]>
Commit | Line | Data |
---|---|---|
7d9884b9 | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
8918bce0 PS |
2 | Copyright 1986, 1987, 1989, 1991, 1993, 1994 |
3 | Free Software Foundation, Inc. | |
dd3b648e RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
99a7de40 | 7 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 8 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
dd3b648e | 11 | |
99a7de40 | 12 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
99a7de40 | 18 | along with this program; if not, write to the Free Software |
6c9638b4 | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
dd3b648e | 20 | |
dd3b648e | 21 | #include "defs.h" |
2b576293 | 22 | #include "gdb_string.h" |
dd3b648e | 23 | #include "symtab.h" |
1ab3bf1b | 24 | #include "gdbtypes.h" |
dd3b648e RP |
25 | #include "value.h" |
26 | #include "gdbcore.h" | |
27 | #include "frame.h" | |
28 | #include "command.h" | |
f266e564 | 29 | #include "gdbcmd.h" |
ac88ca20 | 30 | #include "target.h" |
acc4efde | 31 | #include "language.h" |
8050a57b | 32 | #include "demangle.h" |
dd3b648e | 33 | |
1ab3bf1b JG |
34 | /* Local function prototypes. */ |
35 | ||
849d0896 PS |
36 | static value_ptr value_headof PARAMS ((value_ptr, struct type *, |
37 | struct type *)); | |
1ab3bf1b | 38 | |
82a2edfb | 39 | static void show_values PARAMS ((char *, int)); |
1ab3bf1b | 40 | |
82a2edfb | 41 | static void show_convenience PARAMS ((char *, int)); |
71b16efa | 42 | |
dd3b648e RP |
43 | /* The value-history records all the values printed |
44 | by print commands during this session. Each chunk | |
45 | records 60 consecutive values. The first chunk on | |
46 | the chain records the most recent values. | |
47 | The total number of values is in value_history_count. */ | |
48 | ||
49 | #define VALUE_HISTORY_CHUNK 60 | |
50 | ||
51 | struct value_history_chunk | |
52 | { | |
53 | struct value_history_chunk *next; | |
82a2edfb | 54 | value_ptr values[VALUE_HISTORY_CHUNK]; |
dd3b648e RP |
55 | }; |
56 | ||
57 | /* Chain of chunks now in use. */ | |
58 | ||
59 | static struct value_history_chunk *value_history_chain; | |
60 | ||
61 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
62 | \f |
63 | /* List of all value objects currently allocated | |
64 | (except for those released by calls to release_value) | |
65 | This is so they can be freed after each command. */ | |
66 | ||
82a2edfb | 67 | static value_ptr all_values; |
dd3b648e RP |
68 | |
69 | /* Allocate a value that has the correct length for type TYPE. */ | |
70 | ||
82a2edfb | 71 | value_ptr |
dd3b648e RP |
72 | allocate_value (type) |
73 | struct type *type; | |
74 | { | |
82a2edfb | 75 | register value_ptr val; |
dd3b648e RP |
76 | |
77 | check_stub_type (type); | |
78 | ||
82a2edfb | 79 | val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type)); |
dd3b648e RP |
80 | VALUE_NEXT (val) = all_values; |
81 | all_values = val; | |
82 | VALUE_TYPE (val) = type; | |
83 | VALUE_LVAL (val) = not_lval; | |
84 | VALUE_ADDRESS (val) = 0; | |
85 | VALUE_FRAME (val) = 0; | |
86 | VALUE_OFFSET (val) = 0; | |
87 | VALUE_BITPOS (val) = 0; | |
88 | VALUE_BITSIZE (val) = 0; | |
89 | VALUE_REPEATED (val) = 0; | |
90 | VALUE_REPETITIONS (val) = 0; | |
91 | VALUE_REGNO (val) = -1; | |
92 | VALUE_LAZY (val) = 0; | |
93 | VALUE_OPTIMIZED_OUT (val) = 0; | |
30974778 | 94 | val->modifiable = 1; |
dd3b648e RP |
95 | return val; |
96 | } | |
97 | ||
98 | /* Allocate a value that has the correct length | |
99 | for COUNT repetitions type TYPE. */ | |
100 | ||
82a2edfb | 101 | value_ptr |
dd3b648e RP |
102 | allocate_repeat_value (type, count) |
103 | struct type *type; | |
104 | int count; | |
105 | { | |
82a2edfb | 106 | register value_ptr val; |
dd3b648e | 107 | |
82a2edfb JK |
108 | val = |
109 | (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count); | |
dd3b648e RP |
110 | VALUE_NEXT (val) = all_values; |
111 | all_values = val; | |
112 | VALUE_TYPE (val) = type; | |
113 | VALUE_LVAL (val) = not_lval; | |
114 | VALUE_ADDRESS (val) = 0; | |
115 | VALUE_FRAME (val) = 0; | |
116 | VALUE_OFFSET (val) = 0; | |
117 | VALUE_BITPOS (val) = 0; | |
118 | VALUE_BITSIZE (val) = 0; | |
119 | VALUE_REPEATED (val) = 1; | |
120 | VALUE_REPETITIONS (val) = count; | |
121 | VALUE_REGNO (val) = -1; | |
122 | VALUE_LAZY (val) = 0; | |
123 | VALUE_OPTIMIZED_OUT (val) = 0; | |
124 | return val; | |
125 | } | |
126 | ||
fcb887ff JK |
127 | /* Return a mark in the value chain. All values allocated after the |
128 | mark is obtained (except for those released) are subject to being freed | |
129 | if a subsequent value_free_to_mark is passed the mark. */ | |
82a2edfb | 130 | value_ptr |
fcb887ff JK |
131 | value_mark () |
132 | { | |
133 | return all_values; | |
134 | } | |
135 | ||
136 | /* Free all values allocated since MARK was obtained by value_mark | |
137 | (except for those released). */ | |
138 | void | |
139 | value_free_to_mark (mark) | |
82a2edfb | 140 | value_ptr mark; |
fcb887ff | 141 | { |
82a2edfb | 142 | value_ptr val, next; |
fcb887ff JK |
143 | |
144 | for (val = all_values; val && val != mark; val = next) | |
145 | { | |
146 | next = VALUE_NEXT (val); | |
147 | value_free (val); | |
148 | } | |
149 | all_values = val; | |
150 | } | |
151 | ||
dd3b648e RP |
152 | /* Free all the values that have been allocated (except for those released). |
153 | Called after each command, successful or not. */ | |
154 | ||
155 | void | |
156 | free_all_values () | |
157 | { | |
82a2edfb | 158 | register value_ptr val, next; |
dd3b648e RP |
159 | |
160 | for (val = all_values; val; val = next) | |
161 | { | |
162 | next = VALUE_NEXT (val); | |
163 | value_free (val); | |
164 | } | |
165 | ||
166 | all_values = 0; | |
167 | } | |
168 | ||
169 | /* Remove VAL from the chain all_values | |
170 | so it will not be freed automatically. */ | |
171 | ||
172 | void | |
173 | release_value (val) | |
82a2edfb | 174 | register value_ptr val; |
dd3b648e | 175 | { |
82a2edfb | 176 | register value_ptr v; |
dd3b648e RP |
177 | |
178 | if (all_values == val) | |
179 | { | |
180 | all_values = val->next; | |
181 | return; | |
182 | } | |
183 | ||
184 | for (v = all_values; v; v = v->next) | |
185 | { | |
186 | if (v->next == val) | |
187 | { | |
188 | v->next = val->next; | |
189 | break; | |
190 | } | |
191 | } | |
192 | } | |
193 | ||
999dd04b JL |
194 | /* Release all values up to mark */ |
195 | value_ptr | |
196 | value_release_to_mark (mark) | |
197 | value_ptr mark; | |
198 | { | |
199 | value_ptr val, next; | |
200 | ||
201 | for (val = next = all_values; next; next = VALUE_NEXT (next)) | |
202 | if (VALUE_NEXT (next) == mark) | |
203 | { | |
204 | all_values = VALUE_NEXT (next); | |
205 | VALUE_NEXT (next) = 0; | |
206 | return val; | |
207 | } | |
208 | all_values = 0; | |
209 | return val; | |
210 | } | |
211 | ||
dd3b648e RP |
212 | /* Return a copy of the value ARG. |
213 | It contains the same contents, for same memory address, | |
214 | but it's a different block of storage. */ | |
215 | ||
82a2edfb | 216 | value_ptr |
dd3b648e | 217 | value_copy (arg) |
82a2edfb | 218 | value_ptr arg; |
dd3b648e | 219 | { |
82a2edfb | 220 | register value_ptr val; |
dd3b648e RP |
