]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
b6ba6518 | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
1e698235 | 3 | 1998, 1999, 2000, 2001, 2002, 2003 |
c906108c SS |
4 | Free Software Foundation, Inc. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "symtab.h" | |
27 | #include "target.h" | |
28 | #include "gdbcore.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "symfile.h" | |
31 | #include "objfiles.h" | |
7a78ae4e | 32 | #include "arch-utils.h" |
4e052eda | 33 | #include "regcache.h" |
d16aafd8 | 34 | #include "doublest.h" |
fd0407d6 | 35 | #include "value.h" |
1fcc0bb8 | 36 | #include "parser-defs.h" |
4be87837 | 37 | #include "osabi.h" |
7a78ae4e | 38 | |
2fccf04a | 39 | #include "libbfd.h" /* for bfd_default_set_arch_mach */ |
7a78ae4e | 40 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 41 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
42 | #include "coff/xcoff.h" |
43 | #include "libxcoff.h" | |
7a78ae4e | 44 | |
9aa1e687 | 45 | #include "elf-bfd.h" |
7a78ae4e | 46 | |
6ded7999 | 47 | #include "solib-svr4.h" |
9aa1e687 | 48 | #include "ppc-tdep.h" |
7a78ae4e | 49 | |
338ef23d AC |
50 | #include "gdb_assert.h" |
51 | ||
7a78ae4e ND |
52 | /* If the kernel has to deliver a signal, it pushes a sigcontext |
53 | structure on the stack and then calls the signal handler, passing | |
54 | the address of the sigcontext in an argument register. Usually | |
55 | the signal handler doesn't save this register, so we have to | |
56 | access the sigcontext structure via an offset from the signal handler | |
57 | frame. | |
58 | The following constants were determined by experimentation on AIX 3.2. */ | |
59 | #define SIG_FRAME_PC_OFFSET 96 | |
60 | #define SIG_FRAME_LR_OFFSET 108 | |
61 | #define SIG_FRAME_FP_OFFSET 284 | |
62 | ||
7a78ae4e ND |
63 | /* To be used by skip_prologue. */ |
64 | ||
65 | struct rs6000_framedata | |
66 | { | |
67 | int offset; /* total size of frame --- the distance | |
68 | by which we decrement sp to allocate | |
69 | the frame */ | |
70 | int saved_gpr; /* smallest # of saved gpr */ | |
71 | int saved_fpr; /* smallest # of saved fpr */ | |
6be8bc0c | 72 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 73 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e ND |
74 | int alloca_reg; /* alloca register number (frame ptr) */ |
75 | char frameless; /* true if frameless functions. */ | |
76 | char nosavedpc; /* true if pc not saved. */ | |
77 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
78 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 79 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 80 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e ND |
81 | int lr_offset; /* offset of saved lr */ |
82 | int cr_offset; /* offset of saved cr */ | |
6be8bc0c | 83 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
84 | }; |
85 | ||
86 | /* Description of a single register. */ | |
87 | ||
88 | struct reg | |
89 | { | |
90 | char *name; /* name of register */ | |
91 | unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */ | |
92 | unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */ | |
93 | unsigned char fpr; /* whether register is floating-point */ | |
489461e2 | 94 | unsigned char pseudo; /* whether register is pseudo */ |
7a78ae4e ND |
95 | }; |
96 | ||
c906108c SS |
97 | /* Breakpoint shadows for the single step instructions will be kept here. */ |
98 | ||
c5aa993b JM |
99 | static struct sstep_breaks |
100 | { | |
101 | /* Address, or 0 if this is not in use. */ | |
102 | CORE_ADDR address; | |
103 | /* Shadow contents. */ | |
104 | char data[4]; | |
105 | } | |
106 | stepBreaks[2]; | |
c906108c SS |
107 | |
108 | /* Hook for determining the TOC address when calling functions in the | |
109 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
110 | this hook to point to find_toc_address. */ | |
