]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
adc11376 AC |
4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software |
5 | Foundation, Inc. | |
c906108c SS |
6 | |
7 | Contributed by the Center for Software Science at the | |
8 | University of Utah ([email protected]). | |
9 | ||
c5aa993b | 10 | This file is part of GDB. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is free software; you can redistribute it and/or modify |
13 | it under the terms of the GNU General Public License as published by | |
14 | the Free Software Foundation; either version 2 of the License, or | |
15 | (at your option) any later version. | |
c906108c | 16 | |
c5aa993b JM |
17 | This program is distributed in the hope that it will be useful, |
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 | GNU General Public License for more details. | |
c906108c | 21 | |
c5aa993b JM |
22 | You should have received a copy of the GNU General Public License |
23 | along with this program; if not, write to the Free Software | |
24 | Foundation, Inc., 59 Temple Place - Suite 330, | |
25 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
26 | |
27 | #include "defs.h" | |
28 | #include "frame.h" | |
29 | #include "bfd.h" | |
30 | #include "inferior.h" | |
31 | #include "value.h" | |
4e052eda | 32 | #include "regcache.h" |
e5d66720 | 33 | #include "completer.h" |
d709c020 | 34 | #include "language.h" |
59623e27 | 35 | #include "osabi.h" |
a7ff40e7 | 36 | #include "gdb_assert.h" |
65e82032 | 37 | #include "infttrace.h" |
343af405 | 38 | #include "arch-utils.h" |
c906108c SS |
39 | /* For argument passing to the inferior */ |
40 | #include "symtab.h" | |
04714b91 | 41 | #include "infcall.h" |
fde2cceb | 42 | #include "dis-asm.h" |
26d08f08 AC |
43 | #include "trad-frame.h" |
44 | #include "frame-unwind.h" | |
45 | #include "frame-base.h" | |
c906108c | 46 | |
c906108c | 47 | #include "gdb_stat.h" |
03f2053f | 48 | #include "gdb_wait.h" |
c906108c SS |
49 | |
50 | #include "gdbcore.h" | |
51 | #include "gdbcmd.h" | |
52 | #include "target.h" | |
53 | #include "symfile.h" | |
54 | #include "objfiles.h" | |
3ff7cf9e | 55 | #include "hppa-tdep.h" |
c906108c | 56 | |
369aa520 RC |
57 | static int hppa_debug = 0; |
58 | ||
60383d10 | 59 | /* Some local constants. */ |
3ff7cf9e JB |
60 | static const int hppa32_num_regs = 128; |
61 | static const int hppa64_num_regs = 96; | |
62 | ||
7c46b9fb RC |
63 | /* hppa-specific object data -- unwind and solib info. |
64 | TODO/maybe: think about splitting this into two parts; the unwind data is | |
65 | common to all hppa targets, but is only used in this file; we can register | |
66 | that separately and make this static. The solib data is probably hpux- | |
67 | specific, so we can create a separate extern objfile_data that is registered | |
68 | by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ | |
69 | const struct objfile_data *hppa_objfile_priv_data = NULL; | |
70 | ||
e2ac8128 JB |
71 | /* Get at various relevent fields of an instruction word. */ |
72 | #define MASK_5 0x1f | |
73 | #define MASK_11 0x7ff | |
74 | #define MASK_14 0x3fff | |
75 | #define MASK_21 0x1fffff | |
76 | ||
e2ac8128 JB |
77 | /* Define offsets into the call dummy for the _sr4export address. |
78 | See comments related to CALL_DUMMY for more info. */ | |
7c46b9fb RC |
79 | #define SR4EXPORT_LDIL_OFFSET (HPPA_INSTRUCTION_SIZE * 12) |
80 | #define SR4EXPORT_LDO_OFFSET (HPPA_INSTRUCTION_SIZE * 13) | |
e2ac8128 | 81 | |
c906108c SS |
82 | /* To support detection of the pseudo-initial frame |
83 | that threads have. */ | |
84 | #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" | |
85 | #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) | |
c5aa993b | 86 | |
e2ac8128 JB |
87 | /* Sizes (in bytes) of the native unwind entries. */ |
88 | #define UNWIND_ENTRY_SIZE 16 | |
89 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
90 | ||
91 | static int get_field (unsigned word, int from, int to); | |
92 | ||
a14ed312 | 93 | static int extract_5_load (unsigned int); |
c906108c | 94 | |
a14ed312 | 95 | static unsigned extract_5R_store (unsigned int); |
c906108c | 96 | |
a14ed312 | 97 | static unsigned extract_5r_store (unsigned int); |
c906108c | 98 | |
a14ed312 | 99 | struct unwind_table_entry *find_unwind_entry (CORE_ADDR); |
c906108c | 100 | |
a14ed312 | 101 | static int extract_17 (unsigned int); |
c906108c | 102 | |
a14ed312 | 103 | static int extract_21 (unsigned); |
c906108c | 104 | |
a14ed312 | 105 | static int extract_14 (unsigned); |
c906108c | 106 | |
a14ed312 | 107 | static void unwind_command (char *, int); |
c906108c | 108 | |
a14ed312 | 109 | static int low_sign_extend (unsigned int, unsigned int); |
c906108c | 110 | |
a14ed312 | 111 | static int sign_extend (unsigned int, unsigned int); |
c906108c | 112 | |
a14ed312 | 113 | static int hppa_alignof (struct type *); |
c906108c | 114 | |
a14ed312 | 115 | static int prologue_inst_adjust_sp (unsigned long); |
c906108c | 116 | |
a14ed312 | 117 | static int is_branch (unsigned long); |
c906108c | 118 | |
a14ed312 | 119 | static int inst_saves_gr (unsigned long); |
c906108c | 120 | |
a14ed312 | 121 | static int inst_saves_fr (unsigned long); |
c906108c | 122 | |
a14ed312 | 123 | static int compare_unwind_entries (const void *, const void *); |
c906108c | 124 | |
a14ed312 | 125 | static void read_unwind_info (struct objfile *); |
c906108c | 126 | |
a14ed312 KB |
127 | static void internalize_unwinds (struct objfile *, |
128 | struct unwind_table_entry *, | |
129 | asection *, unsigned int, | |
130 | unsigned int, CORE_ADDR); | |
a14ed312 | 131 | static void record_text_segment_lowaddr (bfd *, asection *, void *); |
d709c020 JB |
132 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
133 | following functions static, once we hppa is partially multiarched. */ | |
d709c020 JB |
134 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); |
135 | int hppa_instruction_nullified (void); | |
c906108c | 136 | |
537987fc AC |
137 | /* Handle 32/64-bit struct return conventions. */ |
138 | ||
139 | static enum return_value_convention | |
140 | hppa32_return_value (struct gdbarch *gdbarch, | |
141 | struct type *type, struct regcache *regcache, | |
142 | void *readbuf, const void *writebuf) | |
143 | { | |
144 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
145 | { | |
146 | if (readbuf != NULL) | |
147 | regcache_cooked_read_part (regcache, FP4_REGNUM, 0, | |
148 | TYPE_LENGTH (type), readbuf); | |
149 | if (writebuf != NULL) | |
150 | regcache_cooked_write_part (regcache, FP4_REGNUM, 0, | |
151 | TYPE_LENGTH (type), writebuf); | |
152 | return RETURN_VALUE_REGISTER_CONVENTION; | |
153 | } | |
154 | if (TYPE_LENGTH (type) <= 2 * 4) | |
155 | { | |
156 | /* The value always lives in the right hand end of the register | |
157 | (or register pair)? */ | |
158 | int b; | |
159 | int reg = 28; | |
160 | int part = TYPE_LENGTH (type) % 4; | |
161 | /* The left hand register contains only part of the value, | |
162 | transfer that first so that the rest can be xfered as entire | |
163 | 4-byte registers. */ | |
164 | if (part > 0) | |
165 | { | |
166 | if (readbuf != NULL) | |
167 | regcache_cooked_read_part (regcache, reg, 4 - part, | |
168 | part, readbuf); | |
169 | if (writebuf != NULL) | |
170 | regcache_cooked_write_part (regcache, reg, 4 - part, | |
171 | part, writebuf); | |
172 | reg++; | |
173 | } | |
174 | /* Now transfer the remaining register values. */ | |
175 | for (b = part; b < TYPE_LENGTH (type); b += 4) | |
176 | { | |
177 | if (readbuf != NULL) | |
178 | regcache_cooked_read (regcache, reg, (char *) readbuf + b); | |
179 | if (writebuf != NULL) | |
180 | regcache_cooked_write (regcache, reg, (const char *) writebuf + b); | |
181 | reg++; | |
182 | } | |
183 | return RETURN_VALUE_REGISTER_CONVENTION; | |
184 | } | |
185 | else | |
186 | return RETURN_VALUE_STRUCT_CONVENTION; | |
187 | } | |
188 | ||
189 | static enum return_value_convention | |
190 | hppa64_return_value (struct gdbarch *gdbarch, | |
191 | struct type *type, struct regcache *regcache, | |
192 | void *readbuf, const void *writebuf) | |
193 | { | |
194 | /* RM: Floats are returned in FR4R, doubles in FR4. Integral values | |
195 | are in r28, padded on the left. Aggregates less that 65 bits are | |
196 | in r28, right padded. Aggregates upto 128 bits are in r28 and | |
197 | r29, right padded. */ | |
449e1137 AC |
198 | if (TYPE_CODE (type) == TYPE_CODE_FLT |
199 | && TYPE_LENGTH (type) <= 8) | |
537987fc AC |
200 | { |
201 | /* Floats are right aligned? */ | |
202 | int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type); | |
203 | if (readbuf != NULL) | |
204 | regcache_cooked_read_part (regcache, FP4_REGNUM, offset, | |
205 | TYPE_LENGTH (type), readbuf); | |
206 | if (writebuf != NULL) | |
207 | regcache_cooked_write_part (regcache, FP4_REGNUM, offset, | |
208 | TYPE_LENGTH (type), writebuf); | |
209 | return RETURN_VALUE_REGISTER_CONVENTION; | |
210 | } | |
211 | else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type)) | |
212 | { | |
213 | /* Integrals are right aligned. */ | |
214 | int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type); | |
215 | if (readbuf != NULL) | |
216 | regcache_cooked_read_part (regcache, 28, offset, | |
217 | TYPE_LENGTH (type), readbuf); | |
218 | if (writebuf != NULL) | |
219 | regcache_cooked_write_part (regcache, 28, offset, | |
220 | TYPE_LENGTH (type), writebuf); | |
221 | return RETURN_VALUE_REGISTER_CONVENTION; | |
222 | } | |
223 | else if (TYPE_LENGTH (type) <= 2 * 8) | |
224 | { | |
225 | /* Composite values are left aligned. */ | |
226 | int b; | |
227 | for (b = 0; b < TYPE_LENGTH (type); b += 8) | |
228 | { | |
449e1137 | 229 | int part = min (8, TYPE_LENGTH (type) - b); |
537987fc | 230 | if (readbuf != NULL) |
449e1137 | 231 | regcache_cooked_read_part (regcache, 28 + b / 8, 0, part, |
537987fc AC |
232 | (char *) readbuf + b); |
233 | if (writebuf != NULL) | |
449e1137 | 234 | regcache_cooked_write_part (regcache, 28 + b / 8, 0, part, |
537987fc AC |
235 | (const char *) writebuf + b); |
236 | } | |
449e1137 | 237 | return RETURN_VALUE_REGISTER_CONVENTION; |
537987fc AC |
238 | } |
239 | else | |
240 | return RETURN_VALUE_STRUCT_CONVENTION; | |
241 | } | |
242 | ||
c906108c SS |
243 | /* Routines to extract various sized constants out of hppa |
244 | instructions. */ | |
245 | ||
246 | /* This assumes that no garbage lies outside of the lower bits of | |
247 | value. */ | |
248 | ||
249 | static int | |
fba45db2 | 250 | sign_extend (unsigned val, unsigned bits) |
c906108c | 251 | { |
c5aa993b | 252 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
253 | } |
254 | ||
255 | /* For many immediate values the sign bit is the low bit! */ | |
256 | ||
257 | static int | |
fba45db2 | 258 | low_sign_extend (unsigned val, unsigned bits) |
c906108c | 259 | { |
c5aa993b | 260 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
261 | } |
262 | ||
e2ac8128 JB |
263 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
264 | (MSB = 0). */ | |
265 | ||
266 | static int | |
267 | get_field (unsigned word, int from, int to) | |
268 | { | |
269 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
270 | } | |
271 | ||
c906108c SS |
272 | /* extract the immediate field from a ld{bhw}s instruction */ |
273 | ||
c906108c | 274 | static int |
fba45db2 | 275 | extract_5_load (unsigned word) |
c906108c SS |
276 | { |
277 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
278 | } | |
279 | ||
c906108c SS |
280 | /* extract the immediate field from a break instruction */ |
281 | ||
282 | static unsigned | |
fba45db2 | 283 | extract_5r_store (unsigned word) |
c906108c SS |
284 | { |
285 | return (word & MASK_5); | |
286 | } | |
287 | ||
288 | /* extract the immediate field from a {sr}sm instruction */ | |
289 | ||
290 | static unsigned | |
fba45db2 | 291 | extract_5R_store (unsigned word) |
c906108c SS |
292 | { |
293 | return (word >> 16 & MASK_5); | |
294 | } | |
295 | ||
c906108c SS |
296 | /* extract a 14 bit immediate field */ |
297 | ||
298 | static int | |
fba45db2 | 299 | extract_14 (unsigned word) |
c906108c SS |
300 | { |
301 | return low_sign_extend (word & MASK_14, 14); | |
302 | } | |
303 | ||
c906108c SS |
304 | /* extract a 21 bit constant */ |
305 | ||
306 | static int | |
fba45db2 | 307 | extract_21 (unsigned word) |
c906108c SS |
308 | { |
309 | int val; | |
310 | ||
311 | word &= MASK_21; | |
312 | word <<= 11; | |
e2ac8128 | 313 | val = get_field (word, 20, 20); |
c906108c | 314 | val <<= 11; |
e2ac8128 | 315 | val |= get_field (word, 9, 19); |
c906108c | 316 | val <<= 2; |
e2ac8128 | 317 | val |= get_field (word, 5, 6); |
c906108c | 318 | val <<= 5; |
e2ac8128 | 319 | val |= get_field (word, 0, 4); |
c906108c | 320 | val <<= 2; |
e2ac8128 | 321 | val |= get_field (word, 7, 8); |
c906108c SS |
322 | return sign_extend (val, 21) << 11; |
323 | } | |
324 | ||
c906108c SS |
325 | /* extract a 17 bit constant from branch instructions, returning the |
326 | 19 bit signed value. */ | |
327 | ||
328 | static int | |
fba45db2 | 329 | extract_17 (unsigned word) |
c906108c | 330 | { |
e2ac8128 JB |
331 | return sign_extend (get_field (word, 19, 28) | |
332 | get_field (word, 29, 29) << 10 | | |
333 | get_field (word, 11, 15) << 11 | | |
c906108c SS |
334 | (word & 0x1) << 16, 17) << 2; |
335 | } | |
336 | \f | |
337 | ||
338 | /* Compare the start address for two unwind entries returning 1 if | |
339 | the first address is larger than the second, -1 if the second is | |
340 | larger than the first, and zero if they are equal. */ | |
341 | ||
342 | static int | |
fba45db2 | 343 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
344 | { |
345 | const struct unwind_table_entry *a = arg1; | |
346 | const struct unwind_table_entry *b = arg2; | |
347 | ||
348 | if (a->region_start > b->region_start) | |
349 | return 1; | |
350 | else if (a->region_start < b->region_start) | |
351 | return -1; | |
352 | else | |
353 | return 0; | |
354 | } | |
355 | ||
53a5351d | 356 | static void |
fdd72f95 | 357 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
53a5351d | 358 | { |
fdd72f95 | 359 | if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d | 360 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
