]>
Commit | Line | Data |
---|---|---|
7d9884b9 | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
8918bce0 PS |
2 | Copyright 1986, 1987, 1989, 1991, 1993, 1994 |
3 | Free Software Foundation, Inc. | |
dd3b648e RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
99a7de40 | 7 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 8 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
dd3b648e | 11 | |
99a7de40 | 12 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e | 20 | |
dd3b648e | 21 | #include "defs.h" |
d747e0af | 22 | #include <string.h> |
dd3b648e | 23 | #include "symtab.h" |
1ab3bf1b | 24 | #include "gdbtypes.h" |
dd3b648e RP |
25 | #include "value.h" |
26 | #include "gdbcore.h" | |
27 | #include "frame.h" | |
28 | #include "command.h" | |
f266e564 | 29 | #include "gdbcmd.h" |
ac88ca20 | 30 | #include "target.h" |
acc4efde | 31 | #include "language.h" |
8050a57b | 32 | #include "demangle.h" |
dd3b648e | 33 | |
1ab3bf1b JG |
34 | /* Local function prototypes. */ |
35 | ||
849d0896 PS |
36 | static value_ptr value_headof PARAMS ((value_ptr, struct type *, |
37 | struct type *)); | |
1ab3bf1b | 38 | |
82a2edfb | 39 | static void show_values PARAMS ((char *, int)); |
1ab3bf1b | 40 | |
82a2edfb | 41 | static void show_convenience PARAMS ((char *, int)); |
71b16efa | 42 | |
dd3b648e RP |
43 | /* The value-history records all the values printed |
44 | by print commands during this session. Each chunk | |
45 | records 60 consecutive values. The first chunk on | |
46 | the chain records the most recent values. | |
47 | The total number of values is in value_history_count. */ | |
48 | ||
49 | #define VALUE_HISTORY_CHUNK 60 | |
50 | ||
51 | struct value_history_chunk | |
52 | { | |
53 | struct value_history_chunk *next; | |
82a2edfb | 54 | value_ptr values[VALUE_HISTORY_CHUNK]; |
dd3b648e RP |
55 | }; |
56 | ||
57 | /* Chain of chunks now in use. */ | |
58 | ||
59 | static struct value_history_chunk *value_history_chain; | |
60 | ||
61 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
62 | \f |
63 | /* List of all value objects currently allocated | |
64 | (except for those released by calls to release_value) | |
65 | This is so they can be freed after each command. */ | |
66 | ||
82a2edfb | 67 | static value_ptr all_values; |
dd3b648e RP |
68 | |
69 | /* Allocate a value that has the correct length for type TYPE. */ | |
70 | ||
82a2edfb | 71 | value_ptr |
dd3b648e RP |
72 | allocate_value (type) |
73 | struct type *type; | |
74 | { | |
82a2edfb | 75 | register value_ptr val; |
dd3b648e RP |
76 | |
77 | check_stub_type (type); | |
78 | ||
82a2edfb | 79 | val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type)); |
dd3b648e RP |
80 | VALUE_NEXT (val) = all_values; |
81 | all_values = val; | |
82 | VALUE_TYPE (val) = type; | |
83 | VALUE_LVAL (val) = not_lval; | |
84 | VALUE_ADDRESS (val) = 0; | |
85 | VALUE_FRAME (val) = 0; | |
86 | VALUE_OFFSET (val) = 0; | |
87 | VALUE_BITPOS (val) = 0; | |
88 | VALUE_BITSIZE (val) = 0; | |
89 | VALUE_REPEATED (val) = 0; | |
90 | VALUE_REPETITIONS (val) = 0; | |
91 | VALUE_REGNO (val) = -1; | |
92 | VALUE_LAZY (val) = 0; | |
93 | VALUE_OPTIMIZED_OUT (val) = 0; | |
30974778 | 94 | val->modifiable = 1; |
dd3b648e RP |
95 | return val; |
96 | } | |
97 | ||
98 | /* Allocate a value that has the correct length | |
99 | for COUNT repetitions type TYPE. */ | |
100 | ||
82a2edfb | 101 | value_ptr |
dd3b648e RP |
102 | allocate_repeat_value (type, count) |
103 | struct type *type; | |
104 | int count; | |
105 | { | |
82a2edfb | 106 | register value_ptr val; |
dd3b648e | 107 | |
82a2edfb JK |
108 | val = |
109 | (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count); | |
dd3b648e RP |
110 | VALUE_NEXT (val) = all_values; |
111 | all_values = val; | |
112 | VALUE_TYPE (val) = type; | |
113 | VALUE_LVAL (val) = not_lval; | |
114 | VALUE_ADDRESS (val) = 0; | |
115 | VALUE_FRAME (val) = 0; | |
116 | VALUE_OFFSET (val) = 0; | |
117 | VALUE_BITPOS (val) = 0; | |
118 | VALUE_BITSIZE (val) = 0; | |
119 | VALUE_REPEATED (val) = 1; | |
120 | VALUE_REPETITIONS (val) = count; | |
121 | VALUE_REGNO (val) = -1; | |
122 | VALUE_LAZY (val) = 0; | |
123 | VALUE_OPTIMIZED_OUT (val) = 0; | |
124 | return val; | |
125 | } | |
126 | ||
fcb887ff JK |
127 | /* Return a mark in the value chain. All values allocated after the |
128 | mark is obtained (except for those released) are subject to being freed | |
129 | if a subsequent value_free_to_mark is passed the mark. */ | |
82a2edfb | 130 | value_ptr |
fcb887ff JK |
131 | value_mark () |
132 | { | |
133 | return all_values; | |
134 | } | |
135 | ||
136 | /* Free all values allocated since MARK was obtained by value_mark | |
137 | (except for those released). */ | |
138 | void | |
139 | value_free_to_mark (mark) | |
82a2edfb | 140 | value_ptr mark; |
fcb887ff | 141 | { |
82a2edfb | 142 | value_ptr val, next; |
fcb887ff JK |
143 | |
144 | for (val = all_values; val && val != mark; val = next) | |
145 | { | |
146 | next = VALUE_NEXT (val); | |
147 | value_free (val); | |
148 | } | |
149 | all_values = val; | |
150 | } | |
151 | ||
dd3b648e RP |
152 | /* Free all the values that have been allocated (except for those released). |
153 | Called after each command, successful or not. */ | |
154 | ||
155 | void | |
156 | free_all_values () | |
157 | { | |
82a2edfb | 158 | register value_ptr val, next; |
dd3b648e RP |
159 | |
160 | for (val = all_values; val; val = next) | |
161 | { | |
162 | next = VALUE_NEXT (val); | |
163 | value_free (val); | |
164 | } | |
165 | ||
166 | all_values = 0; | |
167 | } | |
168 | ||
169 | /* Remove VAL from the chain all_values | |
170 | so it will not be freed automatically. */ | |
171 | ||
172 | void | |
173 | release_value (val) | |
82a2edfb | 174 | register value_ptr val; |
dd3b648e | 175 | { |
82a2edfb | 176 | register value_ptr v; |
dd3b648e RP |
177 | |
178 | if (all_values == val) | |
179 | { | |
180 | all_values = val->next; | |
181 | return; | |
182 | } | |
183 | ||
184 | for (v = all_values; v; v = v->next) | |
185 | { | |
186 | if (v->next == val) | |
187 | { | |
188 | v->next = val->next; | |
189 | break; | |
190 | } | |
191 | } | |
192 | } | |
193 | ||
999dd04b JL |
194 | /* Release all values up to mark */ |
195 | value_ptr | |
196 | value_release_to_mark (mark) | |
197 | value_ptr mark; | |
198 | { | |
199 | value_ptr val, next; | |
200 | ||
201 | for (val = next = all_values; next; next = VALUE_NEXT (next)) | |
202 | if (VALUE_NEXT (next) == mark) | |
203 | { | |
204 | all_values = VALUE_NEXT (next); | |
205 | VALUE_NEXT (next) = 0; | |
206 | return val; | |
207 | } | |
208 | all_values = 0; | |
209 | return val; | |
210 | } | |
211 | ||
dd3b648e RP |
212 | /* Return a copy of the value ARG. |
213 | It contains the same contents, for same memory address, | |
214 | but it's a different block of storage. */ | |
215 | ||
82a2edfb | 216 | value_ptr |
dd3b648e | 217 | value_copy (arg) |
82a2edfb | 218 | value_ptr arg; |
dd3b648e | 219 | { |
82a2edfb | 220 | register value_ptr val; |
dd3b648e RP |
221 | register struct type *type = VALUE_TYPE (arg); |
222 | if (VALUE_REPEATED (arg)) | |
223 | val = allocate_repeat_value (type, VALUE_REPETITIONS (arg)); | |