221 | register struct type *type = VALUE_TYPE (arg); |
222 | if (VALUE_REPEATED (arg)) | |
223 | val = allocate_repeat_value (type, VALUE_REPETITIONS (arg)); | |
224 | else | |
225 | val = allocate_value (type); | |
226 | VALUE_LVAL (val) = VALUE_LVAL (arg); | |
227 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
228 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
229 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
230 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
231 | VALUE_REGNO (val) = VALUE_REGNO (arg); | |
232 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
30974778 | 233 | val->modifiable = arg->modifiable; |
dd3b648e RP |
234 | if (!VALUE_LAZY (val)) |
235 | { | |
51b57ded FF |
236 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), |
237 | TYPE_LENGTH (VALUE_TYPE (arg)) | |
238 | * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1)); | |
dd3b648e RP |
239 | } |
240 | return val; | |
241 | } | |
242 | \f | |
243 | /* Access to the value history. */ | |
244 | ||
245 | /* Record a new value in the value history. | |
246 | Returns the absolute history index of the entry. | |
247 | Result of -1 indicates the value was not saved; otherwise it is the | |
248 | value history index of this new item. */ | |
249 | ||
250 | int | |
251 | record_latest_value (val) | |
82a2edfb | 252 | value_ptr val; |
dd3b648e RP |
253 | { |
254 | int i; | |
255 | ||
256 | /* Check error now if about to store an invalid float. We return -1 | |
257 | to the caller, but allow them to continue, e.g. to print it as "Nan". */ | |
4ed3a9ea FF |
258 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) |
259 | { | |
260 | unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i); | |
261 | if (i) return -1; /* Indicate value not saved in history */ | |
262 | } | |
dd3b648e | 263 | |
26a859ec PS |
264 | /* We don't want this value to have anything to do with the inferior anymore. |
265 | In particular, "set $1 = 50" should not affect the variable from which | |
266 | the value was taken, and fast watchpoints should be able to assume that | |
267 | a value on the value history never changes. */ | |
268 | if (VALUE_LAZY (val)) | |
269 | value_fetch_lazy (val); | |
270 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
271 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
272 | but the current contents of that location. c'est la vie... */ | |
273 | val->modifiable = 0; | |
274 | release_value (val); | |
275 | ||
dd3b648e RP |
276 | /* Here we treat value_history_count as origin-zero |
277 | and applying to the value being stored now. */ | |
278 | ||
279 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
280 | if (i == 0) | |
281 | { | |
282 | register struct value_history_chunk *new | |
283 | = (struct value_history_chunk *) | |
284 | xmalloc (sizeof (struct value_history_chunk)); | |
4ed3a9ea | 285 | memset (new->values, 0, sizeof new->values); |
dd3b648e RP |
286 | new->next = value_history_chain; |
287 | value_history_chain = new; | |
288 | } | |
289 | ||
290 | value_history_chain->values[i] = val; | |
4abc83b9 | 291 | |
dd3b648e RP |
292 | /* Now we regard value_history_count as origin-one |
293 | and applying to the value just stored. */ | |
294 | ||
295 | return ++value_history_count; | |
296 | } | |
297 | ||
298 | /* Return a copy of the value in the history with sequence number NUM. */ | |
299 | ||
82a2edfb | 300 | value_ptr |
dd3b648e RP |
301 | access_value_history (num) |
302 | int num; | |
303 | { | |
304 | register struct value_history_chunk *chunk; | |
305 | register int i; | |
306 | register int absnum = num; | |
307 | ||
308 | if (absnum <= 0) | |
309 | absnum += value_history_count; | |
310 | ||
311 | if (absnum <= 0) | |
312 | { | |
313 | if (num == 0) | |
314 | error ("The history is empty."); | |
315 | else if (num == 1) | |
316 | error ("There is only one value in the history."); | |
317 | else | |
318 | error ("History does not go back to $$%d.", -num); | |
319 | } | |
320 | if (absnum > value_history_count) | |
321 | error ("History has not yet reached $%d.", absnum); | |
322 | ||
323 | absnum--; | |
324 | ||
325 | /* Now absnum is always absolute and origin zero. */ | |
326 | ||
327 | chunk = value_history_chain; | |
328 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
329 | i > 0; i--) | |
330 | chunk = chunk->next; | |
331 | ||
332 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
333 | } | |
334 | ||
335 | /* Clear the value history entirely. | |
336 | Must be done when new symbol tables are loaded, | |
337 | because the type pointers become invalid. */ | |
338 | ||
339 | void | |
340 | clear_value_history () | |
341 | { | |
342 | register struct value_history_chunk *next; | |
343 | register int i; | |
82a2edfb | 344 | register value_ptr val; |
dd3b648e RP |
345 | |
346 | while (value_history_chain) | |
347 | { | |
348 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
a8a69e63 | 349 | if ((val = value_history_chain->values[i]) != NULL) |
be772100 | 350 | free ((PTR)val); |
dd3b648e | 351 | next = value_history_chain->next; |
be772100 | 352 | free ((PTR)value_history_chain); |
dd3b648e RP |
353 | value_history_chain = next; |
354 | } | |
355 | value_history_count = 0; | |
356 | } | |
357 | ||
358 | static void | |
f266e564 | 359 | show_values (num_exp, from_tty) |
dd3b648e RP |
360 | char *num_exp; |
361 | int from_tty; | |
362 | { | |
363 | register int i; | |
82a2edfb | 364 | register value_ptr val; |
dd3b648e RP |
365 | static int num = 1; |
366 | ||
367 | if (num_exp) | |
368 | { | |
46c28185 RP |
369 | /* "info history +" should print from the stored position. |
370 | "info history <exp>" should print around value number <exp>. */ | |
371 | if (num_exp[0] != '+' || num_exp[1] != '\0') | |
dd3b648e RP |
372 | num = parse_and_eval_address (num_exp) - 5; |
373 | } | |
374 | else | |
375 | { | |
376 | /* "info history" means print the last 10 values. */ | |
377 | num = value_history_count - 9; | |
378 | } | |
379 | ||
380 | if (num <= 0) | |
381 | num = 1; | |
382 | ||
383 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
384 | { | |
385 | val = access_value_history (i); | |
386 | printf_filtered ("$%d = ", i); | |
199b2450 | 387 | value_print (val, gdb_stdout, 0, Val_pretty_default); |
dd3b648e RP |
388 | printf_filtered ("\n"); |
389 | } | |
390 | ||
391 | /* The next "info history +" should start after what we just printed. */ | |
392 | num += 10; | |
393 | ||
394 | /* Hitting just return after this command should do the same thing as | |
395 | "info history +". If num_exp is null, this is unnecessary, since | |
396 | "info history +" is not useful after "info history". */ | |
397 | if (from_tty && num_exp) | |
398 | { | |
399 | num_exp[0] = '+'; | |
400 | num_exp[1] = '\0'; | |
401 | } | |
402 | } | |
403 | \f | |
404 | /* Internal variables. These are variables within the debugger | |
405 | that hold values assigned by debugger commands. | |
406 | The user refers to them with a '$' prefix | |
407 | that does not appear in the variable names stored internally. */ | |
408 | ||
409 | static struct internalvar *internalvars; | |
410 | ||
411 | /* Look up an internal variable with name NAME. NAME should not | |
412 | normally include a dollar sign. | |