fdd72f95 RC |
361 | { |
362 | bfd_vma value = section->vma - section->filepos; | |
363 | CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; | |
364 | ||
365 | if (value < *low_text_segment_address) | |
366 | *low_text_segment_address = value; | |
367 | } | |
53a5351d JM |
368 | } |
369 | ||
c906108c | 370 | static void |
fba45db2 KB |
371 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
372 | asection *section, unsigned int entries, unsigned int size, | |
373 | CORE_ADDR text_offset) | |
c906108c SS |
374 | { |
375 | /* We will read the unwind entries into temporary memory, then | |
376 | fill in the actual unwind table. */ | |
fdd72f95 | 377 | |
c906108c SS |
378 | if (size > 0) |
379 | { | |
380 | unsigned long tmp; | |
381 | unsigned i; | |
382 | char *buf = alloca (size); | |
fdd72f95 | 383 | CORE_ADDR low_text_segment_address; |
c906108c | 384 | |
fdd72f95 | 385 | /* For ELF targets, then unwinds are supposed to |
c2c6d25f JM |
386 | be segment relative offsets instead of absolute addresses. |
387 | ||
388 | Note that when loading a shared library (text_offset != 0) the | |
389 | unwinds are already relative to the text_offset that will be | |
390 | passed in. */ | |
fdd72f95 | 391 | if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0) |
53a5351d | 392 | { |
fdd72f95 RC |
393 | low_text_segment_address = -1; |
394 | ||
53a5351d | 395 | bfd_map_over_sections (objfile->obfd, |
fdd72f95 RC |
396 | record_text_segment_lowaddr, |
397 | &low_text_segment_address); | |
53a5351d | 398 | |
fdd72f95 | 399 | text_offset = low_text_segment_address; |
53a5351d JM |
400 | } |
401 | ||
c906108c SS |
402 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
403 | ||
404 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 405 | endian issues. */ |
c906108c SS |
406 | for (i = 0; i < entries; i++) |
407 | { | |
408 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 409 | (bfd_byte *) buf); |
c906108c SS |
410 | table[i].region_start += text_offset; |
411 | buf += 4; | |
c5aa993b | 412 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
413 | table[i].region_end += text_offset; |
414 | buf += 4; | |
c5aa993b | 415 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
416 | buf += 4; |
417 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
418 | table[i].Millicode = (tmp >> 30) & 0x1; | |
419 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
420 | table[i].Region_description = (tmp >> 27) & 0x3; | |
421 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
422 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
423 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
424 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
425 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
426 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
427 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
428 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
429 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
430 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
431 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
432 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
433 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
434 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
435 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
436 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
437 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
438 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
439 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
440 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 441 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
442 | buf += 4; |
443 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
444 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
445 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
446 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
447 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
448 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
449 | ||
c5aa993b | 450 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
451 | table[i].stub_unwind.stub_type = 0; |
452 | table[i].stub_unwind.padding = 0; | |
453 | } | |
454 | } | |
455 | } | |
456 | ||
457 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
458 | the object file. This info is used mainly by find_unwind_entry() to find | |
459 | out the stack frame size and frame pointer used by procedures. We put | |
460 | everything on the psymbol obstack in the objfile so that it automatically | |
461 | gets freed when the objfile is destroyed. */ | |
462 | ||
463 | static void | |
fba45db2 | 464 | read_unwind_info (struct objfile *objfile) |
c906108c | 465 | { |
d4f3574e SS |
466 | asection *unwind_sec, *stub_unwind_sec; |
467 | unsigned unwind_size, stub_unwind_size, total_size; | |
468 | unsigned index, unwind_entries; | |
c906108c SS |
469 | unsigned stub_entries, total_entries; |
470 | CORE_ADDR text_offset; | |
7c46b9fb RC |
471 | struct hppa_unwind_info *ui; |
472 | struct hppa_objfile_private *obj_private; | |
c906108c SS |
473 | |
474 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
7c46b9fb RC |
475 | ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
476 | sizeof (struct hppa_unwind_info)); | |
c906108c SS |
477 | |
478 | ui->table = NULL; | |
479 | ui->cache = NULL; | |
480 | ui->last = -1; | |
481 | ||
d4f3574e SS |
482 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
483 | sections in a single executable. So we just iterate over every | |
484 | section in the BFD looking for unwinder sections intead of trying | |
485 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 486 | |
d4f3574e SS |
487 | First determine the total size of the unwind tables so that we |
488 | can allocate memory in a nice big hunk. */ | |
489 | total_entries = 0; | |
490 | for (unwind_sec = objfile->obfd->sections; | |
491 | unwind_sec; | |
492 | unwind_sec = unwind_sec->next) | |
c906108c | 493 | { |
d4f3574e SS |
494 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
495 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
496 | { | |
497 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
498 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 499 | |
d4f3574e SS |
500 | total_entries += unwind_entries; |
501 | } | |
c906108c SS |
502 | } |
503 | ||
d4f3574e SS |
504 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
505 | use stub unwinds at the curren time. */ | |
506 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
507 | ||
c906108c SS |
508 | if (stub_unwind_sec) |
509 | { | |
510 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
511 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
512 | } | |
513 | else | |
514 | { | |
515 | stub_unwind_size = 0; | |
516 | stub_entries = 0; | |
517 | } | |
518 | ||
519 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 520 | total_entries += stub_entries; |
c906108c SS |
521 | total_size = total_entries * sizeof (struct unwind_table_entry); |
522 | ||
523 | /* Allocate memory for the unwind table. */ | |
524 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 525 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 526 | ui->last = total_entries - 1; |
c906108c | 527 | |
d4f3574e SS |
528 | /* Now read in each unwind section and internalize the standard unwind |
529 | entries. */ | |
c906108c | 530 | index = 0; |
d4f3574e SS |
531 | for (unwind_sec = objfile->obfd->sections; |
532 | unwind_sec; | |
533 | unwind_sec = unwind_sec->next) | |
534 | { | |
535 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
536 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
537 | { | |
538 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
539 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
540 | ||
541 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
542 | unwind_entries, unwind_size, text_offset); | |
543 | index += unwind_entries; | |
544 | } | |
545 | } | |
546 | ||
547 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
548 | if (stub_unwind_size > 0) |
549 | { | |
550 | unsigned int i; | |
551 | char *buf = alloca (stub_unwind_size); | |
552 | ||
553 | /* Read in the stub unwind entries. */ | |
554 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
555 | 0, stub_unwind_size); | |
556 | ||
557 | /* Now convert them into regular unwind entries. */ | |
558 | for (i = 0; i < stub_entries; i++, index++) | |
559 | { | |
560 | /* Clear out the next unwind entry. */ | |
561 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
562 | ||
563 | /* Convert offset & size into region_start and region_end. | |
564 | Stuff away the stub type into "reserved" fields. */ | |
565 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
566 | (bfd_byte *) buf); | |
567 | ui->table[index].region_start += text_offset; | |
568 | buf += 4; | |
569 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 570 | (bfd_byte *) buf); |
c906108c SS |
571 | buf += 2; |
572 | ui->table[index].region_end | |
c5aa993b JM |
573 | = ui->table[index].region_start + 4 * |
574 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
575 | buf += 2; |
576 | } | |
577 | ||
578 | } | |
579 | ||
580 | /* Unwind table needs to be kept sorted. */ | |
581 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
582 | compare_unwind_entries); | |
583 | ||
584 | /* Keep a pointer to the unwind information. */ | |
7c46b9fb RC |
585 | obj_private = (struct hppa_objfile_private *) |
586 | objfile_data (objfile, hppa_objfile_priv_data); | |
587 | if (obj_private == NULL) | |
c906108c | 588 | { |
7c46b9fb RC |
589 | obj_private = (struct hppa_objfile_private *) |
590 | obstack_alloc (&objfile->objfile_obstack, | |
591 | sizeof (struct hppa_objfile_private)); | |
592 | set_objfile_data (objfile, hppa_objfile_priv_data, obj_private); | |
c906108c | 593 | obj_private->unwind_info = NULL; |
c5aa993b | 594 | obj_private->so_info = NULL; |
53a5351d | 595 | obj_private->dp = 0; |
c906108c | 596 | } |
c906108c SS |
597 | obj_private->unwind_info = ui; |
598 | } | |
599 | ||
600 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
601 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
602 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
603 | search of the unwind tables, we depend upon them to be sorted. */ | |
604 | ||
605 | struct unwind_table_entry * | |
fba45db2 | 606 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
607 | { |
608 | int first, middle, last; | |
609 | struct objfile *objfile; | |
7c46b9fb | 610 | struct hppa_objfile_private *priv; |
c906108c | 611 | |
369aa520 RC |
612 | if (hppa_debug) |
613 | fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ", | |
614 | paddr_nz (pc)); | |
615 | ||
c906108c SS |
616 | /* A function at address 0? Not in HP-UX! */ |
617 | if (pc == (CORE_ADDR) 0) | |
369aa520 RC |
618 | { |
619 | if (hppa_debug) | |
620 | fprintf_unfiltered (gdb_stdlog, "NULL }\n"); | |
621 | return NULL; | |
622 | } | |
c906108c SS |
623 | |
624 | ALL_OBJFILES (objfile) | |
c5aa993b | 625 | { |
7c46b9fb | 626 | struct hppa_unwind_info *ui; |
c5aa993b | 627 | ui = NULL; |
7c46b9fb RC |
628 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
629 | if (priv) | |
630 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; | |
c906108c | 631 | |
c5aa993b JM |
632 | if (!ui) |
633 | { | |
634 | read_unwind_info (objfile); | |
7c46b9fb RC |
635 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
636 | if (priv == NULL) | |
104c1213 | 637 | error ("Internal error reading unwind information."); |
7c46b9fb | 638 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
c5aa993b | 639 | } |
c906108c | 640 | |
c5aa993b | 641 | /* First, check the cache */ |
c906108c | 642 | |
c5aa993b JM |
643 | if (ui->cache |
644 | && pc >= ui->cache->region_start | |
645 | && pc <= ui->cache->region_end) | |
369aa520 RC |
646 | { |
647 | if (hppa_debug) | |
648 | fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n", | |
649 | paddr_nz ((CORE_ADDR) ui->cache)); | |
650 | return ui->cache; | |
651 | } | |
c906108c | 652 | |
c5aa993b | 653 | /* Not in the cache, do a binary search */ |
c906108c | 654 | |
c5aa993b JM |
655 | first = 0; |
656 | last = ui->last; | |
c906108c | 657 | |
c5aa993b JM |
658 | while (first <= last) |
659 | { | |
660 | middle = (first + last) / 2; | |
661 | if (pc >= ui->table[middle].region_start | |
662 | && pc <= ui->table[middle].region_end) | |
663 | { | |
664 | ui->cache = &ui->table[middle]; | |
369aa520 RC |
665 | if (hppa_debug) |
666 | fprintf_unfiltered (gdb_stdlog, "0x%s }\n", | |
667 | paddr_nz ((CORE_ADDR) ui->cache)); | |
c5aa993b JM |
668 | return &ui->table[middle]; |
669 | } | |
c906108c | 670 | |
c5aa993b JM |
671 | if (pc < ui->table[middle].region_start) |
672 | last = middle - 1; | |
673 | else | |
674 | first = middle + 1; | |
675 | } | |
676 | } /* ALL_OBJFILES() */ | |
369aa520 RC |
677 | |
678 | if (hppa_debug) | |
679 | fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); | |
680 | ||
c906108c SS |
681 | return NULL; |
682 | } | |
683 | ||
85f4f2d8 | 684 | static const unsigned char * |
aaab4dba AC |
685 | hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len) |
686 | { | |
56132691 | 687 | static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; |
aaab4dba AC |
688 | (*len) = sizeof (breakpoint); |
689 | return breakpoint; | |
690 | } | |
691 | ||
e23457df AC |
692 | /* Return the name of a register. */ |
693 | ||
694 | const char * | |
3ff7cf9e | 695 | hppa32_register_name (int i) |
e23457df AC |
696 | { |
697 | static char *names[] = { | |
698 | "flags", "r1", "rp", "r3", | |
699 | "r4", "r5", "r6", "r7", | |
700 | "r8", "r9", "r10", "r11", | |
701 | "r12", "r13", "r14", "r15", | |
702 | "r16", "r17", "r18", "r19", | |
703 | "r20", "r21", "r22", "r23", | |
704 | "r24", "r25", "r26", "dp", | |
705 | "ret0", "ret1", "sp", "r31", | |
706 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
707 | "pcsqt", "eiem", "iir", "isr", | |
708 | "ior", "ipsw", "goto", "sr4", | |
709 | "sr0", "sr1", "sr2", "sr3", | |
710 | "sr5", "sr6", "sr7", "cr0", | |
711 | "cr8", "cr9", "ccr", "cr12", | |
712 | "cr13", "cr24", "cr25", "cr26", | |
713 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
714 | "fpsr", "fpe1", "fpe2", "fpe3", | |
