]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
adc11376 AC |
4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software |
5 | Foundation, Inc. | |
c906108c SS |
6 | |
7 | Contributed by the Center for Software Science at the | |
8 | University of Utah ([email protected]). | |
9 | ||
c5aa993b | 10 | This file is part of GDB. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is free software; you can redistribute it and/or modify |
13 | it under the terms of the GNU General Public License as published by | |
14 | the Free Software Foundation; either version 2 of the License, or | |
15 | (at your option) any later version. | |
c906108c | 16 | |
c5aa993b JM |
17 | This program is distributed in the hope that it will be useful, |
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 | GNU General Public License for more details. | |
c906108c | 21 | |
c5aa993b JM |
22 | You should have received a copy of the GNU General Public License |
23 | along with this program; if not, write to the Free Software | |
24 | Foundation, Inc., 59 Temple Place - Suite 330, | |
25 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
26 | |
27 | #include "defs.h" | |
c906108c SS |
28 | #include "bfd.h" |
29 | #include "inferior.h" | |
4e052eda | 30 | #include "regcache.h" |
e5d66720 | 31 | #include "completer.h" |
59623e27 | 32 | #include "osabi.h" |
a7ff40e7 | 33 | #include "gdb_assert.h" |
343af405 | 34 | #include "arch-utils.h" |
c906108c SS |
35 | /* For argument passing to the inferior */ |
36 | #include "symtab.h" | |
fde2cceb | 37 | #include "dis-asm.h" |
26d08f08 AC |
38 | #include "trad-frame.h" |
39 | #include "frame-unwind.h" | |
40 | #include "frame-base.h" | |
c906108c | 41 | |
c906108c SS |
42 | #include "gdbcore.h" |
43 | #include "gdbcmd.h" | |
c906108c | 44 | #include "objfiles.h" |
3ff7cf9e | 45 | #include "hppa-tdep.h" |
c906108c | 46 | |
369aa520 RC |
47 | static int hppa_debug = 0; |
48 | ||
60383d10 | 49 | /* Some local constants. */ |
3ff7cf9e JB |
50 | static const int hppa32_num_regs = 128; |
51 | static const int hppa64_num_regs = 96; | |
52 | ||
7c46b9fb RC |
53 | /* hppa-specific object data -- unwind and solib info. |
54 | TODO/maybe: think about splitting this into two parts; the unwind data is | |
55 | common to all hppa targets, but is only used in this file; we can register | |
56 | that separately and make this static. The solib data is probably hpux- | |
57 | specific, so we can create a separate extern objfile_data that is registered | |
58 | by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ | |
59 | const struct objfile_data *hppa_objfile_priv_data = NULL; | |
60 | ||
e2ac8128 JB |
61 | /* Get at various relevent fields of an instruction word. */ |
62 | #define MASK_5 0x1f | |
63 | #define MASK_11 0x7ff | |
64 | #define MASK_14 0x3fff | |
65 | #define MASK_21 0x1fffff | |
66 | ||
e2ac8128 JB |
67 | /* Sizes (in bytes) of the native unwind entries. */ |
68 | #define UNWIND_ENTRY_SIZE 16 | |
69 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
70 | ||
d709c020 JB |
71 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
72 | following functions static, once we hppa is partially multiarched. */ | |
d709c020 JB |
73 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); |
74 | int hppa_instruction_nullified (void); | |
c906108c | 75 | |
537987fc AC |
76 | /* Handle 32/64-bit struct return conventions. */ |
77 | ||
78 | static enum return_value_convention | |
79 | hppa32_return_value (struct gdbarch *gdbarch, | |
80 | struct type *type, struct regcache *regcache, | |
81 | void *readbuf, const void *writebuf) | |
82 | { | |
537987fc AC |
83 | if (TYPE_LENGTH (type) <= 2 * 4) |
84 | { | |
85 | /* The value always lives in the right hand end of the register | |
86 | (or register pair)? */ | |
87 | int b; | |
34f75cc1 | 88 | int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; |
537987fc AC |
89 | int part = TYPE_LENGTH (type) % 4; |
90 | /* The left hand register contains only part of the value, | |
91 | transfer that first so that the rest can be xfered as entire | |
92 | 4-byte registers. */ | |
93 | if (part > 0) | |
94 | { | |
95 | if (readbuf != NULL) | |
96 | regcache_cooked_read_part (regcache, reg, 4 - part, | |
97 | part, readbuf); | |
98 | if (writebuf != NULL) | |
99 | regcache_cooked_write_part (regcache, reg, 4 - part, | |
100 | part, writebuf); | |
101 | reg++; | |
102 | } | |
103 | /* Now transfer the remaining register values. */ | |
104 | for (b = part; b < TYPE_LENGTH (type); b += 4) | |
105 | { | |
106 | if (readbuf != NULL) | |
107 | regcache_cooked_read (regcache, reg, (char *) readbuf + b); | |
108 | if (writebuf != NULL) | |
109 | regcache_cooked_write (regcache, reg, (const char *) writebuf + b); | |
110 | reg++; | |
111 | } | |
112 | return RETURN_VALUE_REGISTER_CONVENTION; | |
113 | } | |
114 | else | |
115 | return RETURN_VALUE_STRUCT_CONVENTION; | |
116 | } | |
117 | ||
118 | static enum return_value_convention | |
119 | hppa64_return_value (struct gdbarch *gdbarch, | |
120 | struct type *type, struct regcache *regcache, | |
121 | void *readbuf, const void *writebuf) | |
122 | { | |
123 | /* RM: Floats are returned in FR4R, doubles in FR4. Integral values | |
124 | are in r28, padded on the left. Aggregates less that 65 bits are | |
125 | in r28, right padded. Aggregates upto 128 bits are in r28 and | |
126 | r29, right padded. */ | |
449e1137 AC |
127 | if (TYPE_CODE (type) == TYPE_CODE_FLT |
128 | && TYPE_LENGTH (type) <= 8) | |
537987fc AC |
129 | { |
130 | /* Floats are right aligned? */ | |
34f75cc1 | 131 | int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type); |
537987fc | 132 | if (readbuf != NULL) |
34f75cc1 | 133 | regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset, |
537987fc AC |
134 | TYPE_LENGTH (type), readbuf); |
135 | if (writebuf != NULL) | |
34f75cc1 | 136 | regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset, |
537987fc AC |
137 | TYPE_LENGTH (type), writebuf); |
138 | return RETURN_VALUE_REGISTER_CONVENTION; | |
139 | } | |
140 | else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type)) | |
141 | { | |
142 | /* Integrals are right aligned. */ | |
34f75cc1 | 143 | int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type); |
537987fc AC |
144 | if (readbuf != NULL) |
145 | regcache_cooked_read_part (regcache, 28, offset, | |
146 | TYPE_LENGTH (type), readbuf); | |
147 | if (writebuf != NULL) | |
148 | regcache_cooked_write_part (regcache, 28, offset, | |
149 | TYPE_LENGTH (type), writebuf); | |
150 | return RETURN_VALUE_REGISTER_CONVENTION; | |
151 | } | |
152 | else if (TYPE_LENGTH (type) <= 2 * 8) | |
153 | { | |
154 | /* Composite values are left aligned. */ | |
155 | int b; | |
156 | for (b = 0; b < TYPE_LENGTH (type); b += 8) | |
157 | { | |
449e1137 | 158 | int part = min (8, TYPE_LENGTH (type) - b); |
537987fc | 159 | if (readbuf != NULL) |
449e1137 | 160 | regcache_cooked_read_part (regcache, 28 + b / 8, 0, part, |
537987fc AC |
161 | (char *) readbuf + b); |
162 | if (writebuf != NULL) | |
449e1137 | 163 | regcache_cooked_write_part (regcache, 28 + b / 8, 0, part, |
537987fc AC |
164 | (const char *) writebuf + b); |
165 | } | |
449e1137 | 166 | return RETURN_VALUE_REGISTER_CONVENTION; |
537987fc AC |
167 | } |
168 | else | |
169 | return RETURN_VALUE_STRUCT_CONVENTION; | |
170 | } | |
171 | ||
c906108c SS |
172 | /* Routines to extract various sized constants out of hppa |
173 | instructions. */ | |
174 | ||
175 | /* This assumes that no garbage lies outside of the lower bits of | |
176 | value. */ | |
177 | ||
abc485a1 RC |
178 | int |
179 | hppa_sign_extend (unsigned val, unsigned bits) | |
c906108c | 180 | { |
c5aa993b | 181 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
182 | } |
183 | ||
184 | /* For many immediate values the sign bit is the low bit! */ | |
185 | ||
abc485a1 RC |
186 | int |
187 | hppa_low_hppa_sign_extend (unsigned val, unsigned bits) | |
c906108c | 188 | { |
c5aa993b | 189 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
190 | } |
191 | ||
e2ac8128 JB |
192 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
193 | (MSB = 0). */ | |
194 | ||
abc485a1 RC |
195 | int |
196 | hppa_get_field (unsigned word, int from, int to) | |
e2ac8128 JB |
197 | { |
198 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
199 | } | |
200 | ||
c906108c SS |
201 | /* extract the immediate field from a ld{bhw}s instruction */ |
202 | ||
abc485a1 RC |
203 | int |
204 | hppa_extract_5_load (unsigned word) | |
c906108c | 205 | { |
abc485a1 | 206 | return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); |
c906108c SS |
207 | } |
208 | ||
c906108c SS |
209 | /* extract the immediate field from a break instruction */ |
210 | ||
abc485a1 RC |
211 | unsigned |
212 | hppa_extract_5r_store (unsigned word) | |
c906108c SS |
213 | { |
214 | return (word & MASK_5); | |
215 | } | |
216 | ||
217 | /* extract the immediate field from a {sr}sm instruction */ | |
218 | ||
abc485a1 RC |
219 | unsigned |
220 | hppa_extract_5R_store (unsigned word) | |
c906108c SS |
221 | { |
222 | return (word >> 16 & MASK_5); | |
223 | } | |
224 | ||
c906108c SS |
225 | /* extract a 14 bit immediate field */ |
226 | ||
abc485a1 RC |
227 | int |
228 | hppa_extract_14 (unsigned word) | |
c906108c | 229 | { |
abc485a1 | 230 | return hppa_low_hppa_sign_extend (word & MASK_14, 14); |
c906108c SS |
231 | } |
232 | ||
c906108c SS |
233 | /* extract a 21 bit constant */ |
234 | ||
abc485a1 RC |
235 | int |
236 | hppa_extract_21 (unsigned word) | |
c906108c SS |
237 | { |
238 | int val; | |
239 | ||
240 | word &= MASK_21; | |
241 | word <<= 11; | |
abc485a1 | 242 | val = hppa_get_field (word, 20, 20); |
c906108c | 243 | val <<= 11; |
abc485a1 | 244 | val |= hppa_get_field (word, 9, 19); |
c906108c | 245 | val <<= 2; |
abc485a1 | 246 | val |= hppa_get_field (word, 5, 6); |
c906108c | 247 | val <<= 5; |
abc485a1 | 248 | val |= hppa_get_field (word, 0, 4); |
c906108c | 249 | val <<= 2; |
abc485a1 RC |
250 | val |= hppa_get_field (word, 7, 8); |
251 | return hppa_sign_extend (val, 21) << 11; | |
c906108c SS |
252 | } |
253 | ||
c906108c SS |
254 | /* extract a 17 bit constant from branch instructions, returning the |
255 | 19 bit signed value. */ | |
256 | ||
abc485a1 RC |
257 | int |
258 | hppa_extract_17 (unsigned word) | |
c906108c | 259 | { |
abc485a1 RC |
260 | return hppa_sign_extend (hppa_get_field (word, 19, 28) | |
261 | hppa_get_field (word, 29, 29) << 10 | | |
262 | hppa_get_field (word, 11, 15) << 11 | | |
c906108c SS |
263 | (word & 0x1) << 16, 17) << 2; |
264 | } | |
3388d7ff RC |
265 | |
266 | CORE_ADDR | |
267 | hppa_symbol_address(const char *sym) | |
268 | { | |
269 | struct minimal_symbol *minsym; | |
270 | ||
271 | minsym = lookup_minimal_symbol (sym, NULL, NULL); | |
272 | if (minsym) | |
273 | return SYMBOL_VALUE_ADDRESS (minsym); | |
274 | else | |
275 | return (CORE_ADDR)-1; | |
276 | } | |
c906108c SS |
277 | \f |
278 | ||
279 | /* Compare the start address for two unwind entries returning 1 if | |
280 | the first address is larger than the second, -1 if the second is | |
281 | larger than the first, and zero if they are equal. */ | |
282 | ||
283 | static int | |
fba45db2 | 284 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
285 | { |
286 | const struct unwind_table_entry *a = arg1; | |
287 | const struct unwind_table_entry *b = arg2; | |
288 | ||
289 | if (a->region_start > b->region_start) | |
290 | return 1; | |
291 | else if (a->region_start < b->region_start) | |
292 | return -1; | |
293 | else | |
294 | return 0; | |
295 | } | |
296 | ||
53a5351d | 297 | static void |
fdd72f95 | 298 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
53a5351d | 299 | { |
fdd72f95 | 300 | if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d | 301 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
fdd72f95 RC |
302 | { |
303 | bfd_vma value = section->vma - section->filepos; | |
304 | CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; | |
305 | ||
306 | if (value < *low_text_segment_address) | |
307 | *low_text_segment_address = value; | |
308 | } | |
53a5351d JM |
309 | } |
310 | ||
c906108c | 311 | static void |
fba45db2 KB |
312 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
313 | asection *section, unsigned int entries, unsigned int size, | |
314 | CORE_ADDR text_offset) | |
c906108c SS |
315 | { |
316 | /* We will read the unwind entries into temporary memory, then | |
317 | fill in the actual unwind table. */ | |
fdd72f95 | 318 | |
c906108c SS |
319 | if (size > 0) |
320 | { | |
321 | unsigned long tmp; | |
322 | unsigned i; | |
323 | char *buf = alloca (size); | |
fdd72f95 | 324 | CORE_ADDR low_text_segment_address; |
c906108c | 325 | |
fdd72f95 | 326 | /* For ELF targets, then unwinds are supposed to |
c2c6d25f JM |
327 | be segment relative offsets instead of absolute addresses. |
328 | ||
329 | Note that when loading a shared library (text_offset != 0) the | |
330 | unwinds are already relative to the text_offset that will be | |
331 | passed in. */ | |
fdd72f95 | 332 | if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0) |
53a5351d | 333 | { |
fdd72f95 RC |
334 | low_text_segment_address = -1; |
335 | ||
53a5351d | 336 | bfd_map_over_sections (objfile->obfd, |
fdd72f95 RC |
337 | record_text_segment_lowaddr, |
338 | &low_text_segment_address); | |
53a5351d | 339 | |
