]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
618f726f | 3 | Copyright (C) 1986-2016 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "symtab.h" | |
22 | #include "gdbtypes.h" | |
23 | #include "value.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "gdbcore.h" | |
27 | #include "target.h" | |
28 | #include "demangle.h" | |
29 | #include "language.h" | |
30 | #include "gdbcmd.h" | |
4e052eda | 31 | #include "regcache.h" |
015a42b4 | 32 | #include "cp-abi.h" |
fe898f56 | 33 | #include "block.h" |
04714b91 | 34 | #include "infcall.h" |
de4f826b | 35 | #include "dictionary.h" |
b6429628 | 36 | #include "cp-support.h" |
4ef30785 | 37 | #include "dfp.h" |
e6ca34fc | 38 | #include "tracepoint.h" |
f4c5303c | 39 | #include "observer.h" |
3e3b026f | 40 | #include "objfiles.h" |
233e8b28 | 41 | #include "extension.h" |
c906108c | 42 | |
ccce17b0 | 43 | extern unsigned int overload_debug; |
c906108c SS |
44 | /* Local functions. */ |
45 | ||
ad2f7632 DJ |
46 | static int typecmp (int staticp, int varargs, int nargs, |
47 | struct field t1[], struct value *t2[]); | |
c906108c | 48 | |
714f19d5 | 49 | static struct value *search_struct_field (const char *, struct value *, |
8a13d42d | 50 | struct type *, int); |
c906108c | 51 | |
714f19d5 TT |
52 | static struct value *search_struct_method (const char *, struct value **, |
53 | struct value **, | |
54 | int, int *, struct type *); | |
c906108c | 55 | |
da096638 | 56 | static int find_oload_champ_namespace (struct value **, int, |
ac3eeb49 MS |
57 | const char *, const char *, |
58 | struct symbol ***, | |
7322dca9 SW |
59 | struct badness_vector **, |
60 | const int no_adl); | |
8d577d32 DC |
61 | |
62 | static | |
da096638 | 63 | int find_oload_champ_namespace_loop (struct value **, int, |
ac3eeb49 MS |
64 | const char *, const char *, |
65 | int, struct symbol ***, | |
7322dca9 SW |
66 | struct badness_vector **, int *, |
67 | const int no_adl); | |
ac3eeb49 | 68 | |
9cf95373 | 69 | static int find_oload_champ (struct value **, int, int, |
233e8b28 SC |
70 | struct fn_field *, VEC (xmethod_worker_ptr) *, |
71 | struct symbol **, struct badness_vector **); | |
ac3eeb49 | 72 | |
2bca57ba | 73 | static int oload_method_static_p (struct fn_field *, int); |
8d577d32 DC |
74 | |
75 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
76 | ||
77 | static enum | |
ac3eeb49 MS |
78 | oload_classification classify_oload_match (struct badness_vector *, |
79 | int, int); | |
8d577d32 | 80 | |
ac3eeb49 MS |
81 | static struct value *value_struct_elt_for_reference (struct type *, |
82 | int, struct type *, | |
c848d642 | 83 | const char *, |
ac3eeb49 MS |
84 | struct type *, |
85 | int, enum noside); | |
79c2c32d | 86 | |
ac3eeb49 | 87 | static struct value *value_namespace_elt (const struct type *, |
c848d642 | 88 | const char *, int , enum noside); |
79c2c32d | 89 | |
ac3eeb49 | 90 | static struct value *value_maybe_namespace_elt (const struct type *, |
c848d642 | 91 | const char *, int, |
ac3eeb49 | 92 | enum noside); |
63d06c5c | 93 | |
a14ed312 | 94 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 95 | |
f23631e4 | 96 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 97 | |
233e8b28 SC |
98 | static void find_method_list (struct value **, const char *, |
99 | int, struct type *, struct fn_field **, int *, | |
100 | VEC (xmethod_worker_ptr) **, | |
101 | struct type **, int *); | |
7a292a7a | 102 | |
a14ed312 | 103 | void _initialize_valops (void); |
c906108c | 104 | |
c906108c | 105 | #if 0 |
ac3eeb49 MS |
106 | /* Flag for whether we want to abandon failed expression evals by |
107 | default. */ | |
108 | ||
c906108c SS |
109 | static int auto_abandon = 0; |
110 | #endif | |
111 | ||
112 | int overload_resolution = 0; | |
920d2a44 AC |
113 | static void |
114 | show_overload_resolution (struct ui_file *file, int from_tty, | |
ac3eeb49 MS |
115 | struct cmd_list_element *c, |
116 | const char *value) | |
920d2a44 | 117 | { |
3e43a32a MS |
118 | fprintf_filtered (file, _("Overload resolution in evaluating " |
119 | "C++ functions is %s.\n"), | |
920d2a44 AC |
120 | value); |
121 | } | |
242bfc55 | 122 | |
3e3b026f UW |
123 | /* Find the address of function name NAME in the inferior. If OBJF_P |
124 | is non-NULL, *OBJF_P will be set to the OBJFILE where the function | |
125 | is defined. */ | |
c906108c | 126 | |
f23631e4 | 127 | struct value * |
3e3b026f | 128 | find_function_in_inferior (const char *name, struct objfile **objf_p) |
c906108c | 129 | { |
d12307c1 | 130 | struct block_symbol sym; |
a109c7c1 | 131 | |
2570f2b7 | 132 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0); |
d12307c1 | 133 | if (sym.symbol != NULL) |
c906108c | 134 | { |
d12307c1 | 135 | if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK) |
c906108c | 136 | { |
8a3fe4f8 | 137 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
138 | name); |
139 | } | |
3e3b026f UW |
140 | |
141 | if (objf_p) | |
d12307c1 | 142 | *objf_p = symbol_objfile (sym.symbol); |
3e3b026f | 143 | |
d12307c1 | 144 | return value_of_variable (sym.symbol, sym.block); |
c906108c SS |
145 | } |
146 | else | |
147 | { | |
7c7b6655 TT |
148 | struct bound_minimal_symbol msymbol = |
149 | lookup_bound_minimal_symbol (name); | |
a109c7c1 | 150 | |
7c7b6655 | 151 | if (msymbol.minsym != NULL) |
c906108c | 152 | { |
7c7b6655 | 153 | struct objfile *objfile = msymbol.objfile; |
3e3b026f UW |
154 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
155 | ||
c906108c | 156 | struct type *type; |
4478b372 | 157 | CORE_ADDR maddr; |
3e3b026f | 158 | type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char); |
c906108c SS |
159 | type = lookup_function_type (type); |
160 | type = lookup_pointer_type (type); | |
77e371c0 | 161 | maddr = BMSYMBOL_VALUE_ADDRESS (msymbol); |
3e3b026f UW |
162 | |
163 | if (objf_p) | |
164 | *objf_p = objfile; | |
165 | ||
4478b372 | 166 | return value_from_pointer (type, maddr); |
c906108c SS |
167 | } |
168 | else | |
169 | { | |
c5aa993b | 170 | if (!target_has_execution) |
3e43a32a MS |
171 | error (_("evaluation of this expression " |
172 | "requires the target program to be active")); | |
c5aa993b | 173 | else |
3e43a32a MS |
174 | error (_("evaluation of this expression requires the " |
175 | "program to have a function \"%s\"."), | |
176 | name); | |
c906108c SS |
177 | } |
178 | } | |
179 | } | |
180 | ||
ac3eeb49 MS |
181 | /* Allocate NBYTES of space in the inferior using the inferior's |
182 | malloc and return a value that is a pointer to the allocated | |
183 | space. */ | |
c906108c | 184 | |
f23631e4 | 185 | struct value * |
fba45db2 | 186 | value_allocate_space_in_inferior (int len) |
c906108c | 187 | { |
3e3b026f UW |
188 | struct objfile *objf; |
189 | struct value *val = find_function_in_inferior ("malloc", &objf); | |
190 | struct gdbarch *gdbarch = get_objfile_arch (objf); | |
f23631e4 | 191 | struct value *blocklen; |
c906108c | 192 | |
3e3b026f | 193 | blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len); |
c906108c SS |
194 | val = call_function_by_hand (val, 1, &blocklen); |
195 | if (value_logical_not (val)) | |
196 | { | |
197 | if (!target_has_execution) | |
3e43a32a MS |
198 | error (_("No memory available to program now: " |
199 | "you need to start the target first")); | |
c5aa993b | 200 | else |
8a3fe4f8 | 201 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
202 | } |
203 | return val; | |
204 | } | |
205 | ||
206 | static CORE_ADDR | |
fba45db2 | 207 | allocate_space_in_inferior (int len) |
c906108c SS |
208 | { |
209 | return value_as_long (value_allocate_space_in_inferior (len)); | |
210 | } | |
211 | ||
6af87b03 AR |
212 | /* Cast struct value VAL to type TYPE and return as a value. |
213 | Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION | |
694182d2 DJ |
214 | for this to work. Typedef to one of the codes is permitted. |
215 | Returns NULL if the cast is neither an upcast nor a downcast. */ | |
6af87b03 AR |
216 | |
217 | static struct value * | |
218 | value_cast_structs (struct type *type, struct value *v2) | |
219 | { | |
220 | struct type *t1; | |
221 | struct type *t2; | |
222 | struct value *v; | |
223 | ||
224 | gdb_assert (type != NULL && v2 != NULL); | |
225 | ||
226 | t1 = check_typedef (type); | |
227 | t2 = check_typedef (value_type (v2)); | |
228 | ||
229 | /* Check preconditions. */ | |
230 | gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
231 | || TYPE_CODE (t1) == TYPE_CODE_UNION) | |
232 | && !!"Precondition is that type is of STRUCT or UNION kind."); | |
233 | gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
234 | || TYPE_CODE (t2) == TYPE_CODE_UNION) | |
235 | && !!"Precondition is that value is of STRUCT or UNION kind"); | |
236 | ||
191ca0a1 CM |
237 | if (TYPE_NAME (t1) != NULL |
238 | && TYPE_NAME (t2) != NULL | |
239 | && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2))) | |
240 | return NULL; | |
241 | ||
6af87b03 AR |
242 | /* Upcasting: look in the type of the source to see if it contains the |
243 | type of the target as a superclass. If so, we'll need to | |
244 | offset the pointer rather than just change its type. */ | |
245 | if (TYPE_NAME (t1) != NULL) | |
246 | { | |
247 | v = search_struct_field (type_name_no_tag (t1), | |
8a13d42d | 248 | v2, t2, 1); |
6af87b03 AR |
249 | if (v) |
250 | return v; | |
251 | } | |
252 | ||
253 | /* Downcasting: look in the type of the target to see if it contains the | |
254 | type of the source as a superclass. If so, we'll need to | |
9c3c02fd | 255 | offset the pointer rather than just change its type. */ |
6af87b03 AR |
256 | if (TYPE_NAME (t2) != NULL) |
257 | { | |
9c3c02fd TT |
258 | /* Try downcasting using the run-time type of the value. */ |
259 | int full, top, using_enc; | |
260 | struct type *real_type; | |
261 | ||
262 | real_type = value_rtti_type (v2, &full, &top, &using_enc); | |
263 | if (real_type) | |
264 | { | |
265 | v = value_full_object (v2, real_type, full, top, using_enc); | |
266 | v = value_at_lazy (real_type, value_address (v)); | |
9f1f738a | 267 | real_type = value_type (v); |
9c3c02fd TT |
268 | |
269 | /* We might be trying to cast to the outermost enclosing | |
270 | type, in which case search_struct_field won't work. */ | |
271 | if (TYPE_NAME (real_type) != NULL | |
272 | && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1))) | |
273 | return v; | |
274 | ||
8a13d42d | 275 | v = search_struct_field (type_name_no_tag (t2), v, real_type, 1); |
9c3c02fd TT |
276 | if (v) |
277 | return v; | |
278 | } | |
279 | ||
280 | /* Try downcasting using information from the destination type | |
281 | T2. This wouldn't work properly for classes with virtual | |
282 | bases, but those were handled above. */ | |
6af87b03 | 283 | v = search_struct_field (type_name_no_tag (t2), |
8a13d42d | 284 | value_zero (t1, not_lval), t1, 1); |
6af87b03 AR |
285 | if (v) |
286 | { | |
287 | /* Downcasting is possible (t1 is superclass of v2). */ | |
42ae5230 | 288 | CORE_ADDR addr2 = value_address (v2); |
a109c7c1 | 289 | |
42ae5230 | 290 | addr2 -= value_address (v) + value_embedded_offset (v); |
6af87b03 AR |
291 | return value_at (type, addr2); |
292 | } | |
293 | } | |
694182d2 DJ |
294 | |
295 | return NULL; | |
6af87b03 AR |
296 | } |
297 | ||
fb933624 DJ |
298 | /* Cast one pointer or reference type to another. Both TYPE and |
299 | the type of ARG2 should be pointer types, or else both should be | |
b1af9e97 TT |
300 | reference types. If SUBCLASS_CHECK is non-zero, this will force a |
301 | check to see whether TYPE is a superclass of ARG2's type. If | |
302 | SUBCLASS_CHECK is zero, then the subclass check is done only when | |
303 | ARG2 is itself non-zero. Returns the new pointer or reference. */ | |
fb933624 DJ |
304 | |
305 | struct value * | |
b1af9e97 TT |
306 | value_cast_pointers (struct type *type, struct value *arg2, |
307 | int subclass_check) | |
fb933624 | 308 | { |
d160942f | 309 | struct type *type1 = check_typedef (type); |
fb933624 | 310 | struct type *type2 = check_typedef (value_type (arg2)); |
d160942f | 311 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
fb933624 DJ |
312 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); |
313 | ||
314 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
315 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
b1af9e97 | 316 | && (subclass_check || !value_logical_not (arg2))) |
fb933624 | 317 | { |
6af87b03 | 318 | struct value *v2; |
fb933624 | 319 | |
6af87b03 AR |
320 | if (TYPE_CODE (type2) == TYPE_CODE_REF) |
321 | v2 = coerce_ref (arg2); | |
322 | else | |
323 | v2 = value_ind (arg2); | |
3e43a32a MS |
324 | gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) |
325 | == TYPE_CODE_STRUCT && !!"Why did coercion fail?"); | |
6af87b03 AR |
326 | v2 = value_cast_structs (t1, v2); |
327 | /* At this point we have what we can have, un-dereference if needed. */ | |
328 | if (v2) | |
fb933624 | 329 | { |
6af87b03 | 330 | struct value *v = value_addr (v2); |
a109c7c1 | 331 | |
6af87b03 AR |
332 | deprecated_set_value_type (v, type); |
333 | return v; | |
fb933624 | 334 | } |
8301c89e | 335 | } |
fb933624 DJ |
336 | |
337 | /* No superclass found, just change the pointer type. */ | |
0d5de010 | 338 | arg2 = value_copy (arg2); |
fb933624 | 339 | deprecated_set_value_type (arg2, type); |
4dfea560 | 340 | set_value_enclosing_type (arg2, type); |
fb933624 DJ |
341 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
342 | return arg2; | |
343 | } | |
344 | ||
c906108c SS |
345 | /* Cast value ARG2 to type TYPE and return as a value. |
346 | More general than a C cast: accepts any two types of the same length, | |
347 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
348 | /* In C++, casts may change pointer or object representations. */ | |
349 | ||
f23631e4 AC |
350 | struct value * |
351 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 352 | { |
52f0bd74 AC |
353 | enum type_code code1; |
354 | enum type_code code2; | |
355 | int scalar; | |
c906108c SS |
356 | struct type *type2; |
357 | ||
358 | int convert_to_boolean = 0; | |
c5aa993b | 359 | |
df407dfe | 360 | if (value_type (arg2) == type) |
c906108c SS |
361 | return arg2; |
362 | ||
6af87b03 AR |
363 | code1 = TYPE_CODE (check_typedef (type)); |
364 | ||
365 | /* Check if we are casting struct reference to struct reference. */ | |
366 | if (code1 == TYPE_CODE_REF) | |
367 | { | |
368 | /* We dereference type; then we recurse and finally | |
581e13c1 | 369 | we generate value of the given reference. Nothing wrong with |
6af87b03 AR |
370 | that. */ |
371 | struct type *t1 = check_typedef (type); | |
372 | struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1)); | |
373 | struct value *val = value_cast (dereftype, arg2); | |
a109c7c1 | 374 | |
6af87b03 AR |
375 | return value_ref (val); |
376 | } | |
377 | ||
378 | code2 = TYPE_CODE (check_typedef (value_type (arg2))); | |
379 | ||
380 | if (code2 == TYPE_CODE_REF) | |
381 | /* We deref the value and then do the cast. */ | |
382 | return value_cast (type, coerce_ref (arg2)); | |
383 | ||
f168693b | 384 | type = check_typedef (type); |
c906108c | 385 | code1 = TYPE_CODE (type); |
994b9211 | 386 | arg2 = coerce_ref (arg2); |
df407dfe | 387 | type2 = check_typedef (value_type (arg2)); |
c906108c | 388 | |
fb933624 DJ |
389 | /* You can't cast to a reference type. See value_cast_pointers |
390 | instead. */ | |
391 | gdb_assert (code1 != TYPE_CODE_REF); | |
392 | ||
ac3eeb49 MS |
393 | /* A cast to an undetermined-length array_type, such as |
394 | (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, | |
395 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
c906108c SS |
396 | if (code1 == TYPE_CODE_ARRAY) |
397 | { | |
398 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
399 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
a109c7c1 | 400 | |
d78df370 | 401 | if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
c906108c SS |
402 | { |
403 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
404 | int val_length = TYPE_LENGTH (type2); | |
405 | LONGEST low_bound, high_bound, new_length; | |
a109c7c1 | 406 | |
c906108c SS |
407 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) |
408 | low_bound = 0, high_bound = 0; | |
409 | new_length = val_length / element_length; | |
410 | if (val_length % element_length != 0) | |
3e43a32a MS |
411 | warning (_("array element type size does not " |
412 | "divide object size in cast")); | |
ac3eeb49 MS |
413 | /* FIXME-type-allocation: need a way to free this type when |
414 | we are done with it. */ | |
0c9c3474 SA |
415 | range_type = create_static_range_type ((struct type *) NULL, |
416 | TYPE_TARGET_TYPE (range_type), | |
417 | low_bound, | |
418 | new_length + low_bound - 1); | |
ac3eeb49 MS |
419 | deprecated_set_value_type (arg2, |
420 | create_array_type ((struct type *) NULL, | |
421 | element_type, | |
422 | range_type)); | |
c906108c SS |
423 | return arg2; |
424 | } | |
425 | } | |
426 | ||
427 | if (current_language->c_style_arrays | |
3bdf2bbd KW |
428 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY |
429 | && !TYPE_VECTOR (type2)) | |
c906108c SS |
430 | arg2 = value_coerce_array (arg2); |
431 | ||
432 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
433 | arg2 = value_coerce_function (arg2); | |
434 | ||
df407dfe | 435 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
436 | code2 = TYPE_CODE (type2); |
437 | ||
438 | if (code1 == TYPE_CODE_COMPLEX) | |
439 | return cast_into_complex (type, arg2); | |
440 | if (code1 == TYPE_CODE_BOOL) | |
441 | { | |
442 | code1 = TYPE_CODE_INT; | |
443 | convert_to_boolean = 1; | |
444 | } | |
445 | if (code1 == TYPE_CODE_CHAR) | |
446 | code1 = TYPE_CODE_INT; | |
447 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
448 | code2 = TYPE_CODE_INT; | |
449 | ||
450 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
4ef30785 TJB |
451 | || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM |
452 | || code2 == TYPE_CODE_RANGE); | |
c906108c | 453 | |
6af87b03 AR |
454 | if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) |
455 | && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) | |
c906108c | 456 | && TYPE_NAME (type) != 0) |
694182d2 DJ |
457 | { |
458 | struct value *v = value_cast_structs (type, arg2); | |
a109c7c1 | 459 | |
694182d2 DJ |
460 | if (v) |
461 | return v; | |
462 | } | |
463 | ||
c906108c SS |
464 | if (code1 == TYPE_CODE_FLT && scalar) |
465 | return value_from_double (type, value_as_double (arg2)); | |
4ef30785 TJB |
466 | else if (code1 == TYPE_CODE_DECFLOAT && scalar) |
467 | { | |
e17a4113 | 468 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
4ef30785 TJB |
469 | int dec_len = TYPE_LENGTH (type); |
470 | gdb_byte dec[16]; | |
471 | ||
472 | if (code2 == TYPE_CODE_FLT) | |
e17a4113 | 473 | decimal_from_floating (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
474 | else if (code2 == TYPE_CODE_DECFLOAT) |
475 | decimal_convert (value_contents (arg2), TYPE_LENGTH (type2), | |
e17a4113 | 476 | byte_order, dec, dec_len, byte_order); |
4ef30785 TJB |
477 | else |
478 | /* The only option left is an integral type. */ | |
e17a4113 | 479 | decimal_from_integral (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
480 | |
481 | return value_from_decfloat (type, dec); | |
482 | } | |
c906108c SS |
483 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
484 | || code1 == TYPE_CODE_RANGE) | |
0d5de010 DJ |
485 | && (scalar || code2 == TYPE_CODE_PTR |
486 | || code2 == TYPE_CODE_MEMBERPTR)) | |
c906108c SS |
487 | { |
488 | LONGEST longest; | |
c5aa993b | 489 | |
2bf1f4a1 | 490 | /* When we cast pointers to integers, we mustn't use |
76e71323 | 491 | gdbarch_pointer_to_address to find the address the pointer |
2bf1f4a1 JB |
492 | represents, as value_as_long would. GDB should evaluate |
493 | expressions just as the compiler would --- and the compiler | |
494 | sees a cast as a simple reinterpretation of the pointer's | |
495 | bits. */ | |
496 | if (code2 == TYPE_CODE_PTR) | |
e17a4113 UW |
497 | longest = extract_unsigned_integer |
498 | (value_contents (arg2), TYPE_LENGTH (type2), | |