413 | ||
414 | If the specified internal variable does not exist, | |
415 | one is created, with a void value. */ | |
416 | ||
417 | struct internalvar * | |
418 | lookup_internalvar (name) | |
419 | char *name; | |
420 | { | |
421 | register struct internalvar *var; | |
422 | ||
423 | for (var = internalvars; var; var = var->next) | |
2e4964ad | 424 | if (STREQ (var->name, name)) |
dd3b648e RP |
425 | return var; |
426 | ||
427 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
58ae87f6 | 428 | var->name = concat (name, NULL); |
dd3b648e RP |
429 | var->value = allocate_value (builtin_type_void); |
430 | release_value (var->value); | |
431 | var->next = internalvars; | |
432 | internalvars = var; | |
433 | return var; | |
434 | } | |
435 | ||
82a2edfb | 436 | value_ptr |
dd3b648e RP |
437 | value_of_internalvar (var) |
438 | struct internalvar *var; | |
439 | { | |
82a2edfb | 440 | register value_ptr val; |
dd3b648e RP |
441 | |
442 | #ifdef IS_TRAPPED_INTERNALVAR | |
443 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
444 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
445 | #endif | |
446 | ||
447 | val = value_copy (var->value); | |
448 | if (VALUE_LAZY (val)) | |
449 | value_fetch_lazy (val); | |
450 | VALUE_LVAL (val) = lval_internalvar; | |
451 | VALUE_INTERNALVAR (val) = var; | |
452 | return val; | |
453 | } | |
454 | ||
455 | void | |
456 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
457 | struct internalvar *var; | |
458 | int offset, bitpos, bitsize; | |
82a2edfb | 459 | value_ptr newval; |
dd3b648e RP |
460 | { |
461 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
462 | ||
463 | #ifdef IS_TRAPPED_INTERNALVAR | |
464 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
465 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
466 | #endif | |
467 | ||
468 | if (bitsize) | |
58e49e21 | 469 | modify_field (addr, value_as_long (newval), |
dd3b648e RP |
470 | bitpos, bitsize); |
471 | else | |
4ed3a9ea | 472 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); |
dd3b648e RP |
473 | } |
474 | ||
475 | void | |
476 | set_internalvar (var, val) | |
477 | struct internalvar *var; | |
82a2edfb | 478 | value_ptr val; |
dd3b648e | 479 | { |
51f83933 JK |
480 | value_ptr newval; |
481 | ||
dd3b648e RP |
482 | #ifdef IS_TRAPPED_INTERNALVAR |
483 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
484 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
485 | #endif | |
486 | ||
51f83933 | 487 | newval = value_copy (val); |
ade01652 | 488 | newval->modifiable = 1; |
51f83933 | 489 | |
6fab5bef JG |
490 | /* Force the value to be fetched from the target now, to avoid problems |
491 | later when this internalvar is referenced and the target is gone or | |
492 | has changed. */ | |
51f83933 JK |
493 | if (VALUE_LAZY (newval)) |
494 | value_fetch_lazy (newval); | |
495 | ||
496 | /* Begin code which must not call error(). If var->value points to | |
497 | something free'd, an error() obviously leaves a dangling pointer. | |
498 | But we also get a danling pointer if var->value points to | |
499 | something in the value chain (i.e., before release_value is | |
500 | called), because after the error free_all_values will get called before | |
501 | long. */ | |
502 | free ((PTR)var->value); | |
503 | var->value = newval; | |
504 | release_value (newval); | |
505 | /* End code which must not call error(). */ | |
dd3b648e RP |
506 | } |
507 | ||
508 | char * | |
509 | internalvar_name (var) | |
510 | struct internalvar *var; | |
511 | { | |
512 | return var->name; | |
513 | } | |
514 | ||
515 | /* Free all internalvars. Done when new symtabs are loaded, | |
516 | because that makes the values invalid. */ | |
517 | ||
518 | void | |
519 | clear_internalvars () | |
520 | { | |
521 | register struct internalvar *var; | |
522 | ||
523 | while (internalvars) | |
524 | { | |
525 | var = internalvars; | |
526 | internalvars = var->next; | |
be772100 JG |
527 | free ((PTR)var->name); |
528 | free ((PTR)var->value); | |
529 | free ((PTR)var); | |
dd3b648e RP |
530 | } |
531 | } | |
532 | ||
533 | static void | |
ac88ca20 JG |
534 | show_convenience (ignore, from_tty) |
535 | char *ignore; | |
536 | int from_tty; | |
dd3b648e RP |
537 | { |
538 | register struct internalvar *var; | |
539 | int varseen = 0; | |
540 | ||
541 | for (var = internalvars; var; var = var->next) | |
542 | { | |
543 | #ifdef IS_TRAPPED_INTERNALVAR | |
544 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
545 | continue; | |
546 | #endif | |
547 | if (!varseen) | |
548 | { | |
dd3b648e RP |
549 | varseen = 1; |
550 | } | |
afe4ca15 | 551 | printf_filtered ("$%s = ", var->name); |
199b2450 | 552 | value_print (var->value, gdb_stdout, 0, Val_pretty_default); |
afe4ca15 | 553 | printf_filtered ("\n"); |
dd3b648e RP |
554 | } |
555 | if (!varseen) | |
199b2450 | 556 | printf_unfiltered ("No debugger convenience variables now defined.\n\ |
dd3b648e RP |
557 | Convenience variables have names starting with \"$\";\n\ |
558 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
559 | } | |
560 | \f | |
561 | /* Extract a value as a C number (either long or double). | |
562 | Knows how to convert fixed values to double, or | |
563 | floating values to long. | |
564 | Does not deallocate the value. */ | |
565 | ||
566 | LONGEST | |
567 | value_as_long (val) | |
82a2edfb | 568 | register value_ptr val; |
dd3b648e RP |
569 | { |
570 | /* This coerces arrays and functions, which is necessary (e.g. | |
571 | in disassemble_command). It also dereferences references, which | |
572 | I suspect is the most logical thing to do. */ | |
573 | if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM) | |
574 | COERCE_ARRAY (val); | |
575 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); | |
576 | } | |
577 | ||
578 | double | |
579 | value_as_double (val) | |
82a2edfb | 580 | register value_ptr val; |
dd3b648e RP |
581 | { |
582 | double foo; | |
583 | int inv; | |
584 | ||
585 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
586 | if (inv) | |
587 | error ("Invalid floating value found in program."); | |
588 | return foo; | |
589 | } | |
e1ce8aa5 JK |
590 | /* Extract a value as a C pointer. |
591 | Does not deallocate the value. */ | |
592 | CORE_ADDR | |
593 | value_as_pointer (val) | |
82a2edfb | 594 | value_ptr val; |
e1ce8aa5 | 595 | { |
2bff8e38 JK |
596 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
597 | whether we want this to be true eventually. */ | |
b2ccb6a4 JK |
598 | #if 0 |
599 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
600 | non-address (e.g. argument to "signal", "info break", etc.), or | |
601 | for pointers to char, in which the low bits *are* significant. */ | |
ae0ea72e | 602 | return ADDR_BITS_REMOVE(value_as_long (val)); |
b2ccb6a4 JK |
603 | #else |
604 | return value_as_long (val); | |
605 | #endif | |
e1ce8aa5 | 606 | } |
dd3b648e RP |
607 | \f |
608 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
609 | as a long, or as a double, assuming the raw data is described | |
610 | by type TYPE. Knows how to convert different sizes of values | |
611 | and can convert between fixed and floating point. We don't assume | |
