]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
adc11376 AC |
4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software |
5 | Foundation, Inc. | |
c906108c SS |
6 | |
7 | Contributed by the Center for Software Science at the | |
8 | University of Utah ([email protected]). | |
9 | ||
c5aa993b | 10 | This file is part of GDB. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is free software; you can redistribute it and/or modify |
13 | it under the terms of the GNU General Public License as published by | |
14 | the Free Software Foundation; either version 2 of the License, or | |
15 | (at your option) any later version. | |
c906108c | 16 | |
c5aa993b JM |
17 | This program is distributed in the hope that it will be useful, |
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 | GNU General Public License for more details. | |
c906108c | 21 | |
c5aa993b JM |
22 | You should have received a copy of the GNU General Public License |
23 | along with this program; if not, write to the Free Software | |
24 | Foundation, Inc., 59 Temple Place - Suite 330, | |
25 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
26 | |
27 | #include "defs.h" | |
28 | #include "frame.h" | |
29 | #include "bfd.h" | |
30 | #include "inferior.h" | |
31 | #include "value.h" | |
4e052eda | 32 | #include "regcache.h" |
e5d66720 | 33 | #include "completer.h" |
d709c020 | 34 | #include "language.h" |
59623e27 | 35 | #include "osabi.h" |
a7ff40e7 | 36 | #include "gdb_assert.h" |
65e82032 | 37 | #include "infttrace.h" |
343af405 | 38 | #include "arch-utils.h" |
c906108c SS |
39 | /* For argument passing to the inferior */ |
40 | #include "symtab.h" | |
04714b91 | 41 | #include "infcall.h" |
fde2cceb | 42 | #include "dis-asm.h" |
26d08f08 AC |
43 | #include "trad-frame.h" |
44 | #include "frame-unwind.h" | |
45 | #include "frame-base.h" | |
c906108c SS |
46 | |
47 | #ifdef USG | |
48 | #include <sys/types.h> | |
49 | #endif | |
50 | ||
51 | #include <dl.h> | |
52 | #include <sys/param.h> | |
53 | #include <signal.h> | |
54 | ||
55 | #include <sys/ptrace.h> | |
56 | #include <machine/save_state.h> | |
57 | ||
58 | #ifdef COFF_ENCAPSULATE | |
59 | #include "a.out.encap.h" | |
60 | #else | |
61 | #endif | |
62 | ||
c5aa993b | 63 | /*#include <sys/user.h> After a.out.h */ |
c906108c SS |
64 | #include <sys/file.h> |
65 | #include "gdb_stat.h" | |
03f2053f | 66 | #include "gdb_wait.h" |
c906108c SS |
67 | |
68 | #include "gdbcore.h" | |
69 | #include "gdbcmd.h" | |
70 | #include "target.h" | |
71 | #include "symfile.h" | |
72 | #include "objfiles.h" | |
3ff7cf9e | 73 | #include "hppa-tdep.h" |
c906108c | 74 | |
60383d10 | 75 | /* Some local constants. */ |
3ff7cf9e JB |
76 | static const int hppa32_num_regs = 128; |
77 | static const int hppa64_num_regs = 96; | |
78 | ||
79 | static const int hppa64_call_dummy_breakpoint_offset = 22 * 4; | |
80 | ||
81 | /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a | |
82 | word on the target machine, not the size of an instruction. Since | |
83 | a word on this target holds two instructions we have to divide the | |
84 | instruction size by two to get the word size of the dummy. */ | |
85 | static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28; | |
86 | static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2; | |
60383d10 | 87 | |
e2ac8128 JB |
88 | /* Get at various relevent fields of an instruction word. */ |
89 | #define MASK_5 0x1f | |
90 | #define MASK_11 0x7ff | |
91 | #define MASK_14 0x3fff | |
92 | #define MASK_21 0x1fffff | |
93 | ||
94 | /* Define offsets into the call dummy for the target function address. | |
95 | See comments related to CALL_DUMMY for more info. */ | |
96 | #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9) | |
97 | #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10) | |
98 | ||
99 | /* Define offsets into the call dummy for the _sr4export address. | |
100 | See comments related to CALL_DUMMY for more info. */ | |
101 | #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12) | |
102 | #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13) | |
103 | ||
c906108c SS |
104 | /* To support detection of the pseudo-initial frame |
105 | that threads have. */ | |
106 | #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" | |
107 | #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) | |
c5aa993b | 108 | |
e2ac8128 JB |
109 | /* Sizes (in bytes) of the native unwind entries. */ |
110 | #define UNWIND_ENTRY_SIZE 16 | |
111 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
112 | ||
113 | static int get_field (unsigned word, int from, int to); | |
114 | ||
a14ed312 | 115 | static int extract_5_load (unsigned int); |
c906108c | 116 | |
a14ed312 | 117 | static unsigned extract_5R_store (unsigned int); |
c906108c | 118 | |
a14ed312 | 119 | static unsigned extract_5r_store (unsigned int); |
c906108c | 120 | |
343af405 AC |
121 | static void hppa_frame_init_saved_regs (struct frame_info *frame); |
122 | ||
43bd9a9e | 123 | static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *); |
c906108c | 124 | |
a14ed312 | 125 | static int find_proc_framesize (CORE_ADDR); |
c906108c | 126 | |
a14ed312 | 127 | static int find_return_regnum (CORE_ADDR); |
c906108c | 128 | |
a14ed312 | 129 | struct unwind_table_entry *find_unwind_entry (CORE_ADDR); |
c906108c | 130 | |
a14ed312 | 131 | static int extract_17 (unsigned int); |
c906108c | 132 | |
a14ed312 | 133 | static unsigned deposit_21 (unsigned int, unsigned int); |
c906108c | 134 | |
a14ed312 | 135 | static int extract_21 (unsigned); |
c906108c | 136 | |
a14ed312 | 137 | static unsigned deposit_14 (int, unsigned int); |
c906108c | 138 | |
a14ed312 | 139 | static int extract_14 (unsigned); |
c906108c | 140 | |
a14ed312 | 141 | static void unwind_command (char *, int); |
c906108c | 142 | |
a14ed312 | 143 | static int low_sign_extend (unsigned int, unsigned int); |
c906108c | 144 | |
a14ed312 | 145 | static int sign_extend (unsigned int, unsigned int); |
c906108c | 146 | |
43bd9a9e | 147 | static int restore_pc_queue (CORE_ADDR *); |
c906108c | 148 | |
a14ed312 | 149 | static int hppa_alignof (struct type *); |
c906108c | 150 | |
a14ed312 | 151 | static int prologue_inst_adjust_sp (unsigned long); |
c906108c | 152 | |
a14ed312 | 153 | static int is_branch (unsigned long); |
c906108c | 154 | |
a14ed312 | 155 | static int inst_saves_gr (unsigned long); |
c906108c | 156 | |
a14ed312 | 157 | static int inst_saves_fr (unsigned long); |
c906108c | 158 | |
a14ed312 | 159 | static int pc_in_interrupt_handler (CORE_ADDR); |
c906108c | 160 | |
a14ed312 | 161 | static int pc_in_linker_stub (CORE_ADDR); |
c906108c | 162 | |
a14ed312 | 163 | static int compare_unwind_entries (const void *, const void *); |
c906108c | 164 | |
a14ed312 | 165 | static void read_unwind_info (struct objfile *); |
c906108c | 166 | |
a14ed312 KB |
167 | static void internalize_unwinds (struct objfile *, |
168 | struct unwind_table_entry *, | |
169 | asection *, unsigned int, | |
170 | unsigned int, CORE_ADDR); | |
171 | static void pa_print_registers (char *, int, int); | |
d9fcf2fb | 172 | static void pa_strcat_registers (char *, int, int, struct ui_file *); |
a14ed312 KB |
173 | static void pa_register_look_aside (char *, int, long *); |
174 | static void pa_print_fp_reg (int); | |
d9fcf2fb | 175 | static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type); |
a14ed312 | 176 | static void record_text_segment_lowaddr (bfd *, asection *, void *); |
d709c020 JB |
177 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
178 | following functions static, once we hppa is partially multiarched. */ | |
179 | int hppa_reg_struct_has_addr (int gcc_p, struct type *type); | |
60383d10 JB |
180 | CORE_ADDR hppa_skip_prologue (CORE_ADDR pc); |
181 | CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc); | |
182 | int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name); | |
183 | int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name); | |
184 | CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame); | |
d709c020 | 185 | int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs); |
3ff7cf9e JB |
186 | CORE_ADDR hppa32_stack_align (CORE_ADDR sp); |
187 | CORE_ADDR hppa64_stack_align (CORE_ADDR sp); | |
d709c020 JB |
188 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); |
189 | int hppa_instruction_nullified (void); | |
60e1ff27 | 190 | int hppa_register_raw_size (int reg_nr); |
d709c020 | 191 | int hppa_register_byte (int reg_nr); |
3ff7cf9e JB |
192 | struct type * hppa32_register_virtual_type (int reg_nr); |
193 | struct type * hppa64_register_virtual_type (int reg_nr); | |
d709c020 | 194 | void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp); |
3ff7cf9e JB |
195 | void hppa32_extract_return_value (struct type *type, char *regbuf, |
196 | char *valbuf); | |
197 | void hppa64_extract_return_value (struct type *type, char *regbuf, | |
198 | char *valbuf); | |
199 | int hppa32_use_struct_convention (int gcc_p, struct type *type); | |
200 | int hppa64_use_struct_convention (int gcc_p, struct type *type); | |
201 | void hppa32_store_return_value (struct type *type, char *valbuf); | |
202 | void hppa64_store_return_value (struct type *type, char *valbuf); | |
d709c020 | 203 | int hppa_cannot_store_register (int regnum); |
60383d10 JB |
204 | void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame); |
205 | CORE_ADDR hppa_frame_chain (struct frame_info *frame); | |
206 | int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe); | |
207 | int hppa_frameless_function_invocation (struct frame_info *frame); | |
208 | CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame); | |
d709c020 | 209 | CORE_ADDR hppa_frame_args_address (struct frame_info *fi); |
60383d10 | 210 | int hppa_frame_num_args (struct frame_info *frame); |
7daf4f5b | 211 | void hppa_push_dummy_frame (void); |
60383d10 JB |
212 | void hppa_pop_frame (void); |
213 | CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, | |
214 | int nargs, struct value **args, | |
215 | struct type *type, int gcc_p); | |
216 | CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
217 | int struct_return, CORE_ADDR struct_addr); | |
d709c020 | 218 | CORE_ADDR hppa_smash_text_address (CORE_ADDR addr); |
60383d10 JB |
219 | CORE_ADDR hppa_target_read_pc (ptid_t ptid); |
220 | void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid); | |
221 | CORE_ADDR hppa_target_read_fp (void); | |
c906108c | 222 | |
c5aa993b JM |
223 | typedef struct |
224 | { | |
225 | struct minimal_symbol *msym; | |
226 | CORE_ADDR solib_handle; | |
a0b3c4fd | 227 | CORE_ADDR return_val; |
c5aa993b JM |
228 | } |
229 | args_for_find_stub; | |
c906108c | 230 | |
4efb68b1 | 231 | static int cover_find_stub_with_shl_get (void *); |
c906108c | 232 | |
c5aa993b | 233 | static int is_pa_2 = 0; /* False */ |
c906108c | 234 | |
c5aa993b | 235 | /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */ |
c906108c SS |
236 | extern int hp_som_som_object_present; |
237 | ||
238 | /* In breakpoint.c */ | |
239 | extern int exception_catchpoints_are_fragile; | |
240 | ||
c906108c | 241 | /* Should call_function allocate stack space for a struct return? */ |
d709c020 | 242 | |
c906108c | 243 | int |
3ff7cf9e | 244 | hppa32_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 245 | { |
b1e29e33 | 246 | return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE); |
c906108c | 247 | } |
3ff7cf9e JB |
248 | |
249 | /* Same as hppa32_use_struct_convention() for the PA64 ABI. */ | |
250 | ||
251 | int | |
252 | hppa64_use_struct_convention (int gcc_p, struct type *type) | |
253 | { | |
254 | /* RM: struct upto 128 bits are returned in registers */ | |
255 | return TYPE_LENGTH (type) > 16; | |
256 | } | |
c5aa993b | 257 | |
c906108c SS |
258 | /* Routines to extract various sized constants out of hppa |
259 | instructions. */ | |
260 | ||
261 | /* This assumes that no garbage lies outside of the lower bits of | |
262 | value. */ | |
263 | ||
264 | static int | |
fba45db2 | 265 | sign_extend (unsigned val, unsigned bits) |
c906108c | 266 | { |
c5aa993b | 267 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
268 | } |
269 | ||
270 | /* For many immediate values the sign bit is the low bit! */ | |
271 | ||
272 | static int | |
fba45db2 | 273 | low_sign_extend (unsigned val, unsigned bits) |
c906108c | 274 | { |
c5aa993b | 275 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
276 | } |
277 | ||
e2ac8128 JB |
278 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
279 | (MSB = 0). */ | |
280 | ||
281 | static int | |
282 | get_field (unsigned word, int from, int to) | |
283 | { | |
284 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
285 | } | |
286 | ||
c906108c SS |
287 | /* extract the immediate field from a ld{bhw}s instruction */ |
288 | ||
c906108c | 289 | static int |
fba45db2 | 290 | extract_5_load (unsigned word) |
c906108c SS |
291 | { |
292 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
293 | } | |
294 | ||
c906108c SS |
295 | /* extract the immediate field from a break instruction */ |
296 | ||
297 | static unsigned | |
fba45db2 | 298 | extract_5r_store (unsigned word) |
c906108c SS |
299 | { |
300 | return (word & MASK_5); | |
301 | } | |
302 | ||
303 | /* extract the immediate field from a {sr}sm instruction */ | |
304 | ||
305 | static unsigned | |
fba45db2 | 306 | extract_5R_store (unsigned word) |
c906108c SS |
307 | { |
308 | return (word >> 16 & MASK_5); | |
309 | } | |
310 | ||
c906108c SS |
311 | /* extract a 14 bit immediate field */ |
312 | ||
313 | static int | |
fba45db2 | 314 | extract_14 (unsigned word) |
c906108c SS |
315 | { |
316 | return low_sign_extend (word & MASK_14, 14); | |
317 | } | |
318 | ||
319 | /* deposit a 14 bit constant in a word */ | |
320 | ||
321 | static unsigned | |
fba45db2 | 322 | deposit_14 (int opnd, unsigned word) |
c906108c SS |
323 | { |
324 | unsigned sign = (opnd < 0 ? 1 : 0); | |
325 | ||
c5aa993b | 326 | return word | ((unsigned) opnd << 1 & MASK_14) | sign; |
c906108c SS |
327 | } |
328 | ||
329 | /* extract a 21 bit constant */ | |
330 | ||
331 | static int | |
fba45db2 | 332 | extract_21 (unsigned word) |
c906108c SS |
333 | { |
334 | int val; | |
335 | ||
336 | word &= MASK_21; | |
337 | word <<= 11; | |
e2ac8128 | 338 | val = get_field (word, 20, 20); |
c906108c | 339 | val <<= 11; |
e2ac8128 | 340 | val |= get_field (word, 9, 19); |
c906108c | 341 | val <<= 2; |
e2ac8128 | 342 | val |= get_field (word, 5, 6); |
c906108c | 343 | val <<= 5; |
e2ac8128 | 344 | val |= get_field (word, 0, 4); |
c906108c | 345 | val <<= 2; |
e2ac8128 | 346 | val |= get_field (word, 7, 8); |
c906108c SS |
347 | return sign_extend (val, 21) << 11; |
348 | } | |
349 | ||
350 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
351 | usually the top 21 bits of a 32 bit constant, we assume that only | |
352 | the low 21 bits of opnd are relevant */ | |
353 | ||
354 | static unsigned | |
fba45db2 | 355 | deposit_21 (unsigned opnd, unsigned word) |
c906108c SS |
356 | { |
357 | unsigned val = 0; | |
358 | ||
e2ac8128 | 359 | val |= get_field (opnd, 11 + 14, 11 + 18); |
c906108c | 360 | val <<= 2; |
e2ac8128 | 361 | val |= get_field (opnd, 11 + 12, 11 + 13); |
c906108c | 362 | val <<= 2; |
e2ac8128 | 363 | val |= get_field (opnd, 11 + 19, 11 + 20); |
c906108c | 364 | val <<= 11; |
e2ac8128 | 365 | val |= get_field (opnd, 11 + 1, 11 + 11); |
c906108c | 366 | val <<= 1; |
e2ac8128 | 367 | val |= get_field (opnd, 11 + 0, 11 + 0); |
c906108c SS |
368 | return word | val; |
369 | } | |
370 | ||
c906108c SS |
371 | /* extract a 17 bit constant from branch instructions, returning the |
372 | 19 bit signed value. */ | |
373 | ||
374 | static int | |
fba45db2 | 375 | extract_17 (unsigned word) |
c906108c | 376 | { |
e2ac8128 JB |
377 | return sign_extend (get_field (word, 19, 28) | |
378 | get_field (word, 29, 29) << 10 | | |
379 | get_field (word, 11, 15) << 11 | | |
c906108c SS |
380 | (word & 0x1) << 16, 17) << 2; |
381 | } | |
382 | \f | |
383 | ||
384 | /* Compare the start address for two unwind entries returning 1 if | |
385 | the first address is larger than the second, -1 if the second is | |
386 | larger than the first, and zero if they are equal. */ | |
387 | ||
388 | static int | |
fba45db2 | 389 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
390 | { |
391 | const struct unwind_table_entry *a = arg1; | |
392 | const struct unwind_table_entry *b = arg2; | |
393 | ||
394 | if (a->region_start > b->region_start) | |
395 | return 1; | |
396 | else if (a->region_start < b->region_start) | |
397 | return -1; | |
398 | else | |
399 | return 0; | |
400 | } | |
401 | ||
53a5351d JM |
402 | static CORE_ADDR low_text_segment_address; |
403 | ||
404 | static void | |
8fef05cc | 405 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored) |
53a5351d | 406 | { |
bf9c25dc | 407 | if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d JM |
408 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
409 | && section->vma < low_text_segment_address) | |
410 | low_text_segment_address = section->vma; | |
411 | } | |
412 | ||
c906108c | 413 | static void |
fba45db2 KB |
414 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
415 | asection *section, unsigned int entries, unsigned int size, | |
416 | CORE_ADDR text_offset) | |
c906108c SS |
417 | { |
418 | /* We will read the unwind entries into temporary memory, then | |
419 | fill in the actual unwind table. */ | |
420 | if (size > 0) | |
421 | { | |
422 | unsigned long tmp; | |
423 | unsigned i; | |
424 | char *buf = alloca (size); | |
425 | ||
53a5351d JM |
426 | low_text_segment_address = -1; |
427 | ||
428 | /* If addresses are 64 bits wide, then unwinds are supposed to | |
c2c6d25f JM |
429 | be segment relative offsets instead of absolute addresses. |
430 | ||
431 | Note that when loading a shared library (text_offset != 0) the | |
432 | unwinds are already relative to the text_offset that will be | |
433 | passed in. */ | |
434 | if (TARGET_PTR_BIT == 64 && text_offset == 0) | |
53a5351d JM |
435 | { |
436 | bfd_map_over_sections (objfile->obfd, | |
4efb68b1 | 437 | record_text_segment_lowaddr, NULL); |
53a5351d JM |
438 | |
439 | /* ?!? Mask off some low bits. Should this instead subtract | |
440 | out the lowest section's filepos or something like that? | |
441 | This looks very hokey to me. */ | |
442 | low_text_segment_address &= ~0xfff; | |
443 | text_offset += low_text_segment_address; | |
444 | } | |
445 | ||
c906108c SS |
446 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
447 | ||
448 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 449 | endian issues. */ |
c906108c SS |
450 | for (i = 0; i < entries; i++) |
451 | { | |
452 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 453 | (bfd_byte *) buf); |
c906108c SS |
454 | table[i].region_start += text_offset; |
455 | buf += 4; | |
c5aa993b | 456 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
457 | table[i].region_end += text_offset; |
458 | buf += 4; | |
c5aa993b | 459 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
460 | buf += 4; |
461 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
462 | table[i].Millicode = (tmp >> 30) & 0x1; | |
463 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
464 | table[i].Region_description = (tmp >> 27) & 0x3; | |
465 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
466 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
467 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
468 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
469 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
470 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
471 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
472 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
473 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
474 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
475 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
476 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
477 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
478 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
479 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
480 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
481 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
482 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
483 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
484 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 485 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
486 | buf += 4; |
487 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
488 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
489 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
490 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
491 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
492 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
493 | ||
c5aa993b | 494 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
495 | table[i].stub_unwind.stub_type = 0; |
496 | table[i].stub_unwind.padding = 0; | |
497 | } | |
498 | } | |
499 | } | |
500 | ||
501 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
502 | the object file. This info is used mainly by find_unwind_entry() to find | |
503 | out the stack frame size and frame pointer used by procedures. We put | |
504 | everything on the psymbol obstack in the objfile so that it automatically | |
505 | gets freed when the objfile is destroyed. */ | |
506 | ||
507 | static void | |
fba45db2 | 508 | read_unwind_info (struct objfile *objfile) |
c906108c | 509 | { |
d4f3574e SS |
510 | asection *unwind_sec, *stub_unwind_sec; |
511 | unsigned unwind_size, stub_unwind_size, total_size; | |
512 | unsigned index, unwind_entries; | |
c906108c SS |
513 | unsigned stub_entries, total_entries; |
514 | CORE_ADDR text_offset; | |
515 | struct obj_unwind_info *ui; | |
516 | obj_private_data_t *obj_private; | |
517 | ||
518 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
8b92e4d5 | 519 | ui = (struct obj_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
c5aa993b | 520 | sizeof (struct obj_unwind_info)); |
c906108c SS |
521 | |
522 | ui->table = NULL; | |
523 | ui->cache = NULL; | |
524 | ui->last = -1; | |
525 | ||
d4f3574e SS |
526 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
527 | sections in a single executable. So we just iterate over every | |
528 | section in the BFD looking for unwinder sections intead of trying | |
529 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 530 | |
d4f3574e SS |
531 | First determine the total size of the unwind tables so that we |
532 | can allocate memory in a nice big hunk. */ | |
533 | total_entries = 0; | |
534 | for (unwind_sec = objfile->obfd->sections; | |
535 | unwind_sec; | |
536 | unwind_sec = unwind_sec->next) | |
c906108c | 537 | { |
d4f3574e SS |
538 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
539 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
540 | { | |
541 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
542 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 543 | |
d4f3574e SS |
544 | total_entries += unwind_entries; |
545 | } | |
c906108c SS |
546 | } |
547 | ||
d4f3574e SS |
548 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
549 | use stub unwinds at the curren time. */ | |
550 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
551 | ||
c906108c SS |
552 | if (stub_unwind_sec) |
553 | { | |
554 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
555 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
556 | } | |
557 | else | |
558 | { | |
559 | stub_unwind_size = 0; | |
560 | stub_entries = 0; | |
561 | } | |
562 | ||
563 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 564 | total_entries += stub_entries; |
c906108c SS |
565 | total_size = total_entries * sizeof (struct unwind_table_entry); |
566 | ||
567 | /* Allocate memory for the unwind table. */ | |
568 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 569 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 570 | ui->last = total_entries - 1; |
c906108c | 571 | |
d4f3574e SS |
572 | /* Now read in each unwind section and internalize the standard unwind |
573 | entries. */ | |
c906108c | 574 | index = 0; |
d4f3574e SS |
575 | for (unwind_sec = objfile->obfd->sections; |
576 | unwind_sec; | |
577 | unwind_sec = unwind_sec->next) | |
578 | { | |
579 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
580 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
581 | { | |
582 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
583 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
584 | ||
585 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
586 | unwind_entries, unwind_size, text_offset); | |
587 | index += unwind_entries; | |
588 | } | |
589 | } | |
590 | ||
591 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
592 | if (stub_unwind_size > 0) |
593 | { | |
594 | unsigned int i; | |
595 | char *buf = alloca (stub_unwind_size); | |
596 | ||
597 | /* Read in the stub unwind entries. */ | |
598 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
599 | 0, stub_unwind_size); | |
600 | ||
601 | /* Now convert them into regular unwind entries. */ | |
602 | for (i = 0; i < stub_entries; i++, index++) | |
603 | { | |
604 | /* Clear out the next unwind entry. */ | |
605 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
606 | ||
607 | /* Convert offset & size into region_start and region_end. | |
608 | Stuff away the stub type into "reserved" fields. */ | |
609 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
610 | (bfd_byte *) buf); | |
611 | ui->table[index].region_start += text_offset; | |
612 | buf += 4; | |
613 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 614 | (bfd_byte *) buf); |
c906108c SS |
615 | buf += 2; |
616 | ui->table[index].region_end | |
c5aa993b JM |
617 | = ui->table[index].region_start + 4 * |
618 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
619 | buf += 2; |
620 | } | |
621 | ||
622 | } | |
623 | ||
624 | /* Unwind table needs to be kept sorted. */ | |
625 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
626 | compare_unwind_entries); | |
627 | ||
628 | /* Keep a pointer to the unwind information. */ | |
c5aa993b | 629 | if (objfile->obj_private == NULL) |
c906108c SS |
630 | { |
631 | obj_private = (obj_private_data_t *) | |
8b92e4d5 | 632 | obstack_alloc (&objfile->objfile_obstack, |
c5aa993b | 633 | sizeof (obj_private_data_t)); |
c906108c | 634 | obj_private->unwind_info = NULL; |
c5aa993b | 635 | obj_private->so_info = NULL; |
53a5351d | 636 | obj_private->dp = 0; |
c5aa993b | 637 | |
4efb68b1 | 638 | objfile->obj_private = obj_private; |
c906108c | 639 | } |
c5aa993b | 640 | obj_private = (obj_private_data_t *) objfile->obj_private; |
c906108c SS |
641 | obj_private->unwind_info = ui; |
642 | } | |
643 | ||
644 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
645 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
646 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
647 | search of the unwind tables, we depend upon them to be sorted. */ | |
648 | ||
649 | struct unwind_table_entry * | |
fba45db2 | 650 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
651 | { |
652 | int first, middle, last; | |
653 | struct objfile *objfile; | |
654 | ||
655 | /* A function at address 0? Not in HP-UX! */ | |
656 | if (pc == (CORE_ADDR) 0) | |
657 | return NULL; | |
658 | ||
659 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
660 | { |
661 | struct obj_unwind_info *ui; | |
662 | ui = NULL; | |
663 | if (objfile->obj_private) | |
664 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; | |
c906108c | 665 | |
c5aa993b JM |
666 | if (!ui) |
667 | { | |
668 | read_unwind_info (objfile); | |
669 | if (objfile->obj_private == NULL) | |
104c1213 | 670 | error ("Internal error reading unwind information."); |
c5aa993b JM |
671 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; |
672 | } | |
c906108c | 673 | |
c5aa993b | 674 | /* First, check the cache */ |
c906108c | 675 | |
c5aa993b JM |
676 | if (ui->cache |
677 | && pc >= ui->cache->region_start | |
678 | && pc <= ui->cache->region_end) | |
679 | return ui->cache; | |
c906108c | 680 | |
c5aa993b | 681 | /* Not in the cache, do a binary search */ |
c906108c | 682 | |
c5aa993b JM |
683 | first = 0; |
684 | last = ui->last; | |
c906108c | 685 | |
c5aa993b JM |
686 | while (first <= last) |
687 | { | |
688 | middle = (first + last) / 2; | |
689 | if (pc >= ui->table[middle].region_start | |
690 | && pc <= ui->table[middle].region_end) | |
691 | { | |
692 | ui->cache = &ui->table[middle]; | |
693 | return &ui->table[middle]; | |
694 | } | |
c906108c | 695 | |
c5aa993b JM |
696 | if (pc < ui->table[middle].region_start) |
697 | last = middle - 1; | |
698 | else | |
699 | first = middle + 1; | |
700 | } | |
701 | } /* ALL_OBJFILES() */ | |
c906108c SS |
702 | return NULL; |
703 | } | |
704 | ||
aaab4dba AC |
705 | const unsigned char * |
706 | hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len) | |
707 | { | |
56132691 | 708 | static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; |
aaab4dba AC |
709 | (*len) = sizeof (breakpoint); |
710 | return breakpoint; | |
711 | } | |
712 | ||
e23457df AC |
713 | /* Return the name of a register. */ |
714 | ||
715 | const char * | |