224 | else | |
225 | val = allocate_value (type); | |
226 | VALUE_LVAL (val) = VALUE_LVAL (arg); | |
227 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
228 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
229 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
230 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
231 | VALUE_REGNO (val) = VALUE_REGNO (arg); | |
232 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
30974778 | 233 | val->modifiable = arg->modifiable; |
dd3b648e RP |
234 | if (!VALUE_LAZY (val)) |
235 | { | |
51b57ded FF |
236 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), |
237 | TYPE_LENGTH (VALUE_TYPE (arg)) | |
238 | * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1)); | |
dd3b648e RP |
239 | } |
240 | return val; | |
241 | } | |
242 | \f | |
243 | /* Access to the value history. */ | |
244 | ||
245 | /* Record a new value in the value history. | |
246 | Returns the absolute history index of the entry. | |
247 | Result of -1 indicates the value was not saved; otherwise it is the | |
248 | value history index of this new item. */ | |
249 | ||
250 | int | |
251 | record_latest_value (val) | |
82a2edfb | 252 | value_ptr val; |
dd3b648e RP |
253 | { |
254 | int i; | |
255 | ||
256 | /* Check error now if about to store an invalid float. We return -1 | |
257 | to the caller, but allow them to continue, e.g. to print it as "Nan". */ | |
4ed3a9ea FF |
258 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) |
259 | { | |
260 | unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i); | |
261 | if (i) return -1; /* Indicate value not saved in history */ | |
262 | } | |
dd3b648e | 263 | |
26a859ec PS |
264 | /* We don't want this value to have anything to do with the inferior anymore. |
265 | In particular, "set $1 = 50" should not affect the variable from which | |
266 | the value was taken, and fast watchpoints should be able to assume that | |
267 | a value on the value history never changes. */ | |
268 | if (VALUE_LAZY (val)) | |
269 | value_fetch_lazy (val); | |
270 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
271 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
272 | but the current contents of that location. c'est la vie... */ | |
273 | val->modifiable = 0; | |
274 | release_value (val); | |
275 | ||
dd3b648e RP |
276 | /* Here we treat value_history_count as origin-zero |
277 | and applying to the value being stored now. */ | |
278 | ||
279 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
280 | if (i == 0) | |
281 | { | |
282 | register struct value_history_chunk *new | |
283 | = (struct value_history_chunk *) | |
284 | xmalloc (sizeof (struct value_history_chunk)); | |
4ed3a9ea | 285 | memset (new->values, 0, sizeof new->values); |
dd3b648e RP |
286 | new->next = value_history_chain; |
287 | value_history_chain = new; | |
288 | } | |
289 | ||
290 | value_history_chain->values[i] = val; | |
4abc83b9 | 291 | |
dd3b648e RP |
292 | /* Now we regard value_history_count as origin-one |
293 | and applying to the value just stored. */ | |
294 | ||
295 | return ++value_history_count; | |
296 | } | |
297 | ||
298 | /* Return a copy of the value in the history with sequence number NUM. */ | |
299 | ||
82a2edfb | 300 | value_ptr |
dd3b648e RP |
301 | access_value_history (num) |
302 | int num; | |
303 | { | |
304 | register struct value_history_chunk *chunk; | |
305 | register int i; | |
306 | register int absnum = num; | |
307 | ||
308 | if (absnum <= 0) | |
309 | absnum += value_history_count; | |
310 | ||
311 | if (absnum <= 0) | |
312 | { | |
313 | if (num == 0) | |
314 | error ("The history is empty."); | |
315 | else if (num == 1) | |
316 | error ("There is only one value in the history."); | |
317 | else | |
318 | error ("History does not go back to $$%d.", -num); | |
319 | } | |
320 | if (absnum > value_history_count) | |
321 | error ("History has not yet reached $%d.", absnum); | |
322 | ||
323 | absnum--; | |
324 | ||
325 | /* Now absnum is always absolute and origin zero. */ | |
326 | ||
327 | chunk = value_history_chain; | |
328 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
329 | i > 0; i--) | |
330 | chunk = chunk->next; | |
331 | ||
332 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
333 | } | |
334 | ||
335 | /* Clear the value history entirely. | |
336 | Must be done when new symbol tables are loaded, | |
337 | because the type pointers become invalid. */ | |
338 | ||
339 | void | |
340 | clear_value_history () | |
341 | { | |
342 | register struct value_history_chunk *next; | |
343 | register int i; | |
82a2edfb | 344 | register value_ptr val; |
dd3b648e RP |
345 | |
346 | while (value_history_chain) | |
347 | { | |
348 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
a8a69e63 | 349 | if ((val = value_history_chain->values[i]) != NULL) |
be772100 | 350 | free ((PTR)val); |
dd3b648e | 351 | next = value_history_chain->next; |
be772100 | 352 | free ((PTR)value_history_chain); |
dd3b648e RP |
353 | value_history_chain = next; |
354 | } | |
355 | value_history_count = 0; | |
356 | } | |
357 | ||
358 | static void | |
f266e564 | 359 | show_values (num_exp, from_tty) |
dd3b648e RP |
360 | char *num_exp; |
361 | int from_tty; | |
362 | { | |
363 | register int i; | |
82a2edfb | 364 | register value_ptr val; |
dd3b648e RP |
365 | static int num = 1; |
366 | ||
367 | if (num_exp) | |
368 | { | |
46c28185 RP |
369 | /* "info history +" should print from the stored position. |
370 | "info history <exp>" should print around value number <exp>. */ | |
371 | if (num_exp[0] != '+' || num_exp[1] != '\0') | |
dd3b648e RP |
372 | num = parse_and_eval_address (num_exp) - 5; |
373 | } | |
374 | else | |
375 | { | |
376 | /* "info history" means print the last 10 values. */ | |
377 | num = value_history_count - 9; | |
378 | } | |
379 | ||
380 | if (num <= 0) | |
381 | num = 1; | |
382 | ||
383 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
384 | { | |
385 | val = access_value_history (i); | |
386 | printf_filtered ("$%d = ", i); | |
199b2450 | 387 | value_print (val, gdb_stdout, 0, Val_pretty_default); |
dd3b648e RP |
388 | printf_filtered ("\n"); |
389 | } | |
390 | ||
391 | /* The next "info history +" should start after what we just printed. */ | |
392 | num += 10; | |
393 | ||
394 | /* Hitting just return after this command should do the same thing as | |
395 | "info history +". If num_exp is null, this is unnecessary, since | |
396 | "info history +" is not useful after "info history". */ | |
397 | if (from_tty && num_exp) | |
398 | { | |
399 | num_exp[0] = '+'; | |
400 | num_exp[1] = '\0'; | |
401 | } | |
402 | } | |
403 | \f | |
404 | /* Internal variables. These are variables within the debugger | |
405 | that hold values assigned by debugger commands. | |
406 | The user refers to them with a '$' prefix | |
407 | that does not appear in the variable names stored internally. */ | |
408 | ||
409 | static struct internalvar *internalvars; | |
410 | ||
411 | /* Look up an internal variable with name NAME. NAME should not | |
412 | normally include a dollar sign. | |
413 | ||
414 | If the specified internal variable does not exist, | |
