]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
1e698235 | 4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
c906108c SS |
5 | |
6 | Contributed by the Center for Software Science at the | |
7 | University of Utah ([email protected]). | |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b JM |
21 | You should have received a copy of the GNU General Public License |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 59 Temple Place - Suite 330, | |
24 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
25 | |
26 | #include "defs.h" | |
27 | #include "frame.h" | |
28 | #include "bfd.h" | |
29 | #include "inferior.h" | |
30 | #include "value.h" | |
4e052eda | 31 | #include "regcache.h" |
e5d66720 | 32 | #include "completer.h" |
d709c020 | 33 | #include "language.h" |
59623e27 | 34 | #include "osabi.h" |
a7ff40e7 | 35 | #include "gdb_assert.h" |
65e82032 | 36 | #include "infttrace.h" |
c906108c SS |
37 | /* For argument passing to the inferior */ |
38 | #include "symtab.h" | |
04714b91 | 39 | #include "infcall.h" |
c906108c SS |
40 | |
41 | #ifdef USG | |
42 | #include <sys/types.h> | |
43 | #endif | |
44 | ||
45 | #include <dl.h> | |
46 | #include <sys/param.h> | |
47 | #include <signal.h> | |
48 | ||
49 | #include <sys/ptrace.h> | |
50 | #include <machine/save_state.h> | |
51 | ||
52 | #ifdef COFF_ENCAPSULATE | |
53 | #include "a.out.encap.h" | |
54 | #else | |
55 | #endif | |
56 | ||
c5aa993b | 57 | /*#include <sys/user.h> After a.out.h */ |
c906108c SS |
58 | #include <sys/file.h> |
59 | #include "gdb_stat.h" | |
03f2053f | 60 | #include "gdb_wait.h" |
c906108c SS |
61 | |
62 | #include "gdbcore.h" | |
63 | #include "gdbcmd.h" | |
64 | #include "target.h" | |
65 | #include "symfile.h" | |
66 | #include "objfiles.h" | |
67 | ||
60383d10 JB |
68 | /* Some local constants. */ |
69 | static const int hppa_num_regs = 128; | |
70 | ||
e2ac8128 JB |
71 | /* Get at various relevent fields of an instruction word. */ |
72 | #define MASK_5 0x1f | |
73 | #define MASK_11 0x7ff | |
74 | #define MASK_14 0x3fff | |
75 | #define MASK_21 0x1fffff | |
76 | ||
77 | /* Define offsets into the call dummy for the target function address. | |
78 | See comments related to CALL_DUMMY for more info. */ | |
79 | #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9) | |
80 | #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10) | |
81 | ||
82 | /* Define offsets into the call dummy for the _sr4export address. | |
83 | See comments related to CALL_DUMMY for more info. */ | |
84 | #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12) | |
85 | #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13) | |
86 | ||
c906108c SS |
87 | /* To support detection of the pseudo-initial frame |
88 | that threads have. */ | |
89 | #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" | |
90 | #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) | |
c5aa993b | 91 | |
e2ac8128 JB |
92 | /* Sizes (in bytes) of the native unwind entries. */ |
93 | #define UNWIND_ENTRY_SIZE 16 | |
94 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
95 | ||
96 | static int get_field (unsigned word, int from, int to); | |
97 | ||
a14ed312 | 98 | static int extract_5_load (unsigned int); |
c906108c | 99 | |
a14ed312 | 100 | static unsigned extract_5R_store (unsigned int); |
c906108c | 101 | |
a14ed312 | 102 | static unsigned extract_5r_store (unsigned int); |
c906108c | 103 | |
43bd9a9e | 104 | static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *); |
c906108c | 105 | |
a14ed312 | 106 | static int find_proc_framesize (CORE_ADDR); |
c906108c | 107 | |
a14ed312 | 108 | static int find_return_regnum (CORE_ADDR); |
c906108c | 109 | |
a14ed312 | 110 | struct unwind_table_entry *find_unwind_entry (CORE_ADDR); |
c906108c | 111 | |
a14ed312 | 112 | static int extract_17 (unsigned int); |
c906108c | 113 | |
a14ed312 | 114 | static unsigned deposit_21 (unsigned int, unsigned int); |
c906108c | 115 | |
a14ed312 | 116 | static int extract_21 (unsigned); |
c906108c | 117 | |
a14ed312 | 118 | static unsigned deposit_14 (int, unsigned int); |
c906108c | 119 | |
a14ed312 | 120 | static int extract_14 (unsigned); |
c906108c | 121 | |
a14ed312 | 122 | static void unwind_command (char *, int); |
c906108c | 123 | |
a14ed312 | 124 | static int low_sign_extend (unsigned int, unsigned int); |
c906108c | 125 | |
a14ed312 | 126 | static int sign_extend (unsigned int, unsigned int); |
c906108c | 127 | |
43bd9a9e | 128 | static int restore_pc_queue (CORE_ADDR *); |
c906108c | 129 | |
a14ed312 | 130 | static int hppa_alignof (struct type *); |
c906108c | 131 | |
a14ed312 | 132 | static int prologue_inst_adjust_sp (unsigned long); |
c906108c | 133 | |
a14ed312 | 134 | static int is_branch (unsigned long); |
c906108c | 135 | |
a14ed312 | 136 | static int inst_saves_gr (unsigned long); |
c906108c | 137 | |
a14ed312 | 138 | static int inst_saves_fr (unsigned long); |
c906108c | 139 | |
a14ed312 | 140 | static int pc_in_interrupt_handler (CORE_ADDR); |
c906108c | 141 | |
a14ed312 | 142 | static int pc_in_linker_stub (CORE_ADDR); |
c906108c | 143 | |
a14ed312 | 144 | static int compare_unwind_entries (const void *, const void *); |
c906108c | 145 | |
a14ed312 | 146 | static void read_unwind_info (struct objfile *); |
c906108c | 147 | |
a14ed312 KB |
148 | static void internalize_unwinds (struct objfile *, |
149 | struct unwind_table_entry *, | |
150 | asection *, unsigned int, | |
151 | unsigned int, CORE_ADDR); | |
152 | static void pa_print_registers (char *, int, int); | |
d9fcf2fb | 153 | static void pa_strcat_registers (char *, int, int, struct ui_file *); |
a14ed312 KB |
154 | static void pa_register_look_aside (char *, int, long *); |
155 | static void pa_print_fp_reg (int); | |
d9fcf2fb | 156 | static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type); |
a14ed312 | 157 | static void record_text_segment_lowaddr (bfd *, asection *, void *); |
d709c020 JB |
158 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
159 | following functions static, once we hppa is partially multiarched. */ | |
160 | int hppa_reg_struct_has_addr (int gcc_p, struct type *type); | |
60383d10 JB |
161 | CORE_ADDR hppa_skip_prologue (CORE_ADDR pc); |
162 | CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc); | |
163 | int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name); | |
164 | int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name); | |
165 | CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame); | |
d709c020 JB |
166 | int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs); |
167 | CORE_ADDR hppa_stack_align (CORE_ADDR sp); | |
168 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); | |
169 | int hppa_instruction_nullified (void); | |
60e1ff27 | 170 | int hppa_register_raw_size (int reg_nr); |
d709c020 JB |
171 | int hppa_register_byte (int reg_nr); |
172 | struct type * hppa_register_virtual_type (int reg_nr); | |
173 | void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp); | |
60383d10 JB |
174 | void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf); |
175 | int hppa_use_struct_convention (int gcc_p, struct type *type); | |
176 | void hppa_store_return_value (struct type *type, char *valbuf); | |
177 | CORE_ADDR hppa_extract_struct_value_address (char *regbuf); | |
d709c020 | 178 | int hppa_cannot_store_register (int regnum); |
60383d10 JB |
179 | void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame); |
180 | CORE_ADDR hppa_frame_chain (struct frame_info *frame); | |
181 | int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe); | |
182 | int hppa_frameless_function_invocation (struct frame_info *frame); | |
183 | CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame); | |
d709c020 JB |
184 | CORE_ADDR hppa_frame_args_address (struct frame_info *fi); |
185 | CORE_ADDR hppa_frame_locals_address (struct frame_info *fi); | |
60383d10 | 186 | int hppa_frame_num_args (struct frame_info *frame); |
7daf4f5b | 187 | void hppa_push_dummy_frame (void); |
60383d10 JB |
188 | void hppa_pop_frame (void); |
189 | CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, | |
190 | int nargs, struct value **args, | |
191 | struct type *type, int gcc_p); | |
192 | CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
193 | int struct_return, CORE_ADDR struct_addr); | |
d709c020 | 194 | CORE_ADDR hppa_smash_text_address (CORE_ADDR addr); |
60383d10 JB |
195 | CORE_ADDR hppa_target_read_pc (ptid_t ptid); |
196 | void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid); | |
197 | CORE_ADDR hppa_target_read_fp (void); | |
c906108c | 198 | |
c5aa993b JM |
199 | typedef struct |
200 | { | |
201 | struct minimal_symbol *msym; | |
202 | CORE_ADDR solib_handle; | |
a0b3c4fd | 203 | CORE_ADDR return_val; |
c5aa993b JM |
204 | } |
205 | args_for_find_stub; | |
c906108c | 206 | |
4efb68b1 | 207 | static int cover_find_stub_with_shl_get (void *); |
c906108c | 208 | |
c5aa993b | 209 | static int is_pa_2 = 0; /* False */ |
c906108c | 210 | |
c5aa993b | 211 | /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */ |
c906108c SS |
212 | extern int hp_som_som_object_present; |
213 | ||
214 | /* In breakpoint.c */ | |
215 | extern int exception_catchpoints_are_fragile; | |
216 | ||
c906108c | 217 | /* Should call_function allocate stack space for a struct return? */ |
d709c020 | 218 | |
c906108c | 219 | int |
fba45db2 | 220 | hppa_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 221 | { |
b1e29e33 | 222 | return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE); |
c906108c | 223 | } |
c906108c | 224 | \f |
c5aa993b | 225 | |
c906108c SS |
226 | /* Routines to extract various sized constants out of hppa |
227 | instructions. */ | |
228 | ||
229 | /* This assumes that no garbage lies outside of the lower bits of | |
230 | value. */ | |
231 | ||
232 | static int | |
fba45db2 | 233 | sign_extend (unsigned val, unsigned bits) |
c906108c | 234 | { |
c5aa993b | 235 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
236 | } |
237 | ||
238 | /* For many immediate values the sign bit is the low bit! */ | |
239 | ||
240 | static int | |
fba45db2 | 241 | low_sign_extend (unsigned val, unsigned bits) |
c906108c | 242 | { |
c5aa993b | 243 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
244 | } |
245 | ||
e2ac8128 JB |
246 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
247 | (MSB = 0). */ | |
248 | ||
249 | static int | |
250 | get_field (unsigned word, int from, int to) | |
251 | { | |
252 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
253 | } | |
254 | ||
c906108c SS |
255 | /* extract the immediate field from a ld{bhw}s instruction */ |
256 | ||
c906108c | 257 | static int |
fba45db2 | 258 | extract_5_load (unsigned word) |
c906108c SS |
259 | { |
260 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
261 | } | |
262 | ||
c906108c SS |
263 | /* extract the immediate field from a break instruction */ |
264 | ||
265 | static unsigned | |
fba45db2 | 266 | extract_5r_store (unsigned word) |
c906108c SS |
267 | { |
268 | return (word & MASK_5); | |
269 | } | |
270 | ||
271 | /* extract the immediate field from a {sr}sm instruction */ | |
272 | ||
273 | static unsigned | |
fba45db2 | 274 | extract_5R_store (unsigned word) |
c906108c SS |
275 | { |
276 | return (word >> 16 & MASK_5); | |
277 | } | |
278 | ||
c906108c SS |
279 | /* extract a 14 bit immediate field */ |
280 | ||
281 | static int | |
fba45db2 | 282 | extract_14 (unsigned word) |
c906108c SS |
283 | { |
284 | return low_sign_extend (word & MASK_14, 14); | |
285 | } | |
286 | ||
287 | /* deposit a 14 bit constant in a word */ | |
288 | ||
289 | static unsigned | |
fba45db2 | 290 | deposit_14 (int opnd, unsigned word) |
c906108c SS |
291 | { |
292 | unsigned sign = (opnd < 0 ? 1 : 0); | |
293 | ||
c5aa993b | 294 | return word | ((unsigned) opnd << 1 & MASK_14) | sign; |
c906108c SS |
295 | } |
296 | ||
297 | /* extract a 21 bit constant */ | |
298 | ||
299 | static int | |
fba45db2 | 300 | extract_21 (unsigned word) |
c906108c SS |
301 | { |
302 | int val; | |
303 | ||
304 | word &= MASK_21; | |
305 | word <<= 11; | |
e2ac8128 | 306 | val = get_field (word, 20, 20); |
c906108c | 307 | val <<= 11; |
e2ac8128 | 308 | val |= get_field (word, 9, 19); |
c906108c | 309 | val <<= 2; |
e2ac8128 | 310 | val |= get_field (word, 5, 6); |
c906108c | 311 | val <<= 5; |
e2ac8128 | 312 | val |= get_field (word, 0, 4); |
c906108c | 313 | val <<= 2; |
e2ac8128 | 314 | val |= get_field (word, 7, 8); |
c906108c SS |
315 | return sign_extend (val, 21) << 11; |
316 | } | |
317 | ||
318 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
319 | usually the top 21 bits of a 32 bit constant, we assume that only | |
320 | the low 21 bits of opnd are relevant */ | |
321 | ||
322 | static unsigned | |
fba45db2 | 323 | deposit_21 (unsigned opnd, unsigned word) |
c906108c SS |
324 | { |
325 | unsigned val = 0; | |
326 | ||
e2ac8128 | 327 | val |= get_field (opnd, 11 + 14, 11 + 18); |
c906108c | 328 | val <<= 2; |
e2ac8128 | 329 | val |= get_field (opnd, 11 + 12, 11 + 13); |
c906108c | 330 | val <<= 2; |
e2ac8128 | 331 | val |= get_field (opnd, 11 + 19, 11 + 20); |
c906108c | 332 | val <<= 11; |
e2ac8128 | 333 | val |= get_field (opnd, 11 + 1, 11 + 11); |
c906108c | 334 | val <<= 1; |
e2ac8128 | 335 | val |= get_field (opnd, 11 + 0, 11 + 0); |
c906108c SS |
336 | return word | val; |
337 | } | |
338 | ||
c906108c SS |
339 | /* extract a 17 bit constant from branch instructions, returning the |
340 | 19 bit signed value. */ | |
341 | ||
342 | static int | |
fba45db2 | 343 | extract_17 (unsigned word) |
c906108c | 344 | { |
e2ac8128 JB |
345 | return sign_extend (get_field (word, 19, 28) | |
346 | get_field (word, 29, 29) << 10 | | |
347 | get_field (word, 11, 15) << 11 | | |
c906108c SS |
348 | (word & 0x1) << 16, 17) << 2; |
349 | } | |
350 | \f | |
351 | ||
352 | /* Compare the start address for two unwind entries returning 1 if | |
353 | the first address is larger than the second, -1 if the second is | |
354 | larger than the first, and zero if they are equal. */ | |
355 | ||
356 | static int | |
fba45db2 | 357 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
358 | { |
359 | const struct unwind_table_entry *a = arg1; | |
360 | const struct unwind_table_entry *b = arg2; | |
361 | ||
362 | if (a->region_start > b->region_start) | |
363 | return 1; | |
364 | else if (a->region_start < b->region_start) | |
365 | return -1; | |
366 | else | |
367 | return 0; | |
368 | } | |
369 | ||
53a5351d JM |
370 | static CORE_ADDR low_text_segment_address; |
371 | ||
372 | static void | |
8fef05cc | 373 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored) |
53a5351d | 374 | { |
bf9c25dc | 375 | if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d JM |
376 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
377 | && section->vma < low_text_segment_address) | |
378 | low_text_segment_address = section->vma; | |
379 | } | |
380 | ||
c906108c | 381 | static void |
fba45db2 KB |
382 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
383 | asection *section, unsigned int entries, unsigned int size, | |
384 | CORE_ADDR text_offset) | |
c906108c SS |
385 | { |
386 | /* We will read the unwind entries into temporary memory, then | |
387 | fill in the actual unwind table. */ | |
388 | if (size > 0) | |
389 | { | |
390 | unsigned long tmp; | |
391 | unsigned i; | |
392 | char *buf = alloca (size); | |
393 | ||
53a5351d JM |
394 | low_text_segment_address = -1; |
395 | ||
396 | /* If addresses are 64 bits wide, then unwinds are supposed to | |
c2c6d25f JM |
397 | be segment relative offsets instead of absolute addresses. |
398 | ||
399 | Note that when loading a shared library (text_offset != 0) the | |
400 | unwinds are already relative to the text_offset that will be | |
401 | passed in. */ | |
402 | if (TARGET_PTR_BIT == 64 && text_offset == 0) | |
53a5351d JM |
403 | { |
404 | bfd_map_over_sections (objfile->obfd, | |
4efb68b1 | 405 | record_text_segment_lowaddr, NULL); |
53a5351d JM |
406 | |
407 | /* ?!? Mask off some low bits. Should this instead subtract | |
408 | out the lowest section's filepos or something like that? | |
409 | This looks very hokey to me. */ | |
410 | low_text_segment_address &= ~0xfff; | |
411 | text_offset += low_text_segment_address; | |
412 | } | |
413 | ||
c906108c SS |
414 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
415 | ||
416 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 417 | endian issues. */ |
c906108c SS |
418 | for (i = 0; i < entries; i++) |
419 | { | |
420 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 421 | (bfd_byte *) buf); |
c906108c SS |
422 | table[i].region_start += text_offset; |
423 | buf += 4; | |
c5aa993b | 424 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
425 | table[i].region_end += text_offset; |
426 | buf += 4; | |
c5aa993b | 427 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
428 | buf += 4; |
429 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
430 | table[i].Millicode = (tmp >> 30) & 0x1; | |
431 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
432 | table[i].Region_description = (tmp >> 27) & 0x3; | |
433 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
434 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
435 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
436 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
437 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
438 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
439 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
440 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
441 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
442 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
443 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
444 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
445 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
446 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
447 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
448 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
449 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
450 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
451 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
452 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 453 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
454 | buf += 4; |
455 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
456 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
457 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
458 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
459 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
460 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
461 | ||
c5aa993b | 462 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
463 | table[i].stub_unwind.stub_type = 0; |
464 | table[i].stub_unwind.padding = 0; | |
465 | } | |
466 | } | |
467 | } | |
468 | ||
469 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
470 | the object file. This info is used mainly by find_unwind_entry() to find | |
471 | out the stack frame size and frame pointer used by procedures. We put | |
472 | everything on the psymbol obstack in the objfile so that it automatically | |
473 | gets freed when the objfile is destroyed. */ | |
474 | ||
475 | static void | |
fba45db2 | 476 | read_unwind_info (struct objfile *objfile) |
c906108c | 477 | { |
d4f3574e SS |
478 | asection *unwind_sec, *stub_unwind_sec; |
479 | unsigned unwind_size, stub_unwind_size, total_size; | |
480 | unsigned index, unwind_entries; | |
c906108c SS |
481 | unsigned stub_entries, total_entries; |
482 | CORE_ADDR text_offset; | |
483 | struct obj_unwind_info *ui; | |
484 | obj_private_data_t *obj_private; | |
485 | ||
486 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
c5aa993b JM |
487 | ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack, |
488 | sizeof (struct obj_unwind_info)); | |
c906108c SS |
489 | |
490 | ui->table = NULL; | |
491 | ui->cache = NULL; | |
492 | ui->last = -1; | |
493 | ||
d4f3574e SS |
494 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
495 | sections in a single executable. So we just iterate over every | |
496 | section in the BFD looking for unwinder sections intead of trying | |
497 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 498 | |
d4f3574e SS |
499 | First determine the total size of the unwind tables so that we |
500 | can allocate memory in a nice big hunk. */ | |
501 | total_entries = 0; | |
502 | for (unwind_sec = objfile->obfd->sections; | |
503 | unwind_sec; | |
504 | unwind_sec = unwind_sec->next) | |
c906108c | 505 | { |
d4f3574e SS |
506 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
507 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
508 | { | |
509 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
510 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 511 | |
d4f3574e SS |
512 | total_entries += unwind_entries; |
513 | } | |
c906108c SS |
514 | } |
515 | ||
d4f3574e SS |
516 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
517 | use stub unwinds at the curren time. */ | |
518 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
519 | ||
c906108c SS |
520 | if (stub_unwind_sec) |
521 | { | |
522 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
523 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
524 | } | |
525 | else | |
526 | { | |
527 | stub_unwind_size = 0; | |
528 | stub_entries = 0; | |
529 | } | |
530 | ||
531 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 532 | total_entries += stub_entries; |
c906108c SS |
533 | total_size = total_entries * sizeof (struct unwind_table_entry); |
534 | ||
535 | /* Allocate memory for the unwind table. */ | |
536 | ui->table = (struct unwind_table_entry *) | |
537 | obstack_alloc (&objfile->psymbol_obstack, total_size); | |
c5aa993b | 538 | ui->last = total_entries - 1; |
c906108c | 539 | |
d4f3574e SS |
540 | /* Now read in each unwind section and internalize the standard unwind |
541 | entries. */ | |
c906108c | 542 | index = 0; |
d4f3574e SS |
543 | for (unwind_sec = objfile->obfd->sections; |
544 | unwind_sec; | |
545 | unwind_sec = unwind_sec->next) | |
546 | { | |
547 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
548 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
549 | { | |
550 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
551 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
552 | ||
553 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
554 | unwind_entries, unwind_size, text_offset); | |
555 | index += unwind_entries; | |
556 | } | |
557 | } | |
558 | ||
559 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
560 | if (stub_unwind_size > 0) |
561 | { | |
562 | unsigned int i; | |
563 | char *buf = alloca (stub_unwind_size); | |
564 | ||
565 | /* Read in the stub unwind entries. */ | |
566 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
567 | 0, stub_unwind_size); | |
568 | ||
569 | /* Now convert them into regular unwind entries. */ | |
570 | for (i = 0; i < stub_entries; i++, index++) | |
571 | { | |
572 | /* Clear out the next unwind entry. */ | |
573 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
574 | ||
575 | /* Convert offset & size into region_start and region_end. | |
576 | Stuff away the stub type into "reserved" fields. */ | |
577 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
578 | (bfd_byte *) buf); | |
579 | ui->table[index].region_start += text_offset; | |
580 | buf += 4; | |
581 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 582 | (bfd_byte *) buf); |
c906108c SS |
583 | buf += 2; |
584 | ui->table[index].region_end | |
c5aa993b JM |
585 | = ui->table[index].region_start + 4 * |
586 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
587 | buf += 2; |
588 | } | |
589 | ||
590 | } | |
591 | ||
592 | /* Unwind table needs to be kept sorted. */ | |
593 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
594 | compare_unwind_entries); | |
595 | ||
596 | /* Keep a pointer to the unwind information. */ | |
c5aa993b | 597 | if (objfile->obj_private == NULL) |
c906108c SS |
598 | { |
599 | obj_private = (obj_private_data_t *) | |
c5aa993b JM |
600 | obstack_alloc (&objfile->psymbol_obstack, |
601 | sizeof (obj_private_data_t)); | |
c906108c | 602 | obj_private->unwind_info = NULL; |
c5aa993b | 603 | obj_private->so_info = NULL; |
53a5351d | 604 | obj_private->dp = 0; |
c5aa993b | 605 | |
4efb68b1 | 606 | objfile->obj_private = obj_private; |
c906108c | 607 | } |
c5aa993b | 608 | obj_private = (obj_private_data_t *) objfile->obj_private; |
c906108c SS |
609 | obj_private->unwind_info = ui; |
610 | } | |
611 | ||
612 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
613 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
614 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
615 | search of the unwind tables, we depend upon them to be sorted. */ | |
616 | ||
617 | struct unwind_table_entry * | |
fba45db2 | 618 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
619 | { |
620 | int first, middle, last; | |
621 | struct objfile *objfile; | |
622 | ||
623 | /* A function at address 0? Not in HP-UX! */ | |
624 | if (pc == (CORE_ADDR) 0) | |
625 | return NULL; | |
626 | ||
627 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
628 | { |
629 | struct obj_unwind_info *ui; | |
630 | ui = NULL; | |
631 | if (objfile->obj_private) | |
632 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; | |
c906108c | 633 | |
c5aa993b JM |
634 | if (!ui) |
635 | { | |
636 | read_unwind_info (objfile); | |
637 | if (objfile->obj_private == NULL) | |
104c1213 | 638 | error ("Internal error reading unwind information."); |
c5aa993b JM |
639 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; |
640 | } | |
c906108c | 641 | |
c5aa993b | 642 | /* First, check the cache */ |
c906108c | 643 | |
c5aa993b JM |
644 | if (ui->cache |
645 | && pc >= ui->cache->region_start | |
646 | && pc <= ui->cache->region_end) | |
647 | return ui->cache; | |
c906108c | 648 | |
c5aa993b | 649 | /* Not in the cache, do a binary search */ |
c906108c | 650 | |
c5aa993b JM |
651 | first = 0; |
652 | last = ui->last; | |
c906108c | 653 | |
c5aa993b JM |
654 | while (first <= last) |
655 | { | |
656 | middle = (first + last) / 2; | |
657 | if (pc >= ui->table[middle].region_start | |
658 | && pc <= ui->table[middle].region_end) | |
659 | { | |
660 | ui->cache = &ui->table[middle]; | |
661 | return &ui->table[middle]; | |
662 | } | |
c906108c | 663 | |
c5aa993b JM |
664 | if (pc < ui->table[middle].region_start) |
665 | last = middle - 1; | |
666 | else | |
667 | first = middle + 1; | |
668 | } | |
669 | } /* ALL_OBJFILES() */ | |
c906108c SS |
670 | return NULL; |
671 | } | |
672 | ||
aaab4dba AC |