499 | gdbarch_byte_order (get_type_arch (type2))); | |
2bf1f4a1 JB |
500 | else |
501 | longest = value_as_long (arg2); | |
802db21b | 502 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 503 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 504 | } |
ac3eeb49 MS |
505 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT |
506 | || code2 == TYPE_CODE_ENUM | |
507 | || code2 == TYPE_CODE_RANGE)) | |
634acd5f | 508 | { |
4603e466 DT |
509 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
510 | want the length of an address! -- we are really dealing with | |
511 | addresses (i.e., gdb representations) not pointers (i.e., | |
512 | target representations) here. | |
513 | ||
514 | This allows things like "print *(int *)0x01000234" to work | |
515 | without printing a misleading message -- which would | |
516 | otherwise occur when dealing with a target having two byte | |
517 | pointers and four byte addresses. */ | |
518 | ||
50810684 | 519 | int addr_bit = gdbarch_addr_bit (get_type_arch (type2)); |
634acd5f | 520 | LONGEST longest = value_as_long (arg2); |
a109c7c1 | 521 | |
4603e466 | 522 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 523 | { |
4603e466 DT |
524 | if (longest >= ((LONGEST) 1 << addr_bit) |
525 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 526 | warning (_("value truncated")); |
634acd5f AC |
527 | } |
528 | return value_from_longest (type, longest); | |
529 | } | |
0d5de010 DJ |
530 | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
531 | && value_as_long (arg2) == 0) | |
532 | { | |
533 | struct value *result = allocate_value (type); | |
a109c7c1 | 534 | |
ad4820ab | 535 | cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0); |
0d5de010 DJ |
536 | return result; |
537 | } | |
538 | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | |
539 | && value_as_long (arg2) == 0) | |
540 | { | |
541 | /* The Itanium C++ ABI represents NULL pointers to members as | |
542 | minus one, instead of biasing the normal case. */ | |
543 | return value_from_longest (type, -1); | |
544 | } | |
8954db33 AB |
545 | else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) |
546 | && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2) | |
547 | && TYPE_LENGTH (type) != TYPE_LENGTH (type2)) | |
548 | error (_("Cannot convert between vector values of different sizes")); | |
549 | else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar | |
550 | && TYPE_LENGTH (type) != TYPE_LENGTH (type2)) | |
551 | error (_("can only cast scalar to vector of same size")); | |
0ba2eb0f TT |
552 | else if (code1 == TYPE_CODE_VOID) |
553 | { | |
554 | return value_zero (type, not_lval); | |
555 | } | |
c906108c SS |
556 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
557 | { | |
558 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
b1af9e97 | 559 | return value_cast_pointers (type, arg2, 0); |
fb933624 | 560 | |
0d5de010 | 561 | arg2 = value_copy (arg2); |
04624583 | 562 | deprecated_set_value_type (arg2, type); |
4dfea560 | 563 | set_value_enclosing_type (arg2, type); |
b44d461b | 564 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
565 | return arg2; |
566 | } | |
c906108c | 567 | else if (VALUE_LVAL (arg2) == lval_memory) |
42ae5230 | 568 | return value_at_lazy (type, value_address (arg2)); |
c906108c SS |
569 | else |
570 | { | |
8a3fe4f8 | 571 | error (_("Invalid cast.")); |
c906108c SS |
572 | return 0; |
573 | } | |
574 | } | |
575 | ||
4e8f195d TT |
576 | /* The C++ reinterpret_cast operator. */ |
577 | ||
578 | struct value * | |
579 | value_reinterpret_cast (struct type *type, struct value *arg) | |
580 | { | |
581 | struct value *result; | |
582 | struct type *real_type = check_typedef (type); | |
583 | struct type *arg_type, *dest_type; | |
584 | int is_ref = 0; | |
585 | enum type_code dest_code, arg_code; | |
586 | ||
587 | /* Do reference, function, and array conversion. */ | |
588 | arg = coerce_array (arg); | |
589 | ||
590 | /* Attempt to preserve the type the user asked for. */ | |
591 | dest_type = type; | |
592 | ||
593 | /* If we are casting to a reference type, transform | |
594 | reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */ | |
595 | if (TYPE_CODE (real_type) == TYPE_CODE_REF) | |
596 | { | |
597 | is_ref = 1; | |
598 | arg = value_addr (arg); | |
599 | dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type)); | |
600 | real_type = lookup_pointer_type (real_type); | |
601 | } | |
602 | ||
603 | arg_type = value_type (arg); | |
604 | ||
605 | dest_code = TYPE_CODE (real_type); | |
606 | arg_code = TYPE_CODE (arg_type); | |
607 | ||
608 | /* We can convert pointer types, or any pointer type to int, or int | |
609 | type to pointer. */ | |
610 | if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT) | |
611 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR) | |
612 | || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT) | |
613 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR) | |
614 | || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT) | |
615 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR) | |
616 | || (dest_code == arg_code | |
617 | && (dest_code == TYPE_CODE_PTR | |
618 | || dest_code == TYPE_CODE_METHODPTR | |
619 | || dest_code == TYPE_CODE_MEMBERPTR))) | |
620 | result = value_cast (dest_type, arg); | |
621 | else | |
622 | error (_("Invalid reinterpret_cast")); | |
623 | ||
624 | if (is_ref) | |
625 | result = value_cast (type, value_ref (value_ind (result))); | |
626 | ||
627 | return result; | |
628 | } | |
629 | ||
630 | /* A helper for value_dynamic_cast. This implements the first of two | |
631 | runtime checks: we iterate over all the base classes of the value's | |
632 | class which are equal to the desired class; if only one of these | |
633 | holds the value, then it is the answer. */ | |
634 | ||
635 | static int | |
636 | dynamic_cast_check_1 (struct type *desired_type, | |
8af8e3bc PA |
637 | const gdb_byte *valaddr, |
638 | int embedded_offset, | |
4e8f195d | 639 | CORE_ADDR address, |
8af8e3bc | 640 | struct value *val, |
4e8f195d TT |
641 | struct type *search_type, |
642 | CORE_ADDR arg_addr, | |
643 | struct type *arg_type, | |
644 | struct value **result) | |
645 | { | |
646 | int i, result_count = 0; | |
647 | ||
648 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
649 | { | |
8af8e3bc PA |
650 | int offset = baseclass_offset (search_type, i, valaddr, embedded_offset, |
651 | address, val); | |
a109c7c1 | 652 | |
4e8f195d TT |
653 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
654 | { | |
8af8e3bc PA |
655 | if (address + embedded_offset + offset >= arg_addr |
656 | && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type)) | |
4e8f195d TT |
657 | { |
658 | ++result_count; | |
659 | if (!*result) | |
660 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
8af8e3bc | 661 | address + embedded_offset + offset); |
4e8f195d TT |
662 | } |
663 | } | |
664 | else | |
665 | result_count += dynamic_cast_check_1 (desired_type, | |
8af8e3bc PA |
666 | valaddr, |
667 | embedded_offset + offset, | |
668 | address, val, | |
4e8f195d TT |
669 | TYPE_BASECLASS (search_type, i), |
670 | arg_addr, | |
671 | arg_type, | |
672 | result); | |
673 | } | |
674 | ||
675 | return result_count; | |
676 | } | |
677 | ||
678 | /* A helper for value_dynamic_cast. This implements the second of two | |
679 | runtime checks: we look for a unique public sibling class of the | |
680 | argument's declared class. */ | |
681 | ||
682 | static int | |
683 | dynamic_cast_check_2 (struct type *desired_type, | |
8af8e3bc PA |
684 | const gdb_byte *valaddr, |
685 | int embedded_offset, | |
4e8f195d | 686 | CORE_ADDR address, |
8af8e3bc | 687 | struct value *val, |
4e8f195d TT |
688 | struct type *search_type, |
689 | struct value **result) | |
690 | { | |
691 | int i, result_count = 0; | |
692 | ||
693 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
694 | { | |
695 | int offset; | |
696 | ||
697 | if (! BASETYPE_VIA_PUBLIC (search_type, i)) | |
698 | continue; | |
699 | ||
8af8e3bc PA |
700 | offset = baseclass_offset (search_type, i, valaddr, embedded_offset, |
701 | address, val); | |
4e8f195d TT |
702 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
703 | { | |
704 | ++result_count; | |
705 | if (*result == NULL) | |
706 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
8af8e3bc | 707 | address + embedded_offset + offset); |
4e8f195d TT |
708 | } |
709 | else | |
710 | result_count += dynamic_cast_check_2 (desired_type, | |
8af8e3bc PA |
711 | valaddr, |
712 | embedded_offset + offset, | |
713 | address, val, | |
4e8f195d TT |
714 | TYPE_BASECLASS (search_type, i), |
715 | result); | |
716 | } | |
717 | ||
718 | return result_count; | |
719 | } | |
720 | ||
721 | /* The C++ dynamic_cast operator. */ | |
722 | ||
723 | struct value * | |
724 | value_dynamic_cast (struct type *type, struct value *arg) | |
725 | { | |
8f78b329 | 726 | int full, top, using_enc; |
4e8f195d TT |
727 | struct type *resolved_type = check_typedef (type); |
728 | struct type *arg_type = check_typedef (value_type (arg)); | |
729 | struct type *class_type, *rtti_type; | |
730 | struct value *result, *tem, *original_arg = arg; | |
731 | CORE_ADDR addr; | |
732 | int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF; | |
733 | ||
734 | if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR | |
735 | && TYPE_CODE (resolved_type) != TYPE_CODE_REF) | |
736 | error (_("Argument to dynamic_cast must be a pointer or reference type")); | |
737 | if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID | |
4753d33b | 738 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT) |
4e8f195d TT |
739 | error (_("Argument to dynamic_cast must be pointer to class or `void *'")); |
740 | ||
741 | class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type)); | |
742 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
743 | { | |
744 | if (TYPE_CODE (arg_type) != TYPE_CODE_PTR | |
745 | && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT | |
746 | && value_as_long (arg) == 0)) | |
747 | error (_("Argument to dynamic_cast does not have pointer type")); | |
748 | if (TYPE_CODE (arg_type) == TYPE_CODE_PTR) | |
749 | { | |
750 | arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); | |
4753d33b | 751 | if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT) |
3e43a32a MS |
752 | error (_("Argument to dynamic_cast does " |
753 | "not have pointer to class type")); | |
4e8f195d TT |
754 | } |
755 | ||
756 | /* Handle NULL pointers. */ | |
757 | if (value_as_long (arg) == 0) | |
758 | return value_zero (type, not_lval); | |
759 | ||
760 | arg = value_ind (arg); | |
761 | } | |
762 | else | |
763 | { | |
4753d33b | 764 | if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT) |
4e8f195d TT |
765 | error (_("Argument to dynamic_cast does not have class type")); |
766 | } | |
767 | ||
768 | /* If the classes are the same, just return the argument. */ | |
769 | if (class_types_same_p (class_type, arg_type)) | |
770 | return value_cast (type, arg); | |
771 | ||
772 | /* If the target type is a unique base class of the argument's | |
773 | declared type, just cast it. */ | |
774 | if (is_ancestor (class_type, arg_type)) | |
775 | { | |
776 | if (is_unique_ancestor (class_type, arg)) | |
777 | return value_cast (type, original_arg); | |
778 | error (_("Ambiguous dynamic_cast")); | |
779 | } | |
780 | ||
781 | rtti_type = value_rtti_type (arg, &full, &top, &using_enc); | |
782 | if (! rtti_type) | |
783 | error (_("Couldn't determine value's most derived type for dynamic_cast")); | |
784 | ||
785 | /* Compute the most derived object's address. */ | |
786 | addr = value_address (arg); | |
787 | if (full) | |
788 | { | |
789 | /* Done. */ | |
790 | } | |
791 | else if (using_enc) | |
792 | addr += top; | |
793 | else | |
794 | addr += top + value_embedded_offset (arg); | |
795 | ||
796 | /* dynamic_cast<void *> means to return a pointer to the | |
797 | most-derived object. */ | |
798 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR | |
799 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID) | |
800 | return value_at_lazy (type, addr); | |
801 | ||
802 | tem = value_at (type, addr); | |
9f1f738a | 803 | type = value_type (tem); |
4e8f195d TT |
804 | |
805 | /* The first dynamic check specified in 5.2.7. */ | |
806 | if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type))) | |
807 | { | |
808 | if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type))) | |
809 | return tem; | |
810 | result = NULL; | |
811 | if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type), | |
8af8e3bc PA |
812 | value_contents_for_printing (tem), |
813 | value_embedded_offset (tem), | |
814 | value_address (tem), tem, | |
4e8f195d TT |
815 | rtti_type, addr, |
816 | arg_type, | |
817 | &result) == 1) | |
818 | return value_cast (type, | |
819 | is_ref ? value_ref (result) : value_addr (result)); | |
820 | } | |
821 | ||
822 | /* The second dynamic check specified in 5.2.7. */ | |
823 | result = NULL; | |
824 | if (is_public_ancestor (arg_type, rtti_type) | |
825 | && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type), | |
8af8e3bc PA |
826 | value_contents_for_printing (tem), |
827 | value_embedded_offset (tem), | |
828 | value_address (tem), tem, | |
4e8f195d TT |
829 | rtti_type, &result) == 1) |
830 | return value_cast (type, | |
831 | is_ref ? value_ref (result) : value_addr (result)); | |
832 | ||
833 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
834 | return value_zero (type, not_lval); | |
835 | ||
836 | error (_("dynamic_cast failed")); | |
837 | } | |
838 | ||
c906108c SS |
839 | /* Create a value of type TYPE that is zero, and return it. */ |
840 | ||
f23631e4 | 841 | struct value * |
fba45db2 | 842 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 843 | { |
f23631e4 | 844 | struct value *val = allocate_value (type); |
c906108c | 845 | |
bb7da2bf | 846 | VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv); |
c906108c SS |
847 | return val; |
848 | } | |
849 | ||
18a46dbe | 850 | /* Create a not_lval value of numeric type TYPE that is one, and return it. */ |
301f0ecf DE |
851 | |
852 | struct value * | |
18a46dbe | 853 | value_one (struct type *type) |
301f0ecf DE |
854 | { |
855 | struct type *type1 = check_typedef (type); | |
4e608b4f | 856 | struct value *val; |
301f0ecf DE |
857 | |
858 | if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) | |
859 | { | |
e17a4113 | 860 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
301f0ecf | 861 | gdb_byte v[16]; |
a109c7c1 | 862 | |
e17a4113 | 863 | decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1"); |
301f0ecf DE |
864 | val = value_from_decfloat (type, v); |
865 | } | |
866 | else if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
867 | { | |
868 | val = value_from_double (type, (DOUBLEST) 1); | |
869 | } | |
870 | else if (is_integral_type (type1)) | |
871 | { | |
872 | val = value_from_longest (type, (LONGEST) 1); | |
873 | } | |
120bd360 KW |
874 | else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1)) |
875 | { | |
876 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1)); | |
cfa6f054 KW |
877 | int i; |
878 | LONGEST low_bound, high_bound; | |
120bd360 KW |
879 | struct value *tmp; |
880 | ||
cfa6f054 KW |
881 | if (!get_array_bounds (type1, &low_bound, &high_bound)) |
882 | error (_("Could not determine the vector bounds")); | |
883 | ||
120bd360 | 884 | val = allocate_value (type); |
cfa6f054 | 885 | for (i = 0; i < high_bound - low_bound + 1; i++) |
120bd360 | 886 | { |
18a46dbe | 887 | tmp = value_one (eltype); |
120bd360 KW |
888 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), |
889 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
890 | } | |
891 | } | |
301f0ecf DE |
892 | else |
893 | { | |
894 | error (_("Not a numeric type.")); | |
895 | } | |
896 | ||
18a46dbe JK |
897 | /* value_one result is never used for assignments to. */ |
898 | gdb_assert (VALUE_LVAL (val) == not_lval); | |
899 | ||
301f0ecf DE |
900 | return val; |
901 | } | |
902 | ||
80180f79 SA |
903 | /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. |
904 | The type of the created value may differ from the passed type TYPE. | |
905 | Make sure to retrieve the returned values's new type after this call | |
906 | e.g. in case the type is a variable length array. */ | |
4e5d721f DE |
907 | |
908 | static struct value * | |
909 | get_value_at (struct type *type, CORE_ADDR addr, int lazy) | |
910 | { | |
911 | struct value *val; | |
912 | ||
913 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
914 | error (_("Attempt to dereference a generic pointer.")); | |
915 | ||
a3d34bf4 | 916 | val = value_from_contents_and_address (type, NULL, addr); |
4e5d721f | 917 | |
a3d34bf4 PA |
918 | if (!lazy) |
919 | value_fetch_lazy (val); | |
4e5d721f DE |
920 | |
921 | return val; | |
922 | } | |
923 | ||
070ad9f0 | 924 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
925 | |
926 | Call value_at only if the data needs to be fetched immediately; | |
927 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
928 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 | 929 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 930 | is tested in the value_contents macro, which is used if and when |
80180f79 SA |
931 | the contents are actually required. The type of the created value |
932 | may differ from the passed type TYPE. Make sure to retrieve the | |
933 | returned values's new type after this call e.g. in case the type | |
934 | is a variable length array. | |
c906108c SS |
935 | |
936 | Note: value_at does *NOT* handle embedded offsets; perform such | |
ac3eeb49 | 937 | adjustments before or after calling it. */ |
c906108c | 938 | |
f23631e4 | 939 | struct value * |
00a4c844 | 940 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 941 | { |
4e5d721f | 942 | return get_value_at (type, addr, 0); |
c906108c SS |
943 | } |
944 | ||
80180f79 SA |
945 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). |
946 | The type of the created value may differ from the passed type TYPE. | |
947 | Make sure to retrieve the returned values's new type after this call | |
948 | e.g. in case the type is a variable length array. */ | |
c906108c | 949 | |
f23631e4 | 950 | struct value * |
00a4c844 | 951 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 952 | { |
4e5d721f | 953 | return get_value_at (type, addr, 1); |
c906108c SS |
954 | } |
955 | ||
e6ca34fc PA |
956 | void |
957 | read_value_memory (struct value *val, int embedded_offset, | |
958 | int stack, CORE_ADDR memaddr, | |
959 | gdb_byte *buffer, size_t length) | |
960 | { | |
3ae385af SM |
961 | ULONGEST xfered_total = 0; |
962 | struct gdbarch *arch = get_value_arch (val); | |
963 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
5a2eb0ef | 964 | |
3ae385af | 965 | while (xfered_total < length) |
5a2eb0ef YQ |
966 | { |
967 | enum target_xfer_status status; | |
3ae385af | 968 | ULONGEST xfered_partial; |
5a2eb0ef YQ |
969 | |
970 | status = target_xfer_partial (current_target.beneath, | |
971 | TARGET_OBJECT_MEMORY, NULL, | |
3ae385af SM |
972 | buffer + xfered_total * unit_size, NULL, |
973 | memaddr + xfered_total, | |
974 | length - xfered_total, | |
975 | &xfered_partial); | |
5a2eb0ef YQ |
976 | |
977 | if (status == TARGET_XFER_OK) | |
978 | /* nothing */; | |
bc113b4e | 979 | else if (status == TARGET_XFER_UNAVAILABLE) |
3ae385af SM |
980 | mark_value_bytes_unavailable (val, embedded_offset + xfered_total, |
981 | xfered_partial); | |
5a2eb0ef | 982 | else if (status == TARGET_XFER_EOF) |
3ae385af | 983 | memory_error (TARGET_XFER_E_IO, memaddr + xfered_total); |
e6ca34fc | 984 | else |
3ae385af | 985 | memory_error (status, memaddr + xfered_total); |
e6ca34fc | 986 | |
3ae385af | 987 | xfered_total += xfered_partial; |
5a2eb0ef | 988 | QUIT; |
e6ca34fc PA |
989 | } |
990 | } | |
c906108c SS |
991 | |
992 | /* Store the contents of FROMVAL into the location of TOVAL. | |
993 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
994 | ||
f23631e4 AC |
995 | struct value * |
996 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 997 | { |