111 | ||
7a78ae4e ND |
112 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
113 | ||
114 | /* Hook to set the current architecture when starting a child process. | |
115 | rs6000-nat.c sets this. */ | |
116 | ||
117 | void (*rs6000_set_host_arch_hook) (int) = NULL; | |
c906108c SS |
118 | |
119 | /* Static function prototypes */ | |
120 | ||
a14ed312 KB |
121 | static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc, |
122 | CORE_ADDR safety); | |
077276e8 KB |
123 | static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, |
124 | struct rs6000_framedata *); | |
7a78ae4e ND |
125 | static void frame_get_saved_regs (struct frame_info * fi, |
126 | struct rs6000_framedata * fdatap); | |
127 | static CORE_ADDR frame_initial_stack_address (struct frame_info *); | |
c906108c | 128 | |
64b84175 KB |
129 | /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ |
130 | int | |
131 | altivec_register_p (int regno) | |
132 | { | |
133 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
134 | if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) | |
135 | return 0; | |
136 | else | |
137 | return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); | |
138 | } | |
139 | ||
0a613259 AC |
140 | /* Use the architectures FP registers? */ |
141 | int | |
142 | ppc_floating_point_unit_p (struct gdbarch *gdbarch) | |
143 | { | |
144 | const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch); | |
145 | if (info->arch == bfd_arch_powerpc) | |
146 | return (info->mach != bfd_mach_ppc_e500); | |
147 | if (info->arch == bfd_arch_rs6000) | |
148 | return 1; | |
149 | return 0; | |
150 | } | |
151 | ||
7a78ae4e | 152 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 153 | |
7a78ae4e ND |
154 | static CORE_ADDR |
155 | read_memory_addr (CORE_ADDR memaddr, int len) | |
156 | { | |
157 | return read_memory_unsigned_integer (memaddr, len); | |
158 | } | |
c906108c | 159 | |
7a78ae4e ND |
160 | static CORE_ADDR |
161 | rs6000_skip_prologue (CORE_ADDR pc) | |
b83266a0 SS |
162 | { |
163 | struct rs6000_framedata frame; | |
077276e8 | 164 | pc = skip_prologue (pc, 0, &frame); |
b83266a0 SS |
165 | return pc; |
166 | } | |
167 | ||
168 | ||
c906108c SS |
169 | /* Fill in fi->saved_regs */ |
170 | ||
171 | struct frame_extra_info | |
172 | { | |
173 | /* Functions calling alloca() change the value of the stack | |
174 | pointer. We need to use initial stack pointer (which is saved in | |
175 | r31 by gcc) in such cases. If a compiler emits traceback table, | |
176 | then we should use the alloca register specified in traceback | |
177 | table. FIXME. */ | |
c5aa993b | 178 | CORE_ADDR initial_sp; /* initial stack pointer. */ |
c906108c SS |
179 | }; |
180 | ||
9aa1e687 | 181 | void |
7a78ae4e | 182 | rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c | 183 | { |
c9012c71 AC |
184 | struct frame_extra_info *extra_info = |
185 | frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info)); | |
186 | extra_info->initial_sp = 0; | |
bdd78e62 AC |
187 | if (get_next_frame (fi) != NULL |
188 | && get_frame_pc (fi) < TEXT_SEGMENT_BASE) | |
7a292a7a | 189 | /* We're in get_prev_frame */ |
c906108c SS |
190 | /* and this is a special signal frame. */ |
191 | /* (fi->pc will be some low address in the kernel, */ | |
192 | /* to which the signal handler returns). */ | |
5a203e44 | 193 | deprecated_set_frame_type (fi, SIGTRAMP_FRAME); |
c906108c SS |
194 | } |
195 | ||
7a78ae4e ND |
196 | /* Put here the code to store, into a struct frame_saved_regs, |
197 | the addresses of the saved registers of frame described by FRAME_INFO. | |
198 | This includes special registers such as pc and fp saved in special | |
199 | ways in the stack frame. sp is even more special: | |
200 | the address we return for it IS the sp for the next frame. */ | |
c906108c | 201 | |
7a78ae4e ND |