715 | "fpe4", "fpe5", "fpe6", "fpe7", | |
716 | "fr4", "fr4R", "fr5", "fr5R", | |
717 | "fr6", "fr6R", "fr7", "fr7R", | |
718 | "fr8", "fr8R", "fr9", "fr9R", | |
719 | "fr10", "fr10R", "fr11", "fr11R", | |
720 | "fr12", "fr12R", "fr13", "fr13R", | |
721 | "fr14", "fr14R", "fr15", "fr15R", | |
722 | "fr16", "fr16R", "fr17", "fr17R", | |
723 | "fr18", "fr18R", "fr19", "fr19R", | |
724 | "fr20", "fr20R", "fr21", "fr21R", | |
725 | "fr22", "fr22R", "fr23", "fr23R", | |
726 | "fr24", "fr24R", "fr25", "fr25R", | |
727 | "fr26", "fr26R", "fr27", "fr27R", | |
728 | "fr28", "fr28R", "fr29", "fr29R", | |
729 | "fr30", "fr30R", "fr31", "fr31R" | |
730 | }; | |
731 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
732 | return NULL; | |
733 | else | |
734 | return names[i]; | |
735 | } | |
736 | ||
737 | const char * | |
738 | hppa64_register_name (int i) | |
739 | { | |
740 | static char *names[] = { | |
741 | "flags", "r1", "rp", "r3", | |
742 | "r4", "r5", "r6", "r7", | |
743 | "r8", "r9", "r10", "r11", | |
744 | "r12", "r13", "r14", "r15", | |
745 | "r16", "r17", "r18", "r19", | |
746 | "r20", "r21", "r22", "r23", | |
747 | "r24", "r25", "r26", "dp", | |
748 | "ret0", "ret1", "sp", "r31", | |
749 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
750 | "pcsqt", "eiem", "iir", "isr", | |
751 | "ior", "ipsw", "goto", "sr4", | |
752 | "sr0", "sr1", "sr2", "sr3", | |
753 | "sr5", "sr6", "sr7", "cr0", | |
754 | "cr8", "cr9", "ccr", "cr12", | |
755 | "cr13", "cr24", "cr25", "cr26", | |
756 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
757 | "fpsr", "fpe1", "fpe2", "fpe3", | |
758 | "fr4", "fr5", "fr6", "fr7", | |
759 | "fr8", "fr9", "fr10", "fr11", | |
760 | "fr12", "fr13", "fr14", "fr15", | |
761 | "fr16", "fr17", "fr18", "fr19", | |
762 | "fr20", "fr21", "fr22", "fr23", | |
763 | "fr24", "fr25", "fr26", "fr27", | |
764 | "fr28", "fr29", "fr30", "fr31" | |
765 | }; | |
766 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
767 | return NULL; | |
768 | else | |
769 | return names[i]; | |
770 | } | |
771 | ||
79508e1e AC |
772 | /* This function pushes a stack frame with arguments as part of the |
773 | inferior function calling mechanism. | |
774 | ||
775 | This is the version of the function for the 32-bit PA machines, in | |
776 | which later arguments appear at lower addresses. (The stack always | |
777 | grows towards higher addresses.) | |
778 | ||
779 | We simply allocate the appropriate amount of stack space and put | |
780 | arguments into their proper slots. */ | |
781 | ||
782 | CORE_ADDR | |
783 | hppa32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, | |
784 | struct regcache *regcache, CORE_ADDR bp_addr, | |
785 | int nargs, struct value **args, CORE_ADDR sp, | |
786 | int struct_return, CORE_ADDR struct_addr) | |
787 | { | |
788 | /* NOTE: cagney/2004-02-27: This is a guess - its implemented by | |
789 | reverse engineering testsuite failures. */ | |
790 | ||
791 | /* Stack base address at which any pass-by-reference parameters are | |
792 | stored. */ | |
793 | CORE_ADDR struct_end = 0; | |
794 | /* Stack base address at which the first parameter is stored. */ | |
795 | CORE_ADDR param_end = 0; | |
796 | ||
797 | /* The inner most end of the stack after all the parameters have | |
798 | been pushed. */ | |
799 | CORE_ADDR new_sp = 0; | |
800 | ||
801 | /* Two passes. First pass computes the location of everything, | |
802 | second pass writes the bytes out. */ | |
803 | int write_pass; | |
804 | for (write_pass = 0; write_pass < 2; write_pass++) | |
805 | { | |
1797a8f6 AC |
806 | CORE_ADDR struct_ptr = 0; |
807 | CORE_ADDR param_ptr = 0; | |
79508e1e AC |
808 | int reg = 27; /* NOTE: Registers go down. */ |
809 | int i; | |
810 | for (i = 0; i < nargs; i++) | |
811 | { | |
812 | struct value *arg = args[i]; | |
813 | struct type *type = check_typedef (VALUE_TYPE (arg)); | |
814 | /* The corresponding parameter that is pushed onto the | |
815 | stack, and [possibly] passed in a register. */ | |
816 | char param_val[8]; | |
817 | int param_len; | |
818 | memset (param_val, 0, sizeof param_val); | |
819 | if (TYPE_LENGTH (type) > 8) | |
820 | { | |
821 | /* Large parameter, pass by reference. Store the value | |
822 | in "struct" area and then pass its address. */ | |
823 | param_len = 4; | |
1797a8f6 | 824 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
79508e1e | 825 | if (write_pass) |
1797a8f6 | 826 | write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg), |
79508e1e | 827 | TYPE_LENGTH (type)); |
1797a8f6 | 828 | store_unsigned_integer (param_val, 4, struct_end - struct_ptr); |
79508e1e AC |
829 | } |
830 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
831 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
832 | { | |
833 | /* Integer value store, right aligned. "unpack_long" | |
834 | takes care of any sign-extension problems. */ | |
835 | param_len = align_up (TYPE_LENGTH (type), 4); | |
836 | store_unsigned_integer (param_val, param_len, | |
837 | unpack_long (type, | |
838 | VALUE_CONTENTS (arg))); | |
839 | } | |
840 | else | |
841 | { | |
842 | /* Small struct value, store right aligned? */ | |
843 | param_len = align_up (TYPE_LENGTH (type), 4); | |
844 | memcpy (param_val + param_len - TYPE_LENGTH (type), | |
845 | VALUE_CONTENTS (arg), TYPE_LENGTH (type)); | |
846 | } | |
1797a8f6 | 847 | param_ptr += param_len; |
79508e1e AC |
848 | reg -= param_len / 4; |
849 | if (write_pass) | |
850 | { | |
1797a8f6 | 851 | write_memory (param_end - param_ptr, param_val, param_len); |
79508e1e AC |
852 | if (reg >= 23) |
853 | { | |
854 | regcache_cooked_write (regcache, reg, param_val); | |
855 | if (param_len > 4) | |
856 | regcache_cooked_write (regcache, reg + 1, param_val + 4); | |
857 | } | |
858 | } | |
859 | } | |
860 | ||
861 | /* Update the various stack pointers. */ | |
862 | if (!write_pass) | |
863 | { | |
864 | struct_end = sp + struct_ptr; | |
865 | /* PARAM_PTR already accounts for all the arguments passed | |
866 | by the user. However, the ABI mandates minimum stack | |
867 | space allocations for outgoing arguments. The ABI also | |
868 | mandates minimum stack alignments which we must | |
869 | preserve. */ | |
d0bd2d18 | 870 | param_end = struct_end + max (align_up (param_ptr, 8), 16); |
79508e1e AC |
871 | } |
872 | } | |
873 | ||
874 | /* If a structure has to be returned, set up register 28 to hold its | |
875 | address */ | |
876 | if (struct_return) | |
877 | write_register (28, struct_addr); | |
878 | ||
879 | /* Set the return address. */ | |
880 | regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr); | |
881 | ||
c4557624 JB |
882 | /* Update the Stack Pointer. */ |
883 | regcache_cooked_write_unsigned (regcache, SP_REGNUM, param_end + 32); | |
884 | ||
79508e1e AC |
885 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
886 | return param_end + 32; | |
887 | } | |
888 | ||
2f690297 AC |
889 | /* This function pushes a stack frame with arguments as part of the |
890 | inferior function calling mechanism. | |
891 | ||
892 | This is the version for the PA64, in which later arguments appear | |
893 | at higher addresses. (The stack always grows towards higher | |
894 | addresses.) | |
895 | ||
896 | We simply allocate the appropriate amount of stack space and put | |
897 | arguments into their proper slots. | |
898 | ||
899 | This ABI also requires that the caller provide an argument pointer | |
900 | to the callee, so we do that too. */ | |
901 | ||
902 | CORE_ADDR | |
903 | hppa64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, | |
904 | struct regcache *regcache, CORE_ADDR bp_addr, | |
905 | int nargs, struct value **args, CORE_ADDR sp, | |
906 | int struct_return, CORE_ADDR struct_addr) | |
907 | { | |
449e1137 AC |
908 | /* NOTE: cagney/2004-02-27: This is a guess - its implemented by |
909 | reverse engineering testsuite failures. */ | |
2f690297 | 910 | |
449e1137 AC |
911 | /* Stack base address at which any pass-by-reference parameters are |
912 | stored. */ | |
913 | CORE_ADDR struct_end = 0; | |
914 | /* Stack base address at which the first parameter is stored. */ | |
915 | CORE_ADDR param_end = 0; | |
2f690297 | 916 | |
449e1137 AC |
917 | /* The inner most end of the stack after all the parameters have |
918 | been pushed. */ | |
919 | CORE_ADDR new_sp = 0; | |
2f690297 | 920 | |
449e1137 AC |
921 | /* Two passes. First pass computes the location of everything, |
922 | second pass writes the bytes out. */ | |
923 | int write_pass; | |
924 | for (write_pass = 0; write_pass < 2; write_pass++) | |
2f690297 | 925 | { |
449e1137 AC |
926 | CORE_ADDR struct_ptr = 0; |
927 | CORE_ADDR param_ptr = 0; | |
928 | int i; | |
929 | for (i = 0; i < nargs; i++) | |
2f690297 | 930 | { |
449e1137 AC |
931 | struct value *arg = args[i]; |
932 | struct type *type = check_typedef (VALUE_TYPE (arg)); | |
933 | if ((TYPE_CODE (type) == TYPE_CODE_INT | |
934 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
935 | && TYPE_LENGTH (type) <= 8) | |
936 | { | |
937 | /* Integer value store, right aligned. "unpack_long" | |
938 | takes care of any sign-extension problems. */ | |
939 | param_ptr += 8; | |
940 | if (write_pass) | |
941 | { | |
942 | ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg)); | |
943 | int reg = 27 - param_ptr / 8; | |
944 | write_memory_unsigned_integer (param_end - param_ptr, | |
945 | val, 8); | |
946 | if (reg >= 19) | |
947 | regcache_cooked_write_unsigned (regcache, reg, val); | |
948 | } | |
949 | } | |
950 | else | |
951 | { | |
952 | /* Small struct value, store left aligned? */ | |
953 | int reg; | |
954 | if (TYPE_LENGTH (type) > 8) | |
955 | { | |
956 | param_ptr = align_up (param_ptr, 16); | |
957 | reg = 26 - param_ptr / 8; | |
958 | param_ptr += align_up (TYPE_LENGTH (type), 16); | |
959 | } | |
960 | else | |
961 | { | |
962 | param_ptr = align_up (param_ptr, 8); | |
963 | reg = 26 - param_ptr / 8; | |
964 | param_ptr += align_up (TYPE_LENGTH (type), 8); | |
965 | } | |
966 | if (write_pass) | |
967 | { | |
968 | int byte; | |
969 | write_memory (param_end - param_ptr, VALUE_CONTENTS (arg), | |
970 | TYPE_LENGTH (type)); | |
971 | for (byte = 0; byte < TYPE_LENGTH (type); byte += 8) | |
972 | { | |
973 | if (reg >= 19) | |
974 | { | |
975 | int len = min (8, TYPE_LENGTH (type) - byte); | |
976 | regcache_cooked_write_part (regcache, reg, 0, len, | |
977 | VALUE_CONTENTS (arg) + byte); | |
978 | } | |
979 | reg--; | |
980 | } | |
981 | } | |
982 | } | |
2f690297 | 983 | } |
449e1137 AC |
984 | /* Update the various stack pointers. */ |
985 | if (!write_pass) | |
2f690297 | 986 | { |
449e1137 AC |
987 | struct_end = sp + struct_ptr; |
988 | /* PARAM_PTR already accounts for all the arguments passed | |
989 | by the user. However, the ABI mandates minimum stack | |
990 | space allocations for outgoing arguments. The ABI also | |
991 | mandates minimum stack alignments which we must | |
992 | preserve. */ | |
d0bd2d18 | 993 | param_end = struct_end + max (align_up (param_ptr, 16), 64); |
2f690297 | 994 | } |
2f690297 AC |
995 | } |
996 | ||
2f690297 AC |
997 | /* If a structure has to be returned, set up register 28 to hold its |
998 | address */ | |
999 | if (struct_return) | |
1000 | write_register (28, struct_addr); | |
1001 | ||
2f690297 AC |
1002 | /* Set the return address. */ |
1003 | regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr); | |
1004 | ||
c4557624 JB |
1005 | /* Update the Stack Pointer. */ |
1006 | regcache_cooked_write_unsigned (regcache, SP_REGNUM, param_end + 64); | |
1007 | ||
449e1137 AC |
1008 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
1009 | return param_end + 64; | |
2f690297 AC |
1010 | } |
1011 | ||
1797a8f6 AC |
1012 | static CORE_ADDR |
1013 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1014 | { | |
1015 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ | |
1016 | and not _bit_)! */ | |
1017 | return align_up (addr, 64); | |
1018 | } | |
1019 | ||
2f690297 AC |
1020 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
1021 | ||
1022 | static CORE_ADDR | |
1797a8f6 | 1023 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
2f690297 AC |
1024 | { |
1025 | /* Just always 16-byte align. */ | |
1026 | return align_up (addr, 16); | |
1027 | } | |
1028 | ||
1029 | ||
c906108c SS |
1030 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege |
1031 | bits. */ | |
1032 | ||
8d153463 | 1033 | static CORE_ADDR |
60383d10 | 1034 | hppa_target_read_pc (ptid_t ptid) |
c906108c | 1035 | { |
39f77062 | 1036 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
1037 | |
1038 | /* The following test does not belong here. It is OS-specific, and belongs | |
1039 | in native code. */ | |
1040 | /* Test SS_INSYSCALL */ | |
1041 | if (flags & 2) | |
39f77062 | 1042 | return read_register_pid (31, ptid) & ~0x3; |
c906108c | 1043 | |
449e1137 | 1044 | return read_register_pid (PCOQ_HEAD_REGNUM, ptid) & ~0x3; |
c906108c SS |
1045 | } |
1046 | ||
1047 | /* Write out the PC. If currently in a syscall, then also write the new | |
1048 | PC value into %r31. */ | |
1049 | ||
8d153463 | 1050 | static void |
60383d10 | 1051 | hppa_target_write_pc (CORE_ADDR v, ptid_t ptid) |
c906108c | 1052 | { |
39f77062 | 1053 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
1054 | |
1055 | /* The following test does not belong here. It is OS-specific, and belongs | |
1056 | in native code. */ | |
1057 | /* If in a syscall, then set %r31. Also make sure to get the | |
1058 | privilege bits set correctly. */ | |
1059 | /* Test SS_INSYSCALL */ | |
1060 | if (flags & 2) | |
39f77062 | 1061 | write_register_pid (31, v | 0x3, ptid); |
c906108c | 1062 | |
449e1137 | 1063 | write_register_pid (PCOQ_HEAD_REGNUM, v, ptid); |
adc11376 | 1064 | write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid); |
c906108c SS |
1065 | } |
1066 | ||
1067 | /* return the alignment of a type in bytes. Structures have the maximum | |
1068 | alignment required by their fields. */ | |
1069 | ||
1070 | static int | |
fba45db2 | 1071 | hppa_alignof (struct type *type) |
c906108c SS |
1072 | { |
1073 | int max_align, align, i; | |
1074 | CHECK_TYPEDEF (type); | |
1075 | switch (TYPE_CODE (type)) | |
1076 | { | |
1077 | case TYPE_CODE_PTR: | |