673 | const unsigned char * |
674 | hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len) | |
675 | { | |
676 | static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; | |
677 | (*len) = sizeof (breakpoint); | |
678 | return breakpoint; | |
679 | } | |
680 | ||
e23457df AC |
681 | /* Return the name of a register. */ |
682 | ||
683 | const char * | |
684 | hppa_register_name (int i) | |
685 | { | |
686 | static char *names[] = { | |
687 | "flags", "r1", "rp", "r3", | |
688 | "r4", "r5", "r6", "r7", | |
689 | "r8", "r9", "r10", "r11", | |
690 | "r12", "r13", "r14", "r15", | |
691 | "r16", "r17", "r18", "r19", | |
692 | "r20", "r21", "r22", "r23", | |
693 | "r24", "r25", "r26", "dp", | |
694 | "ret0", "ret1", "sp", "r31", | |
695 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
696 | "pcsqt", "eiem", "iir", "isr", | |
697 | "ior", "ipsw", "goto", "sr4", | |
698 | "sr0", "sr1", "sr2", "sr3", | |
699 | "sr5", "sr6", "sr7", "cr0", | |
700 | "cr8", "cr9", "ccr", "cr12", | |
701 | "cr13", "cr24", "cr25", "cr26", | |
702 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
703 | "fpsr", "fpe1", "fpe2", "fpe3", | |
704 | "fpe4", "fpe5", "fpe6", "fpe7", | |
705 | "fr4", "fr4R", "fr5", "fr5R", | |
706 | "fr6", "fr6R", "fr7", "fr7R", | |
707 | "fr8", "fr8R", "fr9", "fr9R", | |
708 | "fr10", "fr10R", "fr11", "fr11R", | |
709 | "fr12", "fr12R", "fr13", "fr13R", | |
710 | "fr14", "fr14R", "fr15", "fr15R", | |
711 | "fr16", "fr16R", "fr17", "fr17R", | |
712 | "fr18", "fr18R", "fr19", "fr19R", | |
713 | "fr20", "fr20R", "fr21", "fr21R", | |
714 | "fr22", "fr22R", "fr23", "fr23R", | |
715 | "fr24", "fr24R", "fr25", "fr25R", | |
716 | "fr26", "fr26R", "fr27", "fr27R", | |
717 | "fr28", "fr28R", "fr29", "fr29R", | |
718 | "fr30", "fr30R", "fr31", "fr31R" | |
719 | }; | |
720 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
721 | return NULL; | |
722 | else | |
723 | return names[i]; | |
724 | } | |
725 | ||
726 | const char * | |
727 | hppa64_register_name (int i) | |
728 | { | |
729 | static char *names[] = { | |
730 | "flags", "r1", "rp", "r3", | |
731 | "r4", "r5", "r6", "r7", | |
732 | "r8", "r9", "r10", "r11", | |
733 | "r12", "r13", "r14", "r15", | |
734 | "r16", "r17", "r18", "r19", | |
735 | "r20", "r21", "r22", "r23", | |
736 | "r24", "r25", "r26", "dp", | |
737 | "ret0", "ret1", "sp", "r31", | |
738 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
739 | "pcsqt", "eiem", "iir", "isr", | |
740 | "ior", "ipsw", "goto", "sr4", | |
741 | "sr0", "sr1", "sr2", "sr3", | |
742 | "sr5", "sr6", "sr7", "cr0", | |
743 | "cr8", "cr9", "ccr", "cr12", | |
744 | "cr13", "cr24", "cr25", "cr26", | |
745 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
746 | "fpsr", "fpe1", "fpe2", "fpe3", | |
747 | "fr4", "fr5", "fr6", "fr7", | |
748 | "fr8", "fr9", "fr10", "fr11", | |
749 | "fr12", "fr13", "fr14", "fr15", | |
750 | "fr16", "fr17", "fr18", "fr19", | |
751 | "fr20", "fr21", "fr22", "fr23", | |
752 | "fr24", "fr25", "fr26", "fr27", | |
753 | "fr28", "fr29", "fr30", "fr31" | |
754 | }; | |
755 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
756 | return NULL; | |
757 | else | |
758 | return names[i]; | |
759 | } | |
760 | ||
761 | ||
762 | ||
c906108c SS |
763 | /* Return the adjustment necessary to make for addresses on the stack |
764 | as presented by hpread.c. | |
765 | ||
766 | This is necessary because of the stack direction on the PA and the | |
767 | bizarre way in which someone (?) decided they wanted to handle | |
768 | frame pointerless code in GDB. */ | |
769 | int | |
fba45db2 | 770 | hpread_adjust_stack_address (CORE_ADDR func_addr) |
c906108c SS |
771 | { |
772 | struct unwind_table_entry *u; | |
773 | ||
774 | u = find_unwind_entry (func_addr); | |
775 | if (!u) | |
776 | return 0; | |
777 | else | |
778 | return u->Total_frame_size << 3; | |
779 | } | |
780 | ||
781 | /* Called to determine if PC is in an interrupt handler of some | |
782 | kind. */ | |
783 | ||
784 | static int | |
fba45db2 | 785 | pc_in_interrupt_handler (CORE_ADDR pc) |
c906108c SS |
786 | { |
787 | struct unwind_table_entry *u; | |
788 | struct minimal_symbol *msym_us; | |
789 | ||
790 | u = find_unwind_entry (pc); | |
791 | if (!u) | |
792 | return 0; | |
793 | ||
794 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
795 | its frame isn't a pure interrupt frame. Deal with this. */ | |
796 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
797 | ||
d7bd68ca | 798 | return (u->HP_UX_interrupt_marker |
22abf04a | 799 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))); |
c906108c SS |
800 | } |
801 | ||
802 | /* Called when no unwind descriptor was found for PC. Returns 1 if it | |
104c1213 JM |
803 | appears that PC is in a linker stub. |
804 | ||
805 | ?!? Need to handle stubs which appear in PA64 code. */ | |
c906108c SS |
806 | |
807 | static int | |
fba45db2 | 808 | pc_in_linker_stub (CORE_ADDR pc) |
c906108c SS |
809 | { |
810 | int found_magic_instruction = 0; | |
811 | int i; | |
812 | char buf[4]; | |
813 | ||
814 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
815 | if (target_read_memory (pc, buf, 4) != 0) | |
816 | return 0; | |
817 | ||
818 | /* We are looking for something like | |
819 | ||
820 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
821 | ; before calling the "call stub" | |
822 | ldw -18(sp),rp | |
823 | ||
824 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
825 | mtsp r1,sp ; Move it into space register 0 | |
826 | be,n 0(sr0),rp) ; back to your regularly scheduled program */ | |
827 | ||
828 | /* Maximum known linker stub size is 4 instructions. Search forward | |
829 | from the given PC, then backward. */ | |
830 | for (i = 0; i < 4; i++) | |
831 | { | |
832 | /* If we hit something with an unwind, stop searching this direction. */ | |
833 | ||
834 | if (find_unwind_entry (pc + i * 4) != 0) | |
835 | break; | |
836 | ||
837 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 838 | return from a cross-space function call. */ |
c906108c SS |
839 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) |
840 | { | |
841 | found_magic_instruction = 1; | |
842 | break; | |
843 | } | |
844 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 845 | here. */ |
c906108c SS |
846 | } |
847 | ||
848 | if (found_magic_instruction != 0) | |
849 | return 1; | |
850 | ||
851 | /* Now look backward. */ | |
852 | for (i = 0; i < 4; i++) | |
853 | { | |
854 | /* If we hit something with an unwind, stop searching this direction. */ | |
855 | ||
856 | if (find_unwind_entry (pc - i * 4) != 0) | |
857 | break; | |
858 | ||
859 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 860 | return from a cross-space function call. */ |
c906108c SS |
861 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) |
862 | { | |
863 | found_magic_instruction = 1; | |
864 | break; | |
865 | } | |
866 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 867 | here. */ |
c906108c SS |
868 | } |
869 | return found_magic_instruction; | |
870 | } | |
871 | ||
872 | static int | |
fba45db2 | 873 | find_return_regnum (CORE_ADDR pc) |
c906108c SS |
874 | { |
875 | struct unwind_table_entry *u; | |
876 | ||
877 | u = find_unwind_entry (pc); | |
878 | ||
879 | if (!u) | |
880 | return RP_REGNUM; | |
881 | ||
882 | if (u->Millicode) | |
883 | return 31; | |
884 | ||
885 | return RP_REGNUM; | |
886 | } | |
887 | ||
888 | /* Return size of frame, or -1 if we should use a frame pointer. */ | |
889 | static int | |
fba45db2 | 890 | find_proc_framesize (CORE_ADDR pc) |
c906108c SS |
891 | { |
892 | struct unwind_table_entry *u; | |
893 | struct minimal_symbol *msym_us; | |
894 | ||
895 | /* This may indicate a bug in our callers... */ | |
c5aa993b | 896 | if (pc == (CORE_ADDR) 0) |
c906108c | 897 | return -1; |
c5aa993b | 898 | |
c906108c SS |
899 | u = find_unwind_entry (pc); |
900 | ||
901 | if (!u) | |
902 | { | |
903 | if (pc_in_linker_stub (pc)) | |
904 | /* Linker stubs have a zero size frame. */ | |
905 | return 0; | |
906 | else | |
907 | return -1; | |
908 | } | |
909 | ||
910 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
911 | ||
912 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
913 | then we have a frame pointer. Use it. */ | |
3fa41cdb JL |
914 | if (u->Save_SP |
915 | && !pc_in_interrupt_handler (pc) | |
916 | && msym_us | |
22abf04a | 917 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))) |
c906108c SS |
918 | return -1; |
919 | ||
920 | return u->Total_frame_size << 3; | |
921 | } | |
922 | ||
923 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ | |
a14ed312 | 924 | static int rp_saved (CORE_ADDR); |
c906108c SS |
925 | |
926 | static int | |
fba45db2 | 927 | rp_saved (CORE_ADDR pc) |
c906108c SS |
928 | { |
929 | struct unwind_table_entry *u; | |
930 | ||
931 | /* A function at, and thus a return PC from, address 0? Not in HP-UX! */ | |
932 | if (pc == (CORE_ADDR) 0) | |
933 | return 0; | |
934 | ||
935 | u = find_unwind_entry (pc); | |
936 | ||
937 | if (!u) | |
938 | { | |
939 | if (pc_in_linker_stub (pc)) | |
940 | /* This is the so-called RP'. */ | |
941 | return -24; | |
942 | else | |
943 | return 0; | |
944 | } | |
945 | ||
946 | if (u->Save_RP) | |
53a5351d | 947 | return (TARGET_PTR_BIT == 64 ? -16 : -20); |
c906108c SS |
948 | else if (u->stub_unwind.stub_type != 0) |
949 | { | |
950 | switch (u->stub_unwind.stub_type) | |
951 | { | |
952 | case EXPORT: | |
953 | case IMPORT: | |
954 | return -24; | |
955 | case PARAMETER_RELOCATION: | |
956 | return -8; | |
957 | default: | |
958 | return 0; | |
959 | } | |
960 | } | |
961 | else | |
962 | return 0; | |
963 | } | |
964 | \f | |
965 | int | |
60383d10 | 966 | hppa_frameless_function_invocation (struct frame_info *frame) |
c906108c SS |
967 | { |
968 | struct unwind_table_entry *u; | |
969 | ||
ef6e7e13 | 970 | u = find_unwind_entry (get_frame_pc (frame)); |
c906108c SS |
971 | |
972 | if (u == 0) | |
973 | return 0; | |
974 | ||
975 | return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0); | |
976 | } | |
977 | ||
d709c020 JB |
978 | /* Immediately after a function call, return the saved pc. |
979 | Can't go through the frames for this because on some machines | |
980 | the new frame is not set up until the new function executes | |
981 | some instructions. */ | |
982 | ||
c906108c | 983 | CORE_ADDR |
60383d10 | 984 | hppa_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
985 | { |
986 | int ret_regnum; | |
987 | CORE_ADDR pc; | |
988 | struct unwind_table_entry *u; | |
989 | ||
990 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
991 | pc = read_register (ret_regnum) & ~0x3; | |
c5aa993b | 992 | |
c906108c SS |
993 | /* If PC is in a linker stub, then we need to dig the address |
994 | the stub will return to out of the stack. */ | |
995 | u = find_unwind_entry (pc); | |
996 | if (u && u->stub_unwind.stub_type != 0) | |
8bedc050 | 997 | return DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
998 | else |
999 | return pc; | |
1000 | } | |
1001 | \f | |
1002 | CORE_ADDR | |
fba45db2 | 1003 | hppa_frame_saved_pc (struct frame_info *frame) |
c906108c SS |
1004 | { |
1005 | CORE_ADDR pc = get_frame_pc (frame); | |
1006 | struct unwind_table_entry *u; | |
65e82032 | 1007 | CORE_ADDR old_pc = 0; |
c5aa993b JM |
1008 | int spun_around_loop = 0; |
1009 | int rp_offset = 0; | |
c906108c SS |
1010 | |
1011 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner | |
1012 | at the base of the frame in an interrupt handler. Registers within | |
1013 | are saved in the exact same order as GDB numbers registers. How | |
1014 | convienent. */ | |
1015 | if (pc_in_interrupt_handler (pc)) | |
ef6e7e13 | 1016 | return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4, |
53a5351d | 1017 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c | 1018 | |
ef6e7e13 AC |
1019 | if ((get_frame_pc (frame) >= get_frame_base (frame) |
1020 | && (get_frame_pc (frame) | |
1021 | <= (get_frame_base (frame) | |
1022 | /* A call dummy is sized in words, but it is actually a | |
1023 | series of instructions. Account for that scaling | |
1024 | factor. */ | |
b1e29e33 AC |
1025 | + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE) |
1026 | * DEPRECATED_CALL_DUMMY_LENGTH) | |
ef6e7e13 AC |
1027 | /* Similarly we have to account for 64bit wide register |
1028 | saves. */ | |
b1e29e33 | 1029 | + (32 * DEPRECATED_REGISTER_SIZE) |
ef6e7e13 AC |
1030 | /* We always consider FP regs 8 bytes long. */ |
1031 | + (NUM_REGS - FP0_REGNUM) * 8 | |
1032 | /* Similarly we have to account for 64bit wide register | |
1033 | saves. */ | |
b1e29e33 | 1034 | + (6 * DEPRECATED_REGISTER_SIZE))))) |
104c1213 | 1035 | { |
ef6e7e13 | 1036 | return read_memory_integer ((get_frame_base (frame) |
104c1213 JM |
1037 | + (TARGET_PTR_BIT == 64 ? -16 : -20)), |
1038 | TARGET_PTR_BIT / 8) & ~0x3; | |
1039 | } | |
1040 | ||
c906108c SS |
1041 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP |
1042 | /* Deal with signal handler caller frames too. */ | |
5a203e44 | 1043 | if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1044 | { |
1045 | CORE_ADDR rp; | |
1046 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
1047 | return rp & ~0x3; | |
1048 | } | |
1049 | #endif | |
1050 | ||
60383d10 | 1051 | if (hppa_frameless_function_invocation (frame)) |
c906108c SS |
1052 | { |
1053 | int ret_regnum; | |
1054 | ||
1055 | ret_regnum = find_return_regnum (pc); | |
1056 | ||
1057 | /* If the next frame is an interrupt frame or a signal | |
c5aa993b JM |
1058 | handler caller, then we need to look in the saved |
1059 | register area to get the return pointer (the values | |
1060 | in the registers may not correspond to anything useful). */ | |
ef6e7e13 AC |
1061 | if (get_next_frame (frame) |
1062 | && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) | |
1063 | || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame))))) | |
c906108c | 1064 | { |
43bd9a9e | 1065 | CORE_ADDR *saved_regs; |
ef6e7e13 AC |
1066 | hppa_frame_init_saved_regs (get_next_frame (frame)); |
1067 | saved_regs = get_frame_saved_regs (get_next_frame (frame)); | |
43bd9a9e | 1068 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], |
53a5351d | 1069 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 1070 | { |
43bd9a9e | 1071 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 1072 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1073 | |
1074 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
1075 | with a return pointer in %rp and the kernel call with |
1076 | a return pointer in %r31. We return the %rp variant | |
1077 | if %r31 is the same as frame->pc. */ | |
ef6e7e13 | 1078 | if (pc == get_frame_pc (frame)) |
43bd9a9e | 1079 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1080 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1081 | } |
1082 | else | |
43bd9a9e | 1083 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1084 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1085 | } |
1086 | else | |
1087 | pc = read_register (ret_regnum) & ~0x3; | |
1088 | } | |
1089 | else | |
1090 | { | |
1091 | spun_around_loop = 0; | |
c5aa993b | 1092 | old_pc = pc; |
c906108c | 1093 | |
c5aa993b | 1094 | restart: |
c906108c SS |
1095 | rp_offset = rp_saved (pc); |
1096 | ||
1097 | /* Similar to code in frameless function case. If the next | |
c5aa993b JM |
1098 | frame is a signal or interrupt handler, then dig the right |
1099 | information out of the saved register info. */ | |
c906108c | 1100 | if (rp_offset == 0 |
ef6e7e13 AC |
1101 | && get_next_frame (frame) |
1102 | && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) | |
1103 | || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame))))) | |
c906108c | 1104 | { |
43bd9a9e | 1105 | CORE_ADDR *saved_regs; |
ef6e7e13 AC |
1106 | hppa_frame_init_saved_regs (get_next_frame (frame)); |
1107 | saved_regs = get_frame_saved_regs (get_next_frame (frame)); | |
43bd9a9e | 1108 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], |
53a5351d | 1109 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 1110 | { |
43bd9a9e | 1111 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 1112 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1113 | |
1114 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
1115 | with a return pointer in %rp and the kernel call with |
1116 | a return pointer in %r31. We return the %rp variant | |
1117 | if %r31 is the same as frame->pc. */ | |
ef6e7e13 | 1118 | if (pc == get_frame_pc (frame)) |
43bd9a9e | 1119 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1120 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1121 | } |
1122 | else | |
43bd9a9e | 1123 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1124 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1125 | } |
1126 | else if (rp_offset == 0) | |
c5aa993b JM |
1127 | { |
1128 | old_pc = pc; | |
1129 | pc = read_register (RP_REGNUM) & ~0x3; | |
1130 | } | |
c906108c | 1131 | else |
c5aa993b JM |
1132 | { |
1133 | old_pc = pc; | |
ef6e7e13 | 1134 | pc = read_memory_integer (get_frame_base (frame) + rp_offset, |
53a5351d | 1135 | TARGET_PTR_BIT / 8) & ~0x3; |
c5aa993b | 1136 | } |
c906108c SS |
1137 | } |
1138 | ||
1139 | /* If PC is inside a linker stub, then dig out the address the stub | |
1140 | will return to. | |
1141 | ||
1142 | Don't do this for long branch stubs. Why? For some unknown reason | |
1143 | _start is marked as a long branch stub in hpux10. */ | |
1144 | u = find_unwind_entry (pc); | |
1145 | if (u && u->stub_unwind.stub_type != 0 | |
1146 | && u->stub_unwind.stub_type != LONG_BRANCH) | |
1147 | { | |
1148 | unsigned int insn; | |
1149 | ||
1150 | /* If this is a dynamic executable, and we're in a signal handler, | |
c5aa993b JM |
1151 | then the call chain will eventually point us into the stub for |
1152 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
1153 | to the real sigreturn rather than the code after the real branch!. | |
c906108c | 1154 | |
c5aa993b JM |
1155 | Else, try to dig the address the stub will return to in the normal |
1156 | fashion. */ | |
c906108c SS |
1157 | insn = read_memory_integer (pc, 4); |
1158 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1159 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
1160 | else | |
1161 | { | |
c5aa993b JM |
1162 | if (old_pc == pc) |
1163 | spun_around_loop++; | |
1164 | ||
1165 | if (spun_around_loop > 1) | |
1166 | { | |
1167 | /* We're just about to go around the loop again with | |
1168 | no more hope of success. Die. */ | |
1169 | error ("Unable to find return pc for this frame"); | |
1170 | } | |
1171 | else | |
1172 | goto restart; | |
c906108c SS |
1173 | } |
1174 | } | |
1175 | ||
1176 | return pc; | |
1177 | } | |
1178 | \f | |
1179 | /* We need to correct the PC and the FP for the outermost frame when we are | |
1180 | in a system call. */ | |
1181 | ||
1182 | void | |
60383d10 | 1183 | hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame) |
c906108c SS |
1184 | { |
1185 | int flags; | |
1186 | int framesize; | |
1187 | ||
ef6e7e13 | 1188 | if (get_next_frame (frame) && !fromleaf) |
c906108c SS |
1189 | return; |
1190 | ||
618ce49f AC |
1191 | /* If the next frame represents a frameless function invocation then |
1192 | we have to do some adjustments that are normally done by | |
1193 | DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in | |
1194 | this case.) */ | |
c906108c SS |
1195 | if (fromleaf) |
1196 | { | |
1197 | /* Find the framesize of *this* frame without peeking at the PC | |
c5aa993b | 1198 | in the current frame structure (it isn't set yet). */ |
8bedc050 | 1199 | framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame))); |
c906108c SS |
1200 | |
1201 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
c5aa993b JM |
1202 | use it, else subtract the size of this frame from the current |
1203 | frame. (we always want frame->frame to point at the lowest address | |
1204 | in the frame). */ | |
c906108c | 1205 | if (framesize == -1) |
0ba6dca9 | 1206 | deprecated_update_frame_base_hack (frame, deprecated_read_fp ()); |
c906108c | 1207 | else |
ef6e7e13 | 1208 | deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize); |
c906108c SS |
1209 | return; |
1210 | } | |
1211 | ||
1212 | flags = read_register (FLAGS_REGNUM); | |
c5aa993b | 1213 | if (flags & 2) /* In system call? */ |
ef6e7e13 | 1214 | deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3); |
c906108c SS |
1215 | |
1216 | /* The outermost frame is always derived from PC-framesize | |
1217 | ||
1218 | One might think frameless innermost frames should have | |
1219 | a frame->frame that is the same as the parent's frame->frame. | |
1220 | That is wrong; frame->frame in that case should be the *high* | |
1221 | address of the parent's frame. It's complicated as hell to | |
1222 | explain, but the parent *always* creates some stack space for | |
1223 | the child. So the child actually does have a frame of some | |
1224 | sorts, and its base is the high address in its parent's frame. */ | |
ef6e7e13 | 1225 | framesize = find_proc_framesize (get_frame_pc (frame)); |
c906108c | 1226 | if (framesize == -1) |
0ba6dca9 | 1227 | deprecated_update_frame_base_hack (frame, deprecated_read_fp ()); |
c906108c | 1228 | else |
ef6e7e13 | 1229 | deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize); |
c906108c SS |
1230 | } |
1231 | \f | |
a5afb99f AC |
1232 | /* Given a GDB frame, determine the address of the calling function's |
1233 | frame. This will be used to create a new GDB frame struct, and | |
e9582e71 AC |
1234 | then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC |
1235 | will be called for the new frame. | |
c906108c SS |
1236 | |
1237 | This may involve searching through prologues for several functions | |
1238 | at boundaries where GCC calls HP C code, or where code which has | |
1239 | a frame pointer calls code without a frame pointer. */ | |
1240 | ||
1241 | CORE_ADDR | |
60383d10 | 1242 | hppa_frame_chain (struct frame_info *frame) |
c906108c SS |
1243 | { |
1244 | int my_framesize, caller_framesize; | |
1245 | struct unwind_table_entry *u; | |
1246 | CORE_ADDR frame_base; | |
1247 | struct frame_info *tmp_frame; | |
1248 | ||
c2c6d25f JM |
1249 | /* A frame in the current frame list, or zero. */ |
1250 | struct frame_info *saved_regs_frame = 0; | |
43bd9a9e AC |
1251 | /* Where the registers were saved in saved_regs_frame. If |
1252 | saved_regs_frame is zero, this is garbage. */ | |
1253 | CORE_ADDR *saved_regs = NULL; | |
c2c6d25f | 1254 | |
c5aa993b | 1255 | CORE_ADDR caller_pc; |
c906108c SS |
1256 | |
1257 | struct minimal_symbol *min_frame_symbol; | |
c5aa993b JM |
1258 | struct symbol *frame_symbol; |
1259 | char *frame_symbol_name; | |
c906108c SS |
1260 | |
1261 | /* If this is a threaded application, and we see the | |
1262 | routine "__pthread_exit", treat it as the stack root | |
1263 | for this thread. */ | |
ef6e7e13 AC |
1264 | min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame)); |
1265 | frame_symbol = find_pc_function (get_frame_pc (frame)); | |
c906108c | 1266 | |
c5aa993b | 1267 | if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ ) |
c906108c | 1268 | { |
c5aa993b JM |
1269 | /* The test above for "no user function name" would defend |
1270 | against the slim likelihood that a user might define a | |
1271 | routine named "__pthread_exit" and then try to debug it. | |
1272 | ||
1273 | If it weren't commented out, and you tried to debug the | |
1274 | pthread library itself, you'd get errors. | |
1275 | ||
1276 | So for today, we don't make that check. */ | |
22abf04a | 1277 | frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol); |
c5aa993b JM |
1278 | if (frame_symbol_name != 0) |
1279 | { | |
1280 | if (0 == strncmp (frame_symbol_name, | |
1281 | THREAD_INITIAL_FRAME_SYMBOL, | |
1282 | THREAD_INITIAL_FRAME_SYM_LEN)) | |
1283 | { | |
1284 | /* Pretend we've reached the bottom of the stack. */ | |
1285 | return (CORE_ADDR) 0; | |
1286 | } | |
1287 | } | |
1288 | } /* End of hacky code for threads. */ | |
1289 | ||
c906108c SS |
1290 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These |
1291 | are easy; at *sp we have a full save state strucutre which we can | |
1292 | pull the old stack pointer from. Also see frame_saved_pc for | |
1293 | code to dig a saved PC out of the save state structure. */ | |
ef6e7e13 AC |
1294 | if (pc_in_interrupt_handler (get_frame_pc (frame))) |
1295 | frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4, | |
53a5351d | 1296 | TARGET_PTR_BIT / 8); |
c906108c | 1297 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP |
5a203e44 | 1298 | else if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1299 | { |
1300 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
1301 | } | |
1302 | #endif | |
1303 | else | |
ef6e7e13 | 1304 | frame_base = get_frame_base (frame); |
c906108c SS |
1305 | |
1306 | /* Get frame sizes for the current frame and the frame of the | |
1307 | caller. */ | |
ef6e7e13 | 1308 | my_framesize = find_proc_framesize (get_frame_pc (frame)); |
8bedc050 | 1309 | caller_pc = DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
1310 | |
1311 | /* If we can't determine the caller's PC, then it's not likely we can | |
1312 | really determine anything meaningful about its frame. We'll consider | |
1313 | this to be stack bottom. */ | |
1314 | if (caller_pc == (CORE_ADDR) 0) | |
1315 | return (CORE_ADDR) 0; | |
1316 | ||
8bedc050 | 1317 | caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1318 | |
1319 | /* If caller does not have a frame pointer, then its frame | |
1320 | can be found at current_frame - caller_framesize. */ | |
1321 | if (caller_framesize != -1) | |
1322 | { | |
1323 | return frame_base - caller_framesize; | |
1324 | } | |
1325 | /* Both caller and callee have frame pointers and are GCC compiled | |
1326 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
1327 | The previous frame pointer is found at the top of the current frame. */ | |
1328 | if (caller_framesize == -1 && my_framesize == -1) | |
1329 | { | |
53a5351d | 1330 | return read_memory_integer (frame_base, TARGET_PTR_BIT / 8); |
c906108c SS |
1331 | } |
1332 | /* Caller has a frame pointer, but callee does not. This is a little | |
1333 | more difficult as GCC and HP C lay out locals and callee register save | |
1334 | areas very differently. | |
1335 | ||
1336 | The previous frame pointer could be in a register, or in one of | |
1337 | several areas on the stack. | |
1338 | ||
1339 | Walk from the current frame to the innermost frame examining | |
1340 | unwind descriptors to determine if %r3 ever gets saved into the | |
1341 | stack. If so return whatever value got saved into the stack. | |
1342 | If it was never saved in the stack, then the value in %r3 is still | |