202 | /* In this implementation for RS/6000, we do *not* save sp. I am |
203 | not sure if it will be needed. The following function takes care of gpr's | |
204 | and fpr's only. */ | |
205 | ||
9aa1e687 | 206 | void |
7a78ae4e | 207 | rs6000_frame_init_saved_regs (struct frame_info *fi) |
c906108c SS |
208 | { |
209 | frame_get_saved_regs (fi, NULL); | |
210 | } | |
211 | ||
7a78ae4e ND |
212 | static CORE_ADDR |
213 | rs6000_frame_args_address (struct frame_info *fi) | |
c906108c | 214 | { |
c9012c71 AC |
215 | struct frame_extra_info *extra_info = get_frame_extra_info (fi); |
216 | if (extra_info->initial_sp != 0) | |
217 | return extra_info->initial_sp; | |
c906108c SS |
218 | else |
219 | return frame_initial_stack_address (fi); | |
220 | } | |
221 | ||
7a78ae4e ND |
222 | /* Immediately after a function call, return the saved pc. |
223 | Can't go through the frames for this because on some machines | |
224 | the new frame is not set up until the new function executes | |
225 | some instructions. */ | |
226 | ||
227 | static CORE_ADDR | |
228 | rs6000_saved_pc_after_call (struct frame_info *fi) | |
229 | { | |
2188cbdd | 230 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
7a78ae4e | 231 | } |
c906108c SS |
232 | |
233 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ | |
234 | ||
235 | static CORE_ADDR | |
7a78ae4e | 236 | branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety) |
c906108c SS |
237 | { |
238 | CORE_ADDR dest; | |
239 | int immediate; | |
240 | int absolute; | |
241 | int ext_op; | |
242 | ||
243 | absolute = (int) ((instr >> 1) & 1); | |
244 | ||
c5aa993b JM |
245 | switch (opcode) |
246 | { | |
247 | case 18: | |
248 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
249 | if (absolute) | |
250 | dest = immediate; | |
251 | else | |
252 | dest = pc + immediate; | |
253 | break; | |
254 | ||
255 | case 16: | |
256 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
257 | if (absolute) | |
258 | dest = immediate; | |
259 | else | |
260 | dest = pc + immediate; | |
261 | break; | |
262 | ||
263 | case 19: | |
264 | ext_op = (instr >> 1) & 0x3ff; | |
265 | ||
266 | if (ext_op == 16) /* br conditional register */ | |
267 | { | |
2188cbdd | 268 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
269 | |
270 | /* If we are about to return from a signal handler, dest is | |
271 | something like 0x3c90. The current frame is a signal handler | |
272 | caller frame, upon completion of the sigreturn system call | |
273 | execution will return to the saved PC in the frame. */ | |
274 | if (dest < TEXT_SEGMENT_BASE) | |
275 | { | |
276 | struct frame_info *fi; | |
277 | ||
278 | fi = get_current_frame (); | |
279 | if (fi != NULL) | |
8b36eed8 | 280 | dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET, |
21283beb | 281 | gdbarch_tdep (current_gdbarch)->wordsize); |
c5aa993b JM |
282 | } |
283 | } | |
284 | ||
285 | else if (ext_op == 528) /* br cond to count reg */ | |
286 | { | |
2188cbdd | 287 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
288 | |
289 | /* If we are about to execute a system call, dest is something | |
290 | like 0x22fc or 0x3b00. Upon completion the system call | |
291 | will return to the address in the link register. */ | |
292 | if (dest < TEXT_SEGMENT_BASE) | |
2188cbdd | 293 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
294 | } |
295 | else | |
296 | return -1; | |
297 | break; | |
c906108c | 298 | |
c5aa993b JM |
299 | default: |
300 | return -1; | |
301 | } | |
c906108c SS |
302 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
303 | } | |
304 | ||
305 | ||
306 | /* Sequence of bytes for breakpoint instruction. */ | |
307 | ||
308 | #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 } | |
309 | #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d } | |
310 | ||
f4f9705a | 311 | const static unsigned char * |