1078 | case TYPE_CODE_INT: | |
1079 | case TYPE_CODE_FLT: | |
1080 | return TYPE_LENGTH (type); | |
1081 | case TYPE_CODE_ARRAY: | |
1082 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
1083 | case TYPE_CODE_STRUCT: | |
1084 | case TYPE_CODE_UNION: | |
1085 | max_align = 1; | |
1086 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
1087 | { | |
1088 | /* Bit fields have no real alignment. */ | |
1089 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 1090 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
1091 | { |
1092 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
1093 | max_align = max (max_align, align); | |
1094 | } | |
1095 | } | |
1096 | return max_align; | |
1097 | default: | |
1098 | return 4; | |
1099 | } | |
1100 | } | |
1101 | ||
c906108c SS |
1102 | /* Return one if PC is in the call path of a trampoline, else return zero. |
1103 | ||
1104 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
1105 | just shared library trampolines (import, export). */ | |
1106 | ||
8d153463 | 1107 | static int |
60383d10 | 1108 | hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
1109 | { |
1110 | struct minimal_symbol *minsym; | |
1111 | struct unwind_table_entry *u; | |
1112 | static CORE_ADDR dyncall = 0; | |
1113 | static CORE_ADDR sr4export = 0; | |
1114 | ||
c2c6d25f JM |
1115 | #ifdef GDB_TARGET_IS_HPPA_20W |
1116 | /* PA64 has a completely different stub/trampoline scheme. Is it | |
1117 | better? Maybe. It's certainly harder to determine with any | |
1118 | certainty that we are in a stub because we can not refer to the | |
1119 | unwinders to help. | |
1120 | ||
1121 | The heuristic is simple. Try to lookup the current PC value in th | |
1122 | minimal symbol table. If that fails, then assume we are not in a | |
1123 | stub and return. | |
1124 | ||
1125 | Then see if the PC value falls within the section bounds for the | |
1126 | section containing the minimal symbol we found in the first | |
1127 | step. If it does, then assume we are not in a stub and return. | |
1128 | ||
1129 | Finally peek at the instructions to see if they look like a stub. */ | |
1130 | { | |
1131 | struct minimal_symbol *minsym; | |
1132 | asection *sec; | |
1133 | CORE_ADDR addr; | |
1134 | int insn, i; | |
1135 | ||
1136 | minsym = lookup_minimal_symbol_by_pc (pc); | |
1137 | if (! minsym) | |
1138 | return 0; | |
1139 | ||
1140 | sec = SYMBOL_BFD_SECTION (minsym); | |
1141 | ||
b98ed7be AM |
1142 | if (bfd_get_section_vma (sec->owner, sec) <= pc |
1143 | && pc < (bfd_get_section_vma (sec->owner, sec) | |
1144 | + bfd_section_size (sec->owner, sec))) | |
c2c6d25f JM |
1145 | return 0; |
1146 | ||
1147 | /* We might be in a stub. Peek at the instructions. Stubs are 3 | |
1148 | instructions long. */ | |
1149 | insn = read_memory_integer (pc, 4); | |
1150 | ||
b84a8afe | 1151 | /* Find out where we think we are within the stub. */ |
c2c6d25f JM |
1152 | if ((insn & 0xffffc00e) == 0x53610000) |
1153 | addr = pc; | |
1154 | else if ((insn & 0xffffffff) == 0xe820d000) | |
1155 | addr = pc - 4; | |
1156 | else if ((insn & 0xffffc00e) == 0x537b0000) | |
1157 | addr = pc - 8; | |
1158 | else | |
1159 | return 0; | |
1160 | ||
1161 | /* Now verify each insn in the range looks like a stub instruction. */ | |
1162 | insn = read_memory_integer (addr, 4); | |
1163 | if ((insn & 0xffffc00e) != 0x53610000) | |
1164 | return 0; | |
1165 | ||
1166 | /* Now verify each insn in the range looks like a stub instruction. */ | |
1167 | insn = read_memory_integer (addr + 4, 4); | |
1168 | if ((insn & 0xffffffff) != 0xe820d000) | |
1169 | return 0; | |
1170 | ||
1171 | /* Now verify each insn in the range looks like a stub instruction. */ | |
1172 | insn = read_memory_integer (addr + 8, 4); | |
1173 | if ((insn & 0xffffc00e) != 0x537b0000) | |
1174 | return 0; | |
1175 | ||
1176 | /* Looks like a stub. */ | |
1177 | return 1; | |
1178 | } | |
1179 | #endif | |
1180 | ||
1181 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
1182 | new exec file */ | |
c906108c SS |
1183 | |
1184 | /* First see if PC is in one of the two C-library trampolines. */ | |
1185 | if (!dyncall) | |
1186 | { | |
1187 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
1188 | if (minsym) | |
1189 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
1190 | else | |
1191 | dyncall = -1; | |
1192 | } | |
1193 | ||
1194 | if (!sr4export) | |
1195 | { | |
1196 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
1197 | if (minsym) | |
1198 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
1199 | else | |
1200 | sr4export = -1; | |
1201 | } | |
1202 | ||
1203 | if (pc == dyncall || pc == sr4export) | |
1204 | return 1; | |
1205 | ||
104c1213 | 1206 | minsym = lookup_minimal_symbol_by_pc (pc); |
22abf04a | 1207 | if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0) |
104c1213 JM |
1208 | return 1; |
1209 | ||
c906108c SS |
1210 | /* Get the unwind descriptor corresponding to PC, return zero |
1211 | if no unwind was found. */ | |
1212 | u = find_unwind_entry (pc); | |
1213 | if (!u) | |
1214 | return 0; | |
1215 | ||
1216 | /* If this isn't a linker stub, then return now. */ | |
1217 | if (u->stub_unwind.stub_type == 0) | |
1218 | return 0; | |
1219 | ||
1220 | /* By definition a long-branch stub is a call stub. */ | |
1221 | if (u->stub_unwind.stub_type == LONG_BRANCH) | |
1222 | return 1; | |
1223 | ||
1224 | /* The call and return path execute the same instructions within | |
1225 | an IMPORT stub! So an IMPORT stub is both a call and return | |
1226 | trampoline. */ | |
1227 | if (u->stub_unwind.stub_type == IMPORT) | |
1228 | return 1; | |
1229 | ||
1230 | /* Parameter relocation stubs always have a call path and may have a | |
1231 | return path. */ | |
1232 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
1233 | || u->stub_unwind.stub_type == EXPORT) | |
1234 | { | |
1235 | CORE_ADDR addr; | |
1236 | ||
1237 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 1238 | or the end of the stub. */ |
c906108c SS |
1239 | for (addr = pc; addr <= u->region_end; addr += 4) |
1240 | { | |
1241 | unsigned long insn; | |
1242 | ||
1243 | insn = read_memory_integer (addr, 4); | |
1244 | ||
1245 | /* Does it look like a bl? If so then it's the call path, if | |
1246 | we find a bv or be first, then we're on the return path. */ | |
1247 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1248 | return 1; | |
1249 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
1250 | || (insn & 0xfc000000) == 0xe0000000) | |
1251 | return 0; | |
1252 | } | |
1253 | ||
1254 | /* Should never happen. */ | |
104c1213 JM |
1255 | warning ("Unable to find branch in parameter relocation stub.\n"); |
1256 | return 0; | |
c906108c SS |
1257 | } |
1258 | ||
1259 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 1260 | return 0; |
c906108c SS |
1261 | } |
1262 | ||
1263 | /* Return one if PC is in the return path of a trampoline, else return zero. | |
1264 | ||
1265 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
1266 | just shared library trampolines (import, export). */ | |
1267 | ||
8d153463 | 1268 | static int |
60383d10 | 1269 | hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
1270 | { |
1271 | struct unwind_table_entry *u; | |
1272 | ||
1273 | /* Get the unwind descriptor corresponding to PC, return zero | |
1274 | if no unwind was found. */ | |
1275 | u = find_unwind_entry (pc); | |
1276 | if (!u) | |
1277 | return 0; | |
1278 | ||
1279 | /* If this isn't a linker stub or it's just a long branch stub, then | |
1280 | return zero. */ | |
1281 | if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) | |
1282 | return 0; | |
1283 | ||
1284 | /* The call and return path execute the same instructions within | |
1285 | an IMPORT stub! So an IMPORT stub is both a call and return | |
1286 | trampoline. */ | |
1287 | if (u->stub_unwind.stub_type == IMPORT) | |
1288 | return 1; | |
1289 | ||
1290 | /* Parameter relocation stubs always have a call path and may have a | |
1291 | return path. */ | |
1292 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
1293 | || u->stub_unwind.stub_type == EXPORT) | |
1294 | { | |
1295 | CORE_ADDR addr; | |
1296 | ||
1297 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 1298 | or the end of the stub. */ |
c906108c SS |
1299 | for (addr = pc; addr <= u->region_end; addr += 4) |
1300 | { | |
1301 | unsigned long insn; | |
1302 | ||
1303 | insn = read_memory_integer (addr, 4); | |
1304 | ||
1305 | /* Does it look like a bl? If so then it's the call path, if | |
1306 | we find a bv or be first, then we're on the return path. */ | |
1307 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1308 | return 0; | |
1309 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
1310 | || (insn & 0xfc000000) == 0xe0000000) | |
1311 | return 1; | |
1312 | } | |
1313 | ||
1314 | /* Should never happen. */ | |
104c1213 JM |
1315 | warning ("Unable to find branch in parameter relocation stub.\n"); |
1316 | return 0; | |
c906108c SS |
1317 | } |
1318 | ||
1319 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 1320 | return 0; |
c906108c SS |
1321 | |
1322 | } | |
1323 | ||
1324 | /* Figure out if PC is in a trampoline, and if so find out where | |
1325 | the trampoline will jump to. If not in a trampoline, return zero. | |
1326 | ||
1327 | Simple code examination probably is not a good idea since the code | |
1328 | sequences in trampolines can also appear in user code. | |
1329 | ||
1330 | We use unwinds and information from the minimal symbol table to | |
1331 | determine when we're in a trampoline. This won't work for ELF | |
1332 | (yet) since it doesn't create stub unwind entries. Whether or | |
1333 | not ELF will create stub unwinds or normal unwinds for linker | |
1334 | stubs is still being debated. | |
1335 | ||
1336 | This should handle simple calls through dyncall or sr4export, | |
1337 | long calls, argument relocation stubs, and dyncall/sr4export | |
1338 | calling an argument relocation stub. It even handles some stubs | |
1339 | used in dynamic executables. */ | |
1340 | ||
8d153463 | 1341 | static CORE_ADDR |
60383d10 | 1342 | hppa_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
1343 | { |
1344 | long orig_pc = pc; | |
1345 | long prev_inst, curr_inst, loc; | |
1346 | static CORE_ADDR dyncall = 0; | |
1347 | static CORE_ADDR dyncall_external = 0; | |
1348 | static CORE_ADDR sr4export = 0; | |
1349 | struct minimal_symbol *msym; | |
1350 | struct unwind_table_entry *u; | |
1351 | ||
c2c6d25f JM |
1352 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
1353 | new exec file */ | |
c906108c SS |
1354 | |
1355 | if (!dyncall) | |
1356 | { | |
1357 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
1358 | if (msym) | |
1359 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
1360 | else | |
1361 | dyncall = -1; | |
1362 | } | |
1363 | ||
1364 | if (!dyncall_external) | |
1365 | { | |
1366 | msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); | |
1367 | if (msym) | |
1368 | dyncall_external = SYMBOL_VALUE_ADDRESS (msym); | |
1369 | else | |
1370 | dyncall_external = -1; | |
1371 | } | |
1372 | ||
1373 | if (!sr4export) | |
1374 | { | |
1375 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
1376 | if (msym) | |
1377 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
1378 | else | |
1379 | sr4export = -1; | |
1380 | } | |
1381 | ||
1382 | /* Addresses passed to dyncall may *NOT* be the actual address | |
1383 | of the function. So we may have to do something special. */ | |
1384 | if (pc == dyncall) | |
1385 | { | |
1386 | pc = (CORE_ADDR) read_register (22); | |
1387 | ||
1388 | /* If bit 30 (counting from the left) is on, then pc is the address of | |
c5aa993b JM |
1389 | the PLT entry for this function, not the address of the function |
1390 | itself. Bit 31 has meaning too, but only for MPE. */ | |
c906108c | 1391 | if (pc & 0x2) |
53a5351d | 1392 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
1393 | } |
1394 | if (pc == dyncall_external) | |
1395 | { | |
1396 | pc = (CORE_ADDR) read_register (22); | |
53a5351d | 1397 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
1398 | } |
1399 | else if (pc == sr4export) | |
1400 | pc = (CORE_ADDR) (read_register (22)); | |
1401 | ||
1402 | /* Get the unwind descriptor corresponding to PC, return zero | |
1403 | if no unwind was found. */ | |
1404 | u = find_unwind_entry (pc); | |
1405 | if (!u) | |
1406 | return 0; | |
1407 | ||
1408 | /* If this isn't a linker stub, then return now. */ | |
1409 | /* elz: attention here! (FIXME) because of a compiler/linker | |
1410 | error, some stubs which should have a non zero stub_unwind.stub_type | |
1411 | have unfortunately a value of zero. So this function would return here | |
1412 | as if we were not in a trampoline. To fix this, we go look at the partial | |
1413 | symbol information, which reports this guy as a stub. | |
1414 | (FIXME): Unfortunately, we are not that lucky: it turns out that the | |
1415 | partial symbol information is also wrong sometimes. This is because | |
1416 | when it is entered (somread.c::som_symtab_read()) it can happen that | |
1417 | if the type of the symbol (from the som) is Entry, and the symbol is | |
1418 | in a shared library, then it can also be a trampoline. This would | |
1419 | be OK, except that I believe the way they decide if we are ina shared library | |
1420 | does not work. SOOOO..., even if we have a regular function w/o trampolines | |
1421 | its minimal symbol can be assigned type mst_solib_trampoline. | |
1422 | Also, if we find that the symbol is a real stub, then we fix the unwind | |
1423 | descriptor, and define the stub type to be EXPORT. | |
c5aa993b | 1424 | Hopefully this is correct most of the times. */ |
c906108c | 1425 | if (u->stub_unwind.stub_type == 0) |
c5aa993b | 1426 | { |
c906108c SS |
1427 | |
1428 | /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed | |
1429 | we can delete all the code which appears between the lines */ | |
1430 | /*--------------------------------------------------------------------------*/ | |
c5aa993b | 1431 | msym = lookup_minimal_symbol_by_pc (pc); |
c906108c | 1432 | |
c5aa993b JM |
1433 | if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) |