1343 | valid, so use it. | |
1344 | ||
1345 | We use information from unwind descriptors to determine if %r3 | |
1346 | is saved into the stack (Entry_GR field has this information). */ | |
1347 | ||
ef6e7e13 | 1348 | for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame)) |
c906108c | 1349 | { |
ef6e7e13 | 1350 | u = find_unwind_entry (get_frame_pc (tmp_frame)); |
c906108c SS |
1351 | |
1352 | if (!u) | |
1353 | { | |
1354 | /* We could find this information by examining prologues. I don't | |
1355 | think anyone has actually written any tools (not even "strip") | |
1356 | which leave them out of an executable, so maybe this is a moot | |
1357 | point. */ | |
c5aa993b JM |
1358 | /* ??rehrauer: Actually, it's quite possible to stepi your way into |
1359 | code that doesn't have unwind entries. For example, stepping into | |
1360 | the dynamic linker will give you a PC that has none. Thus, I've | |
1361 | disabled this warning. */ | |
c906108c | 1362 | #if 0 |
ef6e7e13 | 1363 | warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame)); |
c906108c SS |
1364 | #endif |
1365 | return (CORE_ADDR) 0; | |
1366 | } | |
1367 | ||
c2c6d25f | 1368 | if (u->Save_SP |
5a203e44 | 1369 | || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
ef6e7e13 | 1370 | || pc_in_interrupt_handler (get_frame_pc (tmp_frame))) |
c906108c | 1371 | break; |
c2c6d25f JM |
1372 | |
1373 | /* Entry_GR specifies the number of callee-saved general registers | |
1374 | saved in the stack. It starts at %r3, so %r3 would be 1. */ | |
1375 | if (u->Entry_GR >= 1) | |
1376 | { | |
1377 | /* The unwind entry claims that r3 is saved here. However, | |
1378 | in optimized code, GCC often doesn't actually save r3. | |
1379 | We'll discover this if we look at the prologue. */ | |
43bd9a9e AC |
1380 | hppa_frame_init_saved_regs (tmp_frame); |
1381 | saved_regs = get_frame_saved_regs (tmp_frame); | |
c2c6d25f JM |
1382 | saved_regs_frame = tmp_frame; |
1383 | ||
1384 | /* If we have an address for r3, that's good. */ | |
0ba6dca9 | 1385 | if (saved_regs[DEPRECATED_FP_REGNUM]) |
c2c6d25f JM |
1386 | break; |
1387 | } | |
c906108c SS |
1388 | } |
1389 | ||
1390 | if (tmp_frame) | |
1391 | { | |
1392 | /* We may have walked down the chain into a function with a frame | |
c5aa993b | 1393 | pointer. */ |
c906108c | 1394 | if (u->Save_SP |
5a203e44 | 1395 | && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
ef6e7e13 | 1396 | && !pc_in_interrupt_handler (get_frame_pc (tmp_frame))) |
c906108c | 1397 | { |
ef6e7e13 | 1398 | return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8); |
c906108c SS |
1399 | } |
1400 | /* %r3 was saved somewhere in the stack. Dig it out. */ | |
c5aa993b | 1401 | else |
c906108c | 1402 | { |
c906108c SS |
1403 | /* Sick. |
1404 | ||
1405 | For optimization purposes many kernels don't have the | |
1406 | callee saved registers into the save_state structure upon | |
1407 | entry into the kernel for a syscall; the optimization | |
1408 | is usually turned off if the process is being traced so | |
1409 | that the debugger can get full register state for the | |
1410 | process. | |
c5aa993b | 1411 | |
c906108c SS |
1412 | This scheme works well except for two cases: |
1413 | ||
c5aa993b JM |
1414 | * Attaching to a process when the process is in the |
1415 | kernel performing a system call (debugger can't get | |
1416 | full register state for the inferior process since | |
1417 | the process wasn't being traced when it entered the | |
1418 | system call). | |
c906108c | 1419 | |
c5aa993b JM |
1420 | * Register state is not complete if the system call |
1421 | causes the process to core dump. | |
c906108c SS |
1422 | |
1423 | ||
1424 | The following heinous code is an attempt to deal with | |
1425 | the lack of register state in a core dump. It will | |
1426 | fail miserably if the function which performs the | |
1427 | system call has a variable sized stack frame. */ | |
1428 | ||
c2c6d25f | 1429 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1430 | { |
1431 | hppa_frame_init_saved_regs (tmp_frame); | |
1432 | saved_regs = get_frame_saved_regs (tmp_frame); | |
1433 | } | |
c906108c SS |
1434 | |
1435 | /* Abominable hack. */ | |
1436 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1437 | && ((saved_regs[FLAGS_REGNUM] |
1438 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1439 | TARGET_PTR_BIT / 8) |
c906108c | 1440 | & 0x2)) |
43bd9a9e | 1441 | || (saved_regs[FLAGS_REGNUM] == 0 |
c906108c SS |
1442 | && read_register (FLAGS_REGNUM) & 0x2))) |
1443 | { | |
8bedc050 | 1444 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1445 | if (!u) |
1446 | { | |
0ba6dca9 | 1447 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1448 | TARGET_PTR_BIT / 8); |
c906108c SS |
1449 | } |
1450 | else | |
1451 | { | |
1452 | return frame_base - (u->Total_frame_size << 3); | |
1453 | } | |
1454 | } | |
c5aa993b | 1455 | |
0ba6dca9 | 1456 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1457 | TARGET_PTR_BIT / 8); |
c906108c SS |
1458 | } |
1459 | } | |
1460 | else | |
1461 | { | |
c906108c SS |
1462 | /* Get the innermost frame. */ |
1463 | tmp_frame = frame; | |
ef6e7e13 AC |
1464 | while (get_next_frame (tmp_frame) != NULL) |
1465 | tmp_frame = get_next_frame (tmp_frame); | |
c906108c | 1466 | |
c2c6d25f | 1467 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1468 | { |
1469 | hppa_frame_init_saved_regs (tmp_frame); | |
1470 | saved_regs = get_frame_saved_regs (tmp_frame); | |
1471 | } | |
c2c6d25f | 1472 | |
c906108c SS |
1473 | /* Abominable hack. See above. */ |
1474 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1475 | && ((saved_regs[FLAGS_REGNUM] |
1476 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1477 | TARGET_PTR_BIT / 8) |
c906108c | 1478 | & 0x2)) |
43bd9a9e | 1479 | || (saved_regs[FLAGS_REGNUM] == 0 |
c5aa993b | 1480 | && read_register (FLAGS_REGNUM) & 0x2))) |
c906108c | 1481 | { |
8bedc050 | 1482 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1483 | if (!u) |
1484 | { | |
0ba6dca9 | 1485 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1486 | TARGET_PTR_BIT / 8); |
c906108c | 1487 | } |
c5aa993b JM |
1488 | else |
1489 | { | |
1490 | return frame_base - (u->Total_frame_size << 3); | |
1491 | } | |
c906108c | 1492 | } |
c5aa993b | 1493 | |
c906108c | 1494 | /* The value in %r3 was never saved into the stack (thus %r3 still |
c5aa993b | 1495 | holds the value of the previous frame pointer). */ |
0ba6dca9 | 1496 | return deprecated_read_fp (); |
c906108c SS |
1497 | } |
1498 | } | |
c906108c | 1499 | \f |
c5aa993b | 1500 | |
c906108c SS |
1501 | /* To see if a frame chain is valid, see if the caller looks like it |
1502 | was compiled with gcc. */ | |
1503 | ||
1504 | int | |
fba45db2 | 1505 | hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
1506 | { |
1507 | struct minimal_symbol *msym_us; | |
1508 | struct minimal_symbol *msym_start; | |
1509 | struct unwind_table_entry *u, *next_u = NULL; | |
1510 | struct frame_info *next; | |
1511 | ||
ef6e7e13 | 1512 | u = find_unwind_entry (get_frame_pc (thisframe)); |
c906108c SS |
1513 | |
1514 | if (u == NULL) | |
1515 | return 1; | |
1516 | ||
1517 | /* We can't just check that the same of msym_us is "_start", because | |
1518 | someone idiotically decided that they were going to make a Ltext_end | |
1519 | symbol with the same address. This Ltext_end symbol is totally | |
1520 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1521 | which is (legitimately, since it is in the user's namespace) | |
1522 | named Ltext_end, so we can't just ignore it. */ | |
8bedc050 | 1523 | msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe)); |
c906108c SS |
1524 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); |
1525 | if (msym_us | |
1526 | && msym_start | |
1527 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1528 | return 0; | |
1529 | ||
1530 | /* Grrrr. Some new idiot decided that they don't want _start for the | |
1531 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1532 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1533 | if (msym_us | |
1534 | && msym_start | |
1535 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1536 | return 0; | |
1537 | ||
1538 | next = get_next_frame (thisframe); | |
1539 | if (next) | |
ef6e7e13 | 1540 | next_u = find_unwind_entry (get_frame_pc (next)); |
c906108c SS |
1541 | |
1542 | /* If this frame does not save SP, has no stack, isn't a stub, | |
1543 | and doesn't "call" an interrupt routine or signal handler caller, | |
1544 | then its not valid. */ | |
1545 | if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0 | |
ef6e7e13 | 1546 | || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)) |
c906108c SS |
1547 | || (next_u && next_u->HP_UX_interrupt_marker)) |
1548 | return 1; | |
1549 | ||
ef6e7e13 | 1550 | if (pc_in_linker_stub (get_frame_pc (thisframe))) |
c906108c SS |
1551 | return 1; |
1552 | ||
1553 | return 0; | |
1554 | } | |
1555 | ||
7daf4f5b JB |
1556 | /* These functions deal with saving and restoring register state |
1557 | around a function call in the inferior. They keep the stack | |
1558 | double-word aligned; eventually, on an hp700, the stack will have | |
1559 | to be aligned to a 64-byte boundary. */ | |
c906108c SS |
1560 | |
1561 | void | |
7daf4f5b | 1562 | hppa_push_dummy_frame (void) |
c906108c SS |
1563 | { |
1564 | CORE_ADDR sp, pc, pcspace; | |
1565 | register int regnum; | |
53a5351d | 1566 | CORE_ADDR int_buffer; |
c906108c SS |
1567 | double freg_buffer; |
1568 | ||
60383d10 | 1569 | pc = hppa_target_read_pc (inferior_ptid); |
c906108c SS |
1570 | int_buffer = read_register (FLAGS_REGNUM); |
1571 | if (int_buffer & 0x2) | |
1572 | { | |
3371ccc0 | 1573 | const unsigned int sid = (pc >> 30) & 0x3; |
c906108c SS |
1574 | if (sid == 0) |
1575 | pcspace = read_register (SR4_REGNUM); | |
1576 | else | |
1577 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
c906108c SS |
1578 | } |
1579 | else | |
1580 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1581 | ||
1582 | /* Space for "arguments"; the RP goes in here. */ | |
1583 | sp = read_register (SP_REGNUM) + 48; | |
1584 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
53a5351d JM |
1585 | |
1586 | /* The 32bit and 64bit ABIs save the return pointer into different | |
1587 | stack slots. */ | |
b1e29e33 AC |
1588 | if (DEPRECATED_REGISTER_SIZE == 8) |
1589 | write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); | |
53a5351d | 1590 | else |
b1e29e33 | 1591 | write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); |
c906108c | 1592 | |
0ba6dca9 | 1593 | int_buffer = deprecated_read_fp (); |
b1e29e33 | 1594 | write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); |
c906108c | 1595 | |
0ba6dca9 | 1596 | write_register (DEPRECATED_FP_REGNUM, sp); |
c906108c | 1597 | |
b1e29e33 | 1598 | sp += 2 * DEPRECATED_REGISTER_SIZE; |
c906108c SS |
1599 | |
1600 | for (regnum = 1; regnum < 32; regnum++) | |
0ba6dca9 | 1601 | if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM) |
c906108c SS |
1602 | sp = push_word (sp, read_register (regnum)); |
1603 | ||
53a5351d | 1604 | /* This is not necessary for the 64bit ABI. In fact it is dangerous. */ |
b1e29e33 | 1605 | if (DEPRECATED_REGISTER_SIZE != 8) |
53a5351d | 1606 | sp += 4; |
c906108c SS |
1607 | |
1608 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1609 | { | |
73937e03 AC |
1610 | deprecated_read_register_bytes (REGISTER_BYTE (regnum), |
1611 | (char *) &freg_buffer, 8); | |
c5aa993b | 1612 | sp = push_bytes (sp, (char *) &freg_buffer, 8); |
c906108c SS |
1613 | } |
1614 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1615 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1616 | sp = push_word (sp, pc); | |
1617 | sp = push_word (sp, pcspace); | |
1618 | sp = push_word (sp, pc + 4); | |
1619 | sp = push_word (sp, pcspace); | |
1620 | write_register (SP_REGNUM, sp); | |
1621 | } | |
1622 | ||
1623 | static void | |
fba45db2 | 1624 | find_dummy_frame_regs (struct frame_info *frame, |
43bd9a9e | 1625 | CORE_ADDR frame_saved_regs[]) |
c906108c | 1626 | { |
ef6e7e13 | 1627 | CORE_ADDR fp = get_frame_base (frame); |
c906108c SS |
1628 | int i; |
1629 | ||
53a5351d | 1630 | /* The 32bit and 64bit ABIs save RP into different locations. */ |
b1e29e33 | 1631 | if (DEPRECATED_REGISTER_SIZE == 8) |
43bd9a9e | 1632 | frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3; |
53a5351d | 1633 | else |
43bd9a9e | 1634 | frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3; |
53a5351d | 1635 | |
0ba6dca9 | 1636 | frame_saved_regs[DEPRECATED_FP_REGNUM] = fp; |
c906108c | 1637 | |
b1e29e33 | 1638 | frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE); |
53a5351d | 1639 | |
b1e29e33 | 1640 | for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++) |
c906108c | 1641 | { |
0ba6dca9 | 1642 | if (i != DEPRECATED_FP_REGNUM) |
c906108c | 1643 | { |
43bd9a9e | 1644 | frame_saved_regs[i] = fp; |
b1e29e33 | 1645 | fp += DEPRECATED_REGISTER_SIZE; |
c906108c SS |
1646 | } |
1647 | } | |
1648 | ||
53a5351d | 1649 | /* This is not necessary or desirable for the 64bit ABI. */ |
b1e29e33 | 1650 | if (DEPRECATED_REGISTER_SIZE != 8) |
53a5351d JM |
1651 | fp += 4; |
1652 | ||
c906108c | 1653 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) |
43bd9a9e AC |
1654 | frame_saved_regs[i] = fp; |
1655 | ||
1656 | frame_saved_regs[IPSW_REGNUM] = fp; | |
b1e29e33 AC |
1657 | frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE; |
1658 | frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE; | |
1659 | frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE; | |
1660 | frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE; | |
1661 | frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE; | |
c906108c SS |
1662 | } |
1663 | ||
1664 | void | |
fba45db2 | 1665 | hppa_pop_frame (void) |
c906108c SS |
1666 | { |
1667 | register struct frame_info *frame = get_current_frame (); | |
1668 | register CORE_ADDR fp, npc, target_pc; | |
1669 | register int regnum; | |
43bd9a9e | 1670 | CORE_ADDR *fsr; |
c906108c SS |
1671 | double freg_buffer; |
1672 | ||
c193f6ac | 1673 | fp = get_frame_base (frame); |
43bd9a9e AC |
1674 | hppa_frame_init_saved_regs (frame); |
1675 | fsr = get_frame_saved_regs (frame); | |
c906108c SS |
1676 | |
1677 | #ifndef NO_PC_SPACE_QUEUE_RESTORE | |
43bd9a9e AC |
1678 | if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1679 | restore_pc_queue (fsr); | |
c906108c SS |
1680 | #endif |
1681 | ||
1682 | for (regnum = 31; regnum > 0; regnum--) | |
43bd9a9e AC |
1683 | if (fsr[regnum]) |
1684 | write_register (regnum, read_memory_integer (fsr[regnum], | |
b1e29e33 | 1685 | DEPRECATED_REGISTER_SIZE)); |
c906108c | 1686 | |
c5aa993b | 1687 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--) |
43bd9a9e | 1688 | if (fsr[regnum]) |
c906108c | 1689 | { |
43bd9a9e | 1690 | read_memory (fsr[regnum], (char *) &freg_buffer, 8); |
73937e03 AC |
1691 | deprecated_write_register_bytes (REGISTER_BYTE (regnum), |
1692 | (char *) &freg_buffer, 8); | |
c906108c SS |
1693 | } |
1694 | ||
43bd9a9e | 1695 | if (fsr[IPSW_REGNUM]) |
c906108c | 1696 | write_register (IPSW_REGNUM, |
43bd9a9e | 1697 | read_memory_integer (fsr[IPSW_REGNUM], |
b1e29e33 | 1698 | DEPRECATED_REGISTER_SIZE)); |
c906108c | 1699 | |
43bd9a9e | 1700 | if (fsr[SAR_REGNUM]) |
c906108c | 1701 | write_register (SAR_REGNUM, |
43bd9a9e | 1702 | read_memory_integer (fsr[SAR_REGNUM], |
b1e29e33 | 1703 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
1704 | |
1705 | /* If the PC was explicitly saved, then just restore it. */ | |
43bd9a9e | 1706 | if (fsr[PCOQ_TAIL_REGNUM]) |
c906108c | 1707 | { |
43bd9a9e | 1708 | npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM], |
b1e29e33 | 1709 | DEPRECATED_REGISTER_SIZE); |
c906108c SS |
1710 | write_register (PCOQ_TAIL_REGNUM, npc); |
1711 | } | |
1712 | /* Else use the value in %rp to set the new PC. */ | |
c5aa993b | 1713 | else |
c906108c SS |
1714 | { |
1715 | npc = read_register (RP_REGNUM); | |
1716 | write_pc (npc); | |
1717 | } | |
1718 | ||
b1e29e33 | 1719 | write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE)); |
c906108c | 1720 | |
43bd9a9e | 1721 | if (fsr[IPSW_REGNUM]) /* call dummy */ |
c906108c SS |
1722 | write_register (SP_REGNUM, fp - 48); |
1723 | else | |
1724 | write_register (SP_REGNUM, fp); | |
1725 | ||
1726 | /* The PC we just restored may be inside a return trampoline. If so | |
1727 | we want to restart the inferior and run it through the trampoline. | |
1728 | ||
1729 | Do this by setting a momentary breakpoint at the location the | |
1730 | trampoline returns to. | |
1731 | ||
1732 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
1733 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; | |
43bd9a9e | 1734 | if (target_pc && !fsr[IPSW_REGNUM]) |
c906108c SS |
1735 | { |
1736 | struct symtab_and_line sal; | |
1737 | struct breakpoint *breakpoint; | |
1738 | struct cleanup *old_chain; | |
1739 | ||
1740 | /* Set up our breakpoint. Set it to be silent as the MI code | |
c5aa993b | 1741 | for "return_command" will print the frame we returned to. */ |
c906108c SS |
1742 | sal = find_pc_line (target_pc, 0); |
1743 | sal.pc = target_pc; | |
516b1f28 | 1744 | breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish); |
c906108c SS |
1745 | breakpoint->silent = 1; |
1746 | ||
1747 | /* So we can clean things up. */ | |
4d6140d9 | 1748 | old_chain = make_cleanup_delete_breakpoint (breakpoint); |
c906108c SS |
1749 | |
1750 | /* Start up the inferior. */ | |
1751 | clear_proceed_status (); | |
1752 | proceed_to_finish = 1; | |
2acceee2 | 1753 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); |
c906108c SS |
1754 | |
1755 | /* Perform our cleanups. */ | |
1756 | do_cleanups (old_chain); | |
1757 | } | |
1758 | flush_cached_frames (); | |
1759 | } | |
1760 | ||
1761 | /* After returning to a dummy on the stack, restore the instruction | |
1762 | queue space registers. */ | |
1763 | ||
1764 | static int | |
43bd9a9e | 1765 | restore_pc_queue (CORE_ADDR *fsr) |
c906108c SS |
1766 | { |
1767 | CORE_ADDR pc = read_pc (); | |
43bd9a9e | 1768 | CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM], |
53a5351d | 1769 | TARGET_PTR_BIT / 8); |
c906108c SS |
1770 | struct target_waitstatus w; |
1771 | int insn_count; | |
1772 | ||
1773 | /* Advance past break instruction in the call dummy. */ | |
1774 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1775 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1776 | ||
1777 | /* HPUX doesn't let us set the space registers or the space | |
1778 | registers of the PC queue through ptrace. Boo, hiss. | |
1779 | Conveniently, the call dummy has this sequence of instructions | |
1780 | after the break: | |
c5aa993b JM |
1781 | mtsp r21, sr0 |
1782 | ble,n 0(sr0, r22) | |
1783 | ||
c906108c SS |
1784 | So, load up the registers and single step until we are in the |
1785 | right place. */ | |
1786 | ||
43bd9a9e | 1787 | write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM], |
b1e29e33 | 1788 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
1789 | write_register (22, new_pc); |
1790 | ||
1791 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1792 | { | |
1793 | /* FIXME: What if the inferior gets a signal right now? Want to | |
c5aa993b JM |
1794 | merge this into wait_for_inferior (as a special kind of |
1795 | watchpoint? By setting a breakpoint at the end? Is there | |
1796 | any other choice? Is there *any* way to do this stuff with | |
1797 | ptrace() or some equivalent?). */ | |
c906108c | 1798 | resume (1, 0); |
39f77062 | 1799 | target_wait (inferior_ptid, &w); |
c906108c SS |
1800 | |
1801 | if (w.kind == TARGET_WAITKIND_SIGNALLED) | |
c5aa993b JM |
1802 | { |
1803 | stop_signal = w.value.sig; | |
1804 | terminal_ours_for_output (); | |
1805 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", | |
c906108c SS |
1806 | target_signal_to_name (stop_signal), |
1807 | target_signal_to_string (stop_signal)); | |
c5aa993b JM |
1808 | gdb_flush (gdb_stdout); |
1809 | return 0; | |
1810 | } | |
c906108c SS |
1811 | } |
1812 | target_terminal_ours (); | |
1813 | target_fetch_registers (-1); | |
1814 | return 1; | |
1815 | } | |
1816 | ||
c2c6d25f JM |
1817 | |
1818 | #ifdef PA20W_CALLING_CONVENTIONS | |
1819 | ||
53a5351d JM |
1820 | /* This function pushes a stack frame with arguments as part of the |
1821 | inferior function calling mechanism. | |
c906108c | 1822 | |
c2c6d25f JM |
1823 | This is the version for the PA64, in which later arguments appear |
1824 | at higher addresses. (The stack always grows towards higher | |
1825 | addresses.) | |
c906108c | 1826 | |
53a5351d JM |
1827 | We simply allocate the appropriate amount of stack space and put |
1828 | arguments into their proper slots. The call dummy code will copy | |
1829 | arguments into registers as needed by the ABI. | |
c906108c | 1830 | |
c2c6d25f JM |
1831 | This ABI also requires that the caller provide an argument pointer |
1832 | to the callee, so we do that too. */ | |
53a5351d | 1833 | |
c906108c | 1834 | CORE_ADDR |
ea7c478f | 1835 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1836 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1837 | { |
1838 | /* array of arguments' offsets */ | |
c5aa993b | 1839 | int *offset = (int *) alloca (nargs * sizeof (int)); |
53a5351d JM |
1840 | |
1841 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1842 | word size */ | |
c5aa993b | 1843 | int *lengths = (int *) alloca (nargs * sizeof (int)); |
c906108c | 1844 | |
53a5351d JM |
1845 | /* The value of SP as it was passed into this function after |
1846 | aligning. */ | |
1847 | CORE_ADDR orig_sp = STACK_ALIGN (sp); | |
c906108c | 1848 | |
53a5351d JM |
1849 | /* The number of stack bytes occupied by the current argument. */ |
1850 | int bytes_reserved; | |
1851 | ||
1852 | /* The total number of bytes reserved for the arguments. */ | |
1853 | int cum_bytes_reserved = 0; | |
c906108c | 1854 | |
53a5351d JM |
1855 | /* Similarly, but aligned. */ |
1856 | int cum_bytes_aligned = 0; | |
1857 | int i; | |
c5aa993b | 1858 | |
53a5351d | 1859 | /* Iterate over each argument provided by the user. */ |
c906108c SS |
1860 | for (i = 0; i < nargs; i++) |
1861 | { | |
c2c6d25f JM |
1862 | struct type *arg_type = VALUE_TYPE (args[i]); |
1863 | ||
1864 | /* Integral scalar values smaller than a register are padded on | |
1865 | the left. We do this by promoting them to full-width, | |
1866 | although the ABI says to pad them with garbage. */ | |
1867 | if (is_integral_type (arg_type) | |
b1e29e33 | 1868 | && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE) |
c2c6d25f JM |
1869 | { |
1870 | args[i] = value_cast ((TYPE_UNSIGNED (arg_type) | |
1871 | ? builtin_type_unsigned_long | |
1872 | : builtin_type_long), | |
1873 | args[i]); | |
1874 | arg_type = VALUE_TYPE (args[i]); | |
1875 | } | |
1876 | ||
1877 | lengths[i] = TYPE_LENGTH (arg_type); | |
c906108c | 1878 | |
53a5351d JM |
1879 | /* Align the size of the argument to the word size for this |
1880 | target. */ | |
b1e29e33 | 1881 | bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE; |
c906108c | 1882 | |
53a5351d JM |
1883 | offset[i] = cum_bytes_reserved; |
1884 | ||
c2c6d25f JM |
1885 | /* Aggregates larger than eight bytes (the only types larger |
1886 | than eight bytes we have) are aligned on a 16-byte boundary, | |
1887 | possibly padded on the right with garbage. This may leave an | |
1888 | empty word on the stack, and thus an unused register, as per | |
1889 | the ABI. */ | |
1890 | if (bytes_reserved > 8) | |
1891 | { | |
1892 | /* Round up the offset to a multiple of two slots. */ | |
b1e29e33 AC |
1893 | int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1) |
1894 | & -(2*DEPRECATED_REGISTER_SIZE)); | |
c906108c | 1895 | |
c2c6d25f JM |
1896 | /* Note the space we've wasted, if any. */ |
1897 | bytes_reserved += new_offset - offset[i]; | |
1898 | offset[i] = new_offset; | |
1899 | } | |
53a5351d | 1900 | |
c2c6d25f JM |
1901 | cum_bytes_reserved += bytes_reserved; |
1902 | } | |
1903 | ||
1904 | /* CUM_BYTES_RESERVED already accounts for all the arguments | |
1905 | passed by the user. However, the ABIs mandate minimum stack space | |
1906 | allocations for outgoing arguments. | |
1907 | ||
1908 | The ABIs also mandate minimum stack alignments which we must | |
1909 | preserve. */ | |
1910 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); | |
1911 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); | |
1912 | ||
1913 | /* Now write each of the args at the proper offset down the stack. */ | |
1914 | for (i = 0; i < nargs; i++) | |
1915 | write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
1916 | ||
1917 | /* If a structure has to be returned, set up register 28 to hold its | |
1918 | address */ | |
1919 | if (struct_return) | |
1920 | write_register (28, struct_addr); | |
1921 | ||
1922 | /* For the PA64 we must pass a pointer to the outgoing argument list. | |
1923 | The ABI mandates that the pointer should point to the first byte of | |
1924 | storage beyond the register flushback area. | |
1925 | ||
1926 | However, the call dummy expects the outgoing argument pointer to | |
1927 | be passed in register %r4. */ | |
1928 | write_register (4, orig_sp + REG_PARM_STACK_SPACE); | |
1929 | ||
1930 | /* ?!? This needs further work. We need to set up the global data | |
1931 | pointer for this procedure. This assumes the same global pointer | |
1932 | for every procedure. The call dummy expects the dp value to | |
1933 | be passed in register %r6. */ | |
1934 | write_register (6, read_register (27)); | |
1935 | ||
1936 | /* The stack will have 64 bytes of additional space for a frame marker. */ | |
1937 | return sp + 64; | |
1938 | } | |
1939 | ||
1940 | #else | |
1941 | ||
1942 | /* This function pushes a stack frame with arguments as part of the | |
1943 | inferior function calling mechanism. | |
1944 | ||
1945 | This is the version of the function for the 32-bit PA machines, in | |
1946 | which later arguments appear at lower addresses. (The stack always | |
1947 | grows towards higher addresses.) | |
1948 | ||
1949 | We simply allocate the appropriate amount of stack space and put | |
1950 | arguments into their proper slots. The call dummy code will copy | |
1951 | arguments into registers as needed by the ABI. */ | |
1952 | ||
1953 | CORE_ADDR | |
ea7c478f | 1954 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1955 | int struct_return, CORE_ADDR struct_addr) |
c2c6d25f JM |
1956 | { |
1957 | /* array of arguments' offsets */ | |
1958 | int *offset = (int *) alloca (nargs * sizeof (int)); | |
1959 | ||
1960 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1961 | word size */ | |
1962 | int *lengths = (int *) alloca (nargs * sizeof (int)); | |