3ff7cf9e | 716 | hppa32_register_name (int i) |
e23457df AC |
717 | { |
718 | static char *names[] = { | |
719 | "flags", "r1", "rp", "r3", | |
720 | "r4", "r5", "r6", "r7", | |
721 | "r8", "r9", "r10", "r11", | |
722 | "r12", "r13", "r14", "r15", | |
723 | "r16", "r17", "r18", "r19", | |
724 | "r20", "r21", "r22", "r23", | |
725 | "r24", "r25", "r26", "dp", | |
726 | "ret0", "ret1", "sp", "r31", | |
727 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
728 | "pcsqt", "eiem", "iir", "isr", | |
729 | "ior", "ipsw", "goto", "sr4", | |
730 | "sr0", "sr1", "sr2", "sr3", | |
731 | "sr5", "sr6", "sr7", "cr0", | |
732 | "cr8", "cr9", "ccr", "cr12", | |
733 | "cr13", "cr24", "cr25", "cr26", | |
734 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
735 | "fpsr", "fpe1", "fpe2", "fpe3", | |
736 | "fpe4", "fpe5", "fpe6", "fpe7", | |
737 | "fr4", "fr4R", "fr5", "fr5R", | |
738 | "fr6", "fr6R", "fr7", "fr7R", | |
739 | "fr8", "fr8R", "fr9", "fr9R", | |
740 | "fr10", "fr10R", "fr11", "fr11R", | |
741 | "fr12", "fr12R", "fr13", "fr13R", | |
742 | "fr14", "fr14R", "fr15", "fr15R", | |
743 | "fr16", "fr16R", "fr17", "fr17R", | |
744 | "fr18", "fr18R", "fr19", "fr19R", | |
745 | "fr20", "fr20R", "fr21", "fr21R", | |
746 | "fr22", "fr22R", "fr23", "fr23R", | |
747 | "fr24", "fr24R", "fr25", "fr25R", | |
748 | "fr26", "fr26R", "fr27", "fr27R", | |
749 | "fr28", "fr28R", "fr29", "fr29R", | |
750 | "fr30", "fr30R", "fr31", "fr31R" | |
751 | }; | |
752 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
753 | return NULL; | |
754 | else | |
755 | return names[i]; | |
756 | } | |
757 | ||
758 | const char * | |
759 | hppa64_register_name (int i) | |
760 | { | |
761 | static char *names[] = { | |
762 | "flags", "r1", "rp", "r3", | |
763 | "r4", "r5", "r6", "r7", | |
764 | "r8", "r9", "r10", "r11", | |
765 | "r12", "r13", "r14", "r15", | |
766 | "r16", "r17", "r18", "r19", | |
767 | "r20", "r21", "r22", "r23", | |
768 | "r24", "r25", "r26", "dp", | |
769 | "ret0", "ret1", "sp", "r31", | |
770 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
771 | "pcsqt", "eiem", "iir", "isr", | |
772 | "ior", "ipsw", "goto", "sr4", | |
773 | "sr0", "sr1", "sr2", "sr3", | |
774 | "sr5", "sr6", "sr7", "cr0", | |
775 | "cr8", "cr9", "ccr", "cr12", | |
776 | "cr13", "cr24", "cr25", "cr26", | |
777 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
778 | "fpsr", "fpe1", "fpe2", "fpe3", | |
779 | "fr4", "fr5", "fr6", "fr7", | |
780 | "fr8", "fr9", "fr10", "fr11", | |
781 | "fr12", "fr13", "fr14", "fr15", | |
782 | "fr16", "fr17", "fr18", "fr19", | |
783 | "fr20", "fr21", "fr22", "fr23", | |
784 | "fr24", "fr25", "fr26", "fr27", | |
785 | "fr28", "fr29", "fr30", "fr31" | |
786 | }; | |
787 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
788 | return NULL; | |
789 | else | |
790 | return names[i]; | |
791 | } | |
792 | ||
793 | ||
794 | ||
c906108c SS |
795 | /* Return the adjustment necessary to make for addresses on the stack |
796 | as presented by hpread.c. | |
797 | ||
798 | This is necessary because of the stack direction on the PA and the | |
799 | bizarre way in which someone (?) decided they wanted to handle | |
800 | frame pointerless code in GDB. */ | |
801 | int | |
fba45db2 | 802 | hpread_adjust_stack_address (CORE_ADDR func_addr) |
c906108c SS |
803 | { |
804 | struct unwind_table_entry *u; | |
805 | ||
806 | u = find_unwind_entry (func_addr); | |
807 | if (!u) | |
808 | return 0; | |
809 | else | |
810 | return u->Total_frame_size << 3; | |
811 | } | |
812 | ||
813 | /* Called to determine if PC is in an interrupt handler of some | |
814 | kind. */ | |
815 | ||
816 | static int | |
fba45db2 | 817 | pc_in_interrupt_handler (CORE_ADDR pc) |
c906108c SS |
818 | { |
819 | struct unwind_table_entry *u; | |
820 | struct minimal_symbol *msym_us; | |
821 | ||
822 | u = find_unwind_entry (pc); | |
823 | if (!u) | |
824 | return 0; | |
825 | ||
826 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
827 | its frame isn't a pure interrupt frame. Deal with this. */ | |
828 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
829 | ||
d7bd68ca | 830 | return (u->HP_UX_interrupt_marker |
22abf04a | 831 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))); |
c906108c SS |
832 | } |
833 | ||
834 | /* Called when no unwind descriptor was found for PC. Returns 1 if it | |
104c1213 JM |
835 | appears that PC is in a linker stub. |
836 | ||
837 | ?!? Need to handle stubs which appear in PA64 code. */ | |
c906108c SS |
838 | |
839 | static int | |
fba45db2 | 840 | pc_in_linker_stub (CORE_ADDR pc) |
c906108c SS |
841 | { |
842 | int found_magic_instruction = 0; | |
843 | int i; | |
844 | char buf[4]; | |
845 | ||
846 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
847 | if (target_read_memory (pc, buf, 4) != 0) | |
848 | return 0; | |
849 | ||
850 | /* We are looking for something like | |
851 | ||
852 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
853 | ; before calling the "call stub" | |
854 | ldw -18(sp),rp | |
855 | ||
856 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
857 | mtsp r1,sp ; Move it into space register 0 | |
858 | be,n 0(sr0),rp) ; back to your regularly scheduled program */ | |
859 | ||
860 | /* Maximum known linker stub size is 4 instructions. Search forward | |
861 | from the given PC, then backward. */ | |
862 | for (i = 0; i < 4; i++) | |
863 | { | |
864 | /* If we hit something with an unwind, stop searching this direction. */ | |
865 | ||
866 | if (find_unwind_entry (pc + i * 4) != 0) | |
867 | break; | |
868 | ||
869 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 870 | return from a cross-space function call. */ |
c906108c SS |
871 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) |
872 | { | |
873 | found_magic_instruction = 1; | |
874 | break; | |
875 | } | |
876 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 877 | here. */ |
c906108c SS |
878 | } |
879 | ||
880 | if (found_magic_instruction != 0) | |
881 | return 1; | |
882 | ||
883 | /* Now look backward. */ | |
884 | for (i = 0; i < 4; i++) | |
885 | { | |
886 | /* If we hit something with an unwind, stop searching this direction. */ | |
887 | ||
888 | if (find_unwind_entry (pc - i * 4) != 0) | |
889 | break; | |
890 | ||
891 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 892 | return from a cross-space function call. */ |
c906108c SS |
893 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) |
894 | { | |
895 | found_magic_instruction = 1; | |
896 | break; | |
897 | } | |
898 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 899 | here. */ |
c906108c SS |
900 | } |
901 | return found_magic_instruction; | |
902 | } | |
903 | ||
904 | static int | |
fba45db2 | 905 | find_return_regnum (CORE_ADDR pc) |
c906108c SS |
906 | { |
907 | struct unwind_table_entry *u; | |
908 | ||
909 | u = find_unwind_entry (pc); | |
910 | ||
911 | if (!u) | |
912 | return RP_REGNUM; | |
913 | ||
914 | if (u->Millicode) | |
915 | return 31; | |
916 | ||
917 | return RP_REGNUM; | |
918 | } | |
919 | ||
920 | /* Return size of frame, or -1 if we should use a frame pointer. */ | |
921 | static int | |
fba45db2 | 922 | find_proc_framesize (CORE_ADDR pc) |
c906108c SS |
923 | { |
924 | struct unwind_table_entry *u; | |
925 | struct minimal_symbol *msym_us; | |
926 | ||
927 | /* This may indicate a bug in our callers... */ | |
c5aa993b | 928 | if (pc == (CORE_ADDR) 0) |
c906108c | 929 | return -1; |
c5aa993b | 930 | |
c906108c SS |
931 | u = find_unwind_entry (pc); |
932 | ||
933 | if (!u) | |
934 | { | |
935 | if (pc_in_linker_stub (pc)) | |
936 | /* Linker stubs have a zero size frame. */ | |
937 | return 0; | |
938 | else | |
939 | return -1; | |
940 | } | |
941 | ||
942 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
943 | ||
944 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
945 | then we have a frame pointer. Use it. */ | |
3fa41cdb JL |
946 | if (u->Save_SP |
947 | && !pc_in_interrupt_handler (pc) | |
948 | && msym_us | |
22abf04a | 949 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))) |
c906108c SS |
950 | return -1; |
951 | ||
952 | return u->Total_frame_size << 3; | |
953 | } | |
954 | ||
955 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ | |
a14ed312 | 956 | static int rp_saved (CORE_ADDR); |
c906108c SS |
957 | |
958 | static int | |
fba45db2 | 959 | rp_saved (CORE_ADDR pc) |
c906108c SS |
960 | { |
961 | struct unwind_table_entry *u; | |
962 | ||
963 | /* A function at, and thus a return PC from, address 0? Not in HP-UX! */ | |
964 | if (pc == (CORE_ADDR) 0) | |
965 | return 0; | |
966 | ||
967 | u = find_unwind_entry (pc); | |
968 | ||
969 | if (!u) | |
970 | { | |
971 | if (pc_in_linker_stub (pc)) | |
972 | /* This is the so-called RP'. */ | |
973 | return -24; | |
974 | else | |
975 | return 0; | |
976 | } | |
977 | ||
978 | if (u->Save_RP) | |
53a5351d | 979 | return (TARGET_PTR_BIT == 64 ? -16 : -20); |
c906108c SS |
980 | else if (u->stub_unwind.stub_type != 0) |
981 | { | |
982 | switch (u->stub_unwind.stub_type) | |
983 | { | |
984 | case EXPORT: | |
985 | case IMPORT: | |
986 | return -24; | |
987 | case PARAMETER_RELOCATION: | |
988 | return -8; | |
989 | default: | |
990 | return 0; | |
991 | } | |
992 | } | |
993 | else | |
994 | return 0; | |
995 | } | |
996 | \f | |
997 | int | |
60383d10 | 998 | hppa_frameless_function_invocation (struct frame_info *frame) |
c906108c SS |
999 | { |
1000 | struct unwind_table_entry *u; | |
1001 | ||
ef6e7e13 | 1002 | u = find_unwind_entry (get_frame_pc (frame)); |
c906108c SS |
1003 | |
1004 | if (u == 0) | |
1005 | return 0; | |
1006 | ||
1007 | return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0); | |
1008 | } | |
1009 | ||
d709c020 JB |
1010 | /* Immediately after a function call, return the saved pc. |
1011 | Can't go through the frames for this because on some machines | |
1012 | the new frame is not set up until the new function executes | |
1013 | some instructions. */ | |
1014 | ||
c906108c | 1015 | CORE_ADDR |
60383d10 | 1016 | hppa_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
1017 | { |
1018 | int ret_regnum; | |
1019 | CORE_ADDR pc; | |
1020 | struct unwind_table_entry *u; | |
1021 | ||
1022 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
1023 | pc = read_register (ret_regnum) & ~0x3; | |
c5aa993b | 1024 | |
c906108c SS |
1025 | /* If PC is in a linker stub, then we need to dig the address |
1026 | the stub will return to out of the stack. */ | |
1027 | u = find_unwind_entry (pc); | |
1028 | if (u && u->stub_unwind.stub_type != 0) | |
8bedc050 | 1029 | return DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
1030 | else |
1031 | return pc; | |
1032 | } | |
1033 | \f | |
1034 | CORE_ADDR | |
fba45db2 | 1035 | hppa_frame_saved_pc (struct frame_info *frame) |
c906108c SS |
1036 | { |
1037 | CORE_ADDR pc = get_frame_pc (frame); | |
1038 | struct unwind_table_entry *u; | |
65e82032 | 1039 | CORE_ADDR old_pc = 0; |
c5aa993b JM |
1040 | int spun_around_loop = 0; |
1041 | int rp_offset = 0; | |
c906108c SS |
1042 | |
1043 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner | |
1044 | at the base of the frame in an interrupt handler. Registers within | |
1045 | are saved in the exact same order as GDB numbers registers. How | |
1046 | convienent. */ | |
1047 | if (pc_in_interrupt_handler (pc)) | |
ef6e7e13 | 1048 | return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4, |
53a5351d | 1049 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c | 1050 | |
ef6e7e13 AC |
1051 | if ((get_frame_pc (frame) >= get_frame_base (frame) |
1052 | && (get_frame_pc (frame) | |
1053 | <= (get_frame_base (frame) | |
1054 | /* A call dummy is sized in words, but it is actually a | |
1055 | series of instructions. Account for that scaling | |
1056 | factor. */ | |
b1e29e33 AC |
1057 | + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE) |
1058 | * DEPRECATED_CALL_DUMMY_LENGTH) | |
ef6e7e13 AC |
1059 | /* Similarly we have to account for 64bit wide register |
1060 | saves. */ | |
b1e29e33 | 1061 | + (32 * DEPRECATED_REGISTER_SIZE) |
ef6e7e13 AC |
1062 | /* We always consider FP regs 8 bytes long. */ |
1063 | + (NUM_REGS - FP0_REGNUM) * 8 | |
1064 | /* Similarly we have to account for 64bit wide register | |
1065 | saves. */ | |
b1e29e33 | 1066 | + (6 * DEPRECATED_REGISTER_SIZE))))) |
104c1213 | 1067 | { |
ef6e7e13 | 1068 | return read_memory_integer ((get_frame_base (frame) |
104c1213 JM |
1069 | + (TARGET_PTR_BIT == 64 ? -16 : -20)), |
1070 | TARGET_PTR_BIT / 8) & ~0x3; | |
1071 | } | |
1072 | ||
c906108c SS |
1073 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP |
1074 | /* Deal with signal handler caller frames too. */ | |
5a203e44 | 1075 | if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1076 | { |
1077 | CORE_ADDR rp; | |
1078 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
1079 | return rp & ~0x3; | |
1080 | } | |
1081 | #endif | |
1082 | ||
60383d10 | 1083 | if (hppa_frameless_function_invocation (frame)) |
c906108c SS |
1084 | { |
1085 | int ret_regnum; | |
1086 | ||
1087 | ret_regnum = find_return_regnum (pc); | |
1088 | ||
1089 | /* If the next frame is an interrupt frame or a signal | |
c5aa993b JM |
1090 | handler caller, then we need to look in the saved |
1091 | register area to get the return pointer (the values | |
1092 | in the registers may not correspond to anything useful). */ | |
ef6e7e13 AC |
1093 | if (get_next_frame (frame) |
1094 | && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) | |
1095 | || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame))))) | |
c906108c | 1096 | { |
43bd9a9e | 1097 | CORE_ADDR *saved_regs; |
ef6e7e13 | 1098 | hppa_frame_init_saved_regs (get_next_frame (frame)); |
1b1d3794 | 1099 | saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame)); |
43bd9a9e | 1100 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], |
53a5351d | 1101 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 1102 | { |
43bd9a9e | 1103 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 1104 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1105 | |
1106 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
1107 | with a return pointer in %rp and the kernel call with |
1108 | a return pointer in %r31. We return the %rp variant | |
1109 | if %r31 is the same as frame->pc. */ | |
ef6e7e13 | 1110 | if (pc == get_frame_pc (frame)) |
43bd9a9e | 1111 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1112 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1113 | } |
1114 | else | |
43bd9a9e | 1115 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1116 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1117 | } |
1118 | else | |
1119 | pc = read_register (ret_regnum) & ~0x3; | |
1120 | } | |
1121 | else | |
1122 | { | |
1123 | spun_around_loop = 0; | |
c5aa993b | 1124 | old_pc = pc; |
c906108c | 1125 | |
c5aa993b | 1126 | restart: |
c906108c SS |
1127 | rp_offset = rp_saved (pc); |
1128 | ||
1129 | /* Similar to code in frameless function case. If the next | |
c5aa993b JM |
1130 | frame is a signal or interrupt handler, then dig the right |
1131 | information out of the saved register info. */ | |
c906108c | 1132 | if (rp_offset == 0 |
ef6e7e13 AC |
1133 | && get_next_frame (frame) |
1134 | && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) | |
1135 | || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame))))) | |
c906108c | 1136 | { |
43bd9a9e | 1137 | CORE_ADDR *saved_regs; |
ef6e7e13 | 1138 | hppa_frame_init_saved_regs (get_next_frame (frame)); |
1b1d3794 | 1139 | saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame)); |
43bd9a9e | 1140 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], |
53a5351d | 1141 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 1142 | { |
43bd9a9e | 1143 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 1144 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1145 | |
1146 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
1147 | with a return pointer in %rp and the kernel call with |
1148 | a return pointer in %r31. We return the %rp variant | |
1149 | if %r31 is the same as frame->pc. */ | |
ef6e7e13 | 1150 | if (pc == get_frame_pc (frame)) |
43bd9a9e | 1151 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1152 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1153 | } |
1154 | else | |
43bd9a9e | 1155 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1156 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1157 | } |
1158 | else if (rp_offset == 0) | |
c5aa993b JM |
1159 | { |
1160 | old_pc = pc; | |
1161 | pc = read_register (RP_REGNUM) & ~0x3; | |
1162 | } | |
c906108c | 1163 | else |
c5aa993b JM |
1164 | { |
1165 | old_pc = pc; | |
ef6e7e13 | 1166 | pc = read_memory_integer (get_frame_base (frame) + rp_offset, |
53a5351d | 1167 | TARGET_PTR_BIT / 8) & ~0x3; |
c5aa993b | 1168 | } |
c906108c SS |
1169 | } |
1170 | ||
1171 | /* If PC is inside a linker stub, then dig out the address the stub | |
1172 | will return to. | |
1173 | ||
1174 | Don't do this for long branch stubs. Why? For some unknown reason | |
1175 | _start is marked as a long branch stub in hpux10. */ | |
1176 | u = find_unwind_entry (pc); | |
1177 | if (u && u->stub_unwind.stub_type != 0 | |
1178 | && u->stub_unwind.stub_type != LONG_BRANCH) | |
1179 | { | |
1180 | unsigned int insn; | |
1181 | ||
1182 | /* If this is a dynamic executable, and we're in a signal handler, | |
c5aa993b JM |
1183 | then the call chain will eventually point us into the stub for |
1184 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
1185 | to the real sigreturn rather than the code after the real branch!. | |
c906108c | 1186 | |
c5aa993b JM |
1187 | Else, try to dig the address the stub will return to in the normal |
1188 | fashion. */ | |
c906108c SS |
1189 | insn = read_memory_integer (pc, 4); |
1190 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1191 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
1192 | else | |
1193 | { | |
c5aa993b JM |
1194 | if (old_pc == pc) |
1195 | spun_around_loop++; | |
1196 | ||
1197 | if (spun_around_loop > 1) | |
1198 | { | |
1199 | /* We're just about to go around the loop again with | |
1200 | no more hope of success. Die. */ | |
1201 | error ("Unable to find return pc for this frame"); | |
1202 | } | |
1203 | else | |
1204 | goto restart; | |
c906108c SS |
1205 | } |
1206 | } | |
1207 | ||
1208 | return pc; | |
1209 | } | |
1210 | \f | |
1211 | /* We need to correct the PC and the FP for the outermost frame when we are | |
1212 | in a system call. */ | |
1213 | ||
1214 | void | |
60383d10 | 1215 | hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame) |
c906108c SS |
1216 | { |
1217 | int flags; | |
1218 | int framesize; | |
1219 | ||
ef6e7e13 | 1220 | if (get_next_frame (frame) && !fromleaf) |
c906108c SS |
1221 | return; |
1222 | ||
618ce49f AC |
1223 | /* If the next frame represents a frameless function invocation then |
1224 | we have to do some adjustments that are normally done by | |
1225 | DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in | |
1226 | this case.) */ | |
c906108c SS |
1227 | if (fromleaf) |
1228 | { | |
1229 | /* Find the framesize of *this* frame without peeking at the PC | |
c5aa993b | 1230 | in the current frame structure (it isn't set yet). */ |
8bedc050 | 1231 | framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame))); |
c906108c SS |
1232 | |
1233 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
c5aa993b JM |
1234 | use it, else subtract the size of this frame from the current |
1235 | frame. (we always want frame->frame to point at the lowest address | |
1236 | in the frame). */ | |
c906108c | 1237 | if (framesize == -1) |
0ba6dca9 | 1238 | deprecated_update_frame_base_hack (frame, deprecated_read_fp ()); |
c906108c | 1239 | else |
ef6e7e13 | 1240 | deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize); |
c906108c SS |
1241 | return; |
1242 | } | |
1243 | ||
1244 | flags = read_register (FLAGS_REGNUM); | |
c5aa993b | 1245 | if (flags & 2) /* In system call? */ |
ef6e7e13 | 1246 | deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3); |
c906108c SS |
1247 | |
1248 | /* The outermost frame is always derived from PC-framesize | |
1249 | ||
1250 | One might think frameless innermost frames should have | |
1251 | a frame->frame that is the same as the parent's frame->frame. | |
1252 | That is wrong; frame->frame in that case should be the *high* | |
1253 | address of the parent's frame. It's complicated as hell to | |
1254 | explain, but the parent *always* creates some stack space for | |
1255 | the child. So the child actually does have a frame of some | |
1256 | sorts, and its base is the high address in its parent's frame. */ | |
ef6e7e13 | 1257 | framesize = find_proc_framesize (get_frame_pc (frame)); |
c906108c | 1258 | if (framesize == -1) |
0ba6dca9 | 1259 | deprecated_update_frame_base_hack (frame, deprecated_read_fp ()); |
c906108c | 1260 | else |
ef6e7e13 | 1261 | deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize); |
c906108c SS |
1262 | } |
1263 | \f | |
a5afb99f AC |
1264 | /* Given a GDB frame, determine the address of the calling function's |
1265 | frame. This will be used to create a new GDB frame struct, and | |
e9582e71 AC |
1266 | then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC |
1267 | will be called for the new frame. | |
c906108c SS |
1268 | |
1269 | This may involve searching through prologues for several functions | |
1270 | at boundaries where GCC calls HP C code, or where code which has | |
1271 | a frame pointer calls code without a frame pointer. */ | |
1272 | ||
1273 | CORE_ADDR | |
60383d10 | 1274 | hppa_frame_chain (struct frame_info *frame) |
c906108c SS |
1275 | { |
1276 | int my_framesize, caller_framesize; | |
1277 | struct unwind_table_entry *u; | |
1278 | CORE_ADDR frame_base; | |
1279 | struct frame_info *tmp_frame; | |
1280 | ||
c2c6d25f JM |
1281 | /* A frame in the current frame list, or zero. */ |
1282 | struct frame_info *saved_regs_frame = 0; | |
43bd9a9e AC |
1283 | /* Where the registers were saved in saved_regs_frame. If |
1284 | saved_regs_frame is zero, this is garbage. */ | |
1285 | CORE_ADDR *saved_regs = NULL; | |
c2c6d25f | 1286 | |
c5aa993b | 1287 | CORE_ADDR caller_pc; |
c906108c SS |
1288 | |
1289 | struct minimal_symbol *min_frame_symbol; | |
c5aa993b JM |
1290 | struct symbol *frame_symbol; |
1291 | char *frame_symbol_name; | |
c906108c SS |
1292 | |
1293 | /* If this is a threaded application, and we see the | |
1294 | routine "__pthread_exit", treat it as the stack root | |
1295 | for this thread. */ | |
ef6e7e13 AC |
1296 | min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame)); |
1297 | frame_symbol = find_pc_function (get_frame_pc (frame)); | |
c906108c | 1298 | |
c5aa993b | 1299 | if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ ) |
c906108c | 1300 | { |
c5aa993b JM |
1301 | /* The test above for "no user function name" would defend |
1302 | against the slim likelihood that a user might define a | |
1303 | routine named "__pthread_exit" and then try to debug it. | |
1304 | ||
1305 | If it weren't commented out, and you tried to debug the | |
1306 | pthread library itself, you'd get errors. | |
1307 | ||
1308 | So for today, we don't make that check. */ | |
22abf04a | 1309 | frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol); |
c5aa993b JM |
1310 | if (frame_symbol_name != 0) |
1311 | { | |
1312 | if (0 == strncmp (frame_symbol_name, | |
1313 | THREAD_INITIAL_FRAME_SYMBOL, | |
1314 | THREAD_INITIAL_FRAME_SYM_LEN)) | |
1315 | { | |
1316 | /* Pretend we've reached the bottom of the stack. */ | |
1317 | return (CORE_ADDR) 0; | |
1318 | } | |
1319 | } | |
1320 | } /* End of hacky code for threads. */ | |
1321 | ||
c906108c SS |
1322 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These |
1323 | are easy; at *sp we have a full save state strucutre which we can | |
1324 | pull the old stack pointer from. Also see frame_saved_pc for | |
1325 | code to dig a saved PC out of the save state structure. */ | |
ef6e7e13 AC |
1326 | if (pc_in_interrupt_handler (get_frame_pc (frame))) |
1327 | frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4, | |
53a5351d | 1328 | TARGET_PTR_BIT / 8); |
c906108c | 1329 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP |
5a203e44 | 1330 | else if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1331 | { |
1332 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
1333 | } | |
1334 | #endif | |
1335 | else | |
ef6e7e13 | 1336 | frame_base = get_frame_base (frame); |
c906108c SS |
1337 | |
1338 | /* Get frame sizes for the current frame and the frame of the | |
1339 | caller. */ | |
ef6e7e13 | 1340 | my_framesize = find_proc_framesize (get_frame_pc (frame)); |
8bedc050 | 1341 | caller_pc = DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
1342 | |
1343 | /* If we can't determine the caller's PC, then it's not likely we can | |
1344 | really determine anything meaningful about its frame. We'll consider | |
1345 | this to be stack bottom. */ | |
1346 | if (caller_pc == (CORE_ADDR) 0) | |
1347 | return (CORE_ADDR) 0; | |
1348 | ||
8bedc050 | 1349 | caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1350 | |
1351 | /* If caller does not have a frame pointer, then its frame | |
1352 | can be found at current_frame - caller_framesize. */ | |
1353 | if (caller_framesize != -1) | |
1354 | { | |
1355 | return frame_base - caller_framesize; | |
1356 | } | |
1357 | /* Both caller and callee have frame pointers and are GCC compiled | |
1358 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
1359 | The previous frame pointer is found at the top of the current frame. */ | |
1360 | if (caller_framesize == -1 && my_framesize == -1) | |
1361 | { | |
53a5351d | 1362 | return read_memory_integer (frame_base, TARGET_PTR_BIT / 8); |
c906108c SS |
1363 | } |
1364 | /* Caller has a frame pointer, but callee does not. This is a little | |
1365 | more difficult as GCC and HP C lay out locals and callee register save | |
1366 | areas very differently. | |
1367 | ||
1368 | The previous frame pointer could be in a register, or in one of | |
1369 | several areas on the stack. | |
1370 | ||
1371 | Walk from the current frame to the innermost frame examining | |
1372 | unwind descriptors to determine if %r3 ever gets saved into the | |
1373 | stack. If so return whatever value got saved into the stack. | |
1374 | If it was never saved in the stack, then the value in %r3 is still | |
1375 | valid, so use it. | |
1376 | ||
1377 | We use information from unwind descriptors to determine if %r3 | |
1378 | is saved into the stack (Entry_GR field has this information). */ | |
1379 | ||
ef6e7e13 | 1380 | for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame)) |
c906108c | 1381 | { |
ef6e7e13 | 1382 | u = find_unwind_entry (get_frame_pc (tmp_frame)); |
c906108c SS |
1383 | |
1384 | if (!u) | |
1385 | { | |
1386 | /* We could find this information by examining prologues. I don't | |
1387 | think anyone has actually written any tools (not even "strip") | |
1388 | which leave them out of an executable, so maybe this is a moot | |
1389 | point. */ | |
c5aa993b JM |
1390 | /* ??rehrauer: Actually, it's quite possible to stepi your way into |
1391 | code that doesn't have unwind entries. For example, stepping into | |
1392 | the dynamic linker will give you a PC that has none. Thus, I've | |
1393 | disabled this warning. */ | |
c906108c | 1394 | #if 0 |
ef6e7e13 | 1395 | warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame)); |
c906108c SS |
1396 | #endif |
1397 | return (CORE_ADDR) 0; | |
1398 | } | |
1399 | ||
c2c6d25f | 1400 | if (u->Save_SP |
5a203e44 | 1401 | || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
ef6e7e13 | 1402 | || pc_in_interrupt_handler (get_frame_pc (tmp_frame))) |
c906108c | 1403 | break; |
c2c6d25f JM |
1404 | |
1405 | /* Entry_GR specifies the number of callee-saved general registers | |
1406 | saved in the stack. It starts at %r3, so %r3 would be 1. */ | |
1407 | if (u->Entry_GR >= 1) | |
1408 | { | |
1409 | /* The unwind entry claims that r3 is saved here. However, | |
1410 | in optimized code, GCC often doesn't actually save r3. | |
1411 | We'll discover this if we look at the prologue. */ | |
43bd9a9e | 1412 | hppa_frame_init_saved_regs (tmp_frame); |
1b1d3794 | 1413 | saved_regs = deprecated_get_frame_saved_regs (tmp_frame); |
c2c6d25f JM |
1414 | saved_regs_frame = tmp_frame; |
1415 | ||
1416 | /* If we have an address for r3, that's good. */ | |
0ba6dca9 | 1417 | if (saved_regs[DEPRECATED_FP_REGNUM]) |
c2c6d25f JM |
1418 | break; |
1419 | } | |
c906108c SS |
1420 | } |
1421 | ||
1422 | if (tmp_frame) | |
1423 | { | |
1424 | /* We may have walked down the chain into a function with a frame | |
c5aa993b | 1425 | pointer. */ |
c906108c | 1426 | if (u->Save_SP |
5a203e44 | 1427 | && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
ef6e7e13 | 1428 | && !pc_in_interrupt_handler (get_frame_pc (tmp_frame))) |
c906108c | 1429 | { |
ef6e7e13 | 1430 | return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8); |
c906108c SS |
1431 | } |
1432 | /* %r3 was saved somewhere in the stack. Dig it out. */ | |
c5aa993b | 1433 | else |
c906108c | 1434 | { |
c906108c SS |
1435 | /* Sick. |
1436 | ||
1437 | For optimization purposes many kernels don't have the | |
1438 | callee saved registers into the save_state structure upon | |