52f0bd74 | 998 | struct type *type; |
f23631e4 | 999 | struct value *val; |
cb741690 | 1000 | struct frame_id old_frame; |
c906108c | 1001 | |
88e3b34b | 1002 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 1003 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 1004 | |
994b9211 | 1005 | toval = coerce_ref (toval); |
c906108c | 1006 | |
df407dfe | 1007 | type = value_type (toval); |
c906108c | 1008 | if (VALUE_LVAL (toval) != lval_internalvar) |
3cbaedff | 1009 | fromval = value_cast (type, fromval); |
c906108c | 1010 | else |
63092375 DJ |
1011 | { |
1012 | /* Coerce arrays and functions to pointers, except for arrays | |
1013 | which only live in GDB's storage. */ | |
1014 | if (!value_must_coerce_to_target (fromval)) | |
1015 | fromval = coerce_array (fromval); | |
1016 | } | |
1017 | ||
f168693b | 1018 | type = check_typedef (type); |
c906108c | 1019 | |
ac3eeb49 MS |
1020 | /* Since modifying a register can trash the frame chain, and |
1021 | modifying memory can trash the frame cache, we save the old frame | |
1022 | and then restore the new frame afterwards. */ | |
206415a3 | 1023 | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
cb741690 | 1024 | |
c906108c SS |
1025 | switch (VALUE_LVAL (toval)) |
1026 | { | |
1027 | case lval_internalvar: | |
1028 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
4aac0db7 UW |
1029 | return value_of_internalvar (get_type_arch (type), |
1030 | VALUE_INTERNALVAR (toval)); | |
c906108c SS |
1031 | |
1032 | case lval_internalvar_component: | |
d9e98382 SDJ |
1033 | { |
1034 | int offset = value_offset (toval); | |
1035 | ||
1036 | /* Are we dealing with a bitfield? | |
1037 | ||
1038 | It is important to mention that `value_parent (toval)' is | |
1039 | non-NULL iff `value_bitsize (toval)' is non-zero. */ | |
1040 | if (value_bitsize (toval)) | |
1041 | { | |
1042 | /* VALUE_INTERNALVAR below refers to the parent value, while | |
1043 | the offset is relative to this parent value. */ | |
1044 | gdb_assert (value_parent (value_parent (toval)) == NULL); | |
1045 | offset += value_offset (value_parent (toval)); | |
1046 | } | |
1047 | ||
1048 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
1049 | offset, | |
1050 | value_bitpos (toval), | |
1051 | value_bitsize (toval), | |
1052 | fromval); | |
1053 | } | |
c906108c SS |
1054 | break; |
1055 | ||
1056 | case lval_memory: | |
1057 | { | |
fc1a4b47 | 1058 | const gdb_byte *dest_buffer; |
c5aa993b JM |
1059 | CORE_ADDR changed_addr; |
1060 | int changed_len; | |
10c42a71 | 1061 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 1062 | |
df407dfe | 1063 | if (value_bitsize (toval)) |
c5aa993b | 1064 | { |
2d88202a | 1065 | struct value *parent = value_parent (toval); |
2d88202a | 1066 | |
a109c7c1 | 1067 | changed_addr = value_address (parent) + value_offset (toval); |
df407dfe AC |
1068 | changed_len = (value_bitpos (toval) |
1069 | + value_bitsize (toval) | |
c5aa993b JM |
1070 | + HOST_CHAR_BIT - 1) |
1071 | / HOST_CHAR_BIT; | |
c906108c | 1072 | |
4ea48cc1 DJ |
1073 | /* If we can read-modify-write exactly the size of the |
1074 | containing type (e.g. short or int) then do so. This | |
1075 | is safer for volatile bitfields mapped to hardware | |
1076 | registers. */ | |
1077 | if (changed_len < TYPE_LENGTH (type) | |
1078 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST) | |
2d88202a | 1079 | && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0) |
4ea48cc1 DJ |
1080 | changed_len = TYPE_LENGTH (type); |
1081 | ||
c906108c | 1082 | if (changed_len > (int) sizeof (LONGEST)) |
3e43a32a MS |
1083 | error (_("Can't handle bitfields which " |
1084 | "don't fit in a %d bit word."), | |
baa6f10b | 1085 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 1086 | |
2d88202a | 1087 | read_memory (changed_addr, buffer, changed_len); |
50810684 | 1088 | modify_field (type, buffer, value_as_long (fromval), |
df407dfe | 1089 | value_bitpos (toval), value_bitsize (toval)); |
c906108c SS |
1090 | dest_buffer = buffer; |
1091 | } | |
c906108c SS |
1092 | else |
1093 | { | |
42ae5230 | 1094 | changed_addr = value_address (toval); |
3ae385af | 1095 | changed_len = type_length_units (type); |
0fd88904 | 1096 | dest_buffer = value_contents (fromval); |
c906108c SS |
1097 | } |
1098 | ||
972daa01 | 1099 | write_memory_with_notification (changed_addr, dest_buffer, changed_len); |
c906108c SS |
1100 | } |
1101 | break; | |
1102 | ||
492254e9 | 1103 | case lval_register: |
c906108c | 1104 | { |
c906108c | 1105 | struct frame_info *frame; |
d80b854b | 1106 | struct gdbarch *gdbarch; |
ff2e87ac | 1107 | int value_reg; |
c906108c SS |
1108 | |
1109 | /* Figure out which frame this is in currently. */ | |
0c16dd26 AC |
1110 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
1111 | value_reg = VALUE_REGNUM (toval); | |
c906108c SS |
1112 | |
1113 | if (!frame) | |
8a3fe4f8 | 1114 | error (_("Value being assigned to is no longer active.")); |
d80b854b UW |
1115 | |
1116 | gdbarch = get_frame_arch (frame); | |
3e871532 LM |
1117 | |
1118 | if (value_bitsize (toval)) | |
492254e9 | 1119 | { |
3e871532 LM |
1120 | struct value *parent = value_parent (toval); |
1121 | int offset = value_offset (parent) + value_offset (toval); | |
1122 | int changed_len; | |
1123 | gdb_byte buffer[sizeof (LONGEST)]; | |
1124 | int optim, unavail; | |
1125 | ||
1126 | changed_len = (value_bitpos (toval) | |
1127 | + value_bitsize (toval) | |
1128 | + HOST_CHAR_BIT - 1) | |
1129 | / HOST_CHAR_BIT; | |
1130 | ||
1131 | if (changed_len > (int) sizeof (LONGEST)) | |
1132 | error (_("Can't handle bitfields which " | |
1133 | "don't fit in a %d bit word."), | |
1134 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); | |
1135 | ||
1136 | if (!get_frame_register_bytes (frame, value_reg, offset, | |
1137 | changed_len, buffer, | |
1138 | &optim, &unavail)) | |
1139 | { | |
1140 | if (optim) | |
1141 | throw_error (OPTIMIZED_OUT_ERROR, | |
1142 | _("value has been optimized out")); | |
1143 | if (unavail) | |
1144 | throw_error (NOT_AVAILABLE_ERROR, | |
1145 | _("value is not available")); | |
1146 | } | |
1147 | ||
1148 | modify_field (type, buffer, value_as_long (fromval), | |
1149 | value_bitpos (toval), value_bitsize (toval)); | |
1150 | ||
1151 | put_frame_register_bytes (frame, value_reg, offset, | |
1152 | changed_len, buffer); | |
492254e9 | 1153 | } |
c906108c | 1154 | else |
492254e9 | 1155 | { |
3e871532 LM |
1156 | if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), |
1157 | type)) | |
00fa51f6 | 1158 | { |
3e871532 LM |
1159 | /* If TOVAL is a special machine register requiring |
1160 | conversion of program values to a special raw | |
1161 | format. */ | |
1162 | gdbarch_value_to_register (gdbarch, frame, | |
1163 | VALUE_REGNUM (toval), type, | |
1164 | value_contents (fromval)); | |
00fa51f6 | 1165 | } |
c906108c | 1166 | else |
00fa51f6 UW |
1167 | { |
1168 | put_frame_register_bytes (frame, value_reg, | |
1169 | value_offset (toval), | |
1170 | TYPE_LENGTH (type), | |
1171 | value_contents (fromval)); | |
1172 | } | |
ff2e87ac | 1173 | } |
00fa51f6 | 1174 | |
162078c8 | 1175 | observer_notify_register_changed (frame, value_reg); |
ff2e87ac | 1176 | break; |
c906108c | 1177 | } |
5f5233d4 PA |
1178 | |
1179 | case lval_computed: | |
1180 | { | |
c8f2448a | 1181 | const struct lval_funcs *funcs = value_computed_funcs (toval); |
5f5233d4 | 1182 | |
ac71a68c JK |
1183 | if (funcs->write != NULL) |
1184 | { | |
1185 | funcs->write (toval, fromval); | |
1186 | break; | |
1187 | } | |
5f5233d4 | 1188 | } |
ac71a68c | 1189 | /* Fall through. */ |
5f5233d4 | 1190 | |
c906108c | 1191 | default: |
8a3fe4f8 | 1192 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
1193 | } |
1194 | ||
cb741690 DJ |
1195 | /* Assigning to the stack pointer, frame pointer, and other |
1196 | (architecture and calling convention specific) registers may | |
d649a38e | 1197 | cause the frame cache and regcache to be out of date. Assigning to memory |
cb741690 DJ |
1198 | also can. We just do this on all assignments to registers or |
1199 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
1200 | switch (VALUE_LVAL (toval)) | |
1201 | { | |
1202 | case lval_memory: | |
1203 | case lval_register: | |
0e03807e | 1204 | case lval_computed: |
cb741690 | 1205 | |
d649a38e | 1206 | observer_notify_target_changed (¤t_target); |
cb741690 | 1207 | |
ac3eeb49 MS |
1208 | /* Having destroyed the frame cache, restore the selected |
1209 | frame. */ | |
cb741690 DJ |
1210 | |
1211 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
1212 | doing this. Instead of constantly saving/restoring the | |
1213 | frame. Why not create a get_selected_frame() function that, | |
1214 | having saved the selected frame's ID can automatically | |
1215 | re-find the previously selected frame automatically. */ | |
1216 | ||
1217 | { | |
1218 | struct frame_info *fi = frame_find_by_id (old_frame); | |
a109c7c1 | 1219 | |
cb741690 DJ |
1220 | if (fi != NULL) |
1221 | select_frame (fi); | |
1222 | } | |
1223 | ||
1224 | break; | |
1225 | default: | |
1226 | break; | |
1227 | } | |
1228 | ||
ac3eeb49 MS |
1229 | /* If the field does not entirely fill a LONGEST, then zero the sign |
1230 | bits. If the field is signed, and is negative, then sign | |
1231 | extend. */ | |
df407dfe AC |
1232 | if ((value_bitsize (toval) > 0) |
1233 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
1234 | { |
1235 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 1236 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
1237 | |
1238 | fieldval &= valmask; | |
ac3eeb49 MS |
1239 | if (!TYPE_UNSIGNED (type) |
1240 | && (fieldval & (valmask ^ (valmask >> 1)))) | |
c906108c SS |
1241 | fieldval |= ~valmask; |
1242 | ||
1243 | fromval = value_from_longest (type, fieldval); | |
1244 | } | |
1245 | ||
4aac0db7 UW |
1246 | /* The return value is a copy of TOVAL so it shares its location |
1247 | information, but its contents are updated from FROMVAL. This | |
1248 | implies the returned value is not lazy, even if TOVAL was. */ | |
c906108c | 1249 | val = value_copy (toval); |
4aac0db7 | 1250 | set_value_lazy (val, 0); |
0fd88904 | 1251 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 1252 | TYPE_LENGTH (type)); |
4aac0db7 UW |
1253 | |
1254 | /* We copy over the enclosing type and pointed-to offset from FROMVAL | |
1255 | in the case of pointer types. For object types, the enclosing type | |
1256 | and embedded offset must *not* be copied: the target object refered | |
1257 | to by TOVAL retains its original dynamic type after assignment. */ | |
1258 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
1259 | { | |
1260 | set_value_enclosing_type (val, value_enclosing_type (fromval)); | |
1261 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); | |
1262 | } | |
c5aa993b | 1263 | |
c906108c SS |
1264 | return val; |
1265 | } | |
1266 | ||
1267 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
1268 | ||
f23631e4 AC |
1269 | struct value * |
1270 | value_repeat (struct value *arg1, int count) | |
c906108c | 1271 | { |
f23631e4 | 1272 | struct value *val; |
c906108c SS |
1273 | |
1274 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1275 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 1276 | if (count < 1) |
8a3fe4f8 | 1277 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 1278 | |
4754a64e | 1279 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 1280 | |
c906108c | 1281 | VALUE_LVAL (val) = lval_memory; |
42ae5230 | 1282 | set_value_address (val, value_address (arg1)); |
c906108c | 1283 | |
24e6bcee PA |
1284 | read_value_memory (val, 0, value_stack (val), value_address (val), |
1285 | value_contents_all_raw (val), | |
3ae385af | 1286 | type_length_units (value_enclosing_type (val))); |
24e6bcee | 1287 | |
c906108c SS |
1288 | return val; |
1289 | } | |
1290 | ||
f23631e4 | 1291 | struct value * |
9df2fbc4 | 1292 | value_of_variable (struct symbol *var, const struct block *b) |
c906108c | 1293 | { |
63e43d3a | 1294 | struct frame_info *frame = NULL; |
c906108c | 1295 | |
63e43d3a | 1296 | if (symbol_read_needs_frame (var)) |
61212c0f | 1297 | frame = get_selected_frame (_("No frame selected.")); |
c906108c | 1298 | |
63e43d3a | 1299 | return read_var_value (var, b, frame); |
c906108c SS |
1300 | } |
1301 | ||
61212c0f | 1302 | struct value * |
270140bd | 1303 | address_of_variable (struct symbol *var, const struct block *b) |
61212c0f UW |
1304 | { |
1305 | struct type *type = SYMBOL_TYPE (var); | |
1306 | struct value *val; | |
1307 | ||
1308 | /* Evaluate it first; if the result is a memory address, we're fine. | |
581e13c1 | 1309 | Lazy evaluation pays off here. */ |
61212c0f UW |
1310 | |
1311 | val = value_of_variable (var, b); | |
9f1f738a | 1312 | type = value_type (val); |
61212c0f UW |
1313 | |
1314 | if ((VALUE_LVAL (val) == lval_memory && value_lazy (val)) | |
1315 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1316 | { | |
42ae5230 | 1317 | CORE_ADDR addr = value_address (val); |
a109c7c1 | 1318 | |
61212c0f UW |
1319 | return value_from_pointer (lookup_pointer_type (type), addr); |
1320 | } | |
1321 | ||
1322 | /* Not a memory address; check what the problem was. */ | |
1323 | switch (VALUE_LVAL (val)) | |
1324 | { | |
1325 | case lval_register: | |
1326 | { | |
1327 | struct frame_info *frame; | |
1328 | const char *regname; | |
1329 | ||
1330 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); | |
1331 | gdb_assert (frame); | |
1332 | ||
1333 | regname = gdbarch_register_name (get_frame_arch (frame), | |
1334 | VALUE_REGNUM (val)); | |
1335 | gdb_assert (regname && *regname); | |
1336 | ||
1337 | error (_("Address requested for identifier " | |
1338 | "\"%s\" which is in register $%s"), | |
1339 | SYMBOL_PRINT_NAME (var), regname); | |
1340 | break; | |
1341 | } | |
1342 | ||
1343 | default: | |
1344 | error (_("Can't take address of \"%s\" which isn't an lvalue."), | |
1345 | SYMBOL_PRINT_NAME (var)); | |
1346 | break; | |
1347 | } | |
1348 | ||
1349 | return val; | |
1350 | } | |
1351 | ||
63092375 DJ |
1352 | /* Return one if VAL does not live in target memory, but should in order |
1353 | to operate on it. Otherwise return zero. */ | |
1354 | ||
1355 | int | |
1356 | value_must_coerce_to_target (struct value *val) | |
1357 | { | |
1358 | struct type *valtype; | |
1359 | ||
1360 | /* The only lval kinds which do not live in target memory. */ | |
1361 | if (VALUE_LVAL (val) != not_lval | |
e81e7f5e SC |
1362 | && VALUE_LVAL (val) != lval_internalvar |
1363 | && VALUE_LVAL (val) != lval_xcallable) | |
63092375 DJ |
1364 | return 0; |
1365 | ||
1366 | valtype = check_typedef (value_type (val)); | |
1367 | ||
1368 | switch (TYPE_CODE (valtype)) | |
1369 | { | |
1370 | case TYPE_CODE_ARRAY: | |
3cbaedff | 1371 | return TYPE_VECTOR (valtype) ? 0 : 1; |
63092375 DJ |
1372 | case TYPE_CODE_STRING: |
1373 | return 1; | |
1374 | default: | |
1375 | return 0; | |
1376 | } | |
1377 | } | |
1378 | ||
3e43a32a MS |
1379 | /* Make sure that VAL lives in target memory if it's supposed to. For |
1380 | instance, strings are constructed as character arrays in GDB's | |
1381 | storage, and this function copies them to the target. */ | |
63092375 DJ |
1382 | |
1383 | struct value * | |
1384 | value_coerce_to_target (struct value *val) | |
1385 | { | |
1386 | LONGEST length; | |
1387 | CORE_ADDR addr; | |
1388 | ||
1389 | if (!value_must_coerce_to_target (val)) | |
1390 | return val; | |
1391 | ||
1392 | length = TYPE_LENGTH (check_typedef (value_type (val))); | |
1393 | addr = allocate_space_in_inferior (length); | |
1394 | write_memory (addr, value_contents (val), length); | |
1395 | return value_at_lazy (value_type (val), addr); | |
1396 | } | |
1397 | ||
ac3eeb49 MS |
1398 | /* Given a value which is an array, return a value which is a pointer |
1399 | to its first element, regardless of whether or not the array has a | |
1400 | nonzero lower bound. | |
c906108c | 1401 | |
ac3eeb49 MS |
1402 | FIXME: A previous comment here indicated that this routine should |
1403 | be substracting the array's lower bound. It's not clear to me that | |
1404 | this is correct. Given an array subscripting operation, it would | |
1405 | certainly work to do the adjustment here, essentially computing: | |
c906108c SS |
1406 | |
1407 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
1408 | ||
ac3eeb49 MS |
1409 | However I believe a more appropriate and logical place to account |
1410 | for the lower bound is to do so in value_subscript, essentially | |
1411 | computing: | |
c906108c SS |
1412 | |
1413 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
1414 | ||
ac3eeb49 MS |
1415 | As further evidence consider what would happen with operations |
1416 | other than array subscripting, where the caller would get back a | |
1417 | value that had an address somewhere before the actual first element | |
1418 | of the array, and the information about the lower bound would be | |
581e13c1 | 1419 | lost because of the coercion to pointer type. */ |
c906108c | 1420 | |
f23631e4 AC |
1421 | struct value * |
1422 | value_coerce_array (struct value *arg1) | |
c906108c | 1423 | { |
df407dfe | 1424 | struct type *type = check_typedef (value_type (arg1)); |
c906108c | 1425 | |
63092375 DJ |
1426 | /* If the user tries to do something requiring a pointer with an |
1427 | array that has not yet been pushed to the target, then this would | |
1428 | be a good time to do so. */ | |
1429 | arg1 = value_coerce_to_target (arg1); | |
1430 | ||
c906108c | 1431 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1432 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1433 | |
4478b372 | 1434 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
42ae5230 | 1435 | value_address (arg1)); |
c906108c SS |
1436 | } |
1437 | ||
1438 | /* Given a value which is a function, return a value which is a pointer | |
1439 | to it. */ | |
1440 | ||
f23631e4 AC |
1441 | struct value * |
1442 | value_coerce_function (struct value *arg1) | |
c906108c | 1443 | { |
f23631e4 | 1444 | struct value *retval; |
c906108c SS |
1445 | |
1446 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1447 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1448 | |
df407dfe | 1449 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1450 | value_address (arg1)); |
c906108c | 1451 | return retval; |
c5aa993b | 1452 | } |
c906108c | 1453 | |
ac3eeb49 MS |
1454 | /* Return a pointer value for the object for which ARG1 is the |
1455 | contents. */ | |
c906108c | 1456 | |
f23631e4 AC |
1457 | struct value * |
1458 | value_addr (struct value *arg1) | |
c906108c | 1459 | { |
f23631e4 | 1460 | struct value *arg2; |
df407dfe | 1461 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1462 | |
c906108c SS |
1463 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1464 | { | |
ac3eeb49 MS |
1465 | /* Copy the value, but change the type from (T&) to (T*). We |
1466 | keep the same location information, which is efficient, and | |
1467 | allows &(&X) to get the location containing the reference. */ | |
c906108c | 1468 | arg2 = value_copy (arg1); |
ac3eeb49 MS |
1469 | deprecated_set_value_type (arg2, |
1470 | lookup_pointer_type (TYPE_TARGET_TYPE (type))); | |
c906108c SS |
1471 | return arg2; |
1472 | } | |
1473 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1474 | return value_coerce_function (arg1); | |
1475 | ||
63092375 DJ |
1476 | /* If this is an array that has not yet been pushed to the target, |
1477 | then this would be a good time to force it to memory. */ | |
1478 | arg1 = value_coerce_to_target (arg1); | |
1479 | ||
c906108c | 1480 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1481 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1482 | |
581e13c1 | 1483 | /* Get target memory address. */ |
df407dfe | 1484 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1485 | (value_address (arg1) |
13c3b5f5 | 1486 | + value_embedded_offset (arg1))); |
c906108c SS |
1487 | |
1488 | /* This may be a pointer to a base subobject; so remember the | |
ac3eeb49 | 1489 | full derived object's type ... */ |
4dfea560 DE |
1490 | set_value_enclosing_type (arg2, |