612 | any alignment for the raw data. Return value is in host byte order. | |
613 | ||
614 | If you want functions and arrays to be coerced to pointers, and | |
615 | references to be dereferenced, call value_as_long() instead. | |
616 | ||
617 | C++: It is assumed that the front-end has taken care of | |
618 | all matters concerning pointers to members. A pointer | |
619 | to member which reaches here is considered to be equivalent | |
620 | to an INT (or some size). After all, it is only an offset. */ | |
621 | ||
622 | LONGEST | |
623 | unpack_long (type, valaddr) | |
624 | struct type *type; | |
625 | char *valaddr; | |
626 | { | |
627 | register enum type_code code = TYPE_CODE (type); | |
628 | register int len = TYPE_LENGTH (type); | |
629 | register int nosign = TYPE_UNSIGNED (type); | |
630 | ||
bf5c0d64 | 631 | switch (code) |
dd3b648e | 632 | { |
bf5c0d64 JK |
633 | case TYPE_CODE_ENUM: |
634 | case TYPE_CODE_BOOL: | |
635 | case TYPE_CODE_INT: | |
636 | case TYPE_CODE_CHAR: | |
b96bc1e4 | 637 | case TYPE_CODE_RANGE: |
bf5c0d64 JK |
638 | if (nosign) |
639 | return extract_unsigned_integer (valaddr, len); | |
dd3b648e | 640 | else |
bf5c0d64 JK |
641 | return extract_signed_integer (valaddr, len); |
642 | ||
643 | case TYPE_CODE_FLT: | |
644 | return extract_floating (valaddr, len); | |
645 | ||
646 | case TYPE_CODE_PTR: | |
647 | case TYPE_CODE_REF: | |
648 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
649 | whether we want this to be true eventually. */ | |
34df79fc | 650 | return extract_address (valaddr, len); |
dd3b648e | 651 | |
bf5c0d64 JK |
652 | case TYPE_CODE_MEMBER: |
653 | error ("not implemented: member types in unpack_long"); | |
654 | ||
655 | default: | |
ca0865db | 656 | error ("Value can't be converted to integer."); |
bf5c0d64 JK |
657 | } |
658 | return 0; /* Placate lint. */ | |
dd3b648e RP |
659 | } |
660 | ||
661 | /* Return a double value from the specified type and address. | |
662 | INVP points to an int which is set to 0 for valid value, | |
663 | 1 for invalid value (bad float format). In either case, | |
664 | the returned double is OK to use. Argument is in target | |
665 | format, result is in host format. */ | |
666 | ||
667 | double | |
668 | unpack_double (type, valaddr, invp) | |
669 | struct type *type; | |
670 | char *valaddr; | |
671 | int *invp; | |
672 | { | |
673 | register enum type_code code = TYPE_CODE (type); | |
674 | register int len = TYPE_LENGTH (type); | |
675 | register int nosign = TYPE_UNSIGNED (type); | |
676 | ||
677 | *invp = 0; /* Assume valid. */ | |
678 | if (code == TYPE_CODE_FLT) | |
679 | { | |
ac57e5ad | 680 | #ifdef INVALID_FLOAT |
dd3b648e RP |
681 | if (INVALID_FLOAT (valaddr, len)) |
682 | { | |
683 | *invp = 1; | |
684 | return 1.234567891011121314; | |
685 | } | |
ac57e5ad | 686 | #endif |
89ce0c8f JK |
687 | return extract_floating (valaddr, len); |
688 | } | |
689 | else if (nosign) | |
690 | { | |
691 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
692 | return (unsigned LONGEST) unpack_long (type, valaddr); | |
693 | } | |
694 | else | |
695 | { | |
696 | /* Signed -- we are OK with unpack_long. */ | |
697 | return unpack_long (type, valaddr); | |
dd3b648e | 698 | } |
dd3b648e | 699 | } |
e1ce8aa5 JK |
700 | |
701 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
702 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
703 | We don't assume any alignment for the raw data. Return value is in | |
704 | host byte order. | |
705 | ||
706 | If you want functions and arrays to be coerced to pointers, and | |
707 | references to be dereferenced, call value_as_pointer() instead. | |
708 | ||
709 | C++: It is assumed that the front-end has taken care of | |
710 | all matters concerning pointers to members. A pointer | |
711 | to member which reaches here is considered to be equivalent | |
712 | to an INT (or some size). After all, it is only an offset. */ | |
713 | ||
714 | CORE_ADDR | |
715 | unpack_pointer (type, valaddr) | |
716 | struct type *type; | |
717 | char *valaddr; | |
718 | { | |
2bff8e38 JK |
719 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
720 | whether we want this to be true eventually. */ | |
721 | return unpack_long (type, valaddr); | |
e1ce8aa5 | 722 | } |
dd3b648e RP |
723 | \f |
724 | /* Given a value ARG1 (offset by OFFSET bytes) | |
725 | of a struct or union type ARG_TYPE, | |
726 | extract and return the value of one of its fields. | |
727 | FIELDNO says which field. | |
728 | ||
729 | For C++, must also be able to return values from static fields */ | |
730 | ||
82a2edfb | 731 | value_ptr |
dd3b648e | 732 | value_primitive_field (arg1, offset, fieldno, arg_type) |
82a2edfb | 733 | register value_ptr arg1; |
dd3b648e RP |
734 | int offset; |
735 | register int fieldno; | |
736 | register struct type *arg_type; | |
737 | { | |
82a2edfb | 738 | register value_ptr v; |
dd3b648e RP |
739 | register struct type *type; |
740 | ||
741 | check_stub_type (arg_type); | |
742 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
743 | ||
744 | /* Handle packed fields */ | |
745 | ||
746 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
747 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
748 | { | |
96b2f51c | 749 | v = value_from_longest (type, |
dd3b648e RP |
750 | unpack_field_as_long (arg_type, |
751 | VALUE_CONTENTS (arg1), | |
752 | fieldno)); | |
753 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
754 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
755 | } | |
756 | else | |
757 | { | |
758 | v = allocate_value (type); | |
759 | if (VALUE_LAZY (arg1)) | |
760 | VALUE_LAZY (v) = 1; | |
761 | else | |
4ed3a9ea FF |
762 | memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, |
763 | TYPE_LENGTH (type)); | |
dd3b648e RP |
764 | } |
765 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
766 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
767 | VALUE_LVAL (v) = lval_internalvar_component; | |
768 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
769 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
770 | return v; | |
771 | } | |
772 | ||
773 | /* Given a value ARG1 of a struct or union type, | |
774 | extract and return the value of one of its fields. | |
775 | FIELDNO says which field. | |
776 | ||
777 | For C++, must also be able to return values from static fields */ | |
778 | ||
82a2edfb | 779 | value_ptr |
dd3b648e | 780 | value_field (arg1, fieldno) |
82a2edfb | 781 | register value_ptr arg1; |
dd3b648e RP |
782 | register int fieldno; |
783 | { | |
784 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
785 | } | |
786 | ||
545af6ce PB |
787 | /* Return a non-virtual function as a value. |
788 | F is the list of member functions which contains the desired method. | |
789 | J is an index into F which provides the desired method. */ | |
790 | ||
82a2edfb | 791 | value_ptr |
94603999 | 792 | value_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 793 | value_ptr *arg1p; |
545af6ce PB |
794 | struct fn_field *f; |
795 | int j; | |
94603999 JG |
796 | struct type *type; |
797 | int offset; | |
dd3b648e | 798 | { |
82a2edfb | 799 | register value_ptr v; |
94603999 | 800 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
dd3b648e RP |