1963 | ||
1964 | /* The number of stack bytes occupied by the current argument. */ | |
1965 | int bytes_reserved; | |
1966 | ||
1967 | /* The total number of bytes reserved for the arguments. */ | |
1968 | int cum_bytes_reserved = 0; | |
1969 | ||
1970 | /* Similarly, but aligned. */ | |
1971 | int cum_bytes_aligned = 0; | |
1972 | int i; | |
1973 | ||
1974 | /* Iterate over each argument provided by the user. */ | |
1975 | for (i = 0; i < nargs; i++) | |
1976 | { | |
1977 | lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1978 | ||
1979 | /* Align the size of the argument to the word size for this | |
1980 | target. */ | |
b1e29e33 | 1981 | bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE; |
c2c6d25f | 1982 | |
b6649e88 AC |
1983 | offset[i] = (cum_bytes_reserved |
1984 | + (lengths[i] > 4 ? bytes_reserved : lengths[i])); | |
c2c6d25f JM |
1985 | |
1986 | /* If the argument is a double word argument, then it needs to be | |
1987 | double word aligned. */ | |
b1e29e33 AC |
1988 | if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE) |
1989 | && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE)) | |
c5aa993b JM |
1990 | { |
1991 | int new_offset = 0; | |
53a5351d JM |
1992 | /* BYTES_RESERVED is already aligned to the word, so we put |
1993 | the argument at one word more down the stack. | |
1994 | ||
1995 | This will leave one empty word on the stack, and one unused | |
1996 | register as mandated by the ABI. */ | |
b1e29e33 AC |
1997 | new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1) |
1998 | & -(2 * DEPRECATED_REGISTER_SIZE)); | |
53a5351d | 1999 | |
b1e29e33 | 2000 | if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE) |
c5aa993b | 2001 | { |
b1e29e33 AC |
2002 | bytes_reserved += DEPRECATED_REGISTER_SIZE; |
2003 | offset[i] += DEPRECATED_REGISTER_SIZE; | |
c5aa993b JM |
2004 | } |
2005 | } | |
c906108c SS |
2006 | |
2007 | cum_bytes_reserved += bytes_reserved; | |
2008 | ||
2009 | } | |
2010 | ||
c2c6d25f JM |
2011 | /* CUM_BYTES_RESERVED already accounts for all the arguments passed |
2012 | by the user. However, the ABI mandates minimum stack space | |
53a5351d JM |
2013 | allocations for outgoing arguments. |
2014 | ||
c2c6d25f | 2015 | The ABI also mandates minimum stack alignments which we must |
53a5351d | 2016 | preserve. */ |
c906108c | 2017 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); |
53a5351d JM |
2018 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
2019 | ||
2020 | /* Now write each of the args at the proper offset down the stack. | |
53a5351d JM |
2021 | ?!? We need to promote values to a full register instead of skipping |
2022 | words in the stack. */ | |
c906108c SS |
2023 | for (i = 0; i < nargs; i++) |
2024 | write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
c906108c | 2025 | |
53a5351d JM |
2026 | /* If a structure has to be returned, set up register 28 to hold its |
2027 | address */ | |
c906108c SS |
2028 | if (struct_return) |
2029 | write_register (28, struct_addr); | |
2030 | ||
53a5351d | 2031 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
c906108c SS |
2032 | return sp + 32; |
2033 | } | |
2034 | ||
c2c6d25f | 2035 | #endif |
c906108c SS |
2036 | |
2037 | /* elz: this function returns a value which is built looking at the given address. | |
2038 | It is called from call_function_by_hand, in case we need to return a | |
2039 | value which is larger than 64 bits, and it is stored in the stack rather than | |
2040 | in the registers r28 and r29 or fr4. | |
2041 | This function does the same stuff as value_being_returned in values.c, but | |
2042 | gets the value from the stack rather than from the buffer where all the | |
2043 | registers were saved when the function called completed. */ | |
ea7c478f | 2044 | struct value * |
fba45db2 | 2045 | hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr) |
c906108c | 2046 | { |
ea7c478f | 2047 | register struct value *val; |
c906108c SS |
2048 | |
2049 | val = allocate_value (valtype); | |
2050 | CHECK_TYPEDEF (valtype); | |
c5aa993b | 2051 | target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype)); |
c906108c SS |
2052 | |
2053 | return val; | |
2054 | } | |
2055 | ||
2056 | ||
2057 | ||
2058 | /* elz: Used to lookup a symbol in the shared libraries. | |
c5aa993b JM |
2059 | This function calls shl_findsym, indirectly through a |
2060 | call to __d_shl_get. __d_shl_get is in end.c, which is always | |
2061 | linked in by the hp compilers/linkers. | |
2062 | The call to shl_findsym cannot be made directly because it needs | |
2063 | to be active in target address space. | |
2064 | inputs: - minimal symbol pointer for the function we want to look up | |
2065 | - address in target space of the descriptor for the library | |
2066 | where we want to look the symbol up. | |
2067 | This address is retrieved using the | |
2068 | som_solib_get_solib_by_pc function (somsolib.c). | |
2069 | output: - real address in the library of the function. | |
2070 | note: the handle can be null, in which case shl_findsym will look for | |
2071 | the symbol in all the loaded shared libraries. | |
2072 | files to look at if you need reference on this stuff: | |
2073 | dld.c, dld_shl_findsym.c | |
2074 | end.c | |
2075 | man entry for shl_findsym */ | |
c906108c SS |
2076 | |
2077 | CORE_ADDR | |
fba45db2 | 2078 | find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle) |
c906108c | 2079 | { |
c5aa993b JM |
2080 | struct symbol *get_sym, *symbol2; |
2081 | struct minimal_symbol *buff_minsym, *msymbol; | |
2082 | struct type *ftype; | |
ea7c478f AC |
2083 | struct value **args; |
2084 | struct value *funcval; | |
2085 | struct value *val; | |
c5aa993b JM |
2086 | |
2087 | int x, namelen, err_value, tmp = -1; | |
2088 | CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr; | |
2089 | CORE_ADDR stub_addr; | |
2090 | ||
2091 | ||
ea7c478f | 2092 | args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */ |
c5aa993b | 2093 | funcval = find_function_in_inferior ("__d_shl_get"); |
176620f1 | 2094 | get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL); |
c5aa993b JM |
2095 | buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL); |
2096 | msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL); | |
176620f1 | 2097 | symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL); |
c5aa993b | 2098 | endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym); |
22abf04a | 2099 | namelen = strlen (DEPRECATED_SYMBOL_NAME (function)); |
c5aa993b JM |
2100 | value_return_addr = endo_buff_addr + namelen; |
2101 | ftype = check_typedef (SYMBOL_TYPE (get_sym)); | |
2102 | ||
2103 | /* do alignment */ | |
2104 | if ((x = value_return_addr % 64) != 0) | |
2105 | value_return_addr = value_return_addr + 64 - x; | |
2106 | ||
2107 | errno_return_addr = value_return_addr + 64; | |
2108 | ||
2109 | ||
2110 | /* set up stuff needed by __d_shl_get in buffer in end.o */ | |
2111 | ||
22abf04a | 2112 | target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen); |
c5aa993b JM |
2113 | |
2114 | target_write_memory (value_return_addr, (char *) &tmp, 4); | |
2115 | ||
2116 | target_write_memory (errno_return_addr, (char *) &tmp, 4); | |
2117 | ||
2118 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
2119 | (char *) &handle, 4); | |
2120 | ||
2121 | /* now prepare the arguments for the call */ | |
2122 | ||
2123 | args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12); | |
4478b372 JB |
2124 | args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol)); |
2125 | args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr); | |
c5aa993b | 2126 | args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE); |
4478b372 JB |
2127 | args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr); |
2128 | args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr); | |
c5aa993b JM |
2129 | |
2130 | /* now call the function */ | |
2131 | ||
2132 | val = call_function_by_hand (funcval, 6, args); | |
2133 | ||
2134 | /* now get the results */ | |
2135 | ||
2136 | target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value)); | |
2137 | ||
2138 | target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr)); | |
2139 | if (stub_addr <= 0) | |
104c1213 | 2140 | error ("call to __d_shl_get failed, error code is %d", err_value); |
c5aa993b JM |
2141 | |
2142 | return (stub_addr); | |
c906108c SS |
2143 | } |
2144 | ||
c5aa993b | 2145 | /* Cover routine for find_stub_with_shl_get to pass to catch_errors */ |
a0b3c4fd | 2146 | static int |
4efb68b1 | 2147 | cover_find_stub_with_shl_get (void *args_untyped) |
c906108c | 2148 | { |
a0b3c4fd JM |
2149 | args_for_find_stub *args = args_untyped; |
2150 | args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle); | |
2151 | return 0; | |
c906108c SS |
2152 | } |
2153 | ||
c906108c SS |
2154 | /* Insert the specified number of args and function address |
2155 | into a call sequence of the above form stored at DUMMYNAME. | |
2156 | ||
2157 | On the hppa we need to call the stack dummy through $$dyncall. | |
b1e29e33 AC |
2158 | Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra |
2159 | argument, real_pc, which is the location where gdb should start up | |
2160 | the inferior to do the function call. | |
cce74817 JM |
2161 | |
2162 | This has to work across several versions of hpux, bsd, osf1. It has to | |
2163 | work regardless of what compiler was used to build the inferior program. | |
2164 | It should work regardless of whether or not end.o is available. It has | |
2165 | to work even if gdb can not call into the dynamic loader in the inferior | |
2166 | to query it for symbol names and addresses. | |
2167 | ||
2168 | Yes, all those cases should work. Luckily code exists to handle most | |
2169 | of them. The complexity is in selecting exactly what scheme should | |
2170 | be used to perform the inferior call. | |
2171 | ||
2172 | At the current time this routine is known not to handle cases where | |
2173 | the program was linked with HP's compiler without including end.o. | |
2174 | ||
2175 | Please contact Jeff Law ([email protected]) before changing this code. */ | |
c906108c SS |
2176 | |
2177 | CORE_ADDR | |
fba45db2 | 2178 | hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 2179 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
2180 | { |
2181 | CORE_ADDR dyncall_addr; | |
2182 | struct minimal_symbol *msymbol; | |
2183 | struct minimal_symbol *trampoline; | |
2184 | int flags = read_register (FLAGS_REGNUM); | |
cce74817 JM |
2185 | struct unwind_table_entry *u = NULL; |
2186 | CORE_ADDR new_stub = 0; | |
2187 | CORE_ADDR solib_handle = 0; | |
2188 | ||
2189 | /* Nonzero if we will use GCC's PLT call routine. This routine must be | |
c2c6d25f JM |
2190 | passed an import stub, not a PLABEL. It is also necessary to set %r19 |
2191 | (the PIC register) before performing the call. | |
c906108c | 2192 | |
cce74817 JM |
2193 | If zero, then we are using __d_plt_call (HP's PLT call routine) or we |
2194 | are calling the target directly. When using __d_plt_call we want to | |
2195 | use a PLABEL instead of an import stub. */ | |
2196 | int using_gcc_plt_call = 1; | |
2197 | ||
53a5351d JM |
2198 | #ifdef GDB_TARGET_IS_HPPA_20W |
2199 | /* We currently use completely different code for the PA2.0W inferior | |
2200 | function call sequences. This needs to be cleaned up. */ | |
2201 | { | |
2202 | CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5; | |
2203 | struct target_waitstatus w; | |
2204 | int inst1, inst2; | |
2205 | char buf[4]; | |
2206 | int status; | |
2207 | struct objfile *objfile; | |
2208 | ||
2209 | /* We can not modify the PC space queues directly, so we start | |
2210 | up the inferior and execute a couple instructions to set the | |
2211 | space queues so that they point to the call dummy in the stack. */ | |
2212 | pcsqh = read_register (PCSQ_HEAD_REGNUM); | |
2213 | sr5 = read_register (SR5_REGNUM); | |
2214 | if (1) | |
2215 | { | |
2216 | pcoqh = read_register (PCOQ_HEAD_REGNUM); | |
2217 | pcoqt = read_register (PCOQ_TAIL_REGNUM); | |
2218 | if (target_read_memory (pcoqh, buf, 4) != 0) | |
2219 | error ("Couldn't modify space queue\n"); | |
2220 | inst1 = extract_unsigned_integer (buf, 4); | |
2221 | ||
2222 | if (target_read_memory (pcoqt, buf, 4) != 0) | |
2223 | error ("Couldn't modify space queue\n"); | |
2224 | inst2 = extract_unsigned_integer (buf, 4); | |
2225 | ||
2226 | /* BVE (r1) */ | |
2227 | *((int *) buf) = 0xe820d000; | |
2228 | if (target_write_memory (pcoqh, buf, 4) != 0) | |
2229 | error ("Couldn't modify space queue\n"); | |
2230 | ||
2231 | /* NOP */ | |
2232 | *((int *) buf) = 0x08000240; | |
2233 | if (target_write_memory (pcoqt, buf, 4) != 0) | |
2234 | { | |
2235 | *((int *) buf) = inst1; | |
2236 | target_write_memory (pcoqh, buf, 4); | |
2237 | error ("Couldn't modify space queue\n"); | |
2238 | } | |
2239 | ||
2240 | write_register (1, pc); | |
2241 | ||
2242 | /* Single step twice, the BVE instruction will set the space queue | |
2243 | such that it points to the PC value written immediately above | |
2244 | (ie the call dummy). */ | |
2245 | resume (1, 0); | |
39f77062 | 2246 | target_wait (inferior_ptid, &w); |
53a5351d | 2247 | resume (1, 0); |
39f77062 | 2248 | target_wait (inferior_ptid, &w); |
53a5351d JM |
2249 | |
2250 | /* Restore the two instructions at the old PC locations. */ | |
2251 | *((int *) buf) = inst1; | |
2252 | target_write_memory (pcoqh, buf, 4); | |
2253 | *((int *) buf) = inst2; | |
2254 | target_write_memory (pcoqt, buf, 4); | |
2255 | } | |
2256 | ||
2257 | /* The call dummy wants the ultimate destination address initially | |
2258 | in register %r5. */ | |
2259 | write_register (5, fun); | |
2260 | ||
2261 | /* We need to see if this objfile has a different DP value than our | |
c2c6d25f | 2262 | own (it could be a shared library for example). */ |
53a5351d JM |
2263 | ALL_OBJFILES (objfile) |
2264 | { | |
2265 | struct obj_section *s; | |
2266 | obj_private_data_t *obj_private; | |
2267 | ||
2268 | /* See if FUN is in any section within this shared library. */ | |
2269 | for (s = objfile->sections; s < objfile->sections_end; s++) | |
2270 | if (s->addr <= fun && fun < s->endaddr) | |
2271 | break; | |
2272 | ||
2273 | if (s >= objfile->sections_end) | |
2274 | continue; | |
2275 | ||
2276 | obj_private = (obj_private_data_t *) objfile->obj_private; | |
2277 | ||
2278 | /* The DP value may be different for each objfile. But within an | |
2279 | objfile each function uses the same dp value. Thus we do not need | |
2280 | to grope around the opd section looking for dp values. | |
2281 | ||
2282 | ?!? This is not strictly correct since we may be in a shared library | |
2283 | and want to call back into the main program. To make that case | |
2284 | work correctly we need to set obj_private->dp for the main program's | |
2285 | objfile, then remove this conditional. */ | |
2286 | if (obj_private->dp) | |
2287 | write_register (27, obj_private->dp); | |
2288 | break; | |
2289 | } | |
2290 | return pc; | |
2291 | } | |
2292 | #endif | |
2293 | ||
2294 | #ifndef GDB_TARGET_IS_HPPA_20W | |
cce74817 | 2295 | /* Prefer __gcc_plt_call over the HP supplied routine because |
c5aa993b | 2296 | __gcc_plt_call works for any number of arguments. */ |
c906108c | 2297 | trampoline = NULL; |
cce74817 JM |
2298 | if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL) |
2299 | using_gcc_plt_call = 0; | |
2300 | ||
c906108c SS |
2301 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
2302 | if (msymbol == NULL) | |
cce74817 | 2303 | error ("Can't find an address for $$dyncall trampoline"); |
c906108c SS |
2304 | |
2305 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2306 | ||
2307 | /* FUN could be a procedure label, in which case we have to get | |
cce74817 JM |
2308 | its real address and the value of its GOT/DP if we plan to |
2309 | call the routine via gcc_plt_call. */ | |
2310 | if ((fun & 0x2) && using_gcc_plt_call) | |
c906108c SS |
2311 | { |
2312 | /* Get the GOT/DP value for the target function. It's | |
c5aa993b JM |
2313 | at *(fun+4). Note the call dummy is *NOT* allowed to |
2314 | trash %r19 before calling the target function. */ | |
53a5351d | 2315 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, |
b1e29e33 | 2316 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
2317 | |
2318 | /* Now get the real address for the function we are calling, it's | |
c5aa993b | 2319 | at *fun. */ |
53a5351d JM |
2320 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, |
2321 | TARGET_PTR_BIT / 8); | |
c906108c SS |
2322 | } |
2323 | else | |
2324 | { | |
2325 | ||
2326 | #ifndef GDB_TARGET_IS_PA_ELF | |
cce74817 | 2327 | /* FUN could be an export stub, the real address of a function, or |
c5aa993b JM |
2328 | a PLABEL. When using gcc's PLT call routine we must call an import |
2329 | stub rather than the export stub or real function for lazy binding | |
2330 | to work correctly | |
cce74817 | 2331 | |
39f77062 | 2332 | If we are using the gcc PLT call routine, then we need to |
c5aa993b | 2333 | get the import stub for the target function. */ |
cce74817 | 2334 | if (using_gcc_plt_call && som_solib_get_got_by_pc (fun)) |
c906108c SS |
2335 | { |
2336 | struct objfile *objfile; | |
2337 | struct minimal_symbol *funsymbol, *stub_symbol; | |
2338 | CORE_ADDR newfun = 0; | |
2339 | ||
2340 | funsymbol = lookup_minimal_symbol_by_pc (fun); | |
2341 | if (!funsymbol) | |
4ce44c66 | 2342 | error ("Unable to find minimal symbol for target function.\n"); |
c906108c SS |
2343 | |
2344 | /* Search all the object files for an import symbol with the | |
2345 | right name. */ | |
2346 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
2347 | { |
2348 | stub_symbol | |
2349 | = lookup_minimal_symbol_solib_trampoline | |
22abf04a | 2350 | (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile); |
c5aa993b JM |
2351 | |
2352 | if (!stub_symbol) | |
22abf04a | 2353 | stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol), |
c5aa993b JM |
2354 | NULL, objfile); |
2355 | ||
2356 | /* Found a symbol with the right name. */ | |
2357 | if (stub_symbol) | |
2358 | { | |
2359 | struct unwind_table_entry *u; | |
2360 | /* It must be a shared library trampoline. */ | |
2361 | if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
2362 | continue; | |
2363 | ||
2364 | /* It must also be an import stub. */ | |
2365 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
6426a772 JM |
2366 | if (u == NULL |
2367 | || (u->stub_unwind.stub_type != IMPORT | |
2368 | #ifdef GDB_NATIVE_HPUX_11 | |
2369 | /* Sigh. The hpux 10.20 dynamic linker will blow | |
2370 | chunks if we perform a call to an unbound function | |
2371 | via the IMPORT_SHLIB stub. The hpux 11.00 dynamic | |
2372 | linker will blow chunks if we do not call the | |
2373 | unbound function via the IMPORT_SHLIB stub. | |
2374 | ||
2375 | We currently have no way to select bevahior on just | |
2376 | the target. However, we only support HPUX/SOM in | |
2377 | native mode. So we conditinalize on a native | |
2378 | #ifdef. Ugly. Ugly. Ugly */ | |
2379 | && u->stub_unwind.stub_type != IMPORT_SHLIB | |
2380 | #endif | |
2381 | )) | |
c5aa993b JM |
2382 | continue; |
2383 | ||
2384 | /* OK. Looks like the correct import stub. */ | |
2385 | newfun = SYMBOL_VALUE (stub_symbol); | |
2386 | fun = newfun; | |
6426a772 JM |
2387 | |
2388 | /* If we found an IMPORT stub, then we want to stop | |
2389 | searching now. If we found an IMPORT_SHLIB, we want | |
2390 | to continue the search in the hopes that we will find | |
2391 | an IMPORT stub. */ | |
2392 | if (u->stub_unwind.stub_type == IMPORT) | |
2393 | break; | |
c5aa993b JM |
2394 | } |
2395 | } | |
cce74817 JM |
2396 | |
2397 | /* Ouch. We did not find an import stub. Make an attempt to | |
2398 | do the right thing instead of just croaking. Most of the | |
2399 | time this will actually work. */ | |
c906108c SS |
2400 | if (newfun == 0) |
2401 | write_register (19, som_solib_get_got_by_pc (fun)); | |
cce74817 JM |
2402 | |
2403 | u = find_unwind_entry (fun); | |
c5aa993b | 2404 | if (u |
cce74817 JM |
2405 | && (u->stub_unwind.stub_type == IMPORT |
2406 | || u->stub_unwind.stub_type == IMPORT_SHLIB)) | |
2407 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
2408 | ||
2409 | /* If we found the import stub in the shared library, then we have | |
2410 | to set %r19 before we call the stub. */ | |
2411 | if (u && u->stub_unwind.stub_type == IMPORT_SHLIB) | |
2412 | write_register (19, som_solib_get_got_by_pc (fun)); | |
c906108c | 2413 | } |
c906108c SS |
2414 | #endif |
2415 | } | |
2416 | ||
cce74817 JM |
2417 | /* If we are calling into another load module then have sr4export call the |
2418 | magic __d_plt_call routine which is linked in from end.o. | |
c906108c | 2419 | |
cce74817 JM |
2420 | You can't use _sr4export to make the call as the value in sp-24 will get |
2421 | fried and you end up returning to the wrong location. You can't call the | |
2422 | target as the code to bind the PLT entry to a function can't return to a | |
2423 | stack address. | |
2424 | ||
2425 | Also, query the dynamic linker in the inferior to provide a suitable | |
2426 | PLABEL for the target function. */ | |
c5aa993b | 2427 | if (!using_gcc_plt_call) |
c906108c SS |
2428 | { |
2429 | CORE_ADDR new_fun; | |
2430 | ||
cce74817 | 2431 | /* Get a handle for the shared library containing FUN. Given the |
c5aa993b | 2432 | handle we can query the shared library for a PLABEL. */ |
cce74817 | 2433 | solib_handle = som_solib_get_solib_by_pc (fun); |
c906108c | 2434 | |
cce74817 | 2435 | if (solib_handle) |
c906108c | 2436 | { |
cce74817 | 2437 | struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun); |
c906108c | 2438 | |
cce74817 JM |
2439 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); |
2440 | ||
2441 | if (trampoline == NULL) | |
2442 | { | |
2443 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc."); | |
2444 | } | |
2445 | ||
2446 | /* This is where sr4export will jump to. */ | |
2447 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); | |
2448 | ||
2449 | /* If the function is in a shared library, then call __d_shl_get to | |
2450 | get a PLABEL for the target function. */ | |
2451 | new_stub = find_stub_with_shl_get (fmsymbol, solib_handle); | |
2452 | ||
c5aa993b | 2453 | if (new_stub == 0) |
22abf04a | 2454 | error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol)); |
c906108c SS |
2455 | |
2456 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
cce74817 | 2457 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, |
c5aa993b | 2458 | (struct objfile *) NULL); |
c906108c | 2459 | |
cce74817 JM |
2460 | if (msymbol == NULL) |
2461 | error ("Can't find an address for __shlib_funcptr"); | |
2462 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
c5aa993b | 2463 | (char *) &new_stub, 4); |
c906108c SS |
2464 | |
2465 | /* We want sr4export to call __d_plt_call, so we claim it is | |
2466 | the final target. Clear trampoline. */ | |
cce74817 JM |
2467 | fun = new_fun; |
2468 | trampoline = NULL; | |
c906108c SS |
2469 | } |
2470 | } | |
2471 | ||
2472 | /* Store upper 21 bits of function address into ldil. fun will either be | |
2473 | the final target (most cases) or __d_plt_call when calling into a shared | |
2474 | library and __gcc_plt_call is not available. */ | |
2475 | store_unsigned_integer | |
2476 | (&dummy[FUNC_LDIL_OFFSET], | |
2477 | INSTRUCTION_SIZE, | |
2478 | deposit_21 (fun >> 11, | |
2479 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], | |
2480 | INSTRUCTION_SIZE))); | |
2481 | ||
2482 | /* Store lower 11 bits of function address into ldo */ | |
2483 | store_unsigned_integer | |
2484 | (&dummy[FUNC_LDO_OFFSET], | |
2485 | INSTRUCTION_SIZE, | |
2486 | deposit_14 (fun & MASK_11, | |
2487 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], | |
2488 | INSTRUCTION_SIZE))); | |
2489 | #ifdef SR4EXPORT_LDIL_OFFSET | |
2490 | ||
2491 | { | |
2492 | CORE_ADDR trampoline_addr; | |
2493 | ||
2494 | /* We may still need sr4export's address too. */ | |
2495 | ||
2496 | if (trampoline == NULL) | |
2497 | { | |
2498 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2499 | if (msymbol == NULL) | |
cce74817 | 2500 | error ("Can't find an address for _sr4export trampoline"); |
c906108c SS |
2501 | |
2502 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2503 | } | |
2504 | else | |
2505 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
2506 | ||
2507 | ||
2508 | /* Store upper 21 bits of trampoline's address into ldil */ | |
2509 | store_unsigned_integer | |
2510 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2511 | INSTRUCTION_SIZE, | |
2512 | deposit_21 (trampoline_addr >> 11, | |
2513 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2514 | INSTRUCTION_SIZE))); | |
2515 | ||
2516 | /* Store lower 11 bits of trampoline's address into ldo */ | |
2517 | store_unsigned_integer | |
2518 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
2519 | INSTRUCTION_SIZE, | |
2520 | deposit_14 (trampoline_addr & MASK_11, | |
2521 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], | |
2522 | INSTRUCTION_SIZE))); | |
2523 | } | |
2524 | #endif | |
2525 | ||
2526 | write_register (22, pc); | |
2527 | ||
2528 | /* If we are in a syscall, then we should call the stack dummy | |
2529 | directly. $$dyncall is not needed as the kernel sets up the | |
2530 | space id registers properly based on the value in %r31. In | |
2531 | fact calling $$dyncall will not work because the value in %r22 | |
2532 | will be clobbered on the syscall exit path. | |
2533 | ||
2534 | Similarly if the current PC is in a shared library. Note however, | |
2535 | this scheme won't work if the shared library isn't mapped into | |
2536 | the same space as the stack. */ | |
2537 | if (flags & 2) | |
2538 | return pc; | |
2539 | #ifndef GDB_TARGET_IS_PA_ELF | |
60383d10 | 2540 | else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid))) |
c906108c SS |
2541 | return pc; |
2542 | #endif | |
2543 | else | |
2544 | return dyncall_addr; | |
53a5351d | 2545 | #endif |
c906108c SS |
2546 | } |
2547 | ||
c906108c SS |
2548 | /* If the pid is in a syscall, then the FP register is not readable. |
2549 | We'll return zero in that case, rather than attempting to read it | |
2550 | and cause a warning. */ | |
60383d10 | 2551 | |
c906108c | 2552 | CORE_ADDR |
60383d10 | 2553 | hppa_read_fp (int pid) |
c906108c SS |
2554 | { |
2555 | int flags = read_register (FLAGS_REGNUM); | |
2556 | ||
c5aa993b JM |
2557 | if (flags & 2) |
2558 | { | |
2559 | return (CORE_ADDR) 0; | |
2560 | } | |
c906108c SS |
2561 | |
2562 | /* This is the only site that may directly read_register () the FP | |
0ba6dca9 AC |