fdd72f95 | 340 | text_offset = low_text_segment_address; |
53a5351d JM |
341 | } |
342 | ||
c906108c SS |
343 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
344 | ||
345 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 346 | endian issues. */ |
c906108c SS |
347 | for (i = 0; i < entries; i++) |
348 | { | |
349 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 350 | (bfd_byte *) buf); |
c906108c SS |
351 | table[i].region_start += text_offset; |
352 | buf += 4; | |
c5aa993b | 353 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
354 | table[i].region_end += text_offset; |
355 | buf += 4; | |
c5aa993b | 356 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
357 | buf += 4; |
358 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
359 | table[i].Millicode = (tmp >> 30) & 0x1; | |
360 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
361 | table[i].Region_description = (tmp >> 27) & 0x3; | |
362 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
363 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
364 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
365 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
366 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
367 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
368 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
369 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
370 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
371 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
372 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
373 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
374 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
375 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
376 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
377 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
378 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
379 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
380 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
381 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 382 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
383 | buf += 4; |
384 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
385 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
386 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
387 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
388 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
389 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
390 | ||
c5aa993b | 391 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
392 | table[i].stub_unwind.stub_type = 0; |
393 | table[i].stub_unwind.padding = 0; | |
394 | } | |
395 | } | |
396 | } | |
397 | ||
398 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
399 | the object file. This info is used mainly by find_unwind_entry() to find | |
400 | out the stack frame size and frame pointer used by procedures. We put | |
401 | everything on the psymbol obstack in the objfile so that it automatically | |
402 | gets freed when the objfile is destroyed. */ | |
403 | ||
404 | static void | |
fba45db2 | 405 | read_unwind_info (struct objfile *objfile) |
c906108c | 406 | { |
d4f3574e SS |
407 | asection *unwind_sec, *stub_unwind_sec; |
408 | unsigned unwind_size, stub_unwind_size, total_size; | |
409 | unsigned index, unwind_entries; | |
c906108c SS |
410 | unsigned stub_entries, total_entries; |
411 | CORE_ADDR text_offset; | |
7c46b9fb RC |
412 | struct hppa_unwind_info *ui; |
413 | struct hppa_objfile_private *obj_private; | |
c906108c SS |
414 | |
415 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
7c46b9fb RC |
416 | ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
417 | sizeof (struct hppa_unwind_info)); | |
c906108c SS |
418 | |
419 | ui->table = NULL; | |
420 | ui->cache = NULL; | |
421 | ui->last = -1; | |
422 | ||
d4f3574e SS |
423 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
424 | sections in a single executable. So we just iterate over every | |
425 | section in the BFD looking for unwinder sections intead of trying | |
426 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 427 | |
d4f3574e SS |
428 | First determine the total size of the unwind tables so that we |
429 | can allocate memory in a nice big hunk. */ | |
430 | total_entries = 0; | |
431 | for (unwind_sec = objfile->obfd->sections; | |
432 | unwind_sec; | |
433 | unwind_sec = unwind_sec->next) | |
c906108c | 434 | { |
d4f3574e SS |
435 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
436 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
437 | { | |
438 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
439 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 440 | |
d4f3574e SS |
441 | total_entries += unwind_entries; |
442 | } | |
c906108c SS |
443 | } |
444 | ||
d4f3574e SS |
445 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
446 | use stub unwinds at the curren time. */ | |
447 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
448 | ||
c906108c SS |
449 | if (stub_unwind_sec) |
450 | { | |
451 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
452 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
453 | } | |
454 | else | |
455 | { | |
456 | stub_unwind_size = 0; | |
457 | stub_entries = 0; | |
458 | } | |
459 | ||
460 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 461 | total_entries += stub_entries; |
c906108c SS |
462 | total_size = total_entries * sizeof (struct unwind_table_entry); |
463 | ||
464 | /* Allocate memory for the unwind table. */ | |
465 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 466 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 467 | ui->last = total_entries - 1; |
c906108c | 468 | |
d4f3574e SS |
469 | /* Now read in each unwind section and internalize the standard unwind |
470 | entries. */ | |
c906108c | 471 | index = 0; |
d4f3574e SS |
472 | for (unwind_sec = objfile->obfd->sections; |
473 | unwind_sec; | |
474 | unwind_sec = unwind_sec->next) | |
475 | { | |
476 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
477 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
478 | { | |
479 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
480 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
481 | ||
482 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
483 | unwind_entries, unwind_size, text_offset); | |
484 | index += unwind_entries; | |
485 | } | |
486 | } | |
487 | ||
488 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
489 | if (stub_unwind_size > 0) |
490 | { | |
491 | unsigned int i; | |
492 | char *buf = alloca (stub_unwind_size); | |
493 | ||
494 | /* Read in the stub unwind entries. */ | |
495 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
496 | 0, stub_unwind_size); | |
497 | ||
498 | /* Now convert them into regular unwind entries. */ | |
499 | for (i = 0; i < stub_entries; i++, index++) | |
500 | { | |
501 | /* Clear out the next unwind entry. */ | |
502 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
503 | ||
504 | /* Convert offset & size into region_start and region_end. | |
505 | Stuff away the stub type into "reserved" fields. */ | |
506 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
507 | (bfd_byte *) buf); | |
508 | ui->table[index].region_start += text_offset; | |
509 | buf += 4; | |
510 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 511 | (bfd_byte *) buf); |
c906108c SS |
512 | buf += 2; |
513 | ui->table[index].region_end | |
c5aa993b JM |
514 | = ui->table[index].region_start + 4 * |
515 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
516 | buf += 2; |
517 | } | |
518 | ||
519 | } | |
520 | ||
521 | /* Unwind table needs to be kept sorted. */ | |
522 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
523 | compare_unwind_entries); | |
524 | ||
525 | /* Keep a pointer to the unwind information. */ | |
7c46b9fb RC |
526 | obj_private = (struct hppa_objfile_private *) |
527 | objfile_data (objfile, hppa_objfile_priv_data); | |
528 | if (obj_private == NULL) | |
c906108c | 529 | { |
7c46b9fb RC |
530 | obj_private = (struct hppa_objfile_private *) |
531 | obstack_alloc (&objfile->objfile_obstack, | |
532 | sizeof (struct hppa_objfile_private)); | |
533 | set_objfile_data (objfile, hppa_objfile_priv_data, obj_private); | |
c906108c | 534 | obj_private->unwind_info = NULL; |
c5aa993b | 535 | obj_private->so_info = NULL; |
53a5351d | 536 | obj_private->dp = 0; |
c906108c | 537 | } |
c906108c SS |
538 | obj_private->unwind_info = ui; |
539 | } | |
540 | ||
541 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
542 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
543 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
544 | search of the unwind tables, we depend upon them to be sorted. */ | |
545 | ||
546 | struct unwind_table_entry * | |
fba45db2 | 547 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
548 | { |
549 | int first, middle, last; | |
550 | struct objfile *objfile; | |
7c46b9fb | 551 | struct hppa_objfile_private *priv; |
c906108c | 552 | |
369aa520 RC |
553 | if (hppa_debug) |
554 | fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ", | |
555 | paddr_nz (pc)); | |
556 | ||
c906108c SS |
557 | /* A function at address 0? Not in HP-UX! */ |
558 | if (pc == (CORE_ADDR) 0) | |
369aa520 RC |
559 | { |
560 | if (hppa_debug) | |
561 | fprintf_unfiltered (gdb_stdlog, "NULL }\n"); | |
562 | return NULL; | |
563 | } | |
c906108c SS |
564 | |
565 | ALL_OBJFILES (objfile) | |
c5aa993b | 566 | { |
7c46b9fb | 567 | struct hppa_unwind_info *ui; |
c5aa993b | 568 | ui = NULL; |
7c46b9fb RC |
569 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
570 | if (priv) | |
571 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; | |
c906108c | 572 | |
c5aa993b JM |
573 | if (!ui) |
574 | { | |
575 | read_unwind_info (objfile); | |
7c46b9fb RC |
576 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
577 | if (priv == NULL) | |
104c1213 | 578 | error ("Internal error reading unwind information."); |
7c46b9fb | 579 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
c5aa993b | 580 | } |
c906108c | 581 | |
c5aa993b | 582 | /* First, check the cache */ |
c906108c | 583 | |
c5aa993b JM |
584 | if (ui->cache |
585 | && pc >= ui->cache->region_start | |
586 | && pc <= ui->cache->region_end) | |
369aa520 RC |
587 | { |
588 | if (hppa_debug) | |
589 | fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n", | |
590 | paddr_nz ((CORE_ADDR) ui->cache)); | |
591 | return ui->cache; | |
592 | } | |
c906108c | 593 | |
c5aa993b | 594 | /* Not in the cache, do a binary search */ |
c906108c | 595 | |
c5aa993b JM |
596 | first = 0; |
597 | last = ui->last; | |
c906108c | 598 | |
c5aa993b JM |
599 | while (first <= last) |
600 | { | |
601 | middle = (first + last) / 2; | |
602 | if (pc >= ui->table[middle].region_start | |
603 | && pc <= ui->table[middle].region_end) | |
604 | { | |
605 | ui->cache = &ui->table[middle]; | |
369aa520 RC |
606 | if (hppa_debug) |
607 | fprintf_unfiltered (gdb_stdlog, "0x%s }\n", | |
608 | paddr_nz ((CORE_ADDR) ui->cache)); | |
c5aa993b JM |
609 | return &ui->table[middle]; |
610 | } | |
c906108c | 611 | |
c5aa993b JM |
612 | if (pc < ui->table[middle].region_start) |
613 | last = middle - 1; | |
614 | else | |
615 | first = middle + 1; | |
616 | } | |
617 | } /* ALL_OBJFILES() */ | |
369aa520 RC |
618 | |
619 | if (hppa_debug) | |
620 | fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); | |
621 | ||
c906108c SS |
622 | return NULL; |
623 | } | |
624 | ||
85f4f2d8 | 625 | static const unsigned char * |
aaab4dba AC |
626 | hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len) |
627 | { | |
56132691 | 628 | static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; |
aaab4dba AC |
629 | (*len) = sizeof (breakpoint); |
630 | return breakpoint; | |
631 | } | |
632 | ||
e23457df AC |
633 | /* Return the name of a register. */ |
634 | ||
635 | const char * | |
3ff7cf9e | 636 | hppa32_register_name (int i) |
e23457df AC |
637 | { |
638 | static char *names[] = { | |
639 | "flags", "r1", "rp", "r3", | |
640 | "r4", "r5", "r6", "r7", | |
641 | "r8", "r9", "r10", "r11", | |
642 | "r12", "r13", "r14", "r15", | |
643 | "r16", "r17", "r18", "r19", | |
644 | "r20", "r21", "r22", "r23", | |
645 | "r24", "r25", "r26", "dp", | |
646 | "ret0", "ret1", "sp", "r31", | |
647 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
648 | "pcsqt", "eiem", "iir", "isr", | |
649 | "ior", "ipsw", "goto", "sr4", | |
650 | "sr0", "sr1", "sr2", "sr3", | |
651 | "sr5", "sr6", "sr7", "cr0", | |
652 | "cr8", "cr9", "ccr", "cr12", | |
653 | "cr13", "cr24", "cr25", "cr26", | |
654 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
655 | "fpsr", "fpe1", "fpe2", "fpe3", | |
656 | "fpe4", "fpe5", "fpe6", "fpe7", | |
657 | "fr4", "fr4R", "fr5", "fr5R", | |
658 | "fr6", "fr6R", "fr7", "fr7R", | |
659 | "fr8", "fr8R", "fr9", "fr9R", | |
660 | "fr10", "fr10R", "fr11", "fr11R", | |
661 | "fr12", "fr12R", "fr13", "fr13R", | |
662 | "fr14", "fr14R", "fr15", "fr15R", | |
663 | "fr16", "fr16R", "fr17", "fr17R", | |
664 | "fr18", "fr18R", "fr19", "fr19R", | |
665 | "fr20", "fr20R", "fr21", "fr21R", | |
666 | "fr22", "fr22R", "fr23", "fr23R", | |
667 | "fr24", "fr24R", "fr25", "fr25R", | |
668 | "fr26", "fr26R", "fr27", "fr27R", | |
669 | "fr28", "fr28R", "fr29", "fr29R", | |
670 | "fr30", "fr30R", "fr31", "fr31R" | |
671 | }; | |