1434 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1435 | ||
1436 | else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) | |
1437 | { | |
1438 | struct objfile *objfile; | |
1439 | struct minimal_symbol *msymbol; | |
1440 | int function_found = 0; | |
1441 | ||
1442 | /* go look if there is another minimal symbol with the same name as | |
1443 | this one, but with type mst_text. This would happen if the msym | |
1444 | is an actual trampoline, in which case there would be another | |
1445 | symbol with the same name corresponding to the real function */ | |
1446 | ||
1447 | ALL_MSYMBOLS (objfile, msymbol) | |
1448 | { | |
1449 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
cb137aa5 | 1450 | && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym))) |
c5aa993b JM |
1451 | { |
1452 | function_found = 1; | |
1453 | break; | |
1454 | } | |
1455 | } | |
1456 | ||
1457 | if (function_found) | |
1458 | /* the type of msym is correct (mst_solib_trampoline), but | |
1459 | the unwind info is wrong, so set it to the correct value */ | |
1460 | u->stub_unwind.stub_type = EXPORT; | |
1461 | else | |
1462 | /* the stub type info in the unwind is correct (this is not a | |
1463 | trampoline), but the msym type information is wrong, it | |
1464 | should be mst_text. So we need to fix the msym, and also | |
1465 | get out of this function */ | |
1466 | { | |
1467 | MSYMBOL_TYPE (msym) = mst_text; | |
1468 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1469 | } | |
1470 | } | |
c906108c | 1471 | |
c906108c | 1472 | /*--------------------------------------------------------------------------*/ |
c5aa993b | 1473 | } |
c906108c SS |
1474 | |
1475 | /* It's a stub. Search for a branch and figure out where it goes. | |
1476 | Note we have to handle multi insn branch sequences like ldil;ble. | |
1477 | Most (all?) other branches can be determined by examining the contents | |
1478 | of certain registers and the stack. */ | |
1479 | ||
1480 | loc = pc; | |
1481 | curr_inst = 0; | |
1482 | prev_inst = 0; | |
1483 | while (1) | |
1484 | { | |
1485 | /* Make sure we haven't walked outside the range of this stub. */ | |
1486 | if (u != find_unwind_entry (loc)) | |
1487 | { | |
1488 | warning ("Unable to find branch in linker stub"); | |
1489 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1490 | } | |
1491 | ||
1492 | prev_inst = curr_inst; | |
1493 | curr_inst = read_memory_integer (loc, 4); | |
1494 | ||
1495 | /* Does it look like a branch external using %r1? Then it's the | |
c5aa993b | 1496 | branch from the stub to the actual function. */ |
c906108c SS |
1497 | if ((curr_inst & 0xffe0e000) == 0xe0202000) |
1498 | { | |
1499 | /* Yup. See if the previous instruction loaded | |
1500 | a value into %r1. If so compute and return the jump address. */ | |
1501 | if ((prev_inst & 0xffe00000) == 0x20200000) | |
1502 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
1503 | else | |
1504 | { | |
1505 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
1506 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1507 | } | |
1508 | } | |
1509 | ||
1510 | /* Does it look like a be 0(sr0,%r21)? OR | |
1511 | Does it look like a be, n 0(sr0,%r21)? OR | |
1512 | Does it look like a bve (r21)? (this is on PA2.0) | |
1513 | Does it look like a bve, n(r21)? (this is also on PA2.0) | |
1514 | That's the branch from an | |
c5aa993b | 1515 | import stub to an export stub. |
c906108c | 1516 | |
c5aa993b JM |
1517 | It is impossible to determine the target of the branch via |
1518 | simple examination of instructions and/or data (consider | |
1519 | that the address in the plabel may be the address of the | |
1520 | bind-on-reference routine in the dynamic loader). | |
c906108c | 1521 | |
c5aa993b | 1522 | So we have try an alternative approach. |
c906108c | 1523 | |
c5aa993b JM |
1524 | Get the name of the symbol at our current location; it should |
1525 | be a stub symbol with the same name as the symbol in the | |
1526 | shared library. | |
c906108c | 1527 | |
c5aa993b JM |
1528 | Then lookup a minimal symbol with the same name; we should |
1529 | get the minimal symbol for the target routine in the shared | |
1530 | library as those take precedence of import/export stubs. */ | |
c906108c | 1531 | if ((curr_inst == 0xe2a00000) || |
c5aa993b JM |
1532 | (curr_inst == 0xe2a00002) || |
1533 | (curr_inst == 0xeaa0d000) || | |
1534 | (curr_inst == 0xeaa0d002)) | |
c906108c SS |
1535 | { |
1536 | struct minimal_symbol *stubsym, *libsym; | |
1537 | ||
1538 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
1539 | if (stubsym == NULL) | |
1540 | { | |
ce414844 | 1541 | warning ("Unable to find symbol for 0x%lx", loc); |
c906108c SS |
1542 | return orig_pc == pc ? 0 : pc & ~0x3; |
1543 | } | |
1544 | ||
22abf04a | 1545 | libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL); |
c906108c SS |
1546 | if (libsym == NULL) |
1547 | { | |
1548 | warning ("Unable to find library symbol for %s\n", | |
22abf04a | 1549 | DEPRECATED_SYMBOL_NAME (stubsym)); |
c906108c SS |
1550 | return orig_pc == pc ? 0 : pc & ~0x3; |
1551 | } | |
1552 | ||
1553 | return SYMBOL_VALUE (libsym); | |
1554 | } | |
1555 | ||
1556 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a | |
c5aa993b JM |
1557 | branch from the stub to the actual function. */ |
1558 | /*elz */ | |
c906108c SS |
1559 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 |
1560 | || (curr_inst & 0xffe0e000) == 0xe8000000 | |
c5aa993b | 1561 | || (curr_inst & 0xffe0e000) == 0xe800A000) |
c906108c SS |
1562 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
1563 | ||
1564 | /* Does it look like bv (rp)? Note this depends on the | |
c5aa993b JM |
1565 | current stack pointer being the same as the stack |
1566 | pointer in the stub itself! This is a branch on from the | |
1567 | stub back to the original caller. */ | |
1568 | /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ | |
c906108c SS |
1569 | else if ((curr_inst & 0xffe0f000) == 0xe840c000) |
1570 | { | |
1571 | /* Yup. See if the previous instruction loaded | |
1572 | rp from sp - 8. */ | |
1573 | if (prev_inst == 0x4bc23ff1) | |
1574 | return (read_memory_integer | |
eded0a31 | 1575 | (read_register (HPPA_SP_REGNUM) - 8, 4)) & ~0x3; |
c906108c SS |
1576 | else |
1577 | { | |
1578 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
1579 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1580 | } | |
1581 | } | |
1582 | ||
1583 | /* elz: added this case to capture the new instruction | |
1584 | at the end of the return part of an export stub used by | |
1585 | the PA2.0: BVE, n (rp) */ | |
1586 | else if ((curr_inst & 0xffe0f000) == 0xe840d000) | |
1587 | { | |
c5aa993b | 1588 | return (read_memory_integer |
eded0a31 | 1589 | (read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
1590 | } |
1591 | ||
1592 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
c5aa993b | 1593 | the original caller from the stub. Used in dynamic executables. */ |
c906108c SS |
1594 | else if (curr_inst == 0xe0400002) |
1595 | { | |
1596 | /* The value we jump to is sitting in sp - 24. But that's | |
1597 | loaded several instructions before the be instruction. | |
1598 | I guess we could check for the previous instruction being | |
1599 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
c5aa993b | 1600 | return (read_memory_integer |
eded0a31 | 1601 | (read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
1602 | } |
1603 | ||
1604 | /* Haven't found the branch yet, but we're still in the stub. | |
c5aa993b | 1605 | Keep looking. */ |
c906108c SS |
1606 | loc += 4; |
1607 | } | |
1608 | } | |
1609 | ||
1610 | ||
1611 | /* For the given instruction (INST), return any adjustment it makes | |
1612 | to the stack pointer or zero for no adjustment. | |
1613 | ||
1614 | This only handles instructions commonly found in prologues. */ | |
1615 | ||
1616 | static int | |
fba45db2 | 1617 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
1618 | { |
1619 | /* This must persist across calls. */ | |
1620 | static int save_high21; | |
1621 | ||
1622 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1623 | if ((inst & 0xffffc000) == 0x37de0000) | |
1624 | return extract_14 (inst); | |
1625 | ||
1626 | /* stwm X,D(sp) */ | |
1627 | if ((inst & 0xffe00000) == 0x6fc00000) | |
1628 | return extract_14 (inst); | |
1629 | ||
104c1213 JM |
1630 | /* std,ma X,D(sp) */ |
1631 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 1632 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 1633 | |
c906108c SS |
1634 | /* addil high21,%r1; ldo low11,(%r1),%r30) |
1635 | save high bits in save_high21 for later use. */ | |
1636 | if ((inst & 0xffe00000) == 0x28200000) | |
1637 | { | |
1638 | save_high21 = extract_21 (inst); | |
1639 | return 0; | |
1640 | } | |
1641 | ||
1642 | if ((inst & 0xffff0000) == 0x343e0000) | |
1643 | return save_high21 + extract_14 (inst); | |
1644 | ||
1645 | /* fstws as used by the HP compilers. */ | |
1646 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
1647 | return extract_5_load (inst); | |
1648 | ||
1649 | /* No adjustment. */ | |
1650 | return 0; | |
1651 | } | |
1652 | ||
1653 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1654 | ||
1655 | static int | |
fba45db2 | 1656 | is_branch (unsigned long inst) |
c906108c SS |
1657 | { |
1658 | switch (inst >> 26) | |
1659 | { | |
1660 | case 0x20: | |
1661 | case 0x21: | |
1662 | case 0x22: | |
1663 | case 0x23: | |
7be570e7 | 1664 | case 0x27: |
c906108c SS |
1665 | case 0x28: |
1666 | case 0x29: | |
1667 | case 0x2a: | |
1668 | case 0x2b: | |
7be570e7 | 1669 | case 0x2f: |
c906108c SS |
1670 | case 0x30: |
1671 | case 0x31: | |
1672 | case 0x32: | |
1673 | case 0x33: | |
1674 | case 0x38: | |
1675 | case 0x39: | |
1676 | case 0x3a: | |
7be570e7 | 1677 | case 0x3b: |
c906108c SS |
1678 | return 1; |
1679 | ||
1680 | default: | |
1681 | return 0; | |
1682 | } | |
1683 | } | |
1684 | ||
1685 | /* Return the register number for a GR which is saved by INST or | |
1686 | zero it INST does not save a GR. */ | |
1687 | ||
1688 | static int | |
fba45db2 | 1689 | inst_saves_gr (unsigned long inst) |
c906108c SS |
1690 | { |
1691 | /* Does it look like a stw? */ | |
7be570e7 JM |
1692 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
1693 | || (inst >> 26) == 0x1f | |
1694 | || ((inst >> 26) == 0x1f | |
1695 | && ((inst >> 6) == 0xa))) | |
1696 | return extract_5R_store (inst); | |
1697 | ||
1698 | /* Does it look like a std? */ | |
1699 | if ((inst >> 26) == 0x1c | |
1700 | || ((inst >> 26) == 0x03 | |
1701 | && ((inst >> 6) & 0xf) == 0xb)) | |
c906108c SS |
1702 | return extract_5R_store (inst); |
1703 | ||
1704 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
1705 | if ((inst >> 26) == 0x1b) | |
1706 | return extract_5R_store (inst); | |
1707 | ||
1708 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
1709 | too. */ | |
7be570e7 JM |
1710 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
1711 | || ((inst >> 26) == 0x3 | |
1712 | && (((inst >> 6) & 0xf) == 0x8 | |
1713 | || (inst >> 6) & 0xf) == 0x9)) | |
c906108c | 1714 | return extract_5R_store (inst); |
c5aa993b | 1715 | |
c906108c SS |
1716 | return 0; |
1717 | } | |
1718 | ||
1719 | /* Return the register number for a FR which is saved by INST or | |
1720 | zero it INST does not save a FR. | |
1721 | ||
1722 | Note we only care about full 64bit register stores (that's the only | |
1723 | kind of stores the prologue will use). | |
1724 | ||
1725 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
1726 | ||
1727 | static int | |
fba45db2 | 1728 | inst_saves_fr (unsigned long inst) |
c906108c | 1729 | { |
7be570e7 | 1730 | /* is this an FSTD ? */ |
c906108c SS |
1731 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
1732 | return extract_5r_store (inst); | |
7be570e7 JM |
1733 | if ((inst & 0xfc000002) == 0x70000002) |
1734 | return extract_5R_store (inst); | |
1735 | /* is this an FSTW ? */ | |
c906108c SS |
1736 | if ((inst & 0xfc00df80) == 0x24001200) |
1737 | return extract_5r_store (inst); | |
7be570e7 JM |
1738 | if ((inst & 0xfc000002) == 0x7c000000) |
1739 | return extract_5R_store (inst); | |
c906108c SS |
1740 | return 0; |
1741 | } | |
1742 | ||
1743 | /* Advance PC across any function entry prologue instructions | |
1744 | to reach some "real" code. | |
1745 | ||
1746 | Use information in the unwind table to determine what exactly should | |
1747 | be in the prologue. */ | |
1748 | ||
1749 | ||
1750 | CORE_ADDR | |
fba45db2 | 1751 | skip_prologue_hard_way (CORE_ADDR pc) |
c906108c SS |
1752 | { |
1753 | char buf[4]; | |
1754 | CORE_ADDR orig_pc = pc; | |
1755 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
1756 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
1757 | struct unwind_table_entry *u; | |
1758 | ||
1759 | restart_gr = 0; | |
1760 | restart_fr = 0; | |
1761 | ||
1762 | restart: | |
1763 | u = find_unwind_entry (pc); | |
1764 | if (!u) | |
1765 | return pc; | |
1766 | ||
c5aa993b | 1767 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
1768 | if ((pc & ~0x3) != u->region_start) |
1769 | return pc; | |
1770 | ||
1771 | /* This is how much of a frame adjustment we need to account for. */ | |
1772 | stack_remaining = u->Total_frame_size << 3; | |
1773 | ||
1774 | /* Magic register saves we want to know about. */ | |
1775 | save_rp = u->Save_RP; | |
1776 | save_sp = u->Save_SP; | |
1777 | ||
1778 | /* An indication that args may be stored into the stack. Unfortunately | |
1779 | the HPUX compilers tend to set this in cases where no args were | |
1780 | stored too!. */ | |
1781 | args_stored = 1; | |
1782 | ||
1783 | /* Turn the Entry_GR field into a bitmask. */ | |
1784 | save_gr = 0; | |
1785 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1786 | { | |
1787 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1788 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
c906108c SS |
1789 | continue; |
1790 | ||
1791 | save_gr |= (1 << i); | |
1792 | } | |
1793 | save_gr &= ~restart_gr; | |
1794 | ||
1795 | /* Turn the Entry_FR field into a bitmask too. */ | |
1796 | save_fr = 0; | |
1797 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1798 | save_fr |= (1 << i); | |
1799 | save_fr &= ~restart_fr; | |
1800 | ||