2563 | register. All others must use deprecated_read_fp (). */ |
2564 | return read_register (DEPRECATED_FP_REGNUM); | |
c906108c SS |
2565 | } |
2566 | ||
60383d10 JB |
2567 | CORE_ADDR |
2568 | hppa_target_read_fp (void) | |
2569 | { | |
2570 | return hppa_read_fp (PIDGET (inferior_ptid)); | |
2571 | } | |
c906108c SS |
2572 | |
2573 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege | |
2574 | bits. */ | |
2575 | ||
2576 | CORE_ADDR | |
60383d10 | 2577 | hppa_target_read_pc (ptid_t ptid) |
c906108c | 2578 | { |
39f77062 | 2579 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2580 | |
2581 | /* The following test does not belong here. It is OS-specific, and belongs | |
2582 | in native code. */ | |
2583 | /* Test SS_INSYSCALL */ | |
2584 | if (flags & 2) | |
39f77062 | 2585 | return read_register_pid (31, ptid) & ~0x3; |
c906108c | 2586 | |
39f77062 | 2587 | return read_register_pid (PC_REGNUM, ptid) & ~0x3; |
c906108c SS |
2588 | } |
2589 | ||
2590 | /* Write out the PC. If currently in a syscall, then also write the new | |
2591 | PC value into %r31. */ | |
2592 | ||
2593 | void | |
60383d10 | 2594 | hppa_target_write_pc (CORE_ADDR v, ptid_t ptid) |
c906108c | 2595 | { |
39f77062 | 2596 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2597 | |
2598 | /* The following test does not belong here. It is OS-specific, and belongs | |
2599 | in native code. */ | |
2600 | /* If in a syscall, then set %r31. Also make sure to get the | |
2601 | privilege bits set correctly. */ | |
2602 | /* Test SS_INSYSCALL */ | |
2603 | if (flags & 2) | |
39f77062 | 2604 | write_register_pid (31, v | 0x3, ptid); |
c906108c | 2605 | |
39f77062 KB |
2606 | write_register_pid (PC_REGNUM, v, ptid); |
2607 | write_register_pid (NPC_REGNUM, v + 4, ptid); | |
c906108c SS |
2608 | } |
2609 | ||
2610 | /* return the alignment of a type in bytes. Structures have the maximum | |
2611 | alignment required by their fields. */ | |
2612 | ||
2613 | static int | |
fba45db2 | 2614 | hppa_alignof (struct type *type) |
c906108c SS |
2615 | { |
2616 | int max_align, align, i; | |
2617 | CHECK_TYPEDEF (type); | |
2618 | switch (TYPE_CODE (type)) | |
2619 | { | |
2620 | case TYPE_CODE_PTR: | |
2621 | case TYPE_CODE_INT: | |
2622 | case TYPE_CODE_FLT: | |
2623 | return TYPE_LENGTH (type); | |
2624 | case TYPE_CODE_ARRAY: | |
2625 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
2626 | case TYPE_CODE_STRUCT: | |
2627 | case TYPE_CODE_UNION: | |
2628 | max_align = 1; | |
2629 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2630 | { | |
2631 | /* Bit fields have no real alignment. */ | |
2632 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 2633 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
2634 | { |
2635 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
2636 | max_align = max (max_align, align); | |
2637 | } | |
2638 | } | |
2639 | return max_align; | |
2640 | default: | |
2641 | return 4; | |
2642 | } | |
2643 | } | |
2644 | ||
2645 | /* Print the register regnum, or all registers if regnum is -1 */ | |
2646 | ||
2647 | void | |
fba45db2 | 2648 | pa_do_registers_info (int regnum, int fpregs) |
c906108c | 2649 | { |
b8b527c5 | 2650 | char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES); |
c906108c SS |
2651 | int i; |
2652 | ||
2653 | /* Make a copy of gdb's save area (may cause actual | |
2654 | reads from the target). */ | |
2655 | for (i = 0; i < NUM_REGS; i++) | |
6e7f8b9c | 2656 | frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i)); |
c906108c SS |
2657 | |
2658 | if (regnum == -1) | |
2659 | pa_print_registers (raw_regs, regnum, fpregs); | |
c5aa993b JM |
2660 | else if (regnum < FP4_REGNUM) |
2661 | { | |
2662 | long reg_val[2]; | |
2663 | ||
2664 | /* Why is the value not passed through "extract_signed_integer" | |
2665 | as in "pa_print_registers" below? */ | |
2666 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
2667 | ||
2668 | if (!is_pa_2) | |
2669 | { | |
ce414844 | 2670 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2671 | } |
c906108c | 2672 | else |
c5aa993b JM |
2673 | { |
2674 | /* Fancy % formats to prevent leading zeros. */ | |
2675 | if (reg_val[0] == 0) | |
ce414844 | 2676 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2677 | else |
ce414844 | 2678 | printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum), |
c5aa993b JM |
2679 | reg_val[0], reg_val[1]); |
2680 | } | |
c906108c | 2681 | } |
c906108c | 2682 | else |
c5aa993b JM |
2683 | /* Note that real floating point values only start at |
2684 | FP4_REGNUM. FP0 and up are just status and error | |
2685 | registers, which have integral (bit) values. */ | |
c906108c SS |
2686 | pa_print_fp_reg (regnum); |
2687 | } | |
2688 | ||
2689 | /********** new function ********************/ | |
2690 | void | |
fba45db2 KB |
2691 | pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream, |
2692 | enum precision_type precision) | |
c906108c | 2693 | { |
b8b527c5 | 2694 | char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES); |
c906108c SS |
2695 | int i; |
2696 | ||
2697 | /* Make a copy of gdb's save area (may cause actual | |
c5aa993b | 2698 | reads from the target). */ |
c906108c | 2699 | for (i = 0; i < NUM_REGS; i++) |
6e7f8b9c | 2700 | frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i)); |
c906108c SS |
2701 | |
2702 | if (regnum == -1) | |
2703 | pa_strcat_registers (raw_regs, regnum, fpregs, stream); | |
2704 | ||
c5aa993b JM |
2705 | else if (regnum < FP4_REGNUM) |
2706 | { | |
2707 | long reg_val[2]; | |
2708 | ||
2709 | /* Why is the value not passed through "extract_signed_integer" | |
2710 | as in "pa_print_registers" below? */ | |
2711 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
c906108c | 2712 | |
c5aa993b JM |
2713 | if (!is_pa_2) |
2714 | { | |
ce414844 | 2715 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2716 | } |
c906108c | 2717 | else |
c5aa993b JM |
2718 | { |
2719 | /* Fancy % formats to prevent leading zeros. */ | |
2720 | if (reg_val[0] == 0) | |
ce414844 | 2721 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2722 | reg_val[1]); |
2723 | else | |
ce414844 | 2724 | fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2725 | reg_val[0], reg_val[1]); |
2726 | } | |
c906108c | 2727 | } |
c906108c | 2728 | else |
c5aa993b JM |
2729 | /* Note that real floating point values only start at |
2730 | FP4_REGNUM. FP0 and up are just status and error | |
2731 | registers, which have integral (bit) values. */ | |
c906108c SS |
2732 | pa_strcat_fp_reg (regnum, stream, precision); |
2733 | } | |
2734 | ||
2735 | /* If this is a PA2.0 machine, fetch the real 64-bit register | |
2736 | value. Otherwise use the info from gdb's saved register area. | |
2737 | ||
2738 | Note that reg_val is really expected to be an array of longs, | |
2739 | with two elements. */ | |
2740 | static void | |
fba45db2 | 2741 | pa_register_look_aside (char *raw_regs, int regnum, long *raw_val) |
c906108c | 2742 | { |
c5aa993b | 2743 | static int know_which = 0; /* False */ |
c906108c | 2744 | |
c5aa993b | 2745 | int regaddr; |
c906108c SS |
2746 | unsigned int offset; |
2747 | register int i; | |
c5aa993b JM |
2748 | int start; |
2749 | ||
2750 | ||
123a958e | 2751 | char buf[MAX_REGISTER_SIZE]; |
c906108c SS |
2752 | long long reg_val; |
2753 | ||
c5aa993b JM |
2754 | if (!know_which) |
2755 | { | |
2756 | if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION)) | |
2757 | { | |
2758 | is_pa_2 = (1 == 1); | |
2759 | } | |
2760 | ||
2761 | know_which = 1; /* True */ | |
2762 | } | |
c906108c SS |
2763 | |
2764 | raw_val[0] = 0; | |
2765 | raw_val[1] = 0; | |
2766 | ||
c5aa993b JM |
2767 | if (!is_pa_2) |
2768 | { | |
2769 | raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum)); | |
c906108c | 2770 | return; |
c5aa993b | 2771 | } |
c906108c SS |
2772 | |
2773 | /* Code below copied from hppah-nat.c, with fixes for wide | |
2774 | registers, using different area of save_state, etc. */ | |
2775 | if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM || | |
c5aa993b JM |
2776 | !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE) |
2777 | { | |
c906108c | 2778 | /* Use narrow regs area of save_state and default macro. */ |
c5aa993b JM |
2779 | offset = U_REGS_OFFSET; |
2780 | regaddr = register_addr (regnum, offset); | |
2781 | start = 1; | |
2782 | } | |
2783 | else | |
2784 | { | |
c906108c SS |
2785 | /* Use wide regs area, and calculate registers as 8 bytes wide. |
2786 | ||
2787 | We'd like to do this, but current version of "C" doesn't | |
2788 | permit "offsetof": | |
2789 | ||
c5aa993b | 2790 | offset = offsetof(save_state_t, ss_wide); |
c906108c SS |
2791 | |
2792 | Note that to avoid "C" doing typed pointer arithmetic, we | |
2793 | have to cast away the type in our offset calculation: | |
2794 | otherwise we get an offset of 1! */ | |
2795 | ||
7a292a7a | 2796 | /* NB: save_state_t is not available before HPUX 9. |
c5aa993b | 2797 | The ss_wide field is not available previous to HPUX 10.20, |
7a292a7a SS |
2798 | so to avoid compile-time warnings, we only compile this for |
2799 | PA 2.0 processors. This control path should only be followed | |
2800 | if we're debugging a PA 2.0 processor, so this should not cause | |
2801 | problems. */ | |
2802 | ||
c906108c SS |
2803 | /* #if the following code out so that this file can still be |
2804 | compiled on older HPUX boxes (< 10.20) which don't have | |
2805 | this structure/structure member. */ | |
2806 | #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1 | |
2807 | save_state_t temp; | |
2808 | ||
2809 | offset = ((int) &temp.ss_wide) - ((int) &temp); | |
2810 | regaddr = offset + regnum * 8; | |
c5aa993b | 2811 | start = 0; |
c906108c | 2812 | #endif |
c5aa993b JM |
2813 | } |
2814 | ||
2815 | for (i = start; i < 2; i++) | |
c906108c SS |
2816 | { |
2817 | errno = 0; | |
39f77062 | 2818 | raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid), |
c5aa993b | 2819 | (PTRACE_ARG3_TYPE) regaddr, 0); |
c906108c SS |
2820 | if (errno != 0) |
2821 | { | |
2822 | /* Warning, not error, in case we are attached; sometimes the | |
2823 | kernel doesn't let us at the registers. */ | |
2824 | char *err = safe_strerror (errno); | |
2825 | char *msg = alloca (strlen (err) + 128); | |
2826 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err); | |
2827 | warning (msg); | |
2828 | goto error_exit; | |
2829 | } | |
2830 | ||
2831 | regaddr += sizeof (long); | |
2832 | } | |
c5aa993b | 2833 | |
c906108c | 2834 | if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) |
c5aa993b | 2835 | raw_val[1] &= ~0x3; /* I think we're masking out space bits */ |
c906108c SS |
2836 | |
2837 | error_exit: | |
2838 | ; | |
2839 | } | |
2840 | ||
2841 | /* "Info all-reg" command */ | |
c5aa993b | 2842 | |
c906108c | 2843 | static void |
fba45db2 | 2844 | pa_print_registers (char *raw_regs, int regnum, int fpregs) |
c906108c | 2845 | { |
c5aa993b | 2846 | int i, j; |
adf40b2e JM |
2847 | /* Alas, we are compiled so that "long long" is 32 bits */ |
2848 | long raw_val[2]; | |
c906108c | 2849 | long long_val; |
a0b3c4fd | 2850 | int rows = 48, columns = 2; |
c906108c | 2851 | |
adf40b2e | 2852 | for (i = 0; i < rows; i++) |
c906108c | 2853 | { |
adf40b2e | 2854 | for (j = 0; j < columns; j++) |
c906108c | 2855 | { |
adf40b2e JM |
2856 | /* We display registers in column-major order. */ |
2857 | int regnum = i + j * rows; | |
2858 | ||
c5aa993b JM |
2859 | /* Q: Why is the value passed through "extract_signed_integer", |
2860 | while above, in "pa_do_registers_info" it isn't? | |
2861 | A: ? */ | |
adf40b2e | 2862 | pa_register_look_aside (raw_regs, regnum, &raw_val[0]); |
c5aa993b JM |
2863 | |
2864 | /* Even fancier % formats to prevent leading zeros | |
2865 | and still maintain the output in columns. */ | |
2866 | if (!is_pa_2) | |
2867 | { | |
2868 | /* Being big-endian, on this machine the low bits | |
2869 | (the ones we want to look at) are in the second longword. */ | |
2870 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 | 2871 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2872 | REGISTER_NAME (regnum), long_val); |
c5aa993b JM |
2873 | } |
2874 | else | |
2875 | { | |
2876 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2877 | if (raw_val[0] == 0) | |
ce414844 | 2878 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2879 | REGISTER_NAME (regnum), raw_val[1]); |
c5aa993b | 2880 | else |
ce414844 | 2881 | printf_filtered ("%10.10s: %8lx%8.8lx ", |
a0b3c4fd | 2882 | REGISTER_NAME (regnum), |
c5aa993b JM |
2883 | raw_val[0], raw_val[1]); |
2884 | } | |
c906108c SS |
2885 | } |
2886 | printf_unfiltered ("\n"); | |
2887 | } | |
c5aa993b | 2888 | |
c906108c | 2889 | if (fpregs) |
c5aa993b | 2890 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2891 | pa_print_fp_reg (i); |
2892 | } | |
2893 | ||
c5aa993b | 2894 | /************* new function ******************/ |
c906108c | 2895 | static void |
fba45db2 KB |
2896 | pa_strcat_registers (char *raw_regs, int regnum, int fpregs, |
2897 | struct ui_file *stream) | |
c906108c | 2898 | { |
c5aa993b JM |
2899 | int i, j; |
2900 | long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ | |
c906108c SS |
2901 | long long_val; |
2902 | enum precision_type precision; | |
2903 | ||
2904 | precision = unspecified_precision; | |
2905 | ||
2906 | for (i = 0; i < 18; i++) | |
2907 | { | |
2908 | for (j = 0; j < 4; j++) | |
2909 | { | |
c5aa993b JM |
2910 | /* Q: Why is the value passed through "extract_signed_integer", |
2911 | while above, in "pa_do_registers_info" it isn't? | |
2912 | A: ? */ | |
2913 | pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]); | |
2914 | ||
2915 | /* Even fancier % formats to prevent leading zeros | |
2916 | and still maintain the output in columns. */ | |
2917 | if (!is_pa_2) | |
2918 | { | |
2919 | /* Being big-endian, on this machine the low bits | |
2920 | (the ones we want to look at) are in the second longword. */ | |
2921 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 AC |
2922 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2923 | REGISTER_NAME (i + (j * 18)), long_val); | |
c5aa993b JM |
2924 | } |
2925 | else | |
2926 | { | |
2927 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2928 | if (raw_val[0] == 0) | |
ce414844 AC |
2929 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2930 | REGISTER_NAME (i + (j * 18)), raw_val[1]); | |
c5aa993b | 2931 | else |
ce414844 AC |
2932 | fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ", |
2933 | REGISTER_NAME (i + (j * 18)), raw_val[0], | |
2934 | raw_val[1]); | |
c5aa993b | 2935 | } |
c906108c SS |
2936 | } |
2937 | fprintf_unfiltered (stream, "\n"); | |
2938 | } | |
c5aa993b | 2939 | |
c906108c | 2940 | if (fpregs) |
c5aa993b | 2941 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2942 | pa_strcat_fp_reg (i, stream, precision); |
2943 | } | |
2944 | ||
2945 | static void | |
fba45db2 | 2946 | pa_print_fp_reg (int i) |
c906108c | 2947 | { |
123a958e AC |
2948 | char raw_buffer[MAX_REGISTER_SIZE]; |
2949 | char virtual_buffer[MAX_REGISTER_SIZE]; | |
c906108c SS |
2950 | |
2951 | /* Get 32bits of data. */ | |
6e7f8b9c | 2952 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
2953 | |
2954 | /* Put it in the buffer. No conversions are ever necessary. */ | |
2955 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
2956 | ||
2957 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2958 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2959 | fputs_filtered ("(single precision) ", gdb_stdout); | |
2960 | ||
2961 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0, | |
2962 | 1, 0, Val_pretty_default); | |
2963 | printf_filtered ("\n"); | |
2964 | ||
2965 | /* If "i" is even, then this register can also be a double-precision | |
2966 | FP register. Dump it out as such. */ | |
2967 | if ((i % 2) == 0) | |
2968 | { | |
2969 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 2970 | frame_register_read (deprecated_selected_frame, i + 1, raw_buffer); |
c906108c SS |
2971 | |
2972 | /* Copy it into the appropriate part of the virtual buffer. */ | |
2973 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
2974 | REGISTER_RAW_SIZE (i)); | |
2975 | ||
2976 | /* Dump it as a double. */ | |
2977 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2978 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2979 | fputs_filtered ("(double precision) ", gdb_stdout); | |
2980 | ||
2981 | val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0, | |
2982 | 1, 0, Val_pretty_default); | |
2983 | printf_filtered ("\n"); | |
2984 | } | |
2985 | } | |
2986 | ||
2987 | /*************** new function ***********************/ | |
2988 | static void | |
fba45db2 | 2989 | pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision) |
c906108c | 2990 | { |
123a958e AC |
2991 | char raw_buffer[MAX_REGISTER_SIZE]; |
2992 | char virtual_buffer[MAX_REGISTER_SIZE]; | |
c906108c SS |
2993 | |
2994 | fputs_filtered (REGISTER_NAME (i), stream); | |
2995 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream); | |
2996 | ||
2997 | /* Get 32bits of data. */ | |
6e7f8b9c | 2998 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
2999 | |
3000 | /* Put it in the buffer. No conversions are ever necessary. */ | |
3001 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
3002 | ||
3003 | if (precision == double_precision && (i % 2) == 0) | |
3004 | { | |
3005 | ||
123a958e | 3006 | char raw_buf[MAX_REGISTER_SIZE]; |
c5aa993b JM |
3007 | |
3008 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 3009 | frame_register_read (deprecated_selected_frame, i + 1, raw_buf); |
c5aa993b JM |
3010 | |
3011 | /* Copy it into the appropriate part of the virtual buffer. */ | |
3012 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i)); | |
c906108c | 3013 | |
c5aa993b JM |
3014 | val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0, |
3015 | 1, 0, Val_pretty_default); | |
c906108c SS |
3016 | |
3017 | } | |
c5aa993b JM |
3018 | else |
3019 | { | |
3020 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0, | |
3021 | 1, 0, Val_pretty_default); | |
3022 | } | |
c906108c SS |
3023 | |
3024 | } | |
3025 | ||
3026 | /* Return one if PC is in the call path of a trampoline, else return zero. | |
3027 | ||
3028 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3029 | just shared library trampolines (import, export). */ | |
3030 | ||
3031 | int | |
60383d10 | 3032 | hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3033 | { |
3034 | struct minimal_symbol *minsym; | |
3035 | struct unwind_table_entry *u; | |
3036 | static CORE_ADDR dyncall = 0; | |
3037 | static CORE_ADDR sr4export = 0; | |
3038 | ||
c2c6d25f JM |
3039 | #ifdef GDB_TARGET_IS_HPPA_20W |
3040 | /* PA64 has a completely different stub/trampoline scheme. Is it | |
3041 | better? Maybe. It's certainly harder to determine with any | |
3042 | certainty that we are in a stub because we can not refer to the | |
3043 | unwinders to help. | |
3044 | ||
3045 | The heuristic is simple. Try to lookup the current PC value in th | |
3046 | minimal symbol table. If that fails, then assume we are not in a | |
3047 | stub and return. | |
3048 | ||
3049 | Then see if the PC value falls within the section bounds for the | |
3050 | section containing the minimal symbol we found in the first | |
3051 | step. If it does, then assume we are not in a stub and return. | |
3052 | ||
3053 | Finally peek at the instructions to see if they look like a stub. */ | |
3054 | { | |
3055 | struct minimal_symbol *minsym; | |
3056 | asection *sec; | |
3057 | CORE_ADDR addr; | |
3058 | int insn, i; | |
3059 | ||
3060 | minsym = lookup_minimal_symbol_by_pc (pc); | |
3061 | if (! minsym) | |
3062 | return 0; | |
3063 | ||
3064 | sec = SYMBOL_BFD_SECTION (minsym); | |
3065 | ||
3066 | if (sec->vma <= pc | |
3067 | && sec->vma + sec->_cooked_size < pc) | |
3068 | return 0; | |
3069 | ||
3070 | /* We might be in a stub. Peek at the instructions. Stubs are 3 | |
3071 | instructions long. */ | |
3072 | insn = read_memory_integer (pc, 4); | |
3073 | ||
b84a8afe | 3074 | /* Find out where we think we are within the stub. */ |
c2c6d25f JM |
3075 | if ((insn & 0xffffc00e) == 0x53610000) |
3076 | addr = pc; | |
3077 | else if ((insn & 0xffffffff) == 0xe820d000) | |
3078 | addr = pc - 4; | |
3079 | else if ((insn & 0xffffc00e) == 0x537b0000) | |
3080 | addr = pc - 8; | |
3081 | else | |
3082 | return 0; | |
3083 | ||
3084 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3085 | insn = read_memory_integer (addr, 4); | |
3086 | if ((insn & 0xffffc00e) != 0x53610000) | |
3087 | return 0; | |
3088 | ||
3089 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3090 | insn = read_memory_integer (addr + 4, 4); | |
3091 | if ((insn & 0xffffffff) != 0xe820d000) | |
3092 | return 0; | |
3093 | ||
3094 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3095 | insn = read_memory_integer (addr + 8, 4); | |
3096 | if ((insn & 0xffffc00e) != 0x537b0000) | |
3097 | return 0; | |
3098 | ||
3099 | /* Looks like a stub. */ | |
3100 | return 1; | |
3101 | } | |
3102 | #endif | |
3103 | ||
3104 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
3105 | new exec file */ | |
c906108c SS |
3106 | |
3107 | /* First see if PC is in one of the two C-library trampolines. */ | |
3108 | if (!dyncall) | |
3109 | { | |
3110 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3111 | if (minsym) | |
3112 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
3113 | else | |
3114 | dyncall = -1; | |
3115 | } | |
3116 | ||
3117 | if (!sr4export) | |
3118 | { | |
3119 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3120 | if (minsym) | |
3121 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
3122 | else | |
3123 | sr4export = -1; | |
3124 | } | |
3125 | ||
3126 | if (pc == dyncall || pc == sr4export) | |
3127 | return 1; | |
3128 | ||
104c1213 | 3129 | minsym = lookup_minimal_symbol_by_pc (pc); |
22abf04a | 3130 | if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0) |
104c1213 JM |
3131 | return 1; |
3132 | ||
c906108c SS |
3133 | /* Get the unwind descriptor corresponding to PC, return zero |
3134 | if no unwind was found. */ | |
3135 | u = find_unwind_entry (pc); | |
3136 | if (!u) | |
3137 | return 0; | |
3138 | ||
3139 | /* If this isn't a linker stub, then return now. */ | |
3140 | if (u->stub_unwind.stub_type == 0) | |
3141 | return 0; | |
3142 | ||
3143 | /* By definition a long-branch stub is a call stub. */ | |
3144 | if (u->stub_unwind.stub_type == LONG_BRANCH) | |
3145 | return 1; | |
3146 | ||
3147 | /* The call and return path execute the same instructions within | |
3148 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3149 | trampoline. */ | |
3150 | if (u->stub_unwind.stub_type == IMPORT) | |
3151 | return 1; | |
3152 | ||
3153 | /* Parameter relocation stubs always have a call path and may have a | |
3154 | return path. */ | |
3155 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3156 | || u->stub_unwind.stub_type == EXPORT) | |
3157 | { | |
3158 | CORE_ADDR addr; | |
3159 | ||
3160 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3161 | or the end of the stub. */ |
c906108c SS |
3162 | for (addr = pc; addr <= u->region_end; addr += 4) |
3163 | { | |
3164 | unsigned long insn; | |
3165 | ||
3166 | insn = read_memory_integer (addr, 4); | |
3167 | ||
3168 | /* Does it look like a bl? If so then it's the call path, if | |
3169 | we find a bv or be first, then we're on the return path. */ | |
3170 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3171 | return 1; | |
3172 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3173 | || (insn & 0xfc000000) == 0xe0000000) | |
3174 | return 0; | |
3175 | } | |
3176 | ||
3177 | /* Should never happen. */ | |
104c1213 JM |
3178 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3179 | return 0; | |
c906108c SS |
3180 | } |
3181 | ||
3182 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3183 | return 0; |
c906108c SS |
3184 | } |
3185 | ||
3186 | /* Return one if PC is in the return path of a trampoline, else return zero. | |
3187 | ||
3188 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3189 | just shared library trampolines (import, export). */ | |
3190 | ||
3191 | int | |
60383d10 | 3192 | hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3193 | { |
3194 | struct unwind_table_entry *u; | |
3195 | ||
3196 | /* Get the unwind descriptor corresponding to PC, return zero | |
3197 | if no unwind was found. */ | |
3198 | u = find_unwind_entry (pc); | |
3199 | if (!u) | |
3200 | return 0; | |
3201 | ||
3202 | /* If this isn't a linker stub or it's just a long branch stub, then | |
3203 | return zero. */ | |
3204 | if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) | |
3205 | return 0; | |
3206 | ||
3207 | /* The call and return path execute the same instructions within | |
3208 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3209 | trampoline. */ | |
3210 | if (u->stub_unwind.stub_type == IMPORT) | |
3211 | return 1; | |
3212 | ||
3213 | /* Parameter relocation stubs always have a call path and may have a | |
3214 | return path. */ | |
3215 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3216 | || u->stub_unwind.stub_type == EXPORT) | |
3217 | { | |
3218 | CORE_ADDR addr; | |
3219 | ||
3220 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3221 | or the end of the stub. */ |
c906108c SS |
3222 | for (addr = pc; addr <= u->region_end; addr += 4) |
3223 | { | |
3224 | unsigned long insn; | |
3225 | ||
3226 | insn = read_memory_integer (addr, 4); | |
3227 | ||
3228 | /* Does it look like a bl? If so then it's the call path, if | |
3229 | we find a bv or be first, then we're on the return path. */ | |
3230 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3231 | return 0; | |
3232 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3233 | || (insn & 0xfc000000) == 0xe0000000) | |
3234 | return 1; | |
3235 | } | |
3236 | ||
3237 | /* Should never happen. */ | |
104c1213 JM |
3238 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3239 | return 0; | |
c906108c SS |
3240 | } |
3241 | ||
3242 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3243 | return 0; |
c906108c SS |
3244 | |
3245 | } | |
3246 | ||
3247 | /* Figure out if PC is in a trampoline, and if so find out where | |
3248 | the trampoline will jump to. If not in a trampoline, return zero. | |
3249 | ||
3250 | Simple code examination probably is not a good idea since the code | |
3251 | sequences in trampolines can also appear in user code. | |
3252 | ||
3253 | We use unwinds and information from the minimal symbol table to | |
3254 | determine when we're in a trampoline. This won't work for ELF | |
3255 | (yet) since it doesn't create stub unwind entries. Whether or | |