1491 | lookup_pointer_type (value_enclosing_type (arg1))); | |
ac3eeb49 MS |
1492 | /* ... and also the relative position of the subobject in the full |
1493 | object. */ | |
b44d461b | 1494 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
1495 | return arg2; |
1496 | } | |
1497 | ||
ac3eeb49 MS |
1498 | /* Return a reference value for the object for which ARG1 is the |
1499 | contents. */ | |
fb933624 DJ |
1500 | |
1501 | struct value * | |
1502 | value_ref (struct value *arg1) | |
1503 | { | |
1504 | struct value *arg2; | |
fb933624 | 1505 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1506 | |
fb933624 DJ |
1507 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1508 | return arg1; | |
1509 | ||
1510 | arg2 = value_addr (arg1); | |
1511 | deprecated_set_value_type (arg2, lookup_reference_type (type)); | |
1512 | return arg2; | |
1513 | } | |
1514 | ||
ac3eeb49 MS |
1515 | /* Given a value of a pointer type, apply the C unary * operator to |
1516 | it. */ | |
c906108c | 1517 | |
f23631e4 AC |
1518 | struct value * |
1519 | value_ind (struct value *arg1) | |
c906108c SS |
1520 | { |
1521 | struct type *base_type; | |
f23631e4 | 1522 | struct value *arg2; |
c906108c | 1523 | |
994b9211 | 1524 | arg1 = coerce_array (arg1); |
c906108c | 1525 | |
df407dfe | 1526 | base_type = check_typedef (value_type (arg1)); |
c906108c | 1527 | |
8cf6f0b1 TT |
1528 | if (VALUE_LVAL (arg1) == lval_computed) |
1529 | { | |
c8f2448a | 1530 | const struct lval_funcs *funcs = value_computed_funcs (arg1); |
8cf6f0b1 TT |
1531 | |
1532 | if (funcs->indirect) | |
1533 | { | |
1534 | struct value *result = funcs->indirect (arg1); | |
1535 | ||
1536 | if (result) | |
1537 | return result; | |
1538 | } | |
1539 | } | |
1540 | ||
22fe0fbb | 1541 | if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
c906108c SS |
1542 | { |
1543 | struct type *enc_type; | |
a109c7c1 | 1544 | |
ac3eeb49 MS |
1545 | /* We may be pointing to something embedded in a larger object. |
1546 | Get the real type of the enclosing object. */ | |
4754a64e | 1547 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 1548 | enc_type = TYPE_TARGET_TYPE (enc_type); |
0d5de010 DJ |
1549 | |
1550 | if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC | |
1551 | || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) | |
1552 | /* For functions, go through find_function_addr, which knows | |
1553 | how to handle function descriptors. */ | |
ac3eeb49 MS |
1554 | arg2 = value_at_lazy (enc_type, |
1555 | find_function_addr (arg1, NULL)); | |
0d5de010 | 1556 | else |
581e13c1 | 1557 | /* Retrieve the enclosing object pointed to. */ |
ac3eeb49 MS |
1558 | arg2 = value_at_lazy (enc_type, |
1559 | (value_as_address (arg1) | |
1560 | - value_pointed_to_offset (arg1))); | |
0d5de010 | 1561 | |
9f1f738a | 1562 | enc_type = value_type (arg2); |
dfcee124 | 1563 | return readjust_indirect_value_type (arg2, enc_type, base_type, arg1); |
c906108c SS |
1564 | } |
1565 | ||
8a3fe4f8 | 1566 | error (_("Attempt to take contents of a non-pointer value.")); |
ac3eeb49 | 1567 | return 0; /* For lint -- never reached. */ |
c906108c SS |
1568 | } |
1569 | \f | |
39d37385 PA |
1570 | /* Create a value for an array by allocating space in GDB, copying the |
1571 | data into that space, and then setting up an array value. | |
c906108c | 1572 | |
ac3eeb49 MS |
1573 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array |
1574 | is populated from the values passed in ELEMVEC. | |
c906108c SS |
1575 | |
1576 | The element type of the array is inherited from the type of the | |
1577 | first element, and all elements must have the same size (though we | |
ac3eeb49 | 1578 | don't currently enforce any restriction on their types). */ |
c906108c | 1579 | |
f23631e4 AC |
1580 | struct value * |
1581 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1582 | { |
1583 | int nelem; | |
1584 | int idx; | |
1585 | unsigned int typelength; | |
f23631e4 | 1586 | struct value *val; |
c906108c | 1587 | struct type *arraytype; |
c906108c | 1588 | |
ac3eeb49 MS |
1589 | /* Validate that the bounds are reasonable and that each of the |
1590 | elements have the same size. */ | |
c906108c SS |
1591 | |
1592 | nelem = highbound - lowbound + 1; | |
1593 | if (nelem <= 0) | |
1594 | { | |
8a3fe4f8 | 1595 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 1596 | } |
3ae385af | 1597 | typelength = type_length_units (value_enclosing_type (elemvec[0])); |
c906108c SS |
1598 | for (idx = 1; idx < nelem; idx++) |
1599 | { | |
3ae385af SM |
1600 | if (type_length_units (value_enclosing_type (elemvec[idx])) |
1601 | != typelength) | |
c906108c | 1602 | { |
8a3fe4f8 | 1603 | error (_("array elements must all be the same size")); |
c906108c SS |
1604 | } |
1605 | } | |
1606 | ||
e3506a9f UW |
1607 | arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]), |
1608 | lowbound, highbound); | |
c906108c SS |
1609 | |
1610 | if (!current_language->c_style_arrays) | |
1611 | { | |
1612 | val = allocate_value (arraytype); | |
1613 | for (idx = 0; idx < nelem; idx++) | |
39d37385 PA |
1614 | value_contents_copy (val, idx * typelength, elemvec[idx], 0, |
1615 | typelength); | |
c906108c SS |
1616 | return val; |
1617 | } | |
1618 | ||
63092375 DJ |
1619 | /* Allocate space to store the array, and then initialize it by |
1620 | copying in each element. */ | |
c906108c | 1621 | |
63092375 | 1622 | val = allocate_value (arraytype); |
c906108c | 1623 | for (idx = 0; idx < nelem; idx++) |
39d37385 | 1624 | value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength); |
63092375 | 1625 | return val; |
c906108c SS |
1626 | } |
1627 | ||
6c7a06a3 | 1628 | struct value * |
e3a3797e | 1629 | value_cstring (const char *ptr, ssize_t len, struct type *char_type) |
6c7a06a3 TT |
1630 | { |
1631 | struct value *val; | |
1632 | int lowbound = current_language->string_lower_bound; | |
63375b74 | 1633 | ssize_t highbound = len / TYPE_LENGTH (char_type); |
6c7a06a3 | 1634 | struct type *stringtype |
e3506a9f | 1635 | = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1); |
6c7a06a3 TT |
1636 | |
1637 | val = allocate_value (stringtype); | |
1638 | memcpy (value_contents_raw (val), ptr, len); | |
1639 | return val; | |
1640 | } | |
1641 | ||
ac3eeb49 MS |
1642 | /* Create a value for a string constant by allocating space in the |
1643 | inferior, copying the data into that space, and returning the | |
1644 | address with type TYPE_CODE_STRING. PTR points to the string | |
1645 | constant data; LEN is number of characters. | |
1646 | ||
1647 | Note that string types are like array of char types with a lower | |
1648 | bound of zero and an upper bound of LEN - 1. Also note that the | |
1649 | string may contain embedded null bytes. */ | |
c906108c | 1650 | |
f23631e4 | 1651 | struct value * |
7cc3f8e2 | 1652 | value_string (const char *ptr, ssize_t len, struct type *char_type) |
c906108c | 1653 | { |
f23631e4 | 1654 | struct value *val; |
c906108c | 1655 | int lowbound = current_language->string_lower_bound; |
63375b74 | 1656 | ssize_t highbound = len / TYPE_LENGTH (char_type); |
c906108c | 1657 | struct type *stringtype |
e3506a9f | 1658 | = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1); |
c906108c | 1659 | |
3b7538c0 UW |
1660 | val = allocate_value (stringtype); |
1661 | memcpy (value_contents_raw (val), ptr, len); | |
1662 | return val; | |
c906108c SS |
1663 | } |
1664 | ||
c906108c | 1665 | \f |
ac3eeb49 MS |
1666 | /* See if we can pass arguments in T2 to a function which takes |
1667 | arguments of types T1. T1 is a list of NARGS arguments, and T2 is | |
1668 | a NULL-terminated vector. If some arguments need coercion of some | |
1669 | sort, then the coerced values are written into T2. Return value is | |
1670 | 0 if the arguments could be matched, or the position at which they | |
1671 | differ if not. | |
c906108c | 1672 | |
ac3eeb49 MS |
1673 | STATICP is nonzero if the T1 argument list came from a static |
1674 | member function. T2 will still include the ``this'' pointer, but | |
1675 | it will be skipped. | |
c906108c SS |
1676 | |
1677 | For non-static member functions, we ignore the first argument, | |
ac3eeb49 MS |
1678 | which is the type of the instance variable. This is because we |
1679 | want to handle calls with objects from derived classes. This is | |
1680 | not entirely correct: we should actually check to make sure that a | |
c906108c SS |
1681 | requested operation is type secure, shouldn't we? FIXME. */ |
1682 | ||
1683 | static int | |
ad2f7632 DJ |
1684 | typecmp (int staticp, int varargs, int nargs, |
1685 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1686 | { |
1687 | int i; | |
1688 | ||
1689 | if (t2 == 0) | |
ac3eeb49 MS |
1690 | internal_error (__FILE__, __LINE__, |
1691 | _("typecmp: no argument list")); | |
ad2f7632 | 1692 | |
ac3eeb49 MS |
1693 | /* Skip ``this'' argument if applicable. T2 will always include |
1694 | THIS. */ | |
4a1970e4 | 1695 | if (staticp) |
ad2f7632 DJ |
1696 | t2 ++; |
1697 | ||
1698 | for (i = 0; | |
1699 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1700 | i++) | |
c906108c | 1701 | { |
c5aa993b | 1702 | struct type *tt1, *tt2; |
ad2f7632 | 1703 | |
c5aa993b JM |
1704 | if (!t2[i]) |
1705 | return i + 1; | |
ad2f7632 DJ |
1706 | |
1707 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1708 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1709 | |
c906108c | 1710 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
8301c89e | 1711 | /* We should be doing hairy argument matching, as below. */ |
3e43a32a MS |
1712 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) |
1713 | == TYPE_CODE (tt2))) | |
c906108c SS |
1714 | { |
1715 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1716 | t2[i] = value_coerce_array (t2[i]); | |
1717 | else | |
fb933624 | 1718 | t2[i] = value_ref (t2[i]); |
c906108c SS |
1719 | continue; |
1720 | } | |
1721 | ||
802db21b DB |
1722 | /* djb - 20000715 - Until the new type structure is in the |
1723 | place, and we can attempt things like implicit conversions, | |
1724 | we need to do this so you can take something like a map<const | |
1725 | char *>, and properly access map["hello"], because the | |
1726 | argument to [] will be a reference to a pointer to a char, | |
ac3eeb49 MS |
1727 | and the argument will be a pointer to a char. */ |
1728 | while (TYPE_CODE(tt1) == TYPE_CODE_REF | |
1729 | || TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
802db21b DB |
1730 | { |
1731 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1732 | } | |
ac3eeb49 MS |
1733 | while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY |
1734 | || TYPE_CODE(tt2) == TYPE_CODE_PTR | |
1735 | || TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1736 | { |
ac3eeb49 | 1737 | tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); |
c906108c | 1738 | } |
c5aa993b JM |
1739 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1740 | continue; | |
ac3eeb49 MS |
1741 | /* Array to pointer is a `trivial conversion' according to the |
1742 | ARM. */ | |
c906108c | 1743 | |
ac3eeb49 MS |
1744 | /* We should be doing much hairier argument matching (see |
1745 | section 13.2 of the ARM), but as a quick kludge, just check | |
1746 | for the same type code. */ | |
df407dfe | 1747 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1748 | return i + 1; |
c906108c | 1749 | } |
ad2f7632 | 1750 | if (varargs || t2[i] == NULL) |
c5aa993b | 1751 | return 0; |
ad2f7632 | 1752 | return i + 1; |
c906108c SS |
1753 | } |
1754 | ||
b1af9e97 TT |
1755 | /* Helper class for do_search_struct_field that updates *RESULT_PTR |
1756 | and *LAST_BOFFSET, and possibly throws an exception if the field | |
1757 | search has yielded ambiguous results. */ | |
c906108c | 1758 | |
b1af9e97 TT |
1759 | static void |
1760 | update_search_result (struct value **result_ptr, struct value *v, | |
1761 | int *last_boffset, int boffset, | |
1762 | const char *name, struct type *type) | |
1763 | { | |
1764 | if (v != NULL) | |
1765 | { | |
1766 | if (*result_ptr != NULL | |
1767 | /* The result is not ambiguous if all the classes that are | |
1768 | found occupy the same space. */ | |
1769 | && *last_boffset != boffset) | |
1770 | error (_("base class '%s' is ambiguous in type '%s'"), | |
1771 | name, TYPE_SAFE_NAME (type)); | |
1772 | *result_ptr = v; | |
1773 | *last_boffset = boffset; | |
1774 | } | |
1775 | } | |
c906108c | 1776 | |
b1af9e97 TT |
1777 | /* A helper for search_struct_field. This does all the work; most |
1778 | arguments are as passed to search_struct_field. The result is | |
1779 | stored in *RESULT_PTR, which must be initialized to NULL. | |
1780 | OUTERMOST_TYPE is the type of the initial type passed to | |
1781 | search_struct_field; this is used for error reporting when the | |
1782 | lookup is ambiguous. */ | |
1783 | ||
1784 | static void | |
1785 | do_search_struct_field (const char *name, struct value *arg1, int offset, | |
1786 | struct type *type, int looking_for_baseclass, | |
1787 | struct value **result_ptr, | |
1788 | int *last_boffset, | |
1789 | struct type *outermost_type) | |
c906108c SS |
1790 | { |
1791 | int i; | |
edf3d5f3 | 1792 | int nbases; |
c906108c | 1793 | |
f168693b | 1794 | type = check_typedef (type); |
edf3d5f3 | 1795 | nbases = TYPE_N_BASECLASSES (type); |
c906108c | 1796 | |
c5aa993b | 1797 | if (!looking_for_baseclass) |
c906108c SS |
1798 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1799 | { | |
0d5cff50 | 1800 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
c906108c | 1801 | |
db577aea | 1802 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1803 | { |
f23631e4 | 1804 | struct value *v; |
a109c7c1 | 1805 | |
d6a843b5 | 1806 | if (field_is_static (&TYPE_FIELD (type, i))) |
686d4def | 1807 | v = value_static_field (type, i); |
c906108c | 1808 | else |
b1af9e97 TT |
1809 | v = value_primitive_field (arg1, offset, i, type); |
1810 | *result_ptr = v; | |
1811 | return; | |
c906108c SS |
1812 | } |
1813 | ||
1814 | if (t_field_name | |
47c6ee49 | 1815 | && t_field_name[0] == '\0') |
c906108c SS |
1816 | { |
1817 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
a109c7c1 | 1818 | |
c906108c SS |
1819 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION |
1820 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1821 | { | |
ac3eeb49 MS |
1822 | /* Look for a match through the fields of an anonymous |
1823 | union, or anonymous struct. C++ provides anonymous | |
1824 | unions. | |
c906108c | 1825 | |
1b831c93 AC |
1826 | In the GNU Chill (now deleted from GDB) |
1827 | implementation of variant record types, each | |
1828 | <alternative field> has an (anonymous) union type, | |
1829 | each member of the union represents a <variant | |
1830 | alternative>. Each <variant alternative> is | |
1831 | represented as a struct, with a member for each | |
1832 | <variant field>. */ | |
c5aa993b | 1833 | |
b1af9e97 | 1834 | struct value *v = NULL; |
c906108c SS |
1835 | int new_offset = offset; |
1836 | ||
db034ac5 AC |
1837 | /* This is pretty gross. In G++, the offset in an |
1838 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1839 | enclosing struct. In the GNU Chill (now deleted |
1840 | from GDB) implementation of variant records, the | |
1841 | bitpos is zero in an anonymous union field, so we | |
ac3eeb49 | 1842 | have to add the offset of the union here. */ |
c906108c SS |
1843 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1844 | || (TYPE_NFIELDS (field_type) > 0 | |
1845 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1846 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1847 | ||
b1af9e97 TT |
1848 | do_search_struct_field (name, arg1, new_offset, |
1849 | field_type, | |
1850 | looking_for_baseclass, &v, | |
1851 | last_boffset, | |
1852 | outermost_type); | |
c906108c | 1853 | if (v) |
b1af9e97 TT |
1854 | { |
1855 | *result_ptr = v; | |
1856 | return; | |
1857 | } | |
c906108c SS |
1858 | } |
1859 | } | |
1860 | } | |
1861 | ||
c5aa993b | 1862 | for (i = 0; i < nbases; i++) |
c906108c | 1863 | { |
b1af9e97 | 1864 | struct value *v = NULL; |
c906108c | 1865 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
ac3eeb49 MS |
1866 | /* If we are looking for baseclasses, this is what we get when |
1867 | we hit them. But it could happen that the base part's member | |
1868 | name is not yet filled in. */ | |
c906108c SS |
1869 | int found_baseclass = (looking_for_baseclass |
1870 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
ac3eeb49 MS |
1871 | && (strcmp_iw (name, |
1872 | TYPE_BASECLASS_NAME (type, | |
1873 | i)) == 0)); | |
b1af9e97 | 1874 | int boffset = value_embedded_offset (arg1) + offset; |
c906108c SS |
1875 | |
1876 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1877 | { | |
3e3d7139 | 1878 | struct value *v2; |
c906108c SS |
1879 | |
1880 | boffset = baseclass_offset (type, i, | |
8af8e3bc PA |
1881 | value_contents_for_printing (arg1), |
1882 | value_embedded_offset (arg1) + offset, | |
1883 | value_address (arg1), | |
1884 | arg1); | |
c906108c | 1885 | |
ac3eeb49 | 1886 | /* The virtual base class pointer might have been clobbered |
581e13c1 | 1887 | by the user program. Make sure that it still points to a |
ac3eeb49 | 1888 | valid memory location. */ |
c906108c | 1889 | |
1a334831 TT |
1890 | boffset += value_embedded_offset (arg1) + offset; |
1891 | if (boffset < 0 | |
1892 | || boffset >= TYPE_LENGTH (value_enclosing_type (arg1))) | |
c906108c SS |
1893 | { |
1894 | CORE_ADDR base_addr; | |
c5aa993b | 1895 | |
42ae5230 | 1896 | base_addr = value_address (arg1) + boffset; |
08039c9e | 1897 | v2 = value_at_lazy (basetype, base_addr); |
ac3eeb49 MS |
1898 | if (target_read_memory (base_addr, |
1899 | value_contents_raw (v2), | |
acc900c2 | 1900 | TYPE_LENGTH (value_type (v2))) != 0) |
8a3fe4f8 | 1901 | error (_("virtual baseclass botch")); |
c906108c SS |
1902 | } |
1903 | else | |
1904 | { | |
1a334831 TT |
1905 | v2 = value_copy (arg1); |
1906 | deprecated_set_value_type (v2, basetype); | |
1907 | set_value_embedded_offset (v2, boffset); | |
c906108c SS |
1908 | } |
1909 | ||
1910 | if (found_baseclass) | |
b1af9e97 TT |
1911 | v = v2; |
1912 | else | |
1913 | { | |
1914 | do_search_struct_field (name, v2, 0, | |
1915 | TYPE_BASECLASS (type, i), | |
1916 | looking_for_baseclass, | |
1917 | result_ptr, last_boffset, | |
1918 | outermost_type); | |
1919 | } | |
c906108c SS |
1920 | } |
1921 | else if (found_baseclass) | |
1922 | v = value_primitive_field (arg1, offset, i, type); | |
1923 | else | |
b1af9e97 TT |
1924 | { |
1925 | do_search_struct_field (name, arg1, | |
1926 | offset + TYPE_BASECLASS_BITPOS (type, | |
1927 | i) / 8, | |
1928 | basetype, looking_for_baseclass, | |
1929 | result_ptr, last_boffset, | |
1930 | outermost_type); | |
1931 | } | |
1932 | ||
1933 | update_search_result (result_ptr, v, last_boffset, | |
1934 | boffset, name, outermost_type); | |
c906108c | 1935 | } |
b1af9e97 TT |
1936 | } |
1937 | ||
1938 | /* Helper function used by value_struct_elt to recurse through | |
8a13d42d SM |
1939 | baseclasses. Look for a field NAME in ARG1. Search in it assuming |
1940 | it has (class) type TYPE. If found, return value, else return NULL. | |
b1af9e97 TT |
1941 | |
1942 | If LOOKING_FOR_BASECLASS, then instead of looking for struct | |
1943 | fields, look for a baseclass named NAME. */ | |
1944 | ||
1945 | static struct value * | |
8a13d42d | 1946 | search_struct_field (const char *name, struct value *arg1, |
b1af9e97 TT |
1947 | struct type *type, int looking_for_baseclass) |
1948 | { | |
1949 | struct value *result = NULL; | |
1950 | int boffset = 0; | |
1951 | ||
8a13d42d | 1952 | do_search_struct_field (name, arg1, 0, type, looking_for_baseclass, |
b1af9e97 TT |
1953 | &result, &boffset, type); |
1954 | return result; | |
c906108c SS |
1955 | } |
1956 | ||
ac3eeb49 | 1957 | /* Helper function used by value_struct_elt to recurse through |
581e13c1 | 1958 | baseclasses. Look for a field NAME in ARG1. Adjust the address of |
ac3eeb49 MS |
1959 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type |
1960 | TYPE. | |
1961 | ||