1439 | entry into the kernel for a syscall; the optimization | |
1440 | is usually turned off if the process is being traced so | |
1441 | that the debugger can get full register state for the | |
1442 | process. | |
c5aa993b | 1443 | |
c906108c SS |
1444 | This scheme works well except for two cases: |
1445 | ||
c5aa993b JM |
1446 | * Attaching to a process when the process is in the |
1447 | kernel performing a system call (debugger can't get | |
1448 | full register state for the inferior process since | |
1449 | the process wasn't being traced when it entered the | |
1450 | system call). | |
c906108c | 1451 | |
c5aa993b JM |
1452 | * Register state is not complete if the system call |
1453 | causes the process to core dump. | |
c906108c SS |
1454 | |
1455 | ||
1456 | The following heinous code is an attempt to deal with | |
1457 | the lack of register state in a core dump. It will | |
1458 | fail miserably if the function which performs the | |
1459 | system call has a variable sized stack frame. */ | |
1460 | ||
c2c6d25f | 1461 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1462 | { |
1463 | hppa_frame_init_saved_regs (tmp_frame); | |
1b1d3794 | 1464 | saved_regs = deprecated_get_frame_saved_regs (tmp_frame); |
43bd9a9e | 1465 | } |
c906108c SS |
1466 | |
1467 | /* Abominable hack. */ | |
1468 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1469 | && ((saved_regs[FLAGS_REGNUM] |
1470 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1471 | TARGET_PTR_BIT / 8) |
c906108c | 1472 | & 0x2)) |
43bd9a9e | 1473 | || (saved_regs[FLAGS_REGNUM] == 0 |
c906108c SS |
1474 | && read_register (FLAGS_REGNUM) & 0x2))) |
1475 | { | |
8bedc050 | 1476 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1477 | if (!u) |
1478 | { | |
0ba6dca9 | 1479 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1480 | TARGET_PTR_BIT / 8); |
c906108c SS |
1481 | } |
1482 | else | |
1483 | { | |
1484 | return frame_base - (u->Total_frame_size << 3); | |
1485 | } | |
1486 | } | |
c5aa993b | 1487 | |
0ba6dca9 | 1488 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1489 | TARGET_PTR_BIT / 8); |
c906108c SS |
1490 | } |
1491 | } | |
1492 | else | |
1493 | { | |
c906108c SS |
1494 | /* Get the innermost frame. */ |
1495 | tmp_frame = frame; | |
ef6e7e13 AC |
1496 | while (get_next_frame (tmp_frame) != NULL) |
1497 | tmp_frame = get_next_frame (tmp_frame); | |
c906108c | 1498 | |
c2c6d25f | 1499 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1500 | { |
1501 | hppa_frame_init_saved_regs (tmp_frame); | |
1b1d3794 | 1502 | saved_regs = deprecated_get_frame_saved_regs (tmp_frame); |
43bd9a9e | 1503 | } |
c2c6d25f | 1504 | |
c906108c SS |
1505 | /* Abominable hack. See above. */ |
1506 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1507 | && ((saved_regs[FLAGS_REGNUM] |
1508 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1509 | TARGET_PTR_BIT / 8) |
c906108c | 1510 | & 0x2)) |
43bd9a9e | 1511 | || (saved_regs[FLAGS_REGNUM] == 0 |
c5aa993b | 1512 | && read_register (FLAGS_REGNUM) & 0x2))) |
c906108c | 1513 | { |
8bedc050 | 1514 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1515 | if (!u) |
1516 | { | |
0ba6dca9 | 1517 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1518 | TARGET_PTR_BIT / 8); |
c906108c | 1519 | } |
c5aa993b JM |
1520 | else |
1521 | { | |
1522 | return frame_base - (u->Total_frame_size << 3); | |
1523 | } | |
c906108c | 1524 | } |
c5aa993b | 1525 | |
c906108c | 1526 | /* The value in %r3 was never saved into the stack (thus %r3 still |
c5aa993b | 1527 | holds the value of the previous frame pointer). */ |
0ba6dca9 | 1528 | return deprecated_read_fp (); |
c906108c SS |
1529 | } |
1530 | } | |
c906108c | 1531 | \f |
c5aa993b | 1532 | |
c906108c SS |
1533 | /* To see if a frame chain is valid, see if the caller looks like it |
1534 | was compiled with gcc. */ | |
1535 | ||
1536 | int | |
fba45db2 | 1537 | hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
1538 | { |
1539 | struct minimal_symbol *msym_us; | |
1540 | struct minimal_symbol *msym_start; | |
1541 | struct unwind_table_entry *u, *next_u = NULL; | |
1542 | struct frame_info *next; | |
1543 | ||
ef6e7e13 | 1544 | u = find_unwind_entry (get_frame_pc (thisframe)); |
c906108c SS |
1545 | |
1546 | if (u == NULL) | |
1547 | return 1; | |
1548 | ||
1549 | /* We can't just check that the same of msym_us is "_start", because | |
1550 | someone idiotically decided that they were going to make a Ltext_end | |
1551 | symbol with the same address. This Ltext_end symbol is totally | |
1552 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1553 | which is (legitimately, since it is in the user's namespace) | |
1554 | named Ltext_end, so we can't just ignore it. */ | |
8bedc050 | 1555 | msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe)); |
c906108c SS |
1556 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); |
1557 | if (msym_us | |
1558 | && msym_start | |
1559 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1560 | return 0; | |
1561 | ||
1562 | /* Grrrr. Some new idiot decided that they don't want _start for the | |
1563 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1564 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1565 | if (msym_us | |
1566 | && msym_start | |
1567 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1568 | return 0; | |
1569 | ||
1570 | next = get_next_frame (thisframe); | |
1571 | if (next) | |
ef6e7e13 | 1572 | next_u = find_unwind_entry (get_frame_pc (next)); |
c906108c SS |
1573 | |
1574 | /* If this frame does not save SP, has no stack, isn't a stub, | |
1575 | and doesn't "call" an interrupt routine or signal handler caller, | |
1576 | then its not valid. */ | |
1577 | if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0 | |
ef6e7e13 | 1578 | || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)) |
c906108c SS |
1579 | || (next_u && next_u->HP_UX_interrupt_marker)) |
1580 | return 1; | |
1581 | ||
ef6e7e13 | 1582 | if (pc_in_linker_stub (get_frame_pc (thisframe))) |
c906108c SS |
1583 | return 1; |
1584 | ||
1585 | return 0; | |
1586 | } | |
1587 | ||
7daf4f5b JB |
1588 | /* These functions deal with saving and restoring register state |
1589 | around a function call in the inferior. They keep the stack | |
1590 | double-word aligned; eventually, on an hp700, the stack will have | |
1591 | to be aligned to a 64-byte boundary. */ | |
c906108c SS |
1592 | |
1593 | void | |
7daf4f5b | 1594 | hppa_push_dummy_frame (void) |
c906108c SS |
1595 | { |
1596 | CORE_ADDR sp, pc, pcspace; | |
52f0bd74 | 1597 | int regnum; |
53a5351d | 1598 | CORE_ADDR int_buffer; |
c906108c SS |
1599 | double freg_buffer; |
1600 | ||
60383d10 | 1601 | pc = hppa_target_read_pc (inferior_ptid); |
c906108c SS |
1602 | int_buffer = read_register (FLAGS_REGNUM); |
1603 | if (int_buffer & 0x2) | |
1604 | { | |
3371ccc0 | 1605 | const unsigned int sid = (pc >> 30) & 0x3; |
c906108c SS |
1606 | if (sid == 0) |
1607 | pcspace = read_register (SR4_REGNUM); | |
1608 | else | |
1609 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
c906108c SS |
1610 | } |
1611 | else | |
1612 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1613 | ||
1614 | /* Space for "arguments"; the RP goes in here. */ | |
1615 | sp = read_register (SP_REGNUM) + 48; | |
1616 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
53a5351d JM |
1617 | |
1618 | /* The 32bit and 64bit ABIs save the return pointer into different | |
1619 | stack slots. */ | |
b1e29e33 AC |
1620 | if (DEPRECATED_REGISTER_SIZE == 8) |
1621 | write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); | |
53a5351d | 1622 | else |
b1e29e33 | 1623 | write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); |
c906108c | 1624 | |
0ba6dca9 | 1625 | int_buffer = deprecated_read_fp (); |
b1e29e33 | 1626 | write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); |
c906108c | 1627 | |
0ba6dca9 | 1628 | write_register (DEPRECATED_FP_REGNUM, sp); |
c906108c | 1629 | |
b1e29e33 | 1630 | sp += 2 * DEPRECATED_REGISTER_SIZE; |
c906108c SS |
1631 | |
1632 | for (regnum = 1; regnum < 32; regnum++) | |
0ba6dca9 | 1633 | if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM) |
c906108c SS |
1634 | sp = push_word (sp, read_register (regnum)); |
1635 | ||
53a5351d | 1636 | /* This is not necessary for the 64bit ABI. In fact it is dangerous. */ |
b1e29e33 | 1637 | if (DEPRECATED_REGISTER_SIZE != 8) |
53a5351d | 1638 | sp += 4; |
c906108c SS |
1639 | |
1640 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1641 | { | |
62700349 | 1642 | deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum), |
73937e03 | 1643 | (char *) &freg_buffer, 8); |
c5aa993b | 1644 | sp = push_bytes (sp, (char *) &freg_buffer, 8); |
c906108c SS |
1645 | } |
1646 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1647 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1648 | sp = push_word (sp, pc); | |
1649 | sp = push_word (sp, pcspace); | |
1650 | sp = push_word (sp, pc + 4); | |
1651 | sp = push_word (sp, pcspace); | |
1652 | write_register (SP_REGNUM, sp); | |
1653 | } | |
1654 | ||
1655 | static void | |
fba45db2 | 1656 | find_dummy_frame_regs (struct frame_info *frame, |
43bd9a9e | 1657 | CORE_ADDR frame_saved_regs[]) |
c906108c | 1658 | { |
ef6e7e13 | 1659 | CORE_ADDR fp = get_frame_base (frame); |
c906108c SS |
1660 | int i; |
1661 | ||
53a5351d | 1662 | /* The 32bit and 64bit ABIs save RP into different locations. */ |
b1e29e33 | 1663 | if (DEPRECATED_REGISTER_SIZE == 8) |
43bd9a9e | 1664 | frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3; |
53a5351d | 1665 | else |
43bd9a9e | 1666 | frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3; |
53a5351d | 1667 | |
0ba6dca9 | 1668 | frame_saved_regs[DEPRECATED_FP_REGNUM] = fp; |
c906108c | 1669 | |
b1e29e33 | 1670 | frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE); |
53a5351d | 1671 | |
b1e29e33 | 1672 | for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++) |
c906108c | 1673 | { |
0ba6dca9 | 1674 | if (i != DEPRECATED_FP_REGNUM) |
c906108c | 1675 | { |
43bd9a9e | 1676 | frame_saved_regs[i] = fp; |
b1e29e33 | 1677 | fp += DEPRECATED_REGISTER_SIZE; |
c906108c SS |
1678 | } |
1679 | } | |
1680 | ||
53a5351d | 1681 | /* This is not necessary or desirable for the 64bit ABI. */ |
b1e29e33 | 1682 | if (DEPRECATED_REGISTER_SIZE != 8) |
53a5351d JM |
1683 | fp += 4; |
1684 | ||
c906108c | 1685 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) |
43bd9a9e AC |
1686 | frame_saved_regs[i] = fp; |
1687 | ||
1688 | frame_saved_regs[IPSW_REGNUM] = fp; | |
b1e29e33 AC |
1689 | frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE; |
1690 | frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE; | |
1691 | frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE; | |
1692 | frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE; | |
1693 | frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE; | |
c906108c SS |
1694 | } |
1695 | ||
1696 | void | |
fba45db2 | 1697 | hppa_pop_frame (void) |
c906108c | 1698 | { |
52f0bd74 AC |
1699 | struct frame_info *frame = get_current_frame (); |
1700 | CORE_ADDR fp, npc, target_pc; | |
1701 | int regnum; | |
43bd9a9e | 1702 | CORE_ADDR *fsr; |
c906108c SS |
1703 | double freg_buffer; |
1704 | ||
c193f6ac | 1705 | fp = get_frame_base (frame); |
43bd9a9e | 1706 | hppa_frame_init_saved_regs (frame); |
1b1d3794 | 1707 | fsr = deprecated_get_frame_saved_regs (frame); |
c906108c SS |
1708 | |
1709 | #ifndef NO_PC_SPACE_QUEUE_RESTORE | |
43bd9a9e AC |
1710 | if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1711 | restore_pc_queue (fsr); | |
c906108c SS |
1712 | #endif |
1713 | ||
1714 | for (regnum = 31; regnum > 0; regnum--) | |
43bd9a9e AC |
1715 | if (fsr[regnum]) |
1716 | write_register (regnum, read_memory_integer (fsr[regnum], | |
b1e29e33 | 1717 | DEPRECATED_REGISTER_SIZE)); |
c906108c | 1718 | |
c5aa993b | 1719 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--) |
43bd9a9e | 1720 | if (fsr[regnum]) |
c906108c | 1721 | { |
43bd9a9e | 1722 | read_memory (fsr[regnum], (char *) &freg_buffer, 8); |
62700349 | 1723 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum), |
73937e03 | 1724 | (char *) &freg_buffer, 8); |
c906108c SS |
1725 | } |
1726 | ||
43bd9a9e | 1727 | if (fsr[IPSW_REGNUM]) |
c906108c | 1728 | write_register (IPSW_REGNUM, |
43bd9a9e | 1729 | read_memory_integer (fsr[IPSW_REGNUM], |
b1e29e33 | 1730 | DEPRECATED_REGISTER_SIZE)); |
c906108c | 1731 | |
43bd9a9e | 1732 | if (fsr[SAR_REGNUM]) |
c906108c | 1733 | write_register (SAR_REGNUM, |
43bd9a9e | 1734 | read_memory_integer (fsr[SAR_REGNUM], |
b1e29e33 | 1735 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
1736 | |
1737 | /* If the PC was explicitly saved, then just restore it. */ | |
43bd9a9e | 1738 | if (fsr[PCOQ_TAIL_REGNUM]) |
c906108c | 1739 | { |
43bd9a9e | 1740 | npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM], |
b1e29e33 | 1741 | DEPRECATED_REGISTER_SIZE); |
c906108c SS |
1742 | write_register (PCOQ_TAIL_REGNUM, npc); |
1743 | } | |
1744 | /* Else use the value in %rp to set the new PC. */ | |
c5aa993b | 1745 | else |
c906108c SS |
1746 | { |
1747 | npc = read_register (RP_REGNUM); | |
1748 | write_pc (npc); | |
1749 | } | |
1750 | ||
b1e29e33 | 1751 | write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE)); |
c906108c | 1752 | |
43bd9a9e | 1753 | if (fsr[IPSW_REGNUM]) /* call dummy */ |
c906108c SS |
1754 | write_register (SP_REGNUM, fp - 48); |
1755 | else | |
1756 | write_register (SP_REGNUM, fp); | |
1757 | ||
1758 | /* The PC we just restored may be inside a return trampoline. If so | |
1759 | we want to restart the inferior and run it through the trampoline. | |
1760 | ||
1761 | Do this by setting a momentary breakpoint at the location the | |
1762 | trampoline returns to. | |
1763 | ||
1764 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
1765 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; | |
43bd9a9e | 1766 | if (target_pc && !fsr[IPSW_REGNUM]) |
c906108c SS |
1767 | { |
1768 | struct symtab_and_line sal; | |
1769 | struct breakpoint *breakpoint; | |
1770 | struct cleanup *old_chain; | |
1771 | ||
1772 | /* Set up our breakpoint. Set it to be silent as the MI code | |
c5aa993b | 1773 | for "return_command" will print the frame we returned to. */ |
c906108c SS |
1774 | sal = find_pc_line (target_pc, 0); |
1775 | sal.pc = target_pc; | |
516b1f28 | 1776 | breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish); |
c906108c SS |
1777 | breakpoint->silent = 1; |
1778 | ||
1779 | /* So we can clean things up. */ | |
4d6140d9 | 1780 | old_chain = make_cleanup_delete_breakpoint (breakpoint); |
c906108c SS |
1781 | |
1782 | /* Start up the inferior. */ | |
1783 | clear_proceed_status (); | |
1784 | proceed_to_finish = 1; | |
2acceee2 | 1785 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); |
c906108c SS |
1786 | |
1787 | /* Perform our cleanups. */ | |
1788 | do_cleanups (old_chain); | |
1789 | } | |
1790 | flush_cached_frames (); | |
1791 | } | |
1792 | ||
1793 | /* After returning to a dummy on the stack, restore the instruction | |
1794 | queue space registers. */ | |
1795 | ||
1796 | static int | |
43bd9a9e | 1797 | restore_pc_queue (CORE_ADDR *fsr) |
c906108c SS |
1798 | { |
1799 | CORE_ADDR pc = read_pc (); | |
43bd9a9e | 1800 | CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM], |
53a5351d | 1801 | TARGET_PTR_BIT / 8); |
c906108c SS |
1802 | struct target_waitstatus w; |
1803 | int insn_count; | |
1804 | ||
1805 | /* Advance past break instruction in the call dummy. */ | |
1806 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1807 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1808 | ||
1809 | /* HPUX doesn't let us set the space registers or the space | |
1810 | registers of the PC queue through ptrace. Boo, hiss. | |
1811 | Conveniently, the call dummy has this sequence of instructions | |
1812 | after the break: | |
c5aa993b JM |
1813 | mtsp r21, sr0 |
1814 | ble,n 0(sr0, r22) | |
1815 | ||
c906108c SS |
1816 | So, load up the registers and single step until we are in the |
1817 | right place. */ | |
1818 | ||
43bd9a9e | 1819 | write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM], |
b1e29e33 | 1820 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
1821 | write_register (22, new_pc); |
1822 | ||
1823 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1824 | { | |
1825 | /* FIXME: What if the inferior gets a signal right now? Want to | |
c5aa993b JM |
1826 | merge this into wait_for_inferior (as a special kind of |
1827 | watchpoint? By setting a breakpoint at the end? Is there | |
1828 | any other choice? Is there *any* way to do this stuff with | |
1829 | ptrace() or some equivalent?). */ | |
c906108c | 1830 | resume (1, 0); |
39f77062 | 1831 | target_wait (inferior_ptid, &w); |
c906108c SS |
1832 | |
1833 | if (w.kind == TARGET_WAITKIND_SIGNALLED) | |
c5aa993b JM |
1834 | { |
1835 | stop_signal = w.value.sig; | |
1836 | terminal_ours_for_output (); | |
1837 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", | |
c906108c SS |
1838 | target_signal_to_name (stop_signal), |
1839 | target_signal_to_string (stop_signal)); | |
c5aa993b JM |
1840 | gdb_flush (gdb_stdout); |
1841 | return 0; | |
1842 | } | |
c906108c SS |
1843 | } |
1844 | target_terminal_ours (); | |
1845 | target_fetch_registers (-1); | |
1846 | return 1; | |
1847 | } | |
1848 | ||
c2c6d25f JM |
1849 | |
1850 | #ifdef PA20W_CALLING_CONVENTIONS | |
1851 | ||
53a5351d JM |
1852 | /* This function pushes a stack frame with arguments as part of the |
1853 | inferior function calling mechanism. | |
c906108c | 1854 | |
c2c6d25f JM |
1855 | This is the version for the PA64, in which later arguments appear |
1856 | at higher addresses. (The stack always grows towards higher | |
1857 | addresses.) | |
c906108c | 1858 | |
53a5351d JM |
1859 | We simply allocate the appropriate amount of stack space and put |
1860 | arguments into their proper slots. The call dummy code will copy | |
1861 | arguments into registers as needed by the ABI. | |
c906108c | 1862 | |
c2c6d25f JM |
1863 | This ABI also requires that the caller provide an argument pointer |
1864 | to the callee, so we do that too. */ | |
53a5351d | 1865 | |
c906108c | 1866 | CORE_ADDR |
ea7c478f | 1867 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1868 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1869 | { |
1870 | /* array of arguments' offsets */ | |
c5aa993b | 1871 | int *offset = (int *) alloca (nargs * sizeof (int)); |
53a5351d JM |
1872 | |
1873 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1874 | word size */ | |
c5aa993b | 1875 | int *lengths = (int *) alloca (nargs * sizeof (int)); |
c906108c | 1876 | |
53a5351d JM |
1877 | /* The value of SP as it was passed into this function after |
1878 | aligning. */ | |
f27dd7fd | 1879 | CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp); |
c906108c | 1880 | |
53a5351d JM |
1881 | /* The number of stack bytes occupied by the current argument. */ |
1882 | int bytes_reserved; | |
1883 | ||
1884 | /* The total number of bytes reserved for the arguments. */ | |
1885 | int cum_bytes_reserved = 0; | |
c906108c | 1886 | |
53a5351d JM |
1887 | /* Similarly, but aligned. */ |
1888 | int cum_bytes_aligned = 0; | |
1889 | int i; | |
c5aa993b | 1890 | |
53a5351d | 1891 | /* Iterate over each argument provided by the user. */ |
c906108c SS |
1892 | for (i = 0; i < nargs; i++) |
1893 | { | |
c2c6d25f JM |
1894 | struct type *arg_type = VALUE_TYPE (args[i]); |
1895 | ||
1896 | /* Integral scalar values smaller than a register are padded on | |
1897 | the left. We do this by promoting them to full-width, | |
1898 | although the ABI says to pad them with garbage. */ | |
1899 | if (is_integral_type (arg_type) | |
b1e29e33 | 1900 | && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE) |
c2c6d25f JM |
1901 | { |
1902 | args[i] = value_cast ((TYPE_UNSIGNED (arg_type) | |
1903 | ? builtin_type_unsigned_long | |
1904 | : builtin_type_long), | |
1905 | args[i]); | |
1906 | arg_type = VALUE_TYPE (args[i]); | |
1907 | } | |
1908 | ||
1909 | lengths[i] = TYPE_LENGTH (arg_type); | |
c906108c | 1910 | |
53a5351d JM |
1911 | /* Align the size of the argument to the word size for this |
1912 | target. */ | |
b1e29e33 | 1913 | bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE; |
c906108c | 1914 | |
53a5351d JM |
1915 | offset[i] = cum_bytes_reserved; |
1916 | ||
c2c6d25f JM |
1917 | /* Aggregates larger than eight bytes (the only types larger |
1918 | than eight bytes we have) are aligned on a 16-byte boundary, | |
1919 | possibly padded on the right with garbage. This may leave an | |
1920 | empty word on the stack, and thus an unused register, as per | |
1921 | the ABI. */ | |
1922 | if (bytes_reserved > 8) | |
1923 | { | |
1924 | /* Round up the offset to a multiple of two slots. */ | |
b1e29e33 AC |
1925 | int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1) |
1926 | & -(2*DEPRECATED_REGISTER_SIZE)); | |
c906108c | 1927 | |
c2c6d25f JM |
1928 | /* Note the space we've wasted, if any. */ |
1929 | bytes_reserved += new_offset - offset[i]; | |
1930 | offset[i] = new_offset; | |
1931 | } | |
53a5351d | 1932 | |
c2c6d25f JM |
1933 | cum_bytes_reserved += bytes_reserved; |
1934 | } | |
1935 | ||
1936 | /* CUM_BYTES_RESERVED already accounts for all the arguments | |
1937 | passed by the user. However, the ABIs mandate minimum stack space | |
1938 | allocations for outgoing arguments. | |
1939 | ||
1940 | The ABIs also mandate minimum stack alignments which we must | |
1941 | preserve. */ | |
f27dd7fd | 1942 | cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved); |
c2c6d25f JM |
1943 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
1944 | ||
1945 | /* Now write each of the args at the proper offset down the stack. */ | |
1946 | for (i = 0; i < nargs; i++) | |
1947 | write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
1948 | ||
1949 | /* If a structure has to be returned, set up register 28 to hold its | |
1950 | address */ | |
1951 | if (struct_return) | |
1952 | write_register (28, struct_addr); | |
1953 | ||
1954 | /* For the PA64 we must pass a pointer to the outgoing argument list. | |
1955 | The ABI mandates that the pointer should point to the first byte of | |
1956 | storage beyond the register flushback area. | |
1957 | ||
1958 | However, the call dummy expects the outgoing argument pointer to | |
1959 | be passed in register %r4. */ | |
1960 | write_register (4, orig_sp + REG_PARM_STACK_SPACE); | |
1961 | ||
1962 | /* ?!? This needs further work. We need to set up the global data | |
1963 | pointer for this procedure. This assumes the same global pointer | |
1964 | for every procedure. The call dummy expects the dp value to | |
1965 | be passed in register %r6. */ | |
1966 | write_register (6, read_register (27)); | |
1967 | ||
1968 | /* The stack will have 64 bytes of additional space for a frame marker. */ | |
1969 | return sp + 64; | |
1970 | } | |
1971 | ||
1972 | #else | |
1973 | ||
1974 | /* This function pushes a stack frame with arguments as part of the | |
1975 | inferior function calling mechanism. | |
1976 | ||
1977 | This is the version of the function for the 32-bit PA machines, in | |
1978 | which later arguments appear at lower addresses. (The stack always | |
1979 | grows towards higher addresses.) | |
1980 | ||
1981 | We simply allocate the appropriate amount of stack space and put | |
1982 | arguments into their proper slots. The call dummy code will copy | |
1983 | arguments into registers as needed by the ABI. */ | |
1984 | ||
1985 | CORE_ADDR | |
ea7c478f | 1986 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1987 | int struct_return, CORE_ADDR struct_addr) |
c2c6d25f JM |
1988 | { |
1989 | /* array of arguments' offsets */ | |
1990 | int *offset = (int *) alloca (nargs * sizeof (int)); | |
1991 | ||
1992 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1993 | word size */ | |
1994 | int *lengths = (int *) alloca (nargs * sizeof (int)); | |
1995 | ||
1996 | /* The number of stack bytes occupied by the current argument. */ | |
1997 | int bytes_reserved; | |
1998 | ||
1999 | /* The total number of bytes reserved for the arguments. */ | |
2000 | int cum_bytes_reserved = 0; | |
2001 | ||
2002 | /* Similarly, but aligned. */ | |
2003 | int cum_bytes_aligned = 0; | |
2004 | int i; | |
2005 | ||
2006 | /* Iterate over each argument provided by the user. */ | |
2007 | for (i = 0; i < nargs; i++) | |
2008 | { | |
2009 | lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i])); | |
2010 | ||
2011 | /* Align the size of the argument to the word size for this | |
2012 | target. */ | |
b1e29e33 | 2013 | bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE; |
c2c6d25f | 2014 | |
b6649e88 AC |
2015 | offset[i] = (cum_bytes_reserved |
2016 | + (lengths[i] > 4 ? bytes_reserved : lengths[i])); | |
c2c6d25f JM |
2017 | |
2018 | /* If the argument is a double word argument, then it needs to be | |
2019 | double word aligned. */ | |
b1e29e33 AC |
2020 | if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE) |
2021 | && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE)) | |
c5aa993b JM |
2022 | { |
2023 | int new_offset = 0; | |
53a5351d JM |
2024 | /* BYTES_RESERVED is already aligned to the word, so we put |
2025 | the argument at one word more down the stack. | |
2026 | ||
2027 | This will leave one empty word on the stack, and one unused | |
2028 | register as mandated by the ABI. */ | |
b1e29e33 AC |
2029 | new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1) |
2030 | & -(2 * DEPRECATED_REGISTER_SIZE)); | |
53a5351d | 2031 | |
b1e29e33 | 2032 | if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE) |
c5aa993b | 2033 | { |
b1e29e33 AC |
2034 | bytes_reserved += DEPRECATED_REGISTER_SIZE; |
2035 | offset[i] += DEPRECATED_REGISTER_SIZE; | |
c5aa993b JM |
2036 | } |
2037 | } | |
c906108c SS |
2038 | |
2039 | cum_bytes_reserved += bytes_reserved; | |
2040 | ||
2041 | } | |
2042 | ||
c2c6d25f JM |
2043 | /* CUM_BYTES_RESERVED already accounts for all the arguments passed |
2044 | by the user. However, the ABI mandates minimum stack space | |
53a5351d JM |
2045 | allocations for outgoing arguments. |
2046 | ||
c2c6d25f | 2047 | The ABI also mandates minimum stack alignments which we must |
53a5351d | 2048 | preserve. */ |
f27dd7fd | 2049 | cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved); |
53a5351d JM |
2050 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
2051 | ||
2052 | /* Now write each of the args at the proper offset down the stack. | |
53a5351d JM |
2053 | ?!? We need to promote values to a full register instead of skipping |
2054 | words in the stack. */ | |
c906108c SS |
2055 | for (i = 0; i < nargs; i++) |
2056 | write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
c906108c | 2057 | |
53a5351d JM |
2058 | /* If a structure has to be returned, set up register 28 to hold its |
2059 | address */ | |
c906108c SS |
2060 | if (struct_return) |
2061 | write_register (28, struct_addr); | |
2062 | ||
53a5351d | 2063 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
c906108c SS |
2064 | return sp + 32; |
2065 | } | |
2066 | ||
c2c6d25f | 2067 | #endif |
c906108c | 2068 | |
c906108c | 2069 | /* elz: Used to lookup a symbol in the shared libraries. |
c5aa993b JM |
2070 | This function calls shl_findsym, indirectly through a |
2071 | call to __d_shl_get. __d_shl_get is in end.c, which is always | |
2072 | linked in by the hp compilers/linkers. | |
2073 | The call to shl_findsym cannot be made directly because it needs | |
2074 | to be active in target address space. | |
2075 | inputs: - minimal symbol pointer for the function we want to look up | |
2076 | - address in target space of the descriptor for the library | |
2077 | where we want to look the symbol up. | |
2078 | This address is retrieved using the | |
2079 | som_solib_get_solib_by_pc function (somsolib.c). | |
2080 | output: - real address in the library of the function. | |
2081 | note: the handle can be null, in which case shl_findsym will look for | |
2082 | the symbol in all the loaded shared libraries. | |
2083 | files to look at if you need reference on this stuff: | |
2084 | dld.c, dld_shl_findsym.c | |
2085 | end.c | |
2086 | man entry for shl_findsym */ | |
c906108c SS |
2087 | |
2088 | CORE_ADDR | |
fba45db2 | 2089 | find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle) |
c906108c | 2090 | { |
c5aa993b JM |
2091 | struct symbol *get_sym, *symbol2; |
2092 | struct minimal_symbol *buff_minsym, *msymbol; | |
2093 | struct type *ftype; | |
ea7c478f AC |
2094 | struct value **args; |
2095 | struct value *funcval; | |
2096 | struct value *val; | |
c5aa993b JM |
2097 | |
2098 | int x, namelen, err_value, tmp = -1; | |
2099 | CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr; | |
2100 | CORE_ADDR stub_addr; | |
2101 | ||
2102 | ||
ea7c478f | 2103 | args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */ |
c5aa993b | 2104 | funcval = find_function_in_inferior ("__d_shl_get"); |
176620f1 | 2105 | get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL); |
c5aa993b JM |
2106 | buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL); |
2107 | msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL); | |