7a78ae4e | 312 | rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) |
c906108c SS |
313 | { |
314 | static unsigned char big_breakpoint[] = BIG_BREAKPOINT; | |
315 | static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT; | |
316 | *bp_size = 4; | |
d7449b42 | 317 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
318 | return big_breakpoint; |
319 | else | |
320 | return little_breakpoint; | |
321 | } | |
322 | ||
323 | ||
324 | /* AIX does not support PT_STEP. Simulate it. */ | |
325 | ||
326 | void | |
379d08a1 AC |
327 | rs6000_software_single_step (enum target_signal signal, |
328 | int insert_breakpoints_p) | |
c906108c | 329 | { |
7c40d541 KB |
330 | CORE_ADDR dummy; |
331 | int breakp_sz; | |
f4f9705a | 332 | const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); |
c906108c SS |
333 | int ii, insn; |
334 | CORE_ADDR loc; | |
335 | CORE_ADDR breaks[2]; | |
336 | int opcode; | |
337 | ||
c5aa993b JM |
338 | if (insert_breakpoints_p) |
339 | { | |
c906108c | 340 | |
c5aa993b | 341 | loc = read_pc (); |
c906108c | 342 | |
c5aa993b | 343 | insn = read_memory_integer (loc, 4); |
c906108c | 344 | |
7c40d541 | 345 | breaks[0] = loc + breakp_sz; |
c5aa993b JM |
346 | opcode = insn >> 26; |
347 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
c906108c | 348 | |
c5aa993b JM |
349 | /* Don't put two breakpoints on the same address. */ |
350 | if (breaks[1] == breaks[0]) | |
351 | breaks[1] = -1; | |
c906108c | 352 | |
c5aa993b | 353 | stepBreaks[1].address = 0; |
c906108c | 354 | |
c5aa993b JM |
355 | for (ii = 0; ii < 2; ++ii) |
356 | { | |
c906108c | 357 | |
c5aa993b JM |
358 | /* ignore invalid breakpoint. */ |
359 | if (breaks[ii] == -1) | |
360 | continue; | |
7c40d541 | 361 | target_insert_breakpoint (breaks[ii], stepBreaks[ii].data); |
c5aa993b JM |
362 | stepBreaks[ii].address = breaks[ii]; |
363 | } | |
c906108c | 364 | |
c5aa993b JM |
365 | } |
366 | else | |
367 | { | |
c906108c | 368 | |
c5aa993b JM |
369 | /* remove step breakpoints. */ |
370 | for (ii = 0; ii < 2; ++ii) | |
371 | if (stepBreaks[ii].address != 0) | |
7c40d541 KB |
372 | target_remove_breakpoint (stepBreaks[ii].address, |
373 | stepBreaks[ii].data); | |
c5aa993b | 374 | } |
c906108c | 375 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 376 | /* What errors? {read,write}_memory call error(). */ |
c906108c SS |
377 | } |
378 | ||
379 | ||
380 | /* return pc value after skipping a function prologue and also return | |
381 | information about a function frame. | |
382 | ||
383 | in struct rs6000_framedata fdata: | |
c5aa993b JM |
384 | - frameless is TRUE, if function does not have a frame. |
385 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
386 | - offset is the initial size of this stack frame --- the amount by | |
387 | which we decrement the sp to allocate the frame. | |
388 | - saved_gpr is the number of the first saved gpr. | |
389 | - saved_fpr is the number of the first saved fpr. | |
6be8bc0c | 390 | - saved_vr is the number of the first saved vr. |
96ff0de4 | 391 | - saved_ev is the number of the first saved ev. |
c5aa993b JM |
392 | - alloca_reg is the number of the register used for alloca() handling. |
393 | Otherwise -1. | |
394 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
395 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
6be8bc0c | 396 | - vr_offset is the offset of the first saved vr from the previous frame. |
96ff0de4 | 397 | - ev_offset is the offset of the first saved ev from the previous frame. |
c5aa993b JM |
398 | - lr_offset is the offset of the saved lr |
399 | - cr_offset is the offset of the saved cr | |
6be8bc0c | 400 | - vrsave_offset is the offset of the saved vrsave register |
c5aa993b | 401 | */ |
c906108c SS |
402 | |
403 | #define SIGNED_SHORT(x) \ | |
404 | ((sizeof (short) == 2) \ | |
405 | ? ((int)(short)(x)) \ | |