415 | one is created, with a void value. */ | |
416 | ||
417 | struct internalvar * | |
418 | lookup_internalvar (name) | |
419 | char *name; | |
420 | { | |
421 | register struct internalvar *var; | |
422 | ||
423 | for (var = internalvars; var; var = var->next) | |
2e4964ad | 424 | if (STREQ (var->name, name)) |
dd3b648e RP |
425 | return var; |
426 | ||
427 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
58ae87f6 | 428 | var->name = concat (name, NULL); |
dd3b648e RP |
429 | var->value = allocate_value (builtin_type_void); |
430 | release_value (var->value); | |
431 | var->next = internalvars; | |
432 | internalvars = var; | |
433 | return var; | |
434 | } | |
435 | ||
82a2edfb | 436 | value_ptr |
dd3b648e RP |
437 | value_of_internalvar (var) |
438 | struct internalvar *var; | |
439 | { | |
82a2edfb | 440 | register value_ptr val; |
dd3b648e RP |
441 | |
442 | #ifdef IS_TRAPPED_INTERNALVAR | |
443 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
444 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
445 | #endif | |
446 | ||
447 | val = value_copy (var->value); | |
448 | if (VALUE_LAZY (val)) | |
449 | value_fetch_lazy (val); | |
450 | VALUE_LVAL (val) = lval_internalvar; | |
451 | VALUE_INTERNALVAR (val) = var; | |
452 | return val; | |
453 | } | |
454 | ||
455 | void | |
456 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
457 | struct internalvar *var; | |
458 | int offset, bitpos, bitsize; | |
82a2edfb | 459 | value_ptr newval; |
dd3b648e RP |
460 | { |
461 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
462 | ||
463 | #ifdef IS_TRAPPED_INTERNALVAR | |
464 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
465 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
466 | #endif | |
467 | ||
468 | if (bitsize) | |
58e49e21 | 469 | modify_field (addr, value_as_long (newval), |
dd3b648e RP |
470 | bitpos, bitsize); |
471 | else | |
4ed3a9ea | 472 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); |
dd3b648e RP |
473 | } |
474 | ||
475 | void | |
476 | set_internalvar (var, val) | |
477 | struct internalvar *var; | |
82a2edfb | 478 | value_ptr val; |
dd3b648e | 479 | { |
51f83933 JK |
480 | value_ptr newval; |
481 | ||
dd3b648e RP |
482 | #ifdef IS_TRAPPED_INTERNALVAR |
483 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
484 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
485 | #endif | |
486 | ||
51f83933 JK |
487 | newval = value_copy (val); |
488 | ||
6fab5bef JG |
489 | /* Force the value to be fetched from the target now, to avoid problems |
490 | later when this internalvar is referenced and the target is gone or | |
491 | has changed. */ | |
51f83933 JK |
492 | if (VALUE_LAZY (newval)) |
493 | value_fetch_lazy (newval); | |
494 | ||
495 | /* Begin code which must not call error(). If var->value points to | |
496 | something free'd, an error() obviously leaves a dangling pointer. | |
497 | But we also get a danling pointer if var->value points to | |
498 | something in the value chain (i.e., before release_value is | |
499 | called), because after the error free_all_values will get called before | |
500 | long. */ | |
501 | free ((PTR)var->value); | |
502 | var->value = newval; | |
503 | release_value (newval); | |
504 | /* End code which must not call error(). */ | |
dd3b648e RP |
505 | } |
506 | ||
507 | char * | |
508 | internalvar_name (var) | |
509 | struct internalvar *var; | |
510 | { | |
511 | return var->name; | |
512 | } | |
513 | ||
514 | /* Free all internalvars. Done when new symtabs are loaded, | |
515 | because that makes the values invalid. */ | |
516 | ||
517 | void | |
518 | clear_internalvars () | |
519 | { | |
520 | register struct internalvar *var; | |
521 | ||
522 | while (internalvars) | |
523 | { | |
524 | var = internalvars; | |
525 | internalvars = var->next; | |
be772100 JG |
526 | free ((PTR)var->name); |
527 | free ((PTR)var->value); | |
528 | free ((PTR)var); | |
dd3b648e RP |
529 | } |
530 | } | |
531 | ||
532 | static void | |
ac88ca20 JG |
533 | show_convenience (ignore, from_tty) |
534 | char *ignore; | |
535 | int from_tty; | |
dd3b648e RP |
536 | { |
537 | register struct internalvar *var; | |
538 | int varseen = 0; | |
539 | ||
540 | for (var = internalvars; var; var = var->next) | |
541 | { | |
542 | #ifdef IS_TRAPPED_INTERNALVAR | |
543 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
544 | continue; | |
545 | #endif | |
546 | if (!varseen) | |
547 | { | |
dd3b648e RP |
548 | varseen = 1; |
549 | } | |
afe4ca15 | 550 | printf_filtered ("$%s = ", var->name); |
199b2450 | 551 | value_print (var->value, gdb_stdout, 0, Val_pretty_default); |
afe4ca15 | 552 | printf_filtered ("\n"); |
dd3b648e RP |
553 | } |
554 | if (!varseen) | |
199b2450 | 555 | printf_unfiltered ("No debugger convenience variables now defined.\n\ |
dd3b648e RP |
556 | Convenience variables have names starting with \"$\";\n\ |
557 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
558 | } | |
559 | \f | |
560 | /* Extract a value as a C number (either long or double). | |
561 | Knows how to convert fixed values to double, or | |
562 | floating values to long. | |
563 | Does not deallocate the value. */ | |
564 | ||
565 | LONGEST | |
566 | value_as_long (val) | |
82a2edfb | 567 | register value_ptr val; |
dd3b648e RP |
568 | { |
569 | /* This coerces arrays and functions, which is necessary (e.g. | |
570 | in disassemble_command). It also dereferences references, which | |
571 | I suspect is the most logical thing to do. */ | |
572 | if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM) | |
573 | COERCE_ARRAY (val); | |
574 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); | |
575 | } | |
576 | ||
577 | double | |
578 | value_as_double (val) | |
82a2edfb | 579 | register value_ptr val; |
dd3b648e RP |
580 | { |
581 | double foo; | |
582 | int inv; | |
583 | ||
584 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
585 | if (inv) | |
586 | error ("Invalid floating value found in program."); | |
587 | return foo; | |
588 | } | |
e1ce8aa5 JK |
589 | /* Extract a value as a C pointer. |
590 | Does not deallocate the value. */ | |
591 | CORE_ADDR | |
592 | value_as_pointer (val) | |
82a2edfb | 593 | value_ptr val; |
e1ce8aa5 | 594 | { |
2bff8e38 JK |
595 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
596 | whether we want this to be true eventually. */ | |
b2ccb6a4 JK |
597 | #if 0 |
598 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
599 | non-address (e.g. argument to "signal", "info break", etc.), or | |
600 | for pointers to char, in which the low bits *are* significant. */ | |
ae0ea72e | 601 | return ADDR_BITS_REMOVE(value_as_long (val)); |
b2ccb6a4 JK |
602 | #else |
603 | return value_as_long (val); | |
604 | #endif | |
e1ce8aa5 | 605 | } |
dd3b648e RP |
606 | \f |
607 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
608 | as a long, or as a double, assuming the raw data is described | |
609 | by type TYPE. Knows how to convert different sizes of values | |
610 | and can convert between fixed and floating point. We don't assume | |
611 | any alignment for the raw data. Return value is in host byte order. | |
612 | ||
613 | If you want functions and arrays to be coerced to pointers, and | |