176620f1 | 2108 | symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL); |
c5aa993b | 2109 | endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym); |
22abf04a | 2110 | namelen = strlen (DEPRECATED_SYMBOL_NAME (function)); |
c5aa993b JM |
2111 | value_return_addr = endo_buff_addr + namelen; |
2112 | ftype = check_typedef (SYMBOL_TYPE (get_sym)); | |
2113 | ||
2114 | /* do alignment */ | |
2115 | if ((x = value_return_addr % 64) != 0) | |
2116 | value_return_addr = value_return_addr + 64 - x; | |
2117 | ||
2118 | errno_return_addr = value_return_addr + 64; | |
2119 | ||
2120 | ||
2121 | /* set up stuff needed by __d_shl_get in buffer in end.o */ | |
2122 | ||
22abf04a | 2123 | target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen); |
c5aa993b JM |
2124 | |
2125 | target_write_memory (value_return_addr, (char *) &tmp, 4); | |
2126 | ||
2127 | target_write_memory (errno_return_addr, (char *) &tmp, 4); | |
2128 | ||
2129 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
2130 | (char *) &handle, 4); | |
2131 | ||
2132 | /* now prepare the arguments for the call */ | |
2133 | ||
2134 | args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12); | |
4478b372 JB |
2135 | args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol)); |
2136 | args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr); | |
c5aa993b | 2137 | args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE); |
4478b372 JB |
2138 | args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr); |
2139 | args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr); | |
c5aa993b JM |
2140 | |
2141 | /* now call the function */ | |
2142 | ||
2143 | val = call_function_by_hand (funcval, 6, args); | |
2144 | ||
2145 | /* now get the results */ | |
2146 | ||
2147 | target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value)); | |
2148 | ||
2149 | target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr)); | |
2150 | if (stub_addr <= 0) | |
104c1213 | 2151 | error ("call to __d_shl_get failed, error code is %d", err_value); |
c5aa993b JM |
2152 | |
2153 | return (stub_addr); | |
c906108c SS |
2154 | } |
2155 | ||
c5aa993b | 2156 | /* Cover routine for find_stub_with_shl_get to pass to catch_errors */ |
a0b3c4fd | 2157 | static int |
4efb68b1 | 2158 | cover_find_stub_with_shl_get (void *args_untyped) |
c906108c | 2159 | { |
a0b3c4fd JM |
2160 | args_for_find_stub *args = args_untyped; |
2161 | args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle); | |
2162 | return 0; | |
c906108c SS |
2163 | } |
2164 | ||
c906108c SS |
2165 | /* Insert the specified number of args and function address |
2166 | into a call sequence of the above form stored at DUMMYNAME. | |
2167 | ||
2168 | On the hppa we need to call the stack dummy through $$dyncall. | |
b1e29e33 AC |
2169 | Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra |
2170 | argument, real_pc, which is the location where gdb should start up | |
2171 | the inferior to do the function call. | |
cce74817 JM |
2172 | |
2173 | This has to work across several versions of hpux, bsd, osf1. It has to | |
2174 | work regardless of what compiler was used to build the inferior program. | |
2175 | It should work regardless of whether or not end.o is available. It has | |
2176 | to work even if gdb can not call into the dynamic loader in the inferior | |
2177 | to query it for symbol names and addresses. | |
2178 | ||
2179 | Yes, all those cases should work. Luckily code exists to handle most | |
2180 | of them. The complexity is in selecting exactly what scheme should | |
2181 | be used to perform the inferior call. | |
2182 | ||
2183 | At the current time this routine is known not to handle cases where | |
2184 | the program was linked with HP's compiler without including end.o. | |
2185 | ||
2186 | Please contact Jeff Law ([email protected]) before changing this code. */ | |
c906108c SS |
2187 | |
2188 | CORE_ADDR | |
fba45db2 | 2189 | hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 2190 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
2191 | { |
2192 | CORE_ADDR dyncall_addr; | |
2193 | struct minimal_symbol *msymbol; | |
2194 | struct minimal_symbol *trampoline; | |
2195 | int flags = read_register (FLAGS_REGNUM); | |
cce74817 JM |
2196 | struct unwind_table_entry *u = NULL; |
2197 | CORE_ADDR new_stub = 0; | |
2198 | CORE_ADDR solib_handle = 0; | |
2199 | ||
2200 | /* Nonzero if we will use GCC's PLT call routine. This routine must be | |
c2c6d25f JM |
2201 | passed an import stub, not a PLABEL. It is also necessary to set %r19 |
2202 | (the PIC register) before performing the call. | |
c906108c | 2203 | |
cce74817 JM |
2204 | If zero, then we are using __d_plt_call (HP's PLT call routine) or we |
2205 | are calling the target directly. When using __d_plt_call we want to | |
2206 | use a PLABEL instead of an import stub. */ | |
2207 | int using_gcc_plt_call = 1; | |
2208 | ||
53a5351d JM |
2209 | #ifdef GDB_TARGET_IS_HPPA_20W |
2210 | /* We currently use completely different code for the PA2.0W inferior | |
2211 | function call sequences. This needs to be cleaned up. */ | |
2212 | { | |
2213 | CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5; | |
2214 | struct target_waitstatus w; | |
2215 | int inst1, inst2; | |
2216 | char buf[4]; | |
2217 | int status; | |
2218 | struct objfile *objfile; | |
2219 | ||
2220 | /* We can not modify the PC space queues directly, so we start | |
2221 | up the inferior and execute a couple instructions to set the | |
2222 | space queues so that they point to the call dummy in the stack. */ | |
2223 | pcsqh = read_register (PCSQ_HEAD_REGNUM); | |
2224 | sr5 = read_register (SR5_REGNUM); | |
2225 | if (1) | |
2226 | { | |
2227 | pcoqh = read_register (PCOQ_HEAD_REGNUM); | |
2228 | pcoqt = read_register (PCOQ_TAIL_REGNUM); | |
2229 | if (target_read_memory (pcoqh, buf, 4) != 0) | |
2230 | error ("Couldn't modify space queue\n"); | |
2231 | inst1 = extract_unsigned_integer (buf, 4); | |
2232 | ||
2233 | if (target_read_memory (pcoqt, buf, 4) != 0) | |
2234 | error ("Couldn't modify space queue\n"); | |
2235 | inst2 = extract_unsigned_integer (buf, 4); | |
2236 | ||
2237 | /* BVE (r1) */ | |
2238 | *((int *) buf) = 0xe820d000; | |
2239 | if (target_write_memory (pcoqh, buf, 4) != 0) | |
2240 | error ("Couldn't modify space queue\n"); | |
2241 | ||
2242 | /* NOP */ | |
2243 | *((int *) buf) = 0x08000240; | |
2244 | if (target_write_memory (pcoqt, buf, 4) != 0) | |
2245 | { | |
2246 | *((int *) buf) = inst1; | |
2247 | target_write_memory (pcoqh, buf, 4); | |
2248 | error ("Couldn't modify space queue\n"); | |
2249 | } | |
2250 | ||
2251 | write_register (1, pc); | |
2252 | ||
2253 | /* Single step twice, the BVE instruction will set the space queue | |
2254 | such that it points to the PC value written immediately above | |
2255 | (ie the call dummy). */ | |
2256 | resume (1, 0); | |
39f77062 | 2257 | target_wait (inferior_ptid, &w); |
53a5351d | 2258 | resume (1, 0); |
39f77062 | 2259 | target_wait (inferior_ptid, &w); |
53a5351d JM |
2260 | |
2261 | /* Restore the two instructions at the old PC locations. */ | |
2262 | *((int *) buf) = inst1; | |
2263 | target_write_memory (pcoqh, buf, 4); | |
2264 | *((int *) buf) = inst2; | |
2265 | target_write_memory (pcoqt, buf, 4); | |
2266 | } | |
2267 | ||
2268 | /* The call dummy wants the ultimate destination address initially | |
2269 | in register %r5. */ | |
2270 | write_register (5, fun); | |
2271 | ||
2272 | /* We need to see if this objfile has a different DP value than our | |
c2c6d25f | 2273 | own (it could be a shared library for example). */ |
53a5351d JM |
2274 | ALL_OBJFILES (objfile) |
2275 | { | |
2276 | struct obj_section *s; | |
2277 | obj_private_data_t *obj_private; | |
2278 | ||
2279 | /* See if FUN is in any section within this shared library. */ | |
2280 | for (s = objfile->sections; s < objfile->sections_end; s++) | |
2281 | if (s->addr <= fun && fun < s->endaddr) | |
2282 | break; | |
2283 | ||
2284 | if (s >= objfile->sections_end) | |
2285 | continue; | |
2286 | ||
2287 | obj_private = (obj_private_data_t *) objfile->obj_private; | |
2288 | ||
2289 | /* The DP value may be different for each objfile. But within an | |
2290 | objfile each function uses the same dp value. Thus we do not need | |
2291 | to grope around the opd section looking for dp values. | |
2292 | ||
2293 | ?!? This is not strictly correct since we may be in a shared library | |
2294 | and want to call back into the main program. To make that case | |
2295 | work correctly we need to set obj_private->dp for the main program's | |
2296 | objfile, then remove this conditional. */ | |
2297 | if (obj_private->dp) | |
2298 | write_register (27, obj_private->dp); | |
2299 | break; | |
2300 | } | |
2301 | return pc; | |
2302 | } | |
2303 | #endif | |
2304 | ||
2305 | #ifndef GDB_TARGET_IS_HPPA_20W | |
cce74817 | 2306 | /* Prefer __gcc_plt_call over the HP supplied routine because |
c5aa993b | 2307 | __gcc_plt_call works for any number of arguments. */ |
c906108c | 2308 | trampoline = NULL; |
cce74817 JM |
2309 | if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL) |
2310 | using_gcc_plt_call = 0; | |
2311 | ||
c906108c SS |
2312 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
2313 | if (msymbol == NULL) | |
cce74817 | 2314 | error ("Can't find an address for $$dyncall trampoline"); |
c906108c SS |
2315 | |
2316 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2317 | ||
2318 | /* FUN could be a procedure label, in which case we have to get | |
cce74817 JM |
2319 | its real address and the value of its GOT/DP if we plan to |
2320 | call the routine via gcc_plt_call. */ | |
2321 | if ((fun & 0x2) && using_gcc_plt_call) | |
c906108c SS |
2322 | { |
2323 | /* Get the GOT/DP value for the target function. It's | |
c5aa993b JM |
2324 | at *(fun+4). Note the call dummy is *NOT* allowed to |
2325 | trash %r19 before calling the target function. */ | |
53a5351d | 2326 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, |
b1e29e33 | 2327 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
2328 | |
2329 | /* Now get the real address for the function we are calling, it's | |
c5aa993b | 2330 | at *fun. */ |
53a5351d JM |
2331 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, |
2332 | TARGET_PTR_BIT / 8); | |
c906108c SS |
2333 | } |
2334 | else | |
2335 | { | |
2336 | ||
2337 | #ifndef GDB_TARGET_IS_PA_ELF | |
cce74817 | 2338 | /* FUN could be an export stub, the real address of a function, or |
c5aa993b JM |
2339 | a PLABEL. When using gcc's PLT call routine we must call an import |
2340 | stub rather than the export stub or real function for lazy binding | |
2341 | to work correctly | |
cce74817 | 2342 | |
39f77062 | 2343 | If we are using the gcc PLT call routine, then we need to |
c5aa993b | 2344 | get the import stub for the target function. */ |
cce74817 | 2345 | if (using_gcc_plt_call && som_solib_get_got_by_pc (fun)) |
c906108c SS |
2346 | { |
2347 | struct objfile *objfile; | |
2348 | struct minimal_symbol *funsymbol, *stub_symbol; | |
2349 | CORE_ADDR newfun = 0; | |
2350 | ||
2351 | funsymbol = lookup_minimal_symbol_by_pc (fun); | |
2352 | if (!funsymbol) | |
4ce44c66 | 2353 | error ("Unable to find minimal symbol for target function.\n"); |
c906108c SS |
2354 | |
2355 | /* Search all the object files for an import symbol with the | |
2356 | right name. */ | |
2357 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
2358 | { |
2359 | stub_symbol | |
2360 | = lookup_minimal_symbol_solib_trampoline | |
40324f1b | 2361 | (DEPRECATED_SYMBOL_NAME (funsymbol), objfile); |
c5aa993b JM |
2362 | |
2363 | if (!stub_symbol) | |
22abf04a | 2364 | stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol), |
c5aa993b JM |
2365 | NULL, objfile); |
2366 | ||
2367 | /* Found a symbol with the right name. */ | |
2368 | if (stub_symbol) | |
2369 | { | |
2370 | struct unwind_table_entry *u; | |
2371 | /* It must be a shared library trampoline. */ | |
2372 | if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
2373 | continue; | |
2374 | ||
2375 | /* It must also be an import stub. */ | |
2376 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
6426a772 JM |
2377 | if (u == NULL |
2378 | || (u->stub_unwind.stub_type != IMPORT | |
2379 | #ifdef GDB_NATIVE_HPUX_11 | |
2380 | /* Sigh. The hpux 10.20 dynamic linker will blow | |
2381 | chunks if we perform a call to an unbound function | |
2382 | via the IMPORT_SHLIB stub. The hpux 11.00 dynamic | |
2383 | linker will blow chunks if we do not call the | |
2384 | unbound function via the IMPORT_SHLIB stub. | |
2385 | ||
2386 | We currently have no way to select bevahior on just | |
2387 | the target. However, we only support HPUX/SOM in | |
2388 | native mode. So we conditinalize on a native | |
2389 | #ifdef. Ugly. Ugly. Ugly */ | |
2390 | && u->stub_unwind.stub_type != IMPORT_SHLIB | |
2391 | #endif | |
2392 | )) | |
c5aa993b JM |
2393 | continue; |
2394 | ||
2395 | /* OK. Looks like the correct import stub. */ | |
2396 | newfun = SYMBOL_VALUE (stub_symbol); | |
2397 | fun = newfun; | |
6426a772 JM |
2398 | |
2399 | /* If we found an IMPORT stub, then we want to stop | |
2400 | searching now. If we found an IMPORT_SHLIB, we want | |
2401 | to continue the search in the hopes that we will find | |
2402 | an IMPORT stub. */ | |
2403 | if (u->stub_unwind.stub_type == IMPORT) | |
2404 | break; | |
c5aa993b JM |
2405 | } |
2406 | } | |
cce74817 JM |
2407 | |
2408 | /* Ouch. We did not find an import stub. Make an attempt to | |
2409 | do the right thing instead of just croaking. Most of the | |
2410 | time this will actually work. */ | |
c906108c SS |
2411 | if (newfun == 0) |
2412 | write_register (19, som_solib_get_got_by_pc (fun)); | |
cce74817 JM |
2413 | |
2414 | u = find_unwind_entry (fun); | |
c5aa993b | 2415 | if (u |
cce74817 JM |
2416 | && (u->stub_unwind.stub_type == IMPORT |
2417 | || u->stub_unwind.stub_type == IMPORT_SHLIB)) | |
2418 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
2419 | ||
2420 | /* If we found the import stub in the shared library, then we have | |
2421 | to set %r19 before we call the stub. */ | |
2422 | if (u && u->stub_unwind.stub_type == IMPORT_SHLIB) | |
2423 | write_register (19, som_solib_get_got_by_pc (fun)); | |
c906108c | 2424 | } |
c906108c SS |
2425 | #endif |
2426 | } | |
2427 | ||
cce74817 JM |
2428 | /* If we are calling into another load module then have sr4export call the |
2429 | magic __d_plt_call routine which is linked in from end.o. | |
c906108c | 2430 | |
cce74817 JM |
2431 | You can't use _sr4export to make the call as the value in sp-24 will get |
2432 | fried and you end up returning to the wrong location. You can't call the | |
2433 | target as the code to bind the PLT entry to a function can't return to a | |
2434 | stack address. | |
2435 | ||
2436 | Also, query the dynamic linker in the inferior to provide a suitable | |
2437 | PLABEL for the target function. */ | |
c5aa993b | 2438 | if (!using_gcc_plt_call) |
c906108c SS |
2439 | { |
2440 | CORE_ADDR new_fun; | |
2441 | ||
cce74817 | 2442 | /* Get a handle for the shared library containing FUN. Given the |
c5aa993b | 2443 | handle we can query the shared library for a PLABEL. */ |
cce74817 | 2444 | solib_handle = som_solib_get_solib_by_pc (fun); |
c906108c | 2445 | |
cce74817 | 2446 | if (solib_handle) |
c906108c | 2447 | { |
cce74817 | 2448 | struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun); |
c906108c | 2449 | |
cce74817 JM |
2450 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); |
2451 | ||
2452 | if (trampoline == NULL) | |
2453 | { | |
2454 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc."); | |
2455 | } | |
2456 | ||
2457 | /* This is where sr4export will jump to. */ | |
2458 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); | |
2459 | ||
2460 | /* If the function is in a shared library, then call __d_shl_get to | |
2461 | get a PLABEL for the target function. */ | |
2462 | new_stub = find_stub_with_shl_get (fmsymbol, solib_handle); | |
2463 | ||
c5aa993b | 2464 | if (new_stub == 0) |
22abf04a | 2465 | error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol)); |
c906108c SS |
2466 | |
2467 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
cce74817 | 2468 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, |
c5aa993b | 2469 | (struct objfile *) NULL); |
c906108c | 2470 | |
cce74817 JM |
2471 | if (msymbol == NULL) |
2472 | error ("Can't find an address for __shlib_funcptr"); | |
2473 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
c5aa993b | 2474 | (char *) &new_stub, 4); |
c906108c SS |
2475 | |
2476 | /* We want sr4export to call __d_plt_call, so we claim it is | |
2477 | the final target. Clear trampoline. */ | |
cce74817 JM |
2478 | fun = new_fun; |
2479 | trampoline = NULL; | |
c906108c SS |
2480 | } |
2481 | } | |
2482 | ||
2483 | /* Store upper 21 bits of function address into ldil. fun will either be | |
2484 | the final target (most cases) or __d_plt_call when calling into a shared | |
2485 | library and __gcc_plt_call is not available. */ | |
2486 | store_unsigned_integer | |
2487 | (&dummy[FUNC_LDIL_OFFSET], | |
2488 | INSTRUCTION_SIZE, | |
2489 | deposit_21 (fun >> 11, | |
2490 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], | |
2491 | INSTRUCTION_SIZE))); | |
2492 | ||
2493 | /* Store lower 11 bits of function address into ldo */ | |
2494 | store_unsigned_integer | |
2495 | (&dummy[FUNC_LDO_OFFSET], | |
2496 | INSTRUCTION_SIZE, | |
2497 | deposit_14 (fun & MASK_11, | |
2498 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], | |
2499 | INSTRUCTION_SIZE))); | |
2500 | #ifdef SR4EXPORT_LDIL_OFFSET | |
2501 | ||
2502 | { | |
2503 | CORE_ADDR trampoline_addr; | |
2504 | ||
2505 | /* We may still need sr4export's address too. */ | |
2506 | ||
2507 | if (trampoline == NULL) | |
2508 | { | |
2509 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2510 | if (msymbol == NULL) | |
cce74817 | 2511 | error ("Can't find an address for _sr4export trampoline"); |
c906108c SS |
2512 | |
2513 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2514 | } | |
2515 | else | |
2516 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
2517 | ||
2518 | ||
2519 | /* Store upper 21 bits of trampoline's address into ldil */ | |
2520 | store_unsigned_integer | |
2521 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2522 | INSTRUCTION_SIZE, | |
2523 | deposit_21 (trampoline_addr >> 11, | |
2524 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2525 | INSTRUCTION_SIZE))); | |
2526 | ||
2527 | /* Store lower 11 bits of trampoline's address into ldo */ | |
2528 | store_unsigned_integer | |
2529 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
2530 | INSTRUCTION_SIZE, | |
2531 | deposit_14 (trampoline_addr & MASK_11, | |
2532 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], | |
2533 | INSTRUCTION_SIZE))); | |
2534 | } | |
2535 | #endif | |
2536 | ||
2537 | write_register (22, pc); | |
2538 | ||
2539 | /* If we are in a syscall, then we should call the stack dummy | |
2540 | directly. $$dyncall is not needed as the kernel sets up the | |
2541 | space id registers properly based on the value in %r31. In | |
2542 | fact calling $$dyncall will not work because the value in %r22 | |
2543 | will be clobbered on the syscall exit path. | |
2544 | ||
2545 | Similarly if the current PC is in a shared library. Note however, | |
2546 | this scheme won't work if the shared library isn't mapped into | |
2547 | the same space as the stack. */ | |
2548 | if (flags & 2) | |
2549 | return pc; | |
2550 | #ifndef GDB_TARGET_IS_PA_ELF | |
60383d10 | 2551 | else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid))) |
c906108c SS |
2552 | return pc; |
2553 | #endif | |
2554 | else | |
2555 | return dyncall_addr; | |
53a5351d | 2556 | #endif |
c906108c SS |
2557 | } |
2558 | ||
c906108c SS |
2559 | /* If the pid is in a syscall, then the FP register is not readable. |
2560 | We'll return zero in that case, rather than attempting to read it | |
2561 | and cause a warning. */ | |
60383d10 | 2562 | |
c906108c | 2563 | CORE_ADDR |
60383d10 | 2564 | hppa_read_fp (int pid) |
c906108c SS |
2565 | { |
2566 | int flags = read_register (FLAGS_REGNUM); | |
2567 | ||
c5aa993b JM |
2568 | if (flags & 2) |
2569 | { | |
2570 | return (CORE_ADDR) 0; | |
2571 | } | |
c906108c SS |
2572 | |
2573 | /* This is the only site that may directly read_register () the FP | |
0ba6dca9 AC |
2574 | register. All others must use deprecated_read_fp (). */ |
2575 | return read_register (DEPRECATED_FP_REGNUM); | |
c906108c SS |
2576 | } |
2577 | ||
60383d10 JB |
2578 | CORE_ADDR |
2579 | hppa_target_read_fp (void) | |
2580 | { | |
2581 | return hppa_read_fp (PIDGET (inferior_ptid)); | |
2582 | } | |
c906108c SS |
2583 | |
2584 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege | |
2585 | bits. */ | |
2586 | ||
2587 | CORE_ADDR | |
60383d10 | 2588 | hppa_target_read_pc (ptid_t ptid) |
c906108c | 2589 | { |
39f77062 | 2590 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2591 | |
2592 | /* The following test does not belong here. It is OS-specific, and belongs | |
2593 | in native code. */ | |
2594 | /* Test SS_INSYSCALL */ | |
2595 | if (flags & 2) | |
39f77062 | 2596 | return read_register_pid (31, ptid) & ~0x3; |
c906108c | 2597 | |
39f77062 | 2598 | return read_register_pid (PC_REGNUM, ptid) & ~0x3; |
c906108c SS |
2599 | } |
2600 | ||
2601 | /* Write out the PC. If currently in a syscall, then also write the new | |
2602 | PC value into %r31. */ | |
2603 | ||
2604 | void | |
60383d10 | 2605 | hppa_target_write_pc (CORE_ADDR v, ptid_t ptid) |
c906108c | 2606 | { |
39f77062 | 2607 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2608 | |
2609 | /* The following test does not belong here. It is OS-specific, and belongs | |
2610 | in native code. */ | |
2611 | /* If in a syscall, then set %r31. Also make sure to get the | |
2612 | privilege bits set correctly. */ | |
2613 | /* Test SS_INSYSCALL */ | |
2614 | if (flags & 2) | |
39f77062 | 2615 | write_register_pid (31, v | 0x3, ptid); |
c906108c | 2616 | |
39f77062 | 2617 | write_register_pid (PC_REGNUM, v, ptid); |
adc11376 | 2618 | write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid); |
c906108c SS |
2619 | } |
2620 | ||
2621 | /* return the alignment of a type in bytes. Structures have the maximum | |
2622 | alignment required by their fields. */ | |
2623 | ||
2624 | static int | |
fba45db2 | 2625 | hppa_alignof (struct type *type) |
c906108c SS |
2626 | { |
2627 | int max_align, align, i; | |
2628 | CHECK_TYPEDEF (type); | |
2629 | switch (TYPE_CODE (type)) | |
2630 | { | |
2631 | case TYPE_CODE_PTR: | |
2632 | case TYPE_CODE_INT: | |
2633 | case TYPE_CODE_FLT: | |
2634 | return TYPE_LENGTH (type); | |
2635 | case TYPE_CODE_ARRAY: | |
2636 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
2637 | case TYPE_CODE_STRUCT: | |
2638 | case TYPE_CODE_UNION: | |
2639 | max_align = 1; | |
2640 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2641 | { | |
2642 | /* Bit fields have no real alignment. */ | |
2643 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 2644 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
2645 | { |
2646 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
2647 | max_align = max (max_align, align); | |
2648 | } | |
2649 | } | |
2650 | return max_align; | |
2651 | default: | |
2652 | return 4; | |
2653 | } | |
2654 | } | |
2655 | ||
2656 | /* Print the register regnum, or all registers if regnum is -1 */ | |
2657 | ||
2658 | void | |
fba45db2 | 2659 | pa_do_registers_info (int regnum, int fpregs) |
c906108c | 2660 | { |
b8b527c5 | 2661 | char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES); |
c906108c SS |
2662 | int i; |
2663 | ||
2664 | /* Make a copy of gdb's save area (may cause actual | |
2665 | reads from the target). */ | |
2666 | for (i = 0; i < NUM_REGS; i++) | |
62700349 AC |
2667 | frame_register_read (deprecated_selected_frame, i, |
2668 | raw_regs + DEPRECATED_REGISTER_BYTE (i)); | |
c906108c SS |
2669 | |
2670 | if (regnum == -1) | |
2671 | pa_print_registers (raw_regs, regnum, fpregs); | |
c5aa993b JM |
2672 | else if (regnum < FP4_REGNUM) |
2673 | { | |
2674 | long reg_val[2]; | |
2675 | ||
2676 | /* Why is the value not passed through "extract_signed_integer" | |
2677 | as in "pa_print_registers" below? */ | |
2678 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
2679 | ||
2680 | if (!is_pa_2) | |
2681 | { | |
ce414844 | 2682 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2683 | } |
c906108c | 2684 | else |
c5aa993b JM |
2685 | { |
2686 | /* Fancy % formats to prevent leading zeros. */ | |
2687 | if (reg_val[0] == 0) | |
ce414844 | 2688 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2689 | else |
ce414844 | 2690 | printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum), |
c5aa993b JM |
2691 | reg_val[0], reg_val[1]); |
2692 | } | |
c906108c | 2693 | } |
c906108c | 2694 | else |
c5aa993b JM |
2695 | /* Note that real floating point values only start at |
2696 | FP4_REGNUM. FP0 and up are just status and error | |
2697 | registers, which have integral (bit) values. */ | |
c906108c SS |
2698 | pa_print_fp_reg (regnum); |
2699 | } | |
2700 | ||
2701 | /********** new function ********************/ | |
2702 | void | |
fba45db2 KB |
2703 | pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream, |
2704 | enum precision_type precision) | |
c906108c | 2705 | { |
b8b527c5 | 2706 | char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES); |
c906108c SS |
2707 | int i; |
2708 | ||
2709 | /* Make a copy of gdb's save area (may cause actual | |
c5aa993b | 2710 | reads from the target). */ |
c906108c | 2711 | for (i = 0; i < NUM_REGS; i++) |
62700349 AC |
2712 | frame_register_read (deprecated_selected_frame, i, |
2713 | raw_regs + DEPRECATED_REGISTER_BYTE (i)); | |
c906108c SS |
2714 | |
2715 | if (regnum == -1) | |
2716 | pa_strcat_registers (raw_regs, regnum, fpregs, stream); | |
2717 | ||
c5aa993b JM |
2718 | else if (regnum < FP4_REGNUM) |
2719 | { | |
2720 | long reg_val[2]; | |
2721 | ||
2722 | /* Why is the value not passed through "extract_signed_integer" | |
2723 | as in "pa_print_registers" below? */ | |
2724 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
c906108c | 2725 | |
c5aa993b JM |
2726 | if (!is_pa_2) |
2727 | { | |
ce414844 | 2728 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2729 | } |
c906108c | 2730 | else |
c5aa993b JM |
2731 | { |
2732 | /* Fancy % formats to prevent leading zeros. */ | |
2733 | if (reg_val[0] == 0) | |
ce414844 | 2734 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2735 | reg_val[1]); |
2736 | else | |
ce414844 | 2737 | fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2738 | reg_val[0], reg_val[1]); |
2739 | } | |
c906108c | 2740 | } |
c906108c | 2741 | else |
c5aa993b JM |
2742 | /* Note that real floating point values only start at |
2743 | FP4_REGNUM. FP0 and up are just status and error | |
2744 | registers, which have integral (bit) values. */ | |
c906108c SS |
2745 | pa_strcat_fp_reg (regnum, stream, precision); |
2746 | } | |
2747 | ||
2748 | /* If this is a PA2.0 machine, fetch the real 64-bit register | |
2749 | value. Otherwise use the info from gdb's saved register area. | |
2750 | ||
2751 | Note that reg_val is really expected to be an array of longs, | |
2752 | with two elements. */ | |
2753 | static void | |
fba45db2 | 2754 | pa_register_look_aside (char *raw_regs, int regnum, long *raw_val) |
c906108c | 2755 | { |
c5aa993b | 2756 | static int know_which = 0; /* False */ |
c906108c | 2757 | |
c5aa993b | 2758 | int regaddr; |
c906108c | 2759 | unsigned int offset; |
52f0bd74 | 2760 | int i; |
c5aa993b JM |
2761 | int start; |
2762 | ||
2763 | ||
123a958e | 2764 | char buf[MAX_REGISTER_SIZE]; |
c906108c SS |
2765 | long long reg_val; |
2766 | ||
c5aa993b JM |
2767 | if (!know_which) |
2768 | { | |
2769 | if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION)) | |
2770 | { | |
2771 | is_pa_2 = (1 == 1); | |
2772 | } | |
2773 | ||
2774 | know_which = 1; /* True */ | |
2775 | } | |
c906108c SS |
2776 | |
2777 | raw_val[0] = 0; | |
2778 | raw_val[1] = 0; | |
2779 | ||
c5aa993b JM |
2780 | if (!is_pa_2) |
2781 | { | |
62700349 | 2782 | raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum)); |
c906108c | 2783 | return; |
c5aa993b | 2784 | } |
c906108c SS |
2785 | |
2786 | /* Code below copied from hppah-nat.c, with fixes for wide | |
2787 | registers, using different area of save_state, etc. */ | |
2788 | if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM || | |
c5aa993b JM |
2789 | !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE) |
2790 | { | |
c906108c | 2791 | /* Use narrow regs area of save_state and default macro. */ |
c5aa993b JM |
2792 | offset = U_REGS_OFFSET; |
2793 | regaddr = register_addr (regnum, offset); | |
2794 | start = 1; | |
2795 | } | |
2796 | else | |
2797 | { | |
c906108c SS |
2798 | /* Use wide regs area, and calculate registers as 8 bytes wide. |
2799 | ||
2800 | We'd like to do this, but current version of "C" doesn't | |
2801 | permit "offsetof": | |
2802 | ||
c5aa993b | 2803 | offset = offsetof(save_state_t, ss_wide); |
c906108c SS |
2804 | |
2805 | Note that to avoid "C" doing typed pointer arithmetic, we | |
2806 | have to cast away the type in our offset calculation: | |
