
1494 | )) | |
1495 | #endif | |
1496 | ||
1497 | /* Return true if the function specified is using the structure returning | |
1498 | convention on this machine to return arguments, or 0 if it is using | |
1499 | the value returning convention. FUNCTION is the value representing | |
1500 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1501 | is the type returned by the function. GCC_P is nonzero if compiled | |
1502 | with GCC. */ | |
1503 | ||
1504 | int | |
1505 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
1506 | value function; | |
1507 | CORE_ADDR funcaddr; | |
1508 | struct type *value_type; | |
1509 | int gcc_p; | |
1510 | /*ARGSUSED*/ | |
1511 | { | |
1512 | register enum type_code code = TYPE_CODE (value_type); | |
1513 | ||
1514 | if (code == TYPE_CODE_ERROR) | |
1515 | error ("Function return type unknown."); | |
1516 | ||
1517 | if (code == TYPE_CODE_STRUCT || | |
1518 | code == TYPE_CODE_UNION || | |
1519 | code == TYPE_CODE_ARRAY) | |
1520 | return USE_STRUCT_CONVENTION (gcc_p, value_type); | |
1521 | ||
1522 | return 0; | |
1523 | } | |
1524 | ||
1525 | /* Store VAL so it will be returned if a function returns now. | |
1526 | Does not verify that VAL's type matches what the current | |
1527 | function wants to return. */ | |
1528 | ||
1529 | void | |
1530 | set_return_value (val) | |
1531 | value val; | |
1532 | { | |
1533 | register enum type_code code = TYPE_CODE (VALUE_TYPE (val)); | |
1534 | double dbuf; | |
1535 | LONGEST lbuf; | |
1536 | ||
1537 | if (code == TYPE_CODE_ERROR) | |
1538 | error ("Function return type unknown."); | |
1539 | ||
f1d77e90 JG |
1540 | if ( code == TYPE_CODE_STRUCT |
1541 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ | |
1542 | error ("GDB does not support specifying a struct or union return value."); | |
dd3b648e RP |
1543 | |
1544 | /* FIXME, this is bogus. We don't know what the return conventions | |
1545 | are, or how values should be promoted.... */ | |
1546 | if (code == TYPE_CODE_FLT) | |
1547 | { | |
1548 | dbuf = value_as_double (val); | |
1549 | ||
1550 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf); | |
1551 | } | |
1552 | else | |
1553 | { | |
1554 | lbuf = value_as_long (val); | |
1555 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf); | |
1556 | } | |
1557 | } | |
1558 | \f | |
1559 | void | |
1560 | _initialize_values () | |
1561 | { | |
f266e564 | 1562 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1563 | "Debugger convenience (\"$foo\") variables.\n\ |
1564 | These variables are created when you assign them values;\n\ | |
1565 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1566 | A few convenience variables are given values automatically:\n\ | |
1567 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1568 | \"$__\" holds the contents of the last address examined with \"x\".", |
1569 | &showlist); | |
dd3b648e | 1570 | |
f266e564 JK |
1571 | add_cmd ("values", no_class, show_values, |
1572 | "Elements of value history around item number IDX (or last ten).", | |
1573 | &showlist); | |
dd3b648e | 1574 | } |