]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
adc11376 AC |
4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software |
5 | Foundation, Inc. | |
c906108c SS |
6 | |
7 | Contributed by the Center for Software Science at the | |
8 | University of Utah ([email protected]). | |
9 | ||
c5aa993b | 10 | This file is part of GDB. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is free software; you can redistribute it and/or modify |
13 | it under the terms of the GNU General Public License as published by | |
14 | the Free Software Foundation; either version 2 of the License, or | |
15 | (at your option) any later version. | |
c906108c | 16 | |
c5aa993b JM |
17 | This program is distributed in the hope that it will be useful, |
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 | GNU General Public License for more details. | |
c906108c | 21 | |
c5aa993b JM |
22 | You should have received a copy of the GNU General Public License |
23 | along with this program; if not, write to the Free Software | |
24 | Foundation, Inc., 59 Temple Place - Suite 330, | |
25 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
26 | |
27 | #include "defs.h" | |
28 | #include "frame.h" | |
29 | #include "bfd.h" | |
30 | #include "inferior.h" | |
31 | #include "value.h" | |
4e052eda | 32 | #include "regcache.h" |
e5d66720 | 33 | #include "completer.h" |
d709c020 | 34 | #include "language.h" |
59623e27 | 35 | #include "osabi.h" |
a7ff40e7 | 36 | #include "gdb_assert.h" |
65e82032 | 37 | #include "infttrace.h" |
343af405 | 38 | #include "arch-utils.h" |
c906108c SS |
39 | /* For argument passing to the inferior */ |
40 | #include "symtab.h" | |
04714b91 | 41 | #include "infcall.h" |
fde2cceb | 42 | #include "dis-asm.h" |
26d08f08 AC |
43 | #include "trad-frame.h" |
44 | #include "frame-unwind.h" | |
45 | #include "frame-base.h" | |
c906108c SS |
46 | |
47 | #ifdef USG | |
48 | #include <sys/types.h> | |
49 | #endif | |
50 | ||
51 | #include <dl.h> | |
52 | #include <sys/param.h> | |
53 | #include <signal.h> | |
54 | ||
55 | #include <sys/ptrace.h> | |
56 | #include <machine/save_state.h> | |
57 | ||
58 | #ifdef COFF_ENCAPSULATE | |
59 | #include "a.out.encap.h" | |
60 | #else | |
61 | #endif | |
62 | ||
c5aa993b | 63 | /*#include <sys/user.h> After a.out.h */ |
c906108c SS |
64 | #include <sys/file.h> |
65 | #include "gdb_stat.h" | |
03f2053f | 66 | #include "gdb_wait.h" |
c906108c SS |
67 | |
68 | #include "gdbcore.h" | |
69 | #include "gdbcmd.h" | |
70 | #include "target.h" | |
71 | #include "symfile.h" | |
72 | #include "objfiles.h" | |
3ff7cf9e | 73 | #include "hppa-tdep.h" |
c906108c | 74 | |
60383d10 | 75 | /* Some local constants. */ |
3ff7cf9e JB |
76 | static const int hppa32_num_regs = 128; |
77 | static const int hppa64_num_regs = 96; | |
78 | ||
79 | static const int hppa64_call_dummy_breakpoint_offset = 22 * 4; | |
80 | ||
81 | /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a | |
82 | word on the target machine, not the size of an instruction. Since | |
83 | a word on this target holds two instructions we have to divide the | |
84 | instruction size by two to get the word size of the dummy. */ | |
85 | static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28; | |
86 | static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2; | |
60383d10 | 87 | |
e2ac8128 JB |
88 | /* Get at various relevent fields of an instruction word. */ |
89 | #define MASK_5 0x1f | |
90 | #define MASK_11 0x7ff | |
91 | #define MASK_14 0x3fff | |
92 | #define MASK_21 0x1fffff | |
93 | ||
94 | /* Define offsets into the call dummy for the target function address. | |
95 | See comments related to CALL_DUMMY for more info. */ | |
96 | #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9) | |
97 | #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10) | |
98 | ||
99 | /* Define offsets into the call dummy for the _sr4export address. | |
100 | See comments related to CALL_DUMMY for more info. */ | |
101 | #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12) | |
102 | #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13) | |
103 | ||
c906108c SS |
104 | /* To support detection of the pseudo-initial frame |
105 | that threads have. */ | |
106 | #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" | |
107 | #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) | |
c5aa993b | 108 | |
e2ac8128 JB |
109 | /* Sizes (in bytes) of the native unwind entries. */ |
110 | #define UNWIND_ENTRY_SIZE 16 | |
111 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
112 | ||
113 | static int get_field (unsigned word, int from, int to); | |
114 | ||
a14ed312 | 115 | static int extract_5_load (unsigned int); |
c906108c | 116 | |
a14ed312 | 117 | static unsigned extract_5R_store (unsigned int); |
c906108c | 118 | |
a14ed312 | 119 | static unsigned extract_5r_store (unsigned int); |
c906108c | 120 | |
343af405 AC |
121 | static void hppa_frame_init_saved_regs (struct frame_info *frame); |
122 | ||
43bd9a9e | 123 | static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *); |
c906108c | 124 | |
a14ed312 | 125 | static int find_proc_framesize (CORE_ADDR); |
c906108c | 126 | |
a14ed312 | 127 | static int find_return_regnum (CORE_ADDR); |
c906108c | 128 | |
a14ed312 | 129 | struct unwind_table_entry *find_unwind_entry (CORE_ADDR); |
c906108c | 130 | |
a14ed312 | 131 | static int extract_17 (unsigned int); |
c906108c | 132 | |
a14ed312 | 133 | static unsigned deposit_21 (unsigned int, unsigned int); |
c906108c | 134 | |
a14ed312 | 135 | static int extract_21 (unsigned); |
c906108c | 136 | |
a14ed312 | 137 | static unsigned deposit_14 (int, unsigned int); |
c906108c | 138 | |
a14ed312 | 139 | static int extract_14 (unsigned); |
c906108c | 140 | |
a14ed312 | 141 | static void unwind_command (char *, int); |
c906108c | 142 | |
a14ed312 | 143 | static int low_sign_extend (unsigned int, unsigned int); |
c906108c | 144 | |
a14ed312 | 145 | static int sign_extend (unsigned int, unsigned int); |
c906108c | 146 | |
43bd9a9e | 147 | static int restore_pc_queue (CORE_ADDR *); |
c906108c | 148 | |
a14ed312 | 149 | static int hppa_alignof (struct type *); |
c906108c | 150 | |
a14ed312 | 151 | static int prologue_inst_adjust_sp (unsigned long); |
c906108c | 152 | |
a14ed312 | 153 | static int is_branch (unsigned long); |
c906108c | 154 | |
a14ed312 | 155 | static int inst_saves_gr (unsigned long); |
c906108c | 156 | |
a14ed312 | 157 | static int inst_saves_fr (unsigned long); |
c906108c | 158 | |
a14ed312 | 159 | static int pc_in_interrupt_handler (CORE_ADDR); |
c906108c | 160 | |
a14ed312 | 161 | static int pc_in_linker_stub (CORE_ADDR); |
c906108c | 162 | |
a14ed312 | 163 | static int compare_unwind_entries (const void *, const void *); |
c906108c | 164 | |
a14ed312 | 165 | static void read_unwind_info (struct objfile *); |
c906108c | 166 | |
a14ed312 KB |
167 | static void internalize_unwinds (struct objfile *, |
168 | struct unwind_table_entry *, | |
169 | asection *, unsigned int, | |
170 | unsigned int, CORE_ADDR); | |
171 | static void pa_print_registers (char *, int, int); | |
d9fcf2fb | 172 | static void pa_strcat_registers (char *, int, int, struct ui_file *); |
a14ed312 KB |
173 | static void pa_register_look_aside (char *, int, long *); |
174 | static void pa_print_fp_reg (int); | |
d9fcf2fb | 175 | static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type); |
a14ed312 | 176 | static void record_text_segment_lowaddr (bfd *, asection *, void *); |
d709c020 JB |
177 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
178 | following functions static, once we hppa is partially multiarched. */ | |
179 | int hppa_reg_struct_has_addr (int gcc_p, struct type *type); | |
60383d10 JB |
180 | CORE_ADDR hppa_skip_prologue (CORE_ADDR pc); |
181 | CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc); | |
182 | int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name); | |
183 | int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name); | |
184 | CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame); | |
d709c020 | 185 | int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs); |
3ff7cf9e | 186 | CORE_ADDR hppa64_stack_align (CORE_ADDR sp); |
d709c020 JB |
187 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); |
188 | int hppa_instruction_nullified (void); | |
60e1ff27 | 189 | int hppa_register_raw_size (int reg_nr); |
d709c020 | 190 | int hppa_register_byte (int reg_nr); |
3ff7cf9e JB |
191 | struct type * hppa32_register_virtual_type (int reg_nr); |
192 | struct type * hppa64_register_virtual_type (int reg_nr); | |
d709c020 | 193 | void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp); |
3ff7cf9e JB |
194 | void hppa64_extract_return_value (struct type *type, char *regbuf, |
195 | char *valbuf); | |
3ff7cf9e | 196 | int hppa64_use_struct_convention (int gcc_p, struct type *type); |
3ff7cf9e | 197 | void hppa64_store_return_value (struct type *type, char *valbuf); |
d709c020 | 198 | int hppa_cannot_store_register (int regnum); |
60383d10 JB |
199 | void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame); |
200 | CORE_ADDR hppa_frame_chain (struct frame_info *frame); | |
201 | int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe); | |
202 | int hppa_frameless_function_invocation (struct frame_info *frame); | |
203 | CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame); | |
d709c020 | 204 | CORE_ADDR hppa_frame_args_address (struct frame_info *fi); |
60383d10 | 205 | int hppa_frame_num_args (struct frame_info *frame); |
7daf4f5b | 206 | void hppa_push_dummy_frame (void); |
60383d10 JB |
207 | void hppa_pop_frame (void); |
208 | CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, | |
209 | int nargs, struct value **args, | |
210 | struct type *type, int gcc_p); | |
211 | CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
212 | int struct_return, CORE_ADDR struct_addr); | |
d709c020 | 213 | CORE_ADDR hppa_smash_text_address (CORE_ADDR addr); |
60383d10 JB |
214 | CORE_ADDR hppa_target_read_pc (ptid_t ptid); |
215 | void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid); | |
216 | CORE_ADDR hppa_target_read_fp (void); | |
c906108c | 217 | |
c5aa993b JM |
218 | typedef struct |
219 | { | |
220 | struct minimal_symbol *msym; | |
221 | CORE_ADDR solib_handle; | |
a0b3c4fd | 222 | CORE_ADDR return_val; |
c5aa993b JM |
223 | } |
224 | args_for_find_stub; | |
c906108c | 225 | |
4efb68b1 | 226 | static int cover_find_stub_with_shl_get (void *); |
c906108c | 227 | |
c5aa993b | 228 | static int is_pa_2 = 0; /* False */ |
c906108c | 229 | |
c5aa993b | 230 | /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */ |
c906108c SS |
231 | extern int hp_som_som_object_present; |
232 | ||
233 | /* In breakpoint.c */ | |
234 | extern int exception_catchpoints_are_fragile; | |
235 | ||
c906108c | 236 | /* Should call_function allocate stack space for a struct return? */ |
d709c020 | 237 | |
3ff7cf9e JB |
238 | int |
239 | hppa64_use_struct_convention (int gcc_p, struct type *type) | |
240 | { | |
241 | /* RM: struct upto 128 bits are returned in registers */ | |
242 | return TYPE_LENGTH (type) > 16; | |
243 | } | |
c5aa993b | 244 | |
537987fc AC |
245 | /* Handle 32/64-bit struct return conventions. */ |
246 | ||
247 | static enum return_value_convention | |
248 | hppa32_return_value (struct gdbarch *gdbarch, | |
249 | struct type *type, struct regcache *regcache, | |
250 | void *readbuf, const void *writebuf) | |
251 | { | |
252 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
253 | { | |
254 | if (readbuf != NULL) | |
255 | regcache_cooked_read_part (regcache, FP4_REGNUM, 0, | |
256 | TYPE_LENGTH (type), readbuf); | |
257 | if (writebuf != NULL) | |
258 | regcache_cooked_write_part (regcache, FP4_REGNUM, 0, | |
259 | TYPE_LENGTH (type), writebuf); | |
260 | return RETURN_VALUE_REGISTER_CONVENTION; | |
261 | } | |
262 | if (TYPE_LENGTH (type) <= 2 * 4) | |
263 | { | |
264 | /* The value always lives in the right hand end of the register | |
265 | (or register pair)? */ | |
266 | int b; | |
267 | int reg = 28; | |
268 | int part = TYPE_LENGTH (type) % 4; | |
269 | /* The left hand register contains only part of the value, | |
270 | transfer that first so that the rest can be xfered as entire | |
271 | 4-byte registers. */ | |
272 | if (part > 0) | |
273 | { | |
274 | if (readbuf != NULL) | |
275 | regcache_cooked_read_part (regcache, reg, 4 - part, | |
276 | part, readbuf); | |
277 | if (writebuf != NULL) | |
278 | regcache_cooked_write_part (regcache, reg, 4 - part, | |
279 | part, writebuf); | |
280 | reg++; | |
281 | } | |
282 | /* Now transfer the remaining register values. */ | |
283 | for (b = part; b < TYPE_LENGTH (type); b += 4) | |
284 | { | |
285 | if (readbuf != NULL) | |
286 | regcache_cooked_read (regcache, reg, (char *) readbuf + b); | |
287 | if (writebuf != NULL) | |
288 | regcache_cooked_write (regcache, reg, (const char *) writebuf + b); | |
289 | reg++; | |
290 | } | |
291 | return RETURN_VALUE_REGISTER_CONVENTION; | |
292 | } | |
293 | else | |
294 | return RETURN_VALUE_STRUCT_CONVENTION; | |
295 | } | |
296 | ||
297 | static enum return_value_convention | |
298 | hppa64_return_value (struct gdbarch *gdbarch, | |
299 | struct type *type, struct regcache *regcache, | |
300 | void *readbuf, const void *writebuf) | |
301 | { | |
302 | /* RM: Floats are returned in FR4R, doubles in FR4. Integral values | |
303 | are in r28, padded on the left. Aggregates less that 65 bits are | |
304 | in r28, right padded. Aggregates upto 128 bits are in r28 and | |
305 | r29, right padded. */ | |
449e1137 AC |
306 | if (TYPE_CODE (type) == TYPE_CODE_FLT |
307 | && TYPE_LENGTH (type) <= 8) | |
537987fc AC |
308 | { |
309 | /* Floats are right aligned? */ | |
310 | int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type); | |
311 | if (readbuf != NULL) | |
312 | regcache_cooked_read_part (regcache, FP4_REGNUM, offset, | |
313 | TYPE_LENGTH (type), readbuf); | |
314 | if (writebuf != NULL) | |
315 | regcache_cooked_write_part (regcache, FP4_REGNUM, offset, | |
316 | TYPE_LENGTH (type), writebuf); | |
317 | return RETURN_VALUE_REGISTER_CONVENTION; | |
318 | } | |
319 | else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type)) | |
320 | { | |
321 | /* Integrals are right aligned. */ | |
322 | int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type); | |
323 | if (readbuf != NULL) | |
324 | regcache_cooked_read_part (regcache, 28, offset, | |
325 | TYPE_LENGTH (type), readbuf); | |
326 | if (writebuf != NULL) | |
327 | regcache_cooked_write_part (regcache, 28, offset, | |
328 | TYPE_LENGTH (type), writebuf); | |
329 | return RETURN_VALUE_REGISTER_CONVENTION; | |
330 | } | |
331 | else if (TYPE_LENGTH (type) <= 2 * 8) | |
332 | { | |
333 | /* Composite values are left aligned. */ | |
334 | int b; | |
335 | for (b = 0; b < TYPE_LENGTH (type); b += 8) | |
336 | { | |
449e1137 | 337 | int part = min (8, TYPE_LENGTH (type) - b); |
537987fc | 338 | if (readbuf != NULL) |
449e1137 | 339 | regcache_cooked_read_part (regcache, 28 + b / 8, 0, part, |
537987fc AC |
340 | (char *) readbuf + b); |
341 | if (writebuf != NULL) | |
449e1137 | 342 | regcache_cooked_write_part (regcache, 28 + b / 8, 0, part, |
537987fc AC |
343 | (const char *) writebuf + b); |
344 | } | |
449e1137 | 345 | return RETURN_VALUE_REGISTER_CONVENTION; |
537987fc AC |
346 | } |
347 | else | |
348 | return RETURN_VALUE_STRUCT_CONVENTION; | |
349 | } | |
350 | ||
c906108c SS |
351 | /* Routines to extract various sized constants out of hppa |
352 | instructions. */ | |
353 | ||
354 | /* This assumes that no garbage lies outside of the lower bits of | |
355 | value. */ | |
356 | ||
357 | static int | |
fba45db2 | 358 | sign_extend (unsigned val, unsigned bits) |
c906108c | 359 | { |
c5aa993b | 360 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
361 | } |
362 | ||
363 | /* For many immediate values the sign bit is the low bit! */ | |
364 | ||
365 | static int | |
fba45db2 | 366 | low_sign_extend (unsigned val, unsigned bits) |
c906108c | 367 | { |
c5aa993b | 368 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
369 | } |
370 | ||
e2ac8128 JB |
371 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
372 | (MSB = 0). */ | |
373 | ||
374 | static int | |
375 | get_field (unsigned word, int from, int to) | |
376 | { | |
377 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
378 | } | |
379 | ||
c906108c SS |
380 | /* extract the immediate field from a ld{bhw}s instruction */ |
381 | ||
c906108c | 382 | static int |
fba45db2 | 383 | extract_5_load (unsigned word) |
c906108c SS |
384 | { |
385 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
386 | } | |
387 | ||
c906108c SS |
388 | /* extract the immediate field from a break instruction */ |
389 | ||
390 | static unsigned | |
fba45db2 | 391 | extract_5r_store (unsigned word) |
c906108c SS |
392 | { |
393 | return (word & MASK_5); | |
394 | } | |
395 | ||
396 | /* extract the immediate field from a {sr}sm instruction */ | |
397 | ||
398 | static unsigned | |
fba45db2 | 399 | extract_5R_store (unsigned word) |
c906108c SS |
400 | { |
401 | return (word >> 16 & MASK_5); | |
402 | } | |
403 | ||
c906108c SS |
404 | /* extract a 14 bit immediate field */ |
405 | ||
406 | static int | |
fba45db2 | 407 | extract_14 (unsigned word) |
c906108c SS |
408 | { |
409 | return low_sign_extend (word & MASK_14, 14); | |
410 | } | |
411 | ||
412 | /* deposit a 14 bit constant in a word */ | |
413 | ||
414 | static unsigned | |
fba45db2 | 415 | deposit_14 (int opnd, unsigned word) |
c906108c SS |
416 | { |
417 | unsigned sign = (opnd < 0 ? 1 : 0); | |
418 | ||
c5aa993b | 419 | return word | ((unsigned) opnd << 1 & MASK_14) | sign; |
c906108c SS |
420 | } |
421 | ||
422 | /* extract a 21 bit constant */ | |
423 | ||
424 | static int | |
fba45db2 | 425 | extract_21 (unsigned word) |
c906108c SS |
426 | { |
427 | int val; | |
428 | ||
429 | word &= MASK_21; | |
430 | word <<= 11; | |
e2ac8128 | 431 | val = get_field (word, 20, 20); |
c906108c | 432 | val <<= 11; |
e2ac8128 | 433 | val |= get_field (word, 9, 19); |
c906108c | 434 | val <<= 2; |
e2ac8128 | 435 | val |= get_field (word, 5, 6); |
c906108c | 436 | val <<= 5; |
e2ac8128 | 437 | val |= get_field (word, 0, 4); |
c906108c | 438 | val <<= 2; |
e2ac8128 | 439 | val |= get_field (word, 7, 8); |
c906108c SS |
440 | return sign_extend (val, 21) << 11; |
441 | } | |
442 | ||
443 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
444 | usually the top 21 bits of a 32 bit constant, we assume that only | |
445 | the low 21 bits of opnd are relevant */ | |
446 | ||
447 | static unsigned | |
fba45db2 | 448 | deposit_21 (unsigned opnd, unsigned word) |
c906108c SS |
449 | { |
450 | unsigned val = 0; | |
451 | ||
e2ac8128 | 452 | val |= get_field (opnd, 11 + 14, 11 + 18); |
c906108c | 453 | val <<= 2; |
e2ac8128 | 454 | val |= get_field (opnd, 11 + 12, 11 + 13); |
c906108c | 455 | val <<= 2; |
e2ac8128 | 456 | val |= get_field (opnd, 11 + 19, 11 + 20); |
c906108c | 457 | val <<= 11; |
e2ac8128 | 458 | val |= get_field (opnd, 11 + 1, 11 + 11); |
c906108c | 459 | val <<= 1; |
e2ac8128 | 460 | val |= get_field (opnd, 11 + 0, 11 + 0); |
c906108c SS |
461 | return word | val; |
462 | } | |
463 | ||
c906108c SS |
464 | /* extract a 17 bit constant from branch instructions, returning the |
465 | 19 bit signed value. */ | |
466 | ||
467 | static int | |
fba45db2 | 468 | extract_17 (unsigned word) |
c906108c | 469 | { |
e2ac8128 JB |
470 | return sign_extend (get_field (word, 19, 28) | |
471 | get_field (word, 29, 29) << 10 | | |
472 | get_field (word, 11, 15) << 11 | | |
c906108c SS |
473 | (word & 0x1) << 16, 17) << 2; |
474 | } | |
475 | \f | |
476 | ||
477 | /* Compare the start address for two unwind entries returning 1 if | |
478 | the first address is larger than the second, -1 if the second is | |
479 | larger than the first, and zero if they are equal. */ | |
480 | ||
481 | static int | |
fba45db2 | 482 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
483 | { |
484 | const struct unwind_table_entry *a = arg1; | |
485 | const struct unwind_table_entry *b = arg2; | |
486 | ||
487 | if (a->region_start > b->region_start) | |
488 | return 1; | |
489 | else if (a->region_start < b->region_start) | |
490 | return -1; | |
491 | else | |
492 | return 0; | |
493 | } | |
494 | ||
53a5351d JM |
495 | static CORE_ADDR low_text_segment_address; |
496 | ||
497 | static void | |
8fef05cc | 498 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored) |
53a5351d | 499 | { |
bf9c25dc | 500 | if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d JM |
501 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
502 | && section->vma < low_text_segment_address) | |
503 | low_text_segment_address = section->vma; | |
504 | } | |
505 | ||
c906108c | 506 | static void |
fba45db2 KB |
507 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
508 | asection *section, unsigned int entries, unsigned int size, | |
509 | CORE_ADDR text_offset) | |
c906108c SS |
510 | { |
511 | /* We will read the unwind entries into temporary memory, then | |
512 | fill in the actual unwind table. */ | |
513 | if (size > 0) | |
514 | { | |
515 | unsigned long tmp; | |
516 | unsigned i; | |
517 | char *buf = alloca (size); | |
518 | ||
53a5351d JM |
519 | low_text_segment_address = -1; |
520 | ||
521 | /* If addresses are 64 bits wide, then unwinds are supposed to | |
c2c6d25f JM |
522 | be segment relative offsets instead of absolute addresses. |
523 | ||
524 | Note that when loading a shared library (text_offset != 0) the | |
525 | unwinds are already relative to the text_offset that will be | |
526 | passed in. */ | |
527 | if (TARGET_PTR_BIT == 64 && text_offset == 0) | |
53a5351d JM |
528 | { |
529 | bfd_map_over_sections (objfile->obfd, | |
4efb68b1 | 530 | record_text_segment_lowaddr, NULL); |
53a5351d JM |
531 | |
532 | /* ?!? Mask off some low bits. Should this instead subtract | |
533 | out the lowest section's filepos or something like that? | |
534 | This looks very hokey to me. */ | |
535 | low_text_segment_address &= ~0xfff; | |
536 | text_offset += low_text_segment_address; | |
537 | } | |
538 | ||
c906108c SS |
539 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
540 | ||
541 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 542 | endian issues. */ |
c906108c SS |
543 | for (i = 0; i < entries; i++) |
544 | { | |
545 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 546 | (bfd_byte *) buf); |
c906108c SS |
547 | table[i].region_start += text_offset; |
548 | buf += 4; | |
c5aa993b | 549 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
550 | table[i].region_end += text_offset; |
551 | buf += 4; | |
c5aa993b | 552 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
553 | buf += 4; |
554 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
555 | table[i].Millicode = (tmp >> 30) & 0x1; | |
556 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
557 | table[i].Region_description = (tmp >> 27) & 0x3; | |
558 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
559 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
560 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
561 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
562 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
563 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
564 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
565 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
566 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
567 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
568 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
569 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
570 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
571 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
572 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
573 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
574 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
575 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
576 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
577 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 578 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
579 | buf += 4; |
580 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
581 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
582 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
583 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
584 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
585 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
586 | ||
c5aa993b | 587 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
588 | table[i].stub_unwind.stub_type = 0; |
589 | table[i].stub_unwind.padding = 0; | |
590 | } | |
591 | } | |
592 | } | |
593 | ||
594 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
595 | the object file. This info is used mainly by find_unwind_entry() to find | |
596 | out the stack frame size and frame pointer used by procedures. We put | |
597 | everything on the psymbol obstack in the objfile so that it automatically | |
598 | gets freed when the objfile is destroyed. */ | |
599 | ||
600 | static void | |
fba45db2 | 601 | read_unwind_info (struct objfile *objfile) |
c906108c | 602 | { |
d4f3574e SS |
603 | asection *unwind_sec, *stub_unwind_sec; |
604 | unsigned unwind_size, stub_unwind_size, total_size; | |
605 | unsigned index, unwind_entries; | |
c906108c SS |
606 | unsigned stub_entries, total_entries; |
607 | CORE_ADDR text_offset; | |
608 | struct obj_unwind_info *ui; | |
609 | obj_private_data_t *obj_private; | |
610 | ||
611 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
8b92e4d5 | 612 | ui = (struct obj_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
c5aa993b | 613 | sizeof (struct obj_unwind_info)); |
c906108c SS |
614 | |
615 | ui->table = NULL; | |
616 | ui->cache = NULL; | |
617 | ui->last = -1; | |
618 | ||
d4f3574e SS |
619 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
620 | sections in a single executable. So we just iterate over every | |
621 | section in the BFD looking for unwinder sections intead of trying | |
622 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 623 | |
d4f3574e SS |
624 | First determine the total size of the unwind tables so that we |
625 | can allocate memory in a nice big hunk. */ | |
626 | total_entries = 0; | |
627 | for (unwind_sec = objfile->obfd->sections; | |
628 | unwind_sec; | |
629 | unwind_sec = unwind_sec->next) | |
c906108c | 630 | { |
d4f3574e SS |
631 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
632 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
633 | { | |
634 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
635 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 636 | |
d4f3574e SS |
637 | total_entries += unwind_entries; |
638 | } | |
c906108c SS |
639 | } |
640 | ||
d4f3574e SS |
641 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
642 | use stub unwinds at the curren time. */ | |
643 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
644 | ||
c906108c SS |
645 | if (stub_unwind_sec) |
646 | { | |
647 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
648 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
649 | } | |
650 | else | |
651 | { | |
652 | stub_unwind_size = 0; | |
653 | stub_entries = 0; | |
654 | } | |
655 | ||
656 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 657 | total_entries += stub_entries; |
c906108c SS |
658 | total_size = total_entries * sizeof (struct unwind_table_entry); |
659 | ||
660 | /* Allocate memory for the unwind table. */ | |
661 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 662 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 663 | ui->last = total_entries - 1; |
c906108c | 664 | |
d4f3574e SS |
665 | /* Now read in each unwind section and internalize the standard unwind |
666 | entries. */ | |
c906108c | 667 | index = 0; |
d4f3574e SS |
668 | for (unwind_sec = objfile->obfd->sections; |
669 | unwind_sec; | |
670 | unwind_sec = unwind_sec->next) | |
671 | { | |
672 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
673 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
674 | { | |
675 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
676 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
677 | ||
678 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
679 | unwind_entries, unwind_size, text_offset); | |
680 | index += unwind_entries; | |
681 | } | |
682 | } | |
683 | ||
684 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
685 | if (stub_unwind_size > 0) |
686 | { | |
687 | unsigned int i; | |
688 | char *buf = alloca (stub_unwind_size); | |
689 | ||
690 | /* Read in the stub unwind entries. */ | |
691 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
692 | 0, stub_unwind_size); | |
693 | ||
694 | /* Now convert them into regular unwind entries. */ | |
695 | for (i = 0; i < stub_entries; i++, index++) | |
696 | { | |
697 | /* Clear out the next unwind entry. */ | |
698 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
699 | ||
700 | /* Convert offset & size into region_start and region_end. | |
701 | Stuff away the stub type into "reserved" fields. */ | |
702 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
703 | (bfd_byte *) buf); | |
704 | ui->table[index].region_start += text_offset; | |
705 | buf += 4; | |
706 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 707 | (bfd_byte *) buf); |
c906108c SS |
708 | buf += 2; |
709 | ui->table[index].region_end | |
c5aa993b JM |
710 | = ui->table[index].region_start + 4 * |
711 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
712 | buf += 2; |
713 | } | |
714 | ||
715 | } | |
716 | ||
717 | /* Unwind table needs to be kept sorted. */ | |
718 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
719 | compare_unwind_entries); | |
720 | ||
721 | /* Keep a pointer to the unwind information. */ | |
c5aa993b | 722 | if (objfile->obj_private == NULL) |
c906108c SS |
723 | { |
724 | obj_private = (obj_private_data_t *) | |
8b92e4d5 | 725 | obstack_alloc (&objfile->objfile_obstack, |
c5aa993b | 726 | sizeof (obj_private_data_t)); |
c906108c | 727 | obj_private->unwind_info = NULL; |
c5aa993b | 728 | obj_private->so_info = NULL; |
53a5351d | 729 | obj_private->dp = 0; |
c5aa993b | 730 | |
4efb68b1 | 731 | objfile->obj_private = obj_private; |
c906108c | 732 | } |
c5aa993b | 733 | obj_private = (obj_private_data_t *) objfile->obj_private; |
c906108c SS |
734 | obj_private->unwind_info = ui; |
735 | } | |
736 | ||
737 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
738 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
739 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
740 | search of the unwind tables, we depend upon them to be sorted. */ | |
741 | ||
742 | struct unwind_table_entry * | |
fba45db2 | 743 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
744 | { |
745 | int first, middle, last; | |
746 | struct objfile *objfile; | |
747 | ||
748 | /* A function at address 0? Not in HP-UX! */ | |