672 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
673 | return NULL; | |
674 | else | |
675 | return names[i]; | |
676 | } | |
677 | ||
678 | const char * | |
679 | hppa64_register_name (int i) | |
680 | { | |
681 | static char *names[] = { | |
682 | "flags", "r1", "rp", "r3", | |
683 | "r4", "r5", "r6", "r7", | |
684 | "r8", "r9", "r10", "r11", | |
685 | "r12", "r13", "r14", "r15", | |
686 | "r16", "r17", "r18", "r19", | |
687 | "r20", "r21", "r22", "r23", | |
688 | "r24", "r25", "r26", "dp", | |
689 | "ret0", "ret1", "sp", "r31", | |
690 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
691 | "pcsqt", "eiem", "iir", "isr", | |
692 | "ior", "ipsw", "goto", "sr4", | |
693 | "sr0", "sr1", "sr2", "sr3", | |
694 | "sr5", "sr6", "sr7", "cr0", | |
695 | "cr8", "cr9", "ccr", "cr12", | |
696 | "cr13", "cr24", "cr25", "cr26", | |
697 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
698 | "fpsr", "fpe1", "fpe2", "fpe3", | |
699 | "fr4", "fr5", "fr6", "fr7", | |
700 | "fr8", "fr9", "fr10", "fr11", | |
701 | "fr12", "fr13", "fr14", "fr15", | |
702 | "fr16", "fr17", "fr18", "fr19", | |
703 | "fr20", "fr21", "fr22", "fr23", | |
704 | "fr24", "fr25", "fr26", "fr27", | |
705 | "fr28", "fr29", "fr30", "fr31" | |
706 | }; | |
707 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
708 | return NULL; | |
709 | else | |
710 | return names[i]; | |
711 | } | |
712 | ||
79508e1e AC |
713 | /* This function pushes a stack frame with arguments as part of the |
714 | inferior function calling mechanism. | |
715 | ||
716 | This is the version of the function for the 32-bit PA machines, in | |
717 | which later arguments appear at lower addresses. (The stack always | |
718 | grows towards higher addresses.) | |
719 | ||
720 | We simply allocate the appropriate amount of stack space and put | |
721 | arguments into their proper slots. */ | |
722 | ||
723 | CORE_ADDR | |
7d9b040b | 724 | hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
79508e1e AC |
725 | struct regcache *regcache, CORE_ADDR bp_addr, |
726 | int nargs, struct value **args, CORE_ADDR sp, | |
727 | int struct_return, CORE_ADDR struct_addr) | |
728 | { | |
79508e1e AC |
729 | /* Stack base address at which any pass-by-reference parameters are |
730 | stored. */ | |
731 | CORE_ADDR struct_end = 0; | |
732 | /* Stack base address at which the first parameter is stored. */ | |
733 | CORE_ADDR param_end = 0; | |
734 | ||
735 | /* The inner most end of the stack after all the parameters have | |
736 | been pushed. */ | |
737 | CORE_ADDR new_sp = 0; | |
738 | ||
739 | /* Two passes. First pass computes the location of everything, | |
740 | second pass writes the bytes out. */ | |
741 | int write_pass; | |
d49771ef RC |
742 | |
743 | /* Global pointer (r19) of the function we are trying to call. */ | |
744 | CORE_ADDR gp; | |
745 | ||
746 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
747 | ||
79508e1e AC |
748 | for (write_pass = 0; write_pass < 2; write_pass++) |
749 | { | |
1797a8f6 | 750 | CORE_ADDR struct_ptr = 0; |
2a6228ef RC |
751 | /* The first parameter goes into sp-36, each stack slot is 4-bytes. |
752 | struct_ptr is adjusted for each argument below, so the first | |
753 | argument will end up at sp-36. */ | |
754 | CORE_ADDR param_ptr = 32; | |
79508e1e | 755 | int i; |
2a6228ef RC |
756 | int small_struct = 0; |
757 | ||
79508e1e AC |
758 | for (i = 0; i < nargs; i++) |
759 | { | |
760 | struct value *arg = args[i]; | |
761 | struct type *type = check_typedef (VALUE_TYPE (arg)); | |
762 | /* The corresponding parameter that is pushed onto the | |
763 | stack, and [possibly] passed in a register. */ | |
764 | char param_val[8]; | |
765 | int param_len; | |
766 | memset (param_val, 0, sizeof param_val); | |
767 | if (TYPE_LENGTH (type) > 8) | |
768 | { | |
769 | /* Large parameter, pass by reference. Store the value | |
770 | in "struct" area and then pass its address. */ | |
771 | param_len = 4; | |
1797a8f6 | 772 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
79508e1e | 773 | if (write_pass) |
1797a8f6 | 774 | write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg), |
79508e1e | 775 | TYPE_LENGTH (type)); |
1797a8f6 | 776 | store_unsigned_integer (param_val, 4, struct_end - struct_ptr); |
79508e1e AC |
777 | } |
778 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
779 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
780 | { | |
781 | /* Integer value store, right aligned. "unpack_long" | |
782 | takes care of any sign-extension problems. */ | |
783 | param_len = align_up (TYPE_LENGTH (type), 4); | |
784 | store_unsigned_integer (param_val, param_len, | |
785 | unpack_long (type, | |
786 | VALUE_CONTENTS (arg))); | |
787 | } | |
2a6228ef RC |
788 | else if (TYPE_CODE (type) == TYPE_CODE_FLT) |
789 | { | |
790 | /* Floating point value store, right aligned. */ | |
791 | param_len = align_up (TYPE_LENGTH (type), 4); | |
792 | memcpy (param_val, VALUE_CONTENTS (arg), param_len); | |
793 | } | |
79508e1e AC |
794 | else |
795 | { | |
79508e1e | 796 | param_len = align_up (TYPE_LENGTH (type), 4); |
2a6228ef RC |
797 | |
798 | /* Small struct value are stored right-aligned. */ | |
79508e1e AC |
799 | memcpy (param_val + param_len - TYPE_LENGTH (type), |
800 | VALUE_CONTENTS (arg), TYPE_LENGTH (type)); | |
2a6228ef RC |
801 | |
802 | /* Structures of size 5, 6 and 7 bytes are special in that | |
803 | the higher-ordered word is stored in the lower-ordered | |
804 | argument, and even though it is a 8-byte quantity the | |
805 | registers need not be 8-byte aligned. */ | |
1b07b470 | 806 | if (param_len > 4 && param_len < 8) |
2a6228ef | 807 | small_struct = 1; |
79508e1e | 808 | } |
2a6228ef | 809 | |
1797a8f6 | 810 | param_ptr += param_len; |
2a6228ef RC |
811 | if (param_len == 8 && !small_struct) |
812 | param_ptr = align_up (param_ptr, 8); | |
813 | ||
814 | /* First 4 non-FP arguments are passed in gr26-gr23. | |
815 | First 4 32-bit FP arguments are passed in fr4L-fr7L. | |
816 | First 2 64-bit FP arguments are passed in fr5 and fr7. | |
817 | ||
818 | The rest go on the stack, starting at sp-36, towards lower | |
819 | addresses. 8-byte arguments must be aligned to a 8-byte | |
820 | stack boundary. */ | |
79508e1e AC |
821 | if (write_pass) |
822 | { | |
1797a8f6 | 823 | write_memory (param_end - param_ptr, param_val, param_len); |
2a6228ef RC |
824 | |
825 | /* There are some cases when we don't know the type | |
826 | expected by the callee (e.g. for variadic functions), so | |
827 | pass the parameters in both general and fp regs. */ | |
828 | if (param_ptr <= 48) | |
79508e1e | 829 | { |
2a6228ef RC |
830 | int grreg = 26 - (param_ptr - 36) / 4; |
831 | int fpLreg = 72 + (param_ptr - 36) / 4 * 2; | |
832 | int fpreg = 74 + (param_ptr - 32) / 8 * 4; | |
833 | ||
834 | regcache_cooked_write (regcache, grreg, param_val); | |
835 | regcache_cooked_write (regcache, fpLreg, param_val); | |
836 | ||
79508e1e | 837 | if (param_len > 4) |
2a6228ef RC |
838 | { |
839 | regcache_cooked_write (regcache, grreg + 1, | |
840 | param_val + 4); | |
841 | ||
842 | regcache_cooked_write (regcache, fpreg, param_val); | |
843 | regcache_cooked_write (regcache, fpreg + 1, | |
844 | param_val + 4); | |
845 | } | |
79508e1e AC |
846 | } |
847 | } | |
848 | } | |
849 | ||
850 | /* Update the various stack pointers. */ | |
851 | if (!write_pass) | |
852 | { | |
2a6228ef | 853 | struct_end = sp + align_up (struct_ptr, 64); |
79508e1e AC |
854 | /* PARAM_PTR already accounts for all the arguments passed |
855 | by the user. However, the ABI mandates minimum stack | |
856 | space allocations for outgoing arguments. The ABI also | |
857 | mandates minimum stack alignments which we must | |
858 | preserve. */ | |
2a6228ef | 859 | param_end = struct_end + align_up (param_ptr, 64); |
79508e1e AC |
860 | } |
861 | } | |
862 | ||
863 | /* If a structure has to be returned, set up register 28 to hold its | |
864 | address */ | |
865 | if (struct_return) | |
866 | write_register (28, struct_addr); | |
867 | ||
d49771ef RC |
868 | gp = tdep->find_global_pointer (function); |
869 | ||
870 | if (gp != 0) | |
871 | write_register (19, gp); | |
872 | ||
79508e1e | 873 | /* Set the return address. */ |
34f75cc1 | 874 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); |
79508e1e | 875 | |
c4557624 | 876 | /* Update the Stack Pointer. */ |
34f75cc1 | 877 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); |
c4557624 | 878 | |
2a6228ef | 879 | return param_end; |
79508e1e AC |
880 | } |
881 | ||
2f690297 AC |
882 | /* This function pushes a stack frame with arguments as part of the |
883 | inferior function calling mechanism. | |
884 | ||
885 | This is the version for the PA64, in which later arguments appear | |
886 | at higher addresses. (The stack always grows towards higher | |
887 | addresses.) | |
888 | ||
889 | We simply allocate the appropriate amount of stack space and put | |
890 | arguments into their proper slots. | |
891 | ||
892 | This ABI also requires that the caller provide an argument pointer | |
893 | to the callee, so we do that too. */ | |
894 | ||
895 | CORE_ADDR | |
7d9b040b | 896 | hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
2f690297 AC |
897 | struct regcache *regcache, CORE_ADDR bp_addr, |
898 | int nargs, struct value **args, CORE_ADDR sp, | |
899 | int struct_return, CORE_ADDR struct_addr) | |
900 | { | |
449e1137 AC |
901 | /* NOTE: cagney/2004-02-27: This is a guess - its implemented by |
902 | reverse engineering testsuite failures. */ | |
2f690297 | 903 | |
449e1137 AC |
904 | /* Stack base address at which any pass-by-reference parameters are |
905 | stored. */ | |
906 | CORE_ADDR struct_end = 0; | |
907 | /* Stack base address at which the first parameter is stored. */ | |
908 | CORE_ADDR param_end = 0; | |
2f690297 | 909 | |
449e1137 AC |
910 | /* The inner most end of the stack after all the parameters have |
911 | been pushed. */ | |
912 | CORE_ADDR new_sp = 0; | |
2f690297 | 913 | |
449e1137 AC |
914 | /* Two passes. First pass computes the location of everything, |
915 | second pass writes the bytes out. */ | |
916 | int write_pass; | |
917 | for (write_pass = 0; write_pass < 2; write_pass++) | |
2f690297 | 918 | { |
449e1137 AC |
919 | CORE_ADDR struct_ptr = 0; |
920 | CORE_ADDR param_ptr = 0; | |
921 | int i; | |
922 | for (i = 0; i < nargs; i++) | |
2f690297 | 923 | { |
449e1137 AC |
924 | struct value *arg = args[i]; |
925 | struct type *type = check_typedef (VALUE_TYPE (arg)); | |
926 | if ((TYPE_CODE (type) == TYPE_CODE_INT | |
927 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
928 | && TYPE_LENGTH (type) <= 8) | |
929 | { | |
930 | /* Integer value store, right aligned. "unpack_long" | |
931 | takes care of any sign-extension problems. */ | |
932 | param_ptr += 8; | |
933 | if (write_pass) | |
934 | { | |
935 | ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg)); | |
936 | int reg = 27 - param_ptr / 8; | |
937 | write_memory_unsigned_integer (param_end - param_ptr, | |
938 | val, 8); | |
939 | if (reg >= 19) | |
940 | regcache_cooked_write_unsigned (regcache, reg, val); | |
941 | } | |
942 | } | |
943 | else | |
944 | { | |
945 | /* Small struct value, store left aligned? */ | |
946 | int reg; | |
947 | if (TYPE_LENGTH (type) > 8) | |
948 | { | |
949 | param_ptr = align_up (param_ptr, 16); | |
950 | reg = 26 - param_ptr / 8; | |
951 | param_ptr += align_up (TYPE_LENGTH (type), 16); | |
952 | } | |
953 | else | |
954 | { | |
955 | param_ptr = align_up (param_ptr, 8); | |
956 | reg = 26 - param_ptr / 8; | |
957 | param_ptr += align_up (TYPE_LENGTH (type), 8); | |
958 | } | |
959 | if (write_pass) | |
960 | { | |
961 | int byte; | |
962 | write_memory (param_end - param_ptr, VALUE_CONTENTS (arg), | |
963 | TYPE_LENGTH (type)); | |
964 | for (byte = 0; byte < TYPE_LENGTH (type); byte += 8) | |
965 | { | |
966 | if (reg >= 19) | |
967 | { | |
968 | int len = min (8, TYPE_LENGTH (type) - byte); | |
969 | regcache_cooked_write_part (regcache, reg, 0, len, | |
970 | VALUE_CONTENTS (arg) + byte); | |
971 | } | |
972 | reg--; | |
973 | } | |
974 | } | |
975 | } | |
2f690297 | 976 | } |
449e1137 AC |
977 | /* Update the various stack pointers. */ |
978 | if (!write_pass) | |
2f690297 | 979 | { |
449e1137 AC |
980 | struct_end = sp + struct_ptr; |
981 | /* PARAM_PTR already accounts for all the arguments passed | |
982 | by the user. However, the ABI mandates minimum stack | |
983 | space allocations for outgoing arguments. The ABI also | |
984 | mandates minimum stack alignments which we must | |
985 | preserve. */ | |
d0bd2d18 | 986 | param_end = struct_end + max (align_up (param_ptr, 16), 64); |
2f690297 | 987 | } |
2f690297 AC |
988 | } |
989 | ||
2f690297 AC |
990 | /* If a structure has to be returned, set up register 28 to hold its |
991 | address */ | |
992 | if (struct_return) | |
993 | write_register (28, struct_addr); | |
994 | ||
2f690297 | 995 | /* Set the return address. */ |
34f75cc1 | 996 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); |
2f690297 | 997 | |
c4557624 | 998 | /* Update the Stack Pointer. */ |
34f75cc1 | 999 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64); |
c4557624 | 1000 | |
449e1137 AC |
1001 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
1002 | return param_end + 64; | |
2f690297 AC |
1003 | } |
1004 | ||
d49771ef RC |
1005 | static CORE_ADDR |
1006 | hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, | |