406 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
407 | ||
408 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
409 | ||
55d05f3b KB |
410 | /* Limit the number of skipped non-prologue instructions, as the examining |
411 | of the prologue is expensive. */ | |
412 | static int max_skip_non_prologue_insns = 10; | |
413 | ||
414 | /* Given PC representing the starting address of a function, and | |
415 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
416 | for a prologue, attempt to further refine this limit by using | |
417 | the line data in the symbol table. If successful, a better guess | |
418 | on where the prologue ends is returned, otherwise the previous | |
419 | value of lim_pc is returned. */ | |
420 | static CORE_ADDR | |
421 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc) | |
422 | { | |
423 | struct symtab_and_line prologue_sal; | |
424 | ||
425 | prologue_sal = find_pc_line (pc, 0); | |
426 | if (prologue_sal.line != 0) | |
427 | { | |
428 | int i; | |
429 | CORE_ADDR addr = prologue_sal.end; | |
430 | ||
431 | /* Handle the case in which compiler's optimizer/scheduler | |
432 | has moved instructions into the prologue. We scan ahead | |
433 | in the function looking for address ranges whose corresponding | |
434 | line number is less than or equal to the first one that we | |
435 | found for the function. (It can be less than when the | |
436 | scheduler puts a body instruction before the first prologue | |
437 | instruction.) */ | |
438 | for (i = 2 * max_skip_non_prologue_insns; | |
439 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
440 | i--) | |
441 | { | |
442 | struct symtab_and_line sal; | |
443 | ||
444 | sal = find_pc_line (addr, 0); | |
445 | if (sal.line == 0) | |
446 | break; | |
447 | if (sal.line <= prologue_sal.line | |
448 | && sal.symtab == prologue_sal.symtab) | |
449 | { | |
450 | prologue_sal = sal; | |
451 | } | |
452 | addr = sal.end; | |
453 | } | |
454 | ||
455 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
456 | lim_pc = prologue_sal.end; | |
457 | } | |
458 | return lim_pc; | |
459 | } | |
460 | ||
461 | ||
7a78ae4e | 462 | static CORE_ADDR |
077276e8 | 463 | skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) |
c906108c SS |
464 | { |
465 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 466 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 467 | CORE_ADDR li_found_pc = 0; |
c906108c SS |
468 | char buf[4]; |
469 | unsigned long op; | |
470 | long offset = 0; | |
6be8bc0c | 471 | long vr_saved_offset = 0; |
482ca3f5 KB |
472 | int lr_reg = -1; |
473 | int cr_reg = -1; | |
6be8bc0c | 474 | int vr_reg = -1; |
96ff0de4 EZ |
475 | int ev_reg = -1; |
476 | long ev_offset = 0; | |
6be8bc0c | 477 | int vrsave_reg = -1; |
c906108c SS |
478 | int reg; |
479 | int framep = 0; | |
480 | int minimal_toc_loaded = 0; | |
ddb20c56 | 481 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 482 | int num_skip_non_prologue_insns = 0; |
96ff0de4 | 483 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); |
6f99cb26 | 484 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
96ff0de4 | 485 | |
55d05f3b KB |
486 | /* Attempt to find the end of the prologue when no limit is specified. |
487 | Note that refine_prologue_limit() has been written so that it may | |
488 | be used to "refine" the limits of non-zero PC values too, but this | |
489 | is only safe if we 1) trust the line information provided by the | |
490 | compiler and 2) iterate enough to actually find the end of the | |
491 | prologue. | |
492 | ||
493 | It may become a good idea at some point (for both performance and | |
494 | accuracy) to unconditionally call refine_prologue_limit(). But, | |
495 | until we can make a clear determination that this is beneficial, | |
496 | we'll play it safe and only use it to obtain a limit when none | |