801 | struct symbol *sym; |
802 | ||
545af6ce | 803 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), |
dd3b648e | 804 | 0, VAR_NAMESPACE, 0, NULL); |
f1c6dbf6 | 805 | if (! sym) |
82a2edfb | 806 | return NULL; |
f1c6dbf6 KH |
807 | /* |
808 | error ("Internal error: could not find physical method named %s", | |
545af6ce | 809 | TYPE_FN_FIELD_PHYSNAME (f, j)); |
f1c6dbf6 | 810 | */ |
dd3b648e | 811 | |
94603999 | 812 | v = allocate_value (ftype); |
dd3b648e | 813 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); |
94603999 JG |
814 | VALUE_TYPE (v) = ftype; |
815 | ||
816 | if (arg1p) | |
817 | { | |
818 | if (type != VALUE_TYPE (*arg1p)) | |
819 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
820 | value_addr (*arg1p))); | |
821 | ||
dcd8fd8c | 822 | /* Move the `this' pointer according to the offset. |
94603999 | 823 | VALUE_OFFSET (*arg1p) += offset; |
dcd8fd8c | 824 | */ |
94603999 JG |
825 | } |
826 | ||
dd3b648e RP |
827 | return v; |
828 | } | |
829 | ||
830 | /* Return a virtual function as a value. | |
831 | ARG1 is the object which provides the virtual function | |
94603999 | 832 | table pointer. *ARG1P is side-effected in calling this function. |
dd3b648e RP |
833 | F is the list of member functions which contains the desired virtual |
834 | function. | |
e532974c JK |
835 | J is an index into F which provides the desired virtual function. |
836 | ||
837 | TYPE is the type in which F is located. */ | |
82a2edfb | 838 | value_ptr |
94603999 | 839 | value_virtual_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 840 | value_ptr *arg1p; |
dd3b648e RP |
841 | struct fn_field *f; |
842 | int j; | |
e532974c | 843 | struct type *type; |
94603999 | 844 | int offset; |
dd3b648e | 845 | { |
82a2edfb | 846 | value_ptr arg1 = *arg1p; |
dd3b648e RP |
847 | /* First, get the virtual function table pointer. That comes |
848 | with a strange type, so cast it to type `pointer to long' (which | |
849 | should serve just fine as a function type). Then, index into | |
850 | the table, and convert final value to appropriate function type. */ | |
82a2edfb JK |
851 | value_ptr entry, vfn, vtbl; |
852 | value_ptr vi = value_from_longest (builtin_type_int, | |
853 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); | |
e532974c JK |
854 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
855 | struct type *context; | |
856 | if (fcontext == NULL) | |
857 | /* We don't have an fcontext (e.g. the program was compiled with | |
858 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
859 | This won't work right for multiple inheritance, but at least we | |
860 | should do as well as GDB 3.x did. */ | |
861 | fcontext = TYPE_VPTR_BASETYPE (type); | |
862 | context = lookup_pointer_type (fcontext); | |
863 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
dd3b648e RP |
864 | if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1)) |
865 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
866 | ||
867 | context = VALUE_TYPE (arg1); | |
e532974c | 868 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
869 | |
870 | /* This type may have been defined before its virtual function table | |
871 | was. If so, fill in the virtual function table entry for the | |
872 | type now. */ | |
873 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 874 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
875 | |
876 | /* The virtual function table is now an array of structures | |
877 | which have the form { int16 offset, delta; void *pfn; }. */ | |
94603999 JG |
878 | vtbl = value_ind (value_primitive_field (arg1, 0, |
879 | TYPE_VPTR_FIELDNO (context), | |
880 | TYPE_VPTR_BASETYPE (context))); | |
dd3b648e RP |
881 | |
882 | /* Index into the virtual function table. This is hard-coded because | |
883 | looking up a field is not cheap, and it may be important to save | |
884 | time, e.g. if the user has set a conditional breakpoint calling | |
885 | a virtual function. */ | |
886 | entry = value_subscript (vtbl, vi); | |
887 | ||
36a2283d | 888 | if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT) |
dd3b648e | 889 | { |
36a2283d PB |
890 | /* Move the `this' pointer according to the virtual function table. */ |
891 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)); | |
892 | ||
893 | if (! VALUE_LAZY (arg1)) | |
894 | { | |
895 | VALUE_LAZY (arg1) = 1; | |
896 | value_fetch_lazy (arg1); | |
897 | } | |
dd3b648e | 898 | |
36a2283d PB |
899 | vfn = value_field (entry, 2); |
900 | } | |
901 | else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR) | |
902 | vfn = entry; | |
903 | else | |
904 | error ("I'm confused: virtual function table has bad type"); | |
dd3b648e RP |
905 | /* Reinstantiate the function pointer with the correct type. */ |
906 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
907 | ||
94603999 | 908 | *arg1p = arg1; |
dd3b648e RP |
909 | return vfn; |
910 | } | |
911 | ||
71b16efa JK |
912 | /* ARG is a pointer to an object we know to be at least |
913 | a DTYPE. BTYPE is the most derived basetype that has | |
914 | already been searched (and need not be searched again). | |
915 | After looking at the vtables between BTYPE and DTYPE, | |
916 | return the most derived type we find. The caller must | |
917 | be satisfied when the return value == DTYPE. | |
918 | ||
919 | FIXME-tiemann: should work with dossier entries as well. */ | |
920 | ||
82a2edfb | 921 | static value_ptr |
7cb0f870 | 922 | value_headof (in_arg, btype, dtype) |
82a2edfb | 923 | value_ptr in_arg; |
71b16efa JK |
924 | struct type *btype, *dtype; |
925 | { | |
926 | /* First collect the vtables we must look at for this object. */ | |
927 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
82a2edfb | 928 | value_ptr arg, vtbl, entry, best_entry = 0; |
71b16efa JK |
929 | int i, nelems; |
930 | int offset, best_offset = 0; | |
931 | struct symbol *sym; | |
932 | CORE_ADDR pc_for_sym; | |
933 | char *demangled_name; | |
1ab3bf1b JG |
934 | struct minimal_symbol *msymbol; |
935 | ||
aec4cb91 MT |
936 | btype = TYPE_VPTR_BASETYPE (dtype); |
937 | check_stub_type (btype); | |
7cb0f870 | 938 | arg = in_arg; |
aec4cb91 | 939 | if (btype != dtype) |
7cb0f870 MT |
940 | arg = value_cast (lookup_pointer_type (btype), arg); |
941 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
942 | |
943 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1ab3bf1b JG |
944 | msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); |
945 | if (msymbol == NULL | |
36a2283d PB |
946 | || (demangled_name = SYMBOL_NAME (msymbol)) == NULL |
947 | || !VTBL_PREFIX_P (demangled_name)) | |
71b16efa JK |
948 | { |
949 | /* If we expected to find a vtable, but did not, let the user | |
950 | know that we aren't happy, but don't throw an error. | |
951 | FIXME: there has to be a better way to do this. */ | |
952 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
7cb0f870 | 953 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); |
71b16efa | 954 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); |
7cb0f870 MT |
955 | VALUE_TYPE (in_arg) = error_type; |
956 | return in_arg; | |
71b16efa JK |
957 | } |
958 | ||
959 | /* Now search through the virtual function table. */ | |