614 | references to be dereferenced, call value_as_long() instead. | |
615 | ||
616 | C++: It is assumed that the front-end has taken care of | |
617 | all matters concerning pointers to members. A pointer | |
618 | to member which reaches here is considered to be equivalent | |
619 | to an INT (or some size). After all, it is only an offset. */ | |
620 | ||
621 | LONGEST | |
622 | unpack_long (type, valaddr) | |
623 | struct type *type; | |
624 | char *valaddr; | |
625 | { | |
626 | register enum type_code code = TYPE_CODE (type); | |
627 | register int len = TYPE_LENGTH (type); | |
628 | register int nosign = TYPE_UNSIGNED (type); | |
629 | ||
bf5c0d64 | 630 | switch (code) |
dd3b648e | 631 | { |
bf5c0d64 JK |
632 | case TYPE_CODE_ENUM: |
633 | case TYPE_CODE_BOOL: | |
634 | case TYPE_CODE_INT: | |
635 | case TYPE_CODE_CHAR: | |
b96bc1e4 | 636 | case TYPE_CODE_RANGE: |
bf5c0d64 JK |
637 | if (nosign) |
638 | return extract_unsigned_integer (valaddr, len); | |
dd3b648e | 639 | else |
bf5c0d64 JK |
640 | return extract_signed_integer (valaddr, len); |
641 | ||
642 | case TYPE_CODE_FLT: | |
643 | return extract_floating (valaddr, len); | |
644 | ||
645 | case TYPE_CODE_PTR: | |
646 | case TYPE_CODE_REF: | |
647 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
648 | whether we want this to be true eventually. */ | |
34df79fc | 649 | return extract_address (valaddr, len); |
dd3b648e | 650 | |
bf5c0d64 JK |
651 | case TYPE_CODE_MEMBER: |
652 | error ("not implemented: member types in unpack_long"); | |
653 | ||
654 | default: | |
ca0865db | 655 | error ("Value can't be converted to integer."); |
bf5c0d64 JK |
656 | } |
657 | return 0; /* Placate lint. */ | |
dd3b648e RP |
658 | } |
659 | ||
660 | /* Return a double value from the specified type and address. | |
661 | INVP points to an int which is set to 0 for valid value, | |
662 | 1 for invalid value (bad float format). In either case, | |
663 | the returned double is OK to use. Argument is in target | |
664 | format, result is in host format. */ | |
665 | ||
666 | double | |
667 | unpack_double (type, valaddr, invp) | |
668 | struct type *type; | |
669 | char *valaddr; | |
670 | int *invp; | |
671 | { | |
672 | register enum type_code code = TYPE_CODE (type); | |
673 | register int len = TYPE_LENGTH (type); | |
674 | register int nosign = TYPE_UNSIGNED (type); | |
675 | ||
676 | *invp = 0; /* Assume valid. */ | |
677 | if (code == TYPE_CODE_FLT) | |
678 | { | |
ac57e5ad | 679 | #ifdef INVALID_FLOAT |
dd3b648e RP |
680 | if (INVALID_FLOAT (valaddr, len)) |
681 | { | |
682 | *invp = 1; | |
683 | return 1.234567891011121314; | |
684 | } | |
ac57e5ad | 685 | #endif |
89ce0c8f JK |
686 | return extract_floating (valaddr, len); |
687 | } | |
688 | else if (nosign) | |
689 | { | |
690 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
691 | return (unsigned LONGEST) unpack_long (type, valaddr); | |
692 | } | |
693 | else | |
694 | { | |
695 | /* Signed -- we are OK with unpack_long. */ | |
696 | return unpack_long (type, valaddr); | |
dd3b648e | 697 | } |
dd3b648e | 698 | } |
e1ce8aa5 JK |
699 | |
700 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
701 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
702 | We don't assume any alignment for the raw data. Return value is in | |
703 | host byte order. | |
704 | ||
705 | If you want functions and arrays to be coerced to pointers, and | |
706 | references to be dereferenced, call value_as_pointer() instead. | |
707 | ||
708 | C++: It is assumed that the front-end has taken care of | |
709 | all matters concerning pointers to members. A pointer | |
710 | to member which reaches here is considered to be equivalent | |
711 | to an INT (or some size). After all, it is only an offset. */ | |
712 | ||
713 | CORE_ADDR | |
714 | unpack_pointer (type, valaddr) | |
715 | struct type *type; | |
716 | char *valaddr; | |
717 | { | |
2bff8e38 JK |
718 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
719 | whether we want this to be true eventually. */ | |
720 | return unpack_long (type, valaddr); | |
e1ce8aa5 | 721 | } |
dd3b648e RP |
722 | \f |
723 | /* Given a value ARG1 (offset by OFFSET bytes) | |
724 | of a struct or union type ARG_TYPE, | |
725 | extract and return the value of one of its fields. | |
726 | FIELDNO says which field. | |
727 | ||
728 | For C++, must also be able to return values from static fields */ | |
729 | ||
82a2edfb | 730 | value_ptr |
dd3b648e | 731 | value_primitive_field (arg1, offset, fieldno, arg_type) |
82a2edfb | 732 | register value_ptr arg1; |
dd3b648e RP |
733 | int offset; |
734 | register int fieldno; | |
735 | register struct type *arg_type; | |
736 | { | |
82a2edfb | 737 | register value_ptr v; |
dd3b648e RP |
738 | register struct type *type; |
739 | ||
740 | check_stub_type (arg_type); | |
741 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
742 | ||
743 | /* Handle packed fields */ | |
744 | ||
745 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
746 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
747 | { | |
96b2f51c | 748 | v = value_from_longest (type, |
dd3b648e RP |
749 | unpack_field_as_long (arg_type, |
750 | VALUE_CONTENTS (arg1), | |
751 | fieldno)); | |
752 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
753 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
754 | } | |
755 | else | |
756 | { | |
757 | v = allocate_value (type); | |
758 | if (VALUE_LAZY (arg1)) | |
759 | VALUE_LAZY (v) = 1; | |
760 | else | |
4ed3a9ea FF |
761 | memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, |
762 | TYPE_LENGTH (type)); | |
dd3b648e RP |
763 | } |
764 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
765 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
766 | VALUE_LVAL (v) = lval_internalvar_component; | |
767 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
768 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
769 | return v; | |
770 | } | |
771 | ||
772 | /* Given a value ARG1 of a struct or union type, | |
773 | extract and return the value of one of its fields. | |
774 | FIELDNO says which field. | |
775 | ||
776 | For C++, must also be able to return values from static fields */ | |
777 | ||
82a2edfb | 778 | value_ptr |
dd3b648e | 779 | value_field (arg1, fieldno) |
82a2edfb | 780 | register value_ptr arg1; |
dd3b648e RP |
781 | register int fieldno; |
782 | { | |
783 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
784 | } | |
785 | ||
545af6ce PB |
786 | /* Return a non-virtual function as a value. |
787 | F is the list of member functions which contains the desired method. | |
788 | J is an index into F which provides the desired method. */ | |
789 | ||
82a2edfb | 790 | value_ptr |
94603999 | 791 | value_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 792 | value_ptr *arg1p; |
545af6ce PB |
793 | struct fn_field *f; |
794 | int j; | |
94603999 JG |
795 | struct type *type; |
796 | int offset; | |
dd3b648e | 797 | { |
82a2edfb | 798 | register value_ptr v; |
94603999 | 799 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
dd3b648e RP |
800 | struct symbol *sym; |
801 | ||
545af6ce | 802 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), |