749 | if (pc == (CORE_ADDR) 0) | |
750 | return NULL; | |
751 | ||
752 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
753 | { |
754 | struct obj_unwind_info *ui; | |
755 | ui = NULL; | |
756 | if (objfile->obj_private) | |
757 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; | |
c906108c | 758 | |
c5aa993b JM |
759 | if (!ui) |
760 | { | |
761 | read_unwind_info (objfile); | |
762 | if (objfile->obj_private == NULL) | |
104c1213 | 763 | error ("Internal error reading unwind information."); |
c5aa993b JM |
764 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; |
765 | } | |
c906108c | 766 | |
c5aa993b | 767 | /* First, check the cache */ |
c906108c | 768 | |
c5aa993b JM |
769 | if (ui->cache |
770 | && pc >= ui->cache->region_start | |
771 | && pc <= ui->cache->region_end) | |
772 | return ui->cache; | |
c906108c | 773 | |
c5aa993b | 774 | /* Not in the cache, do a binary search */ |
c906108c | 775 | |
c5aa993b JM |
776 | first = 0; |
777 | last = ui->last; | |
c906108c | 778 | |
c5aa993b JM |
779 | while (first <= last) |
780 | { | |
781 | middle = (first + last) / 2; | |
782 | if (pc >= ui->table[middle].region_start | |
783 | && pc <= ui->table[middle].region_end) | |
784 | { | |
785 | ui->cache = &ui->table[middle]; | |
786 | return &ui->table[middle]; | |
787 | } | |
c906108c | 788 | |
c5aa993b JM |
789 | if (pc < ui->table[middle].region_start) |
790 | last = middle - 1; | |
791 | else | |
792 | first = middle + 1; | |
793 | } | |
794 | } /* ALL_OBJFILES() */ | |
c906108c SS |
795 | return NULL; |
796 | } | |
797 | ||
aaab4dba AC |
798 | const unsigned char * |
799 | hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len) | |
800 | { | |
56132691 | 801 | static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; |
aaab4dba AC |
802 | (*len) = sizeof (breakpoint); |
803 | return breakpoint; | |
804 | } | |
805 | ||
e23457df AC |
806 | /* Return the name of a register. */ |
807 | ||
808 | const char * | |
3ff7cf9e | 809 | hppa32_register_name (int i) |
e23457df AC |
810 | { |
811 | static char *names[] = { | |
812 | "flags", "r1", "rp", "r3", | |
813 | "r4", "r5", "r6", "r7", | |
814 | "r8", "r9", "r10", "r11", | |
815 | "r12", "r13", "r14", "r15", | |
816 | "r16", "r17", "r18", "r19", | |
817 | "r20", "r21", "r22", "r23", | |
818 | "r24", "r25", "r26", "dp", | |
819 | "ret0", "ret1", "sp", "r31", | |
820 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
821 | "pcsqt", "eiem", "iir", "isr", | |
822 | "ior", "ipsw", "goto", "sr4", | |
823 | "sr0", "sr1", "sr2", "sr3", | |
824 | "sr5", "sr6", "sr7", "cr0", | |
825 | "cr8", "cr9", "ccr", "cr12", | |
826 | "cr13", "cr24", "cr25", "cr26", | |
827 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
828 | "fpsr", "fpe1", "fpe2", "fpe3", | |
829 | "fpe4", "fpe5", "fpe6", "fpe7", | |
830 | "fr4", "fr4R", "fr5", "fr5R", | |
831 | "fr6", "fr6R", "fr7", "fr7R", | |
832 | "fr8", "fr8R", "fr9", "fr9R", | |
833 | "fr10", "fr10R", "fr11", "fr11R", | |
834 | "fr12", "fr12R", "fr13", "fr13R", | |
835 | "fr14", "fr14R", "fr15", "fr15R", | |
836 | "fr16", "fr16R", "fr17", "fr17R", | |
837 | "fr18", "fr18R", "fr19", "fr19R", | |
838 | "fr20", "fr20R", "fr21", "fr21R", | |
839 | "fr22", "fr22R", "fr23", "fr23R", | |
840 | "fr24", "fr24R", "fr25", "fr25R", | |
841 | "fr26", "fr26R", "fr27", "fr27R", | |
842 | "fr28", "fr28R", "fr29", "fr29R", | |
843 | "fr30", "fr30R", "fr31", "fr31R" | |
844 | }; | |
845 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
846 | return NULL; | |
847 | else | |
848 | return names[i]; | |
849 | } | |
850 | ||
851 | const char * | |
852 | hppa64_register_name (int i) | |
853 | { | |
854 | static char *names[] = { | |
855 | "flags", "r1", "rp", "r3", | |
856 | "r4", "r5", "r6", "r7", | |
857 | "r8", "r9", "r10", "r11", | |
858 | "r12", "r13", "r14", "r15", | |
859 | "r16", "r17", "r18", "r19", | |
860 | "r20", "r21", "r22", "r23", | |
861 | "r24", "r25", "r26", "dp", | |
862 | "ret0", "ret1", "sp", "r31", | |
863 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
864 | "pcsqt", "eiem", "iir", "isr", | |
865 | "ior", "ipsw", "goto", "sr4", | |
866 | "sr0", "sr1", "sr2", "sr3", | |
867 | "sr5", "sr6", "sr7", "cr0", | |
868 | "cr8", "cr9", "ccr", "cr12", | |
869 | "cr13", "cr24", "cr25", "cr26", | |
870 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
871 | "fpsr", "fpe1", "fpe2", "fpe3", | |
872 | "fr4", "fr5", "fr6", "fr7", | |
873 | "fr8", "fr9", "fr10", "fr11", | |
874 | "fr12", "fr13", "fr14", "fr15", | |
875 | "fr16", "fr17", "fr18", "fr19", | |
876 | "fr20", "fr21", "fr22", "fr23", | |
877 | "fr24", "fr25", "fr26", "fr27", | |
878 | "fr28", "fr29", "fr30", "fr31" | |
879 | }; | |
880 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
881 | return NULL; | |
882 | else | |
883 | return names[i]; | |
884 | } | |
885 | ||
886 | ||
887 | ||
c906108c SS |
888 | /* Return the adjustment necessary to make for addresses on the stack |
889 | as presented by hpread.c. | |
890 | ||
891 | This is necessary because of the stack direction on the PA and the | |
892 | bizarre way in which someone (?) decided they wanted to handle | |
893 | frame pointerless code in GDB. */ | |
894 | int | |
fba45db2 | 895 | hpread_adjust_stack_address (CORE_ADDR func_addr) |
c906108c SS |
896 | { |
897 | struct unwind_table_entry *u; | |
898 | ||
899 | u = find_unwind_entry (func_addr); | |
900 | if (!u) | |
901 | return 0; | |
902 | else | |
903 | return u->Total_frame_size << 3; | |
904 | } | |
905 | ||
906 | /* Called to determine if PC is in an interrupt handler of some | |
907 | kind. */ | |
908 | ||
909 | static int | |
fba45db2 | 910 | pc_in_interrupt_handler (CORE_ADDR pc) |
c906108c SS |
911 | { |
912 | struct unwind_table_entry *u; | |
913 | struct minimal_symbol *msym_us; | |
914 | ||
915 | u = find_unwind_entry (pc); | |
916 | if (!u) | |
917 | return 0; | |
918 | ||
919 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
920 | its frame isn't a pure interrupt frame. Deal with this. */ | |
921 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
922 | ||
d7bd68ca | 923 | return (u->HP_UX_interrupt_marker |
22abf04a | 924 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))); |
c906108c SS |
925 | } |
926 | ||
927 | /* Called when no unwind descriptor was found for PC. Returns 1 if it | |
104c1213 JM |
928 | appears that PC is in a linker stub. |
929 | ||
930 | ?!? Need to handle stubs which appear in PA64 code. */ | |
c906108c SS |
931 | |
932 | static int | |
fba45db2 | 933 | pc_in_linker_stub (CORE_ADDR pc) |
c906108c SS |
934 | { |
935 | int found_magic_instruction = 0; | |
936 | int i; | |
937 | char buf[4]; | |
938 | ||
939 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
940 | if (target_read_memory (pc, buf, 4) != 0) | |
941 | return 0; | |
942 | ||
943 | /* We are looking for something like | |
944 | ||
945 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
946 | ; before calling the "call stub" | |
947 | ldw -18(sp),rp | |
948 | ||
949 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
950 | mtsp r1,sp ; Move it into space register 0 | |
951 | be,n 0(sr0),rp) ; back to your regularly scheduled program */ | |
952 | ||
953 | /* Maximum known linker stub size is 4 instructions. Search forward | |
954 | from the given PC, then backward. */ | |
955 | for (i = 0; i < 4; i++) | |
956 | { | |
957 | /* If we hit something with an unwind, stop searching this direction. */ | |
958 | ||
959 | if (find_unwind_entry (pc + i * 4) != 0) | |
960 | break; | |
961 | ||
962 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 963 | return from a cross-space function call. */ |
c906108c SS |
964 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) |
965 | { | |
966 | found_magic_instruction = 1; | |
967 | break; | |
968 | } | |
969 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 970 | here. */ |
c906108c SS |
971 | } |
972 | ||
973 | if (found_magic_instruction != 0) | |
974 | return 1; | |
975 | ||
976 | /* Now look backward. */ | |
977 | for (i = 0; i < 4; i++) | |
978 | { | |
979 | /* If we hit something with an unwind, stop searching this direction. */ | |
980 | ||
981 | if (find_unwind_entry (pc - i * 4) != 0) | |
982 | break; | |
983 | ||
984 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 985 | return from a cross-space function call. */ |
c906108c SS |
986 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) |
987 | { | |
988 | found_magic_instruction = 1; | |
989 | break; | |
990 | } | |
991 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 992 | here. */ |
c906108c SS |
993 | } |
994 | return found_magic_instruction; | |
995 | } | |
996 | ||
997 | static int | |
fba45db2 | 998 | find_return_regnum (CORE_ADDR pc) |
c906108c SS |
999 | { |
1000 | struct unwind_table_entry *u; | |
1001 | ||
1002 | u = find_unwind_entry (pc); | |
1003 | ||
1004 | if (!u) | |
1005 | return RP_REGNUM; | |
1006 | ||
1007 | if (u->Millicode) | |
1008 | return 31; | |
1009 | ||
1010 | return RP_REGNUM; | |
1011 | } | |
1012 | ||
1013 | /* Return size of frame, or -1 if we should use a frame pointer. */ | |
1014 | static int | |
fba45db2 | 1015 | find_proc_framesize (CORE_ADDR pc) |
c906108c SS |
1016 | { |
1017 | struct unwind_table_entry *u; | |
1018 | struct minimal_symbol *msym_us; | |
1019 | ||
1020 | /* This may indicate a bug in our callers... */ | |
c5aa993b | 1021 | if (pc == (CORE_ADDR) 0) |
c906108c | 1022 | return -1; |
c5aa993b | 1023 | |
c906108c SS |
1024 | u = find_unwind_entry (pc); |
1025 | ||
1026 | if (!u) | |
1027 | { | |
1028 | if (pc_in_linker_stub (pc)) | |
1029 | /* Linker stubs have a zero size frame. */ | |
1030 | return 0; | |
1031 | else | |
1032 | return -1; | |
1033 | } | |
1034 | ||
1035 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
1036 | ||
1037 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
1038 | then we have a frame pointer. Use it. */ | |
3fa41cdb JL |
1039 | if (u->Save_SP |
1040 | && !pc_in_interrupt_handler (pc) | |
1041 | && msym_us | |
22abf04a | 1042 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))) |
c906108c SS |
1043 | return -1; |
1044 | ||
1045 | return u->Total_frame_size << 3; | |
1046 | } | |
1047 | ||
1048 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ | |
a14ed312 | 1049 | static int rp_saved (CORE_ADDR); |
c906108c SS |
1050 | |
1051 | static int | |
fba45db2 | 1052 | rp_saved (CORE_ADDR pc) |
c906108c SS |
1053 | { |
1054 | struct unwind_table_entry *u; | |
1055 | ||
1056 | /* A function at, and thus a return PC from, address 0? Not in HP-UX! */ | |
1057 | if (pc == (CORE_ADDR) 0) | |
1058 | return 0; | |
1059 | ||
1060 | u = find_unwind_entry (pc); | |
1061 | ||
1062 | if (!u) | |
1063 | { | |
1064 | if (pc_in_linker_stub (pc)) | |
1065 | /* This is the so-called RP'. */ | |
1066 | return -24; | |
1067 | else | |
1068 | return 0; | |
1069 | } | |
1070 | ||
1071 | if (u->Save_RP) | |
53a5351d | 1072 | return (TARGET_PTR_BIT == 64 ? -16 : -20); |
c906108c SS |
1073 | else if (u->stub_unwind.stub_type != 0) |
1074 | { | |
1075 | switch (u->stub_unwind.stub_type) | |
1076 | { | |
1077 | case EXPORT: | |
1078 | case IMPORT: | |
1079 | return -24; | |
1080 | case PARAMETER_RELOCATION: | |
1081 | return -8; | |
1082 | default: | |
1083 | return 0; | |
1084 | } | |
1085 | } | |
1086 | else | |
1087 | return 0; | |
1088 | } | |
1089 | \f | |
1090 | int | |
60383d10 | 1091 | hppa_frameless_function_invocation (struct frame_info *frame) |
c906108c SS |
1092 | { |
1093 | struct unwind_table_entry *u; | |
1094 | ||
ef6e7e13 | 1095 | u = find_unwind_entry (get_frame_pc (frame)); |
c906108c SS |
1096 | |
1097 | if (u == 0) | |
1098 | return 0; | |
1099 | ||
1100 | return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0); | |
1101 | } | |
1102 | ||
d709c020 JB |
1103 | /* Immediately after a function call, return the saved pc. |
1104 | Can't go through the frames for this because on some machines | |
1105 | the new frame is not set up until the new function executes | |
1106 | some instructions. */ | |
1107 | ||
c906108c | 1108 | CORE_ADDR |
60383d10 | 1109 | hppa_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
1110 | { |
1111 | int ret_regnum; | |
1112 | CORE_ADDR pc; | |
1113 | struct unwind_table_entry *u; | |
1114 | ||
1115 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
1116 | pc = read_register (ret_regnum) & ~0x3; | |
c5aa993b | 1117 | |
c906108c SS |
1118 | /* If PC is in a linker stub, then we need to dig the address |
1119 | the stub will return to out of the stack. */ | |
1120 | u = find_unwind_entry (pc); | |
1121 | if (u && u->stub_unwind.stub_type != 0) | |
8bedc050 | 1122 | return DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
1123 | else |
1124 | return pc; | |
1125 | } | |
1126 | \f | |
1127 | CORE_ADDR | |
fba45db2 | 1128 | hppa_frame_saved_pc (struct frame_info *frame) |
c906108c SS |
1129 | { |
1130 | CORE_ADDR pc = get_frame_pc (frame); | |
1131 | struct unwind_table_entry *u; | |
65e82032 | 1132 | CORE_ADDR old_pc = 0; |
c5aa993b JM |
1133 | int spun_around_loop = 0; |
1134 | int rp_offset = 0; | |
c906108c SS |
1135 | |
1136 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner | |
1137 | at the base of the frame in an interrupt handler. Registers within | |
1138 | are saved in the exact same order as GDB numbers registers. How | |
1139 | convienent. */ | |
1140 | if (pc_in_interrupt_handler (pc)) | |
449e1137 | 1141 | return read_memory_integer (get_frame_base (frame) + PCOQ_HEAD_REGNUM * 4, |
53a5351d | 1142 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c | 1143 | |
ef6e7e13 AC |
1144 | if ((get_frame_pc (frame) >= get_frame_base (frame) |
1145 | && (get_frame_pc (frame) | |
1146 | <= (get_frame_base (frame) | |
1147 | /* A call dummy is sized in words, but it is actually a | |
1148 | series of instructions. Account for that scaling | |
1149 | factor. */ | |
b1e29e33 AC |
1150 | + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE) |
1151 | * DEPRECATED_CALL_DUMMY_LENGTH) | |
ef6e7e13 AC |
1152 | /* Similarly we have to account for 64bit wide register |
1153 | saves. */ | |
b1e29e33 | 1154 | + (32 * DEPRECATED_REGISTER_SIZE) |
ef6e7e13 AC |
1155 | /* We always consider FP regs 8 bytes long. */ |
1156 | + (NUM_REGS - FP0_REGNUM) * 8 | |
1157 | /* Similarly we have to account for 64bit wide register | |
1158 | saves. */ | |
b1e29e33 | 1159 | + (6 * DEPRECATED_REGISTER_SIZE))))) |
104c1213 | 1160 | { |
ef6e7e13 | 1161 | return read_memory_integer ((get_frame_base (frame) |
104c1213 JM |
1162 | + (TARGET_PTR_BIT == 64 ? -16 : -20)), |
1163 | TARGET_PTR_BIT / 8) & ~0x3; | |
1164 | } | |
1165 | ||
c906108c SS |
1166 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP |
1167 | /* Deal with signal handler caller frames too. */ | |
5a203e44 | 1168 | if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1169 | { |
1170 | CORE_ADDR rp; | |
1171 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
1172 | return rp & ~0x3; | |
1173 | } | |
1174 | #endif | |
1175 | ||
60383d10 | 1176 | if (hppa_frameless_function_invocation (frame)) |
c906108c SS |
1177 | { |
1178 | int ret_regnum; | |
1179 | ||
1180 | ret_regnum = find_return_regnum (pc); | |
1181 | ||
1182 | /* If the next frame is an interrupt frame or a signal | |
c5aa993b JM |
1183 | handler caller, then we need to look in the saved |
1184 | register area to get the return pointer (the values | |
1185 | in the registers may not correspond to anything useful). */ | |
ef6e7e13 AC |
1186 | if (get_next_frame (frame) |
1187 | && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) | |
1188 | || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame))))) | |
c906108c | 1189 | { |
43bd9a9e | 1190 | CORE_ADDR *saved_regs; |
ef6e7e13 | 1191 | hppa_frame_init_saved_regs (get_next_frame (frame)); |
1b1d3794 | 1192 | saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame)); |
43bd9a9e | 1193 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], |
53a5351d | 1194 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 1195 | { |
43bd9a9e | 1196 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 1197 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1198 | |
1199 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
1200 | with a return pointer in %rp and the kernel call with |
1201 | a return pointer in %r31. We return the %rp variant | |
1202 | if %r31 is the same as frame->pc. */ | |
ef6e7e13 | 1203 | if (pc == get_frame_pc (frame)) |
43bd9a9e | 1204 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1205 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1206 | } |
1207 | else | |
43bd9a9e | 1208 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1209 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1210 | } |
1211 | else | |
1212 | pc = read_register (ret_regnum) & ~0x3; | |
1213 | } | |
1214 | else | |
1215 | { | |
1216 | spun_around_loop = 0; | |
c5aa993b | 1217 | old_pc = pc; |
c906108c | 1218 | |
c5aa993b | 1219 | restart: |
c906108c SS |
1220 | rp_offset = rp_saved (pc); |
1221 | ||
1222 | /* Similar to code in frameless function case. If the next | |
c5aa993b JM |
1223 | frame is a signal or interrupt handler, then dig the right |
1224 | information out of the saved register info. */ | |
c906108c | 1225 | if (rp_offset == 0 |
ef6e7e13 AC |
1226 | && get_next_frame (frame) |
1227 | && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) | |
1228 | || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame))))) | |
c906108c | 1229 | { |
43bd9a9e | 1230 | CORE_ADDR *saved_regs; |
ef6e7e13 | 1231 | hppa_frame_init_saved_regs (get_next_frame (frame)); |
1b1d3794 | 1232 | saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame)); |
43bd9a9e | 1233 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], |
53a5351d | 1234 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 1235 | { |
43bd9a9e | 1236 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 1237 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1238 | |
1239 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
1240 | with a return pointer in %rp and the kernel call with |
1241 | a return pointer in %r31. We return the %rp variant | |
1242 | if %r31 is the same as frame->pc. */ | |
ef6e7e13 | 1243 | if (pc == get_frame_pc (frame)) |
43bd9a9e | 1244 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1245 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1246 | } |
1247 | else | |
43bd9a9e | 1248 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1249 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1250 | } |
1251 | else if (rp_offset == 0) | |
c5aa993b JM |
1252 | { |
1253 | old_pc = pc; | |
1254 | pc = read_register (RP_REGNUM) & ~0x3; | |
1255 | } | |
c906108c | 1256 | else |
c5aa993b JM |
1257 | { |
1258 | old_pc = pc; | |
ef6e7e13 | 1259 | pc = read_memory_integer (get_frame_base (frame) + rp_offset, |
53a5351d | 1260 | TARGET_PTR_BIT / 8) & ~0x3; |
c5aa993b | 1261 | } |
c906108c SS |
1262 | } |
1263 | ||
1264 | /* If PC is inside a linker stub, then dig out the address the stub | |
1265 | will return to. | |
1266 | ||
1267 | Don't do this for long branch stubs. Why? For some unknown reason | |
1268 | _start is marked as a long branch stub in hpux10. */ | |
1269 | u = find_unwind_entry (pc); | |
1270 | if (u && u->stub_unwind.stub_type != 0 | |
1271 | && u->stub_unwind.stub_type != LONG_BRANCH) | |
1272 | { | |
1273 | unsigned int insn; | |
1274 | ||
1275 | /* If this is a dynamic executable, and we're in a signal handler, | |
c5aa993b JM |
1276 | then the call chain will eventually point us into the stub for |
1277 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
1278 | to the real sigreturn rather than the code after the real branch!. | |
c906108c | 1279 | |
c5aa993b JM |
1280 | Else, try to dig the address the stub will return to in the normal |
1281 | fashion. */ | |
c906108c SS |
1282 | insn = read_memory_integer (pc, 4); |
1283 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1284 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
1285 | else | |
1286 | { | |
c5aa993b JM |
1287 | if (old_pc == pc) |
1288 | spun_around_loop++; | |
1289 | ||
1290 | if (spun_around_loop > 1) | |
1291 | { | |
1292 | /* We're just about to go around the loop again with | |
1293 | no more hope of success. Die. */ | |
1294 | error ("Unable to find return pc for this frame"); | |
1295 | } | |
1296 | else | |
1297 | goto restart; | |
c906108c SS |
1298 | } |
1299 | } | |
1300 | ||
1301 | return pc; | |
1302 | } | |
1303 | \f | |
1304 | /* We need to correct the PC and the FP for the outermost frame when we are | |
1305 | in a system call. */ | |
1306 | ||
1307 | void | |
60383d10 | 1308 | hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame) |
c906108c SS |
1309 | { |
1310 | int flags; | |
1311 | int framesize; | |
1312 | ||
ef6e7e13 | 1313 | if (get_next_frame (frame) && !fromleaf) |
c906108c SS |
1314 | return; |
1315 | ||
618ce49f AC |
1316 | /* If the next frame represents a frameless function invocation then |
1317 | we have to do some adjustments that are normally done by | |
1318 | DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in | |
1319 | this case.) */ | |
c906108c SS |
1320 | if (fromleaf) |
1321 | { | |
1322 | /* Find the framesize of *this* frame without peeking at the PC | |
c5aa993b | 1323 | in the current frame structure (it isn't set yet). */ |
8bedc050 | 1324 | framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame))); |
c906108c SS |
1325 | |
1326 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
c5aa993b JM |
1327 | use it, else subtract the size of this frame from the current |
1328 | frame. (we always want frame->frame to point at the lowest address | |
1329 | in the frame). */ | |
c906108c | 1330 | if (framesize == -1) |
0ba6dca9 | 1331 | deprecated_update_frame_base_hack (frame, deprecated_read_fp ()); |
c906108c | 1332 | else |
ef6e7e13 | 1333 | deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize); |
c906108c SS |
1334 | return; |
1335 | } | |
1336 | ||
1337 | flags = read_register (FLAGS_REGNUM); | |
c5aa993b | 1338 | if (flags & 2) /* In system call? */ |
ef6e7e13 | 1339 | deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3); |
c906108c SS |
1340 | |
1341 | /* The outermost frame is always derived from PC-framesize | |
1342 | ||
1343 | One might think frameless innermost frames should have | |
1344 | a frame->frame that is the same as the parent's frame->frame. | |
1345 | That is wrong; frame->frame in that case should be the *high* | |
1346 | address of the parent's frame. It's complicated as hell to | |
1347 | explain, but the parent *always* creates some stack space for | |
1348 | the child. So the child actually does have a frame of some | |
1349 | sorts, and its base is the high address in its parent's frame. */ | |
ef6e7e13 | 1350 | framesize = find_proc_framesize (get_frame_pc (frame)); |
c906108c | 1351 | if (framesize == -1) |
0ba6dca9 | 1352 | deprecated_update_frame_base_hack (frame, deprecated_read_fp ()); |
c906108c | 1353 | else |
ef6e7e13 | 1354 | deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize); |
c906108c SS |
1355 | } |
1356 | \f | |
a5afb99f AC |
1357 | /* Given a GDB frame, determine the address of the calling function's |
1358 | frame. This will be used to create a new GDB frame struct, and | |
e9582e71 AC |
1359 | then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC |
1360 | will be called for the new frame. | |
c906108c SS |
1361 | |
1362 | This may involve searching through prologues for several functions | |
1363 | at boundaries where GCC calls HP C code, or where code which has | |
1364 | a frame pointer calls code without a frame pointer. */ | |
1365 | ||
1366 | CORE_ADDR | |
60383d10 | 1367 | hppa_frame_chain (struct frame_info *frame) |
c906108c SS |
1368 | { |
1369 | int my_framesize, caller_framesize; | |
1370 | struct unwind_table_entry *u; | |
1371 | CORE_ADDR frame_base; | |
1372 | struct frame_info *tmp_frame; | |
1373 | ||
c2c6d25f JM |
1374 | /* A frame in the current frame list, or zero. */ |
1375 | struct frame_info *saved_regs_frame = 0; | |
43bd9a9e AC |
1376 | /* Where the registers were saved in saved_regs_frame. If |
1377 | saved_regs_frame is zero, this is garbage. */ | |
1378 | CORE_ADDR *saved_regs = NULL; | |
c2c6d25f | 1379 | |
c5aa993b | 1380 | CORE_ADDR caller_pc; |
c906108c SS |
1381 | |
1382 | struct minimal_symbol *min_frame_symbol; | |
c5aa993b JM |
1383 | struct symbol *frame_symbol; |
1384 | char *frame_symbol_name; | |
c906108c SS |
1385 | |
1386 | /* If this is a threaded application, and we see the | |
1387 | routine "__pthread_exit", treat it as the stack root | |
1388 | for this thread. */ | |
ef6e7e13 AC |
1389 | min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame)); |
1390 | frame_symbol = find_pc_function (get_frame_pc (frame)); | |
c906108c | 1391 | |
c5aa993b | 1392 | if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ ) |
c906108c | 1393 | { |
c5aa993b JM |
1394 | /* The test above for "no user function name" would defend |
1395 | against the slim likelihood that a user might define a | |
1396 | routine named "__pthread_exit" and then try to debug it. | |
1397 | ||
1398 | If it weren't commented out, and you tried to debug the | |
1399 | pthread library itself, you'd get errors. | |
1400 | ||
1401 | So for today, we don't make that check. */ | |
22abf04a | 1402 | frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol); |
c5aa993b JM |
1403 | if (frame_symbol_name != 0) |
1404 | { | |
1405 | if (0 == strncmp (frame_symbol_name, | |
1406 | THREAD_INITIAL_FRAME_SYMBOL, | |
1407 | THREAD_INITIAL_FRAME_SYM_LEN)) | |
1408 | { | |
1409 | /* Pretend we've reached the bottom of the stack. */ | |
1410 | return (CORE_ADDR) 0; | |
1411 | } | |
1412 | } | |
1413 | } /* End of hacky code for threads. */ | |
1414 | ||
c906108c SS |
1415 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These |
1416 | are easy; at *sp we have a full save state strucutre which we can | |
1417 | pull the old stack pointer from. Also see frame_saved_pc for | |
1418 | code to dig a saved PC out of the save state structure. */ | |
ef6e7e13 AC |
1419 | if (pc_in_interrupt_handler (get_frame_pc (frame))) |
1420 | frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4, | |
53a5351d | 1421 | TARGET_PTR_BIT / 8); |
c906108c | 1422 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP |
5a203e44 | 1423 | else if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1424 | { |
1425 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
1426 | } | |
1427 | #endif | |
1428 | else | |
ef6e7e13 | 1429 | frame_base = get_frame_base (frame); |
c906108c SS |
1430 | |
1431 | /* Get frame sizes for the current frame and the frame of the | |
1432 | caller. */ | |
ef6e7e13 | 1433 | my_framesize = find_proc_framesize (get_frame_pc (frame)); |
8bedc050 | 1434 | caller_pc = DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
1435 | |
1436 | /* If we can't determine the caller's PC, then it's not likely we can | |
1437 | really determine anything meaningful about its frame. We'll consider | |
1438 | this to be stack bottom. */ | |
1439 | if (caller_pc == (CORE_ADDR) 0) | |
1440 | return (CORE_ADDR) 0; | |
1441 | ||
8bedc050 | 1442 | caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1443 | |
1444 | /* If caller does not have a frame pointer, then its frame | |
1445 | can be found at current_frame - caller_framesize. */ | |
1446 | if (caller_framesize != -1) | |
1447 | { | |
1448 | return frame_base - caller_framesize; | |
1449 | } | |
1450 | /* Both caller and callee have frame pointers and are GCC compiled | |
1451 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
1452 | The previous frame pointer is found at the top of the current frame. */ | |
1453 | if (caller_framesize == -1 && my_framesize == -1) | |
1454 | { | |
53a5351d | 1455 | return read_memory_integer (frame_base, TARGET_PTR_BIT / 8); |
c906108c SS |
1456 | } |
1457 | /* Caller has a frame pointer, but callee does not. This is a little | |
1458 | more difficult as GCC and HP C lay out locals and callee register save | |
1459 | areas very differently. | |
1460 | ||
1461 | The previous frame pointer could be in a register, or in one of | |
1462 | several areas on the stack. | |
1463 | ||
1464 | Walk from the current frame to the innermost frame examining | |
1465 | unwind descriptors to determine if %r3 ever gets saved into the | |
1466 | stack. If so return whatever value got saved into the stack. | |
1467 | If it was never saved in the stack, then the value in %r3 is still | |
1468 | valid, so use it. | |
1469 | ||
1470 | We use information from unwind descriptors to determine if %r3 | |
1471 | is saved into the stack (Entry_GR field has this information). */ | |
1472 | ||
ef6e7e13 | 1473 | for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame)) |
c906108c | 1474 | { |
ef6e7e13 | 1475 | u = find_unwind_entry (get_frame_pc (tmp_frame)); |
c906108c SS |
1476 | |
1477 | if (!u) | |
1478 | { | |
1479 | /* We could find this information by examining prologues. I don't | |
1480 | think anyone has actually written any tools (not even "strip") | |
1481 | which leave them out of an executable, so maybe this is a moot | |
1482 | point. */ | |
c5aa993b JM |
1483 | /* ??rehrauer: Actually, it's quite possible to stepi your way into |
1484 | code that doesn't have unwind entries. For example, stepping into | |
1485 | the dynamic linker will give you a PC that has none. Thus, I've | |
1486 | disabled this warning. */ | |
c906108c | 1487 | #if 0 |
ef6e7e13 | 1488 | warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame)); |
c906108c SS |
1489 | #endif |
1490 | return (CORE_ADDR) 0; | |
1491 | } | |
1492 | ||
c2c6d25f | 1493 | if (u->Save_SP |
5a203e44 | 1494 | || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
ef6e7e13 | 1495 | || pc_in_interrupt_handler (get_frame_pc (tmp_frame))) |
c906108c | 1496 | break; |
c2c6d25f JM |
1497 | |
1498 | /* Entry_GR specifies the number of callee-saved general registers | |
1499 | saved in the stack. It starts at %r3, so %r3 would be 1. */ | |
1500 | if (u->Entry_GR >= 1) | |
1501 | { | |
1502 | /* The unwind entry claims that r3 is saved here. However, | |
1503 | in optimized code, GCC often doesn't actually save r3. | |
1504 | We'll discover this if we look at the prologue. */ | |
43bd9a9e | 1505 | hppa_frame_init_saved_regs (tmp_frame); |
1b1d3794 | 1506 | saved_regs = deprecated_get_frame_saved_regs (tmp_frame); |
c2c6d25f JM |
1507 | saved_regs_frame = tmp_frame; |
1508 | ||
1509 | /* If we have an address for r3, that's good. */ | |
0ba6dca9 | 1510 | if (saved_regs[DEPRECATED_FP_REGNUM]) |
c2c6d25f JM |
1511 | break; |
1512 | } | |
c906108c SS |
1513 | } |
1514 | ||
1515 | if (tmp_frame) | |
1516 | { | |
1517 | /* We may have walked down the chain into a function with a frame | |
c5aa993b | 1518 | pointer. */ |
c906108c | 1519 | if (u->Save_SP |
5a203e44 | 1520 | && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
ef6e7e13 | 1521 | && !pc_in_interrupt_handler (get_frame_pc (tmp_frame))) |