1007 | CORE_ADDR addr, | |
1008 | struct target_ops *targ) | |
1009 | { | |
1010 | if (addr & 2) | |
1011 | { | |
1012 | CORE_ADDR plabel; | |
1013 | ||
1014 | plabel = addr & ~3; | |
1015 | target_read_memory(plabel, (char *)&addr, 4); | |
1016 | } | |
1017 | ||
1018 | return addr; | |
1019 | } | |
1020 | ||
1797a8f6 AC |
1021 | static CORE_ADDR |
1022 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1023 | { | |
1024 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ | |
1025 | and not _bit_)! */ | |
1026 | return align_up (addr, 64); | |
1027 | } | |
1028 | ||
2f690297 AC |
1029 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
1030 | ||
1031 | static CORE_ADDR | |
1797a8f6 | 1032 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
2f690297 AC |
1033 | { |
1034 | /* Just always 16-byte align. */ | |
1035 | return align_up (addr, 16); | |
1036 | } | |
1037 | ||
1038 | ||
c906108c SS |
1039 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege |
1040 | bits. */ | |
1041 | ||
8d153463 | 1042 | static CORE_ADDR |
60383d10 | 1043 | hppa_target_read_pc (ptid_t ptid) |
c906108c | 1044 | { |
34f75cc1 | 1045 | int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid); |
c906108c SS |
1046 | |
1047 | /* The following test does not belong here. It is OS-specific, and belongs | |
1048 | in native code. */ | |
1049 | /* Test SS_INSYSCALL */ | |
1050 | if (flags & 2) | |
39f77062 | 1051 | return read_register_pid (31, ptid) & ~0x3; |
c906108c | 1052 | |
34f75cc1 | 1053 | return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3; |
c906108c SS |
1054 | } |
1055 | ||
1056 | /* Write out the PC. If currently in a syscall, then also write the new | |
1057 | PC value into %r31. */ | |
1058 | ||
8d153463 | 1059 | static void |
60383d10 | 1060 | hppa_target_write_pc (CORE_ADDR v, ptid_t ptid) |
c906108c | 1061 | { |
34f75cc1 | 1062 | int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid); |
c906108c SS |
1063 | |
1064 | /* The following test does not belong here. It is OS-specific, and belongs | |
1065 | in native code. */ | |
1066 | /* If in a syscall, then set %r31. Also make sure to get the | |
1067 | privilege bits set correctly. */ | |
1068 | /* Test SS_INSYSCALL */ | |
1069 | if (flags & 2) | |
39f77062 | 1070 | write_register_pid (31, v | 0x3, ptid); |
c906108c | 1071 | |
34f75cc1 RC |
1072 | write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid); |
1073 | write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid); | |
c906108c SS |
1074 | } |
1075 | ||
1076 | /* return the alignment of a type in bytes. Structures have the maximum | |
1077 | alignment required by their fields. */ | |
1078 | ||
1079 | static int | |
fba45db2 | 1080 | hppa_alignof (struct type *type) |
c906108c SS |
1081 | { |
1082 | int max_align, align, i; | |
1083 | CHECK_TYPEDEF (type); | |
1084 | switch (TYPE_CODE (type)) | |
1085 | { | |
1086 | case TYPE_CODE_PTR: | |
1087 | case TYPE_CODE_INT: | |
1088 | case TYPE_CODE_FLT: | |
1089 | return TYPE_LENGTH (type); | |
1090 | case TYPE_CODE_ARRAY: | |
1091 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
1092 | case TYPE_CODE_STRUCT: | |
1093 | case TYPE_CODE_UNION: | |
1094 | max_align = 1; | |
1095 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
1096 | { | |
1097 | /* Bit fields have no real alignment. */ | |
1098 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 1099 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
1100 | { |
1101 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
1102 | max_align = max (max_align, align); | |
1103 | } | |
1104 | } | |
1105 | return max_align; | |
1106 | default: | |
1107 | return 4; | |
1108 | } | |
1109 | } | |
1110 | ||
c906108c SS |
1111 | /* For the given instruction (INST), return any adjustment it makes |
1112 | to the stack pointer or zero for no adjustment. | |
1113 | ||
1114 | This only handles instructions commonly found in prologues. */ | |
1115 | ||
1116 | static int | |
fba45db2 | 1117 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
1118 | { |
1119 | /* This must persist across calls. */ | |
1120 | static int save_high21; | |
1121 | ||
1122 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1123 | if ((inst & 0xffffc000) == 0x37de0000) | |
abc485a1 | 1124 | return hppa_extract_14 (inst); |
c906108c SS |
1125 | |
1126 | /* stwm X,D(sp) */ | |
1127 | if ((inst & 0xffe00000) == 0x6fc00000) | |
abc485a1 | 1128 | return hppa_extract_14 (inst); |
c906108c | 1129 | |
104c1213 JM |
1130 | /* std,ma X,D(sp) */ |
1131 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 1132 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 1133 | |
c906108c SS |
1134 | /* addil high21,%r1; ldo low11,(%r1),%r30) |
1135 | save high bits in save_high21 for later use. */ | |
1136 | if ((inst & 0xffe00000) == 0x28200000) | |
1137 | { | |
abc485a1 | 1138 | save_high21 = hppa_extract_21 (inst); |
c906108c SS |
1139 | return 0; |
1140 | } | |
1141 | ||
1142 | if ((inst & 0xffff0000) == 0x343e0000) | |
abc485a1 | 1143 | return save_high21 + hppa_extract_14 (inst); |
c906108c SS |
1144 | |
1145 | /* fstws as used by the HP compilers. */ | |
1146 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
abc485a1 | 1147 | return hppa_extract_5_load (inst); |
c906108c SS |
1148 | |
1149 | /* No adjustment. */ | |
1150 | return 0; | |
1151 | } | |
1152 | ||
1153 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1154 | ||
1155 | static int | |
fba45db2 | 1156 | is_branch (unsigned long inst) |
c906108c SS |
1157 | { |
1158 | switch (inst >> 26) | |
1159 | { | |
1160 | case 0x20: | |
1161 | case 0x21: | |
1162 | case 0x22: | |
1163 | case 0x23: | |
7be570e7 | 1164 | case 0x27: |
c906108c SS |
1165 | case 0x28: |
1166 | case 0x29: | |
1167 | case 0x2a: | |
1168 | case 0x2b: | |
7be570e7 | 1169 | case 0x2f: |
c906108c SS |
1170 | case 0x30: |
1171 | case 0x31: | |
1172 | case 0x32: | |
1173 | case 0x33: | |
1174 | case 0x38: | |
1175 | case 0x39: | |
1176 | case 0x3a: | |
7be570e7 | 1177 | case 0x3b: |
c906108c SS |
1178 | return 1; |
1179 | ||
1180 | default: | |
1181 | return 0; | |
1182 | } | |
1183 | } | |
1184 | ||
1185 | /* Return the register number for a GR which is saved by INST or | |
1186 | zero it INST does not save a GR. */ | |
1187 | ||
1188 | static int | |
fba45db2 | 1189 | inst_saves_gr (unsigned long inst) |
c906108c SS |
1190 | { |
1191 | /* Does it look like a stw? */ | |
7be570e7 JM |
1192 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
1193 | || (inst >> 26) == 0x1f | |
1194 | || ((inst >> 26) == 0x1f | |
1195 | && ((inst >> 6) == 0xa))) | |
abc485a1 | 1196 | return hppa_extract_5R_store (inst); |
7be570e7 JM |
1197 | |
1198 | /* Does it look like a std? */ | |
1199 | if ((inst >> 26) == 0x1c | |
1200 | || ((inst >> 26) == 0x03 | |
1201 | && ((inst >> 6) & 0xf) == 0xb)) | |
abc485a1 | 1202 | return hppa_extract_5R_store (inst); |
c906108c SS |
1203 | |
1204 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
1205 | if ((inst >> 26) == 0x1b) | |
abc485a1 | 1206 | return hppa_extract_5R_store (inst); |
c906108c SS |
1207 | |
1208 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
1209 | too. */ | |
7be570e7 JM |
1210 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
1211 | || ((inst >> 26) == 0x3 | |
1212 | && (((inst >> 6) & 0xf) == 0x8 | |
1213 | || (inst >> 6) & 0xf) == 0x9)) | |
abc485a1 | 1214 | return hppa_extract_5R_store (inst); |
c5aa993b | 1215 | |
c906108c SS |
1216 | return 0; |
1217 | } | |
1218 | ||
1219 | /* Return the register number for a FR which is saved by INST or | |
1220 | zero it INST does not save a FR. | |
1221 | ||
1222 | Note we only care about full 64bit register stores (that's the only | |
1223 | kind of stores the prologue will use). | |
1224 | ||
1225 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
1226 | ||
1227 | static int | |
fba45db2 | 1228 | inst_saves_fr (unsigned long inst) |
c906108c | 1229 | { |
7be570e7 | 1230 | /* is this an FSTD ? */ |
c906108c | 1231 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
abc485a1 | 1232 | return hppa_extract_5r_store (inst); |
7be570e7 | 1233 | if ((inst & 0xfc000002) == 0x70000002) |
abc485a1 | 1234 | return hppa_extract_5R_store (inst); |
7be570e7 | 1235 | /* is this an FSTW ? */ |
c906108c | 1236 | if ((inst & 0xfc00df80) == 0x24001200) |
abc485a1 | 1237 | return hppa_extract_5r_store (inst); |
7be570e7 | 1238 | if ((inst & 0xfc000002) == 0x7c000000) |
abc485a1 | 1239 | return hppa_extract_5R_store (inst); |
c906108c SS |
1240 | return 0; |
1241 | } | |
1242 | ||
1243 | /* Advance PC across any function entry prologue instructions | |
1244 | to reach some "real" code. | |
1245 | ||
1246 | Use information in the unwind table to determine what exactly should | |
1247 | be in the prologue. */ | |
1248 | ||
1249 | ||
1250 | CORE_ADDR | |
fba45db2 | 1251 | skip_prologue_hard_way (CORE_ADDR pc) |
c906108c SS |
1252 | { |
1253 | char buf[4]; | |
1254 | CORE_ADDR orig_pc = pc; | |
1255 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
1256 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
1257 | struct unwind_table_entry *u; | |
1258 | ||
1259 | restart_gr = 0; | |
1260 | restart_fr = 0; | |
1261 | ||
1262 | restart: | |
1263 | u = find_unwind_entry (pc); | |
1264 | if (!u) | |
1265 | return pc; | |
1266 | ||
c5aa993b | 1267 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
1268 | if ((pc & ~0x3) != u->region_start) |
1269 | return pc; | |
1270 | ||
1271 | /* This is how much of a frame adjustment we need to account for. */ | |
1272 | stack_remaining = u->Total_frame_size << 3; | |
1273 | ||
1274 | /* Magic register saves we want to know about. */ | |
1275 | save_rp = u->Save_RP; | |
1276 | save_sp = u->Save_SP; | |
1277 | ||
1278 | /* An indication that args may be stored into the stack. Unfortunately | |
1279 | the HPUX compilers tend to set this in cases where no args were | |
1280 | stored too!. */ | |
1281 | args_stored = 1; | |
1282 | ||
1283 | /* Turn the Entry_GR field into a bitmask. */ | |
1284 | save_gr = 0; | |
1285 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1286 | { | |
1287 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1288 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
c906108c SS |
1289 | continue; |
1290 | ||
1291 | save_gr |= (1 << i); | |
1292 | } | |
1293 | save_gr &= ~restart_gr; | |
1294 | ||
1295 | /* Turn the Entry_FR field into a bitmask too. */ | |
1296 | save_fr = 0; | |
1297 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1298 | save_fr |= (1 << i); | |
1299 | save_fr &= ~restart_fr; | |
1300 | ||
1301 | /* Loop until we find everything of interest or hit a branch. | |
1302 | ||
1303 | For unoptimized GCC code and for any HP CC code this will never ever | |
1304 | examine any user instructions. | |
1305 | ||
1306 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1307 | its prologue and make prologue instructions available for delay slot | |
1308 | filling. The end result is user code gets mixed in with the prologue | |
1309 | and a prologue instruction may be in the delay slot of the first branch | |
1310 | or call. | |
1311 | ||
1312 | Some unexpected things are expected with debugging optimized code, so | |
1313 | we allow this routine to walk past user instructions in optimized | |
1314 | GCC code. */ | |
1315 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
1316 | || args_stored) | |
1317 | { | |
1318 | unsigned int reg_num; | |
1319 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
1320 | unsigned long old_save_rp, old_save_sp, next_inst; | |
1321 | ||
1322 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 1323 | (only for HPC). */ |
c906108c SS |
1324 | old_save_gr = save_gr; |
1325 | old_save_fr = save_fr; | |
1326 | old_save_rp = save_rp; | |
1327 | old_save_sp = save_sp; | |
1328 | old_stack_remaining = stack_remaining; | |
1329 | ||
1f602b35 | 1330 | status = deprecated_read_memory_nobpt (pc, buf, 4); |
c906108c | 1331 | inst = extract_unsigned_integer (buf, 4); |
c5aa993b | 1332 | |
c906108c SS |
1333 | /* Yow! */ |
1334 | if (status != 0) | |
1335 | return pc; | |
1336 | ||
1337 | /* Note the interesting effects of this instruction. */ | |
1338 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1339 | ||
7be570e7 JM |
1340 | /* There are limited ways to store the return pointer into the |
1341 | stack. */ | |
1342 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
1343 | save_rp = 0; |
1344 | ||
104c1213 | 1345 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 1346 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
1347 | if ((inst & 0xffffc000) == 0x6fc10000 |
1348 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
1349 | save_sp = 0; |
1350 | ||
6426a772 JM |
1351 | /* Are we loading some register with an offset from the argument |
1352 | pointer? */ | |
1353 | if ((inst & 0xffe00000) == 0x37a00000 | |
1354 | || (inst & 0xffffffe0) == 0x081d0240) | |
1355 | { | |
1356 | pc += 4; | |
1357 | continue; | |
1358 | } | |
1359 | ||
c906108c SS |
1360 | /* Account for general and floating-point register saves. */ |
1361 | reg_num = inst_saves_gr (inst); | |
1362 | save_gr &= ~(1 << reg_num); | |
1363 | ||
1364 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1365 | Unfortunately args_stored only tells us that some arguments |
1366 | where stored into the stack. Not how many or what kind! | |
c906108c | 1367 | |