2807 | otherwise we get an offset of 1! */ | |
2808 | ||
7a292a7a | 2809 | /* NB: save_state_t is not available before HPUX 9. |
c5aa993b | 2810 | The ss_wide field is not available previous to HPUX 10.20, |
7a292a7a SS |
2811 | so to avoid compile-time warnings, we only compile this for |
2812 | PA 2.0 processors. This control path should only be followed | |
2813 | if we're debugging a PA 2.0 processor, so this should not cause | |
2814 | problems. */ | |
2815 | ||
c906108c SS |
2816 | /* #if the following code out so that this file can still be |
2817 | compiled on older HPUX boxes (< 10.20) which don't have | |
2818 | this structure/structure member. */ | |
2819 | #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1 | |
2820 | save_state_t temp; | |
2821 | ||
2822 | offset = ((int) &temp.ss_wide) - ((int) &temp); | |
2823 | regaddr = offset + regnum * 8; | |
c5aa993b | 2824 | start = 0; |
c906108c | 2825 | #endif |
c5aa993b JM |
2826 | } |
2827 | ||
2828 | for (i = start; i < 2; i++) | |
c906108c SS |
2829 | { |
2830 | errno = 0; | |
39f77062 | 2831 | raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid), |
c5aa993b | 2832 | (PTRACE_ARG3_TYPE) regaddr, 0); |
c906108c SS |
2833 | if (errno != 0) |
2834 | { | |
2835 | /* Warning, not error, in case we are attached; sometimes the | |
2836 | kernel doesn't let us at the registers. */ | |
2837 | char *err = safe_strerror (errno); | |
2838 | char *msg = alloca (strlen (err) + 128); | |
2839 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err); | |
2840 | warning (msg); | |
2841 | goto error_exit; | |
2842 | } | |
2843 | ||
2844 | regaddr += sizeof (long); | |
2845 | } | |
c5aa993b | 2846 | |
c906108c | 2847 | if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) |
c5aa993b | 2848 | raw_val[1] &= ~0x3; /* I think we're masking out space bits */ |
c906108c SS |
2849 | |
2850 | error_exit: | |
2851 | ; | |
2852 | } | |
2853 | ||
2854 | /* "Info all-reg" command */ | |
c5aa993b | 2855 | |
c906108c | 2856 | static void |
fba45db2 | 2857 | pa_print_registers (char *raw_regs, int regnum, int fpregs) |
c906108c | 2858 | { |
c5aa993b | 2859 | int i, j; |
adf40b2e JM |
2860 | /* Alas, we are compiled so that "long long" is 32 bits */ |
2861 | long raw_val[2]; | |
c906108c | 2862 | long long_val; |
a0b3c4fd | 2863 | int rows = 48, columns = 2; |
c906108c | 2864 | |
adf40b2e | 2865 | for (i = 0; i < rows; i++) |
c906108c | 2866 | { |
adf40b2e | 2867 | for (j = 0; j < columns; j++) |
c906108c | 2868 | { |
adf40b2e JM |
2869 | /* We display registers in column-major order. */ |
2870 | int regnum = i + j * rows; | |
2871 | ||
c5aa993b JM |
2872 | /* Q: Why is the value passed through "extract_signed_integer", |
2873 | while above, in "pa_do_registers_info" it isn't? | |
2874 | A: ? */ | |
adf40b2e | 2875 | pa_register_look_aside (raw_regs, regnum, &raw_val[0]); |
c5aa993b JM |
2876 | |
2877 | /* Even fancier % formats to prevent leading zeros | |
2878 | and still maintain the output in columns. */ | |
2879 | if (!is_pa_2) | |
2880 | { | |
2881 | /* Being big-endian, on this machine the low bits | |
2882 | (the ones we want to look at) are in the second longword. */ | |
2883 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 | 2884 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2885 | REGISTER_NAME (regnum), long_val); |
c5aa993b JM |
2886 | } |
2887 | else | |
2888 | { | |
2889 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2890 | if (raw_val[0] == 0) | |
ce414844 | 2891 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2892 | REGISTER_NAME (regnum), raw_val[1]); |
c5aa993b | 2893 | else |
ce414844 | 2894 | printf_filtered ("%10.10s: %8lx%8.8lx ", |
a0b3c4fd | 2895 | REGISTER_NAME (regnum), |
c5aa993b JM |
2896 | raw_val[0], raw_val[1]); |
2897 | } | |
c906108c SS |
2898 | } |
2899 | printf_unfiltered ("\n"); | |
2900 | } | |
c5aa993b | 2901 | |
c906108c | 2902 | if (fpregs) |
c5aa993b | 2903 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2904 | pa_print_fp_reg (i); |
2905 | } | |
2906 | ||
c5aa993b | 2907 | /************* new function ******************/ |
c906108c | 2908 | static void |
fba45db2 KB |
2909 | pa_strcat_registers (char *raw_regs, int regnum, int fpregs, |
2910 | struct ui_file *stream) | |
c906108c | 2911 | { |
c5aa993b JM |
2912 | int i, j; |
2913 | long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ | |
c906108c SS |
2914 | long long_val; |
2915 | enum precision_type precision; | |
2916 | ||
2917 | precision = unspecified_precision; | |
2918 | ||
2919 | for (i = 0; i < 18; i++) | |
2920 | { | |
2921 | for (j = 0; j < 4; j++) | |
2922 | { | |
c5aa993b JM |
2923 | /* Q: Why is the value passed through "extract_signed_integer", |
2924 | while above, in "pa_do_registers_info" it isn't? | |
2925 | A: ? */ | |
2926 | pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]); | |
2927 | ||
2928 | /* Even fancier % formats to prevent leading zeros | |
2929 | and still maintain the output in columns. */ | |
2930 | if (!is_pa_2) | |
2931 | { | |
2932 | /* Being big-endian, on this machine the low bits | |
2933 | (the ones we want to look at) are in the second longword. */ | |
2934 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 AC |
2935 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2936 | REGISTER_NAME (i + (j * 18)), long_val); | |
c5aa993b JM |
2937 | } |
2938 | else | |
2939 | { | |
2940 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2941 | if (raw_val[0] == 0) | |
ce414844 AC |
2942 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2943 | REGISTER_NAME (i + (j * 18)), raw_val[1]); | |
c5aa993b | 2944 | else |
ce414844 AC |
2945 | fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ", |
2946 | REGISTER_NAME (i + (j * 18)), raw_val[0], | |
2947 | raw_val[1]); | |
c5aa993b | 2948 | } |
c906108c SS |
2949 | } |
2950 | fprintf_unfiltered (stream, "\n"); | |
2951 | } | |
c5aa993b | 2952 | |
c906108c | 2953 | if (fpregs) |
c5aa993b | 2954 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2955 | pa_strcat_fp_reg (i, stream, precision); |
2956 | } | |
2957 | ||
2958 | static void | |
fba45db2 | 2959 | pa_print_fp_reg (int i) |
c906108c | 2960 | { |
123a958e AC |
2961 | char raw_buffer[MAX_REGISTER_SIZE]; |
2962 | char virtual_buffer[MAX_REGISTER_SIZE]; | |
c906108c SS |
2963 | |
2964 | /* Get 32bits of data. */ | |
6e7f8b9c | 2965 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
2966 | |
2967 | /* Put it in the buffer. No conversions are ever necessary. */ | |
12c266ea | 2968 | memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i)); |
c906108c SS |
2969 | |
2970 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2971 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2972 | fputs_filtered ("(single precision) ", gdb_stdout); | |
2973 | ||
2e092625 | 2974 | val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0, |
c906108c SS |
2975 | 1, 0, Val_pretty_default); |
2976 | printf_filtered ("\n"); | |
2977 | ||
2978 | /* If "i" is even, then this register can also be a double-precision | |
2979 | FP register. Dump it out as such. */ | |
2980 | if ((i % 2) == 0) | |
2981 | { | |
2982 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 2983 | frame_register_read (deprecated_selected_frame, i + 1, raw_buffer); |
c906108c SS |
2984 | |
2985 | /* Copy it into the appropriate part of the virtual buffer. */ | |
12c266ea AC |
2986 | memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer, |
2987 | DEPRECATED_REGISTER_RAW_SIZE (i)); | |
c906108c SS |
2988 | |
2989 | /* Dump it as a double. */ | |
2990 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2991 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2992 | fputs_filtered ("(double precision) ", gdb_stdout); | |
2993 | ||
2994 | val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0, | |
2995 | 1, 0, Val_pretty_default); | |
2996 | printf_filtered ("\n"); | |
2997 | } | |
2998 | } | |
2999 | ||
3000 | /*************** new function ***********************/ | |
3001 | static void | |
fba45db2 | 3002 | pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision) |
c906108c | 3003 | { |
123a958e AC |
3004 | char raw_buffer[MAX_REGISTER_SIZE]; |
3005 | char virtual_buffer[MAX_REGISTER_SIZE]; | |
c906108c SS |
3006 | |
3007 | fputs_filtered (REGISTER_NAME (i), stream); | |
3008 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream); | |
3009 | ||
3010 | /* Get 32bits of data. */ | |
6e7f8b9c | 3011 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
3012 | |
3013 | /* Put it in the buffer. No conversions are ever necessary. */ | |
12c266ea | 3014 | memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i)); |
c906108c SS |
3015 | |
3016 | if (precision == double_precision && (i % 2) == 0) | |
3017 | { | |
3018 | ||
123a958e | 3019 | char raw_buf[MAX_REGISTER_SIZE]; |
c5aa993b JM |
3020 | |
3021 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 3022 | frame_register_read (deprecated_selected_frame, i + 1, raw_buf); |
c5aa993b JM |
3023 | |
3024 | /* Copy it into the appropriate part of the virtual buffer. */ | |
12c266ea AC |
3025 | memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf, |
3026 | DEPRECATED_REGISTER_RAW_SIZE (i)); | |
c906108c | 3027 | |
c5aa993b JM |
3028 | val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0, |
3029 | 1, 0, Val_pretty_default); | |
c906108c SS |
3030 | |
3031 | } | |
c5aa993b JM |
3032 | else |
3033 | { | |
2e092625 | 3034 | val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0, |
c5aa993b JM |
3035 | 1, 0, Val_pretty_default); |
3036 | } | |
c906108c SS |
3037 | |
3038 | } | |
3039 | ||
3040 | /* Return one if PC is in the call path of a trampoline, else return zero. | |
3041 | ||
3042 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3043 | just shared library trampolines (import, export). */ | |
3044 | ||
3045 | int | |
60383d10 | 3046 | hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3047 | { |
3048 | struct minimal_symbol *minsym; | |
3049 | struct unwind_table_entry *u; | |
3050 | static CORE_ADDR dyncall = 0; | |
3051 | static CORE_ADDR sr4export = 0; | |
3052 | ||
c2c6d25f JM |
3053 | #ifdef GDB_TARGET_IS_HPPA_20W |
3054 | /* PA64 has a completely different stub/trampoline scheme. Is it | |
3055 | better? Maybe. It's certainly harder to determine with any | |
3056 | certainty that we are in a stub because we can not refer to the | |
3057 | unwinders to help. | |
3058 | ||
3059 | The heuristic is simple. Try to lookup the current PC value in th | |
3060 | minimal symbol table. If that fails, then assume we are not in a | |
3061 | stub and return. | |
3062 | ||
3063 | Then see if the PC value falls within the section bounds for the | |
3064 | section containing the minimal symbol we found in the first | |
3065 | step. If it does, then assume we are not in a stub and return. | |
3066 | ||
3067 | Finally peek at the instructions to see if they look like a stub. */ | |
3068 | { | |
3069 | struct minimal_symbol *minsym; | |
3070 | asection *sec; | |
3071 | CORE_ADDR addr; | |
3072 | int insn, i; | |
3073 | ||
3074 | minsym = lookup_minimal_symbol_by_pc (pc); | |
3075 | if (! minsym) | |
3076 | return 0; | |
3077 | ||
3078 | sec = SYMBOL_BFD_SECTION (minsym); | |
3079 | ||
b98ed7be AM |
3080 | if (bfd_get_section_vma (sec->owner, sec) <= pc |
3081 | && pc < (bfd_get_section_vma (sec->owner, sec) | |
3082 | + bfd_section_size (sec->owner, sec))) | |
c2c6d25f JM |
3083 | return 0; |
3084 | ||
3085 | /* We might be in a stub. Peek at the instructions. Stubs are 3 | |
3086 | instructions long. */ | |
3087 | insn = read_memory_integer (pc, 4); | |
3088 | ||
b84a8afe | 3089 | /* Find out where we think we are within the stub. */ |
c2c6d25f JM |
3090 | if ((insn & 0xffffc00e) == 0x53610000) |
3091 | addr = pc; | |
3092 | else if ((insn & 0xffffffff) == 0xe820d000) | |
3093 | addr = pc - 4; | |
3094 | else if ((insn & 0xffffc00e) == 0x537b0000) | |
3095 | addr = pc - 8; | |
3096 | else | |
3097 | return 0; | |
3098 | ||
3099 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3100 | insn = read_memory_integer (addr, 4); | |
3101 | if ((insn & 0xffffc00e) != 0x53610000) | |
3102 | return 0; | |
3103 | ||
3104 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3105 | insn = read_memory_integer (addr + 4, 4); | |
3106 | if ((insn & 0xffffffff) != 0xe820d000) | |
3107 | return 0; | |
3108 | ||
3109 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3110 | insn = read_memory_integer (addr + 8, 4); | |
3111 | if ((insn & 0xffffc00e) != 0x537b0000) | |
3112 | return 0; | |
3113 | ||
3114 | /* Looks like a stub. */ | |
3115 | return 1; | |
3116 | } | |
3117 | #endif | |
3118 | ||
3119 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
3120 | new exec file */ | |
c906108c SS |
3121 | |
3122 | /* First see if PC is in one of the two C-library trampolines. */ | |
3123 | if (!dyncall) | |
3124 | { | |
3125 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3126 | if (minsym) | |
3127 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
3128 | else | |
3129 | dyncall = -1; | |
3130 | } | |
3131 | ||
3132 | if (!sr4export) | |
3133 | { | |
3134 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3135 | if (minsym) | |
3136 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
3137 | else | |
3138 | sr4export = -1; | |
3139 | } | |
3140 | ||
3141 | if (pc == dyncall || pc == sr4export) | |
3142 | return 1; | |
3143 | ||
104c1213 | 3144 | minsym = lookup_minimal_symbol_by_pc (pc); |
22abf04a | 3145 | if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0) |
104c1213 JM |
3146 | return 1; |
3147 | ||
c906108c SS |
3148 | /* Get the unwind descriptor corresponding to PC, return zero |
3149 | if no unwind was found. */ | |
3150 | u = find_unwind_entry (pc); | |
3151 | if (!u) | |
3152 | return 0; | |
3153 | ||
3154 | /* If this isn't a linker stub, then return now. */ | |
3155 | if (u->stub_unwind.stub_type == 0) | |
3156 | return 0; | |
3157 | ||
3158 | /* By definition a long-branch stub is a call stub. */ | |
3159 | if (u->stub_unwind.stub_type == LONG_BRANCH) | |
3160 | return 1; | |
3161 | ||
3162 | /* The call and return path execute the same instructions within | |
3163 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3164 | trampoline. */ | |
3165 | if (u->stub_unwind.stub_type == IMPORT) | |
3166 | return 1; | |
3167 | ||
3168 | /* Parameter relocation stubs always have a call path and may have a | |
3169 | return path. */ | |
3170 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3171 | || u->stub_unwind.stub_type == EXPORT) | |
3172 | { | |
3173 | CORE_ADDR addr; | |
3174 | ||
3175 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3176 | or the end of the stub. */ |
c906108c SS |
3177 | for (addr = pc; addr <= u->region_end; addr += 4) |
3178 | { | |
3179 | unsigned long insn; | |
3180 | ||
3181 | insn = read_memory_integer (addr, 4); | |
3182 | ||
3183 | /* Does it look like a bl? If so then it's the call path, if | |
3184 | we find a bv or be first, then we're on the return path. */ | |
3185 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3186 | return 1; | |
3187 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3188 | || (insn & 0xfc000000) == 0xe0000000) | |
3189 | return 0; | |
3190 | } | |
3191 | ||
3192 | /* Should never happen. */ | |
104c1213 JM |
3193 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3194 | return 0; | |
c906108c SS |
3195 | } |
3196 | ||
3197 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3198 | return 0; |
c906108c SS |
3199 | } |
3200 | ||
3201 | /* Return one if PC is in the return path of a trampoline, else return zero. | |
3202 | ||
3203 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3204 | just shared library trampolines (import, export). */ | |
3205 | ||
3206 | int | |
60383d10 | 3207 | hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3208 | { |
3209 | struct unwind_table_entry *u; | |
3210 | ||
3211 | /* Get the unwind descriptor corresponding to PC, return zero | |
3212 | if no unwind was found. */ | |
3213 | u = find_unwind_entry (pc); | |
3214 | if (!u) | |
3215 | return 0; | |
3216 | ||
3217 | /* If this isn't a linker stub or it's just a long branch stub, then | |
3218 | return zero. */ | |
3219 | if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) | |
3220 | return 0; | |
3221 | ||
3222 | /* The call and return path execute the same instructions within | |
3223 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3224 | trampoline. */ | |
3225 | if (u->stub_unwind.stub_type == IMPORT) | |
3226 | return 1; | |
3227 | ||
3228 | /* Parameter relocation stubs always have a call path and may have a | |
3229 | return path. */ | |
3230 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3231 | || u->stub_unwind.stub_type == EXPORT) | |
3232 | { | |
3233 | CORE_ADDR addr; | |
3234 | ||
3235 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3236 | or the end of the stub. */ |
c906108c SS |
3237 | for (addr = pc; addr <= u->region_end; addr += 4) |
3238 | { | |
3239 | unsigned long insn; | |
3240 | ||
3241 | insn = read_memory_integer (addr, 4); | |
3242 | ||
3243 | /* Does it look like a bl? If so then it's the call path, if | |
3244 | we find a bv or be first, then we're on the return path. */ | |
3245 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3246 | return 0; | |
3247 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3248 | || (insn & 0xfc000000) == 0xe0000000) | |
3249 | return 1; | |
3250 | } | |
3251 | ||
3252 | /* Should never happen. */ | |
104c1213 JM |
3253 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3254 | return 0; | |
c906108c SS |
3255 | } |
3256 | ||
3257 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3258 | return 0; |
c906108c SS |
3259 | |
3260 | } | |
3261 | ||
3262 | /* Figure out if PC is in a trampoline, and if so find out where | |
3263 | the trampoline will jump to. If not in a trampoline, return zero. | |
3264 | ||
3265 | Simple code examination probably is not a good idea since the code | |
3266 | sequences in trampolines can also appear in user code. | |
3267 | ||
3268 | We use unwinds and information from the minimal symbol table to | |
3269 | determine when we're in a trampoline. This won't work for ELF | |
3270 | (yet) since it doesn't create stub unwind entries. Whether or | |
3271 | not ELF will create stub unwinds or normal unwinds for linker | |
3272 | stubs is still being debated. | |
3273 | ||
3274 | This should handle simple calls through dyncall or sr4export, | |
3275 | long calls, argument relocation stubs, and dyncall/sr4export | |
3276 | calling an argument relocation stub. It even handles some stubs | |
3277 | used in dynamic executables. */ | |
3278 | ||
c906108c | 3279 | CORE_ADDR |
60383d10 | 3280 | hppa_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
3281 | { |
3282 | long orig_pc = pc; | |
3283 | long prev_inst, curr_inst, loc; | |
3284 | static CORE_ADDR dyncall = 0; | |
3285 | static CORE_ADDR dyncall_external = 0; | |
3286 | static CORE_ADDR sr4export = 0; | |
3287 | struct minimal_symbol *msym; | |
3288 | struct unwind_table_entry *u; | |
3289 | ||
c2c6d25f JM |
3290 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
3291 | new exec file */ | |
c906108c SS |
3292 | |
3293 | if (!dyncall) | |
3294 | { | |
3295 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3296 | if (msym) | |
3297 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
3298 | else | |
3299 | dyncall = -1; | |
3300 | } | |
3301 | ||
3302 | if (!dyncall_external) | |
3303 | { | |
3304 | msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); | |
3305 | if (msym) | |
3306 | dyncall_external = SYMBOL_VALUE_ADDRESS (msym); | |
3307 | else | |
3308 | dyncall_external = -1; | |
3309 | } | |
3310 | ||
3311 | if (!sr4export) | |
3312 | { | |
3313 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3314 | if (msym) | |
3315 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
3316 | else | |
3317 | sr4export = -1; | |
3318 | } | |
3319 | ||
3320 | /* Addresses passed to dyncall may *NOT* be the actual address | |
3321 | of the function. So we may have to do something special. */ | |
3322 | if (pc == dyncall) | |
3323 | { | |
3324 | pc = (CORE_ADDR) read_register (22); | |
3325 | ||
3326 | /* If bit 30 (counting from the left) is on, then pc is the address of | |
c5aa993b JM |
3327 | the PLT entry for this function, not the address of the function |
3328 | itself. Bit 31 has meaning too, but only for MPE. */ | |
c906108c | 3329 | if (pc & 0x2) |
53a5351d | 3330 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3331 | } |
3332 | if (pc == dyncall_external) | |
3333 | { | |
3334 | pc = (CORE_ADDR) read_register (22); | |
53a5351d | 3335 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3336 | } |
3337 | else if (pc == sr4export) | |
3338 | pc = (CORE_ADDR) (read_register (22)); | |
3339 | ||
3340 | /* Get the unwind descriptor corresponding to PC, return zero | |
3341 | if no unwind was found. */ | |
3342 | u = find_unwind_entry (pc); | |
3343 | if (!u) | |
3344 | return 0; | |
3345 | ||
3346 | /* If this isn't a linker stub, then return now. */ | |
3347 | /* elz: attention here! (FIXME) because of a compiler/linker | |
3348 | error, some stubs which should have a non zero stub_unwind.stub_type | |
3349 | have unfortunately a value of zero. So this function would return here | |
3350 | as if we were not in a trampoline. To fix this, we go look at the partial | |
3351 | symbol information, which reports this guy as a stub. | |
3352 | (FIXME): Unfortunately, we are not that lucky: it turns out that the | |
3353 | partial symbol information is also wrong sometimes. This is because | |
3354 | when it is entered (somread.c::som_symtab_read()) it can happen that | |
3355 | if the type of the symbol (from the som) is Entry, and the symbol is | |
3356 | in a shared library, then it can also be a trampoline. This would | |
3357 | be OK, except that I believe the way they decide if we are ina shared library | |
3358 | does not work. SOOOO..., even if we have a regular function w/o trampolines | |
3359 | its minimal symbol can be assigned type mst_solib_trampoline. | |
3360 | Also, if we find that the symbol is a real stub, then we fix the unwind | |
3361 | descriptor, and define the stub type to be EXPORT. | |
c5aa993b | 3362 | Hopefully this is correct most of the times. */ |
c906108c | 3363 | if (u->stub_unwind.stub_type == 0) |
c5aa993b | 3364 | { |
c906108c SS |
3365 | |
3366 | /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed | |
3367 | we can delete all the code which appears between the lines */ | |
3368 | /*--------------------------------------------------------------------------*/ | |
c5aa993b | 3369 | msym = lookup_minimal_symbol_by_pc (pc); |
c906108c | 3370 | |
c5aa993b JM |
3371 | if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) |
3372 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3373 | ||
3374 | else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) | |
3375 | { | |
3376 | struct objfile *objfile; | |
3377 | struct minimal_symbol *msymbol; | |
3378 | int function_found = 0; | |
3379 | ||
3380 | /* go look if there is another minimal symbol with the same name as | |
3381 | this one, but with type mst_text. This would happen if the msym | |
3382 | is an actual trampoline, in which case there would be another | |
3383 | symbol with the same name corresponding to the real function */ | |
3384 | ||
3385 | ALL_MSYMBOLS (objfile, msymbol) | |
3386 | { | |
3387 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
cb137aa5 | 3388 | && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym))) |
c5aa993b JM |
3389 | { |
3390 | function_found = 1; | |
3391 | break; | |
3392 | } | |
3393 | } | |
3394 | ||
3395 | if (function_found) | |
3396 | /* the type of msym is correct (mst_solib_trampoline), but | |
3397 | the unwind info is wrong, so set it to the correct value */ | |
3398 | u->stub_unwind.stub_type = EXPORT; | |
3399 | else | |
3400 | /* the stub type info in the unwind is correct (this is not a | |
3401 | trampoline), but the msym type information is wrong, it | |
3402 | should be mst_text. So we need to fix the msym, and also | |
3403 | get out of this function */ | |
3404 | { | |
3405 | MSYMBOL_TYPE (msym) = mst_text; | |
3406 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3407 | } | |
3408 | } | |
c906108c | 3409 | |
c906108c | 3410 | /*--------------------------------------------------------------------------*/ |
c5aa993b | 3411 | } |
c906108c SS |
3412 | |
3413 | /* It's a stub. Search for a branch and figure out where it goes. | |
3414 | Note we have to handle multi insn branch sequences like ldil;ble. | |
3415 | Most (all?) other branches can be determined by examining the contents | |
3416 | of certain registers and the stack. */ | |
3417 | ||
3418 | loc = pc; | |
3419 | curr_inst = 0; | |
3420 | prev_inst = 0; | |
3421 | while (1) | |
3422 | { | |
3423 | /* Make sure we haven't walked outside the range of this stub. */ | |
3424 | if (u != find_unwind_entry (loc)) | |
3425 | { | |
3426 | warning ("Unable to find branch in linker stub"); | |
3427 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3428 | } | |
3429 | ||
3430 | prev_inst = curr_inst; | |
3431 | curr_inst = read_memory_integer (loc, 4); | |
3432 | ||
3433 | /* Does it look like a branch external using %r1? Then it's the | |
c5aa993b | 3434 | branch from the stub to the actual function. */ |
c906108c SS |
3435 | if ((curr_inst & 0xffe0e000) == 0xe0202000) |
3436 | { | |
3437 | /* Yup. See if the previous instruction loaded | |
3438 | a value into %r1. If so compute and return the jump address. */ | |
3439 | if ((prev_inst & 0xffe00000) == 0x20200000) | |
3440 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
3441 | else | |
3442 | { | |
3443 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
3444 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3445 | } | |
3446 | } | |
3447 | ||
3448 | /* Does it look like a be 0(sr0,%r21)? OR | |
3449 | Does it look like a be, n 0(sr0,%r21)? OR | |
3450 | Does it look like a bve (r21)? (this is on PA2.0) | |
3451 | Does it look like a bve, n(r21)? (this is also on PA2.0) | |
3452 | That's the branch from an | |
c5aa993b | 3453 | import stub to an export stub. |
c906108c | 3454 | |
c5aa993b JM |
3455 | It is impossible to determine the target of the branch via |
3456 | simple examination of instructions and/or data (consider | |
3457 | that the address in the plabel may be the address of the | |
3458 | bind-on-reference routine in the dynamic loader). | |
c906108c | 3459 | |
c5aa993b | 3460 | So we have try an alternative approach. |
c906108c | 3461 | |
c5aa993b JM |
3462 | Get the name of the symbol at our current location; it should |
3463 | be a stub symbol with the same name as the symbol in the | |
3464 | shared library. | |
c906108c | 3465 | |
c5aa993b JM |
3466 | Then lookup a minimal symbol with the same name; we should |
3467 | get the minimal symbol for the target routine in the shared | |
3468 | library as those take precedence of import/export stubs. */ | |
c906108c | 3469 | if ((curr_inst == 0xe2a00000) || |
c5aa993b JM |
3470 | (curr_inst == 0xe2a00002) || |
3471 | (curr_inst == 0xeaa0d000) || | |
3472 | (curr_inst == 0xeaa0d002)) | |
c906108c SS |
3473 | { |
3474 | struct minimal_symbol *stubsym, *libsym; | |
3475 | ||
3476 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
3477 | if (stubsym == NULL) | |
3478 | { | |
ce414844 | 3479 | warning ("Unable to find symbol for 0x%lx", loc); |
c906108c SS |
3480 | return orig_pc == pc ? 0 : pc & ~0x3; |
3481 | } | |
3482 | ||
22abf04a | 3483 | libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL); |
c906108c SS |
3484 | if (libsym == NULL) |
3485 | { | |
3486 | warning ("Unable to find library symbol for %s\n", | |
22abf04a | 3487 | DEPRECATED_SYMBOL_NAME (stubsym)); |
c906108c SS |
3488 | return orig_pc == pc ? 0 : pc & ~0x3; |
3489 | } | |
3490 | ||
3491 | return SYMBOL_VALUE (libsym); | |
3492 | } | |
3493 | ||
3494 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a | |
c5aa993b JM |
3495 | branch from the stub to the actual function. */ |
3496 | /*elz */ | |
c906108c SS |
3497 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 |
3498 | || (curr_inst & 0xffe0e000) == 0xe8000000 | |
c5aa993b | 3499 | || (curr_inst & 0xffe0e000) == 0xe800A000) |
c906108c SS |
3500 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
3501 | ||
3502 | /* Does it look like bv (rp)? Note this depends on the | |
c5aa993b JM |
3503 | current stack pointer being the same as the stack |
3504 | pointer in the stub itself! This is a branch on from the | |
3505 | stub back to the original caller. */ | |
3506 | /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ | |
c906108c SS |
3507 | else if ((curr_inst & 0xffe0f000) == 0xe840c000) |
3508 | { | |
3509 | /* Yup. See if the previous instruction loaded | |
3510 | rp from sp - 8. */ | |
3511 | if (prev_inst == 0x4bc23ff1) | |
3512 | return (read_memory_integer | |
3513 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
3514 | else | |
3515 | { | |
3516 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
3517 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3518 | } | |
3519 | } | |
3520 | ||
3521 | /* elz: added this case to capture the new instruction | |