c906108c | 1522 | { |
ef6e7e13 | 1523 | return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8); |
c906108c SS |
1524 | } |
1525 | /* %r3 was saved somewhere in the stack. Dig it out. */ | |
c5aa993b | 1526 | else |
c906108c | 1527 | { |
c906108c SS |
1528 | /* Sick. |
1529 | ||
1530 | For optimization purposes many kernels don't have the | |
1531 | callee saved registers into the save_state structure upon | |
1532 | entry into the kernel for a syscall; the optimization | |
1533 | is usually turned off if the process is being traced so | |
1534 | that the debugger can get full register state for the | |
1535 | process. | |
c5aa993b | 1536 | |
c906108c SS |
1537 | This scheme works well except for two cases: |
1538 | ||
c5aa993b JM |
1539 | * Attaching to a process when the process is in the |
1540 | kernel performing a system call (debugger can't get | |
1541 | full register state for the inferior process since | |
1542 | the process wasn't being traced when it entered the | |
1543 | system call). | |
c906108c | 1544 | |
c5aa993b JM |
1545 | * Register state is not complete if the system call |
1546 | causes the process to core dump. | |
c906108c SS |
1547 | |
1548 | ||
1549 | The following heinous code is an attempt to deal with | |
1550 | the lack of register state in a core dump. It will | |
1551 | fail miserably if the function which performs the | |
1552 | system call has a variable sized stack frame. */ | |
1553 | ||
c2c6d25f | 1554 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1555 | { |
1556 | hppa_frame_init_saved_regs (tmp_frame); | |
1b1d3794 | 1557 | saved_regs = deprecated_get_frame_saved_regs (tmp_frame); |
43bd9a9e | 1558 | } |
c906108c SS |
1559 | |
1560 | /* Abominable hack. */ | |
1561 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1562 | && ((saved_regs[FLAGS_REGNUM] |
1563 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1564 | TARGET_PTR_BIT / 8) |
c906108c | 1565 | & 0x2)) |
43bd9a9e | 1566 | || (saved_regs[FLAGS_REGNUM] == 0 |
c906108c SS |
1567 | && read_register (FLAGS_REGNUM) & 0x2))) |
1568 | { | |
8bedc050 | 1569 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1570 | if (!u) |
1571 | { | |
0ba6dca9 | 1572 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1573 | TARGET_PTR_BIT / 8); |
c906108c SS |
1574 | } |
1575 | else | |
1576 | { | |
1577 | return frame_base - (u->Total_frame_size << 3); | |
1578 | } | |
1579 | } | |
c5aa993b | 1580 | |
0ba6dca9 | 1581 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1582 | TARGET_PTR_BIT / 8); |
c906108c SS |
1583 | } |
1584 | } | |
1585 | else | |
1586 | { | |
c906108c SS |
1587 | /* Get the innermost frame. */ |
1588 | tmp_frame = frame; | |
ef6e7e13 AC |
1589 | while (get_next_frame (tmp_frame) != NULL) |
1590 | tmp_frame = get_next_frame (tmp_frame); | |
c906108c | 1591 | |
c2c6d25f | 1592 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1593 | { |
1594 | hppa_frame_init_saved_regs (tmp_frame); | |
1b1d3794 | 1595 | saved_regs = deprecated_get_frame_saved_regs (tmp_frame); |
43bd9a9e | 1596 | } |
c2c6d25f | 1597 | |
c906108c SS |
1598 | /* Abominable hack. See above. */ |
1599 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1600 | && ((saved_regs[FLAGS_REGNUM] |
1601 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1602 | TARGET_PTR_BIT / 8) |
c906108c | 1603 | & 0x2)) |
43bd9a9e | 1604 | || (saved_regs[FLAGS_REGNUM] == 0 |
c5aa993b | 1605 | && read_register (FLAGS_REGNUM) & 0x2))) |
c906108c | 1606 | { |
8bedc050 | 1607 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1608 | if (!u) |
1609 | { | |
0ba6dca9 | 1610 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1611 | TARGET_PTR_BIT / 8); |
c906108c | 1612 | } |
c5aa993b JM |
1613 | else |
1614 | { | |
1615 | return frame_base - (u->Total_frame_size << 3); | |
1616 | } | |
c906108c | 1617 | } |
c5aa993b | 1618 | |
c906108c | 1619 | /* The value in %r3 was never saved into the stack (thus %r3 still |
c5aa993b | 1620 | holds the value of the previous frame pointer). */ |
0ba6dca9 | 1621 | return deprecated_read_fp (); |
c906108c SS |
1622 | } |
1623 | } | |
c906108c | 1624 | \f |
c5aa993b | 1625 | |
c906108c SS |
1626 | /* To see if a frame chain is valid, see if the caller looks like it |
1627 | was compiled with gcc. */ | |
1628 | ||
1629 | int | |
fba45db2 | 1630 | hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
1631 | { |
1632 | struct minimal_symbol *msym_us; | |
1633 | struct minimal_symbol *msym_start; | |
1634 | struct unwind_table_entry *u, *next_u = NULL; | |
1635 | struct frame_info *next; | |
1636 | ||
ef6e7e13 | 1637 | u = find_unwind_entry (get_frame_pc (thisframe)); |
c906108c SS |
1638 | |
1639 | if (u == NULL) | |
1640 | return 1; | |
1641 | ||
1642 | /* We can't just check that the same of msym_us is "_start", because | |
1643 | someone idiotically decided that they were going to make a Ltext_end | |
1644 | symbol with the same address. This Ltext_end symbol is totally | |
1645 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1646 | which is (legitimately, since it is in the user's namespace) | |
1647 | named Ltext_end, so we can't just ignore it. */ | |
8bedc050 | 1648 | msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe)); |
c906108c SS |
1649 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); |
1650 | if (msym_us | |
1651 | && msym_start | |
1652 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1653 | return 0; | |
1654 | ||
1655 | /* Grrrr. Some new idiot decided that they don't want _start for the | |
1656 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1657 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1658 | if (msym_us | |
1659 | && msym_start | |
1660 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1661 | return 0; | |
1662 | ||
1663 | next = get_next_frame (thisframe); | |
1664 | if (next) | |
ef6e7e13 | 1665 | next_u = find_unwind_entry (get_frame_pc (next)); |
c906108c SS |
1666 | |
1667 | /* If this frame does not save SP, has no stack, isn't a stub, | |
1668 | and doesn't "call" an interrupt routine or signal handler caller, | |
1669 | then its not valid. */ | |
1670 | if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0 | |
ef6e7e13 | 1671 | || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)) |
c906108c SS |
1672 | || (next_u && next_u->HP_UX_interrupt_marker)) |
1673 | return 1; | |
1674 | ||
ef6e7e13 | 1675 | if (pc_in_linker_stub (get_frame_pc (thisframe))) |
c906108c SS |
1676 | return 1; |
1677 | ||
1678 | return 0; | |
1679 | } | |
1680 | ||
7daf4f5b JB |
1681 | /* These functions deal with saving and restoring register state |
1682 | around a function call in the inferior. They keep the stack | |
1683 | double-word aligned; eventually, on an hp700, the stack will have | |
1684 | to be aligned to a 64-byte boundary. */ | |
c906108c SS |
1685 | |
1686 | void | |
7daf4f5b | 1687 | hppa_push_dummy_frame (void) |
c906108c SS |
1688 | { |
1689 | CORE_ADDR sp, pc, pcspace; | |
52f0bd74 | 1690 | int regnum; |
53a5351d | 1691 | CORE_ADDR int_buffer; |
c906108c SS |
1692 | double freg_buffer; |
1693 | ||
60383d10 | 1694 | pc = hppa_target_read_pc (inferior_ptid); |
c906108c SS |
1695 | int_buffer = read_register (FLAGS_REGNUM); |
1696 | if (int_buffer & 0x2) | |
1697 | { | |
3371ccc0 | 1698 | const unsigned int sid = (pc >> 30) & 0x3; |
c906108c SS |
1699 | if (sid == 0) |
1700 | pcspace = read_register (SR4_REGNUM); | |
1701 | else | |
1702 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
c906108c SS |
1703 | } |
1704 | else | |
1705 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1706 | ||
1707 | /* Space for "arguments"; the RP goes in here. */ | |
1708 | sp = read_register (SP_REGNUM) + 48; | |
1709 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
53a5351d JM |
1710 | |
1711 | /* The 32bit and 64bit ABIs save the return pointer into different | |
1712 | stack slots. */ | |
b1e29e33 AC |
1713 | if (DEPRECATED_REGISTER_SIZE == 8) |
1714 | write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); | |
53a5351d | 1715 | else |
b1e29e33 | 1716 | write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); |
c906108c | 1717 | |
0ba6dca9 | 1718 | int_buffer = deprecated_read_fp (); |
b1e29e33 | 1719 | write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); |
c906108c | 1720 | |
0ba6dca9 | 1721 | write_register (DEPRECATED_FP_REGNUM, sp); |
c906108c | 1722 | |
b1e29e33 | 1723 | sp += 2 * DEPRECATED_REGISTER_SIZE; |
c906108c SS |
1724 | |
1725 | for (regnum = 1; regnum < 32; regnum++) | |
0ba6dca9 | 1726 | if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM) |
c906108c SS |
1727 | sp = push_word (sp, read_register (regnum)); |
1728 | ||
53a5351d | 1729 | /* This is not necessary for the 64bit ABI. In fact it is dangerous. */ |
b1e29e33 | 1730 | if (DEPRECATED_REGISTER_SIZE != 8) |
53a5351d | 1731 | sp += 4; |
c906108c SS |
1732 | |
1733 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1734 | { | |
62700349 | 1735 | deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum), |
73937e03 | 1736 | (char *) &freg_buffer, 8); |
c5aa993b | 1737 | sp = push_bytes (sp, (char *) &freg_buffer, 8); |
c906108c SS |
1738 | } |
1739 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1740 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1741 | sp = push_word (sp, pc); | |
1742 | sp = push_word (sp, pcspace); | |
1743 | sp = push_word (sp, pc + 4); | |
1744 | sp = push_word (sp, pcspace); | |
1745 | write_register (SP_REGNUM, sp); | |
1746 | } | |
1747 | ||
1748 | static void | |
fba45db2 | 1749 | find_dummy_frame_regs (struct frame_info *frame, |
43bd9a9e | 1750 | CORE_ADDR frame_saved_regs[]) |
c906108c | 1751 | { |
ef6e7e13 | 1752 | CORE_ADDR fp = get_frame_base (frame); |
c906108c SS |
1753 | int i; |
1754 | ||
53a5351d | 1755 | /* The 32bit and 64bit ABIs save RP into different locations. */ |
b1e29e33 | 1756 | if (DEPRECATED_REGISTER_SIZE == 8) |
43bd9a9e | 1757 | frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3; |
53a5351d | 1758 | else |
43bd9a9e | 1759 | frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3; |
53a5351d | 1760 | |
0ba6dca9 | 1761 | frame_saved_regs[DEPRECATED_FP_REGNUM] = fp; |
c906108c | 1762 | |
b1e29e33 | 1763 | frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE); |
53a5351d | 1764 | |
b1e29e33 | 1765 | for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++) |
c906108c | 1766 | { |
0ba6dca9 | 1767 | if (i != DEPRECATED_FP_REGNUM) |
c906108c | 1768 | { |
43bd9a9e | 1769 | frame_saved_regs[i] = fp; |
b1e29e33 | 1770 | fp += DEPRECATED_REGISTER_SIZE; |
c906108c SS |
1771 | } |
1772 | } | |
1773 | ||
53a5351d | 1774 | /* This is not necessary or desirable for the 64bit ABI. */ |
b1e29e33 | 1775 | if (DEPRECATED_REGISTER_SIZE != 8) |
53a5351d JM |
1776 | fp += 4; |
1777 | ||
c906108c | 1778 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) |
43bd9a9e AC |
1779 | frame_saved_regs[i] = fp; |
1780 | ||
1781 | frame_saved_regs[IPSW_REGNUM] = fp; | |
b1e29e33 AC |
1782 | frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE; |
1783 | frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE; | |
1784 | frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE; | |
1785 | frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE; | |
1786 | frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE; | |
c906108c SS |
1787 | } |
1788 | ||
1789 | void | |
fba45db2 | 1790 | hppa_pop_frame (void) |
c906108c | 1791 | { |
52f0bd74 AC |
1792 | struct frame_info *frame = get_current_frame (); |
1793 | CORE_ADDR fp, npc, target_pc; | |
1794 | int regnum; | |
43bd9a9e | 1795 | CORE_ADDR *fsr; |
c906108c SS |
1796 | double freg_buffer; |
1797 | ||
c193f6ac | 1798 | fp = get_frame_base (frame); |
43bd9a9e | 1799 | hppa_frame_init_saved_regs (frame); |
1b1d3794 | 1800 | fsr = deprecated_get_frame_saved_regs (frame); |
c906108c SS |
1801 | |
1802 | #ifndef NO_PC_SPACE_QUEUE_RESTORE | |
43bd9a9e AC |
1803 | if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1804 | restore_pc_queue (fsr); | |
c906108c SS |
1805 | #endif |
1806 | ||
1807 | for (regnum = 31; regnum > 0; regnum--) | |
43bd9a9e AC |
1808 | if (fsr[regnum]) |
1809 | write_register (regnum, read_memory_integer (fsr[regnum], | |
b1e29e33 | 1810 | DEPRECATED_REGISTER_SIZE)); |
c906108c | 1811 | |
c5aa993b | 1812 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--) |
43bd9a9e | 1813 | if (fsr[regnum]) |
c906108c | 1814 | { |
43bd9a9e | 1815 | read_memory (fsr[regnum], (char *) &freg_buffer, 8); |
62700349 | 1816 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum), |
73937e03 | 1817 | (char *) &freg_buffer, 8); |
c906108c SS |
1818 | } |
1819 | ||
43bd9a9e | 1820 | if (fsr[IPSW_REGNUM]) |
c906108c | 1821 | write_register (IPSW_REGNUM, |
43bd9a9e | 1822 | read_memory_integer (fsr[IPSW_REGNUM], |
b1e29e33 | 1823 | DEPRECATED_REGISTER_SIZE)); |
c906108c | 1824 | |
43bd9a9e | 1825 | if (fsr[SAR_REGNUM]) |
c906108c | 1826 | write_register (SAR_REGNUM, |
43bd9a9e | 1827 | read_memory_integer (fsr[SAR_REGNUM], |
b1e29e33 | 1828 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
1829 | |
1830 | /* If the PC was explicitly saved, then just restore it. */ | |
43bd9a9e | 1831 | if (fsr[PCOQ_TAIL_REGNUM]) |
c906108c | 1832 | { |
43bd9a9e | 1833 | npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM], |
b1e29e33 | 1834 | DEPRECATED_REGISTER_SIZE); |
c906108c SS |
1835 | write_register (PCOQ_TAIL_REGNUM, npc); |
1836 | } | |
1837 | /* Else use the value in %rp to set the new PC. */ | |
c5aa993b | 1838 | else |
c906108c SS |
1839 | { |
1840 | npc = read_register (RP_REGNUM); | |
1841 | write_pc (npc); | |
1842 | } | |
1843 | ||
b1e29e33 | 1844 | write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE)); |
c906108c | 1845 | |
43bd9a9e | 1846 | if (fsr[IPSW_REGNUM]) /* call dummy */ |
c906108c SS |
1847 | write_register (SP_REGNUM, fp - 48); |
1848 | else | |
1849 | write_register (SP_REGNUM, fp); | |
1850 | ||
1851 | /* The PC we just restored may be inside a return trampoline. If so | |
1852 | we want to restart the inferior and run it through the trampoline. | |
1853 | ||
1854 | Do this by setting a momentary breakpoint at the location the | |
1855 | trampoline returns to. | |
1856 | ||
1857 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
1858 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; | |
43bd9a9e | 1859 | if (target_pc && !fsr[IPSW_REGNUM]) |
c906108c SS |
1860 | { |
1861 | struct symtab_and_line sal; | |
1862 | struct breakpoint *breakpoint; | |
1863 | struct cleanup *old_chain; | |
1864 | ||
1865 | /* Set up our breakpoint. Set it to be silent as the MI code | |
c5aa993b | 1866 | for "return_command" will print the frame we returned to. */ |
c906108c SS |
1867 | sal = find_pc_line (target_pc, 0); |
1868 | sal.pc = target_pc; | |
516b1f28 | 1869 | breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish); |
c906108c SS |
1870 | breakpoint->silent = 1; |
1871 | ||
1872 | /* So we can clean things up. */ | |
4d6140d9 | 1873 | old_chain = make_cleanup_delete_breakpoint (breakpoint); |
c906108c SS |
1874 | |
1875 | /* Start up the inferior. */ | |
1876 | clear_proceed_status (); | |
1877 | proceed_to_finish = 1; | |
2acceee2 | 1878 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); |
c906108c SS |
1879 | |
1880 | /* Perform our cleanups. */ | |
1881 | do_cleanups (old_chain); | |
1882 | } | |
1883 | flush_cached_frames (); | |
1884 | } | |
1885 | ||
1886 | /* After returning to a dummy on the stack, restore the instruction | |
1887 | queue space registers. */ | |
1888 | ||
1889 | static int | |
43bd9a9e | 1890 | restore_pc_queue (CORE_ADDR *fsr) |
c906108c SS |
1891 | { |
1892 | CORE_ADDR pc = read_pc (); | |
43bd9a9e | 1893 | CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM], |
53a5351d | 1894 | TARGET_PTR_BIT / 8); |
c906108c SS |
1895 | struct target_waitstatus w; |
1896 | int insn_count; | |
1897 | ||
1898 | /* Advance past break instruction in the call dummy. */ | |
1899 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1900 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1901 | ||
1902 | /* HPUX doesn't let us set the space registers or the space | |
1903 | registers of the PC queue through ptrace. Boo, hiss. | |
1904 | Conveniently, the call dummy has this sequence of instructions | |
1905 | after the break: | |
c5aa993b JM |
1906 | mtsp r21, sr0 |
1907 | ble,n 0(sr0, r22) | |
1908 | ||
c906108c SS |
1909 | So, load up the registers and single step until we are in the |
1910 | right place. */ | |
1911 | ||
43bd9a9e | 1912 | write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM], |
b1e29e33 | 1913 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
1914 | write_register (22, new_pc); |
1915 | ||
1916 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1917 | { | |
1918 | /* FIXME: What if the inferior gets a signal right now? Want to | |
c5aa993b JM |
1919 | merge this into wait_for_inferior (as a special kind of |
1920 | watchpoint? By setting a breakpoint at the end? Is there | |
1921 | any other choice? Is there *any* way to do this stuff with | |
1922 | ptrace() or some equivalent?). */ | |
c906108c | 1923 | resume (1, 0); |
39f77062 | 1924 | target_wait (inferior_ptid, &w); |
c906108c SS |
1925 | |
1926 | if (w.kind == TARGET_WAITKIND_SIGNALLED) | |
c5aa993b JM |
1927 | { |
1928 | stop_signal = w.value.sig; | |
1929 | terminal_ours_for_output (); | |
1930 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", | |
c906108c SS |
1931 | target_signal_to_name (stop_signal), |
1932 | target_signal_to_string (stop_signal)); | |
c5aa993b JM |
1933 | gdb_flush (gdb_stdout); |
1934 | return 0; | |
1935 | } | |
c906108c SS |
1936 | } |
1937 | target_terminal_ours (); | |
1938 | target_fetch_registers (-1); | |
1939 | return 1; | |
1940 | } | |
1941 | ||
c2c6d25f JM |
1942 | |
1943 | #ifdef PA20W_CALLING_CONVENTIONS | |
1944 | ||
53a5351d JM |
1945 | /* This function pushes a stack frame with arguments as part of the |
1946 | inferior function calling mechanism. | |
c906108c | 1947 | |
c2c6d25f JM |
1948 | This is the version for the PA64, in which later arguments appear |
1949 | at higher addresses. (The stack always grows towards higher | |
1950 | addresses.) | |
c906108c | 1951 | |
53a5351d JM |
1952 | We simply allocate the appropriate amount of stack space and put |
1953 | arguments into their proper slots. The call dummy code will copy | |
1954 | arguments into registers as needed by the ABI. | |
c906108c | 1955 | |
c2c6d25f JM |
1956 | This ABI also requires that the caller provide an argument pointer |
1957 | to the callee, so we do that too. */ | |
53a5351d | 1958 | |
c906108c | 1959 | CORE_ADDR |
ea7c478f | 1960 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1961 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1962 | { |
1963 | /* array of arguments' offsets */ | |
c5aa993b | 1964 | int *offset = (int *) alloca (nargs * sizeof (int)); |
53a5351d JM |
1965 | |
1966 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1967 | word size */ | |
c5aa993b | 1968 | int *lengths = (int *) alloca (nargs * sizeof (int)); |
c906108c | 1969 | |
53a5351d JM |
1970 | /* The value of SP as it was passed into this function after |
1971 | aligning. */ | |
f27dd7fd | 1972 | CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp); |
c906108c | 1973 | |
53a5351d JM |
1974 | /* The number of stack bytes occupied by the current argument. */ |
1975 | int bytes_reserved; | |
1976 | ||
1977 | /* The total number of bytes reserved for the arguments. */ | |
1978 | int cum_bytes_reserved = 0; | |
c906108c | 1979 | |
53a5351d JM |
1980 | /* Similarly, but aligned. */ |
1981 | int cum_bytes_aligned = 0; | |
1982 | int i; | |
c5aa993b | 1983 | |
53a5351d | 1984 | /* Iterate over each argument provided by the user. */ |
c906108c SS |
1985 | for (i = 0; i < nargs; i++) |
1986 | { | |
c2c6d25f JM |
1987 | struct type *arg_type = VALUE_TYPE (args[i]); |
1988 | ||
1989 | /* Integral scalar values smaller than a register are padded on | |
1990 | the left. We do this by promoting them to full-width, | |
1991 | although the ABI says to pad them with garbage. */ | |
1992 | if (is_integral_type (arg_type) | |
b1e29e33 | 1993 | && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE) |
c2c6d25f JM |
1994 | { |
1995 | args[i] = value_cast ((TYPE_UNSIGNED (arg_type) | |
1996 | ? builtin_type_unsigned_long | |
1997 | : builtin_type_long), | |
1998 | args[i]); | |
1999 | arg_type = VALUE_TYPE (args[i]); | |
2000 | } | |
2001 | ||
2002 | lengths[i] = TYPE_LENGTH (arg_type); | |
c906108c | 2003 | |
53a5351d JM |
2004 | /* Align the size of the argument to the word size for this |
2005 | target. */ | |
b1e29e33 | 2006 | bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE; |
c906108c | 2007 | |
53a5351d JM |
2008 | offset[i] = cum_bytes_reserved; |
2009 | ||
c2c6d25f JM |
2010 | /* Aggregates larger than eight bytes (the only types larger |
2011 | than eight bytes we have) are aligned on a 16-byte boundary, | |
2012 | possibly padded on the right with garbage. This may leave an | |
2013 | empty word on the stack, and thus an unused register, as per | |
2014 | the ABI. */ | |
2015 | if (bytes_reserved > 8) | |
2016 | { | |
2017 | /* Round up the offset to a multiple of two slots. */ | |
b1e29e33 AC |
2018 | int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1) |
2019 | & -(2*DEPRECATED_REGISTER_SIZE)); | |
c906108c | 2020 | |
c2c6d25f JM |
2021 | /* Note the space we've wasted, if any. */ |
2022 | bytes_reserved += new_offset - offset[i]; | |
2023 | offset[i] = new_offset; | |
2024 | } | |
53a5351d | 2025 | |
c2c6d25f JM |
2026 | cum_bytes_reserved += bytes_reserved; |
2027 | } | |
2028 | ||
2029 | /* CUM_BYTES_RESERVED already accounts for all the arguments | |
2030 | passed by the user. However, the ABIs mandate minimum stack space | |
2031 | allocations for outgoing arguments. | |
2032 | ||
2033 | The ABIs also mandate minimum stack alignments which we must | |
2034 | preserve. */ | |
f27dd7fd | 2035 | cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved); |
c2c6d25f JM |
2036 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
2037 | ||
2038 | /* Now write each of the args at the proper offset down the stack. */ | |
2039 | for (i = 0; i < nargs; i++) | |
2040 | write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
2041 | ||
2042 | /* If a structure has to be returned, set up register 28 to hold its | |
2043 | address */ | |
2044 | if (struct_return) | |
2045 | write_register (28, struct_addr); | |
2046 | ||
2047 | /* For the PA64 we must pass a pointer to the outgoing argument list. | |
2048 | The ABI mandates that the pointer should point to the first byte of | |
2049 | storage beyond the register flushback area. | |
2050 | ||
2051 | However, the call dummy expects the outgoing argument pointer to | |
2052 | be passed in register %r4. */ | |
2053 | write_register (4, orig_sp + REG_PARM_STACK_SPACE); | |
2054 | ||
2055 | /* ?!? This needs further work. We need to set up the global data | |
2056 | pointer for this procedure. This assumes the same global pointer | |
2057 | for every procedure. The call dummy expects the dp value to | |
2058 | be passed in register %r6. */ | |
2059 | write_register (6, read_register (27)); | |
2060 | ||
2061 | /* The stack will have 64 bytes of additional space for a frame marker. */ | |
2062 | return sp + 64; | |
2063 | } | |
2064 | ||
2065 | #else | |
2066 | ||
2067 | /* This function pushes a stack frame with arguments as part of the | |
2068 | inferior function calling mechanism. | |
2069 | ||
2070 | This is the version of the function for the 32-bit PA machines, in | |
2071 | which later arguments appear at lower addresses. (The stack always | |
2072 | grows towards higher addresses.) | |
2073 | ||
2074 | We simply allocate the appropriate amount of stack space and put | |
2075 | arguments into their proper slots. The call dummy code will copy | |
2076 | arguments into registers as needed by the ABI. */ | |
2077 | ||
2078 | CORE_ADDR | |
ea7c478f | 2079 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 2080 | int struct_return, CORE_ADDR struct_addr) |
c2c6d25f JM |
2081 | { |
2082 | /* array of arguments' offsets */ | |
2083 | int *offset = (int *) alloca (nargs * sizeof (int)); | |
2084 | ||
2085 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
2086 | word size */ | |
2087 | int *lengths = (int *) alloca (nargs * sizeof (int)); | |
2088 | ||
2089 | /* The number of stack bytes occupied by the current argument. */ | |
2090 | int bytes_reserved; | |
2091 | ||
2092 | /* The total number of bytes reserved for the arguments. */ | |
2093 | int cum_bytes_reserved = 0; | |
2094 | ||
2095 | /* Similarly, but aligned. */ | |
2096 | int cum_bytes_aligned = 0; | |
2097 | int i; | |
2098 | ||
2099 | /* Iterate over each argument provided by the user. */ | |
2100 | for (i = 0; i < nargs; i++) | |
2101 | { | |
2102 | lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i])); | |
2103 | ||
2104 | /* Align the size of the argument to the word size for this | |
2105 | target. */ | |
b1e29e33 | 2106 | bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE; |
c2c6d25f | 2107 | |
b6649e88 AC |
2108 | offset[i] = (cum_bytes_reserved |
2109 | + (lengths[i] > 4 ? bytes_reserved : lengths[i])); | |
c2c6d25f JM |
2110 | |
2111 | /* If the argument is a double word argument, then it needs to be | |
2112 | double word aligned. */ | |
b1e29e33 AC |
2113 | if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE) |
2114 | && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE)) | |
c5aa993b JM |
2115 | { |
2116 | int new_offset = 0; | |
53a5351d JM |
2117 | /* BYTES_RESERVED is already aligned to the word, so we put |
2118 | the argument at one word more down the stack. | |
2119 | ||
2120 | This will leave one empty word on the stack, and one unused | |
2121 | register as mandated by the ABI. */ | |
b1e29e33 AC |
2122 | new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1) |
2123 | & -(2 * DEPRECATED_REGISTER_SIZE)); | |
53a5351d | 2124 | |
b1e29e33 | 2125 | if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE) |
c5aa993b | 2126 | { |
b1e29e33 AC |
2127 | bytes_reserved += DEPRECATED_REGISTER_SIZE; |
2128 | offset[i] += DEPRECATED_REGISTER_SIZE; | |
c5aa993b JM |
2129 | } |
2130 | } | |
c906108c SS |
2131 | |
2132 | cum_bytes_reserved += bytes_reserved; | |
2133 | ||
2134 | } | |
2135 | ||
c2c6d25f JM |
2136 | /* CUM_BYTES_RESERVED already accounts for all the arguments passed |
2137 | by the user. However, the ABI mandates minimum stack space | |
53a5351d JM |
2138 | allocations for outgoing arguments. |
2139 | ||
c2c6d25f | 2140 | The ABI also mandates minimum stack alignments which we must |
53a5351d | 2141 | preserve. */ |
f27dd7fd | 2142 | cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved); |
53a5351d JM |
2143 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
2144 | ||
2145 | /* Now write each of the args at the proper offset down the stack. | |
53a5351d JM |
2146 | ?!? We need to promote values to a full register instead of skipping |
2147 | words in the stack. */ | |
c906108c SS |
2148 | for (i = 0; i < nargs; i++) |
2149 | write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
c906108c | 2150 | |
53a5351d JM |
2151 | /* If a structure has to be returned, set up register 28 to hold its |
2152 | address */ | |
c906108c SS |
2153 | if (struct_return) |
2154 | write_register (28, struct_addr); | |
2155 | ||
53a5351d | 2156 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
c906108c SS |
2157 | return sp + 32; |
2158 | } | |
2159 | ||
c2c6d25f | 2160 | #endif |
c906108c | 2161 | |
79508e1e AC |
2162 | /* This function pushes a stack frame with arguments as part of the |
2163 | inferior function calling mechanism. | |
2164 | ||
2165 | This is the version of the function for the 32-bit PA machines, in | |
2166 | which later arguments appear at lower addresses. (The stack always | |
2167 | grows towards higher addresses.) | |
2168 | ||
2169 | We simply allocate the appropriate amount of stack space and put | |
2170 | arguments into their proper slots. */ | |
2171 | ||
2172 | CORE_ADDR | |
2173 | hppa32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, | |
2174 | struct regcache *regcache, CORE_ADDR bp_addr, | |
2175 | int nargs, struct value **args, CORE_ADDR sp, | |
2176 | int struct_return, CORE_ADDR struct_addr) | |
2177 | { | |
2178 | /* NOTE: cagney/2004-02-27: This is a guess - its implemented by | |
2179 | reverse engineering testsuite failures. */ | |
2180 | ||
2181 | /* Stack base address at which any pass-by-reference parameters are | |
2182 | stored. */ | |
2183 | CORE_ADDR struct_end = 0; | |
2184 | /* Stack base address at which the first parameter is stored. */ | |
2185 | CORE_ADDR param_end = 0; | |
2186 | ||
2187 | /* The inner most end of the stack after all the parameters have | |
2188 | been pushed. */ | |
2189 | CORE_ADDR new_sp = 0; | |
2190 | ||
2191 | /* Two passes. First pass computes the location of everything, | |
2192 | second pass writes the bytes out. */ | |
2193 | int write_pass; | |
2194 | for (write_pass = 0; write_pass < 2; write_pass++) | |
2195 | { | |
1797a8f6 AC |
2196 | CORE_ADDR struct_ptr = 0; |
2197 | CORE_ADDR param_ptr = 0; | |
79508e1e AC |
2198 | int reg = 27; /* NOTE: Registers go down. */ |
2199 | int i; | |
2200 | for (i = 0; i < nargs; i++) | |
2201 | { | |
2202 | struct value *arg = args[i]; | |
2203 | struct type *type = check_typedef (VALUE_TYPE (arg)); | |
2204 | /* The corresponding parameter that is pushed onto the | |
2205 | stack, and [possibly] passed in a register. */ | |
2206 | char param_val[8]; | |
2207 | int param_len; | |
2208 | memset (param_val, 0, sizeof param_val); | |
2209 | if (TYPE_LENGTH (type) > 8) | |
2210 | { | |
2211 | /* Large parameter, pass by reference. Store the value | |
2212 | in "struct" area and then pass its address. */ | |
2213 | param_len = 4; | |
1797a8f6 | 2214 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
79508e1e | 2215 | if (write_pass) |
1797a8f6 | 2216 | write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg), |
79508e1e | 2217 | TYPE_LENGTH (type)); |
1797a8f6 | 2218 | store_unsigned_integer (param_val, 4, struct_end - struct_ptr); |
79508e1e AC |
2219 | } |
2220 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
2221 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
2222 | { | |
2223 | /* Integer value store, right aligned. "unpack_long" | |
2224 | takes care of any sign-extension problems. */ | |
2225 | param_len = align_up (TYPE_LENGTH (type), 4); | |
2226 | store_unsigned_integer (param_val, param_len, | |
2227 | unpack_long (type, | |
2228 | VALUE_CONTENTS (arg))); | |
2229 | } | |
2230 | else | |
2231 | { | |
2232 | /* Small struct value, store right aligned? */ | |
2233 | param_len = align_up (TYPE_LENGTH (type), 4); | |
2234 | memcpy (param_val + param_len - TYPE_LENGTH (type), | |
2235 | VALUE_CONTENTS (arg), TYPE_LENGTH (type)); | |
2236 | } | |
1797a8f6 | 2237 | param_ptr += param_len; |