dd3b648e | 803 | 0, VAR_NAMESPACE, 0, NULL); |
f1c6dbf6 | 804 | if (! sym) |
82a2edfb | 805 | return NULL; |
f1c6dbf6 KH |
806 | /* |
807 | error ("Internal error: could not find physical method named %s", | |
545af6ce | 808 | TYPE_FN_FIELD_PHYSNAME (f, j)); |
f1c6dbf6 | 809 | */ |
dd3b648e | 810 | |
94603999 | 811 | v = allocate_value (ftype); |
dd3b648e | 812 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); |
94603999 JG |
813 | VALUE_TYPE (v) = ftype; |
814 | ||
815 | if (arg1p) | |
816 | { | |
817 | if (type != VALUE_TYPE (*arg1p)) | |
818 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
819 | value_addr (*arg1p))); | |
820 | ||
dcd8fd8c | 821 | /* Move the `this' pointer according to the offset. |
94603999 | 822 | VALUE_OFFSET (*arg1p) += offset; |
dcd8fd8c | 823 | */ |
94603999 JG |
824 | } |
825 | ||
dd3b648e RP |
826 | return v; |
827 | } | |
828 | ||
829 | /* Return a virtual function as a value. | |
830 | ARG1 is the object which provides the virtual function | |
94603999 | 831 | table pointer. *ARG1P is side-effected in calling this function. |
dd3b648e RP |
832 | F is the list of member functions which contains the desired virtual |
833 | function. | |
e532974c JK |
834 | J is an index into F which provides the desired virtual function. |
835 | ||
836 | TYPE is the type in which F is located. */ | |
82a2edfb | 837 | value_ptr |
94603999 | 838 | value_virtual_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 839 | value_ptr *arg1p; |
dd3b648e RP |
840 | struct fn_field *f; |
841 | int j; | |
e532974c | 842 | struct type *type; |
94603999 | 843 | int offset; |
dd3b648e | 844 | { |
82a2edfb | 845 | value_ptr arg1 = *arg1p; |
dd3b648e RP |
846 | /* First, get the virtual function table pointer. That comes |
847 | with a strange type, so cast it to type `pointer to long' (which | |
848 | should serve just fine as a function type). Then, index into | |
849 | the table, and convert final value to appropriate function type. */ | |
82a2edfb JK |
850 | value_ptr entry, vfn, vtbl; |
851 | value_ptr vi = value_from_longest (builtin_type_int, | |
852 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); | |
e532974c JK |
853 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
854 | struct type *context; | |
855 | if (fcontext == NULL) | |
856 | /* We don't have an fcontext (e.g. the program was compiled with | |
857 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
858 | This won't work right for multiple inheritance, but at least we | |
859 | should do as well as GDB 3.x did. */ | |
860 | fcontext = TYPE_VPTR_BASETYPE (type); | |
861 | context = lookup_pointer_type (fcontext); | |
862 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
dd3b648e RP |
863 | if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1)) |
864 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
865 | ||
866 | context = VALUE_TYPE (arg1); | |
e532974c | 867 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
868 | |
869 | /* This type may have been defined before its virtual function table | |
870 | was. If so, fill in the virtual function table entry for the | |
871 | type now. */ | |
872 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 873 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
874 | |
875 | /* The virtual function table is now an array of structures | |
876 | which have the form { int16 offset, delta; void *pfn; }. */ | |
94603999 JG |
877 | vtbl = value_ind (value_primitive_field (arg1, 0, |
878 | TYPE_VPTR_FIELDNO (context), | |
879 | TYPE_VPTR_BASETYPE (context))); | |
dd3b648e RP |
880 | |
881 | /* Index into the virtual function table. This is hard-coded because | |
882 | looking up a field is not cheap, and it may be important to save | |
883 | time, e.g. if the user has set a conditional breakpoint calling | |
884 | a virtual function. */ | |
885 | entry = value_subscript (vtbl, vi); | |
886 | ||
36a2283d | 887 | if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT) |
dd3b648e | 888 | { |
36a2283d PB |
889 | /* Move the `this' pointer according to the virtual function table. */ |
890 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)); | |
891 | ||
892 | if (! VALUE_LAZY (arg1)) | |
893 | { | |
894 | VALUE_LAZY (arg1) = 1; | |
895 | value_fetch_lazy (arg1); | |
896 | } | |
dd3b648e | 897 | |
36a2283d PB |
898 | vfn = value_field (entry, 2); |
899 | } | |
900 | else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR) | |
901 | vfn = entry; | |
902 | else | |
903 | error ("I'm confused: virtual function table has bad type"); | |
dd3b648e RP |
904 | /* Reinstantiate the function pointer with the correct type. */ |
905 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
906 | ||
94603999 | 907 | *arg1p = arg1; |
dd3b648e RP |
908 | return vfn; |
909 | } | |
910 | ||
71b16efa JK |
911 | /* ARG is a pointer to an object we know to be at least |
912 | a DTYPE. BTYPE is the most derived basetype that has | |
913 | already been searched (and need not be searched again). | |
914 | After looking at the vtables between BTYPE and DTYPE, | |
915 | return the most derived type we find. The caller must | |
916 | be satisfied when the return value == DTYPE. | |
917 | ||
918 | FIXME-tiemann: should work with dossier entries as well. */ | |
919 | ||
82a2edfb | 920 | static value_ptr |
7cb0f870 | 921 | value_headof (in_arg, btype, dtype) |
82a2edfb | 922 | value_ptr in_arg; |
71b16efa JK |
923 | struct type *btype, *dtype; |
924 | { | |
925 | /* First collect the vtables we must look at for this object. */ | |
926 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
82a2edfb | 927 | value_ptr arg, vtbl, entry, best_entry = 0; |
71b16efa JK |
928 | int i, nelems; |
929 | int offset, best_offset = 0; | |
930 | struct symbol *sym; | |
931 | CORE_ADDR pc_for_sym; | |
932 | char *demangled_name; | |
1ab3bf1b JG |
933 | struct minimal_symbol *msymbol; |
934 | ||
aec4cb91 MT |
935 | btype = TYPE_VPTR_BASETYPE (dtype); |
936 | check_stub_type (btype); | |
7cb0f870 | 937 | arg = in_arg; |
aec4cb91 | 938 | if (btype != dtype) |
7cb0f870 MT |
939 | arg = value_cast (lookup_pointer_type (btype), arg); |
940 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
941 | |
942 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1ab3bf1b JG |
943 | msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); |
944 | if (msymbol == NULL | |
36a2283d PB |
945 | || (demangled_name = SYMBOL_NAME (msymbol)) == NULL |
946 | || !VTBL_PREFIX_P (demangled_name)) | |
71b16efa JK |
947 | { |
948 | /* If we expected to find a vtable, but did not, let the user | |
949 | know that we aren't happy, but don't throw an error. | |
950 | FIXME: there has to be a better way to do this. */ | |
951 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
7cb0f870 | 952 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); |
71b16efa | 953 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); |
7cb0f870 MT |
954 | VALUE_TYPE (in_arg) = error_type; |
955 | return in_arg; | |
71b16efa JK |
956 | } |
957 | ||
958 | /* Now search through the virtual function table. */ | |
959 | entry = value_ind (vtbl); | |
e1ce8aa5 | 960 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