1962 | If found, return value, else if name matched and args not return | |
1963 | (value) -1, else return NULL. */ | |
c906108c | 1964 | |
f23631e4 | 1965 | static struct value * |
714f19d5 | 1966 | search_struct_method (const char *name, struct value **arg1p, |
f23631e4 | 1967 | struct value **args, int offset, |
aa1ee363 | 1968 | int *static_memfuncp, struct type *type) |
c906108c SS |
1969 | { |
1970 | int i; | |
f23631e4 | 1971 | struct value *v; |
c906108c SS |
1972 | int name_matched = 0; |
1973 | char dem_opname[64]; | |
1974 | ||
f168693b | 1975 | type = check_typedef (type); |
c906108c SS |
1976 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
1977 | { | |
0d5cff50 | 1978 | const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
a109c7c1 | 1979 | |
581e13c1 | 1980 | /* FIXME! May need to check for ARM demangling here. */ |
61012eef GB |
1981 | if (startswith (t_field_name, "__") || |
1982 | startswith (t_field_name, "op") || | |
1983 | startswith (t_field_name, "type")) | |
c906108c | 1984 | { |
c5aa993b JM |
1985 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
1986 | t_field_name = dem_opname; | |
1987 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 1988 | t_field_name = dem_opname; |
c906108c | 1989 | } |
db577aea | 1990 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1991 | { |
1992 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1993 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c906108c | 1994 | |
a109c7c1 | 1995 | name_matched = 1; |
de17c821 | 1996 | check_stub_method_group (type, i); |
c906108c | 1997 | if (j > 0 && args == 0) |
3e43a32a MS |
1998 | error (_("cannot resolve overloaded method " |
1999 | "`%s': no arguments supplied"), name); | |
acf5ed49 | 2000 | else if (j == 0 && args == 0) |
c906108c | 2001 | { |
acf5ed49 DJ |
2002 | v = value_fn_field (arg1p, f, j, type, offset); |
2003 | if (v != NULL) | |
2004 | return v; | |
c906108c | 2005 | } |
acf5ed49 DJ |
2006 | else |
2007 | while (j >= 0) | |
2008 | { | |
acf5ed49 | 2009 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
2010 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
2011 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
2012 | TYPE_FN_FIELD_ARGS (f, j), args)) |
2013 | { | |
2014 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
ac3eeb49 MS |
2015 | return value_virtual_fn_field (arg1p, f, j, |
2016 | type, offset); | |
2017 | if (TYPE_FN_FIELD_STATIC_P (f, j) | |
2018 | && static_memfuncp) | |
acf5ed49 DJ |
2019 | *static_memfuncp = 1; |
2020 | v = value_fn_field (arg1p, f, j, type, offset); | |
2021 | if (v != NULL) | |
2022 | return v; | |
2023 | } | |
2024 | j--; | |
2025 | } | |
c906108c SS |
2026 | } |
2027 | } | |
2028 | ||
2029 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2030 | { | |
2031 | int base_offset; | |
8af8e3bc | 2032 | int this_offset; |
c906108c SS |
2033 | |
2034 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2035 | { | |
086280be | 2036 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
8af8e3bc | 2037 | struct value *base_val; |
086280be UW |
2038 | const gdb_byte *base_valaddr; |
2039 | ||
2040 | /* The virtual base class pointer might have been | |
581e13c1 | 2041 | clobbered by the user program. Make sure that it |
8301c89e | 2042 | still points to a valid memory location. */ |
086280be UW |
2043 | |
2044 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
c5aa993b | 2045 | { |
6c18f3e0 SP |
2046 | gdb_byte *tmp; |
2047 | struct cleanup *back_to; | |
2048 | CORE_ADDR address; | |
2049 | ||
224c3ddb | 2050 | tmp = (gdb_byte *) xmalloc (TYPE_LENGTH (baseclass)); |
6c18f3e0 SP |
2051 | back_to = make_cleanup (xfree, tmp); |
2052 | address = value_address (*arg1p); | |
a109c7c1 | 2053 | |
8af8e3bc | 2054 | if (target_read_memory (address + offset, |
086280be UW |
2055 | tmp, TYPE_LENGTH (baseclass)) != 0) |
2056 | error (_("virtual baseclass botch")); | |
8af8e3bc PA |
2057 | |
2058 | base_val = value_from_contents_and_address (baseclass, | |
2059 | tmp, | |
2060 | address + offset); | |
2061 | base_valaddr = value_contents_for_printing (base_val); | |
2062 | this_offset = 0; | |
6c18f3e0 | 2063 | do_cleanups (back_to); |
c5aa993b JM |
2064 | } |
2065 | else | |
8af8e3bc PA |
2066 | { |
2067 | base_val = *arg1p; | |
2068 | base_valaddr = value_contents_for_printing (*arg1p); | |
2069 | this_offset = offset; | |
2070 | } | |
c5aa993b | 2071 | |
086280be | 2072 | base_offset = baseclass_offset (type, i, base_valaddr, |
8af8e3bc PA |
2073 | this_offset, value_address (base_val), |
2074 | base_val); | |
c5aa993b | 2075 | } |
c906108c SS |
2076 | else |
2077 | { | |
2078 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2079 | } |
c906108c SS |
2080 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2081 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 2082 | if (v == (struct value *) - 1) |
c906108c SS |
2083 | { |
2084 | name_matched = 1; | |
2085 | } | |
2086 | else if (v) | |
2087 | { | |
ac3eeb49 MS |
2088 | /* FIXME-bothner: Why is this commented out? Why is it here? */ |
2089 | /* *arg1p = arg1_tmp; */ | |
c906108c | 2090 | return v; |
c5aa993b | 2091 | } |
c906108c | 2092 | } |
c5aa993b | 2093 | if (name_matched) |
f23631e4 | 2094 | return (struct value *) - 1; |
c5aa993b JM |
2095 | else |
2096 | return NULL; | |
c906108c SS |
2097 | } |
2098 | ||
2099 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
ac3eeb49 MS |
2100 | extract the component named NAME from the ultimate target |
2101 | structure/union and return it as a value with its appropriate type. | |
c906108c SS |
2102 | ERR is used in the error message if *ARGP's type is wrong. |
2103 | ||
2104 | C++: ARGS is a list of argument types to aid in the selection of | |
581e13c1 | 2105 | an appropriate method. Also, handle derived types. |
c906108c SS |
2106 | |
2107 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2108 | where the truthvalue of whether the function that was resolved was | |
2109 | a static member function or not is stored. | |
2110 | ||
ac3eeb49 MS |
2111 | ERR is an error message to be printed in case the field is not |
2112 | found. */ | |
c906108c | 2113 | |
f23631e4 AC |
2114 | struct value * |
2115 | value_struct_elt (struct value **argp, struct value **args, | |
714f19d5 | 2116 | const char *name, int *static_memfuncp, const char *err) |
c906108c | 2117 | { |
52f0bd74 | 2118 | struct type *t; |
f23631e4 | 2119 | struct value *v; |
c906108c | 2120 | |
994b9211 | 2121 | *argp = coerce_array (*argp); |
c906108c | 2122 | |
df407dfe | 2123 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2124 | |
2125 | /* Follow pointers until we get to a non-pointer. */ | |
2126 | ||
2127 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2128 | { | |
2129 | *argp = value_ind (*argp); | |
2130 | /* Don't coerce fn pointer to fn and then back again! */ | |
b846d303 | 2131 | if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC) |
994b9211 | 2132 | *argp = coerce_array (*argp); |
df407dfe | 2133 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2134 | } |
2135 | ||
c5aa993b | 2136 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2137 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
2138 | error (_("Attempt to extract a component of a value that is not a %s."), |
2139 | err); | |
c906108c SS |
2140 | |
2141 | /* Assume it's not, unless we see that it is. */ | |
2142 | if (static_memfuncp) | |
c5aa993b | 2143 | *static_memfuncp = 0; |
c906108c SS |
2144 | |
2145 | if (!args) | |
2146 | { | |
2147 | /* if there are no arguments ...do this... */ | |
2148 | ||
ac3eeb49 MS |
2149 | /* Try as a field first, because if we succeed, there is less |
2150 | work to be done. */ | |
8a13d42d | 2151 | v = search_struct_field (name, *argp, t, 0); |
c906108c SS |
2152 | if (v) |
2153 | return v; | |
2154 | ||
2155 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2156 | return it as a pointer to a method. */ |
ac3eeb49 MS |
2157 | v = search_struct_method (name, argp, args, 0, |
2158 | static_memfuncp, t); | |
c906108c | 2159 | |
f23631e4 | 2160 | if (v == (struct value *) - 1) |
55b39184 | 2161 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
2162 | else if (v == 0) |
2163 | { | |
2164 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 2165 | error (_("There is no member or method named %s."), name); |
c906108c | 2166 | else |
8a3fe4f8 | 2167 | error (_("There is no member named %s."), name); |
c906108c SS |
2168 | } |
2169 | return v; | |
2170 | } | |
2171 | ||
8301c89e DE |
2172 | v = search_struct_method (name, argp, args, 0, |
2173 | static_memfuncp, t); | |
7168a814 | 2174 | |
f23631e4 | 2175 | if (v == (struct value *) - 1) |
c906108c | 2176 | { |
3e43a32a MS |
2177 | error (_("One of the arguments you tried to pass to %s could not " |
2178 | "be converted to what the function wants."), name); | |
c906108c SS |
2179 | } |
2180 | else if (v == 0) | |
2181 | { | |
ac3eeb49 MS |
2182 | /* See if user tried to invoke data as function. If so, hand it |
2183 | back. If it's not callable (i.e., a pointer to function), | |
7b83ea04 | 2184 | gdb should give an error. */ |
8a13d42d | 2185 | v = search_struct_field (name, *argp, t, 0); |
fa8de41e TT |
2186 | /* If we found an ordinary field, then it is not a method call. |
2187 | So, treat it as if it were a static member function. */ | |
2188 | if (v && static_memfuncp) | |
2189 | *static_memfuncp = 1; | |
c906108c SS |
2190 | } |
2191 | ||
2192 | if (!v) | |
79afc5ef SW |
2193 | throw_error (NOT_FOUND_ERROR, |
2194 | _("Structure has no component named %s."), name); | |
c906108c SS |
2195 | return v; |
2196 | } | |
2197 | ||
b5b08fb4 SC |
2198 | /* Given *ARGP, a value of type structure or union, or a pointer/reference |
2199 | to a structure or union, extract and return its component (field) of | |
2200 | type FTYPE at the specified BITPOS. | |
2201 | Throw an exception on error. */ | |
2202 | ||
2203 | struct value * | |
2204 | value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype, | |
2205 | const char *err) | |
2206 | { | |
2207 | struct type *t; | |
2208 | struct value *v; | |
2209 | int i; | |
2210 | int nbases; | |
2211 | ||
2212 | *argp = coerce_array (*argp); | |
2213 | ||
2214 | t = check_typedef (value_type (*argp)); | |
2215 | ||
2216 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2217 | { | |
2218 | *argp = value_ind (*argp); | |
2219 | if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC) | |
2220 | *argp = coerce_array (*argp); | |
2221 | t = check_typedef (value_type (*argp)); | |
2222 | } | |
2223 | ||
2224 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2225 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
2226 | error (_("Attempt to extract a component of a value that is not a %s."), | |
2227 | err); | |
2228 | ||
2229 | for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++) | |
2230 | { | |
2231 | if (!field_is_static (&TYPE_FIELD (t, i)) | |
2232 | && bitpos == TYPE_FIELD_BITPOS (t, i) | |
2233 | && types_equal (ftype, TYPE_FIELD_TYPE (t, i))) | |
2234 | return value_primitive_field (*argp, 0, i, t); | |
2235 | } | |
2236 | ||
2237 | error (_("No field with matching bitpos and type.")); | |
2238 | ||
2239 | /* Never hit. */ | |
2240 | return NULL; | |
2241 | } | |
2242 | ||
ac3eeb49 | 2243 | /* Search through the methods of an object (and its bases) to find a |
233e8b28 SC |
2244 | specified method. Return the pointer to the fn_field list FN_LIST of |
2245 | overloaded instances defined in the source language. If available | |
2246 | and matching, a vector of matching xmethods defined in extension | |
2247 | languages are also returned in XM_WORKER_VEC | |
ac3eeb49 MS |
2248 | |
2249 | Helper function for value_find_oload_list. | |
2250 | ARGP is a pointer to a pointer to a value (the object). | |
2251 | METHOD is a string containing the method name. | |
2252 | OFFSET is the offset within the value. | |
2253 | TYPE is the assumed type of the object. | |
233e8b28 SC |
2254 | FN_LIST is the pointer to matching overloaded instances defined in |
2255 | source language. Since this is a recursive function, *FN_LIST | |
2256 | should be set to NULL when calling this function. | |
2257 | NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to | |
2258 | 0 when calling this function. | |
2259 | XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC | |
2260 | should also be set to NULL when calling this function. | |
ac3eeb49 MS |
2261 | BASETYPE is set to the actual type of the subobject where the |
2262 | method is found. | |
581e13c1 | 2263 | BOFFSET is the offset of the base subobject where the method is found. */ |
c906108c | 2264 | |
233e8b28 | 2265 | static void |
714f19d5 | 2266 | find_method_list (struct value **argp, const char *method, |
233e8b28 SC |
2267 | int offset, struct type *type, |
2268 | struct fn_field **fn_list, int *num_fns, | |
2269 | VEC (xmethod_worker_ptr) **xm_worker_vec, | |
fba45db2 | 2270 | struct type **basetype, int *boffset) |
c906108c SS |
2271 | { |
2272 | int i; | |
233e8b28 SC |
2273 | struct fn_field *f = NULL; |
2274 | VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL; | |
c906108c | 2275 | |
233e8b28 | 2276 | gdb_assert (fn_list != NULL && xm_worker_vec != NULL); |
f168693b | 2277 | type = check_typedef (type); |
c906108c | 2278 | |
233e8b28 SC |
2279 | /* First check in object itself. |
2280 | This function is called recursively to search through base classes. | |
2281 | If there is a source method match found at some stage, then we need not | |
2282 | look for source methods in consequent recursive calls. */ | |
2283 | if ((*fn_list) == NULL) | |
c906108c | 2284 | { |
233e8b28 | 2285 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
c5aa993b | 2286 | { |
233e8b28 SC |
2287 | /* pai: FIXME What about operators and type conversions? */ |
2288 | const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2289 | ||
2290 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) | |
2291 | { | |
2292 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); | |
2293 | f = TYPE_FN_FIELDLIST1 (type, i); | |
2294 | *fn_list = f; | |
4a1970e4 | 2295 | |
233e8b28 SC |
2296 | *num_fns = len; |
2297 | *basetype = type; | |
2298 | *boffset = offset; | |
4a1970e4 | 2299 | |
233e8b28 SC |
2300 | /* Resolve any stub methods. */ |
2301 | check_stub_method_group (type, i); | |
4a1970e4 | 2302 | |
233e8b28 SC |
2303 | break; |
2304 | } | |
c5aa993b JM |
2305 | } |
2306 | } | |
2307 | ||
233e8b28 SC |
2308 | /* Unlike source methods, xmethods can be accumulated over successive |
2309 | recursive calls. In other words, an xmethod named 'm' in a class | |
2310 | will not hide an xmethod named 'm' in its base class(es). We want | |
2311 | it to be this way because xmethods are after all convenience functions | |
2312 | and hence there is no point restricting them with something like method | |
2313 | hiding. Moreover, if hiding is done for xmethods as well, then we will | |
2314 | have to provide a mechanism to un-hide (like the 'using' construct). */ | |
2315 | worker_vec = get_matching_xmethod_workers (type, method); | |
2316 | new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec); | |
2317 | ||
2318 | VEC_free (xmethod_worker_ptr, *xm_worker_vec); | |
2319 | VEC_free (xmethod_worker_ptr, worker_vec); | |
2320 | *xm_worker_vec = new_vec; | |
2321 | ||
2322 | /* If source methods are not found in current class, look for them in the | |
2323 | base classes. We also have to go through the base classes to gather | |
2324 | extension methods. */ | |
c906108c SS |
2325 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
2326 | { | |
2327 | int base_offset; | |
a109c7c1 | 2328 | |
c906108c SS |
2329 | if (BASETYPE_VIA_VIRTUAL (type, i)) |
2330 | { | |
086280be | 2331 | base_offset = baseclass_offset (type, i, |
8af8e3bc PA |
2332 | value_contents_for_printing (*argp), |
2333 | value_offset (*argp) + offset, | |
2334 | value_address (*argp), *argp); | |
c5aa993b | 2335 | } |
ac3eeb49 MS |
2336 | else /* Non-virtual base, simply use bit position from debug |
2337 | info. */ | |
c906108c SS |
2338 | { |
2339 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2340 | } |
233e8b28 SC |
2341 | |
2342 | find_method_list (argp, method, base_offset + offset, | |
2343 | TYPE_BASECLASS (type, i), fn_list, num_fns, | |
2344 | xm_worker_vec, basetype, boffset); | |
c906108c | 2345 | } |
c906108c SS |
2346 | } |
2347 | ||
233e8b28 SC |
2348 | /* Return the list of overloaded methods of a specified name. The methods |
2349 | could be those GDB finds in the binary, or xmethod. Methods found in | |
2350 | the binary are returned in FN_LIST, and xmethods are returned in | |
2351 | XM_WORKER_VEC. | |
ac3eeb49 MS |
2352 | |
2353 | ARGP is a pointer to a pointer to a value (the object). | |
2354 | METHOD is the method name. | |
2355 | OFFSET is the offset within the value contents. | |
233e8b28 SC |
2356 | FN_LIST is the pointer to matching overloaded instances defined in |
2357 | source language. | |
ac3eeb49 | 2358 | NUM_FNS is the number of overloaded instances. |
233e8b28 SC |
2359 | XM_WORKER_VEC is the vector of matching xmethod workers defined in |
2360 | extension languages. | |
ac3eeb49 MS |
2361 | BASETYPE is set to the type of the base subobject that defines the |
2362 | method. | |
581e13c1 | 2363 | BOFFSET is the offset of the base subobject which defines the method. */ |
c906108c | 2364 | |
233e8b28 | 2365 | static void |
714f19d5 | 2366 | value_find_oload_method_list (struct value **argp, const char *method, |
233e8b28 SC |
2367 | int offset, struct fn_field **fn_list, |
2368 | int *num_fns, | |
2369 | VEC (xmethod_worker_ptr) **xm_worker_vec, | |
ac3eeb49 | 2370 | struct type **basetype, int *boffset) |
c906108c | 2371 | { |
c5aa993b | 2372 | struct type *t; |
c906108c | 2373 | |
df407dfe | 2374 | t = check_typedef (value_type (*argp)); |
c906108c | 2375 | |
ac3eeb49 | 2376 | /* Code snarfed from value_struct_elt. */ |
c906108c SS |
2377 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2378 | { | |
2379 | *argp = value_ind (*argp); | |
2380 | /* Don't coerce fn pointer to fn and then back again! */ | |
b846d303 | 2381 | if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC) |
994b9211 | 2382 | *argp = coerce_array (*argp); |
df407dfe | 2383 | t = check_typedef (value_type (*argp)); |
c906108c | 2384 | } |
c5aa993b | 2385 | |
c5aa993b JM |
2386 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
2387 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
3e43a32a MS |
2388 | error (_("Attempt to extract a component of a " |
2389 | "value that is not a struct or union")); | |
c5aa993b | 2390 | |
233e8b28 SC |
2391 | gdb_assert (fn_list != NULL && xm_worker_vec != NULL); |
2392 | ||
2393 | /* Clear the lists. */ | |
2394 | *fn_list = NULL; | |
2395 | *num_fns = 0; | |
2396 | *xm_worker_vec = NULL; | |
2397 | ||
2398 | find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec, | |
2399 | basetype, boffset); | |
c906108c SS |
2400 | } |
2401 | ||
da096638 | 2402 | /* Given an array of arguments (ARGS) (which includes an |
c906108c | 2403 | entry for "this" in the case of C++ methods), the number of |
28c64fc2 SCR |
2404 | arguments NARGS, the NAME of a function, and whether it's a method or |
2405 | not (METHOD), find the best function that matches on the argument types | |
2406 | according to the overload resolution rules. | |
c906108c | 2407 | |
4c3376c8 SW |
2408 | METHOD can be one of three values: |
2409 | NON_METHOD for non-member functions. | |
2410 | METHOD: for member functions. | |
2411 | BOTH: used for overload resolution of operators where the | |
2412 | candidates are expected to be either member or non member | |
581e13c1 | 2413 | functions. In this case the first argument ARGTYPES |
4c3376c8 SW |
2414 | (representing 'this') is expected to be a reference to the |
2415 | target object, and will be dereferenced when attempting the | |
2416 | non-member search. | |
2417 | ||
c906108c SS |
2418 | In the case of class methods, the parameter OBJ is an object value |
2419 | in which to search for overloaded methods. | |
2420 | ||