79508e1e AC |
2238 | reg -= param_len / 4; |
2239 | if (write_pass) | |
2240 | { | |
1797a8f6 | 2241 | write_memory (param_end - param_ptr, param_val, param_len); |
79508e1e AC |
2242 | if (reg >= 23) |
2243 | { | |
2244 | regcache_cooked_write (regcache, reg, param_val); | |
2245 | if (param_len > 4) | |
2246 | regcache_cooked_write (regcache, reg + 1, param_val + 4); | |
2247 | } | |
2248 | } | |
2249 | } | |
2250 | ||
2251 | /* Update the various stack pointers. */ | |
2252 | if (!write_pass) | |
2253 | { | |
2254 | struct_end = sp + struct_ptr; | |
2255 | /* PARAM_PTR already accounts for all the arguments passed | |
2256 | by the user. However, the ABI mandates minimum stack | |
2257 | space allocations for outgoing arguments. The ABI also | |
2258 | mandates minimum stack alignments which we must | |
2259 | preserve. */ | |
2260 | param_end = struct_end + max (align_up (param_ptr, 8), | |
2261 | REG_PARM_STACK_SPACE); | |
2262 | } | |
2263 | } | |
2264 | ||
2265 | /* If a structure has to be returned, set up register 28 to hold its | |
2266 | address */ | |
2267 | if (struct_return) | |
2268 | write_register (28, struct_addr); | |
2269 | ||
2270 | /* Set the return address. */ | |
2271 | regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr); | |
2272 | ||
2273 | /* The stack will have 32 bytes of additional space for a frame marker. */ | |
2274 | return param_end + 32; | |
2275 | } | |
2276 | ||
2f690297 AC |
2277 | /* This function pushes a stack frame with arguments as part of the |
2278 | inferior function calling mechanism. | |
2279 | ||
2280 | This is the version for the PA64, in which later arguments appear | |
2281 | at higher addresses. (The stack always grows towards higher | |
2282 | addresses.) | |
2283 | ||
2284 | We simply allocate the appropriate amount of stack space and put | |
2285 | arguments into their proper slots. | |
2286 | ||
2287 | This ABI also requires that the caller provide an argument pointer | |
2288 | to the callee, so we do that too. */ | |
2289 | ||
2290 | CORE_ADDR | |
2291 | hppa64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, | |
2292 | struct regcache *regcache, CORE_ADDR bp_addr, | |
2293 | int nargs, struct value **args, CORE_ADDR sp, | |
2294 | int struct_return, CORE_ADDR struct_addr) | |
2295 | { | |
449e1137 AC |
2296 | /* NOTE: cagney/2004-02-27: This is a guess - its implemented by |
2297 | reverse engineering testsuite failures. */ | |
2f690297 | 2298 | |
449e1137 AC |
2299 | /* Stack base address at which any pass-by-reference parameters are |
2300 | stored. */ | |
2301 | CORE_ADDR struct_end = 0; | |
2302 | /* Stack base address at which the first parameter is stored. */ | |
2303 | CORE_ADDR param_end = 0; | |
2f690297 | 2304 | |
449e1137 AC |
2305 | /* The inner most end of the stack after all the parameters have |
2306 | been pushed. */ | |
2307 | CORE_ADDR new_sp = 0; | |
2f690297 | 2308 | |
449e1137 AC |
2309 | /* Two passes. First pass computes the location of everything, |
2310 | second pass writes the bytes out. */ | |
2311 | int write_pass; | |
2312 | for (write_pass = 0; write_pass < 2; write_pass++) | |
2f690297 | 2313 | { |
449e1137 AC |
2314 | CORE_ADDR struct_ptr = 0; |
2315 | CORE_ADDR param_ptr = 0; | |
2316 | int i; | |
2317 | for (i = 0; i < nargs; i++) | |
2f690297 | 2318 | { |
449e1137 AC |
2319 | struct value *arg = args[i]; |
2320 | struct type *type = check_typedef (VALUE_TYPE (arg)); | |
2321 | if ((TYPE_CODE (type) == TYPE_CODE_INT | |
2322 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
2323 | && TYPE_LENGTH (type) <= 8) | |
2324 | { | |
2325 | /* Integer value store, right aligned. "unpack_long" | |
2326 | takes care of any sign-extension problems. */ | |
2327 | param_ptr += 8; | |
2328 | if (write_pass) | |
2329 | { | |
2330 | ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg)); | |
2331 | int reg = 27 - param_ptr / 8; | |
2332 | write_memory_unsigned_integer (param_end - param_ptr, | |
2333 | val, 8); | |
2334 | if (reg >= 19) | |
2335 | regcache_cooked_write_unsigned (regcache, reg, val); | |
2336 | } | |
2337 | } | |
2338 | else | |
2339 | { | |
2340 | /* Small struct value, store left aligned? */ | |
2341 | int reg; | |
2342 | if (TYPE_LENGTH (type) > 8) | |
2343 | { | |
2344 | param_ptr = align_up (param_ptr, 16); | |
2345 | reg = 26 - param_ptr / 8; | |
2346 | param_ptr += align_up (TYPE_LENGTH (type), 16); | |
2347 | } | |
2348 | else | |
2349 | { | |
2350 | param_ptr = align_up (param_ptr, 8); | |
2351 | reg = 26 - param_ptr / 8; | |
2352 | param_ptr += align_up (TYPE_LENGTH (type), 8); | |
2353 | } | |
2354 | if (write_pass) | |
2355 | { | |
2356 | int byte; | |
2357 | write_memory (param_end - param_ptr, VALUE_CONTENTS (arg), | |
2358 | TYPE_LENGTH (type)); | |
2359 | for (byte = 0; byte < TYPE_LENGTH (type); byte += 8) | |
2360 | { | |
2361 | if (reg >= 19) | |
2362 | { | |
2363 | int len = min (8, TYPE_LENGTH (type) - byte); | |
2364 | regcache_cooked_write_part (regcache, reg, 0, len, | |
2365 | VALUE_CONTENTS (arg) + byte); | |
2366 | } | |
2367 | reg--; | |
2368 | } | |
2369 | } | |
2370 | } | |
2f690297 | 2371 | } |
449e1137 AC |
2372 | /* Update the various stack pointers. */ |
2373 | if (!write_pass) | |
2f690297 | 2374 | { |
449e1137 AC |
2375 | struct_end = sp + struct_ptr; |
2376 | /* PARAM_PTR already accounts for all the arguments passed | |
2377 | by the user. However, the ABI mandates minimum stack | |
2378 | space allocations for outgoing arguments. The ABI also | |
2379 | mandates minimum stack alignments which we must | |
2380 | preserve. */ | |
2381 | param_end = struct_end + max (align_up (param_ptr, 16), | |
2382 | REG_PARM_STACK_SPACE); | |
2f690297 | 2383 | } |
2f690297 AC |
2384 | } |
2385 | ||
2f690297 AC |
2386 | /* If a structure has to be returned, set up register 28 to hold its |
2387 | address */ | |
2388 | if (struct_return) | |
2389 | write_register (28, struct_addr); | |
2390 | ||
2f690297 AC |
2391 | /* Set the return address. */ |
2392 | regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr); | |
2393 | ||
449e1137 AC |
2394 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
2395 | return param_end + 64; | |
2f690297 AC |
2396 | } |
2397 | ||
1797a8f6 AC |
2398 | static CORE_ADDR |
2399 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
2400 | { | |
2401 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ | |
2402 | and not _bit_)! */ | |
2403 | return align_up (addr, 64); | |
2404 | } | |
2405 | ||
2f690297 AC |
2406 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
2407 | ||
2408 | static CORE_ADDR | |
1797a8f6 | 2409 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
2f690297 AC |
2410 | { |
2411 | /* Just always 16-byte align. */ | |
2412 | return align_up (addr, 16); | |
2413 | } | |
2414 | ||
2415 | ||
c906108c | 2416 | /* elz: Used to lookup a symbol in the shared libraries. |
c5aa993b JM |
2417 | This function calls shl_findsym, indirectly through a |
2418 | call to __d_shl_get. __d_shl_get is in end.c, which is always | |
2419 | linked in by the hp compilers/linkers. | |
2420 | The call to shl_findsym cannot be made directly because it needs | |
2421 | to be active in target address space. | |
2422 | inputs: - minimal symbol pointer for the function we want to look up | |
2423 | - address in target space of the descriptor for the library | |
2424 | where we want to look the symbol up. | |
2425 | This address is retrieved using the | |
2426 | som_solib_get_solib_by_pc function (somsolib.c). | |
2427 | output: - real address in the library of the function. | |
2428 | note: the handle can be null, in which case shl_findsym will look for | |
2429 | the symbol in all the loaded shared libraries. | |
2430 | files to look at if you need reference on this stuff: | |
2431 | dld.c, dld_shl_findsym.c | |
2432 | end.c | |
2433 | man entry for shl_findsym */ | |
c906108c SS |
2434 | |
2435 | CORE_ADDR | |
fba45db2 | 2436 | find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle) |
c906108c | 2437 | { |
c5aa993b JM |
2438 | struct symbol *get_sym, *symbol2; |
2439 | struct minimal_symbol *buff_minsym, *msymbol; | |
2440 | struct type *ftype; | |
ea7c478f AC |
2441 | struct value **args; |
2442 | struct value *funcval; | |
2443 | struct value *val; | |
c5aa993b JM |
2444 | |
2445 | int x, namelen, err_value, tmp = -1; | |
2446 | CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr; | |
2447 | CORE_ADDR stub_addr; | |
2448 | ||
2449 | ||
ea7c478f | 2450 | args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */ |
c5aa993b | 2451 | funcval = find_function_in_inferior ("__d_shl_get"); |
176620f1 | 2452 | get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL); |
c5aa993b JM |
2453 | buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL); |
2454 | msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL); | |
176620f1 | 2455 | symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL); |
c5aa993b | 2456 | endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym); |
22abf04a | 2457 | namelen = strlen (DEPRECATED_SYMBOL_NAME (function)); |
c5aa993b JM |
2458 | value_return_addr = endo_buff_addr + namelen; |
2459 | ftype = check_typedef (SYMBOL_TYPE (get_sym)); | |
2460 | ||
2461 | /* do alignment */ | |
2462 | if ((x = value_return_addr % 64) != 0) | |
2463 | value_return_addr = value_return_addr + 64 - x; | |
2464 | ||
2465 | errno_return_addr = value_return_addr + 64; | |
2466 | ||
2467 | ||
2468 | /* set up stuff needed by __d_shl_get in buffer in end.o */ | |
2469 | ||
22abf04a | 2470 | target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen); |
c5aa993b JM |
2471 | |
2472 | target_write_memory (value_return_addr, (char *) &tmp, 4); | |
2473 | ||
2474 | target_write_memory (errno_return_addr, (char *) &tmp, 4); | |
2475 | ||
2476 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
2477 | (char *) &handle, 4); | |
2478 | ||
2479 | /* now prepare the arguments for the call */ | |
2480 | ||
2481 | args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12); | |
4478b372 JB |
2482 | args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol)); |
2483 | args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr); | |
c5aa993b | 2484 | args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE); |
4478b372 JB |
2485 | args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr); |
2486 | args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr); | |
c5aa993b JM |
2487 | |
2488 | /* now call the function */ | |
2489 | ||
2490 | val = call_function_by_hand (funcval, 6, args); | |
2491 | ||
2492 | /* now get the results */ | |
2493 | ||
2494 | target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value)); | |
2495 | ||
2496 | target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr)); | |
2497 | if (stub_addr <= 0) | |
104c1213 | 2498 | error ("call to __d_shl_get failed, error code is %d", err_value); |
c5aa993b JM |
2499 | |
2500 | return (stub_addr); | |
c906108c SS |
2501 | } |
2502 | ||
c5aa993b | 2503 | /* Cover routine for find_stub_with_shl_get to pass to catch_errors */ |
a0b3c4fd | 2504 | static int |
4efb68b1 | 2505 | cover_find_stub_with_shl_get (void *args_untyped) |
c906108c | 2506 | { |
a0b3c4fd JM |
2507 | args_for_find_stub *args = args_untyped; |
2508 | args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle); | |
2509 | return 0; | |
c906108c SS |
2510 | } |
2511 | ||
c906108c SS |
2512 | /* Insert the specified number of args and function address |
2513 | into a call sequence of the above form stored at DUMMYNAME. | |
2514 | ||
2515 | On the hppa we need to call the stack dummy through $$dyncall. | |
b1e29e33 AC |
2516 | Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra |
2517 | argument, real_pc, which is the location where gdb should start up | |
2518 | the inferior to do the function call. | |
cce74817 JM |
2519 | |
2520 | This has to work across several versions of hpux, bsd, osf1. It has to | |
2521 | work regardless of what compiler was used to build the inferior program. | |
2522 | It should work regardless of whether or not end.o is available. It has | |
2523 | to work even if gdb can not call into the dynamic loader in the inferior | |
2524 | to query it for symbol names and addresses. | |
2525 | ||
2526 | Yes, all those cases should work. Luckily code exists to handle most | |
2527 | of them. The complexity is in selecting exactly what scheme should | |
2528 | be used to perform the inferior call. | |
2529 | ||
2530 | At the current time this routine is known not to handle cases where | |
2531 | the program was linked with HP's compiler without including end.o. | |
2532 | ||
2533 | Please contact Jeff Law ([email protected]) before changing this code. */ | |
c906108c SS |
2534 | |
2535 | CORE_ADDR | |
fba45db2 | 2536 | hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 2537 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
2538 | { |
2539 | CORE_ADDR dyncall_addr; | |
2540 | struct minimal_symbol *msymbol; | |
2541 | struct minimal_symbol *trampoline; | |
2542 | int flags = read_register (FLAGS_REGNUM); | |
cce74817 JM |
2543 | struct unwind_table_entry *u = NULL; |
2544 | CORE_ADDR new_stub = 0; | |
2545 | CORE_ADDR solib_handle = 0; | |
2546 | ||
2547 | /* Nonzero if we will use GCC's PLT call routine. This routine must be | |
c2c6d25f JM |
2548 | passed an import stub, not a PLABEL. It is also necessary to set %r19 |
2549 | (the PIC register) before performing the call. | |
c906108c | 2550 | |
cce74817 JM |
2551 | If zero, then we are using __d_plt_call (HP's PLT call routine) or we |
2552 | are calling the target directly. When using __d_plt_call we want to | |
2553 | use a PLABEL instead of an import stub. */ | |
2554 | int using_gcc_plt_call = 1; | |
2555 | ||
53a5351d JM |
2556 | #ifdef GDB_TARGET_IS_HPPA_20W |
2557 | /* We currently use completely different code for the PA2.0W inferior | |
2558 | function call sequences. This needs to be cleaned up. */ | |
2559 | { | |
2560 | CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5; | |
2561 | struct target_waitstatus w; | |
2562 | int inst1, inst2; | |
2563 | char buf[4]; | |
2564 | int status; | |
2565 | struct objfile *objfile; | |
2566 | ||
2567 | /* We can not modify the PC space queues directly, so we start | |
2568 | up the inferior and execute a couple instructions to set the | |
2569 | space queues so that they point to the call dummy in the stack. */ | |
2570 | pcsqh = read_register (PCSQ_HEAD_REGNUM); | |
2571 | sr5 = read_register (SR5_REGNUM); | |
2572 | if (1) | |
2573 | { | |
2574 | pcoqh = read_register (PCOQ_HEAD_REGNUM); | |
2575 | pcoqt = read_register (PCOQ_TAIL_REGNUM); | |
2576 | if (target_read_memory (pcoqh, buf, 4) != 0) | |
2577 | error ("Couldn't modify space queue\n"); | |
2578 | inst1 = extract_unsigned_integer (buf, 4); | |
2579 | ||
2580 | if (target_read_memory (pcoqt, buf, 4) != 0) | |
2581 | error ("Couldn't modify space queue\n"); | |
2582 | inst2 = extract_unsigned_integer (buf, 4); | |
2583 | ||
2584 | /* BVE (r1) */ | |
2585 | *((int *) buf) = 0xe820d000; | |
2586 | if (target_write_memory (pcoqh, buf, 4) != 0) | |
2587 | error ("Couldn't modify space queue\n"); | |
2588 | ||
2589 | /* NOP */ | |
2590 | *((int *) buf) = 0x08000240; | |
2591 | if (target_write_memory (pcoqt, buf, 4) != 0) | |
2592 | { | |
2593 | *((int *) buf) = inst1; | |
2594 | target_write_memory (pcoqh, buf, 4); | |
2595 | error ("Couldn't modify space queue\n"); | |
2596 | } | |
2597 | ||
2598 | write_register (1, pc); | |
2599 | ||
2600 | /* Single step twice, the BVE instruction will set the space queue | |
2601 | such that it points to the PC value written immediately above | |
2602 | (ie the call dummy). */ | |
2603 | resume (1, 0); | |
39f77062 | 2604 | target_wait (inferior_ptid, &w); |
53a5351d | 2605 | resume (1, 0); |
39f77062 | 2606 | target_wait (inferior_ptid, &w); |
53a5351d JM |
2607 | |
2608 | /* Restore the two instructions at the old PC locations. */ | |
2609 | *((int *) buf) = inst1; | |
2610 | target_write_memory (pcoqh, buf, 4); | |
2611 | *((int *) buf) = inst2; | |
2612 | target_write_memory (pcoqt, buf, 4); | |
2613 | } | |
2614 | ||
2615 | /* The call dummy wants the ultimate destination address initially | |
2616 | in register %r5. */ | |
2617 | write_register (5, fun); | |
2618 | ||
2619 | /* We need to see if this objfile has a different DP value than our | |
c2c6d25f | 2620 | own (it could be a shared library for example). */ |
53a5351d JM |
2621 | ALL_OBJFILES (objfile) |
2622 | { | |
2623 | struct obj_section *s; | |
2624 | obj_private_data_t *obj_private; | |
2625 | ||
2626 | /* See if FUN is in any section within this shared library. */ | |
2627 | for (s = objfile->sections; s < objfile->sections_end; s++) | |
2628 | if (s->addr <= fun && fun < s->endaddr) | |
2629 | break; | |
2630 | ||
2631 | if (s >= objfile->sections_end) | |
2632 | continue; | |
2633 | ||
2634 | obj_private = (obj_private_data_t *) objfile->obj_private; | |
2635 | ||
2636 | /* The DP value may be different for each objfile. But within an | |
2637 | objfile each function uses the same dp value. Thus we do not need | |
2638 | to grope around the opd section looking for dp values. | |
2639 | ||
2640 | ?!? This is not strictly correct since we may be in a shared library | |
2641 | and want to call back into the main program. To make that case | |
2642 | work correctly we need to set obj_private->dp for the main program's | |
2643 | objfile, then remove this conditional. */ | |
2644 | if (obj_private->dp) | |
2645 | write_register (27, obj_private->dp); | |
2646 | break; | |
2647 | } | |
2648 | return pc; | |
2649 | } | |
2650 | #endif | |
2651 | ||
2652 | #ifndef GDB_TARGET_IS_HPPA_20W | |
cce74817 | 2653 | /* Prefer __gcc_plt_call over the HP supplied routine because |
c5aa993b | 2654 | __gcc_plt_call works for any number of arguments. */ |
c906108c | 2655 | trampoline = NULL; |
cce74817 JM |
2656 | if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL) |
2657 | using_gcc_plt_call = 0; | |
2658 | ||
c906108c SS |
2659 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
2660 | if (msymbol == NULL) | |
cce74817 | 2661 | error ("Can't find an address for $$dyncall trampoline"); |
c906108c SS |
2662 | |
2663 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2664 | ||
2665 | /* FUN could be a procedure label, in which case we have to get | |
cce74817 JM |
2666 | its real address and the value of its GOT/DP if we plan to |
2667 | call the routine via gcc_plt_call. */ | |
2668 | if ((fun & 0x2) && using_gcc_plt_call) | |
c906108c SS |
2669 | { |
2670 | /* Get the GOT/DP value for the target function. It's | |
c5aa993b JM |
2671 | at *(fun+4). Note the call dummy is *NOT* allowed to |
2672 | trash %r19 before calling the target function. */ | |
53a5351d | 2673 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, |
b1e29e33 | 2674 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
2675 | |
2676 | /* Now get the real address for the function we are calling, it's | |
c5aa993b | 2677 | at *fun. */ |
53a5351d JM |
2678 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, |
2679 | TARGET_PTR_BIT / 8); | |
c906108c SS |
2680 | } |
2681 | else | |
2682 | { | |
2683 | ||
2684 | #ifndef GDB_TARGET_IS_PA_ELF | |
cce74817 | 2685 | /* FUN could be an export stub, the real address of a function, or |
c5aa993b JM |
2686 | a PLABEL. When using gcc's PLT call routine we must call an import |
2687 | stub rather than the export stub or real function for lazy binding | |
2688 | to work correctly | |
cce74817 | 2689 | |
39f77062 | 2690 | If we are using the gcc PLT call routine, then we need to |
c5aa993b | 2691 | get the import stub for the target function. */ |
cce74817 | 2692 | if (using_gcc_plt_call && som_solib_get_got_by_pc (fun)) |
c906108c SS |
2693 | { |
2694 | struct objfile *objfile; | |
2695 | struct minimal_symbol *funsymbol, *stub_symbol; | |
2696 | CORE_ADDR newfun = 0; | |
2697 | ||
2698 | funsymbol = lookup_minimal_symbol_by_pc (fun); | |
2699 | if (!funsymbol) | |
4ce44c66 | 2700 | error ("Unable to find minimal symbol for target function.\n"); |
c906108c SS |
2701 | |
2702 | /* Search all the object files for an import symbol with the | |
2703 | right name. */ | |
2704 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
2705 | { |
2706 | stub_symbol | |
2707 | = lookup_minimal_symbol_solib_trampoline | |
40324f1b | 2708 | (DEPRECATED_SYMBOL_NAME (funsymbol), objfile); |
c5aa993b JM |
2709 | |
2710 | if (!stub_symbol) | |
22abf04a | 2711 | stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol), |
c5aa993b JM |
2712 | NULL, objfile); |
2713 | ||
2714 | /* Found a symbol with the right name. */ | |
2715 | if (stub_symbol) | |
2716 | { | |
2717 | struct unwind_table_entry *u; | |
2718 | /* It must be a shared library trampoline. */ | |
2719 | if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
2720 | continue; | |
2721 | ||
2722 | /* It must also be an import stub. */ | |
2723 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
6426a772 JM |
2724 | if (u == NULL |
2725 | || (u->stub_unwind.stub_type != IMPORT | |
2726 | #ifdef GDB_NATIVE_HPUX_11 | |
2727 | /* Sigh. The hpux 10.20 dynamic linker will blow | |
2728 | chunks if we perform a call to an unbound function | |
2729 | via the IMPORT_SHLIB stub. The hpux 11.00 dynamic | |
2730 | linker will blow chunks if we do not call the | |
2731 | unbound function via the IMPORT_SHLIB stub. | |
2732 | ||
2733 | We currently have no way to select bevahior on just | |
2734 | the target. However, we only support HPUX/SOM in | |
2735 | native mode. So we conditinalize on a native | |
2736 | #ifdef. Ugly. Ugly. Ugly */ | |
2737 | && u->stub_unwind.stub_type != IMPORT_SHLIB | |
2738 | #endif | |
2739 | )) | |
c5aa993b JM |
2740 | continue; |
2741 | ||
2742 | /* OK. Looks like the correct import stub. */ | |
2743 | newfun = SYMBOL_VALUE (stub_symbol); | |
2744 | fun = newfun; | |
6426a772 JM |
2745 | |
2746 | /* If we found an IMPORT stub, then we want to stop | |
2747 | searching now. If we found an IMPORT_SHLIB, we want | |
2748 | to continue the search in the hopes that we will find | |
2749 | an IMPORT stub. */ | |
2750 | if (u->stub_unwind.stub_type == IMPORT) | |
2751 | break; | |
c5aa993b JM |
2752 | } |
2753 | } | |
cce74817 JM |
2754 | |
2755 | /* Ouch. We did not find an import stub. Make an attempt to | |
2756 | do the right thing instead of just croaking. Most of the | |
2757 | time this will actually work. */ | |
c906108c SS |
2758 | if (newfun == 0) |
2759 | write_register (19, som_solib_get_got_by_pc (fun)); | |
cce74817 JM |
2760 | |
2761 | u = find_unwind_entry (fun); | |
c5aa993b | 2762 | if (u |
cce74817 JM |
2763 | && (u->stub_unwind.stub_type == IMPORT |
2764 | || u->stub_unwind.stub_type == IMPORT_SHLIB)) | |
2765 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
2766 | ||
2767 | /* If we found the import stub in the shared library, then we have | |
2768 | to set %r19 before we call the stub. */ | |
2769 | if (u && u->stub_unwind.stub_type == IMPORT_SHLIB) | |
2770 | write_register (19, som_solib_get_got_by_pc (fun)); | |
c906108c | 2771 | } |
c906108c SS |
2772 | #endif |
2773 | } | |
2774 | ||
cce74817 JM |
2775 | /* If we are calling into another load module then have sr4export call the |
2776 | magic __d_plt_call routine which is linked in from end.o. | |
c906108c | 2777 | |
cce74817 JM |
2778 | You can't use _sr4export to make the call as the value in sp-24 will get |
2779 | fried and you end up returning to the wrong location. You can't call the | |
2780 | target as the code to bind the PLT entry to a function can't return to a | |
2781 | stack address. | |
2782 | ||
2783 | Also, query the dynamic linker in the inferior to provide a suitable | |
2784 | PLABEL for the target function. */ | |
c5aa993b | 2785 | if (!using_gcc_plt_call) |
c906108c SS |
2786 | { |
2787 | CORE_ADDR new_fun; | |
2788 | ||
cce74817 | 2789 | /* Get a handle for the shared library containing FUN. Given the |
c5aa993b | 2790 | handle we can query the shared library for a PLABEL. */ |
cce74817 | 2791 | solib_handle = som_solib_get_solib_by_pc (fun); |
c906108c | 2792 | |
cce74817 | 2793 | if (solib_handle) |
c906108c | 2794 | { |
cce74817 | 2795 | struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun); |
c906108c | 2796 | |
cce74817 JM |
2797 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); |
2798 | ||
2799 | if (trampoline == NULL) | |
2800 | { | |
2801 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc."); | |
2802 | } | |
2803 | ||
2804 | /* This is where sr4export will jump to. */ | |
2805 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); | |
2806 | ||
2807 | /* If the function is in a shared library, then call __d_shl_get to | |
2808 | get a PLABEL for the target function. */ | |
2809 | new_stub = find_stub_with_shl_get (fmsymbol, solib_handle); | |
2810 | ||
c5aa993b | 2811 | if (new_stub == 0) |
22abf04a | 2812 | error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol)); |
c906108c SS |
2813 | |
2814 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
cce74817 | 2815 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, |
c5aa993b | 2816 | (struct objfile *) NULL); |
c906108c | 2817 | |
cce74817 JM |
2818 | if (msymbol == NULL) |
2819 | error ("Can't find an address for __shlib_funcptr"); | |
2820 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
c5aa993b | 2821 | (char *) &new_stub, 4); |
c906108c SS |
2822 | |
2823 | /* We want sr4export to call __d_plt_call, so we claim it is | |
2824 | the final target. Clear trampoline. */ | |
cce74817 JM |
2825 | fun = new_fun; |
2826 | trampoline = NULL; | |
c906108c SS |
2827 | } |
2828 | } | |
2829 | ||
2830 | /* Store upper 21 bits of function address into ldil. fun will either be | |
2831 | the final target (most cases) or __d_plt_call when calling into a shared | |
2832 | library and __gcc_plt_call is not available. */ | |
2833 | store_unsigned_integer | |
2834 | (&dummy[FUNC_LDIL_OFFSET], | |
2835 | INSTRUCTION_SIZE, | |
2836 | deposit_21 (fun >> 11, | |
2837 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], | |
2838 | INSTRUCTION_SIZE))); | |
2839 | ||
2840 | /* Store lower 11 bits of function address into ldo */ | |
2841 | store_unsigned_integer | |
2842 | (&dummy[FUNC_LDO_OFFSET], | |
2843 | INSTRUCTION_SIZE, | |
2844 | deposit_14 (fun & MASK_11, | |
2845 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], | |
2846 | INSTRUCTION_SIZE))); | |
2847 | #ifdef SR4EXPORT_LDIL_OFFSET | |
2848 | ||
2849 | { | |
2850 | CORE_ADDR trampoline_addr; | |
2851 | ||
2852 | /* We may still need sr4export's address too. */ | |
2853 | ||
2854 | if (trampoline == NULL) | |
2855 | { | |
2856 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2857 | if (msymbol == NULL) | |
cce74817 | 2858 | error ("Can't find an address for _sr4export trampoline"); |
c906108c SS |
2859 | |
2860 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2861 | } | |
2862 | else | |
2863 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
2864 | ||
2865 | ||
2866 | /* Store upper 21 bits of trampoline's address into ldil */ | |
2867 | store_unsigned_integer | |
2868 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2869 | INSTRUCTION_SIZE, | |
2870 | deposit_21 (trampoline_addr >> 11, | |
2871 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2872 | INSTRUCTION_SIZE))); | |
2873 | ||
2874 | /* Store lower 11 bits of trampoline's address into ldo */ | |
2875 | store_unsigned_integer | |
2876 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
2877 | INSTRUCTION_SIZE, | |
2878 | deposit_14 (trampoline_addr & MASK_11, | |
2879 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], | |
2880 | INSTRUCTION_SIZE))); | |
2881 | } | |
2882 | #endif | |
2883 | ||
2884 | write_register (22, pc); | |
2885 | ||
2886 | /* If we are in a syscall, then we should call the stack dummy | |
2887 | directly. $$dyncall is not needed as the kernel sets up the | |
2888 | space id registers properly based on the value in %r31. In | |
2889 | fact calling $$dyncall will not work because the value in %r22 | |
2890 | will be clobbered on the syscall exit path. | |
2891 | ||
2892 | Similarly if the current PC is in a shared library. Note however, | |
2893 | this scheme won't work if the shared library isn't mapped into | |
2894 | the same space as the stack. */ | |
2895 | if (flags & 2) | |
2896 | return pc; | |
2897 | #ifndef GDB_TARGET_IS_PA_ELF | |
60383d10 | 2898 | else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid))) |
c906108c SS |
2899 | return pc; |
2900 | #endif | |
2901 | else | |
2902 | return dyncall_addr; | |
53a5351d | 2903 | #endif |
c906108c SS |
2904 | } |
2905 | ||
c906108c SS |
2906 | /* If the pid is in a syscall, then the FP register is not readable. |
2907 | We'll return zero in that case, rather than attempting to read it | |
2908 | and cause a warning. */ | |
60383d10 | 2909 | |
c906108c | 2910 | CORE_ADDR |
60383d10 | 2911 | hppa_read_fp (int pid) |
c906108c SS |
2912 | { |
2913 | int flags = read_register (FLAGS_REGNUM); | |
2914 | ||
c5aa993b JM |
2915 | if (flags & 2) |
2916 | { | |
2917 | return (CORE_ADDR) 0; | |
2918 | } | |
c906108c SS |
2919 | |
2920 | /* This is the only site that may directly read_register () the FP | |
0ba6dca9 AC |
2921 | register. All others must use deprecated_read_fp (). */ |
2922 | return read_register (DEPRECATED_FP_REGNUM); | |
c906108c SS |
2923 | } |
2924 | ||
60383d10 JB |
2925 | CORE_ADDR |
2926 | hppa_target_read_fp (void) | |
2927 | { | |
2928 | return hppa_read_fp (PIDGET (inferior_ptid)); | |
2929 | } | |
c906108c SS |
2930 | |
2931 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege | |
2932 | bits. */ | |
2933 | ||
2934 | CORE_ADDR | |
60383d10 | 2935 | hppa_target_read_pc (ptid_t ptid) |
c906108c | 2936 | { |
39f77062 | 2937 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2938 | |
2939 | /* The following test does not belong here. It is OS-specific, and belongs | |
2940 | in native code. */ | |
2941 | /* Test SS_INSYSCALL */ | |
2942 | if (flags & 2) | |
39f77062 | 2943 | return read_register_pid (31, ptid) & ~0x3; |
c906108c | 2944 | |
449e1137 | 2945 | return read_register_pid (PCOQ_HEAD_REGNUM, ptid) & ~0x3; |
c906108c SS |
2946 | } |
2947 | ||
2948 | /* Write out the PC. If currently in a syscall, then also write the new | |
2949 | PC value into %r31. */ | |
2950 | ||
2951 | void | |
60383d10 | 2952 | hppa_target_write_pc (CORE_ADDR v, ptid_t ptid) |
c906108c | 2953 | { |
39f77062 | 2954 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2955 | |
2956 | /* The following test does not belong here. It is OS-specific, and belongs | |
2957 | in native code. */ | |
2958 | /* If in a syscall, then set %r31. Also make sure to get the | |
2959 | privilege bits set correctly. */ | |
2960 | /* Test SS_INSYSCALL */ | |
2961 | if (flags & 2) | |
39f77062 | 2962 | write_register_pid (31, v | 0x3, ptid); |
c906108c | 2963 | |
449e1137 | 2964 | write_register_pid (PCOQ_HEAD_REGNUM, v, ptid); |