960 | entry = value_ind (vtbl); | |
e1ce8aa5 | 961 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
962 | for (i = 1; i <= nelems; i++) |
963 | { | |
96b2f51c JG |
964 | entry = value_subscript (vtbl, value_from_longest (builtin_type_int, |
965 | (LONGEST) i)); | |
36a2283d PB |
966 | /* This won't work if we're using thunks. */ |
967 | if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT) | |
968 | break; | |
e1ce8aa5 | 969 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
bcccec8c PB |
970 | /* If we use '<=' we can handle single inheritance |
971 | * where all offsets are zero - just use the first entry found. */ | |
972 | if (offset <= best_offset) | |
71b16efa JK |
973 | { |
974 | best_offset = offset; | |
975 | best_entry = entry; | |
976 | } | |
977 | } | |
71b16efa JK |
978 | /* Move the pointer according to BEST_ENTRY's offset, and figure |
979 | out what type we should return as the new pointer. */ | |
bcccec8c PB |
980 | if (best_entry == 0) |
981 | { | |
982 | /* An alternative method (which should no longer be necessary). | |
983 | * But we leave it in for future use, when we will hopefully | |
984 | * have optimizes the vtable to use thunks instead of offsets. */ | |
985 | /* Use the name of vtable itself to extract a base type. */ | |
f1c6dbf6 | 986 | demangled_name += 4; /* Skip _vt$ prefix. */ |
bcccec8c PB |
987 | } |
988 | else | |
989 | { | |
990 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); | |
991 | sym = find_pc_function (pc_for_sym); | |
8050a57b | 992 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); |
bcccec8c PB |
993 | *(strchr (demangled_name, ':')) = '\0'; |
994 | } | |
71b16efa | 995 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
2e4964ad FF |
996 | if (sym == NULL) |
997 | error ("could not find type declaration for `%s'", demangled_name); | |
bcccec8c PB |
998 | if (best_entry) |
999 | { | |
1000 | free (demangled_name); | |
1001 | arg = value_add (value_cast (builtin_type_int, arg), | |
1002 | value_field (best_entry, 0)); | |
1003 | } | |
7cb0f870 | 1004 | else arg = in_arg; |
71b16efa JK |
1005 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
1006 | return arg; | |
1007 | } | |
1008 | ||
1009 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
1010 | function tables, probe ARG's tables (including the vtables | |
1011 | of its baseclasses) to figure out the most derived type that ARG | |
1012 | could actually be a pointer to. */ | |
1013 | ||
82a2edfb | 1014 | value_ptr |
71b16efa | 1015 | value_from_vtable_info (arg, type) |
82a2edfb | 1016 | value_ptr arg; |
71b16efa JK |
1017 | struct type *type; |
1018 | { | |
1019 | /* Take care of preliminaries. */ | |
1020 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1021 | fill_in_vptr_fieldno (type); | |
1022 | if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg)) | |
1023 | return 0; | |
1024 | ||
1025 | return value_headof (arg, 0, type); | |
1026 | } | |
1027 | ||
1410f5f1 JK |
1028 | /* Return true if the INDEXth field of TYPE is a virtual baseclass |
1029 | pointer which is for the base class whose type is BASECLASS. */ | |
1030 | ||
1031 | static int | |
1032 | vb_match (type, index, basetype) | |
1033 | struct type *type; | |
1034 | int index; | |
1035 | struct type *basetype; | |
1036 | { | |
1037 | struct type *fieldtype; | |
1410f5f1 JK |
1038 | char *name = TYPE_FIELD_NAME (type, index); |
1039 | char *field_class_name = NULL; | |
1040 | ||
1041 | if (*name != '_') | |
1042 | return 0; | |
f1c6dbf6 | 1043 | /* gcc 2.4 uses _vb$. */ |
1410f5f1 JK |
1044 | if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER) |
1045 | field_class_name = name + 4; | |
f1c6dbf6 | 1046 | /* gcc 2.5 will use __vb_. */ |
1410f5f1 JK |
1047 | if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') |
1048 | field_class_name = name + 5; | |
1049 | ||
1050 | if (field_class_name == NULL) | |
1051 | /* This field is not a virtual base class pointer. */ | |
1052 | return 0; | |
1053 | ||
1054 | /* It's a virtual baseclass pointer, now we just need to find out whether | |
1055 | it is for this baseclass. */ | |
1056 | fieldtype = TYPE_FIELD_TYPE (type, index); | |
1057 | if (fieldtype == NULL | |
1058 | || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) | |
1059 | /* "Can't happen". */ | |
1060 | return 0; | |
1061 | ||
1062 | /* What we check for is that either the types are equal (needed for | |
1063 | nameless types) or have the same name. This is ugly, and a more | |
1064 | elegant solution should be devised (which would probably just push | |
1065 | the ugliness into symbol reading unless we change the stabs format). */ | |
1066 | if (TYPE_TARGET_TYPE (fieldtype) == basetype) | |
1067 | return 1; | |
1068 | ||
1069 | if (TYPE_NAME (basetype) != NULL | |
1070 | && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL | |
1071 | && STREQ (TYPE_NAME (basetype), | |
1072 | TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) | |
1073 | return 1; | |
1074 | return 0; | |
1075 | } | |
1076 | ||
94603999 JG |
1077 | /* Compute the offset of the baseclass which is |
1078 | the INDEXth baseclass of class TYPE, for a value ARG, | |
1079 | wih extra offset of OFFSET. | |
1080 | The result is the offste of the baseclass value relative | |
1081 | to (the address of)(ARG) + OFFSET. | |
1082 | ||
1083 | -1 is returned on error. */ | |
1084 | ||
1085 | int | |
1086 | baseclass_offset (type, index, arg, offset) | |
1087 | struct type *type; | |
1088 | int index; | |
82a2edfb | 1089 | value_ptr arg; |
94603999 JG |
1090 | int offset; |
1091 | { | |
1092 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1093 | ||
1094 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1095 | { | |
1096 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1097 | register int i, len = TYPE_NFIELDS (type); | |
1098 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
94603999 | 1099 | |
94603999 JG |
1100 | /* First look for the virtual baseclass pointer |
1101 | in the fields. */ | |
1102 | for (i = n_baseclasses; i < len; i++) | |
1103 | { | |
1410f5f1 | 1104 | if (vb_match (type, i, basetype)) |
94603999 JG |
1105 | { |
1106 | CORE_ADDR addr | |
1107 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
1108 | VALUE_CONTENTS (arg) + VALUE_OFFSET (arg) | |
1109 | + offset | |
1110 | + (TYPE_FIELD_BITPOS (type, i) / 8)); | |
1111 | ||
1112 | if (VALUE_LVAL (arg) != lval_memory) | |
1113 | return -1; | |
1114 | ||
1115 | return addr - | |
1116 | (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset); | |
1117 | } | |
1118 | } | |
1119 | /* Not in the fields, so try looking through the baseclasses. */ | |
1120 | for (i = index+1; i < n_baseclasses; i++) | |
1121 | { | |
1122 | int boffset = | |
1123 | baseclass_offset (type, i, arg, offset); | |
1124 | if (boffset) | |
1125 | return boffset; | |
1126 | } | |
1127 | /* Not found. */ | |
1128 | return -1; | |
1129 | } | |
1130 | ||
1131 | /* Baseclass is easily computed. */ | |
1132 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1133 | } | |
1134 | ||
dd3b648e | 1135 | /* Compute the address of the baseclass which is |
f1d77e90 | 1136 | the INDEXth baseclass of class TYPE. The TYPE base |
71b16efa JK |
1137 | of the object is at VALADDR. |