2421 | In the case of non-method functions, the parameter FSYM is a symbol | |
2422 | corresponding to one of the overloaded functions. | |
2423 | ||
2424 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2425 | non-standard coercions, 100 -> incompatible. | |
2426 | ||
2427 | If a method is being searched for, VALP will hold the value. | |
ac3eeb49 MS |
2428 | If a non-method is being searched for, SYMP will hold the symbol |
2429 | for it. | |
c906108c SS |
2430 | |
2431 | If a method is being searched for, and it is a static method, | |
2432 | then STATICP will point to a non-zero value. | |
2433 | ||
7322dca9 SW |
2434 | If NO_ADL argument dependent lookup is disabled. This is used to prevent |
2435 | ADL overload candidates when performing overload resolution for a fully | |
2436 | qualified name. | |
2437 | ||
e66d4446 SC |
2438 | If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be |
2439 | read while picking the best overload match (it may be all zeroes and thus | |
2440 | not have a vtable pointer), in which case skip virtual function lookup. | |
2441 | This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine | |
2442 | the result type. | |
2443 | ||
c906108c SS |
2444 | Note: This function does *not* check the value of |
2445 | overload_resolution. Caller must check it to see whether overload | |
581e13c1 | 2446 | resolution is permitted. */ |
c906108c SS |
2447 | |
2448 | int | |
da096638 | 2449 | find_overload_match (struct value **args, int nargs, |
4c3376c8 | 2450 | const char *name, enum oload_search_type method, |
28c64fc2 | 2451 | struct value **objp, struct symbol *fsym, |
ac3eeb49 | 2452 | struct value **valp, struct symbol **symp, |
e66d4446 SC |
2453 | int *staticp, const int no_adl, |
2454 | const enum noside noside) | |
c906108c | 2455 | { |
7f8c9282 | 2456 | struct value *obj = (objp ? *objp : NULL); |
da096638 | 2457 | struct type *obj_type = obj ? value_type (obj) : NULL; |
ac3eeb49 | 2458 | /* Index of best overloaded function. */ |
4c3376c8 SW |
2459 | int func_oload_champ = -1; |
2460 | int method_oload_champ = -1; | |
233e8b28 SC |
2461 | int src_method_oload_champ = -1; |
2462 | int ext_method_oload_champ = -1; | |
2463 | int src_and_ext_equal = 0; | |
4c3376c8 | 2464 | |
ac3eeb49 | 2465 | /* The measure for the current best match. */ |
4c3376c8 SW |
2466 | struct badness_vector *method_badness = NULL; |
2467 | struct badness_vector *func_badness = NULL; | |
233e8b28 SC |
2468 | struct badness_vector *ext_method_badness = NULL; |
2469 | struct badness_vector *src_method_badness = NULL; | |
4c3376c8 | 2470 | |
f23631e4 | 2471 | struct value *temp = obj; |
ac3eeb49 MS |
2472 | /* For methods, the list of overloaded methods. */ |
2473 | struct fn_field *fns_ptr = NULL; | |
2474 | /* For non-methods, the list of overloaded function symbols. */ | |
2475 | struct symbol **oload_syms = NULL; | |
233e8b28 SC |
2476 | /* For xmethods, the VEC of xmethod workers. */ |
2477 | VEC (xmethod_worker_ptr) *xm_worker_vec = NULL; | |
ac3eeb49 MS |
2478 | /* Number of overloaded instances being considered. */ |
2479 | int num_fns = 0; | |
c5aa993b | 2480 | struct type *basetype = NULL; |
c906108c | 2481 | int boffset; |
7322dca9 SW |
2482 | |
2483 | struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL); | |
c906108c | 2484 | |
8d577d32 | 2485 | const char *obj_type_name = NULL; |
7322dca9 | 2486 | const char *func_name = NULL; |
8d577d32 | 2487 | enum oload_classification match_quality; |
4c3376c8 | 2488 | enum oload_classification method_match_quality = INCOMPATIBLE; |
233e8b28 SC |
2489 | enum oload_classification src_method_match_quality = INCOMPATIBLE; |
2490 | enum oload_classification ext_method_match_quality = INCOMPATIBLE; | |
4c3376c8 | 2491 | enum oload_classification func_match_quality = INCOMPATIBLE; |
c906108c | 2492 | |
ac3eeb49 | 2493 | /* Get the list of overloaded methods or functions. */ |
4c3376c8 | 2494 | if (method == METHOD || method == BOTH) |
c906108c | 2495 | { |
a2ca50ae | 2496 | gdb_assert (obj); |
94af9270 KS |
2497 | |
2498 | /* OBJ may be a pointer value rather than the object itself. */ | |
2499 | obj = coerce_ref (obj); | |
2500 | while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR) | |
2501 | obj = coerce_ref (value_ind (obj)); | |
df407dfe | 2502 | obj_type_name = TYPE_NAME (value_type (obj)); |
94af9270 KS |
2503 | |
2504 | /* First check whether this is a data member, e.g. a pointer to | |
2505 | a function. */ | |
2506 | if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT) | |
2507 | { | |
8a13d42d | 2508 | *valp = search_struct_field (name, obj, |
94af9270 KS |
2509 | check_typedef (value_type (obj)), 0); |
2510 | if (*valp) | |
2511 | { | |
2512 | *staticp = 1; | |
f748fb40 | 2513 | do_cleanups (all_cleanups); |
94af9270 KS |
2514 | return 0; |
2515 | } | |
2516 | } | |
c906108c | 2517 | |
4c3376c8 | 2518 | /* Retrieve the list of methods with the name NAME. */ |
233e8b28 SC |
2519 | value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns, |
2520 | &xm_worker_vec, &basetype, &boffset); | |
4c3376c8 SW |
2521 | /* If this is a method only search, and no methods were found |
2522 | the search has faild. */ | |
233e8b28 | 2523 | if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec) |
8a3fe4f8 | 2524 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
2525 | obj_type_name, |
2526 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2527 | name); | |
4a1970e4 | 2528 | /* If we are dealing with stub method types, they should have |
ac3eeb49 MS |
2529 | been resolved by find_method_list via |
2530 | value_find_oload_method_list above. */ | |
4c3376c8 SW |
2531 | if (fns_ptr) |
2532 | { | |
4bfb94b8 | 2533 | gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL); |
4c3376c8 | 2534 | |
233e8b28 SC |
2535 | src_method_oload_champ = find_oload_champ (args, nargs, |
2536 | num_fns, fns_ptr, NULL, | |
2537 | NULL, &src_method_badness); | |
2538 | ||
2539 | src_method_match_quality = classify_oload_match | |
2540 | (src_method_badness, nargs, | |
2541 | oload_method_static_p (fns_ptr, src_method_oload_champ)); | |
2542 | ||
2543 | make_cleanup (xfree, src_method_badness); | |
2544 | } | |
4c3376c8 | 2545 | |
233e8b28 SC |
2546 | if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0) |
2547 | { | |
2548 | ext_method_oload_champ = find_oload_champ (args, nargs, | |
2549 | 0, NULL, xm_worker_vec, | |
2550 | NULL, &ext_method_badness); | |
2551 | ext_method_match_quality = classify_oload_match (ext_method_badness, | |
2552 | nargs, 0); | |
2553 | make_cleanup (xfree, ext_method_badness); | |
2554 | make_cleanup (free_xmethod_worker_vec, xm_worker_vec); | |
4c3376c8 SW |
2555 | } |
2556 | ||
233e8b28 SC |
2557 | if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0) |
2558 | { | |
2559 | switch (compare_badness (ext_method_badness, src_method_badness)) | |
2560 | { | |
2561 | case 0: /* Src method and xmethod are equally good. */ | |
2562 | src_and_ext_equal = 1; | |
2563 | /* If src method and xmethod are equally good, then | |
2564 | xmethod should be the winner. Hence, fall through to the | |
2565 | case where a xmethod is better than the source | |
2566 | method, except when the xmethod match quality is | |
2567 | non-standard. */ | |
2568 | /* FALLTHROUGH */ | |
2569 | case 1: /* Src method and ext method are incompatible. */ | |
2570 | /* If ext method match is not standard, then let source method | |
2571 | win. Otherwise, fallthrough to let xmethod win. */ | |
2572 | if (ext_method_match_quality != STANDARD) | |
2573 | { | |
2574 | method_oload_champ = src_method_oload_champ; | |
2575 | method_badness = src_method_badness; | |
2576 | ext_method_oload_champ = -1; | |
2577 | method_match_quality = src_method_match_quality; | |
2578 | break; | |
2579 | } | |
2580 | /* FALLTHROUGH */ | |
2581 | case 2: /* Ext method is champion. */ | |
2582 | method_oload_champ = ext_method_oload_champ; | |
2583 | method_badness = ext_method_badness; | |
2584 | src_method_oload_champ = -1; | |
2585 | method_match_quality = ext_method_match_quality; | |
2586 | break; | |
2587 | case 3: /* Src method is champion. */ | |
2588 | method_oload_champ = src_method_oload_champ; | |
2589 | method_badness = src_method_badness; | |
2590 | ext_method_oload_champ = -1; | |
2591 | method_match_quality = src_method_match_quality; | |
2592 | break; | |
2593 | default: | |
2594 | gdb_assert_not_reached ("Unexpected overload comparison " | |
2595 | "result"); | |
2596 | break; | |
2597 | } | |
2598 | } | |
2599 | else if (src_method_oload_champ >= 0) | |
2600 | { | |
2601 | method_oload_champ = src_method_oload_champ; | |
2602 | method_badness = src_method_badness; | |
2603 | method_match_quality = src_method_match_quality; | |
2604 | } | |
2605 | else if (ext_method_oload_champ >= 0) | |
2606 | { | |
2607 | method_oload_champ = ext_method_oload_champ; | |
2608 | method_badness = ext_method_badness; | |
2609 | method_match_quality = ext_method_match_quality; | |
2610 | } | |
c906108c | 2611 | } |
4c3376c8 SW |
2612 | |
2613 | if (method == NON_METHOD || method == BOTH) | |
c906108c | 2614 | { |
7322dca9 | 2615 | const char *qualified_name = NULL; |
c906108c | 2616 | |
b021a221 MS |
2617 | /* If the overload match is being search for both as a method |
2618 | and non member function, the first argument must now be | |
2619 | dereferenced. */ | |
4c3376c8 | 2620 | if (method == BOTH) |
2b214ea6 | 2621 | args[0] = value_ind (args[0]); |
4c3376c8 | 2622 | |
7322dca9 SW |
2623 | if (fsym) |
2624 | { | |
2625 | qualified_name = SYMBOL_NATURAL_NAME (fsym); | |
2626 | ||
2627 | /* If we have a function with a C++ name, try to extract just | |
2628 | the function part. Do not try this for non-functions (e.g. | |
2629 | function pointers). */ | |
2630 | if (qualified_name | |
3e43a32a MS |
2631 | && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) |
2632 | == TYPE_CODE_FUNC) | |
7322dca9 SW |
2633 | { |
2634 | char *temp; | |
2635 | ||
2636 | temp = cp_func_name (qualified_name); | |
2637 | ||
2638 | /* If cp_func_name did not remove anything, the name of the | |
2639 | symbol did not include scope or argument types - it was | |
2640 | probably a C-style function. */ | |
2641 | if (temp) | |
2642 | { | |
2643 | make_cleanup (xfree, temp); | |
2644 | if (strcmp (temp, qualified_name) == 0) | |
2645 | func_name = NULL; | |
2646 | else | |
2647 | func_name = temp; | |
2648 | } | |
2649 | } | |
2650 | } | |
2651 | else | |
94af9270 | 2652 | { |
7322dca9 SW |
2653 | func_name = name; |
2654 | qualified_name = name; | |
94af9270 | 2655 | } |
d9639e13 | 2656 | |
94af9270 KS |
2657 | /* If there was no C++ name, this must be a C-style function or |
2658 | not a function at all. Just return the same symbol. Do the | |
2659 | same if cp_func_name fails for some reason. */ | |
8d577d32 | 2660 | if (func_name == NULL) |
7b83ea04 | 2661 | { |
917317f4 | 2662 | *symp = fsym; |
5fe41fbf | 2663 | do_cleanups (all_cleanups); |
7b83ea04 AC |
2664 | return 0; |
2665 | } | |
917317f4 | 2666 | |
da096638 | 2667 | func_oload_champ = find_oload_champ_namespace (args, nargs, |
4c3376c8 SW |
2668 | func_name, |
2669 | qualified_name, | |
2670 | &oload_syms, | |
2671 | &func_badness, | |
2672 | no_adl); | |
8d577d32 | 2673 | |
4c3376c8 SW |
2674 | if (func_oload_champ >= 0) |
2675 | func_match_quality = classify_oload_match (func_badness, nargs, 0); | |
2676 | ||
2677 | make_cleanup (xfree, oload_syms); | |
2678 | make_cleanup (xfree, func_badness); | |
8d577d32 DC |
2679 | } |
2680 | ||
7322dca9 | 2681 | /* Did we find a match ? */ |
4c3376c8 | 2682 | if (method_oload_champ == -1 && func_oload_champ == -1) |
79afc5ef SW |
2683 | throw_error (NOT_FOUND_ERROR, |
2684 | _("No symbol \"%s\" in current context."), | |
2685 | name); | |
8d577d32 | 2686 | |
4c3376c8 SW |
2687 | /* If we have found both a method match and a function |
2688 | match, find out which one is better, and calculate match | |
2689 | quality. */ | |
2690 | if (method_oload_champ >= 0 && func_oload_champ >= 0) | |
2691 | { | |
2692 | switch (compare_badness (func_badness, method_badness)) | |
2693 | { | |
2694 | case 0: /* Top two contenders are equally good. */ | |
b021a221 MS |
2695 | /* FIXME: GDB does not support the general ambiguous case. |
2696 | All candidates should be collected and presented the | |
2697 | user. */ | |
4c3376c8 SW |
2698 | error (_("Ambiguous overload resolution")); |
2699 | break; | |
2700 | case 1: /* Incomparable top contenders. */ | |
2701 | /* This is an error incompatible candidates | |
2702 | should not have been proposed. */ | |
3e43a32a MS |
2703 | error (_("Internal error: incompatible " |
2704 | "overload candidates proposed")); | |
4c3376c8 SW |
2705 | break; |
2706 | case 2: /* Function champion. */ | |
2707 | method_oload_champ = -1; | |
2708 | match_quality = func_match_quality; | |
2709 | break; | |
2710 | case 3: /* Method champion. */ | |
2711 | func_oload_champ = -1; | |
2712 | match_quality = method_match_quality; | |
2713 | break; | |
2714 | default: | |
2715 | error (_("Internal error: unexpected overload comparison result")); | |
2716 | break; | |
2717 | } | |
2718 | } | |
2719 | else | |
2720 | { | |
2721 | /* We have either a method match or a function match. */ | |
2722 | if (method_oload_champ >= 0) | |
2723 | match_quality = method_match_quality; | |
2724 | else | |
2725 | match_quality = func_match_quality; | |
2726 | } | |
8d577d32 DC |
2727 | |
2728 | if (match_quality == INCOMPATIBLE) | |
2729 | { | |
4c3376c8 | 2730 | if (method == METHOD) |
8a3fe4f8 | 2731 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
2732 | obj_type_name, |
2733 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2734 | name); | |
2735 | else | |
8a3fe4f8 | 2736 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
2737 | func_name); |
2738 | } | |
2739 | else if (match_quality == NON_STANDARD) | |
2740 | { | |
4c3376c8 | 2741 | if (method == METHOD) |
3e43a32a MS |
2742 | warning (_("Using non-standard conversion to match " |
2743 | "method %s%s%s to supplied arguments"), | |
8d577d32 DC |
2744 | obj_type_name, |
2745 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2746 | name); | |
2747 | else | |
3e43a32a MS |
2748 | warning (_("Using non-standard conversion to match " |
2749 | "function %s to supplied arguments"), | |
8d577d32 DC |
2750 | func_name); |
2751 | } | |
2752 | ||
4c3376c8 | 2753 | if (staticp != NULL) |
2bca57ba | 2754 | *staticp = oload_method_static_p (fns_ptr, method_oload_champ); |
4c3376c8 SW |
2755 | |
2756 | if (method_oload_champ >= 0) | |
8d577d32 | 2757 | { |
233e8b28 SC |
2758 | if (src_method_oload_champ >= 0) |
2759 | { | |
e66d4446 SC |
2760 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ) |
2761 | && noside != EVAL_AVOID_SIDE_EFFECTS) | |
2762 | { | |
2763 | *valp = value_virtual_fn_field (&temp, fns_ptr, | |
2764 | method_oload_champ, basetype, | |
2765 | boffset); | |
2766 | } | |
233e8b28 SC |
2767 | else |
2768 | *valp = value_fn_field (&temp, fns_ptr, method_oload_champ, | |
2769 | basetype, boffset); | |
2770 | } | |
8d577d32 | 2771 | else |
233e8b28 SC |
2772 | { |
2773 | *valp = value_of_xmethod (clone_xmethod_worker | |
2774 | (VEC_index (xmethod_worker_ptr, xm_worker_vec, | |
2775 | ext_method_oload_champ))); | |
2776 | } | |
8d577d32 DC |
2777 | } |
2778 | else | |
4c3376c8 | 2779 | *symp = oload_syms[func_oload_champ]; |
8d577d32 DC |
2780 | |
2781 | if (objp) | |
2782 | { | |
a4295225 | 2783 | struct type *temp_type = check_typedef (value_type (temp)); |
da096638 | 2784 | struct type *objtype = check_typedef (obj_type); |
a109c7c1 | 2785 | |
a4295225 | 2786 | if (TYPE_CODE (temp_type) != TYPE_CODE_PTR |
da096638 KS |
2787 | && (TYPE_CODE (objtype) == TYPE_CODE_PTR |
2788 | || TYPE_CODE (objtype) == TYPE_CODE_REF)) | |
8d577d32 DC |
2789 | { |
2790 | temp = value_addr (temp); | |
2791 | } | |
2792 | *objp = temp; | |
2793 | } | |
7322dca9 SW |
2794 | |
2795 | do_cleanups (all_cleanups); | |
8d577d32 DC |
2796 | |
2797 | switch (match_quality) | |
2798 | { | |
2799 | case INCOMPATIBLE: | |
2800 | return 100; | |
2801 | case NON_STANDARD: | |
2802 | return 10; | |
2803 | default: /* STANDARD */ | |
2804 | return 0; | |
2805 | } | |
2806 | } | |
2807 | ||
2808 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
2809 | contained in QUALIFIED_NAME until it either finds a good match or | |
2810 | runs out of namespaces. It stores the overloaded functions in | |
2811 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
2812 | calling function is responsible for freeing *OLOAD_SYMS and | |
7322dca9 SW |
2813 | *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not |
2814 | performned. */ | |
8d577d32 DC |
2815 | |
2816 | static int | |
da096638 | 2817 | find_oload_champ_namespace (struct value **args, int nargs, |
8d577d32 DC |
2818 | const char *func_name, |
2819 | const char *qualified_name, | |
2820 | struct symbol ***oload_syms, | |
7322dca9 SW |
2821 | struct badness_vector **oload_champ_bv, |
2822 | const int no_adl) | |
8d577d32 DC |
2823 | { |
2824 | int oload_champ; | |
2825 | ||
da096638 | 2826 | find_oload_champ_namespace_loop (args, nargs, |
8d577d32 DC |
2827 | func_name, |
2828 | qualified_name, 0, | |
2829 | oload_syms, oload_champ_bv, | |
7322dca9 SW |
2830 | &oload_champ, |
2831 | no_adl); | |
8d577d32 DC |
2832 | |
2833 | return oload_champ; | |
2834 | } | |
2835 | ||
2836 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
2837 | how deep we've looked for namespaces, and the champ is stored in | |
2838 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
7322dca9 SW |
2839 | if it isn't. Other arguments are the same as in |
2840 | find_oload_champ_namespace | |
8d577d32 DC |
2841 | |
2842 | It is the caller's responsibility to free *OLOAD_SYMS and | |
2843 | *OLOAD_CHAMP_BV. */ | |
2844 | ||
2845 | static int | |
da096638 | 2846 | find_oload_champ_namespace_loop (struct value **args, int nargs, |
8d577d32 DC |
2847 | const char *func_name, |
2848 | const char *qualified_name, | |
2849 | int namespace_len, | |
2850 | struct symbol ***oload_syms, | |
2851 | struct badness_vector **oload_champ_bv, | |
7322dca9 SW |
2852 | int *oload_champ, |
2853 | const int no_adl) | |
8d577d32 DC |
2854 | { |
2855 | int next_namespace_len = namespace_len; | |
2856 | int searched_deeper = 0; | |
2857 | int num_fns = 0; | |
2858 | struct cleanup *old_cleanups; | |
2859 | int new_oload_champ; | |
2860 | struct symbol **new_oload_syms; | |
2861 | struct badness_vector *new_oload_champ_bv; | |
2862 | char *new_namespace; | |
2863 | ||
2864 | if (next_namespace_len != 0) | |
2865 | { | |
2866 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2867 | next_namespace_len += 2; | |
c906108c | 2868 | } |
ac3eeb49 MS |
2869 | next_namespace_len += |
2870 | cp_find_first_component (qualified_name + next_namespace_len); | |
8d577d32 DC |
2871 | |
2872 | /* Initialize these to values that can safely be xfree'd. */ | |
2873 | *oload_syms = NULL; | |
2874 | *oload_champ_bv = NULL; | |
c5aa993b | 2875 | |
581e13c1 | 2876 | /* First, see if we have a deeper namespace we can search in. |
ac3eeb49 | 2877 | If we get a good match there, use it. */ |
8d577d32 DC |
2878 | |
2879 | if (qualified_name[next_namespace_len] == ':') | |
2880 | { | |
2881 | searched_deeper = 1; | |
2882 | ||
da096638 | 2883 | if (find_oload_champ_namespace_loop (args, nargs, |
8d577d32 DC |
2884 | func_name, qualified_name, |
2885 | next_namespace_len, | |
2886 | oload_syms, oload_champ_bv, | |
7322dca9 | 2887 | oload_champ, no_adl)) |
8d577d32 DC |
2888 | { |
2889 | return 1; | |
2890 | } | |
2891 | }; | |
2892 | ||
2893 | /* If we reach here, either we're in the deepest namespace or we | |
2894 | didn't find a good match in a deeper namespace. But, in the | |
2895 | latter case, we still have a bad match in a deeper namespace; | |
2896 | note that we might not find any match at all in the current | |
2897 | namespace. (There's always a match in the deepest namespace, | |
2898 | because this overload mechanism only gets called if there's a | |
2899 | function symbol to start off with.) */ | |
2900 | ||
2901 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