adc11376 | 2965 | write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid); |
c906108c SS |
2966 | } |
2967 | ||
2968 | /* return the alignment of a type in bytes. Structures have the maximum | |
2969 | alignment required by their fields. */ | |
2970 | ||
2971 | static int | |
fba45db2 | 2972 | hppa_alignof (struct type *type) |
c906108c SS |
2973 | { |
2974 | int max_align, align, i; | |
2975 | CHECK_TYPEDEF (type); | |
2976 | switch (TYPE_CODE (type)) | |
2977 | { | |
2978 | case TYPE_CODE_PTR: | |
2979 | case TYPE_CODE_INT: | |
2980 | case TYPE_CODE_FLT: | |
2981 | return TYPE_LENGTH (type); | |
2982 | case TYPE_CODE_ARRAY: | |
2983 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
2984 | case TYPE_CODE_STRUCT: | |
2985 | case TYPE_CODE_UNION: | |
2986 | max_align = 1; | |
2987 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2988 | { | |
2989 | /* Bit fields have no real alignment. */ | |
2990 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 2991 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
2992 | { |
2993 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
2994 | max_align = max (max_align, align); | |
2995 | } | |
2996 | } | |
2997 | return max_align; | |
2998 | default: | |
2999 | return 4; | |
3000 | } | |
3001 | } | |
3002 | ||
3003 | /* Print the register regnum, or all registers if regnum is -1 */ | |
3004 | ||
3005 | void | |
fba45db2 | 3006 | pa_do_registers_info (int regnum, int fpregs) |
c906108c | 3007 | { |
b8b527c5 | 3008 | char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES); |
c906108c SS |
3009 | int i; |
3010 | ||
3011 | /* Make a copy of gdb's save area (may cause actual | |
3012 | reads from the target). */ | |
3013 | for (i = 0; i < NUM_REGS; i++) | |
62700349 AC |
3014 | frame_register_read (deprecated_selected_frame, i, |
3015 | raw_regs + DEPRECATED_REGISTER_BYTE (i)); | |
c906108c SS |
3016 | |
3017 | if (regnum == -1) | |
3018 | pa_print_registers (raw_regs, regnum, fpregs); | |
c5aa993b JM |
3019 | else if (regnum < FP4_REGNUM) |
3020 | { | |
3021 | long reg_val[2]; | |
3022 | ||
3023 | /* Why is the value not passed through "extract_signed_integer" | |
3024 | as in "pa_print_registers" below? */ | |
3025 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
3026 | ||
3027 | if (!is_pa_2) | |
3028 | { | |
ce414844 | 3029 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 3030 | } |
c906108c | 3031 | else |
c5aa993b JM |
3032 | { |
3033 | /* Fancy % formats to prevent leading zeros. */ | |
3034 | if (reg_val[0] == 0) | |
ce414844 | 3035 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 3036 | else |
ce414844 | 3037 | printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum), |
c5aa993b JM |
3038 | reg_val[0], reg_val[1]); |
3039 | } | |
c906108c | 3040 | } |
c906108c | 3041 | else |
c5aa993b JM |
3042 | /* Note that real floating point values only start at |
3043 | FP4_REGNUM. FP0 and up are just status and error | |
3044 | registers, which have integral (bit) values. */ | |
c906108c SS |
3045 | pa_print_fp_reg (regnum); |
3046 | } | |
3047 | ||
3048 | /********** new function ********************/ | |
3049 | void | |
fba45db2 KB |
3050 | pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream, |
3051 | enum precision_type precision) | |
c906108c | 3052 | { |
b8b527c5 | 3053 | char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES); |
c906108c SS |
3054 | int i; |
3055 | ||
3056 | /* Make a copy of gdb's save area (may cause actual | |
c5aa993b | 3057 | reads from the target). */ |
c906108c | 3058 | for (i = 0; i < NUM_REGS; i++) |
62700349 AC |
3059 | frame_register_read (deprecated_selected_frame, i, |
3060 | raw_regs + DEPRECATED_REGISTER_BYTE (i)); | |
c906108c SS |
3061 | |
3062 | if (regnum == -1) | |
3063 | pa_strcat_registers (raw_regs, regnum, fpregs, stream); | |
3064 | ||
c5aa993b JM |
3065 | else if (regnum < FP4_REGNUM) |
3066 | { | |
3067 | long reg_val[2]; | |
3068 | ||
3069 | /* Why is the value not passed through "extract_signed_integer" | |
3070 | as in "pa_print_registers" below? */ | |
3071 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
c906108c | 3072 | |
c5aa993b JM |
3073 | if (!is_pa_2) |
3074 | { | |
ce414844 | 3075 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 3076 | } |
c906108c | 3077 | else |
c5aa993b JM |
3078 | { |
3079 | /* Fancy % formats to prevent leading zeros. */ | |
3080 | if (reg_val[0] == 0) | |
ce414844 | 3081 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), |
c5aa993b JM |
3082 | reg_val[1]); |
3083 | else | |
ce414844 | 3084 | fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum), |
c5aa993b JM |
3085 | reg_val[0], reg_val[1]); |
3086 | } | |
c906108c | 3087 | } |
c906108c | 3088 | else |
c5aa993b JM |
3089 | /* Note that real floating point values only start at |
3090 | FP4_REGNUM. FP0 and up are just status and error | |
3091 | registers, which have integral (bit) values. */ | |
c906108c SS |
3092 | pa_strcat_fp_reg (regnum, stream, precision); |
3093 | } | |
3094 | ||
3095 | /* If this is a PA2.0 machine, fetch the real 64-bit register | |
3096 | value. Otherwise use the info from gdb's saved register area. | |
3097 | ||
3098 | Note that reg_val is really expected to be an array of longs, | |
3099 | with two elements. */ | |
3100 | static void | |
fba45db2 | 3101 | pa_register_look_aside (char *raw_regs, int regnum, long *raw_val) |
c906108c | 3102 | { |
c5aa993b | 3103 | static int know_which = 0; /* False */ |
c906108c | 3104 | |
c5aa993b | 3105 | int regaddr; |
c906108c | 3106 | unsigned int offset; |
52f0bd74 | 3107 | int i; |
c5aa993b JM |
3108 | int start; |
3109 | ||
3110 | ||
123a958e | 3111 | char buf[MAX_REGISTER_SIZE]; |
c906108c SS |
3112 | long long reg_val; |
3113 | ||
c5aa993b JM |
3114 | if (!know_which) |
3115 | { | |
3116 | if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION)) | |
3117 | { | |
3118 | is_pa_2 = (1 == 1); | |
3119 | } | |
3120 | ||
3121 | know_which = 1; /* True */ | |
3122 | } | |
c906108c SS |
3123 | |
3124 | raw_val[0] = 0; | |
3125 | raw_val[1] = 0; | |
3126 | ||
c5aa993b JM |
3127 | if (!is_pa_2) |
3128 | { | |
62700349 | 3129 | raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum)); |
c906108c | 3130 | return; |
c5aa993b | 3131 | } |
c906108c SS |
3132 | |
3133 | /* Code below copied from hppah-nat.c, with fixes for wide | |
3134 | registers, using different area of save_state, etc. */ | |
3135 | if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM || | |
c5aa993b JM |
3136 | !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE) |
3137 | { | |
c906108c | 3138 | /* Use narrow regs area of save_state and default macro. */ |
c5aa993b JM |
3139 | offset = U_REGS_OFFSET; |
3140 | regaddr = register_addr (regnum, offset); | |
3141 | start = 1; | |
3142 | } | |
3143 | else | |
3144 | { | |
c906108c SS |
3145 | /* Use wide regs area, and calculate registers as 8 bytes wide. |
3146 | ||
3147 | We'd like to do this, but current version of "C" doesn't | |
3148 | permit "offsetof": | |
3149 | ||
c5aa993b | 3150 | offset = offsetof(save_state_t, ss_wide); |
c906108c SS |
3151 | |
3152 | Note that to avoid "C" doing typed pointer arithmetic, we | |
3153 | have to cast away the type in our offset calculation: | |
3154 | otherwise we get an offset of 1! */ | |
3155 | ||
7a292a7a | 3156 | /* NB: save_state_t is not available before HPUX 9. |
c5aa993b | 3157 | The ss_wide field is not available previous to HPUX 10.20, |
7a292a7a SS |
3158 | so to avoid compile-time warnings, we only compile this for |
3159 | PA 2.0 processors. This control path should only be followed | |
3160 | if we're debugging a PA 2.0 processor, so this should not cause | |
3161 | problems. */ | |
3162 | ||
c906108c SS |
3163 | /* #if the following code out so that this file can still be |
3164 | compiled on older HPUX boxes (< 10.20) which don't have | |
3165 | this structure/structure member. */ | |
3166 | #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1 | |
3167 | save_state_t temp; | |
3168 | ||
3169 | offset = ((int) &temp.ss_wide) - ((int) &temp); | |
3170 | regaddr = offset + regnum * 8; | |
c5aa993b | 3171 | start = 0; |
c906108c | 3172 | #endif |
c5aa993b JM |
3173 | } |
3174 | ||
3175 | for (i = start; i < 2; i++) | |
c906108c SS |
3176 | { |
3177 | errno = 0; | |
39f77062 | 3178 | raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid), |
c5aa993b | 3179 | (PTRACE_ARG3_TYPE) regaddr, 0); |
c906108c SS |
3180 | if (errno != 0) |
3181 | { | |
3182 | /* Warning, not error, in case we are attached; sometimes the | |
3183 | kernel doesn't let us at the registers. */ | |
3184 | char *err = safe_strerror (errno); | |
3185 | char *msg = alloca (strlen (err) + 128); | |
3186 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err); | |
3187 | warning (msg); | |
3188 | goto error_exit; | |
3189 | } | |
3190 | ||
3191 | regaddr += sizeof (long); | |
3192 | } | |
c5aa993b | 3193 | |
c906108c | 3194 | if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) |
c5aa993b | 3195 | raw_val[1] &= ~0x3; /* I think we're masking out space bits */ |
c906108c SS |
3196 | |
3197 | error_exit: | |
3198 | ; | |
3199 | } | |
3200 | ||
3201 | /* "Info all-reg" command */ | |
c5aa993b | 3202 | |
c906108c | 3203 | static void |
fba45db2 | 3204 | pa_print_registers (char *raw_regs, int regnum, int fpregs) |
c906108c | 3205 | { |
c5aa993b | 3206 | int i, j; |
adf40b2e JM |
3207 | /* Alas, we are compiled so that "long long" is 32 bits */ |
3208 | long raw_val[2]; | |
c906108c | 3209 | long long_val; |
a0b3c4fd | 3210 | int rows = 48, columns = 2; |
c906108c | 3211 | |
adf40b2e | 3212 | for (i = 0; i < rows; i++) |
c906108c | 3213 | { |
adf40b2e | 3214 | for (j = 0; j < columns; j++) |
c906108c | 3215 | { |
adf40b2e JM |
3216 | /* We display registers in column-major order. */ |
3217 | int regnum = i + j * rows; | |
3218 | ||
c5aa993b JM |
3219 | /* Q: Why is the value passed through "extract_signed_integer", |
3220 | while above, in "pa_do_registers_info" it isn't? | |
3221 | A: ? */ | |
adf40b2e | 3222 | pa_register_look_aside (raw_regs, regnum, &raw_val[0]); |
c5aa993b JM |
3223 | |
3224 | /* Even fancier % formats to prevent leading zeros | |
3225 | and still maintain the output in columns. */ | |
3226 | if (!is_pa_2) | |
3227 | { | |
3228 | /* Being big-endian, on this machine the low bits | |
3229 | (the ones we want to look at) are in the second longword. */ | |
3230 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 | 3231 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 3232 | REGISTER_NAME (regnum), long_val); |
c5aa993b JM |
3233 | } |
3234 | else | |
3235 | { | |
3236 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
3237 | if (raw_val[0] == 0) | |
ce414844 | 3238 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 3239 | REGISTER_NAME (regnum), raw_val[1]); |
c5aa993b | 3240 | else |
ce414844 | 3241 | printf_filtered ("%10.10s: %8lx%8.8lx ", |
a0b3c4fd | 3242 | REGISTER_NAME (regnum), |
c5aa993b JM |
3243 | raw_val[0], raw_val[1]); |
3244 | } | |
c906108c SS |
3245 | } |
3246 | printf_unfiltered ("\n"); | |
3247 | } | |
c5aa993b | 3248 | |
c906108c | 3249 | if (fpregs) |
c5aa993b | 3250 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
3251 | pa_print_fp_reg (i); |
3252 | } | |
3253 | ||
c5aa993b | 3254 | /************* new function ******************/ |
c906108c | 3255 | static void |
fba45db2 KB |
3256 | pa_strcat_registers (char *raw_regs, int regnum, int fpregs, |
3257 | struct ui_file *stream) | |
c906108c | 3258 | { |
c5aa993b JM |
3259 | int i, j; |
3260 | long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ | |
c906108c SS |
3261 | long long_val; |
3262 | enum precision_type precision; | |
3263 | ||
3264 | precision = unspecified_precision; | |
3265 | ||
3266 | for (i = 0; i < 18; i++) | |
3267 | { | |
3268 | for (j = 0; j < 4; j++) | |
3269 | { | |
c5aa993b JM |
3270 | /* Q: Why is the value passed through "extract_signed_integer", |
3271 | while above, in "pa_do_registers_info" it isn't? | |
3272 | A: ? */ | |
3273 | pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]); | |
3274 | ||
3275 | /* Even fancier % formats to prevent leading zeros | |
3276 | and still maintain the output in columns. */ | |
3277 | if (!is_pa_2) | |
3278 | { | |
3279 | /* Being big-endian, on this machine the low bits | |
3280 | (the ones we want to look at) are in the second longword. */ | |
3281 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 AC |
3282 | fprintf_filtered (stream, "%8.8s: %8lx ", |
3283 | REGISTER_NAME (i + (j * 18)), long_val); | |
c5aa993b JM |
3284 | } |
3285 | else | |
3286 | { | |
3287 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
3288 | if (raw_val[0] == 0) | |
ce414844 AC |
3289 | fprintf_filtered (stream, "%8.8s: %8lx ", |
3290 | REGISTER_NAME (i + (j * 18)), raw_val[1]); | |
c5aa993b | 3291 | else |
ce414844 AC |
3292 | fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ", |
3293 | REGISTER_NAME (i + (j * 18)), raw_val[0], | |
3294 | raw_val[1]); | |
c5aa993b | 3295 | } |
c906108c SS |
3296 | } |
3297 | fprintf_unfiltered (stream, "\n"); | |
3298 | } | |
c5aa993b | 3299 | |
c906108c | 3300 | if (fpregs) |
c5aa993b | 3301 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
3302 | pa_strcat_fp_reg (i, stream, precision); |
3303 | } | |
3304 | ||
3305 | static void | |
fba45db2 | 3306 | pa_print_fp_reg (int i) |
c906108c | 3307 | { |
123a958e AC |
3308 | char raw_buffer[MAX_REGISTER_SIZE]; |
3309 | char virtual_buffer[MAX_REGISTER_SIZE]; | |
c906108c SS |
3310 | |
3311 | /* Get 32bits of data. */ | |
6e7f8b9c | 3312 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
3313 | |
3314 | /* Put it in the buffer. No conversions are ever necessary. */ | |
12c266ea | 3315 | memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i)); |
c906108c SS |
3316 | |
3317 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
3318 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
3319 | fputs_filtered ("(single precision) ", gdb_stdout); | |
3320 | ||
2e092625 | 3321 | val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0, |
c906108c SS |
3322 | 1, 0, Val_pretty_default); |
3323 | printf_filtered ("\n"); | |
3324 | ||
3325 | /* If "i" is even, then this register can also be a double-precision | |
3326 | FP register. Dump it out as such. */ | |
3327 | if ((i % 2) == 0) | |
3328 | { | |
3329 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 3330 | frame_register_read (deprecated_selected_frame, i + 1, raw_buffer); |
c906108c SS |
3331 | |
3332 | /* Copy it into the appropriate part of the virtual buffer. */ | |
12c266ea AC |
3333 | memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer, |
3334 | DEPRECATED_REGISTER_RAW_SIZE (i)); | |
c906108c SS |
3335 | |
3336 | /* Dump it as a double. */ | |
3337 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
3338 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
3339 | fputs_filtered ("(double precision) ", gdb_stdout); | |
3340 | ||
3341 | val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0, | |
3342 | 1, 0, Val_pretty_default); | |
3343 | printf_filtered ("\n"); | |
3344 | } | |
3345 | } | |
3346 | ||
3347 | /*************** new function ***********************/ | |
3348 | static void | |
fba45db2 | 3349 | pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision) |
c906108c | 3350 | { |
123a958e AC |
3351 | char raw_buffer[MAX_REGISTER_SIZE]; |
3352 | char virtual_buffer[MAX_REGISTER_SIZE]; | |
c906108c SS |
3353 | |
3354 | fputs_filtered (REGISTER_NAME (i), stream); | |
3355 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream); | |
3356 | ||
3357 | /* Get 32bits of data. */ | |
6e7f8b9c | 3358 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
3359 | |
3360 | /* Put it in the buffer. No conversions are ever necessary. */ | |
12c266ea | 3361 | memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i)); |
c906108c SS |
3362 | |
3363 | if (precision == double_precision && (i % 2) == 0) | |
3364 | { | |
3365 | ||
123a958e | 3366 | char raw_buf[MAX_REGISTER_SIZE]; |
c5aa993b JM |
3367 | |
3368 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 3369 | frame_register_read (deprecated_selected_frame, i + 1, raw_buf); |
c5aa993b JM |
3370 | |
3371 | /* Copy it into the appropriate part of the virtual buffer. */ | |
12c266ea AC |
3372 | memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf, |
3373 | DEPRECATED_REGISTER_RAW_SIZE (i)); | |
c906108c | 3374 | |
c5aa993b JM |
3375 | val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0, |
3376 | 1, 0, Val_pretty_default); | |
c906108c SS |
3377 | |
3378 | } | |
c5aa993b JM |
3379 | else |
3380 | { | |
2e092625 | 3381 | val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0, |
c5aa993b JM |
3382 | 1, 0, Val_pretty_default); |
3383 | } | |
c906108c SS |
3384 | |
3385 | } | |
3386 | ||
3387 | /* Return one if PC is in the call path of a trampoline, else return zero. | |
3388 | ||
3389 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3390 | just shared library trampolines (import, export). */ | |
3391 | ||
3392 | int | |
60383d10 | 3393 | hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3394 | { |
3395 | struct minimal_symbol *minsym; | |
3396 | struct unwind_table_entry *u; | |
3397 | static CORE_ADDR dyncall = 0; | |
3398 | static CORE_ADDR sr4export = 0; | |
3399 | ||
c2c6d25f JM |
3400 | #ifdef GDB_TARGET_IS_HPPA_20W |
3401 | /* PA64 has a completely different stub/trampoline scheme. Is it | |
3402 | better? Maybe. It's certainly harder to determine with any | |
3403 | certainty that we are in a stub because we can not refer to the | |
3404 | unwinders to help. | |
3405 | ||
3406 | The heuristic is simple. Try to lookup the current PC value in th | |
3407 | minimal symbol table. If that fails, then assume we are not in a | |
3408 | stub and return. | |
3409 | ||
3410 | Then see if the PC value falls within the section bounds for the | |
3411 | section containing the minimal symbol we found in the first | |
3412 | step. If it does, then assume we are not in a stub and return. | |
3413 | ||
3414 | Finally peek at the instructions to see if they look like a stub. */ | |
3415 | { | |
3416 | struct minimal_symbol *minsym; | |
3417 | asection *sec; | |
3418 | CORE_ADDR addr; | |
3419 | int insn, i; | |
3420 | ||
3421 | minsym = lookup_minimal_symbol_by_pc (pc); | |
3422 | if (! minsym) | |
3423 | return 0; | |
3424 | ||
3425 | sec = SYMBOL_BFD_SECTION (minsym); | |
3426 | ||
b98ed7be AM |
3427 | if (bfd_get_section_vma (sec->owner, sec) <= pc |
3428 | && pc < (bfd_get_section_vma (sec->owner, sec) | |
3429 | + bfd_section_size (sec->owner, sec))) | |
c2c6d25f JM |
3430 | return 0; |
3431 | ||
3432 | /* We might be in a stub. Peek at the instructions. Stubs are 3 | |
3433 | instructions long. */ | |
3434 | insn = read_memory_integer (pc, 4); | |
3435 | ||
b84a8afe | 3436 | /* Find out where we think we are within the stub. */ |
c2c6d25f JM |
3437 | if ((insn & 0xffffc00e) == 0x53610000) |
3438 | addr = pc; | |
3439 | else if ((insn & 0xffffffff) == 0xe820d000) | |
3440 | addr = pc - 4; | |
3441 | else if ((insn & 0xffffc00e) == 0x537b0000) | |
3442 | addr = pc - 8; | |
3443 | else | |
3444 | return 0; | |
3445 | ||
3446 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3447 | insn = read_memory_integer (addr, 4); | |
3448 | if ((insn & 0xffffc00e) != 0x53610000) | |
3449 | return 0; | |
3450 | ||
3451 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3452 | insn = read_memory_integer (addr + 4, 4); | |
3453 | if ((insn & 0xffffffff) != 0xe820d000) | |
3454 | return 0; | |
3455 | ||
3456 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3457 | insn = read_memory_integer (addr + 8, 4); | |
3458 | if ((insn & 0xffffc00e) != 0x537b0000) | |
3459 | return 0; | |
3460 | ||
3461 | /* Looks like a stub. */ | |
3462 | return 1; | |
3463 | } | |
3464 | #endif | |
3465 | ||
3466 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
3467 | new exec file */ | |
c906108c SS |
3468 | |
3469 | /* First see if PC is in one of the two C-library trampolines. */ | |
3470 | if (!dyncall) | |
3471 | { | |
3472 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3473 | if (minsym) | |
3474 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
3475 | else | |
3476 | dyncall = -1; | |
3477 | } | |
3478 | ||
3479 | if (!sr4export) | |
3480 | { | |
3481 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3482 | if (minsym) | |
3483 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
3484 | else | |
3485 | sr4export = -1; | |
3486 | } | |
3487 | ||
3488 | if (pc == dyncall || pc == sr4export) | |
3489 | return 1; | |
3490 | ||
104c1213 | 3491 | minsym = lookup_minimal_symbol_by_pc (pc); |
22abf04a | 3492 | if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0) |
104c1213 JM |
3493 | return 1; |
3494 | ||
c906108c SS |
3495 | /* Get the unwind descriptor corresponding to PC, return zero |
3496 | if no unwind was found. */ | |
3497 | u = find_unwind_entry (pc); | |
3498 | if (!u) | |
3499 | return 0; | |
3500 | ||
3501 | /* If this isn't a linker stub, then return now. */ | |
3502 | if (u->stub_unwind.stub_type == 0) | |
3503 | return 0; | |
3504 | ||
3505 | /* By definition a long-branch stub is a call stub. */ | |
3506 | if (u->stub_unwind.stub_type == LONG_BRANCH) | |
3507 | return 1; | |
3508 | ||
3509 | /* The call and return path execute the same instructions within | |
3510 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3511 | trampoline. */ | |
3512 | if (u->stub_unwind.stub_type == IMPORT) | |
3513 | return 1; | |
3514 | ||
3515 | /* Parameter relocation stubs always have a call path and may have a | |
3516 | return path. */ | |
3517 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3518 | || u->stub_unwind.stub_type == EXPORT) | |
3519 | { | |
3520 | CORE_ADDR addr; | |
3521 | ||
3522 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3523 | or the end of the stub. */ |
c906108c SS |
3524 | for (addr = pc; addr <= u->region_end; addr += 4) |
3525 | { | |
3526 | unsigned long insn; | |
3527 | ||
3528 | insn = read_memory_integer (addr, 4); | |
3529 | ||
3530 | /* Does it look like a bl? If so then it's the call path, if | |
3531 | we find a bv or be first, then we're on the return path. */ | |
3532 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3533 | return 1; | |
3534 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3535 | || (insn & 0xfc000000) == 0xe0000000) | |
3536 | return 0; | |
3537 | } | |
3538 | ||
3539 | /* Should never happen. */ | |
104c1213 JM |
3540 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3541 | return 0; | |
c906108c SS |
3542 | } |
3543 | ||
3544 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3545 | return 0; |
c906108c SS |
3546 | } |
3547 | ||
3548 | /* Return one if PC is in the return path of a trampoline, else return zero. | |
3549 | ||
3550 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3551 | just shared library trampolines (import, export). */ | |
3552 | ||
3553 | int | |
60383d10 | 3554 | hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3555 | { |
3556 | struct unwind_table_entry *u; | |
3557 | ||
3558 | /* Get the unwind descriptor corresponding to PC, return zero | |
3559 | if no unwind was found. */ | |
3560 | u = find_unwind_entry (pc); | |
3561 | if (!u) | |
3562 | return 0; | |
3563 | ||
3564 | /* If this isn't a linker stub or it's just a long branch stub, then | |
3565 | return zero. */ | |
3566 | if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) | |
3567 | return 0; | |
3568 | ||
3569 | /* The call and return path execute the same instructions within | |
3570 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3571 | trampoline. */ | |
3572 | if (u->stub_unwind.stub_type == IMPORT) | |
3573 | return 1; | |
3574 | ||
3575 | /* Parameter relocation stubs always have a call path and may have a | |
3576 | return path. */ | |
3577 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3578 | || u->stub_unwind.stub_type == EXPORT) | |
3579 | { | |
3580 | CORE_ADDR addr; | |
3581 | ||
3582 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3583 | or the end of the stub. */ |
c906108c SS |
3584 | for (addr = pc; addr <= u->region_end; addr += 4) |
3585 | { | |
3586 | unsigned long insn; | |
3587 | ||
3588 | insn = read_memory_integer (addr, 4); | |
3589 | ||
3590 | /* Does it look like a bl? If so then it's the call path, if | |
3591 | we find a bv or be first, then we're on the return path. */ | |
3592 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3593 | return 0; | |
3594 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3595 | || (insn & 0xfc000000) == 0xe0000000) | |
3596 | return 1; | |
3597 | } | |
3598 | ||
3599 | /* Should never happen. */ | |
104c1213 JM |
3600 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3601 | return 0; | |
c906108c SS |
3602 | } |
3603 | ||
3604 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3605 | return 0; |
c906108c SS |
3606 | |
3607 | } | |
3608 | ||
3609 | /* Figure out if PC is in a trampoline, and if so find out where | |
3610 | the trampoline will jump to. If not in a trampoline, return zero. | |
3611 | ||
3612 | Simple code examination probably is not a good idea since the code | |
3613 | sequences in trampolines can also appear in user code. | |
3614 | ||
3615 | We use unwinds and information from the minimal symbol table to | |
3616 | determine when we're in a trampoline. This won't work for ELF | |
3617 | (yet) since it doesn't create stub unwind entries. Whether or | |
3618 | not ELF will create stub unwinds or normal unwinds for linker | |
3619 | stubs is still being debated. | |
3620 | ||
3621 | This should handle simple calls through dyncall or sr4export, | |
3622 | long calls, argument relocation stubs, and dyncall/sr4export | |
3623 | calling an argument relocation stub. It even handles some stubs | |
3624 | used in dynamic executables. */ | |
3625 | ||
c906108c | 3626 | CORE_ADDR |
60383d10 | 3627 | hppa_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
3628 | { |
3629 | long orig_pc = pc; | |
3630 | long prev_inst, curr_inst, loc; | |
3631 | static CORE_ADDR dyncall = 0; | |
3632 | static CORE_ADDR dyncall_external = 0; | |
3633 | static CORE_ADDR sr4export = 0; | |
3634 | struct minimal_symbol *msym; | |
3635 | struct unwind_table_entry *u; | |
3636 | ||
c2c6d25f JM |
3637 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
3638 | new exec file */ | |
c906108c SS |
3639 | |
3640 | if (!dyncall) | |
3641 | { | |
3642 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3643 | if (msym) | |
3644 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
3645 | else | |
3646 | dyncall = -1; | |
3647 | } | |
3648 | ||
3649 | if (!dyncall_external) | |
3650 | { | |
3651 | msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); | |
3652 | if (msym) | |
3653 | dyncall_external = SYMBOL_VALUE_ADDRESS (msym); | |
3654 | else | |
3655 | dyncall_external = -1; | |
3656 | } | |
3657 | ||
3658 | if (!sr4export) | |
3659 | { | |
3660 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3661 | if (msym) | |
3662 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
3663 | else | |
3664 | sr4export = -1; | |
3665 | } | |
3666 | ||
3667 | /* Addresses passed to dyncall may *NOT* be the actual address | |
3668 | of the function. So we may have to do something special. */ | |
3669 | if (pc == dyncall) | |
3670 | { | |
3671 | pc = (CORE_ADDR) read_register (22); | |
3672 | ||
3673 | /* If bit 30 (counting from the left) is on, then pc is the address of | |
c5aa993b JM |
3674 | the PLT entry for this function, not the address of the function |
3675 | itself. Bit 31 has meaning too, but only for MPE. */ | |
c906108c | 3676 | if (pc & 0x2) |
53a5351d | 3677 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3678 | } |
3679 | if (pc == dyncall_external) | |
3680 | { | |
3681 | pc = (CORE_ADDR) read_register (22); | |
53a5351d | 3682 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3683 | } |
3684 | else if (pc == sr4export) | |
3685 | pc = (CORE_ADDR) (read_register (22)); | |
3686 | ||
3687 | /* Get the unwind descriptor corresponding to PC, return zero | |
3688 | if no unwind was found. */ | |
3689 | u = find_unwind_entry (pc); | |
3690 | if (!u) | |
3691 | return 0; | |
3692 | ||
3693 | /* If this isn't a linker stub, then return now. */ | |
3694 | /* elz: attention here! (FIXME) because of a compiler/linker | |
3695 | error, some stubs which should have a non zero stub_unwind.stub_type | |
3696 | have unfortunately a value of zero. So this function would return here | |
3697 | as if we were not in a trampoline. To fix this, we go look at the partial | |
3698 | symbol information, which reports this guy as a stub. | |
3699 | (FIXME): Unfortunately, we are not that lucky: it turns out that the | |
3700 | partial symbol information is also wrong sometimes. This is because | |
3701 | when it is entered (somread.c::som_symtab_read()) it can happen that | |
3702 | if the type of the symbol (from the som) is Entry, and the symbol is | |
3703 | in a shared library, then it can also be a trampoline. This would | |
3704 | be OK, except that I believe the way they decide if we are ina shared library | |
3705 | does not work. SOOOO..., even if we have a regular function w/o trampolines | |
3706 | its minimal symbol can be assigned type mst_solib_trampoline. | |
3707 | Also, if we find that the symbol is a real stub, then we fix the unwind | |
3708 | descriptor, and define the stub type to be EXPORT. | |
c5aa993b | 3709 | Hopefully this is correct most of the times. */ |
c906108c | 3710 | if (u->stub_unwind.stub_type == 0) |
c5aa993b | 3711 | { |
c906108c SS |
3712 | |
3713 | /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed | |
3714 | we can delete all the code which appears between the lines */ | |
3715 | /*--------------------------------------------------------------------------*/ | |
c5aa993b | 3716 | msym = lookup_minimal_symbol_by_pc (pc); |
c906108c | 3717 | |
c5aa993b JM |
3718 | if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) |
3719 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3720 | ||
3721 | else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) | |
3722 | { | |
3723 | struct objfile *objfile; | |
3724 | struct minimal_symbol *msymbol; | |
3725 | int function_found = 0; | |
3726 | ||
3727 | /* go look if there is another minimal symbol with the same name as | |
3728 | this one, but with type mst_text. This would happen if the msym | |
3729 | is an actual trampoline, in which case there would be another | |
3730 | symbol with the same name corresponding to the real function */ | |
3731 | ||
3732 | ALL_MSYMBOLS (objfile, msymbol) | |
3733 | { | |
3734 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
cb137aa5 | 3735 | && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym))) |
c5aa993b JM |
3736 | { |
3737 | function_found = 1; | |
3738 | break; | |
3739 | } | |
3740 | } | |
3741 | ||
3742 | if (function_found) | |