1801 | /* Loop until we find everything of interest or hit a branch. | |
1802 | ||
1803 | For unoptimized GCC code and for any HP CC code this will never ever | |
1804 | examine any user instructions. | |
1805 | ||
1806 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1807 | its prologue and make prologue instructions available for delay slot | |
1808 | filling. The end result is user code gets mixed in with the prologue | |
1809 | and a prologue instruction may be in the delay slot of the first branch | |
1810 | or call. | |
1811 | ||
1812 | Some unexpected things are expected with debugging optimized code, so | |
1813 | we allow this routine to walk past user instructions in optimized | |
1814 | GCC code. */ | |
1815 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
1816 | || args_stored) | |
1817 | { | |
1818 | unsigned int reg_num; | |
1819 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
1820 | unsigned long old_save_rp, old_save_sp, next_inst; | |
1821 | ||
1822 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 1823 | (only for HPC). */ |
c906108c SS |
1824 | old_save_gr = save_gr; |
1825 | old_save_fr = save_fr; | |
1826 | old_save_rp = save_rp; | |
1827 | old_save_sp = save_sp; | |
1828 | old_stack_remaining = stack_remaining; | |
1829 | ||
1830 | status = target_read_memory (pc, buf, 4); | |
1831 | inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 1832 | |
c906108c SS |
1833 | /* Yow! */ |
1834 | if (status != 0) | |
1835 | return pc; | |
1836 | ||
1837 | /* Note the interesting effects of this instruction. */ | |
1838 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1839 | ||
7be570e7 JM |
1840 | /* There are limited ways to store the return pointer into the |
1841 | stack. */ | |
1842 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
1843 | save_rp = 0; |
1844 | ||
104c1213 | 1845 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 1846 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
1847 | if ((inst & 0xffffc000) == 0x6fc10000 |
1848 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
1849 | save_sp = 0; |
1850 | ||
6426a772 JM |
1851 | /* Are we loading some register with an offset from the argument |
1852 | pointer? */ | |
1853 | if ((inst & 0xffe00000) == 0x37a00000 | |
1854 | || (inst & 0xffffffe0) == 0x081d0240) | |
1855 | { | |
1856 | pc += 4; | |
1857 | continue; | |
1858 | } | |
1859 | ||
c906108c SS |
1860 | /* Account for general and floating-point register saves. */ |
1861 | reg_num = inst_saves_gr (inst); | |
1862 | save_gr &= ~(1 << reg_num); | |
1863 | ||
1864 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1865 | Unfortunately args_stored only tells us that some arguments |
1866 | where stored into the stack. Not how many or what kind! | |
c906108c | 1867 | |
c5aa993b JM |
1868 | This is a kludge as on the HP compiler sets this bit and it |
1869 | never does prologue scheduling. So once we see one, skip past | |
1870 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 1871 | |
c5aa993b JM |
1872 | FIXME. Can still die if we have a mix of GR and FR argument |
1873 | stores! */ | |
6426a772 | 1874 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 1875 | { |
6426a772 | 1876 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
1877 | { |
1878 | pc += 4; | |
1879 | status = target_read_memory (pc, buf, 4); | |
1880 | inst = extract_unsigned_integer (buf, 4); | |
1881 | if (status != 0) | |
1882 | return pc; | |
1883 | reg_num = inst_saves_gr (inst); | |
1884 | } | |
1885 | args_stored = 0; | |
1886 | continue; | |
1887 | } | |
1888 | ||
1889 | reg_num = inst_saves_fr (inst); | |
1890 | save_fr &= ~(1 << reg_num); | |
1891 | ||
1892 | status = target_read_memory (pc + 4, buf, 4); | |
1893 | next_inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 1894 | |
c906108c SS |
1895 | /* Yow! */ |
1896 | if (status != 0) | |
1897 | return pc; | |
1898 | ||
1899 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 1900 | save. */ |
c906108c SS |
1901 | if ((inst & 0xfc000000) == 0x34000000 |
1902 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 1903 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
1904 | { |
1905 | /* So we drop into the code below in a reasonable state. */ | |
1906 | reg_num = inst_saves_fr (next_inst); | |
1907 | pc -= 4; | |
1908 | } | |
1909 | ||
1910 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1911 | This is a kludge as on the HP compiler sets this bit and it |
1912 | never does prologue scheduling. So once we see one, skip past | |
1913 | all of them. */ | |
6426a772 | 1914 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 1915 | { |
6426a772 | 1916 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
1917 | { |
1918 | pc += 8; | |
1919 | status = target_read_memory (pc, buf, 4); | |
1920 | inst = extract_unsigned_integer (buf, 4); | |
1921 | if (status != 0) | |
1922 | return pc; | |
1923 | if ((inst & 0xfc000000) != 0x34000000) | |
1924 | break; | |
1925 | status = target_read_memory (pc + 4, buf, 4); | |
1926 | next_inst = extract_unsigned_integer (buf, 4); | |
1927 | if (status != 0) | |
1928 | return pc; | |
1929 | reg_num = inst_saves_fr (next_inst); | |
1930 | } | |
1931 | args_stored = 0; | |
1932 | continue; | |
1933 | } | |
1934 | ||
1935 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 1936 | instruction is in the delay slot of the first call/branch. */ |
c906108c SS |
1937 | if (is_branch (inst)) |
1938 | break; | |
1939 | ||
1940 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
1941 | arguments were stored into the stack (boo hiss). This could |
1942 | cause this code to then skip a bunch of user insns (up to the | |
1943 | first branch). | |
1944 | ||
1945 | To combat this we try to identify when args_stored was bogusly | |
1946 | set and clear it. We only do this when args_stored is nonzero, | |
1947 | all other resources are accounted for, and nothing changed on | |
1948 | this pass. */ | |
c906108c | 1949 | if (args_stored |
c5aa993b | 1950 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
1951 | && old_save_gr == save_gr && old_save_fr == save_fr |
1952 | && old_save_rp == save_rp && old_save_sp == save_sp | |
1953 | && old_stack_remaining == stack_remaining) | |
1954 | break; | |
c5aa993b | 1955 | |
c906108c SS |
1956 | /* Bump the PC. */ |
1957 | pc += 4; | |
1958 | } | |
1959 | ||
1960 | /* We've got a tenative location for the end of the prologue. However | |
1961 | because of limitations in the unwind descriptor mechanism we may | |
1962 | have went too far into user code looking for the save of a register | |
1963 | that does not exist. So, if there registers we expected to be saved | |
1964 | but never were, mask them out and restart. | |
1965 | ||
1966 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 1967 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
1968 | { |
1969 | pc = orig_pc; | |
1970 | restart_gr = save_gr; | |
1971 | restart_fr = save_fr; | |
1972 | goto restart; | |
1973 | } | |
1974 | ||
1975 | return pc; | |
1976 | } | |
1977 | ||
1978 | ||
7be570e7 JM |
1979 | /* Return the address of the PC after the last prologue instruction if |
1980 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
1981 | |
1982 | static CORE_ADDR | |
fba45db2 | 1983 | after_prologue (CORE_ADDR pc) |
c906108c SS |
1984 | { |
1985 | struct symtab_and_line sal; | |
1986 | CORE_ADDR func_addr, func_end; | |
1987 | struct symbol *f; | |
1988 | ||
7be570e7 JM |
1989 | /* If we can not find the symbol in the partial symbol table, then |
1990 | there is no hope we can determine the function's start address | |
1991 | with this code. */ | |
c906108c | 1992 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 1993 | return 0; |
c906108c | 1994 | |
7be570e7 | 1995 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
1996 | sal = find_pc_line (func_addr, 0); |
1997 | ||
7be570e7 JM |
1998 | /* There are only two cases to consider. First, the end of the source line |
1999 | is within the function bounds. In that case we return the end of the | |
2000 | source line. Second is the end of the source line extends beyond the | |
2001 | bounds of the current function. We need to use the slow code to | |
2002 | examine instructions in that case. | |
c906108c | 2003 | |
7be570e7 JM |
2004 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
2005 | the wrong thing to do. In fact, it should be entirely possible for this | |
2006 | function to always return zero since the slow instruction scanning code | |
2007 | is supposed to *always* work. If it does not, then it is a bug. */ | |
2008 | if (sal.end < func_end) | |
2009 | return sal.end; | |
c5aa993b | 2010 | else |
7be570e7 | 2011 | return 0; |
c906108c SS |
2012 | } |
2013 | ||
2014 | /* To skip prologues, I use this predicate. Returns either PC itself | |
2015 | if the code at PC does not look like a function prologue; otherwise | |
2016 | returns an address that (if we're lucky) follows the prologue. If | |
2017 | LENIENT, then we must skip everything which is involved in setting | |
2018 | up the frame (it's OK to skip more, just so long as we don't skip | |
2019 | anything which might clobber the registers which are being saved. | |
2020 | Currently we must not skip more on the alpha, but we might the lenient | |
2021 | stuff some day. */ | |
2022 | ||
8d153463 | 2023 | static CORE_ADDR |
fba45db2 | 2024 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 2025 | { |
c5aa993b JM |
2026 | unsigned long inst; |
2027 | int offset; | |
2028 | CORE_ADDR post_prologue_pc; | |
2029 | char buf[4]; | |
c906108c | 2030 | |
c5aa993b JM |
2031 | /* See if we can determine the end of the prologue via the symbol table. |
2032 | If so, then return either PC, or the PC after the prologue, whichever | |
2033 | is greater. */ | |
c906108c | 2034 | |
c5aa993b | 2035 | post_prologue_pc = after_prologue (pc); |
c906108c | 2036 | |
7be570e7 JM |
2037 | /* If after_prologue returned a useful address, then use it. Else |
2038 | fall back on the instruction skipping code. | |
2039 | ||
2040 | Some folks have claimed this causes problems because the breakpoint | |
2041 | may be the first instruction of the prologue. If that happens, then | |
2042 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
2043 | if (post_prologue_pc != 0) |
2044 | return max (pc, post_prologue_pc); | |
c5aa993b JM |
2045 | else |
2046 | return (skip_prologue_hard_way (pc)); | |
c906108c SS |
2047 | } |
2048 | ||
26d08f08 AC |
2049 | struct hppa_frame_cache |
2050 | { | |
2051 | CORE_ADDR base; | |
2052 | struct trad_frame_saved_reg *saved_regs; | |
2053 | }; | |
2054 | ||
2055 | static struct hppa_frame_cache * | |
2056 | hppa_frame_cache (struct frame_info *next_frame, void **this_cache) | |
2057 | { | |
2058 | struct hppa_frame_cache *cache; | |
2059 | long saved_gr_mask; | |
2060 | long saved_fr_mask; | |
2061 | CORE_ADDR this_sp; | |
2062 | long frame_size; | |
2063 | struct unwind_table_entry *u; | |
2064 | int i; | |
2065 | ||
369aa520 RC |
2066 | if (hppa_debug) |
2067 | fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", | |
2068 | frame_relative_level(next_frame)); | |
2069 | ||
26d08f08 | 2070 | if ((*this_cache) != NULL) |
369aa520 RC |
2071 | { |
2072 | if (hppa_debug) | |
2073 | fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }", | |
2074 | paddr_nz (((struct hppa_frame_cache *)*this_cache)->base)); | |
2075 | return (*this_cache); | |
2076 | } | |
26d08f08 AC |
2077 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
2078 | (*this_cache) = cache; | |
2079 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
2080 | ||
2081 | /* Yow! */ | |
2082 | u = find_unwind_entry (frame_func_unwind (next_frame)); | |
2083 | if (!u) | |
369aa520 RC |
2084 | { |
2085 | if (hppa_debug) | |
2086 | fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); | |
2087 | return (*this_cache); | |
2088 | } | |
26d08f08 AC |
2089 | |
2090 | /* Turn the Entry_GR field into a bitmask. */ | |
2091 | saved_gr_mask = 0; | |
2092 | for (i = 3; i < u->Entry_GR + 3; i++) | |
2093 | { | |
2094 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 2095 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
26d08f08 AC |
2096 | continue; |
2097 | ||
2098 | saved_gr_mask |= (1 << i); | |
2099 | } | |
2100 | ||
2101 | /* Turn the Entry_FR field into a bitmask too. */ | |
2102 | saved_fr_mask = 0; | |
2103 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2104 | saved_fr_mask |= (1 << i); | |
2105 | ||
2106 | /* Loop until we find everything of interest or hit a branch. | |
2107 | ||
2108 | For unoptimized GCC code and for any HP CC code this will never ever | |
2109 | examine any user instructions. | |
2110 | ||
2111 | For optimized GCC code we're faced with problems. GCC will schedule | |
2112 | its prologue and make prologue instructions available for delay slot | |
2113 | filling. The end result is user code gets mixed in with the prologue | |
2114 | and a prologue instruction may be in the delay slot of the first branch | |
2115 | or call. | |
2116 | ||
2117 | Some unexpected things are expected with debugging optimized code, so | |
2118 | we allow this routine to walk past user instructions in optimized | |
2119 | GCC code. */ | |
2120 | { | |
2121 | int final_iteration = 0; | |
2122 | CORE_ADDR pc; | |
3a515653 | 2123 | CORE_ADDR end_pc; |
26d08f08 AC |
2124 | int looking_for_sp = u->Save_SP; |
2125 | int looking_for_rp = u->Save_RP; | |
2126 | int fp_loc = -1; | |
3a515653 | 2127 | end_pc = skip_prologue_using_sal (frame_func_unwind (next_frame)); |
26d08f08 AC |
2128 | if (end_pc == 0) |
2129 | end_pc = frame_pc_unwind (next_frame); | |
2130 | frame_size = 0; | |
2131 | for (pc = frame_func_unwind (next_frame); | |
2132 | ((saved_gr_mask || saved_fr_mask | |
2133 | || looking_for_sp || looking_for_rp | |
2134 | || frame_size < (u->Total_frame_size << 3)) | |
2135 | && pc <= end_pc); | |
2136 | pc += 4) | |
2137 | { | |
2138 | int reg; | |
2139 | char buf4[4]; | |
2140 | long status = target_read_memory (pc, buf4, sizeof buf4); | |
2141 | long inst = extract_unsigned_integer (buf4, sizeof buf4); | |
2142 | ||
2143 | /* Note the interesting effects of this instruction. */ | |
2144 | frame_size += prologue_inst_adjust_sp (inst); | |
2145 | ||