3256 | not ELF will create stub unwinds or normal unwinds for linker | |
3257 | stubs is still being debated. | |
3258 | ||
3259 | This should handle simple calls through dyncall or sr4export, | |
3260 | long calls, argument relocation stubs, and dyncall/sr4export | |
3261 | calling an argument relocation stub. It even handles some stubs | |
3262 | used in dynamic executables. */ | |
3263 | ||
c906108c | 3264 | CORE_ADDR |
60383d10 | 3265 | hppa_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
3266 | { |
3267 | long orig_pc = pc; | |
3268 | long prev_inst, curr_inst, loc; | |
3269 | static CORE_ADDR dyncall = 0; | |
3270 | static CORE_ADDR dyncall_external = 0; | |
3271 | static CORE_ADDR sr4export = 0; | |
3272 | struct minimal_symbol *msym; | |
3273 | struct unwind_table_entry *u; | |
3274 | ||
c2c6d25f JM |
3275 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
3276 | new exec file */ | |
c906108c SS |
3277 | |
3278 | if (!dyncall) | |
3279 | { | |
3280 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3281 | if (msym) | |
3282 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
3283 | else | |
3284 | dyncall = -1; | |
3285 | } | |
3286 | ||
3287 | if (!dyncall_external) | |
3288 | { | |
3289 | msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); | |
3290 | if (msym) | |
3291 | dyncall_external = SYMBOL_VALUE_ADDRESS (msym); | |
3292 | else | |
3293 | dyncall_external = -1; | |
3294 | } | |
3295 | ||
3296 | if (!sr4export) | |
3297 | { | |
3298 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3299 | if (msym) | |
3300 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
3301 | else | |
3302 | sr4export = -1; | |
3303 | } | |
3304 | ||
3305 | /* Addresses passed to dyncall may *NOT* be the actual address | |
3306 | of the function. So we may have to do something special. */ | |
3307 | if (pc == dyncall) | |
3308 | { | |
3309 | pc = (CORE_ADDR) read_register (22); | |
3310 | ||
3311 | /* If bit 30 (counting from the left) is on, then pc is the address of | |
c5aa993b JM |
3312 | the PLT entry for this function, not the address of the function |
3313 | itself. Bit 31 has meaning too, but only for MPE. */ | |
c906108c | 3314 | if (pc & 0x2) |
53a5351d | 3315 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3316 | } |
3317 | if (pc == dyncall_external) | |
3318 | { | |
3319 | pc = (CORE_ADDR) read_register (22); | |
53a5351d | 3320 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3321 | } |
3322 | else if (pc == sr4export) | |
3323 | pc = (CORE_ADDR) (read_register (22)); | |
3324 | ||
3325 | /* Get the unwind descriptor corresponding to PC, return zero | |
3326 | if no unwind was found. */ | |
3327 | u = find_unwind_entry (pc); | |
3328 | if (!u) | |
3329 | return 0; | |
3330 | ||
3331 | /* If this isn't a linker stub, then return now. */ | |
3332 | /* elz: attention here! (FIXME) because of a compiler/linker | |
3333 | error, some stubs which should have a non zero stub_unwind.stub_type | |
3334 | have unfortunately a value of zero. So this function would return here | |
3335 | as if we were not in a trampoline. To fix this, we go look at the partial | |
3336 | symbol information, which reports this guy as a stub. | |
3337 | (FIXME): Unfortunately, we are not that lucky: it turns out that the | |
3338 | partial symbol information is also wrong sometimes. This is because | |
3339 | when it is entered (somread.c::som_symtab_read()) it can happen that | |
3340 | if the type of the symbol (from the som) is Entry, and the symbol is | |
3341 | in a shared library, then it can also be a trampoline. This would | |
3342 | be OK, except that I believe the way they decide if we are ina shared library | |
3343 | does not work. SOOOO..., even if we have a regular function w/o trampolines | |
3344 | its minimal symbol can be assigned type mst_solib_trampoline. | |
3345 | Also, if we find that the symbol is a real stub, then we fix the unwind | |
3346 | descriptor, and define the stub type to be EXPORT. | |
c5aa993b | 3347 | Hopefully this is correct most of the times. */ |
c906108c | 3348 | if (u->stub_unwind.stub_type == 0) |
c5aa993b | 3349 | { |
c906108c SS |
3350 | |
3351 | /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed | |
3352 | we can delete all the code which appears between the lines */ | |
3353 | /*--------------------------------------------------------------------------*/ | |
c5aa993b | 3354 | msym = lookup_minimal_symbol_by_pc (pc); |
c906108c | 3355 | |
c5aa993b JM |
3356 | if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) |
3357 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3358 | ||
3359 | else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) | |
3360 | { | |
3361 | struct objfile *objfile; | |
3362 | struct minimal_symbol *msymbol; | |
3363 | int function_found = 0; | |
3364 | ||
3365 | /* go look if there is another minimal symbol with the same name as | |
3366 | this one, but with type mst_text. This would happen if the msym | |
3367 | is an actual trampoline, in which case there would be another | |
3368 | symbol with the same name corresponding to the real function */ | |
3369 | ||
3370 | ALL_MSYMBOLS (objfile, msymbol) | |
3371 | { | |
3372 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
22abf04a | 3373 | && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym))) |
c5aa993b JM |
3374 | { |
3375 | function_found = 1; | |
3376 | break; | |
3377 | } | |
3378 | } | |
3379 | ||
3380 | if (function_found) | |
3381 | /* the type of msym is correct (mst_solib_trampoline), but | |
3382 | the unwind info is wrong, so set it to the correct value */ | |
3383 | u->stub_unwind.stub_type = EXPORT; | |
3384 | else | |
3385 | /* the stub type info in the unwind is correct (this is not a | |
3386 | trampoline), but the msym type information is wrong, it | |
3387 | should be mst_text. So we need to fix the msym, and also | |
3388 | get out of this function */ | |
3389 | { | |
3390 | MSYMBOL_TYPE (msym) = mst_text; | |
3391 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3392 | } | |
3393 | } | |
c906108c | 3394 | |
c906108c | 3395 | /*--------------------------------------------------------------------------*/ |
c5aa993b | 3396 | } |
c906108c SS |
3397 | |
3398 | /* It's a stub. Search for a branch and figure out where it goes. | |
3399 | Note we have to handle multi insn branch sequences like ldil;ble. | |
3400 | Most (all?) other branches can be determined by examining the contents | |
3401 | of certain registers and the stack. */ | |
3402 | ||
3403 | loc = pc; | |
3404 | curr_inst = 0; | |
3405 | prev_inst = 0; | |
3406 | while (1) | |
3407 | { | |
3408 | /* Make sure we haven't walked outside the range of this stub. */ | |
3409 | if (u != find_unwind_entry (loc)) | |
3410 | { | |
3411 | warning ("Unable to find branch in linker stub"); | |
3412 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3413 | } | |
3414 | ||
3415 | prev_inst = curr_inst; | |
3416 | curr_inst = read_memory_integer (loc, 4); | |
3417 | ||
3418 | /* Does it look like a branch external using %r1? Then it's the | |
c5aa993b | 3419 | branch from the stub to the actual function. */ |
c906108c SS |
3420 | if ((curr_inst & 0xffe0e000) == 0xe0202000) |
3421 | { | |
3422 | /* Yup. See if the previous instruction loaded | |
3423 | a value into %r1. If so compute and return the jump address. */ | |
3424 | if ((prev_inst & 0xffe00000) == 0x20200000) | |
3425 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
3426 | else | |
3427 | { | |
3428 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
3429 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3430 | } | |
3431 | } | |
3432 | ||
3433 | /* Does it look like a be 0(sr0,%r21)? OR | |
3434 | Does it look like a be, n 0(sr0,%r21)? OR | |
3435 | Does it look like a bve (r21)? (this is on PA2.0) | |
3436 | Does it look like a bve, n(r21)? (this is also on PA2.0) | |
3437 | That's the branch from an | |
c5aa993b | 3438 | import stub to an export stub. |
c906108c | 3439 | |
c5aa993b JM |
3440 | It is impossible to determine the target of the branch via |
3441 | simple examination of instructions and/or data (consider | |
3442 | that the address in the plabel may be the address of the | |
3443 | bind-on-reference routine in the dynamic loader). | |
c906108c | 3444 | |
c5aa993b | 3445 | So we have try an alternative approach. |
c906108c | 3446 | |
c5aa993b JM |
3447 | Get the name of the symbol at our current location; it should |
3448 | be a stub symbol with the same name as the symbol in the | |
3449 | shared library. | |
c906108c | 3450 | |
c5aa993b JM |
3451 | Then lookup a minimal symbol with the same name; we should |
3452 | get the minimal symbol for the target routine in the shared | |
3453 | library as those take precedence of import/export stubs. */ | |
c906108c | 3454 | if ((curr_inst == 0xe2a00000) || |
c5aa993b JM |
3455 | (curr_inst == 0xe2a00002) || |
3456 | (curr_inst == 0xeaa0d000) || | |
3457 | (curr_inst == 0xeaa0d002)) | |
c906108c SS |
3458 | { |
3459 | struct minimal_symbol *stubsym, *libsym; | |
3460 | ||
3461 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
3462 | if (stubsym == NULL) | |
3463 | { | |
ce414844 | 3464 | warning ("Unable to find symbol for 0x%lx", loc); |
c906108c SS |
3465 | return orig_pc == pc ? 0 : pc & ~0x3; |
3466 | } | |
3467 | ||
22abf04a | 3468 | libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL); |
c906108c SS |
3469 | if (libsym == NULL) |
3470 | { | |
3471 | warning ("Unable to find library symbol for %s\n", | |
22abf04a | 3472 | DEPRECATED_SYMBOL_NAME (stubsym)); |
c906108c SS |
3473 | return orig_pc == pc ? 0 : pc & ~0x3; |
3474 | } | |
3475 | ||
3476 | return SYMBOL_VALUE (libsym); | |
3477 | } | |
3478 | ||
3479 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a | |
c5aa993b JM |
3480 | branch from the stub to the actual function. */ |
3481 | /*elz */ | |
c906108c SS |
3482 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 |
3483 | || (curr_inst & 0xffe0e000) == 0xe8000000 | |
c5aa993b | 3484 | || (curr_inst & 0xffe0e000) == 0xe800A000) |
c906108c SS |
3485 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
3486 | ||
3487 | /* Does it look like bv (rp)? Note this depends on the | |
c5aa993b JM |
3488 | current stack pointer being the same as the stack |
3489 | pointer in the stub itself! This is a branch on from the | |
3490 | stub back to the original caller. */ | |
3491 | /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ | |
c906108c SS |
3492 | else if ((curr_inst & 0xffe0f000) == 0xe840c000) |
3493 | { | |
3494 | /* Yup. See if the previous instruction loaded | |
3495 | rp from sp - 8. */ | |
3496 | if (prev_inst == 0x4bc23ff1) | |
3497 | return (read_memory_integer | |
3498 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
3499 | else | |
3500 | { | |
3501 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
3502 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3503 | } | |
3504 | } | |
3505 | ||
3506 | /* elz: added this case to capture the new instruction | |
3507 | at the end of the return part of an export stub used by | |
3508 | the PA2.0: BVE, n (rp) */ | |
3509 | else if ((curr_inst & 0xffe0f000) == 0xe840d000) | |
3510 | { | |
c5aa993b | 3511 | return (read_memory_integer |
53a5351d | 3512 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3513 | } |
3514 | ||
3515 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
c5aa993b | 3516 | the original caller from the stub. Used in dynamic executables. */ |
c906108c SS |
3517 | else if (curr_inst == 0xe0400002) |
3518 | { | |
3519 | /* The value we jump to is sitting in sp - 24. But that's | |
3520 | loaded several instructions before the be instruction. | |
3521 | I guess we could check for the previous instruction being | |
3522 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
c5aa993b | 3523 | return (read_memory_integer |
53a5351d | 3524 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3525 | } |
3526 | ||
3527 | /* Haven't found the branch yet, but we're still in the stub. | |
c5aa993b | 3528 | Keep looking. */ |
c906108c SS |
3529 | loc += 4; |
3530 | } | |
3531 | } | |
3532 | ||
3533 | ||
3534 | /* For the given instruction (INST), return any adjustment it makes | |
3535 | to the stack pointer or zero for no adjustment. | |
3536 | ||
3537 | This only handles instructions commonly found in prologues. */ | |
3538 | ||
3539 | static int | |
fba45db2 | 3540 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
3541 | { |
3542 | /* This must persist across calls. */ | |
3543 | static int save_high21; | |
3544 | ||
3545 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
3546 | if ((inst & 0xffffc000) == 0x37de0000) | |
3547 | return extract_14 (inst); | |
3548 | ||
3549 | /* stwm X,D(sp) */ | |
3550 | if ((inst & 0xffe00000) == 0x6fc00000) | |
3551 | return extract_14 (inst); | |
3552 | ||
104c1213 JM |
3553 | /* std,ma X,D(sp) */ |
3554 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 3555 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 3556 | |
c906108c SS |
3557 | /* addil high21,%r1; ldo low11,(%r1),%r30) |
3558 | save high bits in save_high21 for later use. */ | |
3559 | if ((inst & 0xffe00000) == 0x28200000) | |
3560 | { | |
3561 | save_high21 = extract_21 (inst); | |
3562 | return 0; | |
3563 | } | |
3564 | ||
3565 | if ((inst & 0xffff0000) == 0x343e0000) | |
3566 | return save_high21 + extract_14 (inst); | |
3567 | ||
3568 | /* fstws as used by the HP compilers. */ | |
3569 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
3570 | return extract_5_load (inst); | |
3571 | ||
3572 | /* No adjustment. */ | |
3573 | return 0; | |
3574 | } | |
3575 | ||
3576 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
3577 | ||
3578 | static int | |
fba45db2 | 3579 | is_branch (unsigned long inst) |
c906108c SS |
3580 | { |
3581 | switch (inst >> 26) | |
3582 | { | |
3583 | case 0x20: | |
3584 | case 0x21: | |
3585 | case 0x22: | |
3586 | case 0x23: | |
7be570e7 | 3587 | case 0x27: |
c906108c SS |
3588 | case 0x28: |
3589 | case 0x29: | |
3590 | case 0x2a: | |
3591 | case 0x2b: | |
7be570e7 | 3592 | case 0x2f: |
c906108c SS |
3593 | case 0x30: |
3594 | case 0x31: | |
3595 | case 0x32: | |
3596 | case 0x33: | |
3597 | case 0x38: | |
3598 | case 0x39: | |
3599 | case 0x3a: | |
7be570e7 | 3600 | case 0x3b: |
c906108c SS |
3601 | return 1; |
3602 | ||
3603 | default: | |
3604 | return 0; | |
3605 | } | |
3606 | } | |
3607 | ||
3608 | /* Return the register number for a GR which is saved by INST or | |
3609 | zero it INST does not save a GR. */ | |
3610 | ||
3611 | static int | |
fba45db2 | 3612 | inst_saves_gr (unsigned long inst) |
c906108c SS |
3613 | { |
3614 | /* Does it look like a stw? */ | |
7be570e7 JM |
3615 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
3616 | || (inst >> 26) == 0x1f | |
3617 | || ((inst >> 26) == 0x1f | |
3618 | && ((inst >> 6) == 0xa))) | |
3619 | return extract_5R_store (inst); | |
3620 | ||
3621 | /* Does it look like a std? */ | |
3622 | if ((inst >> 26) == 0x1c | |
3623 | || ((inst >> 26) == 0x03 | |
3624 | && ((inst >> 6) & 0xf) == 0xb)) | |
c906108c SS |
3625 | return extract_5R_store (inst); |
3626 | ||
3627 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
3628 | if ((inst >> 26) == 0x1b) | |
3629 | return extract_5R_store (inst); | |
3630 | ||
3631 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
3632 | too. */ | |
7be570e7 JM |
3633 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
3634 | || ((inst >> 26) == 0x3 | |
3635 | && (((inst >> 6) & 0xf) == 0x8 | |
3636 | || (inst >> 6) & 0xf) == 0x9)) | |
c906108c | 3637 | return extract_5R_store (inst); |
c5aa993b | 3638 | |
c906108c SS |
3639 | return 0; |
3640 | } | |
3641 | ||
3642 | /* Return the register number for a FR which is saved by INST or | |
3643 | zero it INST does not save a FR. | |
3644 | ||
3645 | Note we only care about full 64bit register stores (that's the only | |
3646 | kind of stores the prologue will use). | |
3647 | ||
3648 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
3649 | ||
3650 | static int | |
fba45db2 | 3651 | inst_saves_fr (unsigned long inst) |
c906108c | 3652 | { |
7be570e7 | 3653 | /* is this an FSTD ? */ |
c906108c SS |
3654 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
3655 | return extract_5r_store (inst); | |
7be570e7 JM |
3656 | if ((inst & 0xfc000002) == 0x70000002) |
3657 | return extract_5R_store (inst); | |
3658 | /* is this an FSTW ? */ | |
c906108c SS |
3659 | if ((inst & 0xfc00df80) == 0x24001200) |
3660 | return extract_5r_store (inst); | |
7be570e7 JM |
3661 | if ((inst & 0xfc000002) == 0x7c000000) |
3662 | return extract_5R_store (inst); | |
c906108c SS |
3663 | return 0; |
3664 | } | |
3665 | ||
3666 | /* Advance PC across any function entry prologue instructions | |
3667 | to reach some "real" code. | |
3668 | ||
3669 | Use information in the unwind table to determine what exactly should | |
3670 | be in the prologue. */ | |
3671 | ||
3672 | ||
3673 | CORE_ADDR | |
fba45db2 | 3674 | skip_prologue_hard_way (CORE_ADDR pc) |
c906108c SS |
3675 | { |
3676 | char buf[4]; | |
3677 | CORE_ADDR orig_pc = pc; | |
3678 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3679 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
3680 | struct unwind_table_entry *u; | |
3681 | ||
3682 | restart_gr = 0; | |
3683 | restart_fr = 0; | |
3684 | ||
3685 | restart: | |
3686 | u = find_unwind_entry (pc); | |
3687 | if (!u) | |
3688 | return pc; | |
3689 | ||
c5aa993b | 3690 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
3691 | if ((pc & ~0x3) != u->region_start) |
3692 | return pc; | |
3693 | ||
3694 | /* This is how much of a frame adjustment we need to account for. */ | |
3695 | stack_remaining = u->Total_frame_size << 3; | |
3696 | ||
3697 | /* Magic register saves we want to know about. */ | |
3698 | save_rp = u->Save_RP; | |
3699 | save_sp = u->Save_SP; | |
3700 | ||
3701 | /* An indication that args may be stored into the stack. Unfortunately | |
3702 | the HPUX compilers tend to set this in cases where no args were | |
3703 | stored too!. */ | |
3704 | args_stored = 1; | |
3705 | ||
3706 | /* Turn the Entry_GR field into a bitmask. */ | |
3707 | save_gr = 0; | |
3708 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3709 | { | |
3710 | /* Frame pointer gets saved into a special location. */ | |
0ba6dca9 | 3711 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) |
c906108c SS |
3712 | continue; |
3713 | ||
3714 | save_gr |= (1 << i); | |
3715 | } | |
3716 | save_gr &= ~restart_gr; | |
3717 | ||
3718 | /* Turn the Entry_FR field into a bitmask too. */ | |
3719 | save_fr = 0; | |
3720 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3721 | save_fr |= (1 << i); | |
3722 | save_fr &= ~restart_fr; | |
3723 | ||
3724 | /* Loop until we find everything of interest or hit a branch. | |
3725 | ||
3726 | For unoptimized GCC code and for any HP CC code this will never ever | |
3727 | examine any user instructions. | |
3728 | ||
3729 | For optimzied GCC code we're faced with problems. GCC will schedule | |
3730 | its prologue and make prologue instructions available for delay slot | |
3731 | filling. The end result is user code gets mixed in with the prologue | |
3732 | and a prologue instruction may be in the delay slot of the first branch | |
3733 | or call. | |
3734 | ||
3735 | Some unexpected things are expected with debugging optimized code, so | |
3736 | we allow this routine to walk past user instructions in optimized | |
3737 | GCC code. */ | |
3738 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
3739 | || args_stored) | |
3740 | { | |
3741 | unsigned int reg_num; | |
3742 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
3743 | unsigned long old_save_rp, old_save_sp, next_inst; | |
3744 | ||
3745 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 3746 | (only for HPC). */ |
c906108c SS |
3747 | old_save_gr = save_gr; |
3748 | old_save_fr = save_fr; | |
3749 | old_save_rp = save_rp; | |
3750 | old_save_sp = save_sp; | |
3751 | old_stack_remaining = stack_remaining; | |
3752 | ||
3753 | status = target_read_memory (pc, buf, 4); | |
3754 | inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3755 | |
c906108c SS |
3756 | /* Yow! */ |
3757 | if (status != 0) | |
3758 | return pc; | |
3759 | ||
3760 | /* Note the interesting effects of this instruction. */ | |
3761 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3762 | ||
7be570e7 JM |
3763 | /* There are limited ways to store the return pointer into the |
3764 | stack. */ | |
3765 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
3766 | save_rp = 0; |
3767 | ||
104c1213 | 3768 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 3769 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
3770 | if ((inst & 0xffffc000) == 0x6fc10000 |
3771 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
3772 | save_sp = 0; |
3773 | ||
6426a772 JM |
3774 | /* Are we loading some register with an offset from the argument |
3775 | pointer? */ | |
3776 | if ((inst & 0xffe00000) == 0x37a00000 | |
3777 | || (inst & 0xffffffe0) == 0x081d0240) | |
3778 | { | |
3779 | pc += 4; | |
3780 | continue; | |
3781 | } | |
3782 | ||
c906108c SS |
3783 | /* Account for general and floating-point register saves. */ |
3784 | reg_num = inst_saves_gr (inst); | |
3785 | save_gr &= ~(1 << reg_num); | |
3786 | ||
3787 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3788 | Unfortunately args_stored only tells us that some arguments |
3789 | where stored into the stack. Not how many or what kind! | |
c906108c | 3790 | |
c5aa993b JM |
3791 | This is a kludge as on the HP compiler sets this bit and it |
3792 | never does prologue scheduling. So once we see one, skip past | |
3793 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 3794 | |
c5aa993b JM |
3795 | FIXME. Can still die if we have a mix of GR and FR argument |
3796 | stores! */ | |
6426a772 | 3797 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 3798 | { |
6426a772 | 3799 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
3800 | { |
3801 | pc += 4; | |
3802 | status = target_read_memory (pc, buf, 4); | |
3803 | inst = extract_unsigned_integer (buf, 4); | |
3804 | if (status != 0) | |
3805 | return pc; | |
3806 | reg_num = inst_saves_gr (inst); | |
3807 | } | |
3808 | args_stored = 0; | |
3809 | continue; | |
3810 | } | |
3811 | ||
3812 | reg_num = inst_saves_fr (inst); | |
3813 | save_fr &= ~(1 << reg_num); | |
3814 | ||
3815 | status = target_read_memory (pc + 4, buf, 4); | |
3816 | next_inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3817 | |
c906108c SS |
3818 | /* Yow! */ |
3819 | if (status != 0) | |
3820 | return pc; | |
3821 | ||
3822 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 3823 | save. */ |
c906108c SS |
3824 | if ((inst & 0xfc000000) == 0x34000000 |
3825 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 3826 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3827 | { |
3828 | /* So we drop into the code below in a reasonable state. */ | |
3829 | reg_num = inst_saves_fr (next_inst); | |
3830 | pc -= 4; | |
3831 | } | |
3832 | ||
3833 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3834 | This is a kludge as on the HP compiler sets this bit and it |
3835 | never does prologue scheduling. So once we see one, skip past | |
3836 | all of them. */ | |
6426a772 | 3837 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 3838 | { |
6426a772 | 3839 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3840 | { |
3841 | pc += 8; | |
3842 | status = target_read_memory (pc, buf, 4); | |
3843 | inst = extract_unsigned_integer (buf, 4); | |
3844 | if (status != 0) | |
3845 | return pc; | |
3846 | if ((inst & 0xfc000000) != 0x34000000) | |
3847 | break; | |
3848 | status = target_read_memory (pc + 4, buf, 4); | |
3849 | next_inst = extract_unsigned_integer (buf, 4); | |
3850 | if (status != 0) | |
3851 | return pc; | |
3852 | reg_num = inst_saves_fr (next_inst); | |
3853 | } | |
3854 | args_stored = 0; | |
3855 | continue; | |
3856 | } | |
3857 | ||
3858 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 3859 | instruction is in the delay slot of the first call/branch. */ |
c906108c SS |
3860 | if (is_branch (inst)) |
3861 | break; | |
3862 | ||
3863 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
3864 | arguments were stored into the stack (boo hiss). This could |
3865 | cause this code to then skip a bunch of user insns (up to the | |
3866 | first branch). | |
3867 | ||
3868 | To combat this we try to identify when args_stored was bogusly | |
3869 | set and clear it. We only do this when args_stored is nonzero, | |
3870 | all other resources are accounted for, and nothing changed on | |
3871 | this pass. */ | |
c906108c | 3872 | if (args_stored |
c5aa993b | 3873 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
3874 | && old_save_gr == save_gr && old_save_fr == save_fr |
3875 | && old_save_rp == save_rp && old_save_sp == save_sp | |
3876 | && old_stack_remaining == stack_remaining) | |
3877 | break; | |
c5aa993b | 3878 | |
c906108c SS |
3879 | /* Bump the PC. */ |
3880 | pc += 4; | |
3881 | } | |
3882 | ||
3883 | /* We've got a tenative location for the end of the prologue. However | |
3884 | because of limitations in the unwind descriptor mechanism we may | |
3885 | have went too far into user code looking for the save of a register | |
3886 | that does not exist. So, if there registers we expected to be saved | |
3887 | but never were, mask them out and restart. | |
3888 | ||
3889 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 3890 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
3891 | { |
3892 | pc = orig_pc; | |
3893 | restart_gr = save_gr; | |
3894 | restart_fr = save_fr; | |
3895 | goto restart; | |
3896 | } | |
3897 | ||
3898 | return pc; | |
3899 | } | |
3900 | ||
3901 | ||
7be570e7 JM |
3902 | /* Return the address of the PC after the last prologue instruction if |
3903 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
3904 | |
3905 | static CORE_ADDR | |
fba45db2 | 3906 | after_prologue (CORE_ADDR pc) |
c906108c SS |
3907 | { |
3908 | struct symtab_and_line sal; | |
3909 | CORE_ADDR func_addr, func_end; | |
3910 | struct symbol *f; | |
3911 | ||
7be570e7 JM |
3912 | /* If we can not find the symbol in the partial symbol table, then |
3913 | there is no hope we can determine the function's start address | |
3914 | with this code. */ | |
c906108c | 3915 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 3916 | return 0; |
c906108c | 3917 | |
7be570e7 | 3918 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
3919 | sal = find_pc_line (func_addr, 0); |
3920 | ||
7be570e7 JM |
3921 | /* There are only two cases to consider. First, the end of the source line |
3922 | is within the function bounds. In that case we return the end of the | |