3522 | at the end of the return part of an export stub used by | |
3523 | the PA2.0: BVE, n (rp) */ | |
3524 | else if ((curr_inst & 0xffe0f000) == 0xe840d000) | |
3525 | { | |
c5aa993b | 3526 | return (read_memory_integer |
53a5351d | 3527 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3528 | } |
3529 | ||
3530 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
c5aa993b | 3531 | the original caller from the stub. Used in dynamic executables. */ |
c906108c SS |
3532 | else if (curr_inst == 0xe0400002) |
3533 | { | |
3534 | /* The value we jump to is sitting in sp - 24. But that's | |
3535 | loaded several instructions before the be instruction. | |
3536 | I guess we could check for the previous instruction being | |
3537 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
c5aa993b | 3538 | return (read_memory_integer |
53a5351d | 3539 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3540 | } |
3541 | ||
3542 | /* Haven't found the branch yet, but we're still in the stub. | |
c5aa993b | 3543 | Keep looking. */ |
c906108c SS |
3544 | loc += 4; |
3545 | } | |
3546 | } | |
3547 | ||
3548 | ||
3549 | /* For the given instruction (INST), return any adjustment it makes | |
3550 | to the stack pointer or zero for no adjustment. | |
3551 | ||
3552 | This only handles instructions commonly found in prologues. */ | |
3553 | ||
3554 | static int | |
fba45db2 | 3555 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
3556 | { |
3557 | /* This must persist across calls. */ | |
3558 | static int save_high21; | |
3559 | ||
3560 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
3561 | if ((inst & 0xffffc000) == 0x37de0000) | |
3562 | return extract_14 (inst); | |
3563 | ||
3564 | /* stwm X,D(sp) */ | |
3565 | if ((inst & 0xffe00000) == 0x6fc00000) | |
3566 | return extract_14 (inst); | |
3567 | ||
104c1213 JM |
3568 | /* std,ma X,D(sp) */ |
3569 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 3570 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 3571 | |
c906108c SS |
3572 | /* addil high21,%r1; ldo low11,(%r1),%r30) |
3573 | save high bits in save_high21 for later use. */ | |
3574 | if ((inst & 0xffe00000) == 0x28200000) | |
3575 | { | |
3576 | save_high21 = extract_21 (inst); | |
3577 | return 0; | |
3578 | } | |
3579 | ||
3580 | if ((inst & 0xffff0000) == 0x343e0000) | |
3581 | return save_high21 + extract_14 (inst); | |
3582 | ||
3583 | /* fstws as used by the HP compilers. */ | |
3584 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
3585 | return extract_5_load (inst); | |
3586 | ||
3587 | /* No adjustment. */ | |
3588 | return 0; | |
3589 | } | |
3590 | ||
3591 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
3592 | ||
3593 | static int | |
fba45db2 | 3594 | is_branch (unsigned long inst) |
c906108c SS |
3595 | { |
3596 | switch (inst >> 26) | |
3597 | { | |
3598 | case 0x20: | |
3599 | case 0x21: | |
3600 | case 0x22: | |
3601 | case 0x23: | |
7be570e7 | 3602 | case 0x27: |
c906108c SS |
3603 | case 0x28: |
3604 | case 0x29: | |
3605 | case 0x2a: | |
3606 | case 0x2b: | |
7be570e7 | 3607 | case 0x2f: |
c906108c SS |
3608 | case 0x30: |
3609 | case 0x31: | |
3610 | case 0x32: | |
3611 | case 0x33: | |
3612 | case 0x38: | |
3613 | case 0x39: | |
3614 | case 0x3a: | |
7be570e7 | 3615 | case 0x3b: |
c906108c SS |
3616 | return 1; |
3617 | ||
3618 | default: | |
3619 | return 0; | |
3620 | } | |
3621 | } | |
3622 | ||
3623 | /* Return the register number for a GR which is saved by INST or | |
3624 | zero it INST does not save a GR. */ | |
3625 | ||
3626 | static int | |
fba45db2 | 3627 | inst_saves_gr (unsigned long inst) |
c906108c SS |
3628 | { |
3629 | /* Does it look like a stw? */ | |
7be570e7 JM |
3630 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
3631 | || (inst >> 26) == 0x1f | |
3632 | || ((inst >> 26) == 0x1f | |
3633 | && ((inst >> 6) == 0xa))) | |
3634 | return extract_5R_store (inst); | |
3635 | ||
3636 | /* Does it look like a std? */ | |
3637 | if ((inst >> 26) == 0x1c | |
3638 | || ((inst >> 26) == 0x03 | |
3639 | && ((inst >> 6) & 0xf) == 0xb)) | |
c906108c SS |
3640 | return extract_5R_store (inst); |
3641 | ||
3642 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
3643 | if ((inst >> 26) == 0x1b) | |
3644 | return extract_5R_store (inst); | |
3645 | ||
3646 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
3647 | too. */ | |
7be570e7 JM |
3648 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
3649 | || ((inst >> 26) == 0x3 | |
3650 | && (((inst >> 6) & 0xf) == 0x8 | |
3651 | || (inst >> 6) & 0xf) == 0x9)) | |
c906108c | 3652 | return extract_5R_store (inst); |
c5aa993b | 3653 | |
c906108c SS |
3654 | return 0; |
3655 | } | |
3656 | ||
3657 | /* Return the register number for a FR which is saved by INST or | |
3658 | zero it INST does not save a FR. | |
3659 | ||
3660 | Note we only care about full 64bit register stores (that's the only | |
3661 | kind of stores the prologue will use). | |
3662 | ||
3663 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
3664 | ||
3665 | static int | |
fba45db2 | 3666 | inst_saves_fr (unsigned long inst) |
c906108c | 3667 | { |
7be570e7 | 3668 | /* is this an FSTD ? */ |
c906108c SS |
3669 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
3670 | return extract_5r_store (inst); | |
7be570e7 JM |
3671 | if ((inst & 0xfc000002) == 0x70000002) |
3672 | return extract_5R_store (inst); | |
3673 | /* is this an FSTW ? */ | |
c906108c SS |
3674 | if ((inst & 0xfc00df80) == 0x24001200) |
3675 | return extract_5r_store (inst); | |
7be570e7 JM |
3676 | if ((inst & 0xfc000002) == 0x7c000000) |
3677 | return extract_5R_store (inst); | |
c906108c SS |
3678 | return 0; |
3679 | } | |
3680 | ||
3681 | /* Advance PC across any function entry prologue instructions | |
3682 | to reach some "real" code. | |
3683 | ||
3684 | Use information in the unwind table to determine what exactly should | |
3685 | be in the prologue. */ | |
3686 | ||
3687 | ||
3688 | CORE_ADDR | |
fba45db2 | 3689 | skip_prologue_hard_way (CORE_ADDR pc) |
c906108c SS |
3690 | { |
3691 | char buf[4]; | |
3692 | CORE_ADDR orig_pc = pc; | |
3693 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3694 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
3695 | struct unwind_table_entry *u; | |
3696 | ||
3697 | restart_gr = 0; | |
3698 | restart_fr = 0; | |
3699 | ||
3700 | restart: | |
3701 | u = find_unwind_entry (pc); | |
3702 | if (!u) | |
3703 | return pc; | |
3704 | ||
c5aa993b | 3705 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
3706 | if ((pc & ~0x3) != u->region_start) |
3707 | return pc; | |
3708 | ||
3709 | /* This is how much of a frame adjustment we need to account for. */ | |
3710 | stack_remaining = u->Total_frame_size << 3; | |
3711 | ||
3712 | /* Magic register saves we want to know about. */ | |
3713 | save_rp = u->Save_RP; | |
3714 | save_sp = u->Save_SP; | |
3715 | ||
3716 | /* An indication that args may be stored into the stack. Unfortunately | |
3717 | the HPUX compilers tend to set this in cases where no args were | |
3718 | stored too!. */ | |
3719 | args_stored = 1; | |
3720 | ||
3721 | /* Turn the Entry_GR field into a bitmask. */ | |
3722 | save_gr = 0; | |
3723 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3724 | { | |
3725 | /* Frame pointer gets saved into a special location. */ | |
0ba6dca9 | 3726 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) |
c906108c SS |
3727 | continue; |
3728 | ||
3729 | save_gr |= (1 << i); | |
3730 | } | |
3731 | save_gr &= ~restart_gr; | |
3732 | ||
3733 | /* Turn the Entry_FR field into a bitmask too. */ | |
3734 | save_fr = 0; | |
3735 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3736 | save_fr |= (1 << i); | |
3737 | save_fr &= ~restart_fr; | |
3738 | ||
3739 | /* Loop until we find everything of interest or hit a branch. | |
3740 | ||
3741 | For unoptimized GCC code and for any HP CC code this will never ever | |
3742 | examine any user instructions. | |
3743 | ||
3744 | For optimzied GCC code we're faced with problems. GCC will schedule | |
3745 | its prologue and make prologue instructions available for delay slot | |
3746 | filling. The end result is user code gets mixed in with the prologue | |
3747 | and a prologue instruction may be in the delay slot of the first branch | |
3748 | or call. | |
3749 | ||
3750 | Some unexpected things are expected with debugging optimized code, so | |
3751 | we allow this routine to walk past user instructions in optimized | |
3752 | GCC code. */ | |
3753 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
3754 | || args_stored) | |
3755 | { | |
3756 | unsigned int reg_num; | |
3757 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
3758 | unsigned long old_save_rp, old_save_sp, next_inst; | |
3759 | ||
3760 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 3761 | (only for HPC). */ |
c906108c SS |
3762 | old_save_gr = save_gr; |
3763 | old_save_fr = save_fr; | |
3764 | old_save_rp = save_rp; | |
3765 | old_save_sp = save_sp; | |
3766 | old_stack_remaining = stack_remaining; | |
3767 | ||
3768 | status = target_read_memory (pc, buf, 4); | |
3769 | inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3770 | |
c906108c SS |
3771 | /* Yow! */ |
3772 | if (status != 0) | |
3773 | return pc; | |
3774 | ||
3775 | /* Note the interesting effects of this instruction. */ | |
3776 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3777 | ||
7be570e7 JM |
3778 | /* There are limited ways to store the return pointer into the |
3779 | stack. */ | |
3780 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
3781 | save_rp = 0; |
3782 | ||
104c1213 | 3783 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 3784 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
3785 | if ((inst & 0xffffc000) == 0x6fc10000 |
3786 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
3787 | save_sp = 0; |
3788 | ||
6426a772 JM |
3789 | /* Are we loading some register with an offset from the argument |
3790 | pointer? */ | |
3791 | if ((inst & 0xffe00000) == 0x37a00000 | |
3792 | || (inst & 0xffffffe0) == 0x081d0240) | |
3793 | { | |
3794 | pc += 4; | |
3795 | continue; | |
3796 | } | |
3797 | ||
c906108c SS |
3798 | /* Account for general and floating-point register saves. */ |
3799 | reg_num = inst_saves_gr (inst); | |
3800 | save_gr &= ~(1 << reg_num); | |
3801 | ||
3802 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3803 | Unfortunately args_stored only tells us that some arguments |
3804 | where stored into the stack. Not how many or what kind! | |
c906108c | 3805 | |
c5aa993b JM |
3806 | This is a kludge as on the HP compiler sets this bit and it |
3807 | never does prologue scheduling. So once we see one, skip past | |
3808 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 3809 | |
c5aa993b JM |
3810 | FIXME. Can still die if we have a mix of GR and FR argument |
3811 | stores! */ | |
6426a772 | 3812 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 3813 | { |
6426a772 | 3814 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
3815 | { |
3816 | pc += 4; | |
3817 | status = target_read_memory (pc, buf, 4); | |
3818 | inst = extract_unsigned_integer (buf, 4); | |
3819 | if (status != 0) | |
3820 | return pc; | |
3821 | reg_num = inst_saves_gr (inst); | |
3822 | } | |
3823 | args_stored = 0; | |
3824 | continue; | |
3825 | } | |
3826 | ||
3827 | reg_num = inst_saves_fr (inst); | |
3828 | save_fr &= ~(1 << reg_num); | |
3829 | ||
3830 | status = target_read_memory (pc + 4, buf, 4); | |
3831 | next_inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3832 | |
c906108c SS |
3833 | /* Yow! */ |
3834 | if (status != 0) | |
3835 | return pc; | |
3836 | ||
3837 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 3838 | save. */ |
c906108c SS |
3839 | if ((inst & 0xfc000000) == 0x34000000 |
3840 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 3841 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3842 | { |
3843 | /* So we drop into the code below in a reasonable state. */ | |
3844 | reg_num = inst_saves_fr (next_inst); | |
3845 | pc -= 4; | |
3846 | } | |
3847 | ||
3848 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3849 | This is a kludge as on the HP compiler sets this bit and it |
3850 | never does prologue scheduling. So once we see one, skip past | |
3851 | all of them. */ | |
6426a772 | 3852 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 3853 | { |
6426a772 | 3854 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3855 | { |
3856 | pc += 8; | |
3857 | status = target_read_memory (pc, buf, 4); | |
3858 | inst = extract_unsigned_integer (buf, 4); | |
3859 | if (status != 0) | |
3860 | return pc; | |
3861 | if ((inst & 0xfc000000) != 0x34000000) | |
3862 | break; | |
3863 | status = target_read_memory (pc + 4, buf, 4); | |
3864 | next_inst = extract_unsigned_integer (buf, 4); | |
3865 | if (status != 0) | |
3866 | return pc; | |
3867 | reg_num = inst_saves_fr (next_inst); | |
3868 | } | |
3869 | args_stored = 0; | |
3870 | continue; | |
3871 | } | |
3872 | ||
3873 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 3874 | instruction is in the delay slot of the first call/branch. */ |
c906108c SS |
3875 | if (is_branch (inst)) |
3876 | break; | |
3877 | ||
3878 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
3879 | arguments were stored into the stack (boo hiss). This could |
3880 | cause this code to then skip a bunch of user insns (up to the | |
3881 | first branch). | |
3882 | ||
3883 | To combat this we try to identify when args_stored was bogusly | |
3884 | set and clear it. We only do this when args_stored is nonzero, | |
3885 | all other resources are accounted for, and nothing changed on | |
3886 | this pass. */ | |
c906108c | 3887 | if (args_stored |
c5aa993b | 3888 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
3889 | && old_save_gr == save_gr && old_save_fr == save_fr |
3890 | && old_save_rp == save_rp && old_save_sp == save_sp | |
3891 | && old_stack_remaining == stack_remaining) | |
3892 | break; | |
c5aa993b | 3893 | |
c906108c SS |
3894 | /* Bump the PC. */ |
3895 | pc += 4; | |
3896 | } | |
3897 | ||
3898 | /* We've got a tenative location for the end of the prologue. However | |
3899 | because of limitations in the unwind descriptor mechanism we may | |
3900 | have went too far into user code looking for the save of a register | |
3901 | that does not exist. So, if there registers we expected to be saved | |
3902 | but never were, mask them out and restart. | |
3903 | ||
3904 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 3905 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
3906 | { |
3907 | pc = orig_pc; | |
3908 | restart_gr = save_gr; | |
3909 | restart_fr = save_fr; | |
3910 | goto restart; | |
3911 | } | |
3912 | ||
3913 | return pc; | |
3914 | } | |
3915 | ||
3916 | ||
7be570e7 JM |
3917 | /* Return the address of the PC after the last prologue instruction if |
3918 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
3919 | |
3920 | static CORE_ADDR | |
fba45db2 | 3921 | after_prologue (CORE_ADDR pc) |
c906108c SS |
3922 | { |
3923 | struct symtab_and_line sal; | |
3924 | CORE_ADDR func_addr, func_end; | |
3925 | struct symbol *f; | |
3926 | ||
7be570e7 JM |
3927 | /* If we can not find the symbol in the partial symbol table, then |
3928 | there is no hope we can determine the function's start address | |
3929 | with this code. */ | |
c906108c | 3930 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 3931 | return 0; |
c906108c | 3932 | |
7be570e7 | 3933 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
3934 | sal = find_pc_line (func_addr, 0); |
3935 | ||
7be570e7 JM |
3936 | /* There are only two cases to consider. First, the end of the source line |
3937 | is within the function bounds. In that case we return the end of the | |
3938 | source line. Second is the end of the source line extends beyond the | |
3939 | bounds of the current function. We need to use the slow code to | |
3940 | examine instructions in that case. | |
c906108c | 3941 | |
7be570e7 JM |
3942 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
3943 | the wrong thing to do. In fact, it should be entirely possible for this | |
3944 | function to always return zero since the slow instruction scanning code | |
3945 | is supposed to *always* work. If it does not, then it is a bug. */ | |
3946 | if (sal.end < func_end) | |
3947 | return sal.end; | |
c5aa993b | 3948 | else |
7be570e7 | 3949 | return 0; |
c906108c SS |
3950 | } |
3951 | ||
3952 | /* To skip prologues, I use this predicate. Returns either PC itself | |
3953 | if the code at PC does not look like a function prologue; otherwise | |
3954 | returns an address that (if we're lucky) follows the prologue. If | |
3955 | LENIENT, then we must skip everything which is involved in setting | |
3956 | up the frame (it's OK to skip more, just so long as we don't skip | |
3957 | anything which might clobber the registers which are being saved. | |
3958 | Currently we must not skip more on the alpha, but we might the lenient | |
3959 | stuff some day. */ | |
3960 | ||
3961 | CORE_ADDR | |
fba45db2 | 3962 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 3963 | { |
c5aa993b JM |
3964 | unsigned long inst; |
3965 | int offset; | |
3966 | CORE_ADDR post_prologue_pc; | |
3967 | char buf[4]; | |
c906108c | 3968 | |
c5aa993b JM |
3969 | /* See if we can determine the end of the prologue via the symbol table. |
3970 | If so, then return either PC, or the PC after the prologue, whichever | |
3971 | is greater. */ | |
c906108c | 3972 | |
c5aa993b | 3973 | post_prologue_pc = after_prologue (pc); |
c906108c | 3974 | |
7be570e7 JM |
3975 | /* If after_prologue returned a useful address, then use it. Else |
3976 | fall back on the instruction skipping code. | |
3977 | ||
3978 | Some folks have claimed this causes problems because the breakpoint | |
3979 | may be the first instruction of the prologue. If that happens, then | |
3980 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
3981 | if (post_prologue_pc != 0) |
3982 | return max (pc, post_prologue_pc); | |
c5aa993b JM |
3983 | else |
3984 | return (skip_prologue_hard_way (pc)); | |
c906108c SS |
3985 | } |
3986 | ||
43bd9a9e AC |
3987 | /* Put here the code to store, into the SAVED_REGS, the addresses of |
3988 | the saved registers of frame described by FRAME_INFO. This | |
3989 | includes special registers such as pc and fp saved in special ways | |
3990 | in the stack frame. sp is even more special: the address we return | |
3991 | for it IS the sp for the next frame. */ | |
c906108c SS |
3992 | |
3993 | void | |
fba45db2 | 3994 | hppa_frame_find_saved_regs (struct frame_info *frame_info, |
43bd9a9e | 3995 | CORE_ADDR frame_saved_regs[]) |
c906108c SS |
3996 | { |
3997 | CORE_ADDR pc; | |
3998 | struct unwind_table_entry *u; | |
3999 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
4000 | int status, i, reg; | |
4001 | char buf[4]; | |
4002 | int fp_loc = -1; | |
d4f3574e | 4003 | int final_iteration; |
c906108c SS |
4004 | |
4005 | /* Zero out everything. */ | |
43bd9a9e | 4006 | memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
4007 | |
4008 | /* Call dummy frames always look the same, so there's no need to | |
4009 | examine the dummy code to determine locations of saved registers; | |
4010 | instead, let find_dummy_frame_regs fill in the correct offsets | |
4011 | for the saved registers. */ | |
ef6e7e13 AC |
4012 | if ((get_frame_pc (frame_info) >= get_frame_base (frame_info) |
4013 | && (get_frame_pc (frame_info) | |
4014 | <= (get_frame_base (frame_info) | |
4015 | /* A call dummy is sized in words, but it is actually a | |
4016 | series of instructions. Account for that scaling | |
4017 | factor. */ | |
b1e29e33 AC |
4018 | + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE) |
4019 | * DEPRECATED_CALL_DUMMY_LENGTH) | |
ef6e7e13 AC |
4020 | /* Similarly we have to account for 64bit wide register |
4021 | saves. */ | |
b1e29e33 | 4022 | + (32 * DEPRECATED_REGISTER_SIZE) |
ef6e7e13 AC |
4023 | /* We always consider FP regs 8 bytes long. */ |
4024 | + (NUM_REGS - FP0_REGNUM) * 8 | |
4025 | /* Similarly we have to account for 64bit wide register | |
4026 | saves. */ | |
b1e29e33 | 4027 | + (6 * DEPRECATED_REGISTER_SIZE))))) |
c906108c SS |
4028 | find_dummy_frame_regs (frame_info, frame_saved_regs); |
4029 | ||
4030 | /* Interrupt handlers are special too. They lay out the register | |
4031 | state in the exact same order as the register numbers in GDB. */ | |
ef6e7e13 | 4032 | if (pc_in_interrupt_handler (get_frame_pc (frame_info))) |
c906108c SS |
4033 | { |
4034 | for (i = 0; i < NUM_REGS; i++) | |
4035 | { | |
4036 | /* SP is a little special. */ | |
4037 | if (i == SP_REGNUM) | |
43bd9a9e | 4038 | frame_saved_regs[SP_REGNUM] |
ef6e7e13 | 4039 | = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4, |
53a5351d | 4040 | TARGET_PTR_BIT / 8); |
c906108c | 4041 | else |
ef6e7e13 | 4042 | frame_saved_regs[i] = get_frame_base (frame_info) + i * 4; |
c906108c SS |
4043 | } |
4044 | return; | |
4045 | } | |
4046 | ||
4047 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP | |
4048 | /* Handle signal handler callers. */ | |
5a203e44 | 4049 | if ((get_frame_type (frame_info) == SIGTRAMP_FRAME)) |
c906108c SS |
4050 | { |
4051 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); | |
4052 | return; | |
4053 | } | |
4054 | #endif | |
4055 | ||
4056 | /* Get the starting address of the function referred to by the PC | |
4057 | saved in frame. */ | |
be41e9f4 | 4058 | pc = get_frame_func (frame_info); |
c906108c SS |
4059 | |
4060 | /* Yow! */ | |
4061 | u = find_unwind_entry (pc); | |
4062 | if (!u) | |
4063 | return; | |
4064 | ||
4065 | /* This is how much of a frame adjustment we need to account for. */ | |
4066 | stack_remaining = u->Total_frame_size << 3; | |
4067 | ||
4068 | /* Magic register saves we want to know about. */ | |
4069 | save_rp = u->Save_RP; | |
4070 | save_sp = u->Save_SP; | |
4071 | ||
4072 | /* Turn the Entry_GR field into a bitmask. */ | |
4073 | save_gr = 0; | |
4074 | for (i = 3; i < u->Entry_GR + 3; i++) | |
4075 | { | |
4076 | /* Frame pointer gets saved into a special location. */ | |
0ba6dca9 | 4077 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) |
c906108c SS |
4078 | continue; |
4079 | ||
4080 | save_gr |= (1 << i); | |
4081 | } | |
4082 | ||
4083 | /* Turn the Entry_FR field into a bitmask too. */ | |
4084 | save_fr = 0; | |
4085 | for (i = 12; i < u->Entry_FR + 12; i++) | |
4086 | save_fr |= (1 << i); | |
4087 | ||
4088 | /* The frame always represents the value of %sp at entry to the | |
4089 | current function (and is thus equivalent to the "saved" stack | |
4090 | pointer. */ | |
ef6e7e13 | 4091 | frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info); |
c906108c SS |
4092 | |
4093 | /* Loop until we find everything of interest or hit a branch. | |
4094 | ||
4095 | For unoptimized GCC code and for any HP CC code this will never ever | |
4096 | examine any user instructions. | |
4097 | ||
7be570e7 | 4098 | For optimized GCC code we're faced with problems. GCC will schedule |
c906108c SS |
4099 | its prologue and make prologue instructions available for delay slot |
4100 | filling. The end result is user code gets mixed in with the prologue | |
4101 | and a prologue instruction may be in the delay slot of the first branch | |
4102 | or call. | |
4103 | ||
4104 | Some unexpected things are expected with debugging optimized code, so | |
4105 | we allow this routine to walk past user instructions in optimized | |
4106 | GCC code. */ | |
d4f3574e SS |
4107 | final_iteration = 0; |
4108 | while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
ef6e7e13 | 4109 | && pc <= get_frame_pc (frame_info)) |
c906108c SS |
4110 | { |
4111 | status = target_read_memory (pc, buf, 4); | |
4112 | inst = extract_unsigned_integer (buf, 4); | |
4113 | ||
4114 | /* Yow! */ | |
4115 | if (status != 0) | |
4116 | return; | |
4117 | ||
4118 | /* Note the interesting effects of this instruction. */ | |
4119 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
4120 | ||
104c1213 JM |
4121 | /* There are limited ways to store the return pointer into the |
4122 | stack. */ | |
c2c6d25f | 4123 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
c906108c SS |
4124 | { |
4125 | save_rp = 0; | |
ef6e7e13 | 4126 | frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20; |
c906108c | 4127 | } |
c2c6d25f JM |
4128 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
4129 | { | |
4130 | save_rp = 0; | |
ef6e7e13 | 4131 | frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16; |
c2c6d25f | 4132 | } |
c906108c | 4133 | |
104c1213 JM |
4134 | /* Note if we saved SP into the stack. This also happens to indicate |
4135 | the location of the saved frame pointer. */ | |
c2c6d25f JM |
4136 | if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ |
4137 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
104c1213 | 4138 | { |
0ba6dca9 | 4139 | frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info); |
104c1213 JM |
4140 | save_sp = 0; |
4141 | } | |
c906108c SS |
4142 | |
4143 | /* Account for general and floating-point register saves. */ | |
4144 | reg = inst_saves_gr (inst); | |
4145 | if (reg >= 3 && reg <= 18 | |
0ba6dca9 | 4146 | && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM)) |
c906108c SS |
4147 | { |
4148 | save_gr &= ~(1 << reg); | |
4149 | ||
4150 | /* stwm with a positive displacement is a *post modify*. */ | |
4151 | if ((inst >> 26) == 0x1b | |
4152 | && extract_14 (inst) >= 0) | |
ef6e7e13 | 4153 | frame_saved_regs[reg] = get_frame_base (frame_info); |
104c1213 | 4154 | /* A std has explicit post_modify forms. */ |
56132691 | 4155 | else if ((inst & 0xfc00000c) == 0x70000008) |
ef6e7e13 | 4156 | frame_saved_regs[reg] = get_frame_base (frame_info); |
c906108c SS |
4157 | else |
4158 | { | |
104c1213 JM |
4159 | CORE_ADDR offset; |
4160 | ||
4161 | if ((inst >> 26) == 0x1c) | |
d4f3574e | 4162 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 JM |
4163 | else if ((inst >> 26) == 0x03) |
4164 | offset = low_sign_extend (inst & 0x1f, 5); | |
4165 | else | |
4166 | offset = extract_14 (inst); | |
4167 | ||
c906108c SS |
4168 | /* Handle code with and without frame pointers. */ |
4169 | if (u->Save_SP) | |
43bd9a9e | 4170 | frame_saved_regs[reg] |
ef6e7e13 | 4171 | = get_frame_base (frame_info) + offset; |
c906108c | 4172 | else |
43bd9a9e | 4173 | frame_saved_regs[reg] |
ef6e7e13 | 4174 | = (get_frame_base (frame_info) + (u->Total_frame_size << 3) |
104c1213 | 4175 | + offset); |
c906108c SS |
4176 | } |
4177 | } | |
4178 | ||
4179 | ||
4180 | /* GCC handles callee saved FP regs a little differently. | |
4181 | ||
c5aa993b JM |
4182 | It emits an instruction to put the value of the start of |
4183 | the FP store area into %r1. It then uses fstds,ma with | |
4184 | a basereg of %r1 for the stores. | |
c906108c | 4185 | |
c5aa993b JM |
4186 | HP CC emits them at the current stack pointer modifying |
4187 | the stack pointer as it stores each register. */ | |
c906108c SS |
4188 | |
4189 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4190 | if ((inst & 0xffffc000) == 0x34610000 | |
4191 | || (inst & 0xffffc000) == 0x37c10000) | |
4192 | fp_loc = extract_14 (inst); | |
c5aa993b | 4193 | |
c906108c SS |
4194 | reg = inst_saves_fr (inst); |
4195 | if (reg >= 12 && reg <= 21) | |
4196 | { | |
4197 | /* Note +4 braindamage below is necessary because the FP status | |
4198 | registers are internally 8 registers rather than the expected | |
4199 | 4 registers. */ | |
4200 | save_fr &= ~(1 << reg); | |
4201 | if (fp_loc == -1) | |
4202 | { | |
4203 | /* 1st HP CC FP register store. After this instruction | |
c5aa993b JM |
4204 | we've set enough state that the GCC and HPCC code are |
4205 | both handled in the same manner. */ | |
ef6e7e13 | 4206 | frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info); |
c906108c SS |
4207 | fp_loc = 8; |
4208 | } | |
4209 | else | |
4210 | { | |
43bd9a9e | 4211 | frame_saved_regs[reg + FP0_REGNUM + 4] |
ef6e7e13 | 4212 | = get_frame_base (frame_info) + fp_loc; |
c906108c SS |
4213 | fp_loc += 8; |
4214 | } | |
4215 | } | |
4216 | ||
39f77062 | 4217 | /* Quit if we hit any kind of branch the previous iteration. */ |
d4f3574e | 4218 | if (final_iteration) |
c906108c SS |
4219 | break; |
4220 | ||
d4f3574e SS |
4221 | /* We want to look precisely one instruction beyond the branch |
4222 | if we have not found everything yet. */ | |
4223 | if (is_branch (inst)) | |
4224 | final_iteration = 1; | |
4225 | ||
c906108c SS |
4226 | /* Bump the PC. */ |
4227 | pc += 4; | |
4228 | } | |
4229 | } | |
4230 | ||
43bd9a9e AC |
4231 | /* XXX - deprecated. This is a compatibility function for targets |
4232 | that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */ | |
4233 | /* Find the addresses in which registers are saved in FRAME. */ | |
4234 | ||
343af405 | 4235 | static void |
43bd9a9e AC |
4236 | hppa_frame_init_saved_regs (struct frame_info *frame) |
4237 | { | |
1b1d3794 | 4238 | if (deprecated_get_frame_saved_regs (frame) == NULL) |
43bd9a9e | 4239 | frame_saved_regs_zalloc (frame); |
1b1d3794 | 4240 | hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame)); |
43bd9a9e | 4241 | } |
c906108c | 4242 | |
26d08f08 AC |
4243 | struct hppa_frame_cache |
4244 | { | |