2146 | /* There are limited ways to store the return pointer into the | |
2147 | stack. */ | |
2148 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
2149 | { | |
2150 | looking_for_rp = 0; | |
2151 | cache->saved_regs[RP_REGNUM].addr = -20; | |
2152 | } | |
2153 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ | |
2154 | { | |
2155 | looking_for_rp = 0; | |
2156 | cache->saved_regs[RP_REGNUM].addr = -16; | |
2157 | } | |
2158 | ||
2159 | /* Check to see if we saved SP into the stack. This also | |
2160 | happens to indicate the location of the saved frame | |
2161 | pointer. */ | |
2162 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
2163 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
2164 | { | |
2165 | looking_for_sp = 0; | |
eded0a31 | 2166 | cache->saved_regs[HPPA_FP_REGNUM].addr = 0; |
26d08f08 AC |
2167 | } |
2168 | ||
2169 | /* Account for general and floating-point register saves. */ | |
2170 | reg = inst_saves_gr (inst); | |
2171 | if (reg >= 3 && reg <= 18 | |
eded0a31 | 2172 | && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
26d08f08 AC |
2173 | { |
2174 | saved_gr_mask &= ~(1 << reg); | |
2175 | if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0) | |
2176 | /* stwm with a positive displacement is a _post_ | |
2177 | _modify_. */ | |
2178 | cache->saved_regs[reg].addr = 0; | |
2179 | else if ((inst & 0xfc00000c) == 0x70000008) | |
2180 | /* A std has explicit post_modify forms. */ | |
2181 | cache->saved_regs[reg].addr = 0; | |
2182 | else | |
2183 | { | |
2184 | CORE_ADDR offset; | |
2185 | ||
2186 | if ((inst >> 26) == 0x1c) | |
2187 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); | |
2188 | else if ((inst >> 26) == 0x03) | |
2189 | offset = low_sign_extend (inst & 0x1f, 5); | |
2190 | else | |
2191 | offset = extract_14 (inst); | |
2192 | ||
2193 | /* Handle code with and without frame pointers. */ | |
2194 | if (u->Save_SP) | |
2195 | cache->saved_regs[reg].addr = offset; | |
2196 | else | |
2197 | cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset; | |
2198 | } | |
2199 | } | |
2200 | ||
2201 | /* GCC handles callee saved FP regs a little differently. | |
2202 | ||
2203 | It emits an instruction to put the value of the start of | |
2204 | the FP store area into %r1. It then uses fstds,ma with a | |
2205 | basereg of %r1 for the stores. | |
2206 | ||
2207 | HP CC emits them at the current stack pointer modifying the | |
2208 | stack pointer as it stores each register. */ | |
2209 | ||
2210 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2211 | if ((inst & 0xffffc000) == 0x34610000 | |
2212 | || (inst & 0xffffc000) == 0x37c10000) | |
2213 | fp_loc = extract_14 (inst); | |
2214 | ||
2215 | reg = inst_saves_fr (inst); | |
2216 | if (reg >= 12 && reg <= 21) | |
2217 | { | |
2218 | /* Note +4 braindamage below is necessary because the FP | |
2219 | status registers are internally 8 registers rather than | |
2220 | the expected 4 registers. */ | |
2221 | saved_fr_mask &= ~(1 << reg); | |
2222 | if (fp_loc == -1) | |
2223 | { | |
2224 | /* 1st HP CC FP register store. After this | |
2225 | instruction we've set enough state that the GCC and | |
2226 | HPCC code are both handled in the same manner. */ | |
2227 | cache->saved_regs[reg + FP4_REGNUM + 4].addr = 0; | |
2228 | fp_loc = 8; | |
2229 | } | |
2230 | else | |
2231 | { | |
eded0a31 | 2232 | cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; |
26d08f08 AC |
2233 | fp_loc += 8; |
2234 | } | |
2235 | } | |
2236 | ||
2237 | /* Quit if we hit any kind of branch the previous iteration. */ | |
2238 | if (final_iteration) | |
2239 | break; | |
2240 | /* We want to look precisely one instruction beyond the branch | |
2241 | if we have not found everything yet. */ | |
2242 | if (is_branch (inst)) | |
2243 | final_iteration = 1; | |
2244 | } | |
2245 | } | |
2246 | ||
2247 | { | |
2248 | /* The frame base always represents the value of %sp at entry to | |
2249 | the current function (and is thus equivalent to the "saved" | |
2250 | stack pointer. */ | |
eded0a31 | 2251 | CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM); |
26d08f08 AC |
2252 | /* FIXME: cagney/2004-02-22: This assumes that the frame has been |
2253 | created. If it hasn't everything will be out-of-wack. */ | |
eded0a31 | 2254 | if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) |
26d08f08 AC |
2255 | /* Both we're expecting the SP to be saved and the SP has been |
2256 | saved. The entry SP value is saved at this frame's SP | |
2257 | address. */ | |
2258 | cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8); | |
2259 | else | |
2260 | /* The prologue has been slowly allocating stack space. Adjust | |
2261 | the SP back. */ | |
2262 | cache->base = this_sp - frame_size; | |
eded0a31 | 2263 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
26d08f08 AC |
2264 | } |
2265 | ||
412275d5 AC |
2266 | /* The PC is found in the "return register", "Millicode" uses "r31" |
2267 | as the return register while normal code uses "rp". */ | |
26d08f08 | 2268 | if (u->Millicode) |
412275d5 | 2269 | cache->saved_regs[PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; |
26d08f08 | 2270 | else |
412275d5 | 2271 | cache->saved_regs[PCOQ_HEAD_REGNUM] = cache->saved_regs[RP_REGNUM]; |
26d08f08 AC |
2272 | |
2273 | { | |
2274 | /* Convert all the offsets into addresses. */ | |
2275 | int reg; | |
2276 | for (reg = 0; reg < NUM_REGS; reg++) | |
2277 | { | |
2278 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
2279 | cache->saved_regs[reg].addr += cache->base; | |
2280 | } | |
2281 | } | |
2282 | ||
369aa520 RC |
2283 | if (hppa_debug) |
2284 | fprintf_unfiltered (gdb_stdlog, "base=0x%s }", | |
2285 | paddr_nz (((struct hppa_frame_cache *)*this_cache)->base)); | |
26d08f08 AC |
2286 | return (*this_cache); |
2287 | } | |
2288 | ||
2289 | static void | |
2290 | hppa_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2291 | struct frame_id *this_id) | |
2292 | { | |
2293 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache); | |
2294 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
2295 | } | |
2296 | ||
2297 | static void | |
2298 | hppa_frame_prev_register (struct frame_info *next_frame, | |
2299 | void **this_cache, | |
2300 | int regnum, int *optimizedp, | |
2301 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2302 | int *realnump, void *valuep) | |
2303 | { | |
2304 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache); | |
412275d5 AC |
2305 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
2306 | if (regnum == PCOQ_TAIL_REGNUM) | |
2307 | { | |
2308 | /* The PCOQ TAIL, or NPC, needs to be computed from the unwound | |
2309 | PC register. */ | |
2310 | *optimizedp = 0; | |
2311 | *lvalp = not_lval; | |
2312 | *addrp = 0; | |
2313 | *realnump = 0; | |
2314 | if (valuep) | |
2315 | { | |
2316 | int regsize = register_size (gdbarch, PCOQ_HEAD_REGNUM); | |
2317 | CORE_ADDR pc; | |
2318 | int optimized; | |
2319 | enum lval_type lval; | |
2320 | CORE_ADDR addr; | |
2321 | int realnum; | |
2322 | bfd_byte value[MAX_REGISTER_SIZE]; | |
2323 | trad_frame_prev_register (next_frame, info->saved_regs, | |
2324 | PCOQ_HEAD_REGNUM, &optimized, &lval, &addr, | |
2325 | &realnum, &value); | |
2326 | pc = extract_unsigned_integer (&value, regsize); | |
2327 | store_unsigned_integer (valuep, regsize, pc + 4); | |
2328 | } | |
2329 | } | |
2330 | else | |
2331 | { | |
2332 | trad_frame_prev_register (next_frame, info->saved_regs, regnum, | |
2333 | optimizedp, lvalp, addrp, realnump, valuep); | |
2334 | } | |
26d08f08 AC |
2335 | } |
2336 | ||
2337 | static const struct frame_unwind hppa_frame_unwind = | |
2338 | { | |
2339 | NORMAL_FRAME, | |
2340 | hppa_frame_this_id, | |
2341 | hppa_frame_prev_register | |
2342 | }; | |
2343 | ||
2344 | static const struct frame_unwind * | |
2345 | hppa_frame_unwind_sniffer (struct frame_info *next_frame) | |
2346 | { | |
2347 | return &hppa_frame_unwind; | |
2348 | } | |
2349 | ||
2350 | static CORE_ADDR | |
2351 | hppa_frame_base_address (struct frame_info *next_frame, | |
2352 | void **this_cache) | |
2353 | { | |
2354 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, | |
2355 | this_cache); | |
2356 | return info->base; | |
2357 | } | |
2358 | ||
2359 | static const struct frame_base hppa_frame_base = { | |
2360 | &hppa_frame_unwind, | |
2361 | hppa_frame_base_address, | |
2362 | hppa_frame_base_address, | |
2363 | hppa_frame_base_address | |
2364 | }; | |
2365 | ||
2366 | static const struct frame_base * | |
2367 | hppa_frame_base_sniffer (struct frame_info *next_frame) | |
2368 | { | |
2369 | return &hppa_frame_base; | |
2370 | } | |
2371 | ||
2372 | static struct frame_id | |
2373 | hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2374 | { | |
2375 | return frame_id_build (frame_unwind_register_unsigned (next_frame, | |
eded0a31 | 2376 | HPPA_SP_REGNUM), |
26d08f08 AC |
2377 | frame_pc_unwind (next_frame)); |
2378 | } | |
2379 | ||
2380 | static CORE_ADDR | |
2381 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2382 | { | |
449e1137 | 2383 | return frame_unwind_register_signed (next_frame, PCOQ_HEAD_REGNUM) & ~3; |
26d08f08 AC |
2384 | } |
2385 | ||
9a043c1d AC |
2386 | /* Instead of this nasty cast, add a method pvoid() that prints out a |
2387 | host VOID data type (remember %p isn't portable). */ | |
2388 | ||
2389 | static CORE_ADDR | |
2390 | hppa_pointer_to_address_hack (void *ptr) | |
2391 | { | |
2392 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
2393 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
2394 | } | |
2395 | ||
c906108c | 2396 | static void |
fba45db2 | 2397 | unwind_command (char *exp, int from_tty) |
c906108c SS |
2398 | { |
2399 | CORE_ADDR address; | |
2400 | struct unwind_table_entry *u; | |
2401 | ||
2402 | /* If we have an expression, evaluate it and use it as the address. */ | |
2403 | ||
2404 | if (exp != 0 && *exp != 0) | |
2405 | address = parse_and_eval_address (exp); | |
2406 | else | |
2407 | return; | |
2408 | ||
2409 | u = find_unwind_entry (address); | |
2410 | ||
2411 | if (!u) | |
2412 | { | |
2413 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
2414 | return; | |
2415 | } | |
2416 | ||
ce414844 | 2417 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
9a043c1d | 2418 | paddr_nz (hppa_pointer_to_address_hack (u))); |
c906108c SS |
2419 | |
2420 | printf_unfiltered ("\tregion_start = "); | |
2421 | print_address (u->region_start, gdb_stdout); | |
2422 | ||
2423 | printf_unfiltered ("\n\tregion_end = "); | |
2424 | print_address (u->region_end, gdb_stdout); | |
2425 | ||
c906108c | 2426 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
2427 | |
2428 | printf_unfiltered ("\n\tflags ="); | |
2429 | pif (Cannot_unwind); | |
2430 | pif (Millicode); | |
2431 | pif (Millicode_save_sr0); | |
2432 | pif (Entry_SR); | |
2433 | pif (Args_stored); | |
2434 | pif (Variable_Frame); | |
2435 | pif (Separate_Package_Body); | |
2436 | pif (Frame_Extension_Millicode); | |
2437 | pif (Stack_Overflow_Check); | |
2438 | pif (Two_Instruction_SP_Increment); | |
2439 | pif (Ada_Region); | |
2440 | pif (Save_SP); | |
2441 | pif (Save_RP); | |
2442 | pif (Save_MRP_in_frame); | |
2443 | pif (extn_ptr_defined); | |
2444 | pif (Cleanup_defined); | |
2445 | pif (MPE_XL_interrupt_marker); | |
2446 | pif (HP_UX_interrupt_marker); | |
2447 | pif (Large_frame); | |
2448 | ||
2449 | putchar_unfiltered ('\n'); | |
2450 | ||
c906108c | 2451 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
2452 | |
2453 | pin (Region_description); | |
2454 | pin (Entry_FR); | |
2455 | pin (Entry_GR); | |
2456 | pin (Total_frame_size); | |
2457 | } | |
c906108c | 2458 | |
c2c6d25f | 2459 | void |
fba45db2 | 2460 | hppa_skip_permanent_breakpoint (void) |
c2c6d25f JM |
2461 | { |
2462 | /* To step over a breakpoint instruction on the PA takes some | |
2463 | fiddling with the instruction address queue. | |
2464 | ||
2465 | When we stop at a breakpoint, the IA queue front (the instruction | |
2466 | we're executing now) points at the breakpoint instruction, and | |
2467 | the IA queue back (the next instruction to execute) points to | |
2468 | whatever instruction we would execute after the breakpoint, if it | |
2469 | were an ordinary instruction. This is the case even if the | |
2470 | breakpoint is in the delay slot of a branch instruction. | |
2471 | ||
2472 | Clearly, to step past the breakpoint, we need to set the queue | |
2473 | front to the back. But what do we put in the back? What | |
2474 | instruction comes after that one? Because of the branch delay | |
2475 | slot, the next insn is always at the back + 4. */ | |
2476 | write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM)); | |
2477 | write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM)); | |
2478 | ||
2479 | write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4); | |
2480 | /* We can leave the tail's space the same, since there's no jump. */ | |
2481 | } | |
2482 | ||
d709c020 JB |
2483 | int |
2484 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
2485 | { | |
2486 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
2487 | ||
2488 | An example of this occurs when an a.out is linked against a foo.sl. | |
2489 | The foo.sl defines a global bar(), and the a.out declares a signature | |
2490 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
2491 | its address in another call. | |
2492 | ||
2493 | If you have this scenario and attempt to "break bar" before running, | |
2494 | gdb will find a minimal symbol for bar() in the a.out. But that | |
2495 | symbol's address will be negative. What this appears to denote is | |
2496 | an index backwards from the base of the procedure linkage table (PLT) | |
2497 | into the data linkage table (DLT), the end of which is contiguous | |
2498 | with the start of the PLT. This is clearly not a valid address for | |
2499 | us to set a breakpoint on. | |
2500 | ||
2501 | Note that one must be careful in how one checks for a negative address. | |
2502 | 0xc0000000 is a legitimate address of something in a shared text | |
2503 | segment, for example. Since I don't know what the possible range | |
2504 | is of these "really, truly negative" addresses that come from the | |