3923 | source line. Second is the end of the source line extends beyond the | |
3924 | bounds of the current function. We need to use the slow code to | |
3925 | examine instructions in that case. | |
c906108c | 3926 | |
7be570e7 JM |
3927 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
3928 | the wrong thing to do. In fact, it should be entirely possible for this | |
3929 | function to always return zero since the slow instruction scanning code | |
3930 | is supposed to *always* work. If it does not, then it is a bug. */ | |
3931 | if (sal.end < func_end) | |
3932 | return sal.end; | |
c5aa993b | 3933 | else |
7be570e7 | 3934 | return 0; |
c906108c SS |
3935 | } |
3936 | ||
3937 | /* To skip prologues, I use this predicate. Returns either PC itself | |
3938 | if the code at PC does not look like a function prologue; otherwise | |
3939 | returns an address that (if we're lucky) follows the prologue. If | |
3940 | LENIENT, then we must skip everything which is involved in setting | |
3941 | up the frame (it's OK to skip more, just so long as we don't skip | |
3942 | anything which might clobber the registers which are being saved. | |
3943 | Currently we must not skip more on the alpha, but we might the lenient | |
3944 | stuff some day. */ | |
3945 | ||
3946 | CORE_ADDR | |
fba45db2 | 3947 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 3948 | { |
c5aa993b JM |
3949 | unsigned long inst; |
3950 | int offset; | |
3951 | CORE_ADDR post_prologue_pc; | |
3952 | char buf[4]; | |
c906108c | 3953 | |
c5aa993b JM |
3954 | /* See if we can determine the end of the prologue via the symbol table. |
3955 | If so, then return either PC, or the PC after the prologue, whichever | |
3956 | is greater. */ | |
c906108c | 3957 | |
c5aa993b | 3958 | post_prologue_pc = after_prologue (pc); |
c906108c | 3959 | |
7be570e7 JM |
3960 | /* If after_prologue returned a useful address, then use it. Else |
3961 | fall back on the instruction skipping code. | |
3962 | ||
3963 | Some folks have claimed this causes problems because the breakpoint | |
3964 | may be the first instruction of the prologue. If that happens, then | |
3965 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
3966 | if (post_prologue_pc != 0) |
3967 | return max (pc, post_prologue_pc); | |
c5aa993b JM |
3968 | else |
3969 | return (skip_prologue_hard_way (pc)); | |
c906108c SS |
3970 | } |
3971 | ||
43bd9a9e AC |
3972 | /* Put here the code to store, into the SAVED_REGS, the addresses of |
3973 | the saved registers of frame described by FRAME_INFO. This | |
3974 | includes special registers such as pc and fp saved in special ways | |
3975 | in the stack frame. sp is even more special: the address we return | |
3976 | for it IS the sp for the next frame. */ | |
c906108c SS |
3977 | |
3978 | void | |
fba45db2 | 3979 | hppa_frame_find_saved_regs (struct frame_info *frame_info, |
43bd9a9e | 3980 | CORE_ADDR frame_saved_regs[]) |
c906108c SS |
3981 | { |
3982 | CORE_ADDR pc; | |
3983 | struct unwind_table_entry *u; | |
3984 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3985 | int status, i, reg; | |
3986 | char buf[4]; | |
3987 | int fp_loc = -1; | |
d4f3574e | 3988 | int final_iteration; |
c906108c SS |
3989 | |
3990 | /* Zero out everything. */ | |
43bd9a9e | 3991 | memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
3992 | |
3993 | /* Call dummy frames always look the same, so there's no need to | |
3994 | examine the dummy code to determine locations of saved registers; | |
3995 | instead, let find_dummy_frame_regs fill in the correct offsets | |
3996 | for the saved registers. */ | |
ef6e7e13 AC |
3997 | if ((get_frame_pc (frame_info) >= get_frame_base (frame_info) |
3998 | && (get_frame_pc (frame_info) | |
3999 | <= (get_frame_base (frame_info) | |
4000 | /* A call dummy is sized in words, but it is actually a | |
4001 | series of instructions. Account for that scaling | |
4002 | factor. */ | |
b1e29e33 AC |
4003 | + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE) |
4004 | * DEPRECATED_CALL_DUMMY_LENGTH) | |
ef6e7e13 AC |
4005 | /* Similarly we have to account for 64bit wide register |
4006 | saves. */ | |
b1e29e33 | 4007 | + (32 * DEPRECATED_REGISTER_SIZE) |
ef6e7e13 AC |
4008 | /* We always consider FP regs 8 bytes long. */ |
4009 | + (NUM_REGS - FP0_REGNUM) * 8 | |
4010 | /* Similarly we have to account for 64bit wide register | |
4011 | saves. */ | |
b1e29e33 | 4012 | + (6 * DEPRECATED_REGISTER_SIZE))))) |
c906108c SS |
4013 | find_dummy_frame_regs (frame_info, frame_saved_regs); |
4014 | ||
4015 | /* Interrupt handlers are special too. They lay out the register | |
4016 | state in the exact same order as the register numbers in GDB. */ | |
ef6e7e13 | 4017 | if (pc_in_interrupt_handler (get_frame_pc (frame_info))) |
c906108c SS |
4018 | { |
4019 | for (i = 0; i < NUM_REGS; i++) | |
4020 | { | |
4021 | /* SP is a little special. */ | |
4022 | if (i == SP_REGNUM) | |
43bd9a9e | 4023 | frame_saved_regs[SP_REGNUM] |
ef6e7e13 | 4024 | = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4, |
53a5351d | 4025 | TARGET_PTR_BIT / 8); |
c906108c | 4026 | else |
ef6e7e13 | 4027 | frame_saved_regs[i] = get_frame_base (frame_info) + i * 4; |
c906108c SS |
4028 | } |
4029 | return; | |
4030 | } | |
4031 | ||
4032 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP | |
4033 | /* Handle signal handler callers. */ | |
5a203e44 | 4034 | if ((get_frame_type (frame_info) == SIGTRAMP_FRAME)) |
c906108c SS |
4035 | { |
4036 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); | |
4037 | return; | |
4038 | } | |
4039 | #endif | |
4040 | ||
4041 | /* Get the starting address of the function referred to by the PC | |
4042 | saved in frame. */ | |
be41e9f4 | 4043 | pc = get_frame_func (frame_info); |
c906108c SS |
4044 | |
4045 | /* Yow! */ | |
4046 | u = find_unwind_entry (pc); | |
4047 | if (!u) | |
4048 | return; | |
4049 | ||
4050 | /* This is how much of a frame adjustment we need to account for. */ | |
4051 | stack_remaining = u->Total_frame_size << 3; | |
4052 | ||
4053 | /* Magic register saves we want to know about. */ | |
4054 | save_rp = u->Save_RP; | |
4055 | save_sp = u->Save_SP; | |
4056 | ||
4057 | /* Turn the Entry_GR field into a bitmask. */ | |
4058 | save_gr = 0; | |
4059 | for (i = 3; i < u->Entry_GR + 3; i++) | |
4060 | { | |
4061 | /* Frame pointer gets saved into a special location. */ | |
0ba6dca9 | 4062 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) |
c906108c SS |
4063 | continue; |
4064 | ||
4065 | save_gr |= (1 << i); | |
4066 | } | |
4067 | ||
4068 | /* Turn the Entry_FR field into a bitmask too. */ | |
4069 | save_fr = 0; | |
4070 | for (i = 12; i < u->Entry_FR + 12; i++) | |
4071 | save_fr |= (1 << i); | |
4072 | ||
4073 | /* The frame always represents the value of %sp at entry to the | |
4074 | current function (and is thus equivalent to the "saved" stack | |
4075 | pointer. */ | |
ef6e7e13 | 4076 | frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info); |
c906108c SS |
4077 | |
4078 | /* Loop until we find everything of interest or hit a branch. | |
4079 | ||
4080 | For unoptimized GCC code and for any HP CC code this will never ever | |
4081 | examine any user instructions. | |
4082 | ||
7be570e7 | 4083 | For optimized GCC code we're faced with problems. GCC will schedule |
c906108c SS |
4084 | its prologue and make prologue instructions available for delay slot |
4085 | filling. The end result is user code gets mixed in with the prologue | |
4086 | and a prologue instruction may be in the delay slot of the first branch | |
4087 | or call. | |
4088 | ||
4089 | Some unexpected things are expected with debugging optimized code, so | |
4090 | we allow this routine to walk past user instructions in optimized | |
4091 | GCC code. */ | |
d4f3574e SS |
4092 | final_iteration = 0; |
4093 | while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
ef6e7e13 | 4094 | && pc <= get_frame_pc (frame_info)) |
c906108c SS |
4095 | { |
4096 | status = target_read_memory (pc, buf, 4); | |
4097 | inst = extract_unsigned_integer (buf, 4); | |
4098 | ||
4099 | /* Yow! */ | |
4100 | if (status != 0) | |
4101 | return; | |
4102 | ||
4103 | /* Note the interesting effects of this instruction. */ | |
4104 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
4105 | ||
104c1213 JM |
4106 | /* There are limited ways to store the return pointer into the |
4107 | stack. */ | |
c2c6d25f | 4108 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
c906108c SS |
4109 | { |
4110 | save_rp = 0; | |
ef6e7e13 | 4111 | frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20; |
c906108c | 4112 | } |
c2c6d25f JM |
4113 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
4114 | { | |
4115 | save_rp = 0; | |
ef6e7e13 | 4116 | frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16; |
c2c6d25f | 4117 | } |
c906108c | 4118 | |
104c1213 JM |
4119 | /* Note if we saved SP into the stack. This also happens to indicate |
4120 | the location of the saved frame pointer. */ | |
c2c6d25f JM |
4121 | if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ |
4122 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
104c1213 | 4123 | { |
0ba6dca9 | 4124 | frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info); |
104c1213 JM |
4125 | save_sp = 0; |
4126 | } | |
c906108c SS |
4127 | |
4128 | /* Account for general and floating-point register saves. */ | |
4129 | reg = inst_saves_gr (inst); | |
4130 | if (reg >= 3 && reg <= 18 | |
0ba6dca9 | 4131 | && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM)) |
c906108c SS |
4132 | { |
4133 | save_gr &= ~(1 << reg); | |
4134 | ||
4135 | /* stwm with a positive displacement is a *post modify*. */ | |
4136 | if ((inst >> 26) == 0x1b | |
4137 | && extract_14 (inst) >= 0) | |
ef6e7e13 | 4138 | frame_saved_regs[reg] = get_frame_base (frame_info); |
104c1213 JM |
4139 | /* A std has explicit post_modify forms. */ |
4140 | else if ((inst & 0xfc00000c0) == 0x70000008) | |
ef6e7e13 | 4141 | frame_saved_regs[reg] = get_frame_base (frame_info); |
c906108c SS |
4142 | else |
4143 | { | |
104c1213 JM |
4144 | CORE_ADDR offset; |
4145 | ||
4146 | if ((inst >> 26) == 0x1c) | |
d4f3574e | 4147 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 JM |
4148 | else if ((inst >> 26) == 0x03) |
4149 | offset = low_sign_extend (inst & 0x1f, 5); | |
4150 | else | |
4151 | offset = extract_14 (inst); | |
4152 | ||
c906108c SS |
4153 | /* Handle code with and without frame pointers. */ |
4154 | if (u->Save_SP) | |
43bd9a9e | 4155 | frame_saved_regs[reg] |
ef6e7e13 | 4156 | = get_frame_base (frame_info) + offset; |
c906108c | 4157 | else |
43bd9a9e | 4158 | frame_saved_regs[reg] |
ef6e7e13 | 4159 | = (get_frame_base (frame_info) + (u->Total_frame_size << 3) |
104c1213 | 4160 | + offset); |
c906108c SS |
4161 | } |
4162 | } | |
4163 | ||
4164 | ||
4165 | /* GCC handles callee saved FP regs a little differently. | |
4166 | ||
c5aa993b JM |
4167 | It emits an instruction to put the value of the start of |
4168 | the FP store area into %r1. It then uses fstds,ma with | |
4169 | a basereg of %r1 for the stores. | |
c906108c | 4170 | |
c5aa993b JM |
4171 | HP CC emits them at the current stack pointer modifying |
4172 | the stack pointer as it stores each register. */ | |
c906108c SS |
4173 | |
4174 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4175 | if ((inst & 0xffffc000) == 0x34610000 | |
4176 | || (inst & 0xffffc000) == 0x37c10000) | |
4177 | fp_loc = extract_14 (inst); | |
c5aa993b | 4178 | |
c906108c SS |
4179 | reg = inst_saves_fr (inst); |
4180 | if (reg >= 12 && reg <= 21) | |
4181 | { | |
4182 | /* Note +4 braindamage below is necessary because the FP status | |
4183 | registers are internally 8 registers rather than the expected | |
4184 | 4 registers. */ | |
4185 | save_fr &= ~(1 << reg); | |
4186 | if (fp_loc == -1) | |
4187 | { | |
4188 | /* 1st HP CC FP register store. After this instruction | |
c5aa993b JM |
4189 | we've set enough state that the GCC and HPCC code are |
4190 | both handled in the same manner. */ | |
ef6e7e13 | 4191 | frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info); |
c906108c SS |
4192 | fp_loc = 8; |
4193 | } | |
4194 | else | |
4195 | { | |
43bd9a9e | 4196 | frame_saved_regs[reg + FP0_REGNUM + 4] |
ef6e7e13 | 4197 | = get_frame_base (frame_info) + fp_loc; |
c906108c SS |
4198 | fp_loc += 8; |
4199 | } | |
4200 | } | |
4201 | ||
39f77062 | 4202 | /* Quit if we hit any kind of branch the previous iteration. */ |
d4f3574e | 4203 | if (final_iteration) |
c906108c SS |
4204 | break; |
4205 | ||
d4f3574e SS |
4206 | /* We want to look precisely one instruction beyond the branch |
4207 | if we have not found everything yet. */ | |
4208 | if (is_branch (inst)) | |
4209 | final_iteration = 1; | |
4210 | ||
c906108c SS |
4211 | /* Bump the PC. */ |
4212 | pc += 4; | |
4213 | } | |
4214 | } | |
4215 | ||
43bd9a9e AC |
4216 | /* XXX - deprecated. This is a compatibility function for targets |
4217 | that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */ | |
4218 | /* Find the addresses in which registers are saved in FRAME. */ | |
4219 | ||
4220 | void | |
4221 | hppa_frame_init_saved_regs (struct frame_info *frame) | |
4222 | { | |
4223 | if (get_frame_saved_regs (frame) == NULL) | |
4224 | frame_saved_regs_zalloc (frame); | |
4225 | hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame)); | |
4226 | } | |
c906108c SS |
4227 | |
4228 | /* Exception handling support for the HP-UX ANSI C++ compiler. | |
4229 | The compiler (aCC) provides a callback for exception events; | |
4230 | GDB can set a breakpoint on this callback and find out what | |
4231 | exception event has occurred. */ | |
4232 | ||
4233 | /* The name of the hook to be set to point to the callback function */ | |
c5aa993b JM |
4234 | static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook"; |
4235 | /* The name of the function to be used to set the hook value */ | |
4236 | static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value"; | |
4237 | /* The name of the callback function in end.o */ | |
c906108c | 4238 | static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback"; |
c5aa993b JM |
4239 | /* Name of function in end.o on which a break is set (called by above) */ |
4240 | static char HP_ACC_EH_break[] = "__d_eh_break"; | |
4241 | /* Name of flag (in end.o) that enables catching throws */ | |
4242 | static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw"; | |
4243 | /* Name of flag (in end.o) that enables catching catching */ | |
4244 | static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch"; | |
4245 | /* The enum used by aCC */ | |
4246 | typedef enum | |
4247 | { | |
4248 | __EH_NOTIFY_THROW, | |
4249 | __EH_NOTIFY_CATCH | |
4250 | } | |
4251 | __eh_notification; | |
c906108c SS |
4252 | |
4253 | /* Is exception-handling support available with this executable? */ | |
4254 | static int hp_cxx_exception_support = 0; | |
4255 | /* Has the initialize function been run? */ | |
4256 | int hp_cxx_exception_support_initialized = 0; | |
4257 | /* Similar to above, but imported from breakpoint.c -- non-target-specific */ | |
4258 | extern int exception_support_initialized; | |
4259 | /* Address of __eh_notify_hook */ | |
a0b3c4fd | 4260 | static CORE_ADDR eh_notify_hook_addr = 0; |
c906108c | 4261 | /* Address of __d_eh_notify_callback */ |
a0b3c4fd | 4262 | static CORE_ADDR eh_notify_callback_addr = 0; |
c906108c | 4263 | /* Address of __d_eh_break */ |
a0b3c4fd | 4264 | static CORE_ADDR eh_break_addr = 0; |
c906108c | 4265 | /* Address of __d_eh_catch_catch */ |
a0b3c4fd | 4266 | static CORE_ADDR eh_catch_catch_addr = 0; |
c906108c | 4267 | /* Address of __d_eh_catch_throw */ |
a0b3c4fd | 4268 | static CORE_ADDR eh_catch_throw_addr = 0; |
c906108c | 4269 | /* Sal for __d_eh_break */ |
a0b3c4fd | 4270 | static struct symtab_and_line *break_callback_sal = 0; |
c906108c SS |
4271 | |
4272 | /* Code in end.c expects __d_pid to be set in the inferior, | |
4273 | otherwise __d_eh_notify_callback doesn't bother to call | |
4274 | __d_eh_break! So we poke the pid into this symbol | |
4275 | ourselves. | |
4276 | 0 => success | |
c5aa993b | 4277 | 1 => failure */ |
c906108c | 4278 | int |
fba45db2 | 4279 | setup_d_pid_in_inferior (void) |
c906108c SS |
4280 | { |
4281 | CORE_ADDR anaddr; | |
c5aa993b JM |
4282 | struct minimal_symbol *msymbol; |
4283 | char buf[4]; /* FIXME 32x64? */ | |
4284 | ||
c906108c SS |
4285 | /* Slam the pid of the process into __d_pid; failing is only a warning! */ |
4286 | msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile); | |
4287 | if (msymbol == NULL) | |
4288 | { | |
4289 | warning ("Unable to find __d_pid symbol in object file."); | |
4290 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4291 | return 1; | |
4292 | } | |
4293 | ||
4294 | anaddr = SYMBOL_VALUE_ADDRESS (msymbol); | |
39f77062 | 4295 | store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */ |
c5aa993b | 4296 | if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */ |
c906108c SS |
4297 | { |
4298 | warning ("Unable to write __d_pid"); | |
4299 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4300 | return 1; | |
4301 | } | |
4302 | return 0; | |
4303 | } | |
4304 | ||
4305 | /* Initialize exception catchpoint support by looking for the | |
4306 | necessary hooks/callbacks in end.o, etc., and set the hook value to | |
4307 | point to the required debug function | |
4308 | ||
4309 | Return 0 => failure | |
c5aa993b | 4310 | 1 => success */ |
c906108c SS |
4311 | |
4312 | static int | |
fba45db2 | 4313 | initialize_hp_cxx_exception_support (void) |
c906108c SS |
4314 | { |
4315 | struct symtabs_and_lines sals; | |
c5aa993b JM |
4316 | struct cleanup *old_chain; |
4317 | struct cleanup *canonical_strings_chain = NULL; | |
c906108c | 4318 | int i; |
c5aa993b JM |
4319 | char *addr_start; |
4320 | char *addr_end = NULL; | |
4321 | char **canonical = (char **) NULL; | |
c906108c | 4322 | int thread = -1; |
c5aa993b JM |
4323 | struct symbol *sym = NULL; |
4324 | struct minimal_symbol *msym = NULL; | |
4325 | struct objfile *objfile; | |
c906108c SS |
4326 | asection *shlib_info; |
4327 | ||
4328 | /* Detect and disallow recursion. On HP-UX with aCC, infinite | |
4329 | recursion is a possibility because finding the hook for exception | |
4330 | callbacks involves making a call in the inferior, which means | |
4331 | re-inserting breakpoints which can re-invoke this code */ | |
4332 | ||
c5aa993b JM |
4333 | static int recurse = 0; |
4334 | if (recurse > 0) | |
c906108c SS |
4335 | { |
4336 | hp_cxx_exception_support_initialized = 0; | |
4337 | exception_support_initialized = 0; | |
4338 | return 0; | |
4339 | } | |
4340 | ||
4341 | hp_cxx_exception_support = 0; | |
4342 | ||
4343 | /* First check if we have seen any HP compiled objects; if not, | |
4344 | it is very unlikely that HP's idiosyncratic callback mechanism | |
4345 | for exception handling debug support will be available! | |
4346 | This will percolate back up to breakpoint.c, where our callers | |
4347 | will decide to try the g++ exception-handling support instead. */ | |
4348 | if (!hp_som_som_object_present) | |
4349 | return 0; | |
c5aa993b | 4350 | |
c906108c SS |
4351 | /* We have a SOM executable with SOM debug info; find the hooks */ |
4352 | ||
4353 | /* First look for the notify hook provided by aCC runtime libs */ | |
4354 | /* If we find this symbol, we conclude that the executable must | |
4355 | have HP aCC exception support built in. If this symbol is not | |
4356 | found, even though we're a HP SOM-SOM file, we may have been | |
4357 | built with some other compiler (not aCC). This results percolates | |
4358 | back up to our callers in breakpoint.c which can decide to | |
4359 | try the g++ style of exception support instead. | |
4360 | If this symbol is found but the other symbols we require are | |
4361 | not found, there is something weird going on, and g++ support | |
4362 | should *not* be tried as an alternative. | |
c5aa993b | 4363 | |
c906108c SS |
4364 | ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined. |
4365 | ASSUMPTION: HP aCC and g++ modules cannot be linked together. */ | |
c5aa993b | 4366 | |
c906108c SS |
4367 | /* libCsup has this hook; it'll usually be non-debuggable */ |
4368 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL); | |
4369 | if (msym) | |
4370 | { | |
4371 | eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4372 | hp_cxx_exception_support = 1; | |
c5aa993b | 4373 | } |
c906108c SS |
4374 | else |
4375 | { | |
4376 | warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook); | |
4377 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4378 | warning ("GDB will be unable to intercept exception events."); | |
4379 | eh_notify_hook_addr = 0; | |
4380 | hp_cxx_exception_support = 0; | |
4381 | return 0; | |
4382 | } | |
4383 | ||
c906108c | 4384 | /* Next look for the notify callback routine in end.o */ |
c5aa993b | 4385 | /* This is always available in the SOM symbol dictionary if end.o is linked in */ |
c906108c SS |
4386 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL); |
4387 | if (msym) | |
4388 | { | |
4389 | eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4390 | hp_cxx_exception_support = 1; | |
c5aa993b JM |
4391 | } |
4392 | else | |
c906108c SS |
4393 | { |
4394 | warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback); | |
4395 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4396 | warning ("GDB will be unable to intercept exception events."); | |
4397 | eh_notify_callback_addr = 0; | |
4398 | return 0; | |
4399 | } | |
4400 | ||
53a5351d | 4401 | #ifndef GDB_TARGET_IS_HPPA_20W |
c906108c SS |
4402 | /* Check whether the executable is dynamically linked or archive bound */ |
4403 | /* With an archive-bound executable we can use the raw addresses we find | |
4404 | for the callback function, etc. without modification. For an executable | |
4405 | with shared libraries, we have to do more work to find the plabel, which | |
4406 | can be the target of a call through $$dyncall from the aCC runtime support | |
4407 | library (libCsup) which is linked shared by default by aCC. */ | |
4408 | /* This test below was copied from somsolib.c/somread.c. It may not be a very | |
c5aa993b | 4409 | reliable one to test that an executable is linked shared. pai/1997-07-18 */ |
c906108c SS |
4410 | shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$"); |
4411 | if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0)) | |
4412 | { | |
4413 | /* The minsym we have has the local code address, but that's not the | |
4414 | plabel that can be used by an inter-load-module call. */ | |
4415 | /* Find solib handle for main image (which has end.o), and use that | |
4416 | and the min sym as arguments to __d_shl_get() (which does the equivalent | |
c5aa993b | 4417 | of shl_findsym()) to find the plabel. */ |
c906108c SS |
4418 | |
4419 | args_for_find_stub args; | |
4420 | static char message[] = "Error while finding exception callback hook:\n"; | |
c5aa993b | 4421 | |
c906108c SS |
4422 | args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr); |
4423 | args.msym = msym; | |
a0b3c4fd | 4424 | args.return_val = 0; |
c5aa993b | 4425 | |
c906108c | 4426 | recurse++; |
4efb68b1 | 4427 | catch_errors (cover_find_stub_with_shl_get, &args, message, |
a0b3c4fd JM |
4428 | RETURN_MASK_ALL); |
4429 | eh_notify_callback_addr = args.return_val; | |
c906108c | 4430 | recurse--; |
c5aa993b | 4431 | |
c906108c | 4432 | exception_catchpoints_are_fragile = 1; |
c5aa993b | 4433 | |
c906108c | 4434 | if (!eh_notify_callback_addr) |
c5aa993b JM |
4435 | { |
4436 | /* We can get here either if there is no plabel in the export list | |
1faa59a8 | 4437 | for the main image, or if something strange happened (?) */ |
c5aa993b JM |
4438 | warning ("Couldn't find a plabel (indirect function label) for the exception callback."); |
4439 | warning ("GDB will not be able to intercept exception events."); | |
4440 | return 0; | |
4441 | } | |
c906108c SS |
4442 | } |
4443 | else | |
4444 | exception_catchpoints_are_fragile = 0; | |
53a5351d | 4445 | #endif |
c906108c | 4446 | |
c906108c | 4447 | /* Now, look for the breakpointable routine in end.o */ |
c5aa993b | 4448 | /* This should also be available in the SOM symbol dict. if end.o linked in */ |
c906108c SS |
4449 | msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL); |
4450 | if (msym) | |
4451 | { | |
4452 | eh_break_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4453 | hp_cxx_exception_support = 1; | |
c5aa993b | 4454 | } |
c906108c SS |
4455 | else |
4456 | { | |
4457 | warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break); | |
4458 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4459 | warning ("GDB will be unable to intercept exception events."); | |
4460 | eh_break_addr = 0; | |
4461 | return 0; | |
4462 | } | |
4463 | ||
c906108c SS |
4464 | /* Next look for the catch enable flag provided in end.o */ |
4465 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
176620f1 | 4466 | VAR_DOMAIN, 0, (struct symtab **) NULL); |
c5aa993b | 4467 | if (sym) /* sometimes present in debug info */ |
c906108c SS |
4468 | { |
4469 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4470 | hp_cxx_exception_support = 1; | |
4471 | } | |
c5aa993b JM |
4472 | else |
4473 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4474 | { |
4475 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL); | |
4476 | if (msym) | |
c5aa993b JM |
4477 | { |
4478 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4479 | hp_cxx_exception_support = 1; | |
4480 | } | |
c906108c | 4481 | else |
c5aa993b JM |
4482 | { |
4483 | warning ("Unable to enable interception of exception catches."); | |
4484 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4485 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4486 | return 0; | |
4487 | } | |
c906108c SS |
4488 | } |
4489 | ||
c906108c SS |
4490 | /* Next look for the catch enable flag provided end.o */ |
4491 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
176620f1 | 4492 | VAR_DOMAIN, 0, (struct symtab **) NULL); |
c5aa993b | 4493 | if (sym) /* sometimes present in debug info */ |
c906108c SS |
4494 | { |
4495 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4496 | hp_cxx_exception_support = 1; | |
4497 | } | |
c5aa993b JM |
4498 | else |
4499 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4500 | { |
4501 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL); | |
4502 | if (msym) | |
c5aa993b JM |
4503 | { |
4504 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4505 | hp_cxx_exception_support = 1; | |
4506 | } | |
c906108c | 4507 | else |
c5aa993b JM |
4508 | { |