c5aa993b JM |
1368 | This is a kludge as on the HP compiler sets this bit and it |
1369 | never does prologue scheduling. So once we see one, skip past | |
1370 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 1371 | |
c5aa993b JM |
1372 | FIXME. Can still die if we have a mix of GR and FR argument |
1373 | stores! */ | |
6426a772 | 1374 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 1375 | { |
6426a772 | 1376 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
1377 | { |
1378 | pc += 4; | |
1f602b35 | 1379 | status = deprecated_read_memory_nobpt (pc, buf, 4); |
c906108c SS |
1380 | inst = extract_unsigned_integer (buf, 4); |
1381 | if (status != 0) | |
1382 | return pc; | |
1383 | reg_num = inst_saves_gr (inst); | |
1384 | } | |
1385 | args_stored = 0; | |
1386 | continue; | |
1387 | } | |
1388 | ||
1389 | reg_num = inst_saves_fr (inst); | |
1390 | save_fr &= ~(1 << reg_num); | |
1391 | ||
1f602b35 | 1392 | status = deprecated_read_memory_nobpt (pc + 4, buf, 4); |
c906108c | 1393 | next_inst = extract_unsigned_integer (buf, 4); |
c5aa993b | 1394 | |
c906108c SS |
1395 | /* Yow! */ |
1396 | if (status != 0) | |
1397 | return pc; | |
1398 | ||
1399 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 1400 | save. */ |
c906108c SS |
1401 | if ((inst & 0xfc000000) == 0x34000000 |
1402 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 1403 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
1404 | { |
1405 | /* So we drop into the code below in a reasonable state. */ | |
1406 | reg_num = inst_saves_fr (next_inst); | |
1407 | pc -= 4; | |
1408 | } | |
1409 | ||
1410 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1411 | This is a kludge as on the HP compiler sets this bit and it |
1412 | never does prologue scheduling. So once we see one, skip past | |
1413 | all of them. */ | |
6426a772 | 1414 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 1415 | { |
6426a772 | 1416 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
1417 | { |
1418 | pc += 8; | |
1f602b35 | 1419 | status = deprecated_read_memory_nobpt (pc, buf, 4); |
c906108c SS |
1420 | inst = extract_unsigned_integer (buf, 4); |
1421 | if (status != 0) | |
1422 | return pc; | |
1423 | if ((inst & 0xfc000000) != 0x34000000) | |
1424 | break; | |
1f602b35 | 1425 | status = deprecated_read_memory_nobpt (pc + 4, buf, 4); |
c906108c SS |
1426 | next_inst = extract_unsigned_integer (buf, 4); |
1427 | if (status != 0) | |
1428 | return pc; | |
1429 | reg_num = inst_saves_fr (next_inst); | |
1430 | } | |
1431 | args_stored = 0; | |
1432 | continue; | |
1433 | } | |
1434 | ||
1435 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 1436 | instruction is in the delay slot of the first call/branch. */ |
c906108c SS |
1437 | if (is_branch (inst)) |
1438 | break; | |
1439 | ||
1440 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
1441 | arguments were stored into the stack (boo hiss). This could |
1442 | cause this code to then skip a bunch of user insns (up to the | |
1443 | first branch). | |
1444 | ||
1445 | To combat this we try to identify when args_stored was bogusly | |
1446 | set and clear it. We only do this when args_stored is nonzero, | |
1447 | all other resources are accounted for, and nothing changed on | |
1448 | this pass. */ | |
c906108c | 1449 | if (args_stored |
c5aa993b | 1450 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
1451 | && old_save_gr == save_gr && old_save_fr == save_fr |
1452 | && old_save_rp == save_rp && old_save_sp == save_sp | |
1453 | && old_stack_remaining == stack_remaining) | |
1454 | break; | |
c5aa993b | 1455 | |
c906108c SS |
1456 | /* Bump the PC. */ |
1457 | pc += 4; | |
1458 | } | |
1459 | ||
1460 | /* We've got a tenative location for the end of the prologue. However | |
1461 | because of limitations in the unwind descriptor mechanism we may | |
1462 | have went too far into user code looking for the save of a register | |
1463 | that does not exist. So, if there registers we expected to be saved | |
1464 | but never were, mask them out and restart. | |
1465 | ||
1466 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 1467 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
1468 | { |
1469 | pc = orig_pc; | |
1470 | restart_gr = save_gr; | |
1471 | restart_fr = save_fr; | |
1472 | goto restart; | |
1473 | } | |
1474 | ||
1475 | return pc; | |
1476 | } | |
1477 | ||
1478 | ||
7be570e7 JM |
1479 | /* Return the address of the PC after the last prologue instruction if |
1480 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
1481 | |
1482 | static CORE_ADDR | |
fba45db2 | 1483 | after_prologue (CORE_ADDR pc) |
c906108c SS |
1484 | { |
1485 | struct symtab_and_line sal; | |
1486 | CORE_ADDR func_addr, func_end; | |
1487 | struct symbol *f; | |
1488 | ||
7be570e7 JM |
1489 | /* If we can not find the symbol in the partial symbol table, then |
1490 | there is no hope we can determine the function's start address | |
1491 | with this code. */ | |
c906108c | 1492 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 1493 | return 0; |
c906108c | 1494 | |
7be570e7 | 1495 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
1496 | sal = find_pc_line (func_addr, 0); |
1497 | ||
7be570e7 JM |
1498 | /* There are only two cases to consider. First, the end of the source line |
1499 | is within the function bounds. In that case we return the end of the | |
1500 | source line. Second is the end of the source line extends beyond the | |
1501 | bounds of the current function. We need to use the slow code to | |
1502 | examine instructions in that case. | |
c906108c | 1503 | |
7be570e7 JM |
1504 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
1505 | the wrong thing to do. In fact, it should be entirely possible for this | |
1506 | function to always return zero since the slow instruction scanning code | |
1507 | is supposed to *always* work. If it does not, then it is a bug. */ | |
1508 | if (sal.end < func_end) | |
1509 | return sal.end; | |
c5aa993b | 1510 | else |
7be570e7 | 1511 | return 0; |
c906108c SS |
1512 | } |
1513 | ||
1514 | /* To skip prologues, I use this predicate. Returns either PC itself | |
1515 | if the code at PC does not look like a function prologue; otherwise | |
1516 | returns an address that (if we're lucky) follows the prologue. If | |
1517 | LENIENT, then we must skip everything which is involved in setting | |
1518 | up the frame (it's OK to skip more, just so long as we don't skip | |
1519 | anything which might clobber the registers which are being saved. | |
1520 | Currently we must not skip more on the alpha, but we might the lenient | |
1521 | stuff some day. */ | |
1522 | ||
8d153463 | 1523 | static CORE_ADDR |
fba45db2 | 1524 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 1525 | { |
c5aa993b JM |
1526 | unsigned long inst; |
1527 | int offset; | |
1528 | CORE_ADDR post_prologue_pc; | |
1529 | char buf[4]; | |
c906108c | 1530 | |
c5aa993b JM |
1531 | /* See if we can determine the end of the prologue via the symbol table. |
1532 | If so, then return either PC, or the PC after the prologue, whichever | |
1533 | is greater. */ | |
c906108c | 1534 | |
c5aa993b | 1535 | post_prologue_pc = after_prologue (pc); |
c906108c | 1536 | |
7be570e7 JM |
1537 | /* If after_prologue returned a useful address, then use it. Else |
1538 | fall back on the instruction skipping code. | |
1539 | ||
1540 | Some folks have claimed this causes problems because the breakpoint | |
1541 | may be the first instruction of the prologue. If that happens, then | |
1542 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
1543 | if (post_prologue_pc != 0) |
1544 | return max (pc, post_prologue_pc); | |
c5aa993b JM |
1545 | else |
1546 | return (skip_prologue_hard_way (pc)); | |
c906108c SS |
1547 | } |
1548 | ||
26d08f08 AC |
1549 | struct hppa_frame_cache |
1550 | { | |
1551 | CORE_ADDR base; | |
1552 | struct trad_frame_saved_reg *saved_regs; | |
1553 | }; | |
1554 | ||
1555 | static struct hppa_frame_cache * | |
1556 | hppa_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1557 | { | |
1558 | struct hppa_frame_cache *cache; | |
1559 | long saved_gr_mask; | |
1560 | long saved_fr_mask; | |
1561 | CORE_ADDR this_sp; | |
1562 | long frame_size; | |
1563 | struct unwind_table_entry *u; | |
9f7194c3 | 1564 | CORE_ADDR prologue_end; |
26d08f08 AC |
1565 | int i; |
1566 | ||
369aa520 RC |
1567 | if (hppa_debug) |
1568 | fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", | |
1569 | frame_relative_level(next_frame)); | |
1570 | ||
26d08f08 | 1571 | if ((*this_cache) != NULL) |
369aa520 RC |
1572 | { |
1573 | if (hppa_debug) | |
1574 | fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }", | |
1575 | paddr_nz (((struct hppa_frame_cache *)*this_cache)->base)); | |
1576 | return (*this_cache); | |
1577 | } | |
26d08f08 AC |
1578 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
1579 | (*this_cache) = cache; | |
1580 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1581 | ||
1582 | /* Yow! */ | |
d5c27f81 | 1583 | u = find_unwind_entry (frame_pc_unwind (next_frame)); |
26d08f08 | 1584 | if (!u) |
369aa520 RC |
1585 | { |
1586 | if (hppa_debug) | |
1587 | fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); | |
1588 | return (*this_cache); | |
1589 | } | |
26d08f08 AC |
1590 | |
1591 | /* Turn the Entry_GR field into a bitmask. */ | |
1592 | saved_gr_mask = 0; | |
1593 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1594 | { | |
1595 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1596 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
26d08f08 AC |
1597 | continue; |
1598 | ||
1599 | saved_gr_mask |= (1 << i); | |
1600 | } | |
1601 | ||
1602 | /* Turn the Entry_FR field into a bitmask too. */ | |
1603 | saved_fr_mask = 0; | |
1604 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1605 | saved_fr_mask |= (1 << i); | |
1606 | ||
1607 | /* Loop until we find everything of interest or hit a branch. | |
1608 | ||
1609 | For unoptimized GCC code and for any HP CC code this will never ever | |
1610 | examine any user instructions. | |
1611 | ||
1612 | For optimized GCC code we're faced with problems. GCC will schedule | |
1613 | its prologue and make prologue instructions available for delay slot | |
1614 | filling. The end result is user code gets mixed in with the prologue | |
1615 | and a prologue instruction may be in the delay slot of the first branch | |
1616 | or call. | |
1617 | ||
1618 | Some unexpected things are expected with debugging optimized code, so | |
1619 | we allow this routine to walk past user instructions in optimized | |
1620 | GCC code. */ | |
1621 | { | |
1622 | int final_iteration = 0; | |
9f7194c3 | 1623 | CORE_ADDR pc, end_pc; |
26d08f08 AC |
1624 | int looking_for_sp = u->Save_SP; |
1625 | int looking_for_rp = u->Save_RP; | |
1626 | int fp_loc = -1; | |
9f7194c3 RC |
1627 | |
1628 | /* We have to use hppa_skip_prologue instead of just | |
1629 | skip_prologue_using_sal, in case we stepped into a function without | |
1630 | symbol information. hppa_skip_prologue also bounds the returned | |
1631 | pc by the passed in pc, so it will not return a pc in the next | |
1632 | function. */ | |
d5c27f81 RC |
1633 | |
1634 | /* We used to use frame_func_unwind () to locate the beginning of the | |
1635 | function to pass to skip_prologue (). However, when objects are | |
1636 | compiled without debug symbols, frame_func_unwind can return the wrong | |
1637 | function (or 0). We can do better than that by using unwind records. */ | |
1638 | ||
1639 | prologue_end = hppa_skip_prologue (u->region_start); | |
9f7194c3 RC |
1640 | end_pc = frame_pc_unwind (next_frame); |
1641 | ||
1642 | if (prologue_end != 0 && end_pc > prologue_end) | |
1643 | end_pc = prologue_end; | |
1644 | ||
26d08f08 | 1645 | frame_size = 0; |
9f7194c3 | 1646 | |
d5c27f81 | 1647 | for (pc = u->region_start; |
26d08f08 AC |
1648 | ((saved_gr_mask || saved_fr_mask |
1649 | || looking_for_sp || looking_for_rp | |
1650 | || frame_size < (u->Total_frame_size << 3)) | |
9f7194c3 | 1651 | && pc < end_pc); |
26d08f08 AC |
1652 | pc += 4) |
1653 | { | |
1654 | int reg; | |
1655 | char buf4[4]; | |
1f602b35 | 1656 | long status = deprecated_read_memory_nobpt (pc, buf4, sizeof buf4); |
26d08f08 | 1657 | long inst = extract_unsigned_integer (buf4, sizeof buf4); |
9f7194c3 | 1658 | |
26d08f08 AC |
1659 | /* Note the interesting effects of this instruction. */ |
1660 | frame_size += prologue_inst_adjust_sp (inst); | |
1661 | ||
1662 | /* There are limited ways to store the return pointer into the | |
1663 | stack. */ | |
1664 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
1665 | { | |
1666 | looking_for_rp = 0; | |
34f75cc1 | 1667 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; |
26d08f08 | 1668 | } |
dfaf8edb MK |
1669 | else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ |
1670 | { | |
1671 | looking_for_rp = 0; | |
1672 | cache->saved_regs[HPPA_RP_REGNUM].addr = -24; | |
1673 | } | |
26d08f08 AC |
1674 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
1675 | { | |
1676 | looking_for_rp = 0; | |
34f75cc1 | 1677 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; |
26d08f08 AC |
1678 | } |
1679 | ||
1680 | /* Check to see if we saved SP into the stack. This also | |
1681 | happens to indicate the location of the saved frame | |
1682 | pointer. */ | |
1683 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