497 | has been specified. */ | |
498 | if (lim_pc == 0) | |
499 | lim_pc = refine_prologue_limit (pc, lim_pc); | |
c906108c | 500 | |
ddb20c56 | 501 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
502 | fdata->saved_gpr = -1; |
503 | fdata->saved_fpr = -1; | |
6be8bc0c | 504 | fdata->saved_vr = -1; |
96ff0de4 | 505 | fdata->saved_ev = -1; |
c906108c SS |
506 | fdata->alloca_reg = -1; |
507 | fdata->frameless = 1; | |
508 | fdata->nosavedpc = 1; | |
509 | ||
55d05f3b | 510 | for (;; pc += 4) |
c906108c | 511 | { |
ddb20c56 KB |
512 | /* Sometimes it isn't clear if an instruction is a prologue |
513 | instruction or not. When we encounter one of these ambiguous | |
514 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
515 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
516 | if (prev_insn_was_prologue_insn) | |
517 | last_prologue_pc = pc; | |
55d05f3b KB |
518 | |
519 | /* Stop scanning if we've hit the limit. */ | |
520 | if (lim_pc != 0 && pc >= lim_pc) | |
521 | break; | |
522 | ||
ddb20c56 KB |
523 | prev_insn_was_prologue_insn = 1; |
524 | ||
55d05f3b | 525 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
526 | if (target_read_memory (pc, buf, 4)) |
527 | break; | |
528 | op = extract_signed_integer (buf, 4); | |
c906108c | 529 | |
c5aa993b JM |
530 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
531 | { /* mflr Rx */ | |
532 | lr_reg = (op & 0x03e00000) | 0x90010000; | |
533 | continue; | |
c906108c | 534 | |
c5aa993b JM |
535 | } |
536 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
537 | { /* mfcr Rx */ | |
538 | cr_reg = (op & 0x03e00000) | 0x90010000; | |
539 | continue; | |
c906108c | 540 | |
c906108c | 541 | } |
c5aa993b JM |
542 | else if ((op & 0xfc1f0000) == 0xd8010000) |
543 | { /* stfd Rx,NUM(r1) */ | |
544 | reg = GET_SRC_REG (op); | |
545 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
546 | { | |
547 | fdata->saved_fpr = reg; | |
548 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
549 | } | |
550 | continue; | |
c906108c | 551 | |
c5aa993b JM |
552 | } |
553 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
554 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
555 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
556 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
557 | { |
558 | ||
559 | reg = GET_SRC_REG (op); | |
560 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
561 | { | |
562 | fdata->saved_gpr = reg; | |
7a78ae4e ND |
563 | if ((op & 0xfc1f0003) == 0xf8010000) |
564 | op = (op >> 1) << 1; | |
c5aa993b JM |
565 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
566 | } | |
567 | continue; | |
c906108c | 568 | |
ddb20c56 KB |
569 | } |
570 | else if ((op & 0xffff0000) == 0x60000000) | |
571 | { | |
96ff0de4 | 572 | /* nop */ |
ddb20c56 KB |
573 | /* Allow nops in the prologue, but do not consider them to |
574 | be part of the prologue unless followed by other prologue | |
575 | instructions. */ | |
576 | prev_insn_was_prologue_insn = 0; | |
577 | continue; | |
578 | ||
c906108c | 579 | } |
c5aa993b JM |
580 | else if ((op & 0xffff0000) == 0x3c000000) |
581 | { /* addis 0,0,NUM, used | |
582 | for >= 32k frames */ | |
583 | fdata->offset = (op & 0x0000ffff) << 16; | |
584 | fdata->frameless = 0; | |
585 | continue; | |
586 | ||
587 | } | |
588 | else if ((op & 0xffff0000) == 0x60000000) | |
589 | { /* ori 0,0,NUM, 2nd ha | |
590 | lf of >= 32k frames */ | |
591 | fdata->offset |= (op & 0x0000ffff); | |
592 | fdata->frameless = 0; | |
593 | continue; | |
594 | ||
595 | } | |
482ca3f5 | 596 | else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg) |
c5aa993b JM |
597 | { /* st Rx,NUM(r1) |
598 | where Rx == lr */ | |
599 | fdata->lr_offset = SIGNED_SHORT (op) + offset; | |
600 | fdata->nosavedpc = 0; | |
601 | lr_reg = 0; | |
602 | continue; | |
603 | ||
604 | } | |