ec322823 | 2902 | make_cleanup (xfree, *oload_champ_bv); |
224c3ddb | 2903 | new_namespace = (char *) alloca (namespace_len + 1); |
8d577d32 DC |
2904 | strncpy (new_namespace, qualified_name, namespace_len); |
2905 | new_namespace[namespace_len] = '\0'; | |
2906 | new_oload_syms = make_symbol_overload_list (func_name, | |
2907 | new_namespace); | |
7322dca9 SW |
2908 | |
2909 | /* If we have reached the deepest level perform argument | |
2910 | determined lookup. */ | |
2911 | if (!searched_deeper && !no_adl) | |
da096638 KS |
2912 | { |
2913 | int ix; | |
2914 | struct type **arg_types; | |
2915 | ||
2916 | /* Prepare list of argument types for overload resolution. */ | |
2917 | arg_types = (struct type **) | |
2918 | alloca (nargs * (sizeof (struct type *))); | |
2919 | for (ix = 0; ix < nargs; ix++) | |
2920 | arg_types[ix] = value_type (args[ix]); | |
2921 | make_symbol_overload_list_adl (arg_types, nargs, func_name); | |
2922 | } | |
7322dca9 | 2923 | |
8d577d32 DC |
2924 | while (new_oload_syms[num_fns]) |
2925 | ++num_fns; | |
2926 | ||
9cf95373 | 2927 | new_oload_champ = find_oload_champ (args, nargs, num_fns, |
233e8b28 | 2928 | NULL, NULL, new_oload_syms, |
8d577d32 DC |
2929 | &new_oload_champ_bv); |
2930 | ||
2931 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2932 | and return it. Case 2: We didn't find a good match, but we're | |
2933 | not the deepest function. Then go with the bad match that the | |
2934 | deeper function found. Case 3: We found a bad match, and we're | |
2935 | the deepest function. Then return what we found, even though | |
2936 | it's a bad match. */ | |
2937 | ||
2938 | if (new_oload_champ != -1 | |
2939 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2940 | { | |
2941 | *oload_syms = new_oload_syms; | |
2942 | *oload_champ = new_oload_champ; | |
2943 | *oload_champ_bv = new_oload_champ_bv; | |
2944 | do_cleanups (old_cleanups); | |
2945 | return 1; | |
2946 | } | |
2947 | else if (searched_deeper) | |
2948 | { | |
2949 | xfree (new_oload_syms); | |
2950 | xfree (new_oload_champ_bv); | |
2951 | discard_cleanups (old_cleanups); | |
2952 | return 0; | |
2953 | } | |
2954 | else | |
2955 | { | |
8d577d32 DC |
2956 | *oload_syms = new_oload_syms; |
2957 | *oload_champ = new_oload_champ; | |
2958 | *oload_champ_bv = new_oload_champ_bv; | |
2a7d6a25 | 2959 | do_cleanups (old_cleanups); |
8d577d32 DC |
2960 | return 0; |
2961 | } | |
2962 | } | |
2963 | ||
da096638 | 2964 | /* Look for a function to take NARGS args of ARGS. Find |
8d577d32 | 2965 | the best match from among the overloaded methods or functions |
233e8b28 SC |
2966 | given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively. |
2967 | One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be | |
2968 | non-NULL. | |
2969 | ||
2970 | If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR | |
2971 | or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS. | |
2972 | ||
8d577d32 DC |
2973 | Return the index of the best match; store an indication of the |
2974 | quality of the match in OLOAD_CHAMP_BV. | |
2975 | ||
2976 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2977 | ||
2978 | static int | |
9cf95373 | 2979 | find_oload_champ (struct value **args, int nargs, |
8d577d32 | 2980 | int num_fns, struct fn_field *fns_ptr, |
233e8b28 | 2981 | VEC (xmethod_worker_ptr) *xm_worker_vec, |
8d577d32 DC |
2982 | struct symbol **oload_syms, |
2983 | struct badness_vector **oload_champ_bv) | |
2984 | { | |
2985 | int ix; | |
233e8b28 SC |
2986 | int fn_count; |
2987 | int xm_worker_vec_n = VEC_length (xmethod_worker_ptr, xm_worker_vec); | |
ac3eeb49 MS |
2988 | /* A measure of how good an overloaded instance is. */ |
2989 | struct badness_vector *bv; | |
2990 | /* Index of best overloaded function. */ | |
2991 | int oload_champ = -1; | |
2992 | /* Current ambiguity state for overload resolution. */ | |
2993 | int oload_ambiguous = 0; | |
2994 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ | |
8d577d32 | 2995 | |
9cf95373 | 2996 | /* A champion can be found among methods alone, or among functions |
233e8b28 SC |
2997 | alone, or in xmethods alone, but not in more than one of these |
2998 | groups. */ | |
2999 | gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL) | |
3000 | == 1); | |
9cf95373 | 3001 | |
8d577d32 | 3002 | *oload_champ_bv = NULL; |
c906108c | 3003 | |
233e8b28 SC |
3004 | fn_count = (xm_worker_vec != NULL |
3005 | ? VEC_length (xmethod_worker_ptr, xm_worker_vec) | |
3006 | : num_fns); | |
ac3eeb49 | 3007 | /* Consider each candidate in turn. */ |
233e8b28 | 3008 | for (ix = 0; ix < fn_count; ix++) |
c906108c | 3009 | { |
8d577d32 | 3010 | int jj; |
233e8b28 | 3011 | int static_offset = 0; |
8d577d32 DC |
3012 | int nparms; |
3013 | struct type **parm_types; | |
233e8b28 | 3014 | struct xmethod_worker *worker = NULL; |
8d577d32 | 3015 | |
233e8b28 | 3016 | if (xm_worker_vec != NULL) |
db577aea | 3017 | { |
233e8b28 SC |
3018 | worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix); |
3019 | parm_types = get_xmethod_arg_types (worker, &nparms); | |
db577aea AC |
3020 | } |
3021 | else | |
3022 | { | |
233e8b28 SC |
3023 | if (fns_ptr != NULL) |
3024 | { | |
3025 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); | |
3026 | static_offset = oload_method_static_p (fns_ptr, ix); | |
3027 | } | |
3028 | else | |
3029 | nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); | |
3030 | ||
8d749320 | 3031 | parm_types = XNEWVEC (struct type *, nparms); |
233e8b28 SC |
3032 | for (jj = 0; jj < nparms; jj++) |
3033 | parm_types[jj] = (fns_ptr != NULL | |
3034 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) | |
3035 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), | |
8301c89e | 3036 | jj)); |
db577aea | 3037 | } |
c906108c | 3038 | |
ac3eeb49 MS |
3039 | /* Compare parameter types to supplied argument types. Skip |
3040 | THIS for static methods. */ | |
3041 | bv = rank_function (parm_types, nparms, | |
da096638 | 3042 | args + static_offset, |
4a1970e4 | 3043 | nargs - static_offset); |
c5aa993b | 3044 | |
8d577d32 | 3045 | if (!*oload_champ_bv) |
c5aa993b | 3046 | { |
8d577d32 | 3047 | *oload_champ_bv = bv; |
c5aa993b | 3048 | oload_champ = 0; |
c5aa993b | 3049 | } |
ac3eeb49 MS |
3050 | else /* See whether current candidate is better or worse than |
3051 | previous best. */ | |
8d577d32 | 3052 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b | 3053 | { |
ac3eeb49 MS |
3054 | case 0: /* Top two contenders are equally good. */ |
3055 | oload_ambiguous = 1; | |
c5aa993b | 3056 | break; |
ac3eeb49 MS |
3057 | case 1: /* Incomparable top contenders. */ |
3058 | oload_ambiguous = 2; | |
c5aa993b | 3059 | break; |
ac3eeb49 MS |
3060 | case 2: /* New champion, record details. */ |
3061 | *oload_champ_bv = bv; | |
c5aa993b JM |
3062 | oload_ambiguous = 0; |
3063 | oload_champ = ix; | |
c5aa993b JM |
3064 | break; |
3065 | case 3: | |
3066 | default: | |
3067 | break; | |
3068 | } | |
b8c9b27d | 3069 | xfree (parm_types); |
6b1ba9a0 ND |
3070 | if (overload_debug) |
3071 | { | |
233e8b28 | 3072 | if (fns_ptr != NULL) |
ac3eeb49 | 3073 | fprintf_filtered (gdb_stderr, |
3e43a32a | 3074 | "Overloaded method instance %s, # of parms %d\n", |
ac3eeb49 | 3075 | fns_ptr[ix].physname, nparms); |
233e8b28 SC |
3076 | else if (xm_worker_vec != NULL) |
3077 | fprintf_filtered (gdb_stderr, | |
3078 | "Xmethod worker, # of parms %d\n", | |
3079 | nparms); | |
6b1ba9a0 | 3080 | else |
ac3eeb49 | 3081 | fprintf_filtered (gdb_stderr, |
3e43a32a MS |
3082 | "Overloaded function instance " |
3083 | "%s # of parms %d\n", | |
ac3eeb49 MS |
3084 | SYMBOL_DEMANGLED_NAME (oload_syms[ix]), |
3085 | nparms); | |
4a1970e4 | 3086 | for (jj = 0; jj < nargs - static_offset; jj++) |
ac3eeb49 MS |
3087 | fprintf_filtered (gdb_stderr, |
3088 | "...Badness @ %d : %d\n", | |
6403aeea | 3089 | jj, bv->rank[jj].rank); |
3e43a32a MS |
3090 | fprintf_filtered (gdb_stderr, "Overload resolution " |
3091 | "champion is %d, ambiguous? %d\n", | |
ac3eeb49 | 3092 | oload_champ, oload_ambiguous); |
6b1ba9a0 | 3093 | } |
c906108c SS |
3094 | } |
3095 | ||
8d577d32 DC |
3096 | return oload_champ; |
3097 | } | |
6b1ba9a0 | 3098 | |
8d577d32 DC |
3099 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
3100 | a non-static method or a function that isn't a method. */ | |
c906108c | 3101 | |
8d577d32 | 3102 | static int |
2bca57ba | 3103 | oload_method_static_p (struct fn_field *fns_ptr, int index) |
8d577d32 | 3104 | { |
2bca57ba | 3105 | if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) |
8d577d32 | 3106 | return 1; |
c906108c | 3107 | else |
8d577d32 DC |
3108 | return 0; |
3109 | } | |
c906108c | 3110 | |
8d577d32 DC |
3111 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
3112 | ||
3113 | static enum oload_classification | |
3114 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
3115 | int nargs, | |
3116 | int static_offset) | |
3117 | { | |
3118 | int ix; | |
da096638 | 3119 | enum oload_classification worst = STANDARD; |
8d577d32 DC |
3120 | |
3121 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 3122 | { |
6403aeea SW |
3123 | /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS |
3124 | or worse return INCOMPATIBLE. */ | |
3125 | if (compare_ranks (oload_champ_bv->rank[ix], | |
3126 | INCOMPATIBLE_TYPE_BADNESS) <= 0) | |
ac3eeb49 | 3127 | return INCOMPATIBLE; /* Truly mismatched types. */ |
6403aeea SW |
3128 | /* Otherwise If this conversion is as bad as |
3129 | NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */ | |
3130 | else if (compare_ranks (oload_champ_bv->rank[ix], | |
3131 | NS_POINTER_CONVERSION_BADNESS) <= 0) | |
da096638 | 3132 | worst = NON_STANDARD; /* Non-standard type conversions |
ac3eeb49 | 3133 | needed. */ |
7f8c9282 | 3134 | } |
02f0d45d | 3135 | |
da096638 KS |
3136 | /* If no INCOMPATIBLE classification was found, return the worst one |
3137 | that was found (if any). */ | |
3138 | return worst; | |
c906108c SS |
3139 | } |
3140 | ||
ac3eeb49 MS |
3141 | /* C++: return 1 is NAME is a legitimate name for the destructor of |
3142 | type TYPE. If TYPE does not have a destructor, or if NAME is | |
d8228535 JK |
3143 | inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet |
3144 | have CHECK_TYPEDEF applied, this function will apply it itself. */ | |
3145 | ||
c906108c | 3146 | int |
d8228535 | 3147 | destructor_name_p (const char *name, struct type *type) |
c906108c | 3148 | { |
c906108c SS |
3149 | if (name[0] == '~') |
3150 | { | |
d8228535 JK |
3151 | const char *dname = type_name_no_tag_or_error (type); |
3152 | const char *cp = strchr (dname, '<'); | |
c906108c SS |
3153 | unsigned int len; |
3154 | ||
3155 | /* Do not compare the template part for template classes. */ | |
3156 | if (cp == NULL) | |
3157 | len = strlen (dname); | |
3158 | else | |
3159 | len = cp - dname; | |
bf896cb0 | 3160 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 3161 | error (_("name of destructor must equal name of class")); |
c906108c SS |
3162 | else |
3163 | return 1; | |
3164 | } | |
3165 | return 0; | |
3166 | } | |
3167 | ||
3d567982 TT |
3168 | /* Find an enum constant named NAME in TYPE. TYPE must be an "enum |
3169 | class". If the name is found, return a value representing it; | |
3170 | otherwise throw an exception. */ | |
3171 | ||
3172 | static struct value * | |
3173 | enum_constant_from_type (struct type *type, const char *name) | |
3174 | { | |
3175 | int i; | |
3176 | int name_len = strlen (name); | |
3177 | ||
3178 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM | |
3179 | && TYPE_DECLARED_CLASS (type)); | |
3180 | ||
3181 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i) | |
3182 | { | |
3183 | const char *fname = TYPE_FIELD_NAME (type, i); | |
3184 | int len; | |
3185 | ||
3186 | if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL | |
3187 | || fname == NULL) | |
3188 | continue; | |
3189 | ||
3190 | /* Look for the trailing "::NAME", since enum class constant | |
3191 | names are qualified here. */ | |
3192 | len = strlen (fname); | |
3193 | if (len + 2 >= name_len | |
3194 | && fname[len - name_len - 2] == ':' | |
3195 | && fname[len - name_len - 1] == ':' | |
3196 | && strcmp (&fname[len - name_len], name) == 0) | |
3197 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i)); | |
3198 | } | |
3199 | ||
3200 | error (_("no constant named \"%s\" in enum \"%s\""), | |
3201 | name, TYPE_TAG_NAME (type)); | |
3202 | } | |
3203 | ||
79c2c32d | 3204 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
0d5de010 DJ |
3205 | return the appropriate member (or the address of the member, if |
3206 | WANT_ADDRESS). This function is used to resolve user expressions | |
3207 | of the form "DOMAIN::NAME". For more details on what happens, see | |
3208 | the comment before value_struct_elt_for_reference. */ | |
79c2c32d DC |
3209 | |
3210 | struct value * | |
c848d642 | 3211 | value_aggregate_elt (struct type *curtype, const char *name, |
072bba3b | 3212 | struct type *expect_type, int want_address, |
79c2c32d DC |
3213 | enum noside noside) |
3214 | { | |
3215 | switch (TYPE_CODE (curtype)) | |
3216 | { | |
3217 | case TYPE_CODE_STRUCT: | |
3218 | case TYPE_CODE_UNION: | |
ac3eeb49 | 3219 | return value_struct_elt_for_reference (curtype, 0, curtype, |
072bba3b | 3220 | name, expect_type, |
0d5de010 | 3221 | want_address, noside); |
79c2c32d | 3222 | case TYPE_CODE_NAMESPACE: |
ac3eeb49 MS |
3223 | return value_namespace_elt (curtype, name, |
3224 | want_address, noside); | |
3d567982 TT |
3225 | |
3226 | case TYPE_CODE_ENUM: | |
3227 | return enum_constant_from_type (curtype, name); | |
3228 | ||
79c2c32d DC |
3229 | default: |
3230 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 3231 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
3232 | } |
3233 | } | |
3234 | ||
072bba3b | 3235 | /* Compares the two method/function types T1 and T2 for "equality" |
b021a221 | 3236 | with respect to the methods' parameters. If the types of the |
072bba3b KS |
3237 | two parameter lists are the same, returns 1; 0 otherwise. This |
3238 | comparison may ignore any artificial parameters in T1 if | |
3239 | SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip | |
3240 | the first artificial parameter in T1, assumed to be a 'this' pointer. | |
3241 | ||
3242 | The type T2 is expected to have come from make_params (in eval.c). */ | |
3243 | ||
3244 | static int | |
3245 | compare_parameters (struct type *t1, struct type *t2, int skip_artificial) | |
3246 | { | |
3247 | int start = 0; | |
3248 | ||
80b23b6a | 3249 | if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0)) |
072bba3b KS |
3250 | ++start; |
3251 | ||
3252 | /* If skipping artificial fields, find the first real field | |
581e13c1 | 3253 | in T1. */ |
072bba3b KS |
3254 | if (skip_artificial) |
3255 | { | |
3256 | while (start < TYPE_NFIELDS (t1) | |
3257 | && TYPE_FIELD_ARTIFICIAL (t1, start)) | |
3258 | ++start; | |
3259 | } | |
3260 | ||
581e13c1 | 3261 | /* Now compare parameters. */ |
072bba3b KS |
3262 | |
3263 | /* Special case: a method taking void. T1 will contain no | |
3264 | non-artificial fields, and T2 will contain TYPE_CODE_VOID. */ | |
3265 | if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1 | |
3266 | && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID) | |
3267 | return 1; | |
3268 | ||
3269 | if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2)) | |
3270 | { | |
3271 | int i; | |
a109c7c1 | 3272 | |
072bba3b KS |
3273 | for (i = 0; i < TYPE_NFIELDS (t2); ++i) |
3274 | { | |
6403aeea | 3275 | if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i), |
da096638 | 3276 | TYPE_FIELD_TYPE (t2, i), NULL), |
6403aeea | 3277 | EXACT_MATCH_BADNESS) != 0) |
072bba3b KS |
3278 | return 0; |
3279 | } | |
3280 | ||
3281 | return 1; | |
3282 | } | |
3283 | ||
3284 | return 0; | |
3285 | } | |
3286 | ||
c906108c | 3287 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
ac3eeb49 MS |
3288 | return the address of this member as a "pointer to member" type. |
3289 | If INTYPE is non-null, then it will be the type of the member we | |
3290 | are looking for. This will help us resolve "pointers to member | |
3291 | functions". This function is used to resolve user expressions of | |
3292 | the form "DOMAIN::NAME". */ | |
c906108c | 3293 | |
63d06c5c | 3294 | static struct value * |
fba45db2 | 3295 | value_struct_elt_for_reference (struct type *domain, int offset, |
c848d642 | 3296 | struct type *curtype, const char *name, |
ac3eeb49 MS |
3297 | struct type *intype, |
3298 | int want_address, | |
63d06c5c | 3299 | enum noside noside) |
c906108c | 3300 | { |
52f0bd74 AC |
3301 | struct type *t = curtype; |
3302 | int i; | |
0d5de010 | 3303 | struct value *v, *result; |
c906108c | 3304 | |
c5aa993b | 3305 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 3306 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
3307 | error (_("Internal error: non-aggregate type " |
3308 | "to value_struct_elt_for_reference")); | |
c906108c SS |
3309 | |
3310 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3311 | { | |
0d5cff50 | 3312 | const char *t_field_name = TYPE_FIELD_NAME (t, i); |
c5aa993b | 3313 | |
6314a349 | 3314 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3315 | { |
d6a843b5 | 3316 | if (field_is_static (&TYPE_FIELD (t, i))) |
c906108c SS |
3317 | { |
3318 | v = value_static_field (t, i); | |
0d5de010 DJ |
3319 | if (want_address) |
3320 | v = value_addr (v); | |
c906108c SS |
3321 | return v; |
3322 | } | |
3323 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 3324 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 3325 | |
0d5de010 DJ |
3326 | if (want_address) |
3327 | return value_from_longest | |
3328 | (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), | |
3329 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
f7e3ecae | 3330 | else if (noside != EVAL_NORMAL) |
0d5de010 DJ |
3331 | return allocate_value (TYPE_FIELD_TYPE (t, i)); |
3332 | else | |
f7e3ecae KS |
3333 | { |
3334 | /* Try to evaluate NAME as a qualified name with implicit | |
3335 | this pointer. In this case, attempt to return the | |
3336 | equivalent to `this->*(&TYPE::NAME)'. */ | |
3337 | v = value_of_this_silent (current_language); | |
3338 | if (v != NULL) | |
3339 | { | |
3340 | struct value *ptr; | |
3341 | long mem_offset; | |
3342 | struct type *type, *tmp; | |
3343 | ||
3344 | ptr = value_aggregate_elt (domain, name, NULL, 1, noside); | |
3345 | type = check_typedef (value_type (ptr)); | |
3346 | gdb_assert (type != NULL | |
3347 | && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR); | |
4bfb94b8 | 3348 | tmp = lookup_pointer_type (TYPE_SELF_TYPE (type)); |
f7e3ecae KS |
3349 | v = value_cast_pointers (tmp, v, 1); |
3350 | mem_offset = value_as_long (ptr); | |
3351 | tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
3352 | result = value_from_pointer (tmp, | |
3353 | value_as_long (v) + mem_offset); | |
3354 | return value_ind (result); | |
3355 | } | |
3356 | ||
3357 | error (_("Cannot reference non-static field \"%s\""), name); | |
3358 | } | |
c906108c SS |
3359 | } |
3360 | } | |
3361 | ||
ac3eeb49 MS |
3362 | /* C++: If it was not found as a data field, then try to return it |
3363 | as a pointer to a method. */ | |
c906108c | 3364 | |
c906108c SS |
3365 | /* Perform all necessary dereferencing. */ |
3366 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3367 | intype = TYPE_TARGET_TYPE (intype); | |
3368 | ||
3369 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3370 | { | |
0d5cff50 | 3371 | const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); |
c906108c SS |
3372 | char dem_opname[64]; |
3373 | ||
61012eef GB |
3374 | if (startswith (t_field_name, "__") |
3375 | || startswith (t_field_name, "op") | |
3376 | || startswith (t_field_name, "type")) | |
c906108c | 3377 | { |
ac3eeb49 MS |
3378 | if (cplus_demangle_opname (t_field_name, |
3379 | dem_opname, DMGL_ANSI)) | |
c5aa993b | 3380 | t_field_name = dem_opname; |
ac3eeb49 MS |
3381 | else if (cplus_demangle_opname (t_field_name, |
3382 | dem_opname, 0)) | |
c906108c | 3383 | t_field_name = dem_opname; |