961 | for (i = 1; i <= nelems; i++) |
962 | { | |
96b2f51c JG |
963 | entry = value_subscript (vtbl, value_from_longest (builtin_type_int, |
964 | (LONGEST) i)); | |
36a2283d PB |
965 | /* This won't work if we're using thunks. */ |
966 | if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT) | |
967 | break; | |
e1ce8aa5 | 968 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
bcccec8c PB |
969 | /* If we use '<=' we can handle single inheritance |
970 | * where all offsets are zero - just use the first entry found. */ | |
971 | if (offset <= best_offset) | |
71b16efa JK |
972 | { |
973 | best_offset = offset; | |
974 | best_entry = entry; | |
975 | } | |
976 | } | |
71b16efa JK |
977 | /* Move the pointer according to BEST_ENTRY's offset, and figure |
978 | out what type we should return as the new pointer. */ | |
bcccec8c PB |
979 | if (best_entry == 0) |
980 | { | |
981 | /* An alternative method (which should no longer be necessary). | |
982 | * But we leave it in for future use, when we will hopefully | |
983 | * have optimizes the vtable to use thunks instead of offsets. */ | |
984 | /* Use the name of vtable itself to extract a base type. */ | |
f1c6dbf6 | 985 | demangled_name += 4; /* Skip _vt$ prefix. */ |
bcccec8c PB |
986 | } |
987 | else | |
988 | { | |
989 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); | |
990 | sym = find_pc_function (pc_for_sym); | |
8050a57b | 991 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); |
bcccec8c PB |
992 | *(strchr (demangled_name, ':')) = '\0'; |
993 | } | |
71b16efa | 994 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
2e4964ad FF |
995 | if (sym == NULL) |
996 | error ("could not find type declaration for `%s'", demangled_name); | |
bcccec8c PB |
997 | if (best_entry) |
998 | { | |
999 | free (demangled_name); | |
1000 | arg = value_add (value_cast (builtin_type_int, arg), | |
1001 | value_field (best_entry, 0)); | |
1002 | } | |
7cb0f870 | 1003 | else arg = in_arg; |
71b16efa JK |
1004 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
1005 | return arg; | |
1006 | } | |
1007 | ||
1008 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
1009 | function tables, probe ARG's tables (including the vtables | |
1010 | of its baseclasses) to figure out the most derived type that ARG | |
1011 | could actually be a pointer to. */ | |
1012 | ||
82a2edfb | 1013 | value_ptr |
71b16efa | 1014 | value_from_vtable_info (arg, type) |
82a2edfb | 1015 | value_ptr arg; |
71b16efa JK |
1016 | struct type *type; |
1017 | { | |
1018 | /* Take care of preliminaries. */ | |
1019 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1020 | fill_in_vptr_fieldno (type); | |
1021 | if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg)) | |
1022 | return 0; | |
1023 | ||
1024 | return value_headof (arg, 0, type); | |
1025 | } | |
1026 | ||
1410f5f1 JK |
1027 | /* Return true if the INDEXth field of TYPE is a virtual baseclass |
1028 | pointer which is for the base class whose type is BASECLASS. */ | |
1029 | ||
1030 | static int | |
1031 | vb_match (type, index, basetype) | |
1032 | struct type *type; | |
1033 | int index; | |
1034 | struct type *basetype; | |
1035 | { | |
1036 | struct type *fieldtype; | |
1410f5f1 JK |
1037 | char *name = TYPE_FIELD_NAME (type, index); |
1038 | char *field_class_name = NULL; | |
1039 | ||
1040 | if (*name != '_') | |
1041 | return 0; | |
f1c6dbf6 | 1042 | /* gcc 2.4 uses _vb$. */ |
1410f5f1 JK |
1043 | if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER) |
1044 | field_class_name = name + 4; | |
f1c6dbf6 | 1045 | /* gcc 2.5 will use __vb_. */ |
1410f5f1 JK |
1046 | if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') |
1047 | field_class_name = name + 5; | |
1048 | ||
1049 | if (field_class_name == NULL) | |
1050 | /* This field is not a virtual base class pointer. */ | |
1051 | return 0; | |
1052 | ||
1053 | /* It's a virtual baseclass pointer, now we just need to find out whether | |
1054 | it is for this baseclass. */ | |
1055 | fieldtype = TYPE_FIELD_TYPE (type, index); | |
1056 | if (fieldtype == NULL | |
1057 | || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) | |
1058 | /* "Can't happen". */ | |
1059 | return 0; | |
1060 | ||
1061 | /* What we check for is that either the types are equal (needed for | |
1062 | nameless types) or have the same name. This is ugly, and a more | |
1063 | elegant solution should be devised (which would probably just push | |
1064 | the ugliness into symbol reading unless we change the stabs format). */ | |
1065 | if (TYPE_TARGET_TYPE (fieldtype) == basetype) | |
1066 | return 1; | |
1067 | ||
1068 | if (TYPE_NAME (basetype) != NULL | |
1069 | && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL | |
1070 | && STREQ (TYPE_NAME (basetype), | |
1071 | TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) | |
1072 | return 1; | |
1073 | return 0; | |
1074 | } | |
1075 | ||
94603999 JG |
1076 | /* Compute the offset of the baseclass which is |
1077 | the INDEXth baseclass of class TYPE, for a value ARG, | |
1078 | wih extra offset of OFFSET. | |
1079 | The result is the offste of the baseclass value relative | |
1080 | to (the address of)(ARG) + OFFSET. | |
1081 | ||
1082 | -1 is returned on error. */ | |
1083 | ||
1084 | int | |
1085 | baseclass_offset (type, index, arg, offset) | |
1086 | struct type *type; | |
1087 | int index; | |
82a2edfb | 1088 | value_ptr arg; |
94603999 JG |
1089 | int offset; |
1090 | { | |
1091 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1092 | ||
1093 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1094 | { | |
1095 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1096 | register int i, len = TYPE_NFIELDS (type); | |
1097 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
94603999 | 1098 | |
94603999 JG |
1099 | /* First look for the virtual baseclass pointer |
1100 | in the fields. */ | |
1101 | for (i = n_baseclasses; i < len; i++) | |
1102 | { | |
1410f5f1 | 1103 | if (vb_match (type, i, basetype)) |
94603999 JG |
1104 | { |
1105 | CORE_ADDR addr | |
1106 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
1107 | VALUE_CONTENTS (arg) + VALUE_OFFSET (arg) | |
1108 | + offset | |
1109 | + (TYPE_FIELD_BITPOS (type, i) / 8)); | |
1110 | ||
1111 | if (VALUE_LVAL (arg) != lval_memory) | |
1112 | return -1; | |
1113 | ||
1114 | return addr - | |
1115 | (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset); | |
1116 | } | |
1117 | } | |
1118 | /* Not in the fields, so try looking through the baseclasses. */ | |
1119 | for (i = index+1; i < n_baseclasses; i++) | |
1120 | { | |
1121 | int boffset = | |
1122 | baseclass_offset (type, i, arg, offset); | |
1123 | if (boffset) | |
1124 | return boffset; | |
1125 | } | |
1126 | /* Not found. */ | |
1127 | return -1; | |
1128 | } | |
1129 | ||
1130 | /* Baseclass is easily computed. */ | |
1131 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1132 | } | |
1133 | ||
dd3b648e | 1134 | /* Compute the address of the baseclass which is |
f1d77e90 | 1135 | the INDEXth baseclass of class TYPE. The TYPE base |
71b16efa JK |
1136 | of the object is at VALADDR. |
1137 | ||