482ca3f5 | 605 | else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg) |
c5aa993b JM |
606 | { /* st Rx,NUM(r1) |
607 | where Rx == cr */ | |
608 | fdata->cr_offset = SIGNED_SHORT (op) + offset; | |
609 | cr_reg = 0; | |
610 | continue; | |
611 | ||
612 | } | |
613 | else if (op == 0x48000005) | |
614 | { /* bl .+4 used in | |
615 | -mrelocatable */ | |
616 | continue; | |
617 | ||
618 | } | |
619 | else if (op == 0x48000004) | |
620 | { /* b .+4 (xlc) */ | |
621 | break; | |
622 | ||
c5aa993b | 623 | } |
6be8bc0c EZ |
624 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
625 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
626 | (op & 0xffff0000) == 0x3bde0000) |
627 | { /* addi 30,30,foo@l */ | |
628 | continue; | |
c906108c | 629 | |
c5aa993b JM |
630 | } |
631 | else if ((op & 0xfc000001) == 0x48000001) | |
632 | { /* bl foo, | |
633 | to save fprs??? */ | |
c906108c | 634 | |
c5aa993b | 635 | fdata->frameless = 0; |
6be8bc0c EZ |
636 | /* Don't skip over the subroutine call if it is not within |
637 | the first three instructions of the prologue. */ | |
c5aa993b JM |
638 | if ((pc - orig_pc) > 8) |
639 | break; | |
640 | ||
641 | op = read_memory_integer (pc + 4, 4); | |
642 | ||
6be8bc0c EZ |
643 | /* At this point, make sure this is not a trampoline |
644 | function (a function that simply calls another functions, | |
645 | and nothing else). If the next is not a nop, this branch | |
646 | was part of the function prologue. */ | |
c5aa993b JM |
647 | |
648 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
649 | break; /* don't skip over | |
650 | this branch */ | |
651 | continue; | |
652 | ||
653 | /* update stack pointer */ | |
654 | } | |
7a78ae4e ND |
655 | else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */ |
656 | (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */ | |
657 | { | |
c5aa993b | 658 | fdata->frameless = 0; |
7a78ae4e ND |
659 | if ((op & 0xffff0003) == 0xf8210001) |
660 | op = (op >> 1) << 1; | |
c5aa993b JM |
661 | fdata->offset = SIGNED_SHORT (op); |
662 | offset = fdata->offset; | |
663 | continue; | |
664 | ||
665 | } | |
666 | else if (op == 0x7c21016e) | |
667 | { /* stwux 1,1,0 */ | |
668 | fdata->frameless = 0; | |
669 | offset = fdata->offset; | |
670 | continue; | |
671 | ||
672 | /* Load up minimal toc pointer */ | |
673 | } | |
674 | else if ((op >> 22) == 0x20f | |
675 | && !minimal_toc_loaded) | |
676 | { /* l r31,... or l r30,... */ | |
677 | minimal_toc_loaded = 1; | |
678 | continue; | |
679 | ||
f6077098 KB |
680 | /* move parameters from argument registers to local variable |
681 | registers */ | |
682 | } | |
683 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
684 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
685 | (((op >> 21) & 31) <= 10) && | |
96ff0de4 | 686 | ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ |
f6077098 KB |
687 | { |
688 | continue; | |
689 | ||
c5aa993b JM |
690 | /* store parameters in stack */ |
691 | } | |
6be8bc0c | 692 | else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */ |
c5aa993b | 693 | (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ |
7a78ae4e ND |
694 | (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ |
695 | { | |
c5aa993b | 696 | continue; |
c906108c | 697 | |
c5aa993b JM |
698 | /* store parameters in stack via frame pointer */ |
699 | } | |
700 | else if (framep && | |
701 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */ | |
702 | (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */ | |
703 | (op & 0xfc1f0000) == 0xfc1f0000)) | |
704 | { /* frsp, fp?,NUM(r1) */ | |
705 | continue; | |
706 | ||
707 | /* Set up frame pointer */ | |
708 | } | |
709 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
710 | || op == 0x7c3f0b78) | |
711 | { /* mr r31, r1 */ | |
712 | fdata->frameless = 0; | |
713 | framep = 1; | |