4245 | CORE_ADDR base; | |
4246 | struct trad_frame_saved_reg *saved_regs; | |
4247 | }; | |
4248 | ||
4249 | static struct hppa_frame_cache * | |
4250 | hppa_frame_cache (struct frame_info *next_frame, void **this_cache) | |
4251 | { | |
4252 | struct hppa_frame_cache *cache; | |
4253 | long saved_gr_mask; | |
4254 | long saved_fr_mask; | |
4255 | CORE_ADDR this_sp; | |
4256 | long frame_size; | |
4257 | struct unwind_table_entry *u; | |
4258 | int i; | |
4259 | ||
4260 | if ((*this_cache) != NULL) | |
4261 | return (*this_cache); | |
4262 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); | |
4263 | (*this_cache) = cache; | |
4264 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
4265 | ||
4266 | /* Yow! */ | |
4267 | u = find_unwind_entry (frame_func_unwind (next_frame)); | |
4268 | if (!u) | |
4269 | return; | |
4270 | ||
4271 | /* Turn the Entry_GR field into a bitmask. */ | |
4272 | saved_gr_mask = 0; | |
4273 | for (i = 3; i < u->Entry_GR + 3; i++) | |
4274 | { | |
4275 | /* Frame pointer gets saved into a special location. */ | |
4276 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) | |
4277 | continue; | |
4278 | ||
4279 | saved_gr_mask |= (1 << i); | |
4280 | } | |
4281 | ||
4282 | /* Turn the Entry_FR field into a bitmask too. */ | |
4283 | saved_fr_mask = 0; | |
4284 | for (i = 12; i < u->Entry_FR + 12; i++) | |
4285 | saved_fr_mask |= (1 << i); | |
4286 | ||
4287 | /* Loop until we find everything of interest or hit a branch. | |
4288 | ||
4289 | For unoptimized GCC code and for any HP CC code this will never ever | |
4290 | examine any user instructions. | |
4291 | ||
4292 | For optimized GCC code we're faced with problems. GCC will schedule | |
4293 | its prologue and make prologue instructions available for delay slot | |
4294 | filling. The end result is user code gets mixed in with the prologue | |
4295 | and a prologue instruction may be in the delay slot of the first branch | |
4296 | or call. | |
4297 | ||
4298 | Some unexpected things are expected with debugging optimized code, so | |
4299 | we allow this routine to walk past user instructions in optimized | |
4300 | GCC code. */ | |
4301 | { | |
4302 | int final_iteration = 0; | |
4303 | CORE_ADDR pc; | |
4304 | CORE_ADDR end_pc = skip_prologue_using_sal (pc); | |
4305 | int looking_for_sp = u->Save_SP; | |
4306 | int looking_for_rp = u->Save_RP; | |
4307 | int fp_loc = -1; | |
4308 | if (end_pc == 0) | |
4309 | end_pc = frame_pc_unwind (next_frame); | |
4310 | frame_size = 0; | |
4311 | for (pc = frame_func_unwind (next_frame); | |
4312 | ((saved_gr_mask || saved_fr_mask | |
4313 | || looking_for_sp || looking_for_rp | |
4314 | || frame_size < (u->Total_frame_size << 3)) | |
4315 | && pc <= end_pc); | |
4316 | pc += 4) | |
4317 | { | |
4318 | int reg; | |
4319 | char buf4[4]; | |
4320 | long status = target_read_memory (pc, buf4, sizeof buf4); | |
4321 | long inst = extract_unsigned_integer (buf4, sizeof buf4); | |
4322 | ||
4323 | /* Note the interesting effects of this instruction. */ | |
4324 | frame_size += prologue_inst_adjust_sp (inst); | |
4325 | ||
4326 | /* There are limited ways to store the return pointer into the | |
4327 | stack. */ | |
4328 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
4329 | { | |
4330 | looking_for_rp = 0; | |
4331 | cache->saved_regs[RP_REGNUM].addr = -20; | |
4332 | } | |
4333 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ | |
4334 | { | |
4335 | looking_for_rp = 0; | |
4336 | cache->saved_regs[RP_REGNUM].addr = -16; | |
4337 | } | |
4338 | ||
4339 | /* Check to see if we saved SP into the stack. This also | |
4340 | happens to indicate the location of the saved frame | |
4341 | pointer. */ | |
4342 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
4343 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
4344 | { | |
4345 | looking_for_sp = 0; | |
4346 | cache->saved_regs[DEPRECATED_FP_REGNUM].addr = 0; | |
4347 | } | |
4348 | ||
4349 | /* Account for general and floating-point register saves. */ | |
4350 | reg = inst_saves_gr (inst); | |
4351 | if (reg >= 3 && reg <= 18 | |
4352 | && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM)) | |
4353 | { | |
4354 | saved_gr_mask &= ~(1 << reg); | |
4355 | if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0) | |
4356 | /* stwm with a positive displacement is a _post_ | |
4357 | _modify_. */ | |
4358 | cache->saved_regs[reg].addr = 0; | |
4359 | else if ((inst & 0xfc00000c) == 0x70000008) | |
4360 | /* A std has explicit post_modify forms. */ | |
4361 | cache->saved_regs[reg].addr = 0; | |
4362 | else | |
4363 | { | |
4364 | CORE_ADDR offset; | |
4365 | ||
4366 | if ((inst >> 26) == 0x1c) | |
4367 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); | |
4368 | else if ((inst >> 26) == 0x03) | |
4369 | offset = low_sign_extend (inst & 0x1f, 5); | |
4370 | else | |
4371 | offset = extract_14 (inst); | |
4372 | ||
4373 | /* Handle code with and without frame pointers. */ | |
4374 | if (u->Save_SP) | |
4375 | cache->saved_regs[reg].addr = offset; | |
4376 | else | |
4377 | cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset; | |
4378 | } | |
4379 | } | |
4380 | ||
4381 | /* GCC handles callee saved FP regs a little differently. | |
4382 | ||
4383 | It emits an instruction to put the value of the start of | |
4384 | the FP store area into %r1. It then uses fstds,ma with a | |
4385 | basereg of %r1 for the stores. | |
4386 | ||
4387 | HP CC emits them at the current stack pointer modifying the | |
4388 | stack pointer as it stores each register. */ | |
4389 | ||
4390 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4391 | if ((inst & 0xffffc000) == 0x34610000 | |
4392 | || (inst & 0xffffc000) == 0x37c10000) | |
4393 | fp_loc = extract_14 (inst); | |
4394 | ||
4395 | reg = inst_saves_fr (inst); | |
4396 | if (reg >= 12 && reg <= 21) | |
4397 | { | |
4398 | /* Note +4 braindamage below is necessary because the FP | |
4399 | status registers are internally 8 registers rather than | |
4400 | the expected 4 registers. */ | |
4401 | saved_fr_mask &= ~(1 << reg); | |
4402 | if (fp_loc == -1) | |
4403 | { | |
4404 | /* 1st HP CC FP register store. After this | |
4405 | instruction we've set enough state that the GCC and | |
4406 | HPCC code are both handled in the same manner. */ | |
4407 | cache->saved_regs[reg + FP4_REGNUM + 4].addr = 0; | |
4408 | fp_loc = 8; | |
4409 | } | |
4410 | else | |
4411 | { | |
4412 | cache->saved_regs[reg + FP0_REGNUM + 4].addr = fp_loc; | |
4413 | fp_loc += 8; | |
4414 | } | |
4415 | } | |
4416 | ||
4417 | /* Quit if we hit any kind of branch the previous iteration. */ | |
4418 | if (final_iteration) | |
4419 | break; | |
4420 | /* We want to look precisely one instruction beyond the branch | |
4421 | if we have not found everything yet. */ | |
4422 | if (is_branch (inst)) | |
4423 | final_iteration = 1; | |
4424 | } | |
4425 | } | |
4426 | ||
4427 | { | |
4428 | /* The frame base always represents the value of %sp at entry to | |
4429 | the current function (and is thus equivalent to the "saved" | |
4430 | stack pointer. */ | |
4431 | CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
4432 | /* FIXME: cagney/2004-02-22: This assumes that the frame has been | |
4433 | created. If it hasn't everything will be out-of-wack. */ | |
4434 | if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, SP_REGNUM)) | |
4435 | /* Both we're expecting the SP to be saved and the SP has been | |
4436 | saved. The entry SP value is saved at this frame's SP | |
4437 | address. */ | |
4438 | cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8); | |
4439 | else | |
4440 | /* The prologue has been slowly allocating stack space. Adjust | |
4441 | the SP back. */ | |
4442 | cache->base = this_sp - frame_size; | |
4443 | trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base); | |
4444 | } | |
4445 | ||
4446 | /* The PC is found in the "return register". */ | |
4447 | if (u->Millicode) | |
4448 | cache->saved_regs[PC_REGNUM] = cache->saved_regs[31]; | |
4449 | else | |
4450 | cache->saved_regs[PC_REGNUM] = cache->saved_regs[RP_REGNUM]; | |
4451 | ||
4452 | { | |
4453 | /* Convert all the offsets into addresses. */ | |
4454 | int reg; | |
4455 | for (reg = 0; reg < NUM_REGS; reg++) | |
4456 | { | |
4457 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
4458 | cache->saved_regs[reg].addr += cache->base; | |
4459 | } | |
4460 | } | |
4461 | ||
4462 | return (*this_cache); | |
4463 | } | |
4464 | ||
4465 | static void | |
4466 | hppa_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
4467 | struct frame_id *this_id) | |
4468 | { | |
4469 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache); | |
4470 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
4471 | } | |
4472 | ||
4473 | static void | |
4474 | hppa_frame_prev_register (struct frame_info *next_frame, | |
4475 | void **this_cache, | |
4476 | int regnum, int *optimizedp, | |
4477 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
4478 | int *realnump, void *valuep) | |
4479 | { | |
4480 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache); | |
4481 | trad_frame_prev_register (next_frame, info->saved_regs, regnum, | |
4482 | optimizedp, lvalp, addrp, realnump, valuep); | |
4483 | } | |
4484 | ||
4485 | static const struct frame_unwind hppa_frame_unwind = | |
4486 | { | |
4487 | NORMAL_FRAME, | |
4488 | hppa_frame_this_id, | |
4489 | hppa_frame_prev_register | |
4490 | }; | |
4491 | ||
4492 | static const struct frame_unwind * | |
4493 | hppa_frame_unwind_sniffer (struct frame_info *next_frame) | |
4494 | { | |
4495 | return &hppa_frame_unwind; | |
4496 | } | |
4497 | ||
4498 | static CORE_ADDR | |
4499 | hppa_frame_base_address (struct frame_info *next_frame, | |
4500 | void **this_cache) | |
4501 | { | |
4502 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, | |
4503 | this_cache); | |
4504 | return info->base; | |
4505 | } | |
4506 | ||
4507 | static const struct frame_base hppa_frame_base = { | |
4508 | &hppa_frame_unwind, | |
4509 | hppa_frame_base_address, | |
4510 | hppa_frame_base_address, | |
4511 | hppa_frame_base_address | |
4512 | }; | |
4513 | ||
4514 | static const struct frame_base * | |
4515 | hppa_frame_base_sniffer (struct frame_info *next_frame) | |
4516 | { | |
4517 | return &hppa_frame_base; | |
4518 | } | |
4519 | ||
4520 | static struct frame_id | |
4521 | hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
4522 | { | |
4523 | return frame_id_build (frame_unwind_register_unsigned (next_frame, | |
4524 | SP_REGNUM), | |
4525 | frame_pc_unwind (next_frame)); | |
4526 | } | |
4527 | ||
4528 | static CORE_ADDR | |
4529 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
4530 | { | |
4531 | return frame_unwind_register_signed (next_frame, PC_REGNUM) & ~3; | |
4532 | } | |
4533 | ||
c906108c SS |
4534 | /* Exception handling support for the HP-UX ANSI C++ compiler. |
4535 | The compiler (aCC) provides a callback for exception events; | |
4536 | GDB can set a breakpoint on this callback and find out what | |
4537 | exception event has occurred. */ | |
4538 | ||
4539 | /* The name of the hook to be set to point to the callback function */ | |
c5aa993b JM |
4540 | static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook"; |
4541 | /* The name of the function to be used to set the hook value */ | |
4542 | static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value"; | |
4543 | /* The name of the callback function in end.o */ | |
c906108c | 4544 | static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback"; |
c5aa993b JM |
4545 | /* Name of function in end.o on which a break is set (called by above) */ |
4546 | static char HP_ACC_EH_break[] = "__d_eh_break"; | |
4547 | /* Name of flag (in end.o) that enables catching throws */ | |
4548 | static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw"; | |
4549 | /* Name of flag (in end.o) that enables catching catching */ | |
4550 | static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch"; | |
4551 | /* The enum used by aCC */ | |
4552 | typedef enum | |
4553 | { | |
4554 | __EH_NOTIFY_THROW, | |
4555 | __EH_NOTIFY_CATCH | |
4556 | } | |
4557 | __eh_notification; | |
c906108c SS |
4558 | |
4559 | /* Is exception-handling support available with this executable? */ | |
4560 | static int hp_cxx_exception_support = 0; | |
4561 | /* Has the initialize function been run? */ | |
4562 | int hp_cxx_exception_support_initialized = 0; | |
4563 | /* Similar to above, but imported from breakpoint.c -- non-target-specific */ | |
4564 | extern int exception_support_initialized; | |
4565 | /* Address of __eh_notify_hook */ | |
a0b3c4fd | 4566 | static CORE_ADDR eh_notify_hook_addr = 0; |
c906108c | 4567 | /* Address of __d_eh_notify_callback */ |
a0b3c4fd | 4568 | static CORE_ADDR eh_notify_callback_addr = 0; |
c906108c | 4569 | /* Address of __d_eh_break */ |
a0b3c4fd | 4570 | static CORE_ADDR eh_break_addr = 0; |
c906108c | 4571 | /* Address of __d_eh_catch_catch */ |
a0b3c4fd | 4572 | static CORE_ADDR eh_catch_catch_addr = 0; |
c906108c | 4573 | /* Address of __d_eh_catch_throw */ |
a0b3c4fd | 4574 | static CORE_ADDR eh_catch_throw_addr = 0; |
c906108c | 4575 | /* Sal for __d_eh_break */ |
a0b3c4fd | 4576 | static struct symtab_and_line *break_callback_sal = 0; |
c906108c SS |
4577 | |
4578 | /* Code in end.c expects __d_pid to be set in the inferior, | |
4579 | otherwise __d_eh_notify_callback doesn't bother to call | |
4580 | __d_eh_break! So we poke the pid into this symbol | |
4581 | ourselves. | |
4582 | 0 => success | |
c5aa993b | 4583 | 1 => failure */ |
c906108c | 4584 | int |
fba45db2 | 4585 | setup_d_pid_in_inferior (void) |
c906108c SS |
4586 | { |
4587 | CORE_ADDR anaddr; | |
c5aa993b JM |
4588 | struct minimal_symbol *msymbol; |
4589 | char buf[4]; /* FIXME 32x64? */ | |
4590 | ||
c906108c SS |
4591 | /* Slam the pid of the process into __d_pid; failing is only a warning! */ |
4592 | msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile); | |
4593 | if (msymbol == NULL) | |
4594 | { | |
4595 | warning ("Unable to find __d_pid symbol in object file."); | |
4596 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4597 | return 1; | |
4598 | } | |
4599 | ||
4600 | anaddr = SYMBOL_VALUE_ADDRESS (msymbol); | |
39f77062 | 4601 | store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */ |
c5aa993b | 4602 | if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */ |
c906108c SS |
4603 | { |
4604 | warning ("Unable to write __d_pid"); | |
4605 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4606 | return 1; | |
4607 | } | |
4608 | return 0; | |
4609 | } | |
4610 | ||
4611 | /* Initialize exception catchpoint support by looking for the | |
4612 | necessary hooks/callbacks in end.o, etc., and set the hook value to | |
4613 | point to the required debug function | |
4614 | ||
4615 | Return 0 => failure | |
c5aa993b | 4616 | 1 => success */ |
c906108c SS |
4617 | |
4618 | static int | |
fba45db2 | 4619 | initialize_hp_cxx_exception_support (void) |
c906108c SS |
4620 | { |
4621 | struct symtabs_and_lines sals; | |
c5aa993b JM |
4622 | struct cleanup *old_chain; |
4623 | struct cleanup *canonical_strings_chain = NULL; | |
c906108c | 4624 | int i; |
c5aa993b JM |
4625 | char *addr_start; |
4626 | char *addr_end = NULL; | |
4627 | char **canonical = (char **) NULL; | |
c906108c | 4628 | int thread = -1; |
c5aa993b JM |
4629 | struct symbol *sym = NULL; |
4630 | struct minimal_symbol *msym = NULL; | |
4631 | struct objfile *objfile; | |
c906108c SS |
4632 | asection *shlib_info; |
4633 | ||
4634 | /* Detect and disallow recursion. On HP-UX with aCC, infinite | |
4635 | recursion is a possibility because finding the hook for exception | |
4636 | callbacks involves making a call in the inferior, which means | |
4637 | re-inserting breakpoints which can re-invoke this code */ | |
4638 | ||
c5aa993b JM |
4639 | static int recurse = 0; |
4640 | if (recurse > 0) | |
c906108c SS |
4641 | { |
4642 | hp_cxx_exception_support_initialized = 0; | |
4643 | exception_support_initialized = 0; | |
4644 | return 0; | |
4645 | } | |
4646 | ||
4647 | hp_cxx_exception_support = 0; | |
4648 | ||
4649 | /* First check if we have seen any HP compiled objects; if not, | |
4650 | it is very unlikely that HP's idiosyncratic callback mechanism | |
4651 | for exception handling debug support will be available! | |
4652 | This will percolate back up to breakpoint.c, where our callers | |
4653 | will decide to try the g++ exception-handling support instead. */ | |
4654 | if (!hp_som_som_object_present) | |
4655 | return 0; | |
c5aa993b | 4656 | |
c906108c SS |
4657 | /* We have a SOM executable with SOM debug info; find the hooks */ |
4658 | ||
4659 | /* First look for the notify hook provided by aCC runtime libs */ | |
4660 | /* If we find this symbol, we conclude that the executable must | |
4661 | have HP aCC exception support built in. If this symbol is not | |
4662 | found, even though we're a HP SOM-SOM file, we may have been | |
4663 | built with some other compiler (not aCC). This results percolates | |
4664 | back up to our callers in breakpoint.c which can decide to | |
4665 | try the g++ style of exception support instead. | |
4666 | If this symbol is found but the other symbols we require are | |
4667 | not found, there is something weird going on, and g++ support | |
4668 | should *not* be tried as an alternative. | |
c5aa993b | 4669 | |
c906108c SS |
4670 | ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined. |
4671 | ASSUMPTION: HP aCC and g++ modules cannot be linked together. */ | |
c5aa993b | 4672 | |
c906108c SS |
4673 | /* libCsup has this hook; it'll usually be non-debuggable */ |
4674 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL); | |
4675 | if (msym) | |
4676 | { | |
4677 | eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4678 | hp_cxx_exception_support = 1; | |
c5aa993b | 4679 | } |
c906108c SS |
4680 | else |
4681 | { | |
4682 | warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook); | |
4683 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4684 | warning ("GDB will be unable to intercept exception events."); | |
4685 | eh_notify_hook_addr = 0; | |
4686 | hp_cxx_exception_support = 0; | |
4687 | return 0; | |
4688 | } | |
4689 | ||
c906108c | 4690 | /* Next look for the notify callback routine in end.o */ |
c5aa993b | 4691 | /* This is always available in the SOM symbol dictionary if end.o is linked in */ |
c906108c SS |
4692 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL); |
4693 | if (msym) | |
4694 | { | |
4695 | eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4696 | hp_cxx_exception_support = 1; | |
c5aa993b JM |
4697 | } |
4698 | else | |
c906108c SS |
4699 | { |
4700 | warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback); | |
4701 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4702 | warning ("GDB will be unable to intercept exception events."); | |
4703 | eh_notify_callback_addr = 0; | |
4704 | return 0; | |
4705 | } | |
4706 | ||
53a5351d | 4707 | #ifndef GDB_TARGET_IS_HPPA_20W |
c906108c SS |
4708 | /* Check whether the executable is dynamically linked or archive bound */ |
4709 | /* With an archive-bound executable we can use the raw addresses we find | |
4710 | for the callback function, etc. without modification. For an executable | |
4711 | with shared libraries, we have to do more work to find the plabel, which | |
4712 | can be the target of a call through $$dyncall from the aCC runtime support | |
4713 | library (libCsup) which is linked shared by default by aCC. */ | |
4714 | /* This test below was copied from somsolib.c/somread.c. It may not be a very | |
c5aa993b | 4715 | reliable one to test that an executable is linked shared. pai/1997-07-18 */ |
c906108c SS |
4716 | shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$"); |
4717 | if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0)) | |
4718 | { | |
4719 | /* The minsym we have has the local code address, but that's not the | |
4720 | plabel that can be used by an inter-load-module call. */ | |
4721 | /* Find solib handle for main image (which has end.o), and use that | |
4722 | and the min sym as arguments to __d_shl_get() (which does the equivalent | |
c5aa993b | 4723 | of shl_findsym()) to find the plabel. */ |
c906108c SS |
4724 | |
4725 | args_for_find_stub args; | |
4726 | static char message[] = "Error while finding exception callback hook:\n"; | |
c5aa993b | 4727 | |
c906108c SS |
4728 | args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr); |
4729 | args.msym = msym; | |
a0b3c4fd | 4730 | args.return_val = 0; |
c5aa993b | 4731 | |
c906108c | 4732 | recurse++; |
4efb68b1 | 4733 | catch_errors (cover_find_stub_with_shl_get, &args, message, |
a0b3c4fd JM |
4734 | RETURN_MASK_ALL); |
4735 | eh_notify_callback_addr = args.return_val; | |
c906108c | 4736 | recurse--; |
c5aa993b | 4737 | |
c906108c | 4738 | exception_catchpoints_are_fragile = 1; |
c5aa993b | 4739 | |
c906108c | 4740 | if (!eh_notify_callback_addr) |
c5aa993b JM |
4741 | { |
4742 | /* We can get here either if there is no plabel in the export list | |
1faa59a8 | 4743 | for the main image, or if something strange happened (?) */ |
c5aa993b JM |
4744 | warning ("Couldn't find a plabel (indirect function label) for the exception callback."); |
4745 | warning ("GDB will not be able to intercept exception events."); | |
4746 | return 0; | |
4747 | } | |
c906108c SS |
4748 | } |
4749 | else | |
4750 | exception_catchpoints_are_fragile = 0; | |
53a5351d | 4751 | #endif |
c906108c | 4752 | |
c906108c | 4753 | /* Now, look for the breakpointable routine in end.o */ |
c5aa993b | 4754 | /* This should also be available in the SOM symbol dict. if end.o linked in */ |
c906108c SS |
4755 | msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL); |
4756 | if (msym) | |
4757 | { | |
4758 | eh_break_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4759 | hp_cxx_exception_support = 1; | |
c5aa993b | 4760 | } |
c906108c SS |
4761 | else |
4762 | { | |
4763 | warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break); | |
4764 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4765 | warning ("GDB will be unable to intercept exception events."); | |
4766 | eh_break_addr = 0; | |
4767 | return 0; | |
4768 | } | |
4769 | ||
c906108c SS |
4770 | /* Next look for the catch enable flag provided in end.o */ |
4771 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
176620f1 | 4772 | VAR_DOMAIN, 0, (struct symtab **) NULL); |
c5aa993b | 4773 | if (sym) /* sometimes present in debug info */ |
c906108c SS |
4774 | { |
4775 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4776 | hp_cxx_exception_support = 1; | |
4777 | } | |
c5aa993b JM |
4778 | else |
4779 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4780 | { |
4781 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL); | |
4782 | if (msym) | |
c5aa993b JM |
4783 | { |
4784 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4785 | hp_cxx_exception_support = 1; | |
4786 | } | |
c906108c | 4787 | else |
c5aa993b JM |
4788 | { |
4789 | warning ("Unable to enable interception of exception catches."); | |
4790 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4791 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4792 | return 0; | |
4793 | } | |
c906108c SS |
4794 | } |
4795 | ||
c906108c SS |
4796 | /* Next look for the catch enable flag provided end.o */ |
4797 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
176620f1 | 4798 | VAR_DOMAIN, 0, (struct symtab **) NULL); |
c5aa993b | 4799 | if (sym) /* sometimes present in debug info */ |
c906108c SS |
4800 | { |
4801 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4802 | hp_cxx_exception_support = 1; | |
4803 | } | |
c5aa993b JM |
4804 | else |
4805 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4806 | { |
4807 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL); | |
4808 | if (msym) | |
c5aa993b JM |
4809 | { |
4810 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4811 | hp_cxx_exception_support = 1; | |
4812 | } | |
c906108c | 4813 | else |
c5aa993b JM |
4814 | { |
4815 | warning ("Unable to enable interception of exception throws."); | |
4816 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4817 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4818 | return 0; | |
4819 | } | |
c906108c SS |
4820 | } |
4821 | ||
c5aa993b JM |
4822 | /* Set the flags */ |
4823 | hp_cxx_exception_support = 2; /* everything worked so far */ | |
c906108c SS |
4824 | hp_cxx_exception_support_initialized = 1; |
4825 | exception_support_initialized = 1; | |
4826 | ||
4827 | return 1; | |
4828 | } | |
4829 | ||
4830 | /* Target operation for enabling or disabling interception of | |
4831 | exception events. | |
4832 | KIND is either EX_EVENT_THROW or EX_EVENT_CATCH | |
4833 | ENABLE is either 0 (disable) or 1 (enable). | |
4834 | Return value is NULL if no support found; | |
4835 | -1 if something went wrong, | |
4836 | or a pointer to a symtab/line struct if the breakpointable | |
c5aa993b | 4837 | address was found. */ |
c906108c | 4838 | |
c5aa993b | 4839 | struct symtab_and_line * |
fba45db2 | 4840 | child_enable_exception_callback (enum exception_event_kind kind, int enable) |
c906108c SS |
4841 | { |
4842 | char buf[4]; | |
4843 | ||
4844 | if (!exception_support_initialized || !hp_cxx_exception_support_initialized) | |
4845 | if (!initialize_hp_cxx_exception_support ()) | |
4846 | return NULL; | |
4847 | ||
4848 | switch (hp_cxx_exception_support) | |
4849 | { | |
c5aa993b JM |
4850 | case 0: |
4851 | /* Assuming no HP support at all */ | |
4852 | return NULL; | |
4853 | case 1: | |
4854 | /* HP support should be present, but something went wrong */ | |
4855 | return (struct symtab_and_line *) -1; /* yuck! */ | |
4856 | /* there may be other cases in the future */ | |
c906108c | 4857 | } |
c5aa993b | 4858 | |
c906108c | 4859 | /* Set the EH hook to point to the callback routine */ |
c5aa993b | 4860 | store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */ |
c906108c | 4861 | /* pai: (temp) FIXME should there be a pack operation first? */ |
c5aa993b | 4862 | if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */ |
c906108c SS |
4863 | { |
4864 | warning ("Could not write to target memory for exception event callback."); | |
4865 | warning ("Interception of exception events may not work."); | |
c5aa993b | 4866 | return (struct symtab_and_line *) -1; |
c906108c SS |
4867 | } |
4868 | if (enable) | |
4869 | { | |
c5aa993b | 4870 | /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */ |
39f77062 | 4871 | if (PIDGET (inferior_ptid) > 0) |
c5aa993b JM |
4872 | { |
4873 | if (setup_d_pid_in_inferior ()) | |
4874 | return (struct symtab_and_line *) -1; | |
4875 | } | |
c906108c | 4876 | else |
c5aa993b | 4877 | { |
104c1213 JM |
4878 | warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); |
4879 | return (struct symtab_and_line *) -1; | |
c5aa993b | 4880 | } |
c906108c | 4881 | } |
c5aa993b | 4882 | |
c906108c SS |
4883 | switch (kind) |
4884 | { | |
c5aa993b JM |
4885 | case EX_EVENT_THROW: |
4886 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4887 | if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */ | |
4888 | { | |
4889 | warning ("Couldn't enable exception throw interception."); | |
4890 | return (struct symtab_and_line *) -1; | |
4891 | } | |
4892 | break; | |
4893 | case EX_EVENT_CATCH: | |
4894 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4895 | if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */ | |
4896 | { | |
4897 | warning ("Couldn't enable exception catch interception."); | |
4898 | return (struct symtab_and_line *) -1; | |
4899 | } | |
4900 | break; | |
104c1213 JM |
4901 | default: |
4902 | error ("Request to enable unknown or unsupported exception event."); | |
c906108c | 4903 | } |
c5aa993b | 4904 | |
c906108c SS |
4905 | /* Copy break address into new sal struct, malloc'ing if needed. */ |
4906 | if (!break_callback_sal) | |
4907 | { | |
4908 | break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line)); | |
4909 | } | |
fe39c653 | 4910 | init_sal (break_callback_sal); |
c906108c SS |
4911 | break_callback_sal->symtab = NULL; |
4912 | break_callback_sal->pc = eh_break_addr; | |
4913 | break_callback_sal->line = 0; | |
4914 | break_callback_sal->end = eh_break_addr; | |
c5aa993b | 4915 | |
c906108c SS |
4916 | return break_callback_sal; |
4917 | } | |
4918 | ||
c5aa993b | 4919 | /* Record some information about the current exception event */ |
c906108c | 4920 | static struct exception_event_record current_ex_event; |
c5aa993b JM |
4921 | /* Convenience struct */ |
4922 | static struct symtab_and_line null_symtab_and_line = | |
4923 | {NULL, 0, 0, 0}; | |
c906108c SS |
4924 | |
4925 | /* Report current exception event. Returns a pointer to a record | |
4926 | that describes the kind of the event, where it was thrown from, | |
4927 | and where it will be caught. More information may be reported | |
c5aa993b | 4928 | in the future */ |
c906108c | 4929 | struct exception_event_record * |
fba45db2 | 4930 | child_get_current_exception_event (void) |
c906108c | 4931 | { |
c5aa993b JM |
4932 | CORE_ADDR event_kind; |
4933 | CORE_ADDR throw_addr; | |
4934 | CORE_ADDR catch_addr; | |
c906108c SS |
4935 | struct frame_info *fi, *curr_frame; |
4936 | int level = 1; | |