3743 | /* the type of msym is correct (mst_solib_trampoline), but | |
3744 | the unwind info is wrong, so set it to the correct value */ | |
3745 | u->stub_unwind.stub_type = EXPORT; | |
3746 | else | |
3747 | /* the stub type info in the unwind is correct (this is not a | |
3748 | trampoline), but the msym type information is wrong, it | |
3749 | should be mst_text. So we need to fix the msym, and also | |
3750 | get out of this function */ | |
3751 | { | |
3752 | MSYMBOL_TYPE (msym) = mst_text; | |
3753 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3754 | } | |
3755 | } | |
c906108c | 3756 | |
c906108c | 3757 | /*--------------------------------------------------------------------------*/ |
c5aa993b | 3758 | } |
c906108c SS |
3759 | |
3760 | /* It's a stub. Search for a branch and figure out where it goes. | |
3761 | Note we have to handle multi insn branch sequences like ldil;ble. | |
3762 | Most (all?) other branches can be determined by examining the contents | |
3763 | of certain registers and the stack. */ | |
3764 | ||
3765 | loc = pc; | |
3766 | curr_inst = 0; | |
3767 | prev_inst = 0; | |
3768 | while (1) | |
3769 | { | |
3770 | /* Make sure we haven't walked outside the range of this stub. */ | |
3771 | if (u != find_unwind_entry (loc)) | |
3772 | { | |
3773 | warning ("Unable to find branch in linker stub"); | |
3774 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3775 | } | |
3776 | ||
3777 | prev_inst = curr_inst; | |
3778 | curr_inst = read_memory_integer (loc, 4); | |
3779 | ||
3780 | /* Does it look like a branch external using %r1? Then it's the | |
c5aa993b | 3781 | branch from the stub to the actual function. */ |
c906108c SS |
3782 | if ((curr_inst & 0xffe0e000) == 0xe0202000) |
3783 | { | |
3784 | /* Yup. See if the previous instruction loaded | |
3785 | a value into %r1. If so compute and return the jump address. */ | |
3786 | if ((prev_inst & 0xffe00000) == 0x20200000) | |
3787 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
3788 | else | |
3789 | { | |
3790 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
3791 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3792 | } | |
3793 | } | |
3794 | ||
3795 | /* Does it look like a be 0(sr0,%r21)? OR | |
3796 | Does it look like a be, n 0(sr0,%r21)? OR | |
3797 | Does it look like a bve (r21)? (this is on PA2.0) | |
3798 | Does it look like a bve, n(r21)? (this is also on PA2.0) | |
3799 | That's the branch from an | |
c5aa993b | 3800 | import stub to an export stub. |
c906108c | 3801 | |
c5aa993b JM |
3802 | It is impossible to determine the target of the branch via |
3803 | simple examination of instructions and/or data (consider | |
3804 | that the address in the plabel may be the address of the | |
3805 | bind-on-reference routine in the dynamic loader). | |
c906108c | 3806 | |
c5aa993b | 3807 | So we have try an alternative approach. |
c906108c | 3808 | |
c5aa993b JM |
3809 | Get the name of the symbol at our current location; it should |
3810 | be a stub symbol with the same name as the symbol in the | |
3811 | shared library. | |
c906108c | 3812 | |
c5aa993b JM |
3813 | Then lookup a minimal symbol with the same name; we should |
3814 | get the minimal symbol for the target routine in the shared | |
3815 | library as those take precedence of import/export stubs. */ | |
c906108c | 3816 | if ((curr_inst == 0xe2a00000) || |
c5aa993b JM |
3817 | (curr_inst == 0xe2a00002) || |
3818 | (curr_inst == 0xeaa0d000) || | |
3819 | (curr_inst == 0xeaa0d002)) | |
c906108c SS |
3820 | { |
3821 | struct minimal_symbol *stubsym, *libsym; | |
3822 | ||
3823 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
3824 | if (stubsym == NULL) | |
3825 | { | |
ce414844 | 3826 | warning ("Unable to find symbol for 0x%lx", loc); |
c906108c SS |
3827 | return orig_pc == pc ? 0 : pc & ~0x3; |
3828 | } | |
3829 | ||
22abf04a | 3830 | libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL); |
c906108c SS |
3831 | if (libsym == NULL) |
3832 | { | |
3833 | warning ("Unable to find library symbol for %s\n", | |
22abf04a | 3834 | DEPRECATED_SYMBOL_NAME (stubsym)); |
c906108c SS |
3835 | return orig_pc == pc ? 0 : pc & ~0x3; |
3836 | } | |
3837 | ||
3838 | return SYMBOL_VALUE (libsym); | |
3839 | } | |
3840 | ||
3841 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a | |
c5aa993b JM |
3842 | branch from the stub to the actual function. */ |
3843 | /*elz */ | |
c906108c SS |
3844 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 |
3845 | || (curr_inst & 0xffe0e000) == 0xe8000000 | |
c5aa993b | 3846 | || (curr_inst & 0xffe0e000) == 0xe800A000) |
c906108c SS |
3847 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
3848 | ||
3849 | /* Does it look like bv (rp)? Note this depends on the | |
c5aa993b JM |
3850 | current stack pointer being the same as the stack |
3851 | pointer in the stub itself! This is a branch on from the | |
3852 | stub back to the original caller. */ | |
3853 | /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ | |
c906108c SS |
3854 | else if ((curr_inst & 0xffe0f000) == 0xe840c000) |
3855 | { | |
3856 | /* Yup. See if the previous instruction loaded | |
3857 | rp from sp - 8. */ | |
3858 | if (prev_inst == 0x4bc23ff1) | |
3859 | return (read_memory_integer | |
3860 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
3861 | else | |
3862 | { | |
3863 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
3864 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3865 | } | |
3866 | } | |
3867 | ||
3868 | /* elz: added this case to capture the new instruction | |
3869 | at the end of the return part of an export stub used by | |
3870 | the PA2.0: BVE, n (rp) */ | |
3871 | else if ((curr_inst & 0xffe0f000) == 0xe840d000) | |
3872 | { | |
c5aa993b | 3873 | return (read_memory_integer |
53a5351d | 3874 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3875 | } |
3876 | ||
3877 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
c5aa993b | 3878 | the original caller from the stub. Used in dynamic executables. */ |
c906108c SS |
3879 | else if (curr_inst == 0xe0400002) |
3880 | { | |
3881 | /* The value we jump to is sitting in sp - 24. But that's | |
3882 | loaded several instructions before the be instruction. | |
3883 | I guess we could check for the previous instruction being | |
3884 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
c5aa993b | 3885 | return (read_memory_integer |
53a5351d | 3886 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3887 | } |
3888 | ||
3889 | /* Haven't found the branch yet, but we're still in the stub. | |
c5aa993b | 3890 | Keep looking. */ |
c906108c SS |
3891 | loc += 4; |
3892 | } | |
3893 | } | |
3894 | ||
3895 | ||
3896 | /* For the given instruction (INST), return any adjustment it makes | |
3897 | to the stack pointer or zero for no adjustment. | |
3898 | ||
3899 | This only handles instructions commonly found in prologues. */ | |
3900 | ||
3901 | static int | |
fba45db2 | 3902 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
3903 | { |
3904 | /* This must persist across calls. */ | |
3905 | static int save_high21; | |
3906 | ||
3907 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
3908 | if ((inst & 0xffffc000) == 0x37de0000) | |
3909 | return extract_14 (inst); | |
3910 | ||
3911 | /* stwm X,D(sp) */ | |
3912 | if ((inst & 0xffe00000) == 0x6fc00000) | |
3913 | return extract_14 (inst); | |
3914 | ||
104c1213 JM |
3915 | /* std,ma X,D(sp) */ |
3916 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 3917 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 3918 | |
c906108c SS |
3919 | /* addil high21,%r1; ldo low11,(%r1),%r30) |
3920 | save high bits in save_high21 for later use. */ | |
3921 | if ((inst & 0xffe00000) == 0x28200000) | |
3922 | { | |
3923 | save_high21 = extract_21 (inst); | |
3924 | return 0; | |
3925 | } | |
3926 | ||
3927 | if ((inst & 0xffff0000) == 0x343e0000) | |
3928 | return save_high21 + extract_14 (inst); | |
3929 | ||
3930 | /* fstws as used by the HP compilers. */ | |
3931 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
3932 | return extract_5_load (inst); | |
3933 | ||
3934 | /* No adjustment. */ | |
3935 | return 0; | |
3936 | } | |
3937 | ||
3938 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
3939 | ||
3940 | static int | |
fba45db2 | 3941 | is_branch (unsigned long inst) |
c906108c SS |
3942 | { |
3943 | switch (inst >> 26) | |
3944 | { | |
3945 | case 0x20: | |
3946 | case 0x21: | |
3947 | case 0x22: | |
3948 | case 0x23: | |
7be570e7 | 3949 | case 0x27: |
c906108c SS |
3950 | case 0x28: |
3951 | case 0x29: | |
3952 | case 0x2a: | |
3953 | case 0x2b: | |
7be570e7 | 3954 | case 0x2f: |
c906108c SS |
3955 | case 0x30: |
3956 | case 0x31: | |
3957 | case 0x32: | |
3958 | case 0x33: | |
3959 | case 0x38: | |
3960 | case 0x39: | |
3961 | case 0x3a: | |
7be570e7 | 3962 | case 0x3b: |
c906108c SS |
3963 | return 1; |
3964 | ||
3965 | default: | |
3966 | return 0; | |
3967 | } | |
3968 | } | |
3969 | ||
3970 | /* Return the register number for a GR which is saved by INST or | |
3971 | zero it INST does not save a GR. */ | |
3972 | ||
3973 | static int | |
fba45db2 | 3974 | inst_saves_gr (unsigned long inst) |
c906108c SS |
3975 | { |
3976 | /* Does it look like a stw? */ | |
7be570e7 JM |
3977 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
3978 | || (inst >> 26) == 0x1f | |
3979 | || ((inst >> 26) == 0x1f | |
3980 | && ((inst >> 6) == 0xa))) | |
3981 | return extract_5R_store (inst); | |
3982 | ||
3983 | /* Does it look like a std? */ | |
3984 | if ((inst >> 26) == 0x1c | |
3985 | || ((inst >> 26) == 0x03 | |
3986 | && ((inst >> 6) & 0xf) == 0xb)) | |
c906108c SS |
3987 | return extract_5R_store (inst); |
3988 | ||
3989 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
3990 | if ((inst >> 26) == 0x1b) | |
3991 | return extract_5R_store (inst); | |
3992 | ||
3993 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
3994 | too. */ | |
7be570e7 JM |
3995 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
3996 | || ((inst >> 26) == 0x3 | |
3997 | && (((inst >> 6) & 0xf) == 0x8 | |
3998 | || (inst >> 6) & 0xf) == 0x9)) | |
c906108c | 3999 | return extract_5R_store (inst); |
c5aa993b | 4000 | |
c906108c SS |
4001 | return 0; |
4002 | } | |
4003 | ||
4004 | /* Return the register number for a FR which is saved by INST or | |
4005 | zero it INST does not save a FR. | |
4006 | ||
4007 | Note we only care about full 64bit register stores (that's the only | |
4008 | kind of stores the prologue will use). | |
4009 | ||
4010 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
4011 | ||
4012 | static int | |
fba45db2 | 4013 | inst_saves_fr (unsigned long inst) |
c906108c | 4014 | { |
7be570e7 | 4015 | /* is this an FSTD ? */ |
c906108c SS |
4016 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
4017 | return extract_5r_store (inst); | |
7be570e7 JM |
4018 | if ((inst & 0xfc000002) == 0x70000002) |
4019 | return extract_5R_store (inst); | |
4020 | /* is this an FSTW ? */ | |
c906108c SS |
4021 | if ((inst & 0xfc00df80) == 0x24001200) |
4022 | return extract_5r_store (inst); | |
7be570e7 JM |
4023 | if ((inst & 0xfc000002) == 0x7c000000) |
4024 | return extract_5R_store (inst); | |
c906108c SS |
4025 | return 0; |
4026 | } | |
4027 | ||
4028 | /* Advance PC across any function entry prologue instructions | |
4029 | to reach some "real" code. | |
4030 | ||
4031 | Use information in the unwind table to determine what exactly should | |
4032 | be in the prologue. */ | |
4033 | ||
4034 | ||
4035 | CORE_ADDR | |
fba45db2 | 4036 | skip_prologue_hard_way (CORE_ADDR pc) |
c906108c SS |
4037 | { |
4038 | char buf[4]; | |
4039 | CORE_ADDR orig_pc = pc; | |
4040 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
4041 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
4042 | struct unwind_table_entry *u; | |
4043 | ||
4044 | restart_gr = 0; | |
4045 | restart_fr = 0; | |
4046 | ||
4047 | restart: | |
4048 | u = find_unwind_entry (pc); | |
4049 | if (!u) | |
4050 | return pc; | |
4051 | ||
c5aa993b | 4052 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
4053 | if ((pc & ~0x3) != u->region_start) |
4054 | return pc; | |
4055 | ||
4056 | /* This is how much of a frame adjustment we need to account for. */ | |
4057 | stack_remaining = u->Total_frame_size << 3; | |
4058 | ||
4059 | /* Magic register saves we want to know about. */ | |
4060 | save_rp = u->Save_RP; | |
4061 | save_sp = u->Save_SP; | |
4062 | ||
4063 | /* An indication that args may be stored into the stack. Unfortunately | |
4064 | the HPUX compilers tend to set this in cases where no args were | |
4065 | stored too!. */ | |
4066 | args_stored = 1; | |
4067 | ||
4068 | /* Turn the Entry_GR field into a bitmask. */ | |
4069 | save_gr = 0; | |
4070 | for (i = 3; i < u->Entry_GR + 3; i++) | |
4071 | { | |
4072 | /* Frame pointer gets saved into a special location. */ | |
0ba6dca9 | 4073 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) |
c906108c SS |
4074 | continue; |
4075 | ||
4076 | save_gr |= (1 << i); | |
4077 | } | |
4078 | save_gr &= ~restart_gr; | |
4079 | ||
4080 | /* Turn the Entry_FR field into a bitmask too. */ | |
4081 | save_fr = 0; | |
4082 | for (i = 12; i < u->Entry_FR + 12; i++) | |
4083 | save_fr |= (1 << i); | |
4084 | save_fr &= ~restart_fr; | |
4085 | ||
4086 | /* Loop until we find everything of interest or hit a branch. | |
4087 | ||
4088 | For unoptimized GCC code and for any HP CC code this will never ever | |
4089 | examine any user instructions. | |
4090 | ||
4091 | For optimzied GCC code we're faced with problems. GCC will schedule | |
4092 | its prologue and make prologue instructions available for delay slot | |
4093 | filling. The end result is user code gets mixed in with the prologue | |
4094 | and a prologue instruction may be in the delay slot of the first branch | |
4095 | or call. | |
4096 | ||
4097 | Some unexpected things are expected with debugging optimized code, so | |
4098 | we allow this routine to walk past user instructions in optimized | |
4099 | GCC code. */ | |
4100 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
4101 | || args_stored) | |
4102 | { | |
4103 | unsigned int reg_num; | |
4104 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
4105 | unsigned long old_save_rp, old_save_sp, next_inst; | |
4106 | ||
4107 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 4108 | (only for HPC). */ |
c906108c SS |
4109 | old_save_gr = save_gr; |
4110 | old_save_fr = save_fr; | |
4111 | old_save_rp = save_rp; | |
4112 | old_save_sp = save_sp; | |
4113 | old_stack_remaining = stack_remaining; | |
4114 | ||
4115 | status = target_read_memory (pc, buf, 4); | |
4116 | inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 4117 | |
c906108c SS |
4118 | /* Yow! */ |
4119 | if (status != 0) | |
4120 | return pc; | |
4121 | ||
4122 | /* Note the interesting effects of this instruction. */ | |
4123 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
4124 | ||
7be570e7 JM |
4125 | /* There are limited ways to store the return pointer into the |
4126 | stack. */ | |
4127 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
4128 | save_rp = 0; |
4129 | ||
104c1213 | 4130 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 4131 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
4132 | if ((inst & 0xffffc000) == 0x6fc10000 |
4133 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
4134 | save_sp = 0; |
4135 | ||
6426a772 JM |
4136 | /* Are we loading some register with an offset from the argument |
4137 | pointer? */ | |
4138 | if ((inst & 0xffe00000) == 0x37a00000 | |
4139 | || (inst & 0xffffffe0) == 0x081d0240) | |
4140 | { | |
4141 | pc += 4; | |
4142 | continue; | |
4143 | } | |
4144 | ||
c906108c SS |
4145 | /* Account for general and floating-point register saves. */ |
4146 | reg_num = inst_saves_gr (inst); | |
4147 | save_gr &= ~(1 << reg_num); | |
4148 | ||
4149 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
4150 | Unfortunately args_stored only tells us that some arguments |
4151 | where stored into the stack. Not how many or what kind! | |
c906108c | 4152 | |
c5aa993b JM |
4153 | This is a kludge as on the HP compiler sets this bit and it |
4154 | never does prologue scheduling. So once we see one, skip past | |
4155 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 4156 | |
c5aa993b JM |
4157 | FIXME. Can still die if we have a mix of GR and FR argument |
4158 | stores! */ | |
6426a772 | 4159 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 4160 | { |
6426a772 | 4161 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
4162 | { |
4163 | pc += 4; | |
4164 | status = target_read_memory (pc, buf, 4); | |
4165 | inst = extract_unsigned_integer (buf, 4); | |
4166 | if (status != 0) | |
4167 | return pc; | |
4168 | reg_num = inst_saves_gr (inst); | |
4169 | } | |
4170 | args_stored = 0; | |
4171 | continue; | |
4172 | } | |
4173 | ||
4174 | reg_num = inst_saves_fr (inst); | |
4175 | save_fr &= ~(1 << reg_num); | |
4176 | ||
4177 | status = target_read_memory (pc + 4, buf, 4); | |
4178 | next_inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 4179 | |
c906108c SS |
4180 | /* Yow! */ |
4181 | if (status != 0) | |
4182 | return pc; | |
4183 | ||
4184 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 4185 | save. */ |
c906108c SS |
4186 | if ((inst & 0xfc000000) == 0x34000000 |
4187 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 4188 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
4189 | { |
4190 | /* So we drop into the code below in a reasonable state. */ | |
4191 | reg_num = inst_saves_fr (next_inst); | |
4192 | pc -= 4; | |
4193 | } | |
4194 | ||
4195 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
4196 | This is a kludge as on the HP compiler sets this bit and it |
4197 | never does prologue scheduling. So once we see one, skip past | |
4198 | all of them. */ | |
6426a772 | 4199 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 4200 | { |
6426a772 | 4201 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
4202 | { |
4203 | pc += 8; | |
4204 | status = target_read_memory (pc, buf, 4); | |
4205 | inst = extract_unsigned_integer (buf, 4); | |
4206 | if (status != 0) | |
4207 | return pc; | |
4208 | if ((inst & 0xfc000000) != 0x34000000) | |
4209 | break; | |
4210 | status = target_read_memory (pc + 4, buf, 4); | |
4211 | next_inst = extract_unsigned_integer (buf, 4); | |
4212 | if (status != 0) | |
4213 | return pc; | |
4214 | reg_num = inst_saves_fr (next_inst); | |
4215 | } | |
4216 | args_stored = 0; | |
4217 | continue; | |
4218 | } | |
4219 | ||
4220 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 4221 | instruction is in the delay slot of the first call/branch. */ |
c906108c SS |
4222 | if (is_branch (inst)) |
4223 | break; | |
4224 | ||
4225 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
4226 | arguments were stored into the stack (boo hiss). This could |
4227 | cause this code to then skip a bunch of user insns (up to the | |
4228 | first branch). | |
4229 | ||
4230 | To combat this we try to identify when args_stored was bogusly | |
4231 | set and clear it. We only do this when args_stored is nonzero, | |
4232 | all other resources are accounted for, and nothing changed on | |
4233 | this pass. */ | |
c906108c | 4234 | if (args_stored |
c5aa993b | 4235 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
4236 | && old_save_gr == save_gr && old_save_fr == save_fr |
4237 | && old_save_rp == save_rp && old_save_sp == save_sp | |
4238 | && old_stack_remaining == stack_remaining) | |
4239 | break; | |
c5aa993b | 4240 | |
c906108c SS |
4241 | /* Bump the PC. */ |
4242 | pc += 4; | |
4243 | } | |
4244 | ||
4245 | /* We've got a tenative location for the end of the prologue. However | |
4246 | because of limitations in the unwind descriptor mechanism we may | |
4247 | have went too far into user code looking for the save of a register | |
4248 | that does not exist. So, if there registers we expected to be saved | |
4249 | but never were, mask them out and restart. | |
4250 | ||
4251 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 4252 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
4253 | { |
4254 | pc = orig_pc; | |
4255 | restart_gr = save_gr; | |
4256 | restart_fr = save_fr; | |
4257 | goto restart; | |
4258 | } | |
4259 | ||
4260 | return pc; | |
4261 | } | |
4262 | ||
4263 | ||
7be570e7 JM |
4264 | /* Return the address of the PC after the last prologue instruction if |
4265 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
4266 | |
4267 | static CORE_ADDR | |
fba45db2 | 4268 | after_prologue (CORE_ADDR pc) |
c906108c SS |
4269 | { |
4270 | struct symtab_and_line sal; | |
4271 | CORE_ADDR func_addr, func_end; | |
4272 | struct symbol *f; | |
4273 | ||
7be570e7 JM |
4274 | /* If we can not find the symbol in the partial symbol table, then |
4275 | there is no hope we can determine the function's start address | |
4276 | with this code. */ | |
c906108c | 4277 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 4278 | return 0; |
c906108c | 4279 | |
7be570e7 | 4280 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
4281 | sal = find_pc_line (func_addr, 0); |
4282 | ||
7be570e7 JM |
4283 | /* There are only two cases to consider. First, the end of the source line |
4284 | is within the function bounds. In that case we return the end of the | |
4285 | source line. Second is the end of the source line extends beyond the | |
4286 | bounds of the current function. We need to use the slow code to | |
4287 | examine instructions in that case. | |
c906108c | 4288 | |
7be570e7 JM |
4289 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
4290 | the wrong thing to do. In fact, it should be entirely possible for this | |
4291 | function to always return zero since the slow instruction scanning code | |
4292 | is supposed to *always* work. If it does not, then it is a bug. */ | |
4293 | if (sal.end < func_end) | |
4294 | return sal.end; | |
c5aa993b | 4295 | else |
7be570e7 | 4296 | return 0; |
c906108c SS |
4297 | } |
4298 | ||
4299 | /* To skip prologues, I use this predicate. Returns either PC itself | |
4300 | if the code at PC does not look like a function prologue; otherwise | |
4301 | returns an address that (if we're lucky) follows the prologue. If | |
4302 | LENIENT, then we must skip everything which is involved in setting | |
4303 | up the frame (it's OK to skip more, just so long as we don't skip | |
4304 | anything which might clobber the registers which are being saved. | |
4305 | Currently we must not skip more on the alpha, but we might the lenient | |
4306 | stuff some day. */ | |
4307 | ||
4308 | CORE_ADDR | |
fba45db2 | 4309 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 4310 | { |
c5aa993b JM |
4311 | unsigned long inst; |
4312 | int offset; | |
4313 | CORE_ADDR post_prologue_pc; | |
4314 | char buf[4]; | |
c906108c | 4315 | |
c5aa993b JM |
4316 | /* See if we can determine the end of the prologue via the symbol table. |
4317 | If so, then return either PC, or the PC after the prologue, whichever | |
4318 | is greater. */ | |
c906108c | 4319 | |
c5aa993b | 4320 | post_prologue_pc = after_prologue (pc); |
c906108c | 4321 | |
7be570e7 JM |
4322 | /* If after_prologue returned a useful address, then use it. Else |
4323 | fall back on the instruction skipping code. | |
4324 | ||
4325 | Some folks have claimed this causes problems because the breakpoint | |
4326 | may be the first instruction of the prologue. If that happens, then | |
4327 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
4328 | if (post_prologue_pc != 0) |
4329 | return max (pc, post_prologue_pc); | |
c5aa993b JM |
4330 | else |
4331 | return (skip_prologue_hard_way (pc)); | |
c906108c SS |
4332 | } |
4333 | ||
43bd9a9e AC |
4334 | /* Put here the code to store, into the SAVED_REGS, the addresses of |
4335 | the saved registers of frame described by FRAME_INFO. This | |
4336 | includes special registers such as pc and fp saved in special ways | |
4337 | in the stack frame. sp is even more special: the address we return | |
4338 | for it IS the sp for the next frame. */ | |
c906108c SS |
4339 | |
4340 | void | |
fba45db2 | 4341 | hppa_frame_find_saved_regs (struct frame_info *frame_info, |
43bd9a9e | 4342 | CORE_ADDR frame_saved_regs[]) |
c906108c SS |
4343 | { |
4344 | CORE_ADDR pc; | |
4345 | struct unwind_table_entry *u; | |
4346 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
4347 | int status, i, reg; | |
4348 | char buf[4]; | |
4349 | int fp_loc = -1; | |
d4f3574e | 4350 | int final_iteration; |
c906108c SS |
4351 | |
4352 | /* Zero out everything. */ | |
43bd9a9e | 4353 | memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
4354 | |
4355 | /* Call dummy frames always look the same, so there's no need to | |
4356 | examine the dummy code to determine locations of saved registers; | |
4357 | instead, let find_dummy_frame_regs fill in the correct offsets | |
4358 | for the saved registers. */ | |
ef6e7e13 AC |
4359 | if ((get_frame_pc (frame_info) >= get_frame_base (frame_info) |
4360 | && (get_frame_pc (frame_info) | |
4361 | <= (get_frame_base (frame_info) | |
4362 | /* A call dummy is sized in words, but it is actually a | |
4363 | series of instructions. Account for that scaling | |
4364 | factor. */ | |
b1e29e33 AC |
4365 | + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE) |
4366 | * DEPRECATED_CALL_DUMMY_LENGTH) | |
ef6e7e13 AC |
4367 | /* Similarly we have to account for 64bit wide register |
4368 | saves. */ | |
b1e29e33 | 4369 | + (32 * DEPRECATED_REGISTER_SIZE) |
ef6e7e13 AC |
4370 | /* We always consider FP regs 8 bytes long. */ |
4371 | + (NUM_REGS - FP0_REGNUM) * 8 | |
4372 | /* Similarly we have to account for 64bit wide register | |
4373 | saves. */ | |
b1e29e33 | 4374 | + (6 * DEPRECATED_REGISTER_SIZE))))) |
c906108c SS |
4375 | find_dummy_frame_regs (frame_info, frame_saved_regs); |
4376 | ||
4377 | /* Interrupt handlers are special too. They lay out the register | |
4378 | state in the exact same order as the register numbers in GDB. */ | |
ef6e7e13 | 4379 | if (pc_in_interrupt_handler (get_frame_pc (frame_info))) |
c906108c SS |
4380 | { |
4381 | for (i = 0; i < NUM_REGS; i++) | |
4382 | { | |
4383 | /* SP is a little special. */ | |
4384 | if (i == SP_REGNUM) | |
43bd9a9e | 4385 | frame_saved_regs[SP_REGNUM] |
ef6e7e13 | 4386 | = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4, |
53a5351d | 4387 | TARGET_PTR_BIT / 8); |
c906108c | 4388 | else |
ef6e7e13 | 4389 | frame_saved_regs[i] = get_frame_base (frame_info) + i * 4; |
c906108c SS |
4390 | } |
4391 | return; | |
4392 | } | |
4393 | ||
4394 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP | |
4395 | /* Handle signal handler callers. */ | |
5a203e44 | 4396 | if ((get_frame_type (frame_info) == SIGTRAMP_FRAME)) |
c906108c SS |
4397 | { |
4398 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); | |
4399 | return; | |
4400 | } | |
4401 | #endif | |
4402 | ||
4403 | /* Get the starting address of the function referred to by the PC | |
4404 | saved in frame. */ | |
be41e9f4 | 4405 | pc = get_frame_func (frame_info); |
c906108c SS |
4406 | |
4407 | /* Yow! */ | |
4408 | u = find_unwind_entry (pc); | |
4409 | if (!u) | |
4410 | return; | |
4411 | ||
4412 | /* This is how much of a frame adjustment we need to account for. */ | |
4413 | stack_remaining = u->Total_frame_size << 3; | |
4414 | ||
4415 | /* Magic register saves we want to know about. */ | |
4416 | save_rp = u->Save_RP; | |
4417 | save_sp = u->Save_SP; | |
4418 | ||
4419 | /* Turn the Entry_GR field into a bitmask. */ | |
4420 | save_gr = 0; | |
4421 | for (i = 3; i < u->Entry_GR + 3; i++) | |
4422 | { | |
4423 | /* Frame pointer gets saved into a special location. */ | |
0ba6dca9 | 4424 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) |
c906108c SS |
4425 | continue; |
4426 | ||
4427 | save_gr |= (1 << i); | |
4428 | } | |
4429 | ||
4430 | /* Turn the Entry_FR field into a bitmask too. */ | |
4431 | save_fr = 0; | |
4432 | for (i = 12; i < u->Entry_FR + 12; i++) | |
4433 | save_fr |= (1 << i); | |
4434 | ||
4435 | /* The frame always represents the value of %sp at entry to the | |
4436 | current function (and is thus equivalent to the "saved" stack | |
4437 | pointer. */ | |
ef6e7e13 | 4438 | frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info); |
c906108c SS |
4439 | |
4440 | /* Loop until we find everything of interest or hit a branch. | |
4441 | ||
4442 | For unoptimized GCC code and for any HP CC code this will never ever | |
4443 | examine any user instructions. | |
4444 | ||
7be570e7 | 4445 | For optimized GCC code we're faced with problems. GCC will schedule |
c906108c SS |
4446 | its prologue and make prologue instructions available for delay slot |
4447 | filling. The end result is user code gets mixed in with the prologue | |
4448 | and a prologue instruction may be in the delay slot of the first branch | |
4449 | or call. | |
4450 | ||
4451 | Some unexpected things are expected with debugging optimized code, so | |
4452 | we allow this routine to walk past user instructions in optimized | |
4453 | GCC code. */ | |
d4f3574e SS |
4454 | final_iteration = 0; |
4455 | while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
ef6e7e13 | 4456 | && pc <= get_frame_pc (frame_info)) |
c906108c SS |
4457 | { |
4458 | status = target_read_memory (pc, buf, 4); | |
4459 | inst = extract_unsigned_integer (buf, 4); | |
4460 | ||
4461 | /* Yow! */ | |
4462 | if (status != 0) | |
4463 | return; | |
4464 | ||
4465 | /* Note the interesting effects of this instruction. */ | |
4466 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
4467 | ||
104c1213 JM |
4468 | /* There are limited ways to store the return pointer into the |
4469 | stack. */ | |
c2c6d25f | 4470 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
c906108c SS |
4471 | { |
4472 | save_rp = 0; | |
ef6e7e13 | 4473 | frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20; |
c906108c | 4474 | } |
c2c6d25f JM |
4475 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
4476 | { | |
4477 | save_rp = 0; | |
ef6e7e13 | 4478 | frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16; |
c2c6d25f | 4479 | } |
c906108c | 4480 | |
104c1213 JM |
4481 | /* Note if we saved SP into the stack. This also happens to indicate |
4482 | the location of the saved frame pointer. */ | |
c2c6d25f JM |
4483 | if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ |
4484 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
104c1213 | 4485 | { |
0ba6dca9 | 4486 | frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info); |
104c1213 JM |
4487 | save_sp = 0; |
4488 | } | |
c906108c SS |
4489 | |
4490 | /* Account for general and floating-point register saves. */ | |
4491 | reg = inst_saves_gr (inst); | |
4492 | if (reg >= 3 && reg <= 18 | |
0ba6dca9 | 4493 | && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM)) |
c906108c SS |
4494 | { |
4495 | save_gr &= ~(1 << reg); | |
4496 | ||
4497 | /* stwm with a positive displacement is a *post modify*. */ | |
4498 | if ((inst >> 26) == 0x1b | |