4509 | warning ("Unable to enable interception of exception throws."); | |
4510 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4511 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4512 | return 0; | |
4513 | } | |
c906108c SS |
4514 | } |
4515 | ||
c5aa993b JM |
4516 | /* Set the flags */ |
4517 | hp_cxx_exception_support = 2; /* everything worked so far */ | |
c906108c SS |
4518 | hp_cxx_exception_support_initialized = 1; |
4519 | exception_support_initialized = 1; | |
4520 | ||
4521 | return 1; | |
4522 | } | |
4523 | ||
4524 | /* Target operation for enabling or disabling interception of | |
4525 | exception events. | |
4526 | KIND is either EX_EVENT_THROW or EX_EVENT_CATCH | |
4527 | ENABLE is either 0 (disable) or 1 (enable). | |
4528 | Return value is NULL if no support found; | |
4529 | -1 if something went wrong, | |
4530 | or a pointer to a symtab/line struct if the breakpointable | |
c5aa993b | 4531 | address was found. */ |
c906108c | 4532 | |
c5aa993b | 4533 | struct symtab_and_line * |
fba45db2 | 4534 | child_enable_exception_callback (enum exception_event_kind kind, int enable) |
c906108c SS |
4535 | { |
4536 | char buf[4]; | |
4537 | ||
4538 | if (!exception_support_initialized || !hp_cxx_exception_support_initialized) | |
4539 | if (!initialize_hp_cxx_exception_support ()) | |
4540 | return NULL; | |
4541 | ||
4542 | switch (hp_cxx_exception_support) | |
4543 | { | |
c5aa993b JM |
4544 | case 0: |
4545 | /* Assuming no HP support at all */ | |
4546 | return NULL; | |
4547 | case 1: | |
4548 | /* HP support should be present, but something went wrong */ | |
4549 | return (struct symtab_and_line *) -1; /* yuck! */ | |
4550 | /* there may be other cases in the future */ | |
c906108c | 4551 | } |
c5aa993b | 4552 | |
c906108c | 4553 | /* Set the EH hook to point to the callback routine */ |
c5aa993b | 4554 | store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */ |
c906108c | 4555 | /* pai: (temp) FIXME should there be a pack operation first? */ |
c5aa993b | 4556 | if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */ |
c906108c SS |
4557 | { |
4558 | warning ("Could not write to target memory for exception event callback."); | |
4559 | warning ("Interception of exception events may not work."); | |
c5aa993b | 4560 | return (struct symtab_and_line *) -1; |
c906108c SS |
4561 | } |
4562 | if (enable) | |
4563 | { | |
c5aa993b | 4564 | /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */ |
39f77062 | 4565 | if (PIDGET (inferior_ptid) > 0) |
c5aa993b JM |
4566 | { |
4567 | if (setup_d_pid_in_inferior ()) | |
4568 | return (struct symtab_and_line *) -1; | |
4569 | } | |
c906108c | 4570 | else |
c5aa993b | 4571 | { |
104c1213 JM |
4572 | warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); |
4573 | return (struct symtab_and_line *) -1; | |
c5aa993b | 4574 | } |
c906108c | 4575 | } |
c5aa993b | 4576 | |
c906108c SS |
4577 | switch (kind) |
4578 | { | |
c5aa993b JM |
4579 | case EX_EVENT_THROW: |
4580 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4581 | if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */ | |
4582 | { | |
4583 | warning ("Couldn't enable exception throw interception."); | |
4584 | return (struct symtab_and_line *) -1; | |
4585 | } | |
4586 | break; | |
4587 | case EX_EVENT_CATCH: | |
4588 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4589 | if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */ | |
4590 | { | |
4591 | warning ("Couldn't enable exception catch interception."); | |
4592 | return (struct symtab_and_line *) -1; | |
4593 | } | |
4594 | break; | |
104c1213 JM |
4595 | default: |
4596 | error ("Request to enable unknown or unsupported exception event."); | |
c906108c | 4597 | } |
c5aa993b | 4598 | |
c906108c SS |
4599 | /* Copy break address into new sal struct, malloc'ing if needed. */ |
4600 | if (!break_callback_sal) | |
4601 | { | |
4602 | break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line)); | |
4603 | } | |
fe39c653 | 4604 | init_sal (break_callback_sal); |
c906108c SS |
4605 | break_callback_sal->symtab = NULL; |
4606 | break_callback_sal->pc = eh_break_addr; | |
4607 | break_callback_sal->line = 0; | |
4608 | break_callback_sal->end = eh_break_addr; | |
c5aa993b | 4609 | |
c906108c SS |
4610 | return break_callback_sal; |
4611 | } | |
4612 | ||
c5aa993b | 4613 | /* Record some information about the current exception event */ |
c906108c | 4614 | static struct exception_event_record current_ex_event; |
c5aa993b JM |
4615 | /* Convenience struct */ |
4616 | static struct symtab_and_line null_symtab_and_line = | |
4617 | {NULL, 0, 0, 0}; | |
c906108c SS |
4618 | |
4619 | /* Report current exception event. Returns a pointer to a record | |
4620 | that describes the kind of the event, where it was thrown from, | |
4621 | and where it will be caught. More information may be reported | |
c5aa993b | 4622 | in the future */ |
c906108c | 4623 | struct exception_event_record * |
fba45db2 | 4624 | child_get_current_exception_event (void) |
c906108c | 4625 | { |
c5aa993b JM |
4626 | CORE_ADDR event_kind; |
4627 | CORE_ADDR throw_addr; | |
4628 | CORE_ADDR catch_addr; | |
c906108c SS |
4629 | struct frame_info *fi, *curr_frame; |
4630 | int level = 1; | |
4631 | ||
c5aa993b | 4632 | curr_frame = get_current_frame (); |
c906108c SS |
4633 | if (!curr_frame) |
4634 | return (struct exception_event_record *) NULL; | |
4635 | ||
4636 | /* Go up one frame to __d_eh_notify_callback, because at the | |
4637 | point when this code is executed, there's garbage in the | |
4638 | arguments of __d_eh_break. */ | |
4639 | fi = find_relative_frame (curr_frame, &level); | |
4640 | if (level != 0) | |
4641 | return (struct exception_event_record *) NULL; | |
4642 | ||
0f7d239c | 4643 | select_frame (fi); |
c906108c SS |
4644 | |
4645 | /* Read in the arguments */ | |
4646 | /* __d_eh_notify_callback() is called with 3 arguments: | |
c5aa993b JM |
4647 | 1. event kind catch or throw |
4648 | 2. the target address if known | |
4649 | 3. a flag -- not sure what this is. pai/1997-07-17 */ | |
4650 | event_kind = read_register (ARG0_REGNUM); | |
c906108c SS |
4651 | catch_addr = read_register (ARG1_REGNUM); |
4652 | ||
4653 | /* Now go down to a user frame */ | |
4654 | /* For a throw, __d_eh_break is called by | |
c5aa993b JM |
4655 | __d_eh_notify_callback which is called by |
4656 | __notify_throw which is called | |
4657 | from user code. | |
c906108c | 4658 | For a catch, __d_eh_break is called by |
c5aa993b JM |
4659 | __d_eh_notify_callback which is called by |
4660 | <stackwalking stuff> which is called by | |
4661 | __throw__<stuff> or __rethrow_<stuff> which is called | |
4662 | from user code. */ | |
4663 | /* FIXME: Don't use such magic numbers; search for the frames */ | |
c906108c SS |
4664 | level = (event_kind == EX_EVENT_THROW) ? 3 : 4; |
4665 | fi = find_relative_frame (curr_frame, &level); | |
4666 | if (level != 0) | |
4667 | return (struct exception_event_record *) NULL; | |
4668 | ||
0f7d239c | 4669 | select_frame (fi); |
ef6e7e13 | 4670 | throw_addr = get_frame_pc (fi); |
c906108c SS |
4671 | |
4672 | /* Go back to original (top) frame */ | |
0f7d239c | 4673 | select_frame (curr_frame); |
c906108c SS |
4674 | |
4675 | current_ex_event.kind = (enum exception_event_kind) event_kind; | |
4676 | current_ex_event.throw_sal = find_pc_line (throw_addr, 1); | |
4677 | current_ex_event.catch_sal = find_pc_line (catch_addr, 1); | |
4678 | ||
4679 | return ¤t_ex_event; | |
4680 | } | |
4681 | ||
9a043c1d AC |
4682 | /* Instead of this nasty cast, add a method pvoid() that prints out a |
4683 | host VOID data type (remember %p isn't portable). */ | |
4684 | ||
4685 | static CORE_ADDR | |
4686 | hppa_pointer_to_address_hack (void *ptr) | |
4687 | { | |
4688 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
4689 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
4690 | } | |
4691 | ||
c906108c | 4692 | static void |
fba45db2 | 4693 | unwind_command (char *exp, int from_tty) |
c906108c SS |
4694 | { |
4695 | CORE_ADDR address; | |
4696 | struct unwind_table_entry *u; | |
4697 | ||
4698 | /* If we have an expression, evaluate it and use it as the address. */ | |
4699 | ||
4700 | if (exp != 0 && *exp != 0) | |
4701 | address = parse_and_eval_address (exp); | |
4702 | else | |
4703 | return; | |
4704 | ||
4705 | u = find_unwind_entry (address); | |
4706 | ||
4707 | if (!u) | |
4708 | { | |
4709 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
4710 | return; | |
4711 | } | |
4712 | ||
ce414844 | 4713 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
9a043c1d | 4714 | paddr_nz (hppa_pointer_to_address_hack (u))); |
c906108c SS |
4715 | |
4716 | printf_unfiltered ("\tregion_start = "); | |
4717 | print_address (u->region_start, gdb_stdout); | |
4718 | ||
4719 | printf_unfiltered ("\n\tregion_end = "); | |
4720 | print_address (u->region_end, gdb_stdout); | |
4721 | ||
c906108c | 4722 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
4723 | |
4724 | printf_unfiltered ("\n\tflags ="); | |
4725 | pif (Cannot_unwind); | |
4726 | pif (Millicode); | |
4727 | pif (Millicode_save_sr0); | |
4728 | pif (Entry_SR); | |
4729 | pif (Args_stored); | |
4730 | pif (Variable_Frame); | |
4731 | pif (Separate_Package_Body); | |
4732 | pif (Frame_Extension_Millicode); | |
4733 | pif (Stack_Overflow_Check); | |
4734 | pif (Two_Instruction_SP_Increment); | |
4735 | pif (Ada_Region); | |
4736 | pif (Save_SP); | |
4737 | pif (Save_RP); | |
4738 | pif (Save_MRP_in_frame); | |
4739 | pif (extn_ptr_defined); | |
4740 | pif (Cleanup_defined); | |
4741 | pif (MPE_XL_interrupt_marker); | |
4742 | pif (HP_UX_interrupt_marker); | |
4743 | pif (Large_frame); | |
4744 | ||
4745 | putchar_unfiltered ('\n'); | |
4746 | ||
c906108c | 4747 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
4748 | |
4749 | pin (Region_description); | |
4750 | pin (Entry_FR); | |
4751 | pin (Entry_GR); | |
4752 | pin (Total_frame_size); | |
4753 | } | |
c906108c | 4754 | |
c2c6d25f | 4755 | void |
fba45db2 | 4756 | hppa_skip_permanent_breakpoint (void) |
c2c6d25f JM |
4757 | { |
4758 | /* To step over a breakpoint instruction on the PA takes some | |
4759 | fiddling with the instruction address queue. | |
4760 | ||
4761 | When we stop at a breakpoint, the IA queue front (the instruction | |
4762 | we're executing now) points at the breakpoint instruction, and | |
4763 | the IA queue back (the next instruction to execute) points to | |
4764 | whatever instruction we would execute after the breakpoint, if it | |
4765 | were an ordinary instruction. This is the case even if the | |
4766 | breakpoint is in the delay slot of a branch instruction. | |
4767 | ||
4768 | Clearly, to step past the breakpoint, we need to set the queue | |
4769 | front to the back. But what do we put in the back? What | |
4770 | instruction comes after that one? Because of the branch delay | |
4771 | slot, the next insn is always at the back + 4. */ | |
4772 | write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM)); | |
4773 | write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM)); | |
4774 | ||
4775 | write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4); | |
4776 | /* We can leave the tail's space the same, since there's no jump. */ | |
4777 | } | |
4778 | ||
1cdb71fe JL |
4779 | /* Copy the function value from VALBUF into the proper location |
4780 | for a function return. | |
4781 | ||
4782 | Called only in the context of the "return" command. */ | |
4783 | ||
4784 | void | |
4785 | hppa_store_return_value (struct type *type, char *valbuf) | |
4786 | { | |
4787 | /* For software floating point, the return value goes into the | |
4788 | integer registers. But we do not have any flag to key this on, | |
4789 | so we always store the value into the integer registers. | |
4790 | ||
4791 | If its a float value, then we also store it into the floating | |
4792 | point registers. */ | |
73937e03 AC |
4793 | deprecated_write_register_bytes (REGISTER_BYTE (28) |
4794 | + (TYPE_LENGTH (type) > 4 | |
4795 | ? (8 - TYPE_LENGTH (type)) | |
4796 | : (4 - TYPE_LENGTH (type))), | |
4797 | valbuf, TYPE_LENGTH (type)); | |
77296879 | 4798 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
73937e03 AC |
4799 | deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM), |
4800 | valbuf, TYPE_LENGTH (type)); | |
1cdb71fe JL |
4801 | } |
4802 | ||
4803 | /* Copy the function's return value into VALBUF. | |
4804 | ||
4805 | This function is called only in the context of "target function calls", | |
4806 | ie. when the debugger forces a function to be called in the child, and | |
4807 | when the debugger forces a fucntion to return prematurely via the | |
4808 | "return" command. */ | |
4809 | ||
4810 | void | |
4811 | hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
4812 | { | |
77296879 | 4813 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
1cdb71fe JL |
4814 | memcpy (valbuf, |
4815 | (char *)regbuf + REGISTER_BYTE (FP4_REGNUM), | |
4816 | TYPE_LENGTH (type)); | |
4817 | else | |
4818 | memcpy (valbuf, | |
4819 | ((char *)regbuf | |
4820 | + REGISTER_BYTE (28) | |
4821 | + (TYPE_LENGTH (type) > 4 | |
4822 | ? (8 - TYPE_LENGTH (type)) | |
4823 | : (4 - TYPE_LENGTH (type)))), | |
4824 | TYPE_LENGTH (type)); | |
4825 | } | |
4facf7e8 | 4826 | |
d709c020 JB |
4827 | int |
4828 | hppa_reg_struct_has_addr (int gcc_p, struct type *type) | |
4829 | { | |
4830 | /* On the PA, any pass-by-value structure > 8 bytes is actually passed | |
4831 | via a pointer regardless of its type or the compiler used. */ | |
4832 | return (TYPE_LENGTH (type) > 8); | |
4833 | } | |
4834 | ||
4835 | int | |
4836 | hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs) | |
4837 | { | |
4838 | /* Stack grows upward */ | |
4839 | return (lhs > rhs); | |
4840 | } | |
4841 | ||
4842 | CORE_ADDR | |
4843 | hppa_stack_align (CORE_ADDR sp) | |
4844 | { | |
4845 | /* elz: adjust the quantity to the next highest value which is | |
4846 | 64-bit aligned. This is used in valops.c, when the sp is adjusted. | |
4847 | On hppa the sp must always be kept 64-bit aligned */ | |
4848 | return ((sp % 8) ? (sp + 7) & -8 : sp); | |
4849 | } | |
4850 | ||
4851 | int | |
4852 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
4853 | { | |
4854 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
4855 | ||
4856 | An example of this occurs when an a.out is linked against a foo.sl. | |
4857 | The foo.sl defines a global bar(), and the a.out declares a signature | |
4858 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
4859 | its address in another call. | |
4860 | ||
4861 | If you have this scenario and attempt to "break bar" before running, | |
4862 | gdb will find a minimal symbol for bar() in the a.out. But that | |
4863 | symbol's address will be negative. What this appears to denote is | |
4864 | an index backwards from the base of the procedure linkage table (PLT) | |
4865 | into the data linkage table (DLT), the end of which is contiguous | |
4866 | with the start of the PLT. This is clearly not a valid address for | |
4867 | us to set a breakpoint on. | |
4868 | ||
4869 | Note that one must be careful in how one checks for a negative address. | |
4870 | 0xc0000000 is a legitimate address of something in a shared text | |
4871 | segment, for example. Since I don't know what the possible range | |
4872 | is of these "really, truly negative" addresses that come from the | |
4873 | minimal symbols, I'm resorting to the gross hack of checking the | |
4874 | top byte of the address for all 1's. Sigh. */ | |
4875 | ||
4876 | return (!target_has_stack && (pc & 0xFF000000)); | |
4877 | } | |
4878 | ||
4879 | int | |
4880 | hppa_instruction_nullified (void) | |
4881 | { | |
4882 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
4883 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
4884 | semi-mechanical multiarching-related changes. */ | |
4885 | const int ipsw = (int) read_register (IPSW_REGNUM); | |
4886 | const int flags = (int) read_register (FLAGS_REGNUM); | |
4887 | ||
4888 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
4889 | } | |
4890 | ||
60e1ff27 JB |
4891 | int |
4892 | hppa_register_raw_size (int reg_nr) | |
4893 | { | |
4894 | /* All registers have the same size. */ | |
b1e29e33 | 4895 | return DEPRECATED_REGISTER_SIZE; |
60e1ff27 JB |
4896 | } |
4897 | ||
d709c020 JB |
4898 | /* Index within the register vector of the first byte of the space i |
4899 | used for register REG_NR. */ | |
4900 | ||
4901 | int | |
4902 | hppa_register_byte (int reg_nr) | |
4903 | { | |
4904 | return reg_nr * 4; | |
4905 | } | |
4906 | ||
4907 | /* Return the GDB type object for the "standard" data type of data | |
4908 | in register N. */ | |
4909 | ||
4910 | struct type * | |
4911 | hppa_register_virtual_type (int reg_nr) | |
4912 | { | |
4913 | if (reg_nr < FP4_REGNUM) | |
4914 | return builtin_type_int; | |
4915 | else | |
4916 | return builtin_type_float; | |
4917 | } | |
4918 | ||
4919 | /* Store the address of the place in which to copy the structure the | |
4920 | subroutine will return. This is called from call_function. */ | |
4921 | ||
4922 | void | |
4923 | hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
4924 | { | |
4925 | write_register (28, addr); | |
4926 | } | |
4927 | ||
60383d10 JB |
4928 | CORE_ADDR |
4929 | hppa_extract_struct_value_address (char *regbuf) | |
4930 | { | |
4931 | /* Extract from an array REGBUF containing the (raw) register state | |
4932 | the address in which a function should return its structure value, | |
4933 | as a CORE_ADDR (or an expression that can be used as one). */ | |
4934 | /* FIXME: brobecker 2002-12-26. | |
4935 | The current implementation is historical, but we should eventually | |
4936 | implement it in a more robust manner as it relies on the fact that | |
4937 | the address size is equal to the size of an int* _on the host_... | |
4938 | One possible implementation that crossed my mind is to use | |
4939 | extract_address. */ | |
4940 | return (*(int *)(regbuf + REGISTER_BYTE (28))); | |
4941 | } | |
4942 | ||
d709c020 JB |
4943 | /* Return True if REGNUM is not a register available to the user |
4944 | through ptrace(). */ | |
4945 | ||
4946 | int | |
4947 | hppa_cannot_store_register (int regnum) | |
4948 | { | |
4949 | return (regnum == 0 | |
4950 | || regnum == PCSQ_HEAD_REGNUM | |
4951 | || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM) | |
4952 | || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM)); | |
4953 | ||
4954 | } | |
4955 | ||
d709c020 JB |
4956 | CORE_ADDR |
4957 | hppa_smash_text_address (CORE_ADDR addr) | |
4958 | { | |
4959 | /* The low two bits of the PC on the PA contain the privilege level. | |
4960 | Some genius implementing a (non-GCC) compiler apparently decided | |
4961 | this means that "addresses" in a text section therefore include a | |
4962 | privilege level, and thus symbol tables should contain these bits. | |
4963 | This seems like a bonehead thing to do--anyway, it seems to work | |
4964 | for our purposes to just ignore those bits. */ | |
4965 | ||
4966 | return (addr &= ~0x3); | |
4967 | } | |
4968 | ||
143985b7 AF |
4969 | /* Get the ith function argument for the current function. */ |
4970 | CORE_ADDR | |
4971 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, | |
4972 | struct type *type) | |
4973 | { | |
4974 | CORE_ADDR addr; | |
4975 | frame_read_register (frame, R0_REGNUM + 26 - argi, &addr); | |
4976 | return addr; | |
4977 | } | |
4978 | ||
e6e68f1f JB |
4979 | static struct gdbarch * |
4980 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
4981 | { | |
4982 | struct gdbarch *gdbarch; | |
59623e27 JB |
4983 | |
4984 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 4985 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 4986 | { |
4be87837 DJ |
4987 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
4988 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
4989 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 4990 | } |
e6e68f1f JB |
4991 | |
4992 | /* find a candidate among the list of pre-declared architectures. */ | |
4993 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
4994 | if (arches != NULL) | |
4995 | return (arches->gdbarch); | |
4996 | ||
4997 | /* If none found, then allocate and initialize one. */ | |
4998 | gdbarch = gdbarch_alloc (&info, NULL); | |
4999 | ||
273f8429 | 5000 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 5001 | gdbarch_init_osabi (info, gdbarch); |
273f8429 | 5002 | |
60383d10 JB |
5003 | set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr); |
5004 | set_gdbarch_function_start_offset (gdbarch, 0); | |
5005 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); | |
5006 | set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); | |
5007 | set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline); | |
5008 | set_gdbarch_in_solib_return_trampoline (gdbarch, | |
5009 | hppa_in_solib_return_trampoline); | |
6913c89a | 5010 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call); |
60383d10 JB |
5011 | set_gdbarch_inner_than (gdbarch, hppa_inner_than); |
5012 | set_gdbarch_stack_align (gdbarch, hppa_stack_align); | |
60383d10 | 5013 | set_gdbarch_decr_pc_after_break (gdbarch, 0); |
b1e29e33 | 5014 | set_gdbarch_deprecated_register_size (gdbarch, 4); |
60383d10 | 5015 | set_gdbarch_num_regs (gdbarch, hppa_num_regs); |
0ba6dca9 | 5016 | set_gdbarch_deprecated_fp_regnum (gdbarch, 3); |
60383d10 JB |
5017 | set_gdbarch_sp_regnum (gdbarch, 30); |
5018 | set_gdbarch_fp0_regnum (gdbarch, 64); | |
5019 | set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM); | |
5020 | set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM); | |
9c04cab7 | 5021 | set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size); |
b8b527c5 | 5022 | set_gdbarch_deprecated_register_bytes (gdbarch, hppa_num_regs * 4); |
9c04cab7 AC |
5023 | set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte); |
5024 | set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size); | |
a0ed5532 AC |
5025 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4); |
5026 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8); | |
9c04cab7 | 5027 | set_gdbarch_deprecated_register_virtual_type (gdbarch, hppa_register_virtual_type); |
e23457df | 5028 | set_gdbarch_register_name (gdbarch, hppa_register_name); |
4183d812 | 5029 | set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return); |
60383d10 JB |
5030 | set_gdbarch_deprecated_extract_return_value (gdbarch, |
5031 | hppa_extract_return_value); | |
5032 | set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention); | |
5033 | set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value); | |
5034 | set_gdbarch_deprecated_extract_struct_value_address | |
5035 | (gdbarch, hppa_extract_struct_value_address); | |
5036 | set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register); | |
e9582e71 | 5037 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info); |
618ce49f AC |
5038 | set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain); |
5039 | set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid); | |
60383d10 JB |
5040 | set_gdbarch_frameless_function_invocation |
5041 | (gdbarch, hppa_frameless_function_invocation); | |
8bedc050 | 5042 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc); |
60383d10 | 5043 | set_gdbarch_frame_args_skip (gdbarch, 0); |
5ef7553b | 5044 | set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame); |
749b82f6 | 5045 | set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame); |
b1e29e33 AC |
5046 | set_gdbarch_deprecated_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28); |
5047 | /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */ | |
b81774d8 | 5048 | set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments); |
60383d10 JB |
5049 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
5050 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
5051 | set_gdbarch_read_pc (gdbarch, hppa_target_read_pc); | |
5052 | set_gdbarch_write_pc (gdbarch, hppa_target_write_pc); | |
0ba6dca9 | 5053 | set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp); |
60383d10 | 5054 | |
143985b7 AF |
5055 | /* Helper for function argument information. */ |
5056 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
5057 | ||
e6e68f1f JB |
5058 | return gdbarch; |
5059 | } | |
5060 | ||
5061 | static void | |
5062 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
5063 | { | |
5064 | /* Nothing to print for the moment. */ | |
5065 | } | |
5066 | ||
4facf7e8 JB |
5067 | void |
5068 | _initialize_hppa_tdep (void) | |
5069 | { | |
5070 | struct cmd_list_element *c; | |
5071 | void break_at_finish_command (char *arg, int from_tty); | |
5072 | void tbreak_at_finish_command (char *arg, int from_tty); | |
5073 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
5074 | ||
e6e68f1f | 5075 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
d7a27068 | 5076 | deprecated_tm_print_insn = print_insn_hppa; |
4facf7e8 JB |
5077 | |
5078 | add_cmd ("unwind", class_maintenance, unwind_command, | |
5079 | "Print unwind table entry at given address.", | |
5080 | &maintenanceprintlist); | |
5081 | ||
5082 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
5083 | break_at_finish_command, | |
5084 | concat ("Set breakpoint at procedure exit. \n\ | |
5085 | Argument may be function name, or \"*\" and an address.\n\ | |
5086 | If function is specified, break at end of code for that function.\n\ | |
5087 | If an address is specified, break at the end of the function that contains \n\ | |
5088 | that exact address.\n", | |
5089 | "With no arg, uses current execution address of selected stack frame.\n\ | |
5090 | This is useful for breaking on return to a stack frame.\n\ | |
5091 | \n\ | |
5092 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
5093 | \n\ | |
5094 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
5095 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
5096 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
5097 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
5098 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
5099 | ||
5100 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
5101 | tbreak_at_finish_command, | |
5102 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
5103 | be no argument or the argument must be a depth.\n"), NULL); | |
5104 | set_cmd_completer (c, location_completer); | |
5105 | ||
5106 | if (xdb_commands) | |
5107 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
5108 | break_at_finish_at_depth_command, | |
5109 | "Set breakpoint at procedure exit. Either there should\n\ | |
5110 | be no argument or the argument must be a depth.\n"), NULL); | |
5111 | } | |
5112 |