1138 | If ERRP is non-NULL, set *ERRP to be the errno code of any error, | |
1139 | or 0 if no error. In that case the return value is not the address | |
1140 | of the baseclasss, but the address which could not be read | |
1141 | successfully. */ | |
dd3b648e | 1142 | |
94603999 JG |
1143 | /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */ |
1144 | ||
dd3b648e | 1145 | char * |
71b16efa | 1146 | baseclass_addr (type, index, valaddr, valuep, errp) |
dd3b648e RP |
1147 | struct type *type; |
1148 | int index; | |
1149 | char *valaddr; | |
82a2edfb | 1150 | value_ptr *valuep; |
71b16efa | 1151 | int *errp; |
dd3b648e RP |
1152 | { |
1153 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1154 | ||
71b16efa JK |
1155 | if (errp) |
1156 | *errp = 0; | |
aec4cb91 | 1157 | |
dd3b648e RP |
1158 | if (BASETYPE_VIA_VIRTUAL (type, index)) |
1159 | { | |
1160 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1161 | register int i, len = TYPE_NFIELDS (type); | |
1162 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
dd3b648e | 1163 | |
dd3b648e RP |
1164 | /* First look for the virtual baseclass pointer |
1165 | in the fields. */ | |
1166 | for (i = n_baseclasses; i < len; i++) | |
1167 | { | |
1410f5f1 | 1168 | if (vb_match (type, i, basetype)) |
dd3b648e | 1169 | { |
82a2edfb | 1170 | value_ptr val = allocate_value (basetype); |
71b16efa JK |
1171 | CORE_ADDR addr; |
1172 | int status; | |
1173 | ||
e1ce8aa5 JK |
1174 | addr |
1175 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
71b16efa JK |
1176 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
1177 | ||
1178 | status = target_read_memory (addr, | |
1179 | VALUE_CONTENTS_RAW (val), | |
4f6f12f9 | 1180 | TYPE_LENGTH (basetype)); |
71b16efa JK |
1181 | VALUE_LVAL (val) = lval_memory; |
1182 | VALUE_ADDRESS (val) = addr; | |
1183 | ||
1184 | if (status != 0) | |
1185 | { | |
1186 | if (valuep) | |
1187 | *valuep = NULL; | |
1188 | release_value (val); | |
1189 | value_free (val); | |
1190 | if (errp) | |
1191 | *errp = status; | |
1192 | return (char *)addr; | |
1193 | } | |
1194 | else | |
1195 | { | |
1196 | if (valuep) | |
1197 | *valuep = val; | |
1198 | return (char *) VALUE_CONTENTS (val); | |
1199 | } | |
dd3b648e RP |
1200 | } |
1201 | } | |
1202 | /* Not in the fields, so try looking through the baseclasses. */ | |
1203 | for (i = index+1; i < n_baseclasses; i++) | |
1204 | { | |
1205 | char *baddr; | |
1206 | ||
e1ce8aa5 | 1207 | baddr = baseclass_addr (type, i, valaddr, valuep, errp); |
dd3b648e RP |
1208 | if (baddr) |
1209 | return baddr; | |
1210 | } | |
1211 | /* Not found. */ | |
1212 | if (valuep) | |
1213 | *valuep = 0; | |
1214 | return 0; | |
1215 | } | |
1216 | ||
1217 | /* Baseclass is easily computed. */ | |
1218 | if (valuep) | |
1219 | *valuep = 0; | |
1220 | return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1221 | } | |
dd3b648e | 1222 | \f |
4db8e515 FF |
1223 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
1224 | VALADDR. | |
1225 | ||
1226 | Extracting bits depends on endianness of the machine. Compute the | |
1227 | number of least significant bits to discard. For big endian machines, | |
1228 | we compute the total number of bits in the anonymous object, subtract | |
1229 | off the bit count from the MSB of the object to the MSB of the | |
1230 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1231 | count. For little endian machines, the discard count is simply the | |
1232 | number of bits from the LSB of the anonymous object to the LSB of the | |
1233 | bitfield. | |
1234 | ||
1235 | If the field is signed, we also do sign extension. */ | |
1236 | ||
1237 | LONGEST | |
dd3b648e RP |
1238 | unpack_field_as_long (type, valaddr, fieldno) |
1239 | struct type *type; | |
1240 | char *valaddr; | |
1241 | int fieldno; | |
1242 | { | |
4db8e515 FF |
1243 | unsigned LONGEST val; |
1244 | unsigned LONGEST valmask; | |
dd3b648e RP |
1245 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
1246 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
4db8e515 | 1247 | int lsbcount; |
dd3b648e | 1248 | |
34df79fc | 1249 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); |
4db8e515 FF |
1250 | |
1251 | /* Extract bits. See comment above. */ | |
dd3b648e | 1252 | |
b8176214 ILT |
1253 | if (BITS_BIG_ENDIAN) |
1254 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); | |
1255 | else | |
1256 | lsbcount = (bitpos % 8); | |
4db8e515 | 1257 | val >>= lsbcount; |
dd3b648e | 1258 | |
4db8e515 FF |
1259 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
1260 | If the field is signed, and is negative, then sign extend. */ | |
1261 | ||
1262 | if ((bitsize > 0) && (bitsize < 8 * sizeof (val))) | |
1263 | { | |
1264 | valmask = (((unsigned LONGEST) 1) << bitsize) - 1; | |
1265 | val &= valmask; | |
1266 | if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) | |
1267 | { | |
1268 | if (val & (valmask ^ (valmask >> 1))) | |
1269 | { | |
1270 | val |= ~valmask; | |
1271 | } | |
1272 | } | |
1273 | } | |
1274 | return (val); | |
dd3b648e RP |
1275 | } |
1276 | ||
3f2e006b JG |
1277 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1278 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1279 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1280 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1281 | ||
dd3b648e RP |
1282 | void |
1283 | modify_field (addr, fieldval, bitpos, bitsize) | |
1284 | char *addr; | |
58e49e21 | 1285 | LONGEST fieldval; |
dd3b648e RP |
1286 | int bitpos, bitsize; |
1287 | { | |
58e49e21 | 1288 | LONGEST oword; |
dd3b648e | 1289 | |
c3a21801 JG |
1290 | /* Reject values too big to fit in the field in question, |
1291 | otherwise adjoining fields may be corrupted. */ | |
61a7292f SG |
1292 | if (bitsize < (8 * sizeof (fieldval)) |
1293 | && 0 != (fieldval & ~((1<<bitsize)-1))) | |
58e49e21 JK |
1294 | { |
1295 | /* FIXME: would like to include fieldval in the message, but | |
1296 | we don't have a sprintf_longest. */ | |
1297 | error ("Value does not fit in %d bits.", bitsize); | |
1298 | } | |
34df79fc JK |
1299 | |
1300 | oword = extract_signed_integer (addr, sizeof oword); | |
dd3b648e | 1301 | |
3f2e006b | 1302 | /* Shifting for bit field depends on endianness of the target machine. */ |
b8176214 ILT |
1303 | if (BITS_BIG_ENDIAN) |
1304 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; | |
dd3b648e | 1305 | |
58e49e21 | 1306 | /* Mask out old value, while avoiding shifts >= size of oword */ |
c3a21801 | 1307 | if (bitsize < 8 * sizeof (oword)) |
58e49e21 | 1308 | oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos); |
c3a21801 | 1309 | else |
58e49e21 | 1310 | oword &= ~((~(unsigned LONGEST)0) << bitpos); |
dd3b648e | 1311 | oword |= fieldval << bitpos; |
3f2e006b | 1312 | |
34df79fc | 1313 | store_signed_integer (addr, sizeof oword, oword); |
dd3b648e RP |
1314 | } |
1315 | \f | |
1316 | /* Convert C numbers into newly allocated values */ | |
1317 | ||
82a2edfb | 1318 | value_ptr |
96b2f51c | 1319 | value_from_longest (type, num) |
dd3b648e RP |
1320 | struct type *type; |
1321 | register LONGEST num; | |
1322 | { | |
82a2edfb | 1323 | register value_ptr val = allocate_value (type); |
dd3b648e RP |
1324 | register enum type_code code = TYPE_CODE (type); |