1138 | ||
1139 | If ERRP is non-NULL, set *ERRP to be the errno code of any error, | |
1140 | or 0 if no error. In that case the return value is not the address | |
1141 | of the baseclasss, but the address which could not be read | |
1142 | successfully. */ | |
dd3b648e | 1143 | |
94603999 JG |
1144 | /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */ |
1145 | ||
dd3b648e | 1146 | char * |
71b16efa | 1147 | baseclass_addr (type, index, valaddr, valuep, errp) |
dd3b648e RP |
1148 | struct type *type; |
1149 | int index; | |
1150 | char *valaddr; | |
82a2edfb | 1151 | value_ptr *valuep; |
71b16efa | 1152 | int *errp; |
dd3b648e RP |
1153 | { |
1154 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1155 | ||
71b16efa JK |
1156 | if (errp) |
1157 | *errp = 0; | |
aec4cb91 | 1158 | |
dd3b648e RP |
1159 | if (BASETYPE_VIA_VIRTUAL (type, index)) |
1160 | { | |
1161 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1162 | register int i, len = TYPE_NFIELDS (type); | |
1163 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
dd3b648e | 1164 | |
dd3b648e RP |
1165 | /* First look for the virtual baseclass pointer |
1166 | in the fields. */ | |
1167 | for (i = n_baseclasses; i < len; i++) | |
1168 | { | |
1410f5f1 | 1169 | if (vb_match (type, i, basetype)) |
dd3b648e | 1170 | { |
82a2edfb | 1171 | value_ptr val = allocate_value (basetype); |
71b16efa JK |
1172 | CORE_ADDR addr; |
1173 | int status; | |
1174 | ||
e1ce8aa5 JK |
1175 | addr |
1176 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
71b16efa JK |
1177 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
1178 | ||
1179 | status = target_read_memory (addr, | |
1180 | VALUE_CONTENTS_RAW (val), | |
4f6f12f9 | 1181 | TYPE_LENGTH (basetype)); |
71b16efa JK |
1182 | VALUE_LVAL (val) = lval_memory; |
1183 | VALUE_ADDRESS (val) = addr; | |
1184 | ||
1185 | if (status != 0) | |
1186 | { | |
1187 | if (valuep) | |
1188 | *valuep = NULL; | |
1189 | release_value (val); | |
1190 | value_free (val); | |
1191 | if (errp) | |
1192 | *errp = status; | |
1193 | return (char *)addr; | |
1194 | } | |
1195 | else | |
1196 | { | |
1197 | if (valuep) | |
1198 | *valuep = val; | |
1199 | return (char *) VALUE_CONTENTS (val); | |
1200 | } | |
dd3b648e RP |
1201 | } |
1202 | } | |
1203 | /* Not in the fields, so try looking through the baseclasses. */ | |
1204 | for (i = index+1; i < n_baseclasses; i++) | |
1205 | { | |
1206 | char *baddr; | |
1207 | ||
e1ce8aa5 | 1208 | baddr = baseclass_addr (type, i, valaddr, valuep, errp); |
dd3b648e RP |
1209 | if (baddr) |
1210 | return baddr; | |
1211 | } | |
1212 | /* Not found. */ | |
1213 | if (valuep) | |
1214 | *valuep = 0; | |
1215 | return 0; | |
1216 | } | |
1217 | ||
1218 | /* Baseclass is easily computed. */ | |
1219 | if (valuep) | |
1220 | *valuep = 0; | |
1221 | return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1222 | } | |
dd3b648e | 1223 | \f |
4db8e515 FF |
1224 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
1225 | VALADDR. | |
1226 | ||
1227 | Extracting bits depends on endianness of the machine. Compute the | |
1228 | number of least significant bits to discard. For big endian machines, | |
1229 | we compute the total number of bits in the anonymous object, subtract | |
1230 | off the bit count from the MSB of the object to the MSB of the | |
1231 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1232 | count. For little endian machines, the discard count is simply the | |
1233 | number of bits from the LSB of the anonymous object to the LSB of the | |
1234 | bitfield. | |
1235 | ||
1236 | If the field is signed, we also do sign extension. */ | |
1237 | ||
1238 | LONGEST | |
dd3b648e RP |
1239 | unpack_field_as_long (type, valaddr, fieldno) |
1240 | struct type *type; | |
1241 | char *valaddr; | |
1242 | int fieldno; | |
1243 | { | |
4db8e515 FF |
1244 | unsigned LONGEST val; |
1245 | unsigned LONGEST valmask; | |
dd3b648e RP |
1246 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
1247 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
4db8e515 | 1248 | int lsbcount; |
dd3b648e | 1249 | |
34df79fc | 1250 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); |
4db8e515 FF |
1251 | |
1252 | /* Extract bits. See comment above. */ | |
dd3b648e | 1253 | |
b8176214 ILT |
1254 | if (BITS_BIG_ENDIAN) |
1255 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); | |
1256 | else | |
1257 | lsbcount = (bitpos % 8); | |
4db8e515 | 1258 | val >>= lsbcount; |
dd3b648e | 1259 | |
4db8e515 FF |
1260 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
1261 | If the field is signed, and is negative, then sign extend. */ | |
1262 | ||
1263 | if ((bitsize > 0) && (bitsize < 8 * sizeof (val))) | |
1264 | { | |
1265 | valmask = (((unsigned LONGEST) 1) << bitsize) - 1; | |
1266 | val &= valmask; | |
1267 | if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) | |
1268 | { | |
1269 | if (val & (valmask ^ (valmask >> 1))) | |
1270 | { | |
1271 | val |= ~valmask; | |
1272 | } | |
1273 | } | |
1274 | } | |
1275 | return (val); | |
dd3b648e RP |
1276 | } |
1277 | ||
3f2e006b JG |
1278 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1279 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1280 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1281 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1282 | ||
dd3b648e RP |
1283 | void |
1284 | modify_field (addr, fieldval, bitpos, bitsize) | |
1285 | char *addr; | |
58e49e21 | 1286 | LONGEST fieldval; |
dd3b648e RP |
1287 | int bitpos, bitsize; |
1288 | { | |
58e49e21 | 1289 | LONGEST oword; |
dd3b648e | 1290 | |
c3a21801 JG |
1291 | /* Reject values too big to fit in the field in question, |
1292 | otherwise adjoining fields may be corrupted. */ | |
61a7292f SG |
1293 | if (bitsize < (8 * sizeof (fieldval)) |
1294 | && 0 != (fieldval & ~((1<<bitsize)-1))) | |
58e49e21 JK |
1295 | { |
1296 | /* FIXME: would like to include fieldval in the message, but | |
1297 | we don't have a sprintf_longest. */ | |
1298 | error ("Value does not fit in %d bits.", bitsize); | |
1299 | } | |
34df79fc JK |
1300 | |
1301 | oword = extract_signed_integer (addr, sizeof oword); | |
dd3b648e | 1302 | |
3f2e006b | 1303 | /* Shifting for bit field depends on endianness of the target machine. */ |
b8176214 ILT |
1304 | if (BITS_BIG_ENDIAN) |
1305 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; | |
dd3b648e | 1306 | |
58e49e21 | 1307 | /* Mask out old value, while avoiding shifts >= size of oword */ |
c3a21801 | 1308 | if (bitsize < 8 * sizeof (oword)) |
58e49e21 | 1309 | oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos); |
c3a21801 | 1310 | else |
58e49e21 | 1311 | oword &= ~((~(unsigned LONGEST)0) << bitpos); |
dd3b648e | 1312 | oword |= fieldval << bitpos; |
3f2e006b | 1313 | |
34df79fc | 1314 | store_signed_integer (addr, sizeof oword, oword); |
dd3b648e RP |
1315 | } |
1316 | \f | |
1317 | /* Convert C numbers into newly allocated values */ | |
1318 | ||
82a2edfb | 1319 | value_ptr |
96b2f51c | 1320 | value_from_longest (type, num) |
dd3b648e RP |
1321 | struct type *type; |
1322 | register LONGEST num; | |
1323 | { | |
82a2edfb | 1324 | register value_ptr val = allocate_value (type); |
dd3b648e RP |