2505 | minimal symbols, I'm resorting to the gross hack of checking the | |
2506 | top byte of the address for all 1's. Sigh. */ | |
2507 | ||
2508 | return (!target_has_stack && (pc & 0xFF000000)); | |
2509 | } | |
2510 | ||
2511 | int | |
2512 | hppa_instruction_nullified (void) | |
2513 | { | |
2514 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
2515 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
2516 | semi-mechanical multiarching-related changes. */ | |
2517 | const int ipsw = (int) read_register (IPSW_REGNUM); | |
2518 | const int flags = (int) read_register (FLAGS_REGNUM); | |
2519 | ||
2520 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
2521 | } | |
2522 | ||
d709c020 JB |
2523 | /* Return the GDB type object for the "standard" data type of data |
2524 | in register N. */ | |
2525 | ||
eded0a31 AC |
2526 | static struct type * |
2527 | hppa32_register_type (struct gdbarch *gdbarch, int reg_nr) | |
d709c020 JB |
2528 | { |
2529 | if (reg_nr < FP4_REGNUM) | |
eded0a31 | 2530 | return builtin_type_uint32; |
d709c020 | 2531 | else |
eded0a31 | 2532 | return builtin_type_ieee_single_big; |
d709c020 JB |
2533 | } |
2534 | ||
3ff7cf9e JB |
2535 | /* Return the GDB type object for the "standard" data type of data |
2536 | in register N. hppa64 version. */ | |
2537 | ||
eded0a31 AC |
2538 | static struct type * |
2539 | hppa64_register_type (struct gdbarch *gdbarch, int reg_nr) | |
3ff7cf9e JB |
2540 | { |
2541 | if (reg_nr < FP4_REGNUM) | |
eded0a31 | 2542 | return builtin_type_uint64; |
3ff7cf9e | 2543 | else |
eded0a31 | 2544 | return builtin_type_ieee_double_big; |
3ff7cf9e JB |
2545 | } |
2546 | ||
d709c020 JB |
2547 | /* Return True if REGNUM is not a register available to the user |
2548 | through ptrace(). */ | |
2549 | ||
8d153463 | 2550 | static int |
d709c020 JB |
2551 | hppa_cannot_store_register (int regnum) |
2552 | { | |
2553 | return (regnum == 0 | |
2554 | || regnum == PCSQ_HEAD_REGNUM | |
2555 | || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM) | |
2556 | || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM)); | |
2557 | ||
2558 | } | |
2559 | ||
8d153463 | 2560 | static CORE_ADDR |
d709c020 JB |
2561 | hppa_smash_text_address (CORE_ADDR addr) |
2562 | { | |
2563 | /* The low two bits of the PC on the PA contain the privilege level. | |
2564 | Some genius implementing a (non-GCC) compiler apparently decided | |
2565 | this means that "addresses" in a text section therefore include a | |
2566 | privilege level, and thus symbol tables should contain these bits. | |
2567 | This seems like a bonehead thing to do--anyway, it seems to work | |
2568 | for our purposes to just ignore those bits. */ | |
2569 | ||
2570 | return (addr &= ~0x3); | |
2571 | } | |
2572 | ||
143985b7 AF |
2573 | /* Get the ith function argument for the current function. */ |
2574 | CORE_ADDR | |
2575 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, | |
2576 | struct type *type) | |
2577 | { | |
2578 | CORE_ADDR addr; | |
7f5f525d | 2579 | get_frame_register (frame, R0_REGNUM + 26 - argi, &addr); |
143985b7 AF |
2580 | return addr; |
2581 | } | |
2582 | ||
0f8d9d59 RC |
2583 | static void |
2584 | hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
2585 | int regnum, void *buf) | |
2586 | { | |
2587 | ULONGEST tmp; | |
2588 | ||
2589 | regcache_raw_read_unsigned (regcache, regnum, &tmp); | |
2590 | if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) | |
2591 | tmp &= ~0x3; | |
2592 | store_unsigned_integer (buf, sizeof(tmp), tmp); | |
2593 | } | |
2594 | ||
8e8b2dba MC |
2595 | /* Here is a table of C type sizes on hppa with various compiles |
2596 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
2597 | and these compilers: | |
2598 | ||
2599 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
2600 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
2601 | /opt/aCC/bin/aCC B3910B A.03.45 | |
2602 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
2603 | ||
2604 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
2605 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2606 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2607 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2608 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2609 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2610 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2611 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2612 | ||
2613 | Each line is: | |
2614 | ||
2615 | compiler and options | |
2616 | char, short, int, long, long long | |
2617 | float, double, long double | |
2618 | char *, void (*)() | |
2619 | ||
2620 | So all these compilers use either ILP32 or LP64 model. | |
2621 | TODO: gcc has more options so it needs more investigation. | |
2622 | ||
a2379359 MC |
2623 | For floating point types, see: |
2624 | ||
2625 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
2626 | HP-UX floating-point guide, hpux 11.00 | |
2627 | ||
8e8b2dba MC |
2628 | -- chastain 2003-12-18 */ |
2629 | ||
e6e68f1f JB |
2630 | static struct gdbarch * |
2631 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2632 | { | |
3ff7cf9e | 2633 | struct gdbarch_tdep *tdep; |
e6e68f1f | 2634 | struct gdbarch *gdbarch; |
59623e27 JB |
2635 | |
2636 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 2637 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 2638 | { |
4be87837 DJ |
2639 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
2640 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
2641 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 2642 | } |
e6e68f1f JB |
2643 | |
2644 | /* find a candidate among the list of pre-declared architectures. */ | |
2645 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
2646 | if (arches != NULL) | |
2647 | return (arches->gdbarch); | |
2648 | ||
2649 | /* If none found, then allocate and initialize one. */ | |
fdd72f95 | 2650 | tdep = XZALLOC (struct gdbarch_tdep); |
3ff7cf9e JB |
2651 | gdbarch = gdbarch_alloc (&info, tdep); |
2652 | ||
2653 | /* Determine from the bfd_arch_info structure if we are dealing with | |
2654 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
2655 | then default to a 32bit machine. */ | |
2656 | if (info.bfd_arch_info != NULL) | |
2657 | tdep->bytes_per_address = | |
2658 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
2659 | else | |
2660 | tdep->bytes_per_address = 4; | |
2661 | ||
2662 | /* Some parts of the gdbarch vector depend on whether we are running | |
2663 | on a 32 bits or 64 bits target. */ | |
2664 | switch (tdep->bytes_per_address) | |
2665 | { | |
2666 | case 4: | |
2667 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
2668 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
eded0a31 | 2669 | set_gdbarch_register_type (gdbarch, hppa32_register_type); |
3ff7cf9e JB |
2670 | break; |
2671 | case 8: | |
2672 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
2673 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
eded0a31 | 2674 | set_gdbarch_register_type (gdbarch, hppa64_register_type); |
3ff7cf9e JB |
2675 | break; |
2676 | default: | |
2677 | internal_error (__FILE__, __LINE__, "Unsupported address size: %d", | |
2678 | tdep->bytes_per_address); | |
2679 | } | |
2680 | ||
3ff7cf9e | 2681 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
3ff7cf9e | 2682 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 2683 | |
8e8b2dba MC |
2684 | /* The following gdbarch vector elements are the same in both ILP32 |
2685 | and LP64, but might show differences some day. */ | |
2686 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2687 | set_gdbarch_long_double_bit (gdbarch, 128); | |
a2379359 | 2688 | set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big); |
8e8b2dba | 2689 | |
3ff7cf9e JB |
2690 | /* The following gdbarch vector elements do not depend on the address |
2691 | size, or in any other gdbarch element previously set. */ | |
60383d10 JB |
2692 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
2693 | set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); | |
2694 | set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline); | |
2695 | set_gdbarch_in_solib_return_trampoline (gdbarch, | |
2696 | hppa_in_solib_return_trampoline); | |
a2a84a72 | 2697 | set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
eded0a31 AC |
2698 | set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
2699 | set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); | |
60383d10 | 2700 | set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register); |
b6fbdd1d | 2701 | set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address); |
60383d10 JB |
2702 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
2703 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
2704 | set_gdbarch_read_pc (gdbarch, hppa_target_read_pc); | |
2705 | set_gdbarch_write_pc (gdbarch, hppa_target_write_pc); | |
60383d10 | 2706 | |
143985b7 AF |
2707 | /* Helper for function argument information. */ |
2708 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
2709 | ||
36482093 AC |
2710 | set_gdbarch_print_insn (gdbarch, print_insn_hppa); |
2711 | ||
3a3bc038 AC |
2712 | /* When a hardware watchpoint triggers, we'll move the inferior past |
2713 | it by removing all eventpoints; stepping past the instruction | |
2714 | that caused the trigger; reinserting eventpoints; and checking | |
2715 | whether any watched location changed. */ | |
2716 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
2717 | ||
5979bc46 | 2718 | /* Inferior function call methods. */ |
fca7aa43 | 2719 | switch (tdep->bytes_per_address) |
5979bc46 | 2720 | { |
fca7aa43 AC |
2721 | case 4: |
2722 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); | |
2723 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); | |
2724 | break; | |
2725 | case 8: | |
782eae8b AC |
2726 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
2727 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); | |
fca7aa43 | 2728 | break; |
782eae8b AC |
2729 | default: |
2730 | internal_error (__FILE__, __LINE__, "bad switch"); | |
fad850b2 AC |
2731 | } |
2732 | ||
2733 | /* Struct return methods. */ | |
fca7aa43 | 2734 | switch (tdep->bytes_per_address) |
fad850b2 | 2735 | { |
fca7aa43 AC |
2736 | case 4: |
2737 | set_gdbarch_return_value (gdbarch, hppa32_return_value); | |
2738 | break; | |
2739 | case 8: | |
782eae8b | 2740 | set_gdbarch_return_value (gdbarch, hppa64_return_value); |
f5f907e2 | 2741 | break; |
fca7aa43 AC |
2742 | default: |
2743 | internal_error (__FILE__, __LINE__, "bad switch"); | |
e963316f | 2744 | } |
85f4f2d8 AC |
2745 | |
2746 | set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc); | |
2747 | ||
5979bc46 | 2748 | /* Frame unwind methods. */ |
782eae8b AC |
2749 | set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id); |
2750 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); | |
2751 | frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer); | |
2752 | frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer); | |
5979bc46 | 2753 | |
0f8d9d59 RC |
2754 | set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
2755 | ||
752d4ac1 JB |
2756 | /* Hook in ABI-specific overrides, if they have been registered. */ |
2757 | gdbarch_init_osabi (info, gdbarch); | |
2758 | ||
e6e68f1f JB |
2759 | return gdbarch; |
2760 | } | |
2761 | ||
2762 | static void | |
2763 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
2764 | { | |
fdd72f95 RC |
2765 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2766 | ||
2767 | fprintf_unfiltered (file, "bytes_per_address = %d\n", | |
2768 | tdep->bytes_per_address); | |
2769 | fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); | |
e6e68f1f JB |
2770 | } |
2771 | ||
4facf7e8 JB |
2772 | void |
2773 | _initialize_hppa_tdep (void) | |
2774 | { | |
2775 | struct cmd_list_element *c; | |
2776 | void break_at_finish_command (char *arg, int from_tty); | |
2777 | void tbreak_at_finish_command (char *arg, int from_tty); | |
2778 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
2779 | ||
e6e68f1f | 2780 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 | 2781 | |
7c46b9fb RC |
2782 | hppa_objfile_priv_data = register_objfile_data (); |
2783 | ||
4facf7e8 JB |
2784 | add_cmd ("unwind", class_maintenance, unwind_command, |
2785 | "Print unwind table entry at given address.", | |
2786 | &maintenanceprintlist); | |
2787 | ||
2788 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
2789 | break_at_finish_command, | |
2790 | concat ("Set breakpoint at procedure exit. \n\ | |
2791 | Argument may be function name, or \"*\" and an address.\n\ | |
2792 | If function is specified, break at end of code for that function.\n\ | |
2793 | If an address is specified, break at the end of the function that contains \n\ | |
2794 | that exact address.\n", | |
2795 | "With no arg, uses current execution address of selected stack frame.\n\ | |
2796 | This is useful for breaking on return to a stack frame.\n\ | |
2797 | \n\ | |
2798 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
2799 | \n\ | |
2800 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
2801 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
2802 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
2803 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
2804 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
2805 | ||
2806 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
2807 | tbreak_at_finish_command, | |
2808 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
2809 | be no argument or the argument must be a depth.\n"), NULL); | |
2810 | set_cmd_completer (c, location_completer); | |
2811 | ||
2812 | if (xdb_commands) | |
2813 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
2814 | break_at_finish_at_depth_command, | |
2815 | "Set breakpoint at procedure exit. Either there should\n\ | |
2816 | be no argument or the argument must be a depth.\n"), NULL); | |
369aa520 RC |
2817 | |
2818 | /* Debug this files internals. */ | |
2819 | add_show_from_set (add_set_cmd ("hppa", class_maintenance, var_zinteger, | |
2820 | &hppa_debug, "Set hppa debugging.\n\ | |
2821 | When non-zero, hppa specific debugging is enabled.", &setdebuglist), &showdebuglist); | |
4facf7e8 JB |
2822 | } |
2823 |