4499 | && extract_14 (inst) >= 0) | |
ef6e7e13 | 4500 | frame_saved_regs[reg] = get_frame_base (frame_info); |
104c1213 | 4501 | /* A std has explicit post_modify forms. */ |
56132691 | 4502 | else if ((inst & 0xfc00000c) == 0x70000008) |
ef6e7e13 | 4503 | frame_saved_regs[reg] = get_frame_base (frame_info); |
c906108c SS |
4504 | else |
4505 | { | |
104c1213 JM |
4506 | CORE_ADDR offset; |
4507 | ||
4508 | if ((inst >> 26) == 0x1c) | |
d4f3574e | 4509 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 JM |
4510 | else if ((inst >> 26) == 0x03) |
4511 | offset = low_sign_extend (inst & 0x1f, 5); | |
4512 | else | |
4513 | offset = extract_14 (inst); | |
4514 | ||
c906108c SS |
4515 | /* Handle code with and without frame pointers. */ |
4516 | if (u->Save_SP) | |
43bd9a9e | 4517 | frame_saved_regs[reg] |
ef6e7e13 | 4518 | = get_frame_base (frame_info) + offset; |
c906108c | 4519 | else |
43bd9a9e | 4520 | frame_saved_regs[reg] |
ef6e7e13 | 4521 | = (get_frame_base (frame_info) + (u->Total_frame_size << 3) |
104c1213 | 4522 | + offset); |
c906108c SS |
4523 | } |
4524 | } | |
4525 | ||
4526 | ||
4527 | /* GCC handles callee saved FP regs a little differently. | |
4528 | ||
c5aa993b JM |
4529 | It emits an instruction to put the value of the start of |
4530 | the FP store area into %r1. It then uses fstds,ma with | |
4531 | a basereg of %r1 for the stores. | |
c906108c | 4532 | |
c5aa993b JM |
4533 | HP CC emits them at the current stack pointer modifying |
4534 | the stack pointer as it stores each register. */ | |
c906108c SS |
4535 | |
4536 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4537 | if ((inst & 0xffffc000) == 0x34610000 | |
4538 | || (inst & 0xffffc000) == 0x37c10000) | |
4539 | fp_loc = extract_14 (inst); | |
c5aa993b | 4540 | |
c906108c SS |
4541 | reg = inst_saves_fr (inst); |
4542 | if (reg >= 12 && reg <= 21) | |
4543 | { | |
4544 | /* Note +4 braindamage below is necessary because the FP status | |
4545 | registers are internally 8 registers rather than the expected | |
4546 | 4 registers. */ | |
4547 | save_fr &= ~(1 << reg); | |
4548 | if (fp_loc == -1) | |
4549 | { | |
4550 | /* 1st HP CC FP register store. After this instruction | |
c5aa993b JM |
4551 | we've set enough state that the GCC and HPCC code are |
4552 | both handled in the same manner. */ | |
ef6e7e13 | 4553 | frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info); |
c906108c SS |
4554 | fp_loc = 8; |
4555 | } | |
4556 | else | |
4557 | { | |
43bd9a9e | 4558 | frame_saved_regs[reg + FP0_REGNUM + 4] |
ef6e7e13 | 4559 | = get_frame_base (frame_info) + fp_loc; |
c906108c SS |
4560 | fp_loc += 8; |
4561 | } | |
4562 | } | |
4563 | ||
39f77062 | 4564 | /* Quit if we hit any kind of branch the previous iteration. */ |
d4f3574e | 4565 | if (final_iteration) |
c906108c SS |
4566 | break; |
4567 | ||
d4f3574e SS |
4568 | /* We want to look precisely one instruction beyond the branch |
4569 | if we have not found everything yet. */ | |
4570 | if (is_branch (inst)) | |
4571 | final_iteration = 1; | |
4572 | ||
c906108c SS |
4573 | /* Bump the PC. */ |
4574 | pc += 4; | |
4575 | } | |
4576 | } | |
4577 | ||
43bd9a9e AC |
4578 | /* XXX - deprecated. This is a compatibility function for targets |
4579 | that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */ | |
4580 | /* Find the addresses in which registers are saved in FRAME. */ | |
4581 | ||
343af405 | 4582 | static void |
43bd9a9e AC |
4583 | hppa_frame_init_saved_regs (struct frame_info *frame) |
4584 | { | |
1b1d3794 | 4585 | if (deprecated_get_frame_saved_regs (frame) == NULL) |
43bd9a9e | 4586 | frame_saved_regs_zalloc (frame); |
1b1d3794 | 4587 | hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame)); |
43bd9a9e | 4588 | } |
c906108c | 4589 | |
26d08f08 AC |
4590 | struct hppa_frame_cache |
4591 | { | |
4592 | CORE_ADDR base; | |
4593 | struct trad_frame_saved_reg *saved_regs; | |
4594 | }; | |
4595 | ||
4596 | static struct hppa_frame_cache * | |
4597 | hppa_frame_cache (struct frame_info *next_frame, void **this_cache) | |
4598 | { | |
4599 | struct hppa_frame_cache *cache; | |
4600 | long saved_gr_mask; | |
4601 | long saved_fr_mask; | |
4602 | CORE_ADDR this_sp; | |
4603 | long frame_size; | |
4604 | struct unwind_table_entry *u; | |
4605 | int i; | |
4606 | ||
4607 | if ((*this_cache) != NULL) | |
4608 | return (*this_cache); | |
4609 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); | |
4610 | (*this_cache) = cache; | |
4611 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
4612 | ||
4613 | /* Yow! */ | |
4614 | u = find_unwind_entry (frame_func_unwind (next_frame)); | |
4615 | if (!u) | |
52b5e991 | 4616 | return (*this_cache); |
26d08f08 AC |
4617 | |
4618 | /* Turn the Entry_GR field into a bitmask. */ | |
4619 | saved_gr_mask = 0; | |
4620 | for (i = 3; i < u->Entry_GR + 3; i++) | |
4621 | { | |
4622 | /* Frame pointer gets saved into a special location. */ | |
4623 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) | |
4624 | continue; | |
4625 | ||
4626 | saved_gr_mask |= (1 << i); | |
4627 | } | |
4628 | ||
4629 | /* Turn the Entry_FR field into a bitmask too. */ | |
4630 | saved_fr_mask = 0; | |
4631 | for (i = 12; i < u->Entry_FR + 12; i++) | |
4632 | saved_fr_mask |= (1 << i); | |
4633 | ||
4634 | /* Loop until we find everything of interest or hit a branch. | |
4635 | ||
4636 | For unoptimized GCC code and for any HP CC code this will never ever | |
4637 | examine any user instructions. | |
4638 | ||
4639 | For optimized GCC code we're faced with problems. GCC will schedule | |
4640 | its prologue and make prologue instructions available for delay slot | |
4641 | filling. The end result is user code gets mixed in with the prologue | |
4642 | and a prologue instruction may be in the delay slot of the first branch | |
4643 | or call. | |
4644 | ||
4645 | Some unexpected things are expected with debugging optimized code, so | |
4646 | we allow this routine to walk past user instructions in optimized | |
4647 | GCC code. */ | |
4648 | { | |
4649 | int final_iteration = 0; | |
4650 | CORE_ADDR pc; | |
4651 | CORE_ADDR end_pc = skip_prologue_using_sal (pc); | |
4652 | int looking_for_sp = u->Save_SP; | |
4653 | int looking_for_rp = u->Save_RP; | |
4654 | int fp_loc = -1; | |
4655 | if (end_pc == 0) | |
4656 | end_pc = frame_pc_unwind (next_frame); | |
4657 | frame_size = 0; | |
4658 | for (pc = frame_func_unwind (next_frame); | |
4659 | ((saved_gr_mask || saved_fr_mask | |
4660 | || looking_for_sp || looking_for_rp | |
4661 | || frame_size < (u->Total_frame_size << 3)) | |
4662 | && pc <= end_pc); | |
4663 | pc += 4) | |
4664 | { | |
4665 | int reg; | |
4666 | char buf4[4]; | |
4667 | long status = target_read_memory (pc, buf4, sizeof buf4); | |
4668 | long inst = extract_unsigned_integer (buf4, sizeof buf4); | |
4669 | ||
4670 | /* Note the interesting effects of this instruction. */ | |
4671 | frame_size += prologue_inst_adjust_sp (inst); | |
4672 | ||
4673 | /* There are limited ways to store the return pointer into the | |
4674 | stack. */ | |
4675 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
4676 | { | |
4677 | looking_for_rp = 0; | |
4678 | cache->saved_regs[RP_REGNUM].addr = -20; | |
4679 | } | |
4680 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ | |
4681 | { | |
4682 | looking_for_rp = 0; | |
4683 | cache->saved_regs[RP_REGNUM].addr = -16; | |
4684 | } | |
4685 | ||
4686 | /* Check to see if we saved SP into the stack. This also | |
4687 | happens to indicate the location of the saved frame | |
4688 | pointer. */ | |
4689 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
4690 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
4691 | { | |
4692 | looking_for_sp = 0; | |
4693 | cache->saved_regs[DEPRECATED_FP_REGNUM].addr = 0; | |
4694 | } | |
4695 | ||
4696 | /* Account for general and floating-point register saves. */ | |
4697 | reg = inst_saves_gr (inst); | |
4698 | if (reg >= 3 && reg <= 18 | |
4699 | && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM)) | |
4700 | { | |
4701 | saved_gr_mask &= ~(1 << reg); | |
4702 | if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0) | |
4703 | /* stwm with a positive displacement is a _post_ | |
4704 | _modify_. */ | |
4705 | cache->saved_regs[reg].addr = 0; | |
4706 | else if ((inst & 0xfc00000c) == 0x70000008) | |
4707 | /* A std has explicit post_modify forms. */ | |
4708 | cache->saved_regs[reg].addr = 0; | |
4709 | else | |
4710 | { | |
4711 | CORE_ADDR offset; | |
4712 | ||
4713 | if ((inst >> 26) == 0x1c) | |
4714 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); | |
4715 | else if ((inst >> 26) == 0x03) | |
4716 | offset = low_sign_extend (inst & 0x1f, 5); | |
4717 | else | |
4718 | offset = extract_14 (inst); | |
4719 | ||
4720 | /* Handle code with and without frame pointers. */ | |
4721 | if (u->Save_SP) | |
4722 | cache->saved_regs[reg].addr = offset; | |
4723 | else | |
4724 | cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset; | |
4725 | } | |
4726 | } | |
4727 | ||
4728 | /* GCC handles callee saved FP regs a little differently. | |
4729 | ||
4730 | It emits an instruction to put the value of the start of | |
4731 | the FP store area into %r1. It then uses fstds,ma with a | |
4732 | basereg of %r1 for the stores. | |
4733 | ||
4734 | HP CC emits them at the current stack pointer modifying the | |
4735 | stack pointer as it stores each register. */ | |
4736 | ||
4737 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4738 | if ((inst & 0xffffc000) == 0x34610000 | |
4739 | || (inst & 0xffffc000) == 0x37c10000) | |
4740 | fp_loc = extract_14 (inst); | |
4741 | ||
4742 | reg = inst_saves_fr (inst); | |
4743 | if (reg >= 12 && reg <= 21) | |
4744 | { | |
4745 | /* Note +4 braindamage below is necessary because the FP | |
4746 | status registers are internally 8 registers rather than | |
4747 | the expected 4 registers. */ | |
4748 | saved_fr_mask &= ~(1 << reg); | |
4749 | if (fp_loc == -1) | |
4750 | { | |
4751 | /* 1st HP CC FP register store. After this | |
4752 | instruction we've set enough state that the GCC and | |
4753 | HPCC code are both handled in the same manner. */ | |
4754 | cache->saved_regs[reg + FP4_REGNUM + 4].addr = 0; | |
4755 | fp_loc = 8; | |
4756 | } | |
4757 | else | |
4758 | { | |
4759 | cache->saved_regs[reg + FP0_REGNUM + 4].addr = fp_loc; | |
4760 | fp_loc += 8; | |
4761 | } | |
4762 | } | |
4763 | ||
4764 | /* Quit if we hit any kind of branch the previous iteration. */ | |
4765 | if (final_iteration) | |
4766 | break; | |
4767 | /* We want to look precisely one instruction beyond the branch | |
4768 | if we have not found everything yet. */ | |
4769 | if (is_branch (inst)) | |
4770 | final_iteration = 1; | |
4771 | } | |
4772 | } | |
4773 | ||
4774 | { | |
4775 | /* The frame base always represents the value of %sp at entry to | |
4776 | the current function (and is thus equivalent to the "saved" | |
4777 | stack pointer. */ | |
4778 | CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
4779 | /* FIXME: cagney/2004-02-22: This assumes that the frame has been | |
4780 | created. If it hasn't everything will be out-of-wack. */ | |
4781 | if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, SP_REGNUM)) | |
4782 | /* Both we're expecting the SP to be saved and the SP has been | |
4783 | saved. The entry SP value is saved at this frame's SP | |
4784 | address. */ | |
4785 | cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8); | |
4786 | else | |
4787 | /* The prologue has been slowly allocating stack space. Adjust | |
4788 | the SP back. */ | |
4789 | cache->base = this_sp - frame_size; | |
4790 | trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base); | |
4791 | } | |
4792 | ||
412275d5 AC |
4793 | /* The PC is found in the "return register", "Millicode" uses "r31" |
4794 | as the return register while normal code uses "rp". */ | |
26d08f08 | 4795 | if (u->Millicode) |
412275d5 | 4796 | cache->saved_regs[PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; |
26d08f08 | 4797 | else |
412275d5 | 4798 | cache->saved_regs[PCOQ_HEAD_REGNUM] = cache->saved_regs[RP_REGNUM]; |
26d08f08 AC |
4799 | |
4800 | { | |
4801 | /* Convert all the offsets into addresses. */ | |
4802 | int reg; | |
4803 | for (reg = 0; reg < NUM_REGS; reg++) | |
4804 | { | |
4805 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
4806 | cache->saved_regs[reg].addr += cache->base; | |
4807 | } | |
4808 | } | |
4809 | ||
4810 | return (*this_cache); | |
4811 | } | |
4812 | ||
4813 | static void | |
4814 | hppa_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
4815 | struct frame_id *this_id) | |
4816 | { | |
4817 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache); | |
4818 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
4819 | } | |
4820 | ||
4821 | static void | |
4822 | hppa_frame_prev_register (struct frame_info *next_frame, | |
4823 | void **this_cache, | |
4824 | int regnum, int *optimizedp, | |
4825 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
4826 | int *realnump, void *valuep) | |
4827 | { | |
4828 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache); | |
412275d5 AC |
4829 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
4830 | if (regnum == PCOQ_TAIL_REGNUM) | |
4831 | { | |
4832 | /* The PCOQ TAIL, or NPC, needs to be computed from the unwound | |
4833 | PC register. */ | |
4834 | *optimizedp = 0; | |
4835 | *lvalp = not_lval; | |
4836 | *addrp = 0; | |
4837 | *realnump = 0; | |
4838 | if (valuep) | |
4839 | { | |
4840 | int regsize = register_size (gdbarch, PCOQ_HEAD_REGNUM); | |
4841 | CORE_ADDR pc; | |
4842 | int optimized; | |
4843 | enum lval_type lval; | |
4844 | CORE_ADDR addr; | |
4845 | int realnum; | |
4846 | bfd_byte value[MAX_REGISTER_SIZE]; | |
4847 | trad_frame_prev_register (next_frame, info->saved_regs, | |
4848 | PCOQ_HEAD_REGNUM, &optimized, &lval, &addr, | |
4849 | &realnum, &value); | |
4850 | pc = extract_unsigned_integer (&value, regsize); | |
4851 | store_unsigned_integer (valuep, regsize, pc + 4); | |
4852 | } | |
4853 | } | |
4854 | else | |
4855 | { | |
4856 | trad_frame_prev_register (next_frame, info->saved_regs, regnum, | |
4857 | optimizedp, lvalp, addrp, realnump, valuep); | |
4858 | } | |
26d08f08 AC |
4859 | } |
4860 | ||
4861 | static const struct frame_unwind hppa_frame_unwind = | |
4862 | { | |
4863 | NORMAL_FRAME, | |
4864 | hppa_frame_this_id, | |
4865 | hppa_frame_prev_register | |
4866 | }; | |
4867 | ||
4868 | static const struct frame_unwind * | |
4869 | hppa_frame_unwind_sniffer (struct frame_info *next_frame) | |
4870 | { | |
4871 | return &hppa_frame_unwind; | |
4872 | } | |
4873 | ||
4874 | static CORE_ADDR | |
4875 | hppa_frame_base_address (struct frame_info *next_frame, | |
4876 | void **this_cache) | |
4877 | { | |
4878 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, | |
4879 | this_cache); | |
4880 | return info->base; | |
4881 | } | |
4882 | ||
4883 | static const struct frame_base hppa_frame_base = { | |
4884 | &hppa_frame_unwind, | |
4885 | hppa_frame_base_address, | |
4886 | hppa_frame_base_address, | |
4887 | hppa_frame_base_address | |
4888 | }; | |
4889 | ||
4890 | static const struct frame_base * | |
4891 | hppa_frame_base_sniffer (struct frame_info *next_frame) | |
4892 | { | |
4893 | return &hppa_frame_base; | |
4894 | } | |
4895 | ||
4896 | static struct frame_id | |
4897 | hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
4898 | { | |
4899 | return frame_id_build (frame_unwind_register_unsigned (next_frame, | |
4900 | SP_REGNUM), | |
4901 | frame_pc_unwind (next_frame)); | |
4902 | } | |
4903 | ||
4904 | static CORE_ADDR | |
4905 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
4906 | { | |
449e1137 | 4907 | return frame_unwind_register_signed (next_frame, PCOQ_HEAD_REGNUM) & ~3; |
26d08f08 AC |
4908 | } |
4909 | ||
c906108c SS |
4910 | /* Exception handling support for the HP-UX ANSI C++ compiler. |
4911 | The compiler (aCC) provides a callback for exception events; | |
4912 | GDB can set a breakpoint on this callback and find out what | |
4913 | exception event has occurred. */ | |
4914 | ||
4915 | /* The name of the hook to be set to point to the callback function */ | |
c5aa993b JM |
4916 | static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook"; |
4917 | /* The name of the function to be used to set the hook value */ | |
4918 | static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value"; | |
4919 | /* The name of the callback function in end.o */ | |
c906108c | 4920 | static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback"; |
c5aa993b JM |
4921 | /* Name of function in end.o on which a break is set (called by above) */ |
4922 | static char HP_ACC_EH_break[] = "__d_eh_break"; | |
4923 | /* Name of flag (in end.o) that enables catching throws */ | |
4924 | static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw"; | |
4925 | /* Name of flag (in end.o) that enables catching catching */ | |
4926 | static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch"; | |
4927 | /* The enum used by aCC */ | |
4928 | typedef enum | |
4929 | { | |
4930 | __EH_NOTIFY_THROW, | |
4931 | __EH_NOTIFY_CATCH | |
4932 | } | |
4933 | __eh_notification; | |
c906108c SS |
4934 | |
4935 | /* Is exception-handling support available with this executable? */ | |
4936 | static int hp_cxx_exception_support = 0; | |
4937 | /* Has the initialize function been run? */ | |
4938 | int hp_cxx_exception_support_initialized = 0; | |
4939 | /* Similar to above, but imported from breakpoint.c -- non-target-specific */ | |
4940 | extern int exception_support_initialized; | |
4941 | /* Address of __eh_notify_hook */ | |
a0b3c4fd | 4942 | static CORE_ADDR eh_notify_hook_addr = 0; |
c906108c | 4943 | /* Address of __d_eh_notify_callback */ |
a0b3c4fd | 4944 | static CORE_ADDR eh_notify_callback_addr = 0; |
c906108c | 4945 | /* Address of __d_eh_break */ |
a0b3c4fd | 4946 | static CORE_ADDR eh_break_addr = 0; |
c906108c | 4947 | /* Address of __d_eh_catch_catch */ |
a0b3c4fd | 4948 | static CORE_ADDR eh_catch_catch_addr = 0; |
c906108c | 4949 | /* Address of __d_eh_catch_throw */ |
a0b3c4fd | 4950 | static CORE_ADDR eh_catch_throw_addr = 0; |
c906108c | 4951 | /* Sal for __d_eh_break */ |
a0b3c4fd | 4952 | static struct symtab_and_line *break_callback_sal = 0; |
c906108c SS |
4953 | |
4954 | /* Code in end.c expects __d_pid to be set in the inferior, | |
4955 | otherwise __d_eh_notify_callback doesn't bother to call | |
4956 | __d_eh_break! So we poke the pid into this symbol | |
4957 | ourselves. | |
4958 | 0 => success | |
c5aa993b | 4959 | 1 => failure */ |
c906108c | 4960 | int |
fba45db2 | 4961 | setup_d_pid_in_inferior (void) |
c906108c SS |
4962 | { |
4963 | CORE_ADDR anaddr; | |
c5aa993b JM |
4964 | struct minimal_symbol *msymbol; |
4965 | char buf[4]; /* FIXME 32x64? */ | |
4966 | ||
c906108c SS |
4967 | /* Slam the pid of the process into __d_pid; failing is only a warning! */ |
4968 | msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile); | |
4969 | if (msymbol == NULL) | |
4970 | { | |
4971 | warning ("Unable to find __d_pid symbol in object file."); | |
4972 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4973 | return 1; | |
4974 | } | |
4975 | ||
4976 | anaddr = SYMBOL_VALUE_ADDRESS (msymbol); | |
39f77062 | 4977 | store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */ |
c5aa993b | 4978 | if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */ |
c906108c SS |
4979 | { |
4980 | warning ("Unable to write __d_pid"); | |
4981 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4982 | return 1; | |
4983 | } | |
4984 | return 0; | |
4985 | } | |
4986 | ||
4987 | /* Initialize exception catchpoint support by looking for the | |
4988 | necessary hooks/callbacks in end.o, etc., and set the hook value to | |
4989 | point to the required debug function | |
4990 | ||
4991 | Return 0 => failure | |
c5aa993b | 4992 | 1 => success */ |
c906108c SS |
4993 | |
4994 | static int | |
fba45db2 | 4995 | initialize_hp_cxx_exception_support (void) |
c906108c SS |
4996 | { |
4997 | struct symtabs_and_lines sals; | |
c5aa993b JM |
4998 | struct cleanup *old_chain; |
4999 | struct cleanup *canonical_strings_chain = NULL; | |
c906108c | 5000 | int i; |
c5aa993b JM |
5001 | char *addr_start; |
5002 | char *addr_end = NULL; | |
5003 | char **canonical = (char **) NULL; | |
c906108c | 5004 | int thread = -1; |
c5aa993b JM |
5005 | struct symbol *sym = NULL; |
5006 | struct minimal_symbol *msym = NULL; | |
5007 | struct objfile *objfile; | |
c906108c SS |
5008 | asection *shlib_info; |
5009 | ||
5010 | /* Detect and disallow recursion. On HP-UX with aCC, infinite | |
5011 | recursion is a possibility because finding the hook for exception | |
5012 | callbacks involves making a call in the inferior, which means | |
5013 | re-inserting breakpoints which can re-invoke this code */ | |
5014 | ||
c5aa993b JM |
5015 | static int recurse = 0; |
5016 | if (recurse > 0) | |
c906108c SS |
5017 | { |
5018 | hp_cxx_exception_support_initialized = 0; | |
5019 | exception_support_initialized = 0; | |
5020 | return 0; | |
5021 | } | |
5022 | ||
5023 | hp_cxx_exception_support = 0; | |
5024 | ||
5025 | /* First check if we have seen any HP compiled objects; if not, | |
5026 | it is very unlikely that HP's idiosyncratic callback mechanism | |
5027 | for exception handling debug support will be available! | |
5028 | This will percolate back up to breakpoint.c, where our callers | |
5029 | will decide to try the g++ exception-handling support instead. */ | |
5030 | if (!hp_som_som_object_present) | |
5031 | return 0; | |
c5aa993b | 5032 | |
c906108c SS |
5033 | /* We have a SOM executable with SOM debug info; find the hooks */ |
5034 | ||
5035 | /* First look for the notify hook provided by aCC runtime libs */ | |
5036 | /* If we find this symbol, we conclude that the executable must | |
5037 | have HP aCC exception support built in. If this symbol is not | |
5038 | found, even though we're a HP SOM-SOM file, we may have been | |
5039 | built with some other compiler (not aCC). This results percolates | |
5040 | back up to our callers in breakpoint.c which can decide to | |
5041 | try the g++ style of exception support instead. | |
5042 | If this symbol is found but the other symbols we require are | |
5043 | not found, there is something weird going on, and g++ support | |
5044 | should *not* be tried as an alternative. | |
c5aa993b | 5045 | |
c906108c SS |
5046 | ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined. |
5047 | ASSUMPTION: HP aCC and g++ modules cannot be linked together. */ | |
c5aa993b | 5048 | |
c906108c SS |
5049 | /* libCsup has this hook; it'll usually be non-debuggable */ |
5050 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL); | |
5051 | if (msym) | |
5052 | { | |
5053 | eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym); | |
5054 | hp_cxx_exception_support = 1; | |
c5aa993b | 5055 | } |
c906108c SS |
5056 | else |
5057 | { | |
5058 | warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook); | |
5059 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
5060 | warning ("GDB will be unable to intercept exception events."); | |
5061 | eh_notify_hook_addr = 0; | |
5062 | hp_cxx_exception_support = 0; | |
5063 | return 0; | |
5064 | } | |
5065 | ||
c906108c | 5066 | /* Next look for the notify callback routine in end.o */ |
c5aa993b | 5067 | /* This is always available in the SOM symbol dictionary if end.o is linked in */ |
c906108c SS |
5068 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL); |
5069 | if (msym) | |
5070 | { | |
5071 | eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym); | |
5072 | hp_cxx_exception_support = 1; | |
c5aa993b JM |
5073 | } |
5074 | else | |
c906108c SS |
5075 | { |
5076 | warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback); | |
5077 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
5078 | warning ("GDB will be unable to intercept exception events."); | |
5079 | eh_notify_callback_addr = 0; | |
5080 | return 0; | |
5081 | } | |
5082 | ||
53a5351d | 5083 | #ifndef GDB_TARGET_IS_HPPA_20W |
c906108c SS |
5084 | /* Check whether the executable is dynamically linked or archive bound */ |
5085 | /* With an archive-bound executable we can use the raw addresses we find | |
5086 | for the callback function, etc. without modification. For an executable | |
5087 | with shared libraries, we have to do more work to find the plabel, which | |
5088 | can be the target of a call through $$dyncall from the aCC runtime support | |
5089 | library (libCsup) which is linked shared by default by aCC. */ | |
5090 | /* This test below was copied from somsolib.c/somread.c. It may not be a very | |
c5aa993b | 5091 | reliable one to test that an executable is linked shared. pai/1997-07-18 */ |
c906108c SS |
5092 | shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$"); |
5093 | if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0)) | |
5094 | { | |
5095 | /* The minsym we have has the local code address, but that's not the | |
5096 | plabel that can be used by an inter-load-module call. */ | |
5097 | /* Find solib handle for main image (which has end.o), and use that | |
5098 | and the min sym as arguments to __d_shl_get() (which does the equivalent | |
c5aa993b | 5099 | of shl_findsym()) to find the plabel. */ |
c906108c SS |
5100 | |
5101 | args_for_find_stub args; | |
5102 | static char message[] = "Error while finding exception callback hook:\n"; | |
c5aa993b | 5103 | |
c906108c SS |
5104 | args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr); |
5105 | args.msym = msym; | |
a0b3c4fd | 5106 | args.return_val = 0; |
c5aa993b | 5107 | |
c906108c | 5108 | recurse++; |
4efb68b1 | 5109 | catch_errors (cover_find_stub_with_shl_get, &args, message, |
a0b3c4fd JM |
5110 | RETURN_MASK_ALL); |
5111 | eh_notify_callback_addr = args.return_val; | |
c906108c | 5112 | recurse--; |
c5aa993b | 5113 | |
c906108c | 5114 | exception_catchpoints_are_fragile = 1; |
c5aa993b | 5115 | |
c906108c | 5116 | if (!eh_notify_callback_addr) |
c5aa993b JM |
5117 | { |
5118 | /* We can get here either if there is no plabel in the export list | |
1faa59a8 | 5119 | for the main image, or if something strange happened (?) */ |
c5aa993b JM |
5120 | warning ("Couldn't find a plabel (indirect function label) for the exception callback."); |
5121 | warning ("GDB will not be able to intercept exception events."); | |
5122 | return 0; | |
5123 | } | |
c906108c SS |
5124 | } |
5125 | else | |
5126 | exception_catchpoints_are_fragile = 0; | |
53a5351d | 5127 | #endif |
c906108c | 5128 | |
c906108c | 5129 | /* Now, look for the breakpointable routine in end.o */ |
c5aa993b | 5130 | /* This should also be available in the SOM symbol dict. if end.o linked in */ |
c906108c SS |
5131 | msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL); |
5132 | if (msym) | |
5133 | { | |
5134 | eh_break_addr = SYMBOL_VALUE_ADDRESS (msym); | |
5135 | hp_cxx_exception_support = 1; | |
c5aa993b | 5136 | } |
c906108c SS |
5137 | else |
5138 | { | |
5139 | warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break); | |
5140 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
5141 | warning ("GDB will be unable to intercept exception events."); | |
5142 | eh_break_addr = 0; | |
5143 | return 0; | |
5144 | } | |
5145 | ||
c906108c SS |
5146 | /* Next look for the catch enable flag provided in end.o */ |
5147 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
176620f1 | 5148 | VAR_DOMAIN, 0, (struct symtab **) NULL); |
c5aa993b | 5149 | if (sym) /* sometimes present in debug info */ |
c906108c SS |
5150 | { |
5151 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym); | |
5152 | hp_cxx_exception_support = 1; | |
5153 | } | |
c5aa993b JM |
5154 | else |
5155 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
5156 | { |
5157 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL); | |
5158 | if (msym) | |
c5aa993b JM |
5159 | { |
5160 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym); | |
5161 | hp_cxx_exception_support = 1; | |
5162 | } | |
c906108c | 5163 | else |
c5aa993b JM |
5164 | { |
5165 | warning ("Unable to enable interception of exception catches."); | |
5166 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
5167 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
5168 | return 0; | |
5169 | } | |
c906108c SS |
5170 | } |
5171 | ||
c906108c SS |
5172 | /* Next look for the catch enable flag provided end.o */ |
5173 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
176620f1 | 5174 | VAR_DOMAIN, 0, (struct symtab **) NULL); |
c5aa993b | 5175 | if (sym) /* sometimes present in debug info */ |
c906108c SS |
5176 | { |
5177 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym); | |
5178 | hp_cxx_exception_support = 1; | |
5179 | } | |
c5aa993b JM |
5180 | else |
5181 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
5182 | { |
5183 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL); | |
5184 | if (msym) | |
c5aa993b JM |
5185 | { |
5186 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym); | |
5187 | hp_cxx_exception_support = 1; | |
5188 | } | |
c906108c | 5189 | else |
c5aa993b JM |
5190 | { |
5191 | warning ("Unable to enable interception of exception throws."); | |
5192 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
5193 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
5194 | return 0; | |
5195 | } | |
c906108c SS |
5196 | } |
5197 | ||
c5aa993b JM |
5198 | /* Set the flags */ |
5199 | hp_cxx_exception_support = 2; /* everything worked so far */ | |
c906108c SS |
5200 | hp_cxx_exception_support_initialized = 1; |
5201 | exception_support_initialized = 1; | |
5202 | ||
5203 | return 1; | |
5204 | } | |
5205 | ||
5206 | /* Target operation for enabling or disabling interception of | |
5207 | exception events. | |
5208 | KIND is either EX_EVENT_THROW or EX_EVENT_CATCH | |
5209 | ENABLE is either 0 (disable) or 1 (enable). | |
5210 | Return value is NULL if no support found; | |
5211 | -1 if something went wrong, | |
5212 | or a pointer to a symtab/line struct if the breakpointable | |
c5aa993b | 5213 | address was found. */ |
c906108c | 5214 | |
c5aa993b | 5215 | struct symtab_and_line * |
fba45db2 | 5216 | child_enable_exception_callback (enum exception_event_kind kind, int enable) |
c906108c SS |
5217 | { |
5218 | char buf[4]; | |
5219 | ||
5220 | if (!exception_support_initialized || !hp_cxx_exception_support_initialized) | |
5221 | if (!initialize_hp_cxx_exception_support ()) | |
5222 | return NULL; | |
5223 | ||
5224 | switch (hp_cxx_exception_support) | |
5225 | { | |
c5aa993b JM |
5226 | case 0: |
5227 | /* Assuming no HP support at all */ | |
5228 | return NULL; | |
5229 | case 1: | |
5230 | /* HP support should be present, but something went wrong */ | |
5231 | return (struct symtab_and_line *) -1; /* yuck! */ | |
5232 | /* there may be other cases in the future */ | |
c906108c | 5233 | } |
c5aa993b | 5234 | |
c906108c | 5235 | /* Set the EH hook to point to the callback routine */ |