1325 | register enum type_code code = TYPE_CODE (type); |
1326 | register int len = TYPE_LENGTH (type); | |
1327 | ||
34df79fc | 1328 | switch (code) |
dd3b648e | 1329 | { |
34df79fc JK |
1330 | case TYPE_CODE_INT: |
1331 | case TYPE_CODE_CHAR: | |
1332 | case TYPE_CODE_ENUM: | |
1333 | case TYPE_CODE_BOOL: | |
b96bc1e4 | 1334 | case TYPE_CODE_RANGE: |
34df79fc JK |
1335 | store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); |
1336 | break; | |
1337 | ||
1338 | case TYPE_CODE_REF: | |
1339 | case TYPE_CODE_PTR: | |
1340 | /* This assumes that all pointers of a given length | |
1341 | have the same form. */ | |
1342 | store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num); | |
1343 | break; | |
1344 | ||
1345 | default: | |
1346 | error ("Unexpected type encountered for integer constant."); | |
dd3b648e | 1347 | } |
dd3b648e RP |
1348 | return val; |
1349 | } | |
1350 | ||
82a2edfb | 1351 | value_ptr |
dd3b648e RP |
1352 | value_from_double (type, num) |
1353 | struct type *type; | |
1354 | double num; | |
1355 | { | |
82a2edfb | 1356 | register value_ptr val = allocate_value (type); |
dd3b648e RP |
1357 | register enum type_code code = TYPE_CODE (type); |
1358 | register int len = TYPE_LENGTH (type); | |
1359 | ||
1360 | if (code == TYPE_CODE_FLT) | |
1361 | { | |
bf5c0d64 | 1362 | store_floating (VALUE_CONTENTS_RAW (val), len, num); |
dd3b648e RP |
1363 | } |
1364 | else | |
1365 | error ("Unexpected type encountered for floating constant."); | |
1366 | ||
dd3b648e RP |
1367 | return val; |
1368 | } | |
1369 | \f | |
1370 | /* Deal with the value that is "about to be returned". */ | |
1371 | ||
1372 | /* Return the value that a function returning now | |
1373 | would be returning to its caller, assuming its type is VALTYPE. | |
1374 | RETBUF is where we look for what ought to be the contents | |
1375 | of the registers (in raw form). This is because it is often | |
1376 | desirable to restore old values to those registers | |
1377 | after saving the contents of interest, and then call | |
1378 | this function using the saved values. | |
1379 | struct_return is non-zero when the function in question is | |
1380 | using the structure return conventions on the machine in question; | |
1381 | 0 when it is using the value returning conventions (this often | |
1382 | means returning pointer to where structure is vs. returning value). */ | |
1383 | ||
82a2edfb | 1384 | value_ptr |
dd3b648e RP |
1385 | value_being_returned (valtype, retbuf, struct_return) |
1386 | register struct type *valtype; | |
1387 | char retbuf[REGISTER_BYTES]; | |
1388 | int struct_return; | |
1389 | /*ARGSUSED*/ | |
1390 | { | |
82a2edfb | 1391 | register value_ptr val; |
dd3b648e RP |
1392 | CORE_ADDR addr; |
1393 | ||
1394 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1395 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1396 | if (struct_return) { | |
1397 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1398 | if (!addr) | |
1399 | error ("Function return value unknown"); | |
1400 | return value_at (valtype, addr); | |
1401 | } | |
1402 | #endif | |
1403 | ||
1404 | val = allocate_value (valtype); | |
1405 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); | |
1406 | ||
1407 | return val; | |
1408 | } | |
1409 | ||
1410 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1411 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1412 | and TYPE is the type (which is known to be struct, union or array). | |
1413 | ||
1414 | On most machines, the struct convention is used unless we are | |
1415 | using gcc and the type is of a special size. */ | |
9925b928 JK |
1416 | /* As of about 31 Mar 93, GCC was changed to be compatible with the |
1417 | native compiler. GCC 2.3.3 was the last release that did it the | |
1418 | old way. Since gcc2_compiled was not changed, we have no | |
1419 | way to correctly win in all cases, so we just do the right thing | |
1420 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1421 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1422 | would cause more chaos than dealing with some struct returns being | |
1423 | handled wrong. */ | |
dd3b648e RP |
1424 | #if !defined (USE_STRUCT_CONVENTION) |
1425 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
9925b928 JK |
1426 | (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \ |
1427 | || TYPE_LENGTH (value_type) == 2 \ | |
1428 | || TYPE_LENGTH (value_type) == 4 \ | |
1429 | || TYPE_LENGTH (value_type) == 8 \ | |
1430 | ) \ | |
dd3b648e RP |
1431 | )) |
1432 | #endif | |
1433 | ||
1434 | /* Return true if the function specified is using the structure returning | |
1435 | convention on this machine to return arguments, or 0 if it is using | |
1436 | the value returning convention. FUNCTION is the value representing | |
1437 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1438 | is the type returned by the function. GCC_P is nonzero if compiled | |
1439 | with GCC. */ | |
1440 | ||
1441 | int | |
1442 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
82a2edfb | 1443 | value_ptr function; |
dd3b648e RP |
1444 | CORE_ADDR funcaddr; |
1445 | struct type *value_type; | |
1446 | int gcc_p; | |
1447 | /*ARGSUSED*/ | |
1448 | { | |
1449 | register enum type_code code = TYPE_CODE (value_type); | |
1450 | ||
1451 | if (code == TYPE_CODE_ERROR) | |
1452 | error ("Function return type unknown."); | |
1453 | ||
1454 | if (code == TYPE_CODE_STRUCT || | |
1455 | code == TYPE_CODE_UNION || | |
1456 | code == TYPE_CODE_ARRAY) | |
1457 | return USE_STRUCT_CONVENTION (gcc_p, value_type); | |
1458 | ||
1459 | return 0; | |
1460 | } | |
1461 | ||
1462 | /* Store VAL so it will be returned if a function returns now. | |
1463 | Does not verify that VAL's type matches what the current | |
1464 | function wants to return. */ | |
1465 | ||
1466 | void | |
1467 | set_return_value (val) | |
82a2edfb | 1468 | value_ptr val; |
dd3b648e RP |
1469 | { |
1470 | register enum type_code code = TYPE_CODE (VALUE_TYPE (val)); | |
dd3b648e RP |
1471 | |
1472 | if (code == TYPE_CODE_ERROR) | |
1473 | error ("Function return type unknown."); | |
1474 | ||
f1d77e90 JG |
1475 | if ( code == TYPE_CODE_STRUCT |
1476 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ | |
1477 | error ("GDB does not support specifying a struct or union return value."); | |
dd3b648e | 1478 | |
07aa9fdc | 1479 | STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val)); |
dd3b648e RP |
1480 | } |
1481 | \f | |
1482 | void | |
1483 | _initialize_values () | |
1484 | { | |
f266e564 | 1485 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1486 | "Debugger convenience (\"$foo\") variables.\n\ |
1487 | These variables are created when you assign them values;\n\ | |
1488 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1489 | A few convenience variables are given values automatically:\n\ | |
1490 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1491 | \"$__\" holds the contents of the last address examined with \"x\".", |
1492 | &showlist); | |
dd3b648e | 1493 | |
f266e564 JK |
1494 | add_cmd ("values", no_class, show_values, |
1495 | "Elements of value history around item number IDX (or last ten).", | |
1496 | &showlist); | |
dd3b648e | 1497 | } |