4937 | ||
c5aa993b | 4938 | curr_frame = get_current_frame (); |
c906108c SS |
4939 | if (!curr_frame) |
4940 | return (struct exception_event_record *) NULL; | |
4941 | ||
4942 | /* Go up one frame to __d_eh_notify_callback, because at the | |
4943 | point when this code is executed, there's garbage in the | |
4944 | arguments of __d_eh_break. */ | |
4945 | fi = find_relative_frame (curr_frame, &level); | |
4946 | if (level != 0) | |
4947 | return (struct exception_event_record *) NULL; | |
4948 | ||
0f7d239c | 4949 | select_frame (fi); |
c906108c SS |
4950 | |
4951 | /* Read in the arguments */ | |
4952 | /* __d_eh_notify_callback() is called with 3 arguments: | |
c5aa993b JM |
4953 | 1. event kind catch or throw |
4954 | 2. the target address if known | |
4955 | 3. a flag -- not sure what this is. pai/1997-07-17 */ | |
4956 | event_kind = read_register (ARG0_REGNUM); | |
c906108c SS |
4957 | catch_addr = read_register (ARG1_REGNUM); |
4958 | ||
4959 | /* Now go down to a user frame */ | |
4960 | /* For a throw, __d_eh_break is called by | |
c5aa993b JM |
4961 | __d_eh_notify_callback which is called by |
4962 | __notify_throw which is called | |
4963 | from user code. | |
c906108c | 4964 | For a catch, __d_eh_break is called by |
c5aa993b JM |
4965 | __d_eh_notify_callback which is called by |
4966 | <stackwalking stuff> which is called by | |
4967 | __throw__<stuff> or __rethrow_<stuff> which is called | |
4968 | from user code. */ | |
4969 | /* FIXME: Don't use such magic numbers; search for the frames */ | |
c906108c SS |
4970 | level = (event_kind == EX_EVENT_THROW) ? 3 : 4; |
4971 | fi = find_relative_frame (curr_frame, &level); | |
4972 | if (level != 0) | |
4973 | return (struct exception_event_record *) NULL; | |
4974 | ||
0f7d239c | 4975 | select_frame (fi); |
ef6e7e13 | 4976 | throw_addr = get_frame_pc (fi); |
c906108c SS |
4977 | |
4978 | /* Go back to original (top) frame */ | |
0f7d239c | 4979 | select_frame (curr_frame); |
c906108c SS |
4980 | |
4981 | current_ex_event.kind = (enum exception_event_kind) event_kind; | |
4982 | current_ex_event.throw_sal = find_pc_line (throw_addr, 1); | |
4983 | current_ex_event.catch_sal = find_pc_line (catch_addr, 1); | |
4984 | ||
4985 | return ¤t_ex_event; | |
4986 | } | |
4987 | ||
9a043c1d AC |
4988 | /* Instead of this nasty cast, add a method pvoid() that prints out a |
4989 | host VOID data type (remember %p isn't portable). */ | |
4990 | ||
4991 | static CORE_ADDR | |
4992 | hppa_pointer_to_address_hack (void *ptr) | |
4993 | { | |
4994 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
4995 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
4996 | } | |
4997 | ||
c906108c | 4998 | static void |
fba45db2 | 4999 | unwind_command (char *exp, int from_tty) |
c906108c SS |
5000 | { |
5001 | CORE_ADDR address; | |
5002 | struct unwind_table_entry *u; | |
5003 | ||
5004 | /* If we have an expression, evaluate it and use it as the address. */ | |
5005 | ||
5006 | if (exp != 0 && *exp != 0) | |
5007 | address = parse_and_eval_address (exp); | |
5008 | else | |
5009 | return; | |
5010 | ||
5011 | u = find_unwind_entry (address); | |
5012 | ||
5013 | if (!u) | |
5014 | { | |
5015 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
5016 | return; | |
5017 | } | |
5018 | ||
ce414844 | 5019 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
9a043c1d | 5020 | paddr_nz (hppa_pointer_to_address_hack (u))); |
c906108c SS |
5021 | |
5022 | printf_unfiltered ("\tregion_start = "); | |
5023 | print_address (u->region_start, gdb_stdout); | |
5024 | ||
5025 | printf_unfiltered ("\n\tregion_end = "); | |
5026 | print_address (u->region_end, gdb_stdout); | |
5027 | ||
c906108c | 5028 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
5029 | |
5030 | printf_unfiltered ("\n\tflags ="); | |
5031 | pif (Cannot_unwind); | |
5032 | pif (Millicode); | |
5033 | pif (Millicode_save_sr0); | |
5034 | pif (Entry_SR); | |
5035 | pif (Args_stored); | |
5036 | pif (Variable_Frame); | |
5037 | pif (Separate_Package_Body); | |
5038 | pif (Frame_Extension_Millicode); | |
5039 | pif (Stack_Overflow_Check); | |
5040 | pif (Two_Instruction_SP_Increment); | |
5041 | pif (Ada_Region); | |
5042 | pif (Save_SP); | |
5043 | pif (Save_RP); | |
5044 | pif (Save_MRP_in_frame); | |
5045 | pif (extn_ptr_defined); | |
5046 | pif (Cleanup_defined); | |
5047 | pif (MPE_XL_interrupt_marker); | |
5048 | pif (HP_UX_interrupt_marker); | |
5049 | pif (Large_frame); | |
5050 | ||
5051 | putchar_unfiltered ('\n'); | |
5052 | ||
c906108c | 5053 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
5054 | |
5055 | pin (Region_description); | |
5056 | pin (Entry_FR); | |
5057 | pin (Entry_GR); | |
5058 | pin (Total_frame_size); | |
5059 | } | |
c906108c | 5060 | |
c2c6d25f | 5061 | void |
fba45db2 | 5062 | hppa_skip_permanent_breakpoint (void) |
c2c6d25f JM |
5063 | { |
5064 | /* To step over a breakpoint instruction on the PA takes some | |
5065 | fiddling with the instruction address queue. | |
5066 | ||
5067 | When we stop at a breakpoint, the IA queue front (the instruction | |
5068 | we're executing now) points at the breakpoint instruction, and | |
5069 | the IA queue back (the next instruction to execute) points to | |
5070 | whatever instruction we would execute after the breakpoint, if it | |
5071 | were an ordinary instruction. This is the case even if the | |
5072 | breakpoint is in the delay slot of a branch instruction. | |
5073 | ||
5074 | Clearly, to step past the breakpoint, we need to set the queue | |
5075 | front to the back. But what do we put in the back? What | |
5076 | instruction comes after that one? Because of the branch delay | |
5077 | slot, the next insn is always at the back + 4. */ | |
5078 | write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM)); | |
5079 | write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM)); | |
5080 | ||
5081 | write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4); | |
5082 | /* We can leave the tail's space the same, since there's no jump. */ | |
5083 | } | |
5084 | ||
1cdb71fe JL |
5085 | /* Copy the function value from VALBUF into the proper location |
5086 | for a function return. | |
5087 | ||
5088 | Called only in the context of the "return" command. */ | |
5089 | ||
5090 | void | |
3ff7cf9e | 5091 | hppa32_store_return_value (struct type *type, char *valbuf) |
1cdb71fe JL |
5092 | { |
5093 | /* For software floating point, the return value goes into the | |
5094 | integer registers. But we do not have any flag to key this on, | |
5095 | so we always store the value into the integer registers. | |
5096 | ||
5097 | If its a float value, then we also store it into the floating | |
5098 | point registers. */ | |
62700349 | 5099 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28) |
73937e03 AC |
5100 | + (TYPE_LENGTH (type) > 4 |
5101 | ? (8 - TYPE_LENGTH (type)) | |
5102 | : (4 - TYPE_LENGTH (type))), | |
5103 | valbuf, TYPE_LENGTH (type)); | |
77296879 | 5104 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
62700349 | 5105 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM), |
73937e03 | 5106 | valbuf, TYPE_LENGTH (type)); |
1cdb71fe JL |
5107 | } |
5108 | ||
3ff7cf9e JB |
5109 | /* Same as hppa32_store_return_value(), but for the PA64 ABI. */ |
5110 | ||
5111 | void | |
5112 | hppa64_store_return_value (struct type *type, char *valbuf) | |
5113 | { | |
5114 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
5115 | deprecated_write_register_bytes | |
62700349 | 5116 | (DEPRECATED_REGISTER_BYTE (FP4_REGNUM) |
3ff7cf9e JB |
5117 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
5118 | valbuf, TYPE_LENGTH (type)); | |
5119 | else if (is_integral_type(type)) | |
5120 | deprecated_write_register_bytes | |
62700349 | 5121 | (DEPRECATED_REGISTER_BYTE (28) |
3ff7cf9e JB |
5122 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
5123 | valbuf, TYPE_LENGTH (type)); | |
5124 | else if (TYPE_LENGTH (type) <= 8) | |
5125 | deprecated_write_register_bytes | |
62700349 | 5126 | (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type)); |
3ff7cf9e JB |
5127 | else if (TYPE_LENGTH (type) <= 16) |
5128 | { | |
62700349 | 5129 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8); |
3ff7cf9e | 5130 | deprecated_write_register_bytes |
62700349 | 5131 | (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8); |
3ff7cf9e JB |
5132 | } |
5133 | } | |
5134 | ||
1cdb71fe JL |
5135 | /* Copy the function's return value into VALBUF. |
5136 | ||
5137 | This function is called only in the context of "target function calls", | |
5138 | ie. when the debugger forces a function to be called in the child, and | |
5139 | when the debugger forces a fucntion to return prematurely via the | |
5140 | "return" command. */ | |
5141 | ||
5142 | void | |
3ff7cf9e | 5143 | hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf) |
1cdb71fe | 5144 | { |
77296879 | 5145 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
62700349 | 5146 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type)); |
1cdb71fe JL |
5147 | else |
5148 | memcpy (valbuf, | |
3ff7cf9e | 5149 | (regbuf |
62700349 | 5150 | + DEPRECATED_REGISTER_BYTE (28) |
1cdb71fe JL |
5151 | + (TYPE_LENGTH (type) > 4 |
5152 | ? (8 - TYPE_LENGTH (type)) | |
5153 | : (4 - TYPE_LENGTH (type)))), | |
5154 | TYPE_LENGTH (type)); | |
5155 | } | |
4facf7e8 | 5156 | |
3ff7cf9e JB |
5157 | /* Same as hppa32_extract_return_value but for the PA64 ABI case. */ |
5158 | ||
5159 | void | |
5160 | hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
5161 | { | |
5162 | /* RM: Floats are returned in FR4R, doubles in FR4. | |
5163 | Integral values are in r28, padded on the left. | |
5164 | Aggregates less that 65 bits are in r28, right padded. | |
5165 | Aggregates upto 128 bits are in r28 and r29, right padded. */ | |
5166 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
5167 | memcpy (valbuf, | |
62700349 | 5168 | regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM) |
3ff7cf9e JB |
5169 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
5170 | TYPE_LENGTH (type)); | |
5171 | else if (is_integral_type(type)) | |
5172 | memcpy (valbuf, | |
62700349 | 5173 | regbuf + DEPRECATED_REGISTER_BYTE (28) |
3ff7cf9e JB |
5174 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
5175 | TYPE_LENGTH (type)); | |
5176 | else if (TYPE_LENGTH (type) <= 8) | |
62700349 AC |
5177 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), |
5178 | TYPE_LENGTH (type)); | |
3ff7cf9e JB |
5179 | else if (TYPE_LENGTH (type) <= 16) |
5180 | { | |
62700349 AC |
5181 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8); |
5182 | memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29), | |
5183 | TYPE_LENGTH (type) - 8); | |
3ff7cf9e JB |
5184 | } |
5185 | } | |
5186 | ||
d709c020 JB |
5187 | int |
5188 | hppa_reg_struct_has_addr (int gcc_p, struct type *type) | |
5189 | { | |
5190 | /* On the PA, any pass-by-value structure > 8 bytes is actually passed | |
5191 | via a pointer regardless of its type or the compiler used. */ | |
5192 | return (TYPE_LENGTH (type) > 8); | |
5193 | } | |
5194 | ||
5195 | int | |
5196 | hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs) | |
5197 | { | |
5198 | /* Stack grows upward */ | |
5199 | return (lhs > rhs); | |
5200 | } | |
5201 | ||
5202 | CORE_ADDR | |
3ff7cf9e | 5203 | hppa32_stack_align (CORE_ADDR sp) |
d709c020 JB |
5204 | { |
5205 | /* elz: adjust the quantity to the next highest value which is | |
5206 | 64-bit aligned. This is used in valops.c, when the sp is adjusted. | |
5207 | On hppa the sp must always be kept 64-bit aligned */ | |
5208 | return ((sp % 8) ? (sp + 7) & -8 : sp); | |
5209 | } | |
5210 | ||
3ff7cf9e JB |
5211 | CORE_ADDR |
5212 | hppa64_stack_align (CORE_ADDR sp) | |
5213 | { | |
5214 | /* The PA64 ABI mandates a 16 byte stack alignment. */ | |
5215 | return ((sp % 16) ? (sp + 15) & -16 : sp); | |
5216 | } | |
5217 | ||
d709c020 JB |
5218 | int |
5219 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
5220 | { | |
5221 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
5222 | ||
5223 | An example of this occurs when an a.out is linked against a foo.sl. | |
5224 | The foo.sl defines a global bar(), and the a.out declares a signature | |
5225 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
5226 | its address in another call. | |
5227 | ||
5228 | If you have this scenario and attempt to "break bar" before running, | |
5229 | gdb will find a minimal symbol for bar() in the a.out. But that | |
5230 | symbol's address will be negative. What this appears to denote is | |
5231 | an index backwards from the base of the procedure linkage table (PLT) | |
5232 | into the data linkage table (DLT), the end of which is contiguous | |
5233 | with the start of the PLT. This is clearly not a valid address for | |
5234 | us to set a breakpoint on. | |
5235 | ||
5236 | Note that one must be careful in how one checks for a negative address. | |
5237 | 0xc0000000 is a legitimate address of something in a shared text | |
5238 | segment, for example. Since I don't know what the possible range | |
5239 | is of these "really, truly negative" addresses that come from the | |
5240 | minimal symbols, I'm resorting to the gross hack of checking the | |
5241 | top byte of the address for all 1's. Sigh. */ | |
5242 | ||
5243 | return (!target_has_stack && (pc & 0xFF000000)); | |
5244 | } | |
5245 | ||
5246 | int | |
5247 | hppa_instruction_nullified (void) | |
5248 | { | |
5249 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
5250 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
5251 | semi-mechanical multiarching-related changes. */ | |
5252 | const int ipsw = (int) read_register (IPSW_REGNUM); | |
5253 | const int flags = (int) read_register (FLAGS_REGNUM); | |
5254 | ||
5255 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
5256 | } | |
5257 | ||
60e1ff27 JB |
5258 | int |
5259 | hppa_register_raw_size (int reg_nr) | |
5260 | { | |
5261 | /* All registers have the same size. */ | |
b1e29e33 | 5262 | return DEPRECATED_REGISTER_SIZE; |
60e1ff27 JB |
5263 | } |
5264 | ||
d709c020 JB |
5265 | /* Index within the register vector of the first byte of the space i |
5266 | used for register REG_NR. */ | |
5267 | ||
5268 | int | |
5269 | hppa_register_byte (int reg_nr) | |
5270 | { | |
3ff7cf9e JB |
5271 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
5272 | ||
5273 | return reg_nr * tdep->bytes_per_address; | |
d709c020 JB |
5274 | } |
5275 | ||
5276 | /* Return the GDB type object for the "standard" data type of data | |
5277 | in register N. */ | |
5278 | ||
5279 | struct type * | |
3ff7cf9e | 5280 | hppa32_register_virtual_type (int reg_nr) |
d709c020 JB |
5281 | { |
5282 | if (reg_nr < FP4_REGNUM) | |
5283 | return builtin_type_int; | |
5284 | else | |
5285 | return builtin_type_float; | |
5286 | } | |
5287 | ||
3ff7cf9e JB |
5288 | /* Return the GDB type object for the "standard" data type of data |
5289 | in register N. hppa64 version. */ | |
5290 | ||
5291 | struct type * | |
5292 | hppa64_register_virtual_type (int reg_nr) | |
5293 | { | |
5294 | if (reg_nr < FP4_REGNUM) | |
5295 | return builtin_type_unsigned_long_long; | |
5296 | else | |
5297 | return builtin_type_double; | |
5298 | } | |
5299 | ||
d709c020 JB |
5300 | /* Store the address of the place in which to copy the structure the |
5301 | subroutine will return. This is called from call_function. */ | |
5302 | ||
5303 | void | |
5304 | hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
5305 | { | |
5306 | write_register (28, addr); | |
5307 | } | |
d709c020 JB |
5308 | /* Return True if REGNUM is not a register available to the user |
5309 | through ptrace(). */ | |
5310 | ||
5311 | int | |
5312 | hppa_cannot_store_register (int regnum) | |
5313 | { | |
5314 | return (regnum == 0 | |
5315 | || regnum == PCSQ_HEAD_REGNUM | |
5316 | || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM) | |
5317 | || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM)); | |
5318 | ||
5319 | } | |
5320 | ||
d709c020 JB |
5321 | CORE_ADDR |
5322 | hppa_smash_text_address (CORE_ADDR addr) | |
5323 | { | |
5324 | /* The low two bits of the PC on the PA contain the privilege level. | |
5325 | Some genius implementing a (non-GCC) compiler apparently decided | |
5326 | this means that "addresses" in a text section therefore include a | |
5327 | privilege level, and thus symbol tables should contain these bits. | |
5328 | This seems like a bonehead thing to do--anyway, it seems to work | |
5329 | for our purposes to just ignore those bits. */ | |
5330 | ||
5331 | return (addr &= ~0x3); | |
5332 | } | |
5333 | ||
143985b7 AF |
5334 | /* Get the ith function argument for the current function. */ |
5335 | CORE_ADDR | |
5336 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, | |
5337 | struct type *type) | |
5338 | { | |
5339 | CORE_ADDR addr; | |
7f5f525d | 5340 | get_frame_register (frame, R0_REGNUM + 26 - argi, &addr); |
143985b7 AF |
5341 | return addr; |
5342 | } | |
5343 | ||
8e8b2dba MC |
5344 | /* Here is a table of C type sizes on hppa with various compiles |
5345 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
5346 | and these compilers: | |
5347 | ||
5348 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
5349 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
5350 | /opt/aCC/bin/aCC B3910B A.03.45 | |
5351 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
5352 | ||
5353 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
5354 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5355 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5356 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
5357 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5358 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5359 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
5360 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5361 | ||
5362 | Each line is: | |
5363 | ||
5364 | compiler and options | |
5365 | char, short, int, long, long long | |
5366 | float, double, long double | |
5367 | char *, void (*)() | |
5368 | ||
5369 | So all these compilers use either ILP32 or LP64 model. | |
5370 | TODO: gcc has more options so it needs more investigation. | |
5371 | ||
a2379359 MC |
5372 | For floating point types, see: |
5373 | ||
5374 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
5375 | HP-UX floating-point guide, hpux 11.00 | |
5376 | ||
8e8b2dba MC |
5377 | -- chastain 2003-12-18 */ |
5378 | ||
e6e68f1f JB |
5379 | static struct gdbarch * |
5380 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
5381 | { | |
3ff7cf9e | 5382 | struct gdbarch_tdep *tdep; |
e6e68f1f | 5383 | struct gdbarch *gdbarch; |
59623e27 JB |
5384 | |
5385 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 5386 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 5387 | { |
4be87837 DJ |
5388 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
5389 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
5390 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 5391 | } |
e6e68f1f JB |
5392 | |
5393 | /* find a candidate among the list of pre-declared architectures. */ | |
5394 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
5395 | if (arches != NULL) | |
5396 | return (arches->gdbarch); | |
5397 | ||
5398 | /* If none found, then allocate and initialize one. */ | |
3ff7cf9e JB |
5399 | tdep = XMALLOC (struct gdbarch_tdep); |
5400 | gdbarch = gdbarch_alloc (&info, tdep); | |
5401 | ||
5402 | /* Determine from the bfd_arch_info structure if we are dealing with | |
5403 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
5404 | then default to a 32bit machine. */ | |
5405 | if (info.bfd_arch_info != NULL) | |
5406 | tdep->bytes_per_address = | |
5407 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
5408 | else | |
5409 | tdep->bytes_per_address = 4; | |
5410 | ||
5411 | /* Some parts of the gdbarch vector depend on whether we are running | |
5412 | on a 32 bits or 64 bits target. */ | |
5413 | switch (tdep->bytes_per_address) | |
5414 | { | |
5415 | case 4: | |
5416 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
5417 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
5418 | set_gdbarch_deprecated_register_virtual_type | |
5419 | (gdbarch, hppa32_register_virtual_type); | |
3ff7cf9e JB |
5420 | break; |
5421 | case 8: | |
5422 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
5423 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
5424 | set_gdbarch_deprecated_register_virtual_type | |
5425 | (gdbarch, hppa64_register_virtual_type); | |
3ff7cf9e JB |
5426 | break; |
5427 | default: | |
5428 | internal_error (__FILE__, __LINE__, "Unsupported address size: %d", | |
5429 | tdep->bytes_per_address); | |
5430 | } | |
5431 | ||
5432 | /* The following gdbarch vector elements depend on other parts of this | |
5433 | vector which have been set above, depending on the ABI. */ | |
5434 | set_gdbarch_deprecated_register_bytes | |
5435 | (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address); | |
5436 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); | |
3ff7cf9e | 5437 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 5438 | |
8e8b2dba MC |
5439 | /* The following gdbarch vector elements are the same in both ILP32 |
5440 | and LP64, but might show differences some day. */ | |
5441 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5442 | set_gdbarch_long_double_bit (gdbarch, 128); | |
a2379359 | 5443 | set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big); |
8e8b2dba | 5444 | |
3ff7cf9e JB |
5445 | /* The following gdbarch vector elements do not depend on the address |
5446 | size, or in any other gdbarch element previously set. */ | |
60383d10 JB |
5447 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
5448 | set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); | |
5449 | set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline); | |
5450 | set_gdbarch_in_solib_return_trampoline (gdbarch, | |
5451 | hppa_in_solib_return_trampoline); | |
60383d10 | 5452 | set_gdbarch_inner_than (gdbarch, hppa_inner_than); |
3ff7cf9e | 5453 | set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address); |
0ba6dca9 | 5454 | set_gdbarch_deprecated_fp_regnum (gdbarch, 3); |
60383d10 JB |
5455 | set_gdbarch_sp_regnum (gdbarch, 30); |
5456 | set_gdbarch_fp0_regnum (gdbarch, 64); | |
5457 | set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM); | |
9c04cab7 | 5458 | set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size); |
9c04cab7 AC |
5459 | set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte); |
5460 | set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size); | |
3ff7cf9e | 5461 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address); |
a0ed5532 | 5462 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8); |
60383d10 | 5463 | set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register); |
b6fbdd1d | 5464 | set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address); |
60383d10 JB |
5465 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
5466 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
5467 | set_gdbarch_read_pc (gdbarch, hppa_target_read_pc); | |
5468 | set_gdbarch_write_pc (gdbarch, hppa_target_write_pc); | |
0ba6dca9 | 5469 | set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp); |
60383d10 | 5470 | |
143985b7 AF |
5471 | /* Helper for function argument information. */ |
5472 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
5473 | ||
36482093 AC |
5474 | set_gdbarch_print_insn (gdbarch, print_insn_hppa); |
5475 | ||
3a3bc038 AC |
5476 | /* When a hardware watchpoint triggers, we'll move the inferior past |
5477 | it by removing all eventpoints; stepping past the instruction | |
5478 | that caused the trigger; reinserting eventpoints; and checking | |
5479 | whether any watched location changed. */ | |
5480 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
5481 | ||
5979bc46 | 5482 | /* Inferior function call methods. */ |
e963316f | 5483 | if (0) |
5979bc46 | 5484 | { |
5979bc46 | 5485 | } |
e963316f AC |
5486 | else |
5487 | { | |
5488 | switch (tdep->bytes_per_address) | |
5489 | { | |
5490 | case 4: | |
5491 | set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa32_call_dummy_length); | |
5492 | set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align); | |
5493 | set_gdbarch_deprecated_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr); | |
5494 | set_gdbarch_deprecated_extract_return_value (gdbarch, hppa32_extract_return_value); | |
5495 | set_gdbarch_use_struct_convention (gdbarch, hppa32_use_struct_convention); | |
5496 | set_gdbarch_deprecated_store_return_value (gdbarch, hppa32_store_return_value); | |
5497 | break; | |
5498 | case 8: | |
5499 | set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch, hppa64_call_dummy_breakpoint_offset); | |
5500 | set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa64_call_dummy_length); | |
5501 | set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align); | |
5502 | set_gdbarch_deprecated_extract_return_value (gdbarch, hppa64_extract_return_value); | |
5503 | set_gdbarch_use_struct_convention (gdbarch, hppa64_use_struct_convention); | |
5504 | set_gdbarch_deprecated_store_return_value (gdbarch, hppa64_store_return_value); | |
5505 | break; | |
5506 | } | |
5507 | set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return); | |
5508 | set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame); | |
5509 | /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */ | |
5510 | set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments); | |
5511 | } | |
5512 | ||
5979bc46 | 5513 | /* Frame unwind methods. */ |
e963316f AC |
5514 | if (0) |
5515 | { | |
26d08f08 AC |
5516 | set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id); |
5517 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); | |
5518 | frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer); | |
5519 | frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer); | |
e963316f AC |
5520 | } |
5521 | else | |
5522 | { | |
5523 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call); | |
5524 | set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default); | |
5525 | set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, hppa_frame_init_saved_regs); | |
5526 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info); | |
5527 | set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain); | |
5528 | set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid); | |
5529 | set_gdbarch_deprecated_frameless_function_invocation (gdbarch, hppa_frameless_function_invocation); | |
5530 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc); | |
5531 | set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame); | |
5532 | } | |
5979bc46 | 5533 | |
752d4ac1 JB |
5534 | /* Hook in ABI-specific overrides, if they have been registered. */ |
5535 | gdbarch_init_osabi (info, gdbarch); | |
5536 | ||
e6e68f1f JB |
5537 | return gdbarch; |
5538 | } | |
5539 | ||
5540 | static void | |
5541 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
5542 | { | |
5543 | /* Nothing to print for the moment. */ | |
5544 | } | |
5545 | ||
4facf7e8 JB |
5546 | void |
5547 | _initialize_hppa_tdep (void) | |
5548 | { | |
5549 | struct cmd_list_element *c; | |
5550 | void break_at_finish_command (char *arg, int from_tty); | |
5551 | void tbreak_at_finish_command (char *arg, int from_tty); | |
5552 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
5553 | ||
e6e68f1f | 5554 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 JB |
5555 | |
5556 | add_cmd ("unwind", class_maintenance, unwind_command, | |
5557 | "Print unwind table entry at given address.", | |
5558 | &maintenanceprintlist); | |
5559 | ||
5560 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
5561 | break_at_finish_command, | |
5562 | concat ("Set breakpoint at procedure exit. \n\ | |
5563 | Argument may be function name, or \"*\" and an address.\n\ | |
5564 | If function is specified, break at end of code for that function.\n\ | |
5565 | If an address is specified, break at the end of the function that contains \n\ | |
5566 | that exact address.\n", | |
5567 | "With no arg, uses current execution address of selected stack frame.\n\ | |
5568 | This is useful for breaking on return to a stack frame.\n\ | |
5569 | \n\ | |
5570 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
5571 | \n\ | |
5572 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
5573 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
5574 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
5575 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
5576 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
5577 | ||
5578 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
5579 | tbreak_at_finish_command, | |
5580 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
5581 | be no argument or the argument must be a depth.\n"), NULL); | |
5582 | set_cmd_completer (c, location_completer); | |
5583 | ||
5584 | if (xdb_commands) | |
5585 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
5586 | break_at_finish_at_depth_command, | |
5587 | "Set breakpoint at procedure exit. Either there should\n\ | |
5588 | be no argument or the argument must be a depth.\n"), NULL); | |
5589 | } | |
5590 |