c5aa993b | 5236 | store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */ |
c906108c | 5237 | /* pai: (temp) FIXME should there be a pack operation first? */ |
c5aa993b | 5238 | if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */ |
c906108c SS |
5239 | { |
5240 | warning ("Could not write to target memory for exception event callback."); | |
5241 | warning ("Interception of exception events may not work."); | |
c5aa993b | 5242 | return (struct symtab_and_line *) -1; |
c906108c SS |
5243 | } |
5244 | if (enable) | |
5245 | { | |
c5aa993b | 5246 | /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */ |
39f77062 | 5247 | if (PIDGET (inferior_ptid) > 0) |
c5aa993b JM |
5248 | { |
5249 | if (setup_d_pid_in_inferior ()) | |
5250 | return (struct symtab_and_line *) -1; | |
5251 | } | |
c906108c | 5252 | else |
c5aa993b | 5253 | { |
104c1213 JM |
5254 | warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); |
5255 | return (struct symtab_and_line *) -1; | |
c5aa993b | 5256 | } |
c906108c | 5257 | } |
c5aa993b | 5258 | |
c906108c SS |
5259 | switch (kind) |
5260 | { | |
c5aa993b JM |
5261 | case EX_EVENT_THROW: |
5262 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
5263 | if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */ | |
5264 | { | |
5265 | warning ("Couldn't enable exception throw interception."); | |
5266 | return (struct symtab_and_line *) -1; | |
5267 | } | |
5268 | break; | |
5269 | case EX_EVENT_CATCH: | |
5270 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
5271 | if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */ | |
5272 | { | |
5273 | warning ("Couldn't enable exception catch interception."); | |
5274 | return (struct symtab_and_line *) -1; | |
5275 | } | |
5276 | break; | |
104c1213 JM |
5277 | default: |
5278 | error ("Request to enable unknown or unsupported exception event."); | |
c906108c | 5279 | } |
c5aa993b | 5280 | |
c906108c SS |
5281 | /* Copy break address into new sal struct, malloc'ing if needed. */ |
5282 | if (!break_callback_sal) | |
5283 | { | |
5284 | break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line)); | |
5285 | } | |
fe39c653 | 5286 | init_sal (break_callback_sal); |
c906108c SS |
5287 | break_callback_sal->symtab = NULL; |
5288 | break_callback_sal->pc = eh_break_addr; | |
5289 | break_callback_sal->line = 0; | |
5290 | break_callback_sal->end = eh_break_addr; | |
c5aa993b | 5291 | |
c906108c SS |
5292 | return break_callback_sal; |
5293 | } | |
5294 | ||
c5aa993b | 5295 | /* Record some information about the current exception event */ |
c906108c | 5296 | static struct exception_event_record current_ex_event; |
c5aa993b JM |
5297 | /* Convenience struct */ |
5298 | static struct symtab_and_line null_symtab_and_line = | |
5299 | {NULL, 0, 0, 0}; | |
c906108c SS |
5300 | |
5301 | /* Report current exception event. Returns a pointer to a record | |
5302 | that describes the kind of the event, where it was thrown from, | |
5303 | and where it will be caught. More information may be reported | |
c5aa993b | 5304 | in the future */ |
c906108c | 5305 | struct exception_event_record * |
fba45db2 | 5306 | child_get_current_exception_event (void) |
c906108c | 5307 | { |
c5aa993b JM |
5308 | CORE_ADDR event_kind; |
5309 | CORE_ADDR throw_addr; | |
5310 | CORE_ADDR catch_addr; | |
c906108c SS |
5311 | struct frame_info *fi, *curr_frame; |
5312 | int level = 1; | |
5313 | ||
c5aa993b | 5314 | curr_frame = get_current_frame (); |
c906108c SS |
5315 | if (!curr_frame) |
5316 | return (struct exception_event_record *) NULL; | |
5317 | ||
5318 | /* Go up one frame to __d_eh_notify_callback, because at the | |
5319 | point when this code is executed, there's garbage in the | |
5320 | arguments of __d_eh_break. */ | |
5321 | fi = find_relative_frame (curr_frame, &level); | |
5322 | if (level != 0) | |
5323 | return (struct exception_event_record *) NULL; | |
5324 | ||
0f7d239c | 5325 | select_frame (fi); |
c906108c SS |
5326 | |
5327 | /* Read in the arguments */ | |
5328 | /* __d_eh_notify_callback() is called with 3 arguments: | |
c5aa993b JM |
5329 | 1. event kind catch or throw |
5330 | 2. the target address if known | |
5331 | 3. a flag -- not sure what this is. pai/1997-07-17 */ | |
5332 | event_kind = read_register (ARG0_REGNUM); | |
c906108c SS |
5333 | catch_addr = read_register (ARG1_REGNUM); |
5334 | ||
5335 | /* Now go down to a user frame */ | |
5336 | /* For a throw, __d_eh_break is called by | |
c5aa993b JM |
5337 | __d_eh_notify_callback which is called by |
5338 | __notify_throw which is called | |
5339 | from user code. | |
c906108c | 5340 | For a catch, __d_eh_break is called by |
c5aa993b JM |
5341 | __d_eh_notify_callback which is called by |
5342 | <stackwalking stuff> which is called by | |
5343 | __throw__<stuff> or __rethrow_<stuff> which is called | |
5344 | from user code. */ | |
5345 | /* FIXME: Don't use such magic numbers; search for the frames */ | |
c906108c SS |
5346 | level = (event_kind == EX_EVENT_THROW) ? 3 : 4; |
5347 | fi = find_relative_frame (curr_frame, &level); | |
5348 | if (level != 0) | |
5349 | return (struct exception_event_record *) NULL; | |
5350 | ||
0f7d239c | 5351 | select_frame (fi); |
ef6e7e13 | 5352 | throw_addr = get_frame_pc (fi); |
c906108c SS |
5353 | |
5354 | /* Go back to original (top) frame */ | |
0f7d239c | 5355 | select_frame (curr_frame); |
c906108c SS |
5356 | |
5357 | current_ex_event.kind = (enum exception_event_kind) event_kind; | |
5358 | current_ex_event.throw_sal = find_pc_line (throw_addr, 1); | |
5359 | current_ex_event.catch_sal = find_pc_line (catch_addr, 1); | |
5360 | ||
5361 | return ¤t_ex_event; | |
5362 | } | |
5363 | ||
9a043c1d AC |
5364 | /* Instead of this nasty cast, add a method pvoid() that prints out a |
5365 | host VOID data type (remember %p isn't portable). */ | |
5366 | ||
5367 | static CORE_ADDR | |
5368 | hppa_pointer_to_address_hack (void *ptr) | |
5369 | { | |
5370 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
5371 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
5372 | } | |
5373 | ||
c906108c | 5374 | static void |
fba45db2 | 5375 | unwind_command (char *exp, int from_tty) |
c906108c SS |
5376 | { |
5377 | CORE_ADDR address; | |
5378 | struct unwind_table_entry *u; | |
5379 | ||
5380 | /* If we have an expression, evaluate it and use it as the address. */ | |
5381 | ||
5382 | if (exp != 0 && *exp != 0) | |
5383 | address = parse_and_eval_address (exp); | |
5384 | else | |
5385 | return; | |
5386 | ||
5387 | u = find_unwind_entry (address); | |
5388 | ||
5389 | if (!u) | |
5390 | { | |
5391 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
5392 | return; | |
5393 | } | |
5394 | ||
ce414844 | 5395 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
9a043c1d | 5396 | paddr_nz (hppa_pointer_to_address_hack (u))); |
c906108c SS |
5397 | |
5398 | printf_unfiltered ("\tregion_start = "); | |
5399 | print_address (u->region_start, gdb_stdout); | |
5400 | ||
5401 | printf_unfiltered ("\n\tregion_end = "); | |
5402 | print_address (u->region_end, gdb_stdout); | |
5403 | ||
c906108c | 5404 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
5405 | |
5406 | printf_unfiltered ("\n\tflags ="); | |
5407 | pif (Cannot_unwind); | |
5408 | pif (Millicode); | |
5409 | pif (Millicode_save_sr0); | |
5410 | pif (Entry_SR); | |
5411 | pif (Args_stored); | |
5412 | pif (Variable_Frame); | |
5413 | pif (Separate_Package_Body); | |
5414 | pif (Frame_Extension_Millicode); | |
5415 | pif (Stack_Overflow_Check); | |
5416 | pif (Two_Instruction_SP_Increment); | |
5417 | pif (Ada_Region); | |
5418 | pif (Save_SP); | |
5419 | pif (Save_RP); | |
5420 | pif (Save_MRP_in_frame); | |
5421 | pif (extn_ptr_defined); | |
5422 | pif (Cleanup_defined); | |
5423 | pif (MPE_XL_interrupt_marker); | |
5424 | pif (HP_UX_interrupt_marker); | |
5425 | pif (Large_frame); | |
5426 | ||
5427 | putchar_unfiltered ('\n'); | |
5428 | ||
c906108c | 5429 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
5430 | |
5431 | pin (Region_description); | |
5432 | pin (Entry_FR); | |
5433 | pin (Entry_GR); | |
5434 | pin (Total_frame_size); | |
5435 | } | |
c906108c | 5436 | |
c2c6d25f | 5437 | void |
fba45db2 | 5438 | hppa_skip_permanent_breakpoint (void) |
c2c6d25f JM |
5439 | { |
5440 | /* To step over a breakpoint instruction on the PA takes some | |
5441 | fiddling with the instruction address queue. | |
5442 | ||
5443 | When we stop at a breakpoint, the IA queue front (the instruction | |
5444 | we're executing now) points at the breakpoint instruction, and | |
5445 | the IA queue back (the next instruction to execute) points to | |
5446 | whatever instruction we would execute after the breakpoint, if it | |
5447 | were an ordinary instruction. This is the case even if the | |
5448 | breakpoint is in the delay slot of a branch instruction. | |
5449 | ||
5450 | Clearly, to step past the breakpoint, we need to set the queue | |
5451 | front to the back. But what do we put in the back? What | |
5452 | instruction comes after that one? Because of the branch delay | |
5453 | slot, the next insn is always at the back + 4. */ | |
5454 | write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM)); | |
5455 | write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM)); | |
5456 | ||
5457 | write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4); | |
5458 | /* We can leave the tail's space the same, since there's no jump. */ | |
5459 | } | |
5460 | ||
3ff7cf9e JB |
5461 | /* Same as hppa32_store_return_value(), but for the PA64 ABI. */ |
5462 | ||
5463 | void | |
5464 | hppa64_store_return_value (struct type *type, char *valbuf) | |
5465 | { | |
5466 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
5467 | deprecated_write_register_bytes | |
62700349 | 5468 | (DEPRECATED_REGISTER_BYTE (FP4_REGNUM) |
3ff7cf9e JB |
5469 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
5470 | valbuf, TYPE_LENGTH (type)); | |
5471 | else if (is_integral_type(type)) | |
5472 | deprecated_write_register_bytes | |
62700349 | 5473 | (DEPRECATED_REGISTER_BYTE (28) |
3ff7cf9e JB |
5474 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
5475 | valbuf, TYPE_LENGTH (type)); | |
5476 | else if (TYPE_LENGTH (type) <= 8) | |
5477 | deprecated_write_register_bytes | |
62700349 | 5478 | (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type)); |
3ff7cf9e JB |
5479 | else if (TYPE_LENGTH (type) <= 16) |
5480 | { | |
62700349 | 5481 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8); |
3ff7cf9e | 5482 | deprecated_write_register_bytes |
62700349 | 5483 | (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8); |
3ff7cf9e JB |
5484 | } |
5485 | } | |
5486 | ||
3ff7cf9e JB |
5487 | /* Same as hppa32_extract_return_value but for the PA64 ABI case. */ |
5488 | ||
5489 | void | |
5490 | hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
5491 | { | |
5492 | /* RM: Floats are returned in FR4R, doubles in FR4. | |
5493 | Integral values are in r28, padded on the left. | |
5494 | Aggregates less that 65 bits are in r28, right padded. | |
5495 | Aggregates upto 128 bits are in r28 and r29, right padded. */ | |
5496 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
5497 | memcpy (valbuf, | |
62700349 | 5498 | regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM) |
3ff7cf9e JB |
5499 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
5500 | TYPE_LENGTH (type)); | |
5501 | else if (is_integral_type(type)) | |
5502 | memcpy (valbuf, | |
62700349 | 5503 | regbuf + DEPRECATED_REGISTER_BYTE (28) |
3ff7cf9e JB |
5504 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
5505 | TYPE_LENGTH (type)); | |
5506 | else if (TYPE_LENGTH (type) <= 8) | |
62700349 AC |
5507 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), |
5508 | TYPE_LENGTH (type)); | |
3ff7cf9e JB |
5509 | else if (TYPE_LENGTH (type) <= 16) |
5510 | { | |
62700349 AC |
5511 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8); |
5512 | memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29), | |
5513 | TYPE_LENGTH (type) - 8); | |
3ff7cf9e JB |
5514 | } |
5515 | } | |
5516 | ||
d709c020 JB |
5517 | int |
5518 | hppa_reg_struct_has_addr (int gcc_p, struct type *type) | |
5519 | { | |
5520 | /* On the PA, any pass-by-value structure > 8 bytes is actually passed | |
5521 | via a pointer regardless of its type or the compiler used. */ | |
5522 | return (TYPE_LENGTH (type) > 8); | |
5523 | } | |
5524 | ||
5525 | int | |
5526 | hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs) | |
5527 | { | |
5528 | /* Stack grows upward */ | |
5529 | return (lhs > rhs); | |
5530 | } | |
5531 | ||
3ff7cf9e JB |
5532 | CORE_ADDR |
5533 | hppa64_stack_align (CORE_ADDR sp) | |
5534 | { | |
5535 | /* The PA64 ABI mandates a 16 byte stack alignment. */ | |
5536 | return ((sp % 16) ? (sp + 15) & -16 : sp); | |
5537 | } | |
5538 | ||
d709c020 JB |
5539 | int |
5540 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
5541 | { | |
5542 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
5543 | ||
5544 | An example of this occurs when an a.out is linked against a foo.sl. | |
5545 | The foo.sl defines a global bar(), and the a.out declares a signature | |
5546 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
5547 | its address in another call. | |
5548 | ||
5549 | If you have this scenario and attempt to "break bar" before running, | |
5550 | gdb will find a minimal symbol for bar() in the a.out. But that | |
5551 | symbol's address will be negative. What this appears to denote is | |
5552 | an index backwards from the base of the procedure linkage table (PLT) | |
5553 | into the data linkage table (DLT), the end of which is contiguous | |
5554 | with the start of the PLT. This is clearly not a valid address for | |
5555 | us to set a breakpoint on. | |
5556 | ||
5557 | Note that one must be careful in how one checks for a negative address. | |
5558 | 0xc0000000 is a legitimate address of something in a shared text | |
5559 | segment, for example. Since I don't know what the possible range | |
5560 | is of these "really, truly negative" addresses that come from the | |
5561 | minimal symbols, I'm resorting to the gross hack of checking the | |
5562 | top byte of the address for all 1's. Sigh. */ | |
5563 | ||
5564 | return (!target_has_stack && (pc & 0xFF000000)); | |
5565 | } | |
5566 | ||
5567 | int | |
5568 | hppa_instruction_nullified (void) | |
5569 | { | |
5570 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
5571 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
5572 | semi-mechanical multiarching-related changes. */ | |
5573 | const int ipsw = (int) read_register (IPSW_REGNUM); | |
5574 | const int flags = (int) read_register (FLAGS_REGNUM); | |
5575 | ||
5576 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
5577 | } | |
5578 | ||
60e1ff27 JB |
5579 | int |
5580 | hppa_register_raw_size (int reg_nr) | |
5581 | { | |
5582 | /* All registers have the same size. */ | |
b1e29e33 | 5583 | return DEPRECATED_REGISTER_SIZE; |
60e1ff27 JB |
5584 | } |
5585 | ||
d709c020 JB |
5586 | /* Index within the register vector of the first byte of the space i |
5587 | used for register REG_NR. */ | |
5588 | ||
5589 | int | |
5590 | hppa_register_byte (int reg_nr) | |
5591 | { | |
3ff7cf9e JB |
5592 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
5593 | ||
5594 | return reg_nr * tdep->bytes_per_address; | |
d709c020 JB |
5595 | } |
5596 | ||
5597 | /* Return the GDB type object for the "standard" data type of data | |
5598 | in register N. */ | |
5599 | ||
5600 | struct type * | |
3ff7cf9e | 5601 | hppa32_register_virtual_type (int reg_nr) |
d709c020 JB |
5602 | { |
5603 | if (reg_nr < FP4_REGNUM) | |
5604 | return builtin_type_int; | |
5605 | else | |
5606 | return builtin_type_float; | |
5607 | } | |
5608 | ||
3ff7cf9e JB |
5609 | /* Return the GDB type object for the "standard" data type of data |
5610 | in register N. hppa64 version. */ | |
5611 | ||
5612 | struct type * | |
5613 | hppa64_register_virtual_type (int reg_nr) | |
5614 | { | |
5615 | if (reg_nr < FP4_REGNUM) | |
5616 | return builtin_type_unsigned_long_long; | |
5617 | else | |
5618 | return builtin_type_double; | |
5619 | } | |
5620 | ||
d709c020 JB |
5621 | /* Store the address of the place in which to copy the structure the |
5622 | subroutine will return. This is called from call_function. */ | |
5623 | ||
5624 | void | |
5625 | hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
5626 | { | |
5627 | write_register (28, addr); | |
5628 | } | |
d709c020 JB |
5629 | /* Return True if REGNUM is not a register available to the user |
5630 | through ptrace(). */ | |
5631 | ||
5632 | int | |
5633 | hppa_cannot_store_register (int regnum) | |
5634 | { | |
5635 | return (regnum == 0 | |
5636 | || regnum == PCSQ_HEAD_REGNUM | |
5637 | || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM) | |
5638 | || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM)); | |
5639 | ||
5640 | } | |
5641 | ||
d709c020 JB |
5642 | CORE_ADDR |
5643 | hppa_smash_text_address (CORE_ADDR addr) | |
5644 | { | |
5645 | /* The low two bits of the PC on the PA contain the privilege level. | |
5646 | Some genius implementing a (non-GCC) compiler apparently decided | |
5647 | this means that "addresses" in a text section therefore include a | |
5648 | privilege level, and thus symbol tables should contain these bits. | |
5649 | This seems like a bonehead thing to do--anyway, it seems to work | |
5650 | for our purposes to just ignore those bits. */ | |
5651 | ||
5652 | return (addr &= ~0x3); | |
5653 | } | |
5654 | ||
143985b7 AF |
5655 | /* Get the ith function argument for the current function. */ |
5656 | CORE_ADDR | |
5657 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, | |
5658 | struct type *type) | |
5659 | { | |
5660 | CORE_ADDR addr; | |
7f5f525d | 5661 | get_frame_register (frame, R0_REGNUM + 26 - argi, &addr); |
143985b7 AF |
5662 | return addr; |
5663 | } | |
5664 | ||
8e8b2dba MC |
5665 | /* Here is a table of C type sizes on hppa with various compiles |
5666 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
5667 | and these compilers: | |
5668 | ||
5669 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
5670 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
5671 | /opt/aCC/bin/aCC B3910B A.03.45 | |
5672 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
5673 | ||
5674 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
5675 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5676 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5677 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
5678 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5679 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5680 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
5681 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
5682 | ||
5683 | Each line is: | |
5684 | ||
5685 | compiler and options | |
5686 | char, short, int, long, long long | |
5687 | float, double, long double | |
5688 | char *, void (*)() | |
5689 | ||
5690 | So all these compilers use either ILP32 or LP64 model. | |
5691 | TODO: gcc has more options so it needs more investigation. | |
5692 | ||
a2379359 MC |
5693 | For floating point types, see: |
5694 | ||
5695 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
5696 | HP-UX floating-point guide, hpux 11.00 | |
5697 | ||
8e8b2dba MC |
5698 | -- chastain 2003-12-18 */ |
5699 | ||
e6e68f1f JB |
5700 | static struct gdbarch * |
5701 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
5702 | { | |
3ff7cf9e | 5703 | struct gdbarch_tdep *tdep; |
e6e68f1f | 5704 | struct gdbarch *gdbarch; |
59623e27 JB |
5705 | |
5706 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 5707 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 5708 | { |
4be87837 DJ |
5709 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
5710 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
5711 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 5712 | } |
e6e68f1f JB |
5713 | |
5714 | /* find a candidate among the list of pre-declared architectures. */ | |
5715 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
5716 | if (arches != NULL) | |
5717 | return (arches->gdbarch); | |
5718 | ||
5719 | /* If none found, then allocate and initialize one. */ | |
3ff7cf9e JB |
5720 | tdep = XMALLOC (struct gdbarch_tdep); |
5721 | gdbarch = gdbarch_alloc (&info, tdep); | |
5722 | ||
5723 | /* Determine from the bfd_arch_info structure if we are dealing with | |
5724 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
5725 | then default to a 32bit machine. */ | |
5726 | if (info.bfd_arch_info != NULL) | |
5727 | tdep->bytes_per_address = | |
5728 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
5729 | else | |
5730 | tdep->bytes_per_address = 4; | |
5731 | ||
5732 | /* Some parts of the gdbarch vector depend on whether we are running | |
5733 | on a 32 bits or 64 bits target. */ | |
5734 | switch (tdep->bytes_per_address) | |
5735 | { | |
5736 | case 4: | |
5737 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
5738 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
5739 | set_gdbarch_deprecated_register_virtual_type | |
5740 | (gdbarch, hppa32_register_virtual_type); | |
3ff7cf9e JB |
5741 | break; |
5742 | case 8: | |
5743 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
5744 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
5745 | set_gdbarch_deprecated_register_virtual_type | |
5746 | (gdbarch, hppa64_register_virtual_type); | |
3ff7cf9e JB |
5747 | break; |
5748 | default: | |
5749 | internal_error (__FILE__, __LINE__, "Unsupported address size: %d", | |
5750 | tdep->bytes_per_address); | |
5751 | } | |
5752 | ||
5753 | /* The following gdbarch vector elements depend on other parts of this | |
5754 | vector which have been set above, depending on the ABI. */ | |
5755 | set_gdbarch_deprecated_register_bytes | |
5756 | (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address); | |
5757 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); | |
3ff7cf9e | 5758 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 5759 | |
8e8b2dba MC |
5760 | /* The following gdbarch vector elements are the same in both ILP32 |
5761 | and LP64, but might show differences some day. */ | |
5762 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5763 | set_gdbarch_long_double_bit (gdbarch, 128); | |
a2379359 | 5764 | set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big); |
8e8b2dba | 5765 | |
3ff7cf9e JB |
5766 | /* The following gdbarch vector elements do not depend on the address |
5767 | size, or in any other gdbarch element previously set. */ | |
60383d10 JB |
5768 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
5769 | set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); | |
5770 | set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline); | |
5771 | set_gdbarch_in_solib_return_trampoline (gdbarch, | |
5772 | hppa_in_solib_return_trampoline); | |
60383d10 | 5773 | set_gdbarch_inner_than (gdbarch, hppa_inner_than); |
3ff7cf9e | 5774 | set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address); |
0ba6dca9 | 5775 | set_gdbarch_deprecated_fp_regnum (gdbarch, 3); |
60383d10 JB |
5776 | set_gdbarch_sp_regnum (gdbarch, 30); |
5777 | set_gdbarch_fp0_regnum (gdbarch, 64); | |
9c04cab7 | 5778 | set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size); |
9c04cab7 AC |
5779 | set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte); |
5780 | set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size); | |
3ff7cf9e | 5781 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address); |
a0ed5532 | 5782 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8); |
60383d10 | 5783 | set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register); |
b6fbdd1d | 5784 | set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address); |
60383d10 JB |
5785 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
5786 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
5787 | set_gdbarch_read_pc (gdbarch, hppa_target_read_pc); | |
5788 | set_gdbarch_write_pc (gdbarch, hppa_target_write_pc); | |
0ba6dca9 | 5789 | set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp); |
60383d10 | 5790 | |
143985b7 AF |
5791 | /* Helper for function argument information. */ |
5792 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
5793 | ||
36482093 AC |
5794 | set_gdbarch_print_insn (gdbarch, print_insn_hppa); |
5795 | ||
3a3bc038 AC |
5796 | /* When a hardware watchpoint triggers, we'll move the inferior past |
5797 | it by removing all eventpoints; stepping past the instruction | |
5798 | that caused the trigger; reinserting eventpoints; and checking | |
5799 | whether any watched location changed. */ | |
5800 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
5801 | ||
5979bc46 | 5802 | /* Inferior function call methods. */ |
fca7aa43 | 5803 | switch (tdep->bytes_per_address) |
5979bc46 | 5804 | { |
fca7aa43 AC |
5805 | case 4: |
5806 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); | |
5807 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); | |
5808 | break; | |
5809 | case 8: | |
5810 | if (0) | |
2f690297 | 5811 | { |
2f690297 | 5812 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
1797a8f6 | 5813 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); |
2f690297 AC |
5814 | break; |
5815 | } | |
fca7aa43 | 5816 | else |
e963316f | 5817 | { |
e963316f AC |
5818 | set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch, hppa64_call_dummy_breakpoint_offset); |
5819 | set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa64_call_dummy_length); | |
5820 | set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align); | |
fad850b2 | 5821 | break; |
fca7aa43 AC |
5822 | set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame); |
5823 | /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */ | |
5824 | set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments); | |
5825 | set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0); | |
5826 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack); | |
5827 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | |
fad850b2 | 5828 | } |
fca7aa43 | 5829 | break; |
fad850b2 AC |
5830 | } |
5831 | ||
5832 | /* Struct return methods. */ | |
fca7aa43 | 5833 | switch (tdep->bytes_per_address) |
fad850b2 | 5834 | { |
fca7aa43 AC |
5835 | case 4: |
5836 | set_gdbarch_return_value (gdbarch, hppa32_return_value); | |
5837 | break; | |
5838 | case 8: | |
5839 | if (0) | |
5840 | set_gdbarch_return_value (gdbarch, hppa64_return_value); | |
5841 | else | |
fad850b2 | 5842 | { |
e963316f AC |
5843 | set_gdbarch_deprecated_extract_return_value (gdbarch, hppa64_extract_return_value); |
5844 | set_gdbarch_use_struct_convention (gdbarch, hppa64_use_struct_convention); | |
5845 | set_gdbarch_deprecated_store_return_value (gdbarch, hppa64_store_return_value); | |
fca7aa43 | 5846 | set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return); |
e963316f | 5847 | } |
fca7aa43 AC |
5848 | break; |
5849 | default: | |
5850 | internal_error (__FILE__, __LINE__, "bad switch"); | |
e963316f AC |
5851 | } |
5852 | ||
5979bc46 | 5853 | /* Frame unwind methods. */ |
412275d5 | 5854 | switch (tdep->bytes_per_address) |
e963316f | 5855 | { |
412275d5 | 5856 | case 4: |
26d08f08 AC |
5857 | set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id); |
5858 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); | |
5859 | frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer); | |
5860 | frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer); | |
412275d5 AC |
5861 | break; |
5862 | case 8: | |
e963316f AC |
5863 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call); |
5864 | set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default); | |
5865 | set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, hppa_frame_init_saved_regs); | |
5866 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info); | |
5867 | set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain); | |
5868 | set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid); | |
5869 | set_gdbarch_deprecated_frameless_function_invocation (gdbarch, hppa_frameless_function_invocation); | |
5870 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc); | |
5871 | set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame); | |
412275d5 AC |
5872 | break; |
5873 | default: | |
5874 | internal_error (__FILE__, __LINE__, "bad switch"); | |
e963316f | 5875 | } |
5979bc46 | 5876 | |
752d4ac1 JB |
5877 | /* Hook in ABI-specific overrides, if they have been registered. */ |
5878 | gdbarch_init_osabi (info, gdbarch); | |
5879 | ||
e6e68f1f JB |
5880 | return gdbarch; |
5881 | } | |
5882 | ||
5883 | static void | |
5884 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
5885 | { | |
5886 | /* Nothing to print for the moment. */ | |
5887 | } | |
5888 | ||
4facf7e8 JB |
5889 | void |
5890 | _initialize_hppa_tdep (void) | |
5891 | { | |
5892 | struct cmd_list_element *c; | |
5893 | void break_at_finish_command (char *arg, int from_tty); | |
5894 | void tbreak_at_finish_command (char *arg, int from_tty); | |
5895 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
5896 | ||
e6e68f1f | 5897 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 JB |
5898 | |
5899 | add_cmd ("unwind", class_maintenance, unwind_command, | |
5900 | "Print unwind table entry at given address.", | |
5901 | &maintenanceprintlist); | |
5902 | ||
5903 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
5904 | break_at_finish_command, | |
5905 | concat ("Set breakpoint at procedure exit. \n\ | |
5906 | Argument may be function name, or \"*\" and an address.\n\ | |
5907 | If function is specified, break at end of code for that function.\n\ | |
5908 | If an address is specified, break at the end of the function that contains \n\ | |
5909 | that exact address.\n", | |
5910 | "With no arg, uses current execution address of selected stack frame.\n\ | |
5911 | This is useful for breaking on return to a stack frame.\n\ | |
5912 | \n\ | |
5913 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
5914 | \n\ | |
5915 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
5916 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
5917 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
5918 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
5919 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
5920 | ||
5921 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
5922 | tbreak_at_finish_command, | |
5923 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
5924 | be no argument or the argument must be a depth.\n"), NULL); | |
5925 | set_cmd_completer (c, location_completer); | |
5926 | ||
5927 | if (xdb_commands) | |
5928 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
5929 | break_at_finish_at_depth_command, | |
5930 | "Set breakpoint at procedure exit. Either there should\n\ | |
5931 | be no argument or the argument must be a depth.\n"), NULL); | |
5932 | } | |
5933 |