1684 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
1685 | { | |
1686 | looking_for_sp = 0; | |
eded0a31 | 1687 | cache->saved_regs[HPPA_FP_REGNUM].addr = 0; |
26d08f08 AC |
1688 | } |
1689 | ||
1690 | /* Account for general and floating-point register saves. */ | |
1691 | reg = inst_saves_gr (inst); | |
1692 | if (reg >= 3 && reg <= 18 | |
eded0a31 | 1693 | && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
26d08f08 AC |
1694 | { |
1695 | saved_gr_mask &= ~(1 << reg); | |
abc485a1 | 1696 | if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) |
26d08f08 AC |
1697 | /* stwm with a positive displacement is a _post_ |
1698 | _modify_. */ | |
1699 | cache->saved_regs[reg].addr = 0; | |
1700 | else if ((inst & 0xfc00000c) == 0x70000008) | |
1701 | /* A std has explicit post_modify forms. */ | |
1702 | cache->saved_regs[reg].addr = 0; | |
1703 | else | |
1704 | { | |
1705 | CORE_ADDR offset; | |
1706 | ||
1707 | if ((inst >> 26) == 0x1c) | |
1708 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); | |
1709 | else if ((inst >> 26) == 0x03) | |
abc485a1 | 1710 | offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); |
26d08f08 | 1711 | else |
abc485a1 | 1712 | offset = hppa_extract_14 (inst); |
26d08f08 AC |
1713 | |
1714 | /* Handle code with and without frame pointers. */ | |
1715 | if (u->Save_SP) | |
1716 | cache->saved_regs[reg].addr = offset; | |
1717 | else | |
1718 | cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset; | |
1719 | } | |
1720 | } | |
1721 | ||
1722 | /* GCC handles callee saved FP regs a little differently. | |
1723 | ||
1724 | It emits an instruction to put the value of the start of | |
1725 | the FP store area into %r1. It then uses fstds,ma with a | |
1726 | basereg of %r1 for the stores. | |
1727 | ||
1728 | HP CC emits them at the current stack pointer modifying the | |
1729 | stack pointer as it stores each register. */ | |
1730 | ||
1731 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
1732 | if ((inst & 0xffffc000) == 0x34610000 | |
1733 | || (inst & 0xffffc000) == 0x37c10000) | |
abc485a1 | 1734 | fp_loc = hppa_extract_14 (inst); |
26d08f08 AC |
1735 | |
1736 | reg = inst_saves_fr (inst); | |
1737 | if (reg >= 12 && reg <= 21) | |
1738 | { | |
1739 | /* Note +4 braindamage below is necessary because the FP | |
1740 | status registers are internally 8 registers rather than | |
1741 | the expected 4 registers. */ | |
1742 | saved_fr_mask &= ~(1 << reg); | |
1743 | if (fp_loc == -1) | |
1744 | { | |
1745 | /* 1st HP CC FP register store. After this | |
1746 | instruction we've set enough state that the GCC and | |
1747 | HPCC code are both handled in the same manner. */ | |
34f75cc1 | 1748 | cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0; |
26d08f08 AC |
1749 | fp_loc = 8; |
1750 | } | |
1751 | else | |
1752 | { | |
eded0a31 | 1753 | cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; |
26d08f08 AC |
1754 | fp_loc += 8; |
1755 | } | |
1756 | } | |
1757 | ||
1758 | /* Quit if we hit any kind of branch the previous iteration. */ | |
1759 | if (final_iteration) | |
1760 | break; | |
1761 | /* We want to look precisely one instruction beyond the branch | |
1762 | if we have not found everything yet. */ | |
1763 | if (is_branch (inst)) | |
1764 | final_iteration = 1; | |
1765 | } | |
1766 | } | |
1767 | ||
1768 | { | |
1769 | /* The frame base always represents the value of %sp at entry to | |
1770 | the current function (and is thus equivalent to the "saved" | |
1771 | stack pointer. */ | |
eded0a31 | 1772 | CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM); |
ed70ba00 | 1773 | CORE_ADDR fp; |
9f7194c3 RC |
1774 | |
1775 | if (hppa_debug) | |
1776 | fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, " | |
1777 | "prologue_end=0x%s) ", | |
1778 | paddr_nz (this_sp), | |
1779 | paddr_nz (frame_pc_unwind (next_frame)), | |
1780 | paddr_nz (prologue_end)); | |
1781 | ||
ed70ba00 RC |
1782 | /* Check to see if a frame pointer is available, and use it for |
1783 | frame unwinding if it is. | |
1784 | ||
1785 | There are some situations where we need to rely on the frame | |
1786 | pointer to do stack unwinding. For example, if a function calls | |
1787 | alloca (), the stack pointer can get adjusted inside the body of | |
1788 | the function. In this case, the ABI requires that the compiler | |
1789 | maintain a frame pointer for the function. | |
1790 | ||
1791 | The unwind record has a flag (alloca_frame) that indicates that | |
1792 | a function has a variable frame; unfortunately, gcc/binutils | |
1793 | does not set this flag. Instead, whenever a frame pointer is used | |
1794 | and saved on the stack, the Save_SP flag is set. We use this to | |
1795 | decide whether to use the frame pointer for unwinding. | |
1796 | ||
1658da49 RC |
1797 | fp may be zero if it is not available in an inner frame because |
1798 | it has been modified by not yet saved. | |
ed70ba00 RC |
1799 | |
1800 | TODO: For the HP compiler, maybe we should use the alloca_frame flag | |
1801 | instead of Save_SP. */ | |
1802 | ||
1803 | fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM); | |
1804 | ||
1805 | if (frame_pc_unwind (next_frame) >= prologue_end | |
1806 | && u->Save_SP && fp != 0) | |
1807 | { | |
1808 | cache->base = fp; | |
1809 | ||
1810 | if (hppa_debug) | |
1811 | fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }", | |
1812 | paddr_nz (cache->base)); | |
1813 | } | |
1658da49 RC |
1814 | else if (u->Save_SP |
1815 | && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) | |
9f7194c3 | 1816 | { |
9f7194c3 RC |
1817 | /* Both we're expecting the SP to be saved and the SP has been |
1818 | saved. The entry SP value is saved at this frame's SP | |
1819 | address. */ | |
1820 | cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8); | |
1821 | ||
1822 | if (hppa_debug) | |
1823 | fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }", | |
1824 | paddr_nz (cache->base)); | |
9f7194c3 | 1825 | } |
26d08f08 | 1826 | else |
9f7194c3 | 1827 | { |
1658da49 RC |
1828 | /* The prologue has been slowly allocating stack space. Adjust |
1829 | the SP back. */ | |
1830 | cache->base = this_sp - frame_size; | |
9f7194c3 | 1831 | if (hppa_debug) |
1658da49 | 1832 | fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ", |
9f7194c3 RC |
1833 | paddr_nz (cache->base)); |
1834 | ||
1835 | } | |
eded0a31 | 1836 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
26d08f08 AC |
1837 | } |
1838 | ||
412275d5 AC |
1839 | /* The PC is found in the "return register", "Millicode" uses "r31" |
1840 | as the return register while normal code uses "rp". */ | |
26d08f08 | 1841 | if (u->Millicode) |
9f7194c3 | 1842 | { |
5859efe5 | 1843 | if (trad_frame_addr_p (cache->saved_regs, 31)) |
34f75cc1 | 1844 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; |
9f7194c3 RC |
1845 | else |
1846 | { | |
1847 | ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31); | |
34f75cc1 | 1848 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31); |
9f7194c3 RC |
1849 | } |
1850 | } | |
26d08f08 | 1851 | else |
9f7194c3 | 1852 | { |
34f75cc1 RC |
1853 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) |
1854 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM]; | |
9f7194c3 RC |
1855 | else |
1856 | { | |
34f75cc1 RC |
1857 | ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM); |
1858 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); | |
9f7194c3 RC |
1859 | } |
1860 | } | |
26d08f08 | 1861 | |
1658da49 RC |
1862 | /* If the frame pointer was not saved in this frame, but we should be saving |
1863 | it, set it to an invalid value so that another frame will not pick up the | |
1864 | wrong frame pointer. This can happen if we start unwinding after the | |
1865 | frame pointer has been modified, but before we've saved it to the | |
1866 | stack. */ | |
1867 | if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)) | |
1868 | trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, 0); | |
1869 | ||
26d08f08 AC |
1870 | { |
1871 | /* Convert all the offsets into addresses. */ | |
1872 | int reg; | |
1873 | for (reg = 0; reg < NUM_REGS; reg++) | |
1874 | { | |
1875 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
1876 | cache->saved_regs[reg].addr += cache->base; | |
1877 | } | |
1878 | } | |
1879 | ||
369aa520 RC |
1880 | if (hppa_debug) |
1881 | fprintf_unfiltered (gdb_stdlog, "base=0x%s }", | |
1882 | paddr_nz (((struct hppa_frame_cache *)*this_cache)->base)); | |
26d08f08 AC |
1883 | return (*this_cache); |
1884 | } | |
1885 | ||
1886 | static void | |
1887 | hppa_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
1888 | struct frame_id *this_id) | |
1889 | { | |
d5c27f81 RC |
1890 | struct hppa_frame_cache *info; |
1891 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
1892 | struct unwind_table_entry *u; | |
1893 | ||
1894 | info = hppa_frame_cache (next_frame, this_cache); | |
1895 | u = find_unwind_entry (pc); | |
1896 | ||
1897 | (*this_id) = frame_id_build (info->base, u->region_start); | |
26d08f08 AC |
1898 | } |
1899 | ||
1900 | static void | |
1901 | hppa_frame_prev_register (struct frame_info *next_frame, | |
0da28f8a RC |
1902 | void **this_cache, |
1903 | int regnum, int *optimizedp, | |
1904 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1905 | int *realnump, void *valuep) | |
26d08f08 AC |
1906 | { |
1907 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache); | |
0da28f8a RC |
1908 | hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum, |
1909 | optimizedp, lvalp, addrp, realnump, valuep); | |
1910 | } | |
1911 | ||
1912 | static const struct frame_unwind hppa_frame_unwind = | |
1913 | { | |
1914 | NORMAL_FRAME, | |
1915 | hppa_frame_this_id, | |
1916 | hppa_frame_prev_register | |
1917 | }; | |
1918 | ||
1919 | static const struct frame_unwind * | |
1920 | hppa_frame_unwind_sniffer (struct frame_info *next_frame) | |
1921 | { | |
1922 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
1923 | ||
1924 | if (find_unwind_entry (pc)) | |
1925 | return &hppa_frame_unwind; | |
1926 | ||
1927 | return NULL; | |
1928 | } | |
1929 | ||
1930 | /* This is a generic fallback frame unwinder that kicks in if we fail all | |
1931 | the other ones. Normally we would expect the stub and regular unwinder | |
1932 | to work, but in some cases we might hit a function that just doesn't | |
1933 | have any unwind information available. In this case we try to do | |
1934 | unwinding solely based on code reading. This is obviously going to be | |
1935 | slow, so only use this as a last resort. Currently this will only | |
1936 | identify the stack and pc for the frame. */ | |
1937 | ||
1938 | static struct hppa_frame_cache * | |
1939 | hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1940 | { | |
1941 | struct hppa_frame_cache *cache; | |
6d1be3f1 | 1942 | unsigned int frame_size; |
d5c27f81 | 1943 | int found_rp; |
0da28f8a RC |
1944 | CORE_ADDR pc, start_pc, end_pc, cur_pc; |
1945 | ||
d5c27f81 RC |
1946 | if (hppa_debug) |
1947 | fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ", | |
1948 | frame_relative_level(next_frame)); | |
1949 | ||
0da28f8a RC |
1950 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
1951 | (*this_cache) = cache; | |
1952 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1953 | ||
1954 | pc = frame_func_unwind (next_frame); | |
1955 | cur_pc = frame_pc_unwind (next_frame); | |
6d1be3f1 | 1956 | frame_size = 0; |
d5c27f81 | 1957 | found_rp = 0; |
0da28f8a RC |
1958 | |
1959 | find_pc_partial_function (pc, NULL, &start_pc, &end_pc); | |
1960 | ||
1961 | if (start_pc == 0 || end_pc == 0) | |
412275d5 | 1962 | { |
0da28f8a RC |
1963 | error ("Cannot find bounds of current function (@0x%s), unwinding will " |
1964 | "fail.", paddr_nz (pc)); | |
1965 | return cache; | |
1966 | } | |
1967 | ||
1968 | if (end_pc > cur_pc) | |
1969 | end_pc = cur_pc; | |
1970 | ||
1971 | for (pc = start_pc; pc < end_pc; pc += 4) | |
1972 | { | |
1973 | unsigned int insn; | |
1974 | ||
1975 | insn = read_memory_unsigned_integer (pc, 4); | |
1976 | ||
6d1be3f1 RC |
1977 | frame_size += prologue_inst_adjust_sp (insn); |
1978 | ||
0da28f8a RC |
1979 | /* There are limited ways to store the return pointer into the |
1980 | stack. */ | |
1981 | if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
d5c27f81 RC |
1982 | { |
1983 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; | |
1984 | found_rp = 1; | |
1985 | } | |
0da28f8a | 1986 | else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
d5c27f81 RC |
1987 | { |
1988 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; | |
1989 | found_rp = 1; | |
1990 | } | |
412275d5 | 1991 | } |
0da28f8a | 1992 | |
d5c27f81 RC |
1993 | if (hppa_debug) |
1994 | fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n", | |
1995 | frame_size, found_rp); | |
1996 | ||
6d1be3f1 RC |
1997 | cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size; |
1998 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); | |
0da28f8a RC |
1999 | |
2000 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) | |
2001 | { | |
2002 | cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base; | |
2003 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM]; | |
2004 | } | |
412275d5 AC |
2005 | else |
2006 | { | |
0da28f8a RC |
2007 | ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM); |