1325 | register int len = TYPE_LENGTH (type); | |
1326 | ||
34df79fc | 1327 | switch (code) |
dd3b648e | 1328 | { |
34df79fc JK |
1329 | case TYPE_CODE_INT: |
1330 | case TYPE_CODE_CHAR: | |
1331 | case TYPE_CODE_ENUM: | |
1332 | case TYPE_CODE_BOOL: | |
b96bc1e4 | 1333 | case TYPE_CODE_RANGE: |
34df79fc JK |
1334 | store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); |
1335 | break; | |
1336 | ||
1337 | case TYPE_CODE_REF: | |
1338 | case TYPE_CODE_PTR: | |
1339 | /* This assumes that all pointers of a given length | |
1340 | have the same form. */ | |
1341 | store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num); | |
1342 | break; | |
1343 | ||
1344 | default: | |
1345 | error ("Unexpected type encountered for integer constant."); | |
dd3b648e | 1346 | } |
dd3b648e RP |
1347 | return val; |
1348 | } | |
1349 | ||
82a2edfb | 1350 | value_ptr |
dd3b648e RP |
1351 | value_from_double (type, num) |
1352 | struct type *type; | |
1353 | double num; | |
1354 | { | |
82a2edfb | 1355 | register value_ptr val = allocate_value (type); |
dd3b648e RP |
1356 | register enum type_code code = TYPE_CODE (type); |
1357 | register int len = TYPE_LENGTH (type); | |
1358 | ||
1359 | if (code == TYPE_CODE_FLT) | |
1360 | { | |
bf5c0d64 | 1361 | store_floating (VALUE_CONTENTS_RAW (val), len, num); |
dd3b648e RP |
1362 | } |
1363 | else | |
1364 | error ("Unexpected type encountered for floating constant."); | |
1365 | ||
dd3b648e RP |
1366 | return val; |
1367 | } | |
1368 | \f | |
1369 | /* Deal with the value that is "about to be returned". */ | |
1370 | ||
1371 | /* Return the value that a function returning now | |
1372 | would be returning to its caller, assuming its type is VALTYPE. | |
1373 | RETBUF is where we look for what ought to be the contents | |
1374 | of the registers (in raw form). This is because it is often | |
1375 | desirable to restore old values to those registers | |
1376 | after saving the contents of interest, and then call | |
1377 | this function using the saved values. | |
1378 | struct_return is non-zero when the function in question is | |
1379 | using the structure return conventions on the machine in question; | |
1380 | 0 when it is using the value returning conventions (this often | |
1381 | means returning pointer to where structure is vs. returning value). */ | |
1382 | ||
82a2edfb | 1383 | value_ptr |
dd3b648e RP |
1384 | value_being_returned (valtype, retbuf, struct_return) |
1385 | register struct type *valtype; | |
1386 | char retbuf[REGISTER_BYTES]; | |
1387 | int struct_return; | |
1388 | /*ARGSUSED*/ | |
1389 | { | |
82a2edfb | 1390 | register value_ptr val; |
dd3b648e RP |
1391 | CORE_ADDR addr; |
1392 | ||
1393 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1394 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1395 | if (struct_return) { | |
1396 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1397 | if (!addr) | |
1398 | error ("Function return value unknown"); | |
1399 | return value_at (valtype, addr); | |
1400 | } | |
1401 | #endif | |
1402 | ||
1403 | val = allocate_value (valtype); | |
1404 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); | |
1405 | ||
1406 | return val; | |
1407 | } | |
1408 | ||
1409 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1410 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1411 | and TYPE is the type (which is known to be struct, union or array). | |
1412 | ||
1413 | On most machines, the struct convention is used unless we are | |
1414 | using gcc and the type is of a special size. */ | |
9925b928 JK |
1415 | /* As of about 31 Mar 93, GCC was changed to be compatible with the |
1416 | native compiler. GCC 2.3.3 was the last release that did it the | |
1417 | old way. Since gcc2_compiled was not changed, we have no | |
1418 | way to correctly win in all cases, so we just do the right thing | |
1419 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1420 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1421 | would cause more chaos than dealing with some struct returns being | |
1422 | handled wrong. */ | |
dd3b648e RP |
1423 | #if !defined (USE_STRUCT_CONVENTION) |
1424 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
9925b928 JK |
1425 | (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \ |
1426 | || TYPE_LENGTH (value_type) == 2 \ | |
1427 | || TYPE_LENGTH (value_type) == 4 \ | |
1428 | || TYPE_LENGTH (value_type) == 8 \ | |
1429 | ) \ | |
dd3b648e RP |
1430 | )) |
1431 | #endif | |
1432 | ||
1433 | /* Return true if the function specified is using the structure returning | |
1434 | convention on this machine to return arguments, or 0 if it is using | |
1435 | the value returning convention. FUNCTION is the value representing | |
1436 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1437 | is the type returned by the function. GCC_P is nonzero if compiled | |
1438 | with GCC. */ | |
1439 | ||
1440 | int | |
1441 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
82a2edfb | 1442 | value_ptr function; |
dd3b648e RP |
1443 | CORE_ADDR funcaddr; |
1444 | struct type *value_type; | |
1445 | int gcc_p; | |
1446 | /*ARGSUSED*/ | |
1447 | { | |
1448 | register enum type_code code = TYPE_CODE (value_type); | |
1449 | ||
1450 | if (code == TYPE_CODE_ERROR) | |
1451 | error ("Function return type unknown."); | |
1452 | ||
1453 | if (code == TYPE_CODE_STRUCT || | |
1454 | code == TYPE_CODE_UNION || | |
1455 | code == TYPE_CODE_ARRAY) | |
1456 | return USE_STRUCT_CONVENTION (gcc_p, value_type); | |
1457 | ||
1458 | return 0; | |
1459 | } | |
1460 | ||
1461 | /* Store VAL so it will be returned if a function returns now. | |
1462 | Does not verify that VAL's type matches what the current | |
1463 | function wants to return. */ | |
1464 | ||
1465 | void | |
1466 | set_return_value (val) | |
82a2edfb | 1467 | value_ptr val; |
dd3b648e RP |
1468 | { |
1469 | register enum type_code code = TYPE_CODE (VALUE_TYPE (val)); | |
dd3b648e RP |
1470 | |
1471 | if (code == TYPE_CODE_ERROR) | |
1472 | error ("Function return type unknown."); | |
1473 | ||
f1d77e90 JG |
1474 | if ( code == TYPE_CODE_STRUCT |
1475 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ | |
1476 | error ("GDB does not support specifying a struct or union return value."); | |
dd3b648e | 1477 | |
07aa9fdc | 1478 | STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val)); |
dd3b648e RP |
1479 | } |
1480 | \f | |
1481 | void | |
1482 | _initialize_values () | |
1483 | { | |
f266e564 | 1484 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1485 | "Debugger convenience (\"$foo\") variables.\n\ |
1486 | These variables are created when you assign them values;\n\ | |
1487 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1488 | A few convenience variables are given values automatically:\n\ | |
1489 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1490 | \"$__\" holds the contents of the last address examined with \"x\".", |
1491 | &showlist); | |
dd3b648e | 1492 | |
f266e564 JK |
1493 | add_cmd ("values", no_class, show_values, |
1494 | "Elements of value history around item number IDX (or last ten).", | |
1495 | &showlist); | |
dd3b648e | 1496 | } |