c906108c | 3384 | } |
6314a349 | 3385 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3386 | { |
072bba3b KS |
3387 | int j; |
3388 | int len = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
c906108c | 3389 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); |
c5aa993b | 3390 | |
de17c821 DJ |
3391 | check_stub_method_group (t, i); |
3392 | ||
c906108c SS |
3393 | if (intype) |
3394 | { | |
072bba3b KS |
3395 | for (j = 0; j < len; ++j) |
3396 | { | |
3397 | if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0) | |
3e43a32a MS |
3398 | || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), |
3399 | intype, 1)) | |
072bba3b KS |
3400 | break; |
3401 | } | |
3402 | ||
3403 | if (j == len) | |
3e43a32a MS |
3404 | error (_("no member function matches " |
3405 | "that type instantiation")); | |
7f79b1c5 | 3406 | } |
c906108c | 3407 | else |
072bba3b KS |
3408 | { |
3409 | int ii; | |
7f79b1c5 DJ |
3410 | |
3411 | j = -1; | |
53832f31 | 3412 | for (ii = 0; ii < len; ++ii) |
072bba3b | 3413 | { |
7f79b1c5 DJ |
3414 | /* Skip artificial methods. This is necessary if, |
3415 | for example, the user wants to "print | |
3416 | subclass::subclass" with only one user-defined | |
53832f31 TT |
3417 | constructor. There is no ambiguity in this case. |
3418 | We are careful here to allow artificial methods | |
3419 | if they are the unique result. */ | |
072bba3b | 3420 | if (TYPE_FN_FIELD_ARTIFICIAL (f, ii)) |
53832f31 TT |
3421 | { |
3422 | if (j == -1) | |
3423 | j = ii; | |
3424 | continue; | |
3425 | } | |
072bba3b | 3426 | |
7f79b1c5 DJ |
3427 | /* Desired method is ambiguous if more than one |
3428 | method is defined. */ | |
53832f31 | 3429 | if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j)) |
3e43a32a MS |
3430 | error (_("non-unique member `%s' requires " |
3431 | "type instantiation"), name); | |
072bba3b | 3432 | |
7f79b1c5 DJ |
3433 | j = ii; |
3434 | } | |
53832f31 TT |
3435 | |
3436 | if (j == -1) | |
3437 | error (_("no matching member function")); | |
072bba3b | 3438 | } |
c5aa993b | 3439 | |
0d5de010 DJ |
3440 | if (TYPE_FN_FIELD_STATIC_P (f, j)) |
3441 | { | |
ac3eeb49 MS |
3442 | struct symbol *s = |
3443 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
d12307c1 | 3444 | 0, VAR_DOMAIN, 0).symbol; |
a109c7c1 | 3445 | |
0d5de010 DJ |
3446 | if (s == NULL) |
3447 | return NULL; | |
3448 | ||
3449 | if (want_address) | |
63e43d3a | 3450 | return value_addr (read_var_value (s, 0, 0)); |
0d5de010 | 3451 | else |
63e43d3a | 3452 | return read_var_value (s, 0, 0); |
0d5de010 DJ |
3453 | } |
3454 | ||
c906108c SS |
3455 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
3456 | { | |
0d5de010 DJ |
3457 | if (want_address) |
3458 | { | |
3459 | result = allocate_value | |
3460 | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | |
ad4820ab UW |
3461 | cplus_make_method_ptr (value_type (result), |
3462 | value_contents_writeable (result), | |
0d5de010 DJ |
3463 | TYPE_FN_FIELD_VOFFSET (f, j), 1); |
3464 | } | |
3465 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
3466 | return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); | |
3467 | else | |
3468 | error (_("Cannot reference virtual member function \"%s\""), | |
3469 | name); | |
c906108c SS |
3470 | } |
3471 | else | |
3472 | { | |
ac3eeb49 MS |
3473 | struct symbol *s = |
3474 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
d12307c1 | 3475 | 0, VAR_DOMAIN, 0).symbol; |
a109c7c1 | 3476 | |
c906108c | 3477 | if (s == NULL) |
0d5de010 DJ |
3478 | return NULL; |
3479 | ||
63e43d3a | 3480 | v = read_var_value (s, 0, 0); |
0d5de010 DJ |
3481 | if (!want_address) |
3482 | result = v; | |
c906108c SS |
3483 | else |
3484 | { | |
0d5de010 | 3485 | result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); |
ad4820ab UW |
3486 | cplus_make_method_ptr (value_type (result), |
3487 | value_contents_writeable (result), | |
42ae5230 | 3488 | value_address (v), 0); |
c906108c | 3489 | } |
c906108c | 3490 | } |
0d5de010 | 3491 | return result; |
c906108c SS |
3492 | } |
3493 | } | |
3494 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3495 | { | |
f23631e4 | 3496 | struct value *v; |
c906108c SS |
3497 | int base_offset; |
3498 | ||
3499 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3500 | base_offset = 0; | |
3501 | else | |
3502 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3503 | v = value_struct_elt_for_reference (domain, | |
3504 | offset + base_offset, | |
3505 | TYPE_BASECLASS (t, i), | |
ac3eeb49 MS |
3506 | name, intype, |
3507 | want_address, noside); | |
c906108c SS |
3508 | if (v) |
3509 | return v; | |
3510 | } | |
63d06c5c DC |
3511 | |
3512 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
3513 | it up that way; this (frequently) works for types nested inside | |
3514 | classes. */ | |
3515 | ||
ac3eeb49 MS |
3516 | return value_maybe_namespace_elt (curtype, name, |
3517 | want_address, noside); | |
c906108c SS |
3518 | } |
3519 | ||
79c2c32d DC |
3520 | /* C++: Return the member NAME of the namespace given by the type |
3521 | CURTYPE. */ | |
3522 | ||
3523 | static struct value * | |
3524 | value_namespace_elt (const struct type *curtype, | |
c848d642 | 3525 | const char *name, int want_address, |
79c2c32d | 3526 | enum noside noside) |
63d06c5c DC |
3527 | { |
3528 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
ac3eeb49 MS |
3529 | want_address, |
3530 | noside); | |
63d06c5c DC |
3531 | |
3532 | if (retval == NULL) | |
ac3eeb49 MS |
3533 | error (_("No symbol \"%s\" in namespace \"%s\"."), |
3534 | name, TYPE_TAG_NAME (curtype)); | |
63d06c5c DC |
3535 | |
3536 | return retval; | |
3537 | } | |
3538 | ||
3539 | /* A helper function used by value_namespace_elt and | |
3540 | value_struct_elt_for_reference. It looks up NAME inside the | |
3541 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
3542 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
3543 | to, say, some base class of CURTYPE). */ | |
3544 | ||
3545 | static struct value * | |
3546 | value_maybe_namespace_elt (const struct type *curtype, | |
c848d642 | 3547 | const char *name, int want_address, |
63d06c5c | 3548 | enum noside noside) |
79c2c32d DC |
3549 | { |
3550 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
d12307c1 | 3551 | struct block_symbol sym; |
0d5de010 | 3552 | struct value *result; |
79c2c32d | 3553 | |
13387711 | 3554 | sym = cp_lookup_symbol_namespace (namespace_name, name, |
41f62f39 JK |
3555 | get_selected_block (0), VAR_DOMAIN); |
3556 | ||
d12307c1 | 3557 | if (sym.symbol == NULL) |
63d06c5c | 3558 | return NULL; |
79c2c32d | 3559 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
d12307c1 PMR |
3560 | && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF)) |
3561 | result = allocate_value (SYMBOL_TYPE (sym.symbol)); | |
79c2c32d | 3562 | else |
d12307c1 | 3563 | result = value_of_variable (sym.symbol, sym.block); |
0d5de010 | 3564 | |
ae6a105d | 3565 | if (want_address) |
0d5de010 DJ |
3566 | result = value_addr (result); |
3567 | ||
3568 | return result; | |
79c2c32d DC |
3569 | } |
3570 | ||
dfcee124 | 3571 | /* Given a pointer or a reference value V, find its real (RTTI) type. |
ac3eeb49 | 3572 | |
c906108c | 3573 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() |
ac3eeb49 | 3574 | and refer to the values computed for the object pointed to. */ |
c906108c SS |
3575 | |
3576 | struct type * | |
dfcee124 AG |
3577 | value_rtti_indirect_type (struct value *v, int *full, |
3578 | int *top, int *using_enc) | |
c906108c | 3579 | { |
f7e5394d | 3580 | struct value *target = NULL; |
dfcee124 AG |
3581 | struct type *type, *real_type, *target_type; |
3582 | ||
3583 | type = value_type (v); | |
3584 | type = check_typedef (type); | |
3585 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
3586 | target = coerce_ref (v); | |
3587 | else if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
f7e5394d | 3588 | { |
f7e5394d | 3589 | |
492d29ea | 3590 | TRY |
f7e5394d SM |
3591 | { |
3592 | target = value_ind (v); | |
3593 | } | |
492d29ea | 3594 | CATCH (except, RETURN_MASK_ERROR) |
f7e5394d SM |
3595 | { |
3596 | if (except.error == MEMORY_ERROR) | |
3597 | { | |
3598 | /* value_ind threw a memory error. The pointer is NULL or | |
3599 | contains an uninitialized value: we can't determine any | |
3600 | type. */ | |
3601 | return NULL; | |
3602 | } | |
3603 | throw_exception (except); | |
3604 | } | |
492d29ea | 3605 | END_CATCH |
f7e5394d | 3606 | } |
dfcee124 AG |
3607 | else |
3608 | return NULL; | |
c906108c | 3609 | |
dfcee124 AG |
3610 | real_type = value_rtti_type (target, full, top, using_enc); |
3611 | ||
3612 | if (real_type) | |
3613 | { | |
3614 | /* Copy qualifiers to the referenced object. */ | |
3615 | target_type = value_type (target); | |
3616 | real_type = make_cv_type (TYPE_CONST (target_type), | |
3617 | TYPE_VOLATILE (target_type), real_type, NULL); | |
3618 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
3619 | real_type = lookup_reference_type (real_type); | |
3620 | else if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3621 | real_type = lookup_pointer_type (real_type); | |
3622 | else | |
3623 | internal_error (__FILE__, __LINE__, _("Unexpected value type.")); | |
3624 | ||
3625 | /* Copy qualifiers to the pointer/reference. */ | |
3626 | real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type), | |
3627 | real_type, NULL); | |
3628 | } | |
c906108c | 3629 | |
dfcee124 | 3630 | return real_type; |
c906108c SS |
3631 | } |
3632 | ||
3633 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3634 | if that is different from the enclosing type, create a new value | |
3635 | using the real run-time type as the enclosing type (and of the same | |
3636 | type as ARGP) and return it, with the embedded offset adjusted to | |
ac3eeb49 MS |
3637 | be the correct offset to the enclosed object. RTYPE is the type, |
3638 | and XFULL, XTOP, and XUSING_ENC are the other parameters, computed | |
3639 | by value_rtti_type(). If these are available, they can be supplied | |
3640 | and a second call to value_rtti_type() is avoided. (Pass RTYPE == | |
3641 | NULL if they're not available. */ | |
c906108c | 3642 | |
f23631e4 | 3643 | struct value * |
ac3eeb49 MS |
3644 | value_full_object (struct value *argp, |
3645 | struct type *rtype, | |
3646 | int xfull, int xtop, | |
fba45db2 | 3647 | int xusing_enc) |
c906108c | 3648 | { |
c5aa993b | 3649 | struct type *real_type; |
c906108c SS |
3650 | int full = 0; |
3651 | int top = -1; | |
3652 | int using_enc = 0; | |
f23631e4 | 3653 | struct value *new_val; |
c906108c SS |
3654 | |
3655 | if (rtype) | |
3656 | { | |
3657 | real_type = rtype; | |
3658 | full = xfull; | |
3659 | top = xtop; | |
3660 | using_enc = xusing_enc; | |
3661 | } | |
3662 | else | |
3663 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3664 | ||
ac3eeb49 | 3665 | /* If no RTTI data, or if object is already complete, do nothing. */ |
4754a64e | 3666 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
3667 | return argp; |
3668 | ||
a7860e76 TT |
3669 | /* In a destructor we might see a real type that is a superclass of |
3670 | the object's type. In this case it is better to leave the object | |
3671 | as-is. */ | |
3672 | if (full | |
3673 | && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp))) | |
3674 | return argp; | |
3675 | ||
c906108c | 3676 | /* If we have the full object, but for some reason the enclosing |
ac3eeb49 MS |
3677 | type is wrong, set it. */ |
3678 | /* pai: FIXME -- sounds iffy */ | |
c906108c SS |
3679 | if (full) |
3680 | { | |
4dfea560 DE |
3681 | argp = value_copy (argp); |
3682 | set_value_enclosing_type (argp, real_type); | |
c906108c SS |
3683 | return argp; |
3684 | } | |
3685 | ||
581e13c1 | 3686 | /* Check if object is in memory. */ |
c906108c SS |
3687 | if (VALUE_LVAL (argp) != lval_memory) |
3688 | { | |
3e43a32a MS |
3689 | warning (_("Couldn't retrieve complete object of RTTI " |
3690 | "type %s; object may be in register(s)."), | |
ac3eeb49 | 3691 | TYPE_NAME (real_type)); |
c5aa993b | 3692 | |
c906108c SS |
3693 | return argp; |
3694 | } | |
c5aa993b | 3695 | |
ac3eeb49 MS |
3696 | /* All other cases -- retrieve the complete object. */ |
3697 | /* Go back by the computed top_offset from the beginning of the | |
3698 | object, adjusting for the embedded offset of argp if that's what | |
3699 | value_rtti_type used for its computation. */ | |
42ae5230 | 3700 | new_val = value_at_lazy (real_type, value_address (argp) - top + |
13c3b5f5 | 3701 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 3702 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
3703 | set_value_embedded_offset (new_val, (using_enc |
3704 | ? top + value_embedded_offset (argp) | |
3705 | : top)); | |
c906108c SS |
3706 | return new_val; |
3707 | } | |
3708 | ||
389e51db | 3709 | |
85bc8cb7 JK |
3710 | /* Return the value of the local variable, if one exists. Throw error |
3711 | otherwise, such as if the request is made in an inappropriate context. */ | |
c906108c | 3712 | |
f23631e4 | 3713 | struct value * |
85bc8cb7 | 3714 | value_of_this (const struct language_defn *lang) |
c906108c | 3715 | { |
63e43d3a | 3716 | struct block_symbol sym; |
3977b71f | 3717 | const struct block *b; |
206415a3 | 3718 | struct frame_info *frame; |
c906108c | 3719 | |
66a17cb6 | 3720 | if (!lang->la_name_of_this) |
85bc8cb7 | 3721 | error (_("no `this' in current language")); |
aee28ec6 | 3722 | |
85bc8cb7 | 3723 | frame = get_selected_frame (_("no frame selected")); |
c906108c | 3724 | |
66a17cb6 | 3725 | b = get_frame_block (frame, NULL); |
c906108c | 3726 | |
63e43d3a PMR |
3727 | sym = lookup_language_this (lang, b); |
3728 | if (sym.symbol == NULL) | |
85bc8cb7 JK |
3729 | error (_("current stack frame does not contain a variable named `%s'"), |
3730 | lang->la_name_of_this); | |
3731 | ||
63e43d3a | 3732 | return read_var_value (sym.symbol, sym.block, frame); |
85bc8cb7 JK |
3733 | } |
3734 | ||
3735 | /* Return the value of the local variable, if one exists. Return NULL | |
3736 | otherwise. Never throw error. */ | |
3737 | ||
3738 | struct value * | |
3739 | value_of_this_silent (const struct language_defn *lang) | |
3740 | { | |
3741 | struct value *ret = NULL; | |
85bc8cb7 | 3742 | |
492d29ea | 3743 | TRY |
c906108c | 3744 | { |
85bc8cb7 | 3745 | ret = value_of_this (lang); |
c906108c | 3746 | } |
492d29ea PA |
3747 | CATCH (except, RETURN_MASK_ERROR) |
3748 | { | |
3749 | } | |
3750 | END_CATCH | |
c906108c | 3751 | |
d069f99d AF |
3752 | return ret; |
3753 | } | |
3754 | ||
ac3eeb49 MS |
3755 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH |
3756 | elements long, starting at LOWBOUND. The result has the same lower | |
3757 | bound as the original ARRAY. */ | |
c906108c | 3758 | |
f23631e4 AC |
3759 | struct value * |
3760 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
3761 | { |
3762 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 3763 | LONGEST lowerbound, upperbound; |
f23631e4 | 3764 | struct value *slice; |
c906108c | 3765 | struct type *array_type; |
ac3eeb49 | 3766 | |
df407dfe | 3767 | array_type = check_typedef (value_type (array)); |
c906108c | 3768 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
6b1755ce | 3769 | && TYPE_CODE (array_type) != TYPE_CODE_STRING) |
8a3fe4f8 | 3770 | error (_("cannot take slice of non-array")); |
ac3eeb49 | 3771 | |
c906108c SS |
3772 | range_type = TYPE_INDEX_TYPE (array_type); |
3773 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 3774 | error (_("slice from bad array or bitstring")); |
ac3eeb49 | 3775 | |
c906108c | 3776 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 3777 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 3778 | error (_("slice out of range")); |
ac3eeb49 | 3779 | |
c906108c SS |
3780 | /* FIXME-type-allocation: need a way to free this type when we are |
3781 | done with it. */ | |
0c9c3474 SA |
3782 | slice_range_type = create_static_range_type ((struct type *) NULL, |
3783 | TYPE_TARGET_TYPE (range_type), | |
3784 | lowbound, | |
3785 | lowbound + length - 1); | |
ac3eeb49 | 3786 | |
a7c88acd JB |
3787 | { |
3788 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
3789 | LONGEST offset | |
3790 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
ac3eeb49 | 3791 | |
a7c88acd JB |
3792 | slice_type = create_array_type ((struct type *) NULL, |
3793 | element_type, | |
3794 | slice_range_type); | |
3795 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
ac3eeb49 | 3796 | |
a7c88acd JB |
3797 | if (VALUE_LVAL (array) == lval_memory && value_lazy (array)) |
3798 | slice = allocate_value_lazy (slice_type); | |
3799 | else | |
3800 | { | |
3801 | slice = allocate_value (slice_type); | |
3802 | value_contents_copy (slice, 0, array, offset, | |
3ae385af | 3803 | type_length_units (slice_type)); |
a7c88acd JB |
3804 | } |
3805 | ||
3806 | set_value_component_location (slice, array); | |
3807 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); | |
3808 | set_value_offset (slice, value_offset (array) + offset); | |
3809 | } | |
ac3eeb49 | 3810 | |
c906108c SS |
3811 | return slice; |
3812 | } | |
3813 | ||
ac3eeb49 MS |
3814 | /* Create a value for a FORTRAN complex number. Currently most of the |
3815 | time values are coerced to COMPLEX*16 (i.e. a complex number | |
070ad9f0 DB |
3816 | composed of 2 doubles. This really should be a smarter routine |
3817 | that figures out precision inteligently as opposed to assuming | |
ac3eeb49 | 3818 | doubles. FIXME: fmb */ |
c906108c | 3819 | |
f23631e4 | 3820 | struct value * |
ac3eeb49 MS |
3821 | value_literal_complex (struct value *arg1, |
3822 | struct value *arg2, | |
3823 | struct type *type) | |
c906108c | 3824 | { |
f23631e4 | 3825 | struct value *val; |
c906108c SS |
3826 | struct type *real_type = TYPE_TARGET_TYPE (type); |
3827 | ||
3828 | val = allocate_value (type); | |
3829 | arg1 = value_cast (real_type, arg1); | |
3830 | arg2 = value_cast (real_type, arg2); | |
3831 | ||
990a07ab | 3832 | memcpy (value_contents_raw (val), |
0fd88904 | 3833 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 3834 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 3835 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
3836 | return val; |
3837 | } | |
3838 | ||
ac3eeb49 | 3839 | /* Cast a value into the appropriate complex data type. */ |
c906108c | 3840 | |
f23631e4 AC |
3841 | static struct value * |
3842 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
3843 | { |
3844 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
ac3eeb49 | 3845 | |
df407dfe | 3846 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 3847 | { |
df407dfe | 3848 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
3849 | struct value *re_val = allocate_value (val_real_type); |
3850 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 3851 | |
990a07ab | 3852 | memcpy (value_contents_raw (re_val), |
0fd88904 | 3853 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 3854 | memcpy (value_contents_raw (im_val), |
0fd88904 | 3855 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 3856 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3857 | |
3858 | return value_literal_complex (re_val, im_val, type); | |
3859 | } | |
df407dfe AC |
3860 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
3861 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
ac3eeb49 MS |
3862 | return value_literal_complex (val, |
3863 | value_zero (real_type, not_lval), | |
3864 | type); | |
c906108c | 3865 | else |
8a3fe4f8 | 3866 | error (_("cannot cast non-number to complex")); |
c906108c SS |
3867 | } |
3868 | ||
3869 | void | |
fba45db2 | 3870 | _initialize_valops (void) |
c906108c | 3871 | { |
5bf193a2 AC |
3872 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
3873 | &overload_resolution, _("\ | |
3874 | Set overload resolution in evaluating C++ functions."), _("\ | |
ac3eeb49 MS |
3875 | Show overload resolution in evaluating C++ functions."), |
3876 | NULL, NULL, | |
920d2a44 | 3877 | show_overload_resolution, |
5bf193a2 | 3878 | &setlist, &showlist); |
c906108c | 3879 | overload_resolution = 1; |
c906108c | 3880 | } |