2008 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); | |
412275d5 | 2009 | } |
0da28f8a RC |
2010 | |
2011 | return cache; | |
26d08f08 AC |
2012 | } |
2013 | ||
0da28f8a RC |
2014 | static void |
2015 | hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2016 | struct frame_id *this_id) | |
2017 | { | |
2018 | struct hppa_frame_cache *info = | |
2019 | hppa_fallback_frame_cache (next_frame, this_cache); | |
2020 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
2021 | } | |
2022 | ||
2023 | static void | |
2024 | hppa_fallback_frame_prev_register (struct frame_info *next_frame, | |
2025 | void **this_cache, | |
2026 | int regnum, int *optimizedp, | |
2027 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2028 | int *realnump, void *valuep) | |
2029 | { | |
2030 | struct hppa_frame_cache *info = | |
2031 | hppa_fallback_frame_cache (next_frame, this_cache); | |
2032 | hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum, | |
2033 | optimizedp, lvalp, addrp, realnump, valuep); | |
2034 | } | |
2035 | ||
2036 | static const struct frame_unwind hppa_fallback_frame_unwind = | |
26d08f08 AC |
2037 | { |
2038 | NORMAL_FRAME, | |
0da28f8a RC |
2039 | hppa_fallback_frame_this_id, |
2040 | hppa_fallback_frame_prev_register | |
26d08f08 AC |
2041 | }; |
2042 | ||
2043 | static const struct frame_unwind * | |
0da28f8a | 2044 | hppa_fallback_unwind_sniffer (struct frame_info *next_frame) |
26d08f08 | 2045 | { |
0da28f8a | 2046 | return &hppa_fallback_frame_unwind; |
26d08f08 AC |
2047 | } |
2048 | ||
7f07c5b6 RC |
2049 | /* Stub frames, used for all kinds of call stubs. */ |
2050 | struct hppa_stub_unwind_cache | |
2051 | { | |
2052 | CORE_ADDR base; | |
2053 | struct trad_frame_saved_reg *saved_regs; | |
2054 | }; | |
2055 | ||
2056 | static struct hppa_stub_unwind_cache * | |
2057 | hppa_stub_frame_unwind_cache (struct frame_info *next_frame, | |
2058 | void **this_cache) | |
2059 | { | |
2060 | struct gdbarch *gdbarch = get_frame_arch (next_frame); | |
2061 | struct hppa_stub_unwind_cache *info; | |
22b0923d | 2062 | struct unwind_table_entry *u; |
7f07c5b6 RC |
2063 | |
2064 | if (*this_cache) | |
2065 | return *this_cache; | |
2066 | ||
2067 | info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); | |
2068 | *this_cache = info; | |
2069 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
2070 | ||
7f07c5b6 RC |
2071 | info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM); |
2072 | ||
090ccbb7 | 2073 | if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM) |
22b0923d RC |
2074 | { |
2075 | /* HPUX uses export stubs in function calls; the export stub clobbers | |
2076 | the return value of the caller, and, later restores it from the | |
2077 | stack. */ | |
2078 | u = find_unwind_entry (frame_pc_unwind (next_frame)); | |
2079 | ||
2080 | if (u && u->stub_unwind.stub_type == EXPORT) | |
2081 | { | |
2082 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24; | |
2083 | ||
2084 | return info; | |
2085 | } | |
2086 | } | |
2087 | ||
2088 | /* By default we assume that stubs do not change the rp. */ | |
2089 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM; | |
2090 | ||
7f07c5b6 RC |
2091 | return info; |
2092 | } | |
2093 | ||
2094 | static void | |
2095 | hppa_stub_frame_this_id (struct frame_info *next_frame, | |
2096 | void **this_prologue_cache, | |
2097 | struct frame_id *this_id) | |
2098 | { | |
2099 | struct hppa_stub_unwind_cache *info | |
2100 | = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache); | |
2101 | *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame)); | |
2102 | } | |
2103 | ||
2104 | static void | |
2105 | hppa_stub_frame_prev_register (struct frame_info *next_frame, | |
2106 | void **this_prologue_cache, | |
2107 | int regnum, int *optimizedp, | |
2108 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
0da28f8a | 2109 | int *realnump, void *valuep) |
7f07c5b6 RC |
2110 | { |
2111 | struct hppa_stub_unwind_cache *info | |
2112 | = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache); | |
0da28f8a RC |
2113 | hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum, |
2114 | optimizedp, lvalp, addrp, realnump, valuep); | |
7f07c5b6 RC |
2115 | } |
2116 | ||
2117 | static const struct frame_unwind hppa_stub_frame_unwind = { | |
2118 | NORMAL_FRAME, | |
2119 | hppa_stub_frame_this_id, | |
2120 | hppa_stub_frame_prev_register | |
2121 | }; | |
2122 | ||
2123 | static const struct frame_unwind * | |
2124 | hppa_stub_unwind_sniffer (struct frame_info *next_frame) | |
2125 | { | |
2126 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
84674fe1 AC |
2127 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
2128 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
7f07c5b6 | 2129 | |
6d1be3f1 | 2130 | if (pc == 0 |
84674fe1 AC |
2131 | || (tdep->in_solib_call_trampoline != NULL |
2132 | && tdep->in_solib_call_trampoline (pc, NULL)) | |
7f07c5b6 RC |
2133 | || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL)) |
2134 | return &hppa_stub_frame_unwind; | |
2135 | return NULL; | |
2136 | } | |
2137 | ||
26d08f08 AC |
2138 | static struct frame_id |
2139 | hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2140 | { | |
2141 | return frame_id_build (frame_unwind_register_unsigned (next_frame, | |
eded0a31 | 2142 | HPPA_SP_REGNUM), |
26d08f08 AC |
2143 | frame_pc_unwind (next_frame)); |
2144 | } | |
2145 | ||
2146 | static CORE_ADDR | |
2147 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2148 | { | |
34f75cc1 | 2149 | return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3; |
26d08f08 AC |
2150 | } |
2151 | ||
9a043c1d AC |
2152 | /* Instead of this nasty cast, add a method pvoid() that prints out a |
2153 | host VOID data type (remember %p isn't portable). */ | |
2154 | ||
2155 | static CORE_ADDR | |
2156 | hppa_pointer_to_address_hack (void *ptr) | |
2157 | { | |
2158 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
2159 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
2160 | } | |
2161 | ||
c906108c | 2162 | static void |
fba45db2 | 2163 | unwind_command (char *exp, int from_tty) |
c906108c SS |
2164 | { |
2165 | CORE_ADDR address; | |
2166 | struct unwind_table_entry *u; | |
2167 | ||
2168 | /* If we have an expression, evaluate it and use it as the address. */ | |
2169 | ||
2170 | if (exp != 0 && *exp != 0) | |
2171 | address = parse_and_eval_address (exp); | |
2172 | else | |
2173 | return; | |
2174 | ||
2175 | u = find_unwind_entry (address); | |
2176 | ||
2177 | if (!u) | |
2178 | { | |
2179 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
2180 | return; | |
2181 | } | |
2182 | ||
ce414844 | 2183 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
9a043c1d | 2184 | paddr_nz (hppa_pointer_to_address_hack (u))); |
c906108c SS |
2185 | |
2186 | printf_unfiltered ("\tregion_start = "); | |
2187 | print_address (u->region_start, gdb_stdout); | |
d5c27f81 | 2188 | gdb_flush (gdb_stdout); |
c906108c SS |
2189 | |
2190 | printf_unfiltered ("\n\tregion_end = "); | |
2191 | print_address (u->region_end, gdb_stdout); | |
d5c27f81 | 2192 | gdb_flush (gdb_stdout); |
c906108c | 2193 | |
c906108c | 2194 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
2195 | |
2196 | printf_unfiltered ("\n\tflags ="); | |
2197 | pif (Cannot_unwind); | |
2198 | pif (Millicode); | |
2199 | pif (Millicode_save_sr0); | |
2200 | pif (Entry_SR); | |
2201 | pif (Args_stored); | |
2202 | pif (Variable_Frame); | |
2203 | pif (Separate_Package_Body); | |
2204 | pif (Frame_Extension_Millicode); | |
2205 | pif (Stack_Overflow_Check); | |
2206 | pif (Two_Instruction_SP_Increment); | |
2207 | pif (Ada_Region); | |
2208 | pif (Save_SP); | |
2209 | pif (Save_RP); | |
2210 | pif (Save_MRP_in_frame); | |
2211 | pif (extn_ptr_defined); | |
2212 | pif (Cleanup_defined); | |
2213 | pif (MPE_XL_interrupt_marker); | |
2214 | pif (HP_UX_interrupt_marker); | |
2215 | pif (Large_frame); | |
2216 | ||
2217 | putchar_unfiltered ('\n'); | |
2218 | ||
c906108c | 2219 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
2220 | |
2221 | pin (Region_description); | |
2222 | pin (Entry_FR); | |
2223 | pin (Entry_GR); | |
2224 | pin (Total_frame_size); | |
2225 | } | |
c906108c | 2226 | |
c2c6d25f | 2227 | void |
fba45db2 | 2228 | hppa_skip_permanent_breakpoint (void) |
c2c6d25f JM |
2229 | { |
2230 | /* To step over a breakpoint instruction on the PA takes some | |
2231 | fiddling with the instruction address queue. | |
2232 | ||
2233 | When we stop at a breakpoint, the IA queue front (the instruction | |
2234 | we're executing now) points at the breakpoint instruction, and | |
2235 | the IA queue back (the next instruction to execute) points to | |
2236 | whatever instruction we would execute after the breakpoint, if it | |
2237 | were an ordinary instruction. This is the case even if the | |
2238 | breakpoint is in the delay slot of a branch instruction. | |
2239 | ||
2240 | Clearly, to step past the breakpoint, we need to set the queue | |
2241 | front to the back. But what do we put in the back? What | |
2242 | instruction comes after that one? Because of the branch delay | |
2243 | slot, the next insn is always at the back + 4. */ | |
34f75cc1 RC |
2244 | write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM)); |
2245 | write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM)); | |
c2c6d25f | 2246 | |
34f75cc1 | 2247 | write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4); |
c2c6d25f JM |
2248 | /* We can leave the tail's space the same, since there's no jump. */ |
2249 | } | |
2250 | ||
d709c020 JB |
2251 | int |
2252 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
2253 | { | |
2254 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
2255 | ||
2256 | An example of this occurs when an a.out is linked against a foo.sl. | |
2257 | The foo.sl defines a global bar(), and the a.out declares a signature | |
2258 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
2259 | its address in another call. | |
2260 | ||
2261 | If you have this scenario and attempt to "break bar" before running, | |
2262 | gdb will find a minimal symbol for bar() in the a.out. But that | |
2263 | symbol's address will be negative. What this appears to denote is | |
2264 | an index backwards from the base of the procedure linkage table (PLT) | |
2265 | into the data linkage table (DLT), the end of which is contiguous | |
2266 | with the start of the PLT. This is clearly not a valid address for | |
2267 | us to set a breakpoint on. | |
2268 | ||
2269 | Note that one must be careful in how one checks for a negative address. | |
2270 | 0xc0000000 is a legitimate address of something in a shared text | |
2271 | segment, for example. Since I don't know what the possible range | |
2272 | is of these "really, truly negative" addresses that come from the | |
2273 | minimal symbols, I'm resorting to the gross hack of checking the | |
2274 | top byte of the address for all 1's. Sigh. */ | |
2275 | ||
2276 | return (!target_has_stack && (pc & 0xFF000000)); | |
2277 | } | |
2278 | ||
2279 | int | |
2280 | hppa_instruction_nullified (void) | |
2281 | { | |
2282 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
2283 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
2284 | semi-mechanical multiarching-related changes. */ | |
34f75cc1 RC |
2285 | const int ipsw = (int) read_register (HPPA_IPSW_REGNUM); |
2286 | const int flags = (int) read_register (HPPA_FLAGS_REGNUM); | |
d709c020 JB |
2287 | |
2288 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
2289 | } | |
2290 | ||
d709c020 JB |
2291 | /* Return the GDB type object for the "standard" data type of data |
2292 | in register N. */ | |
2293 | ||
eded0a31 AC |
2294 | static struct type * |
2295 | hppa32_register_type (struct gdbarch *gdbarch, int reg_nr) | |
d709c020 | 2296 | { |
34f75cc1 | 2297 | if (reg_nr < HPPA_FP4_REGNUM) |
eded0a31 | 2298 | return builtin_type_uint32; |
d709c020 | 2299 | else |
eded0a31 | 2300 | return builtin_type_ieee_single_big; |
d709c020 JB |
2301 | } |
2302 | ||
3ff7cf9e JB |
2303 | /* Return the GDB type object for the "standard" data type of data |
2304 | in register N. hppa64 version. */ | |
2305 | ||
eded0a31 AC |
2306 | static struct type * |
2307 | hppa64_register_type (struct gdbarch *gdbarch, int reg_nr) | |
3ff7cf9e | 2308 | { |
34f75cc1 | 2309 | if (reg_nr < HPPA_FP4_REGNUM) |
eded0a31 | 2310 | return builtin_type_uint64; |
3ff7cf9e | 2311 | else |
eded0a31 | 2312 | return builtin_type_ieee_double_big; |
3ff7cf9e JB |
2313 | } |
2314 | ||
d709c020 JB |
2315 | /* Return True if REGNUM is not a register available to the user |
2316 | through ptrace(). */ | |
2317 | ||
8d153463 | 2318 | static int |
d709c020 JB |
2319 | hppa_cannot_store_register (int regnum) |
2320 | { | |
2321 | return (regnum == 0 | |
34f75cc1 RC |
2322 | || regnum == HPPA_PCSQ_HEAD_REGNUM |
2323 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2324 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); | |
d709c020 JB |
2325 | |
2326 | } | |
2327 | ||
8d153463 | 2328 | static CORE_ADDR |
d709c020 JB |
2329 | hppa_smash_text_address (CORE_ADDR addr) |
2330 | { | |
2331 | /* The low two bits of the PC on the PA contain the privilege level. | |
2332 | Some genius implementing a (non-GCC) compiler apparently decided | |
2333 | this means that "addresses" in a text section therefore include a | |
2334 | privilege level, and thus symbol tables should contain these bits. | |
2335 | This seems like a bonehead thing to do--anyway, it seems to work | |
2336 | for our purposes to just ignore those bits. */ | |
2337 | ||
2338 | return (addr &= ~0x3); | |
2339 | } | |
2340 | ||
143985b7 AF |
2341 | /* Get the ith function argument for the current function. */ |
2342 | CORE_ADDR | |
2343 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, | |
2344 | struct type *type) | |
2345 | { | |
2346 | CORE_ADDR addr; | |
34f75cc1 | 2347 | get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr); |
143985b7 AF |
2348 | return addr; |
2349 | } | |
2350 | ||
0f8d9d59 RC |
2351 | static void |
2352 | hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
2353 | int regnum, void *buf) | |
2354 | { | |
2355 | ULONGEST tmp; | |
2356 | ||
2357 | regcache_raw_read_unsigned (regcache, regnum, &tmp); | |
34f75cc1 | 2358 | if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) |
0f8d9d59 RC |
2359 | tmp &= ~0x3; |
2360 | store_unsigned_integer (buf, sizeof(tmp), tmp); | |
2361 | } | |
2362 | ||
d49771ef RC |
2363 | static CORE_ADDR |
2364 | hppa_find_global_pointer (struct value *function) | |
2365 | { | |
2366 | return 0; | |
2367 | } | |
2368 | ||
0da28f8a RC |
2369 | void |
2370 | hppa_frame_prev_register_helper (struct frame_info *next_frame, | |
2371 | struct trad_frame_saved_reg saved_regs[], | |
2372 | int regnum, int *optimizedp, | |
2373 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2374 | int *realnump, void *valuep) | |
2375 | { | |
8693c419 MK |
2376 | if (regnum == HPPA_PCOQ_TAIL_REGNUM) |
2377 | { | |
2378 | if (valuep) | |
2379 | { | |
2380 | CORE_ADDR pc; | |
0da28f8a | 2381 | |
1f67027d AC |
2382 | trad_frame_get_prev_register (next_frame, saved_regs, |
2383 | HPPA_PCOQ_HEAD_REGNUM, optimizedp, | |
2384 | lvalp, addrp, realnump, valuep); | |
8693c419 MK |
2385 | |
2386 | pc = extract_unsigned_integer (valuep, 4); | |
2387 | store_unsigned_integer (valuep, 4, pc + 4); | |
2388 | } | |
2389 | ||
2390 | /* It's a computed value. */ | |
2391 | *optimizedp = 0; | |
2392 | *lvalp = not_lval; | |
2393 | *addrp = 0; | |
2394 | *realnump = -1; | |
2395 | return; | |
2396 | } | |
0da28f8a | 2397 | |
1f67027d AC |
2398 | trad_frame_get_prev_register (next_frame, saved_regs, regnum, |
2399 | optimizedp, lvalp, addrp, realnump, valuep); | |
0da28f8a | 2400 | } |
8693c419 | 2401 | \f |
0da28f8a | 2402 | |
8e8b2dba MC |
2403 | /* Here is a table of C type sizes on hppa with various compiles |
2404 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
2405 | and these compilers: | |
2406 | ||
2407 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
2408 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
2409 | /opt/aCC/bin/aCC B3910B A.03.45 | |
2410 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
2411 | ||
2412 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
2413 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2414 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2415 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2416 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2417 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2418 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2419 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2420 | ||
2421 | Each line is: | |
2422 | ||
2423 | compiler and options | |
2424 | char, short, int, long, long long | |
2425 | float, double, long double | |
2426 | char *, void (*)() | |
2427 | ||
2428 | So all these compilers use either ILP32 or LP64 model. | |
2429 | TODO: gcc has more options so it needs more investigation. | |
2430 | ||
a2379359 MC |
2431 | For floating point types, see: |
2432 | ||
2433 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
2434 | HP-UX floating-point guide, hpux 11.00 | |
2435 | ||
8e8b2dba MC |
2436 | -- chastain 2003-12-18 */ |
2437 | ||
e6e68f1f JB |
2438 | static struct gdbarch * |
2439 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2440 | { | |
3ff7cf9e | 2441 | struct gdbarch_tdep *tdep; |
e6e68f1f | 2442 | struct gdbarch *gdbarch; |
59623e27 JB |
2443 | |
2444 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 2445 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 2446 | { |
4be87837 DJ |
2447 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
2448 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
2449 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 2450 | } |
e6e68f1f JB |
2451 | |
2452 | /* find a candidate among the list of pre-declared architectures. */ | |
2453 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
2454 | if (arches != NULL) | |
2455 | return (arches->gdbarch); | |
2456 | ||
2457 | /* If none found, then allocate and initialize one. */ | |
fdd72f95 | 2458 | tdep = XZALLOC (struct gdbarch_tdep); |
3ff7cf9e JB |
2459 | gdbarch = gdbarch_alloc (&info, tdep); |
2460 | ||
2461 | /* Determine from the bfd_arch_info structure if we are dealing with | |
2462 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
2463 | then default to a 32bit machine. */ | |
2464 | if (info.bfd_arch_info != NULL) | |
2465 | tdep->bytes_per_address = | |
2466 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
2467 | else | |
2468 | tdep->bytes_per_address = 4; | |
2469 | ||
d49771ef RC |
2470 | tdep->find_global_pointer = hppa_find_global_pointer; |
2471 | ||
3ff7cf9e JB |
2472 | /* Some parts of the gdbarch vector depend on whether we are running |
2473 | on a 32 bits or 64 bits target. */ | |
2474 | switch (tdep->bytes_per_address) | |
2475 | { | |
2476 | case 4: | |
2477 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
2478 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
eded0a31 | 2479 | set_gdbarch_register_type (gdbarch, hppa32_register_type); |
3ff7cf9e JB |
2480 | break; |
2481 | case 8: | |
2482 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
2483 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
eded0a31 | 2484 | set_gdbarch_register_type (gdbarch, hppa64_register_type); |
3ff7cf9e JB |
2485 | break; |
2486 | default: | |
2487 | internal_error (__FILE__, __LINE__, "Unsupported address size: %d", | |
2488 | tdep->bytes_per_address); | |
2489 | } | |
2490 | ||
3ff7cf9e | 2491 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
3ff7cf9e | 2492 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 2493 | |
8e8b2dba MC |
2494 | /* The following gdbarch vector elements are the same in both ILP32 |
2495 | and LP64, but might show differences some day. */ | |
2496 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2497 | set_gdbarch_long_double_bit (gdbarch, 128); | |
a2379359 | 2498 | set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big); |
8e8b2dba | 2499 | |
3ff7cf9e JB |
2500 | /* The following gdbarch vector elements do not depend on the address |
2501 | size, or in any other gdbarch element previously set. */ | |
60383d10 | 2502 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
a2a84a72 | 2503 | set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
eded0a31 AC |
2504 | set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
2505 | set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); | |
60383d10 | 2506 | set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register); |
50306a9d | 2507 | set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register); |
b6fbdd1d | 2508 | set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address); |
60383d10 JB |
2509 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
2510 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
2511 | set_gdbarch_read_pc (gdbarch, hppa_target_read_pc); | |
2512 | set_gdbarch_write_pc (gdbarch, hppa_target_write_pc); | |
60383d10 | 2513 | |
143985b7 AF |
2514 | /* Helper for function argument information. */ |
2515 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
2516 | ||
36482093 AC |
2517 | set_gdbarch_print_insn (gdbarch, print_insn_hppa); |
2518 | ||
3a3bc038 AC |
2519 | /* When a hardware watchpoint triggers, we'll move the inferior past |
2520 | it by removing all eventpoints; stepping past the instruction | |
2521 | that caused the trigger; reinserting eventpoints; and checking | |
2522 | whether any watched location changed. */ | |
2523 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
2524 | ||
5979bc46 | 2525 | /* Inferior function call methods. */ |
fca7aa43 | 2526 | switch (tdep->bytes_per_address) |
5979bc46 | 2527 | { |
fca7aa43 AC |
2528 | case 4: |
2529 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); | |
2530 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); | |
d49771ef RC |
2531 | set_gdbarch_convert_from_func_ptr_addr |
2532 | (gdbarch, hppa32_convert_from_func_ptr_addr); | |
fca7aa43 AC |
2533 | break; |
2534 | case 8: | |
782eae8b AC |
2535 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
2536 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); | |
fca7aa43 | 2537 | break; |
782eae8b AC |
2538 | default: |
2539 | internal_error (__FILE__, __LINE__, "bad switch"); | |
fad850b2 AC |
2540 | } |
2541 | ||
2542 | /* Struct return methods. */ | |
fca7aa43 | 2543 | switch (tdep->bytes_per_address) |
fad850b2 | 2544 | { |
fca7aa43 AC |
2545 | case 4: |
2546 | set_gdbarch_return_value (gdbarch, hppa32_return_value); | |
2547 | break; | |
2548 | case 8: | |
782eae8b | 2549 | set_gdbarch_return_value (gdbarch, hppa64_return_value); |
f5f907e2 | 2550 | break; |
fca7aa43 AC |
2551 | default: |
2552 | internal_error (__FILE__, __LINE__, "bad switch"); | |
e963316f | 2553 | } |
7f07c5b6 | 2554 | |
85f4f2d8 | 2555 | set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc); |
7f07c5b6 | 2556 | set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
85f4f2d8 | 2557 | |
5979bc46 | 2558 | /* Frame unwind methods. */ |
782eae8b AC |
2559 | set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id); |
2560 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); | |
7f07c5b6 | 2561 | |
50306a9d RC |
2562 | /* Hook in ABI-specific overrides, if they have been registered. */ |
2563 | gdbarch_init_osabi (info, gdbarch); | |
2564 | ||
7f07c5b6 RC |
2565 | /* Hook in the default unwinders. */ |
2566 | frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer); | |
782eae8b | 2567 | frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer); |
0da28f8a | 2568 | frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer); |
5979bc46 | 2569 | |
e6e68f1f JB |
2570 | return gdbarch; |
2571 | } | |
2572 | ||
2573 | static void | |
2574 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
2575 | { | |
fdd72f95 RC |
2576 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2577 | ||
2578 | fprintf_unfiltered (file, "bytes_per_address = %d\n", | |
2579 | tdep->bytes_per_address); | |
2580 | fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); | |
e6e68f1f JB |
2581 | } |
2582 | ||
4facf7e8 JB |
2583 | void |
2584 | _initialize_hppa_tdep (void) | |
2585 | { | |
2586 | struct cmd_list_element *c; | |
2587 | void break_at_finish_command (char *arg, int from_tty); | |
2588 | void tbreak_at_finish_command (char *arg, int from_tty); | |
2589 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
2590 | ||
e6e68f1f | 2591 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 | 2592 | |
7c46b9fb RC |
2593 | hppa_objfile_priv_data = register_objfile_data (); |
2594 | ||
4facf7e8 JB |
2595 | add_cmd ("unwind", class_maintenance, unwind_command, |
2596 | "Print unwind table entry at given address.", | |
2597 | &maintenanceprintlist); | |
2598 | ||
2599 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
2600 | break_at_finish_command, | |
2601 | concat ("Set breakpoint at procedure exit. \n\ | |
2602 | Argument may be function name, or \"*\" and an address.\n\ | |
2603 | If function is specified, break at end of code for that function.\n\ | |
2604 | If an address is specified, break at the end of the function that contains \n\ | |
2605 | that exact address.\n", | |
2606 | "With no arg, uses current execution address of selected stack frame.\n\ | |
2607 | This is useful for breaking on return to a stack frame.\n\ | |
2608 | \n\ | |
2609 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
2610 | \n\ | |
2611 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
2612 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
2613 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
2614 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
2615 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
2616 | ||
2617 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
2618 | tbreak_at_finish_command, | |
2619 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
2620 | be no argument or the argument must be a depth.\n"), NULL); | |
2621 | set_cmd_completer (c, location_completer); | |
2622 | ||
2623 | if (xdb_commands) | |
2624 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
2625 | break_at_finish_at_depth_command, | |
2626 | "Set breakpoint at procedure exit. Either there should\n\ | |
2627 | be no argument or the argument must be a depth.\n"), NULL); | |
369aa520 RC |
2628 | |
2629 | /* Debug this files internals. */ | |
cb1a6d5f AC |
2630 | deprecated_add_show_from_set |
2631 | (add_set_cmd ("hppa", class_maintenance, var_zinteger, | |
2632 | &hppa_debug, "Set hppa debugging.\n\ | |
2633 | When non-zero, hppa specific debugging is enabled.", &setdebuglist), | |
2634 | &showdebuglist); | |
4facf7e8 | 2635 | } |