6f99cb26 | 714 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31); |
c5aa993b JM |
715 | continue; |
716 | ||
717 | /* Another way to set up the frame pointer. */ | |
718 | } | |
719 | else if ((op & 0xfc1fffff) == 0x38010000) | |
720 | { /* addi rX, r1, 0x0 */ | |
721 | fdata->frameless = 0; | |
722 | framep = 1; | |
6f99cb26 AC |
723 | fdata->alloca_reg = (tdep->ppc_gp0_regnum |
724 | + ((op & ~0x38010000) >> 21)); | |
c5aa993b | 725 | continue; |
c5aa993b | 726 | } |
6be8bc0c EZ |
727 | /* AltiVec related instructions. */ |
728 | /* Store the vrsave register (spr 256) in another register for | |
729 | later manipulation, or load a register into the vrsave | |
730 | register. 2 instructions are used: mfvrsave and | |
731 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
732 | and mtspr SPR256, Rn. */ | |
733 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
734 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
735 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
736 | { | |
737 | vrsave_reg = GET_SRC_REG (op); | |
738 | continue; | |
739 | } | |
740 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
741 | { | |
742 | continue; | |
743 | } | |
744 | /* Store the register where vrsave was saved to onto the stack: | |
745 | rS is the register where vrsave was stored in a previous | |
746 | instruction. */ | |
747 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
748 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
749 | { | |
750 | if (vrsave_reg == GET_SRC_REG (op)) | |
751 | { | |
752 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
753 | vrsave_reg = -1; | |
754 | } | |
755 | continue; | |
756 | } | |
757 | /* Compute the new value of vrsave, by modifying the register | |
758 | where vrsave was saved to. */ | |
759 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
760 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
761 | { | |
762 | continue; | |
763 | } | |
764 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
765 | in a pair of insns to save the vector registers on the | |
766 | stack. */ | |
767 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
768 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
769 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
770 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c EZ |
771 | { |
772 | li_found_pc = pc; | |
773 | vr_saved_offset = SIGNED_SHORT (op); | |
774 | } | |
775 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
776 | /* 011111 sssss 11111 00000 00111001110 */ | |
777 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
778 | { | |
779 | if (pc == (li_found_pc + 4)) | |
780 | { | |
781 | vr_reg = GET_SRC_REG (op); | |
782 | /* If this is the first vector reg to be saved, or if | |
783 | it has a lower number than others previously seen, | |
784 | reupdate the frame info. */ | |
785 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
786 | { | |
787 | fdata->saved_vr = vr_reg; | |
788 | fdata->vr_offset = vr_saved_offset + offset; | |
789 | } | |
790 | vr_saved_offset = -1; | |
791 | vr_reg = -1; | |
792 | li_found_pc = 0; | |
793 | } | |
794 | } | |
795 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
796 | |
797 | /* Start BookE related instructions. */ | |
798 | /* Store gen register S at (r31+uimm). | |
799 | Any register less than r13 is volatile, so we don't care. */ | |
800 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
801 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
802 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
803 | { | |
804 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
805 | { | |
806 | unsigned int imm; | |
807 | ev_reg = GET_SRC_REG (op); | |
808 | imm = (op >> 11) & 0x1f; | |
809 | ev_offset = imm * 8; | |
810 | /* If this is the first vector reg to be saved, or if | |
811 | it has a lower number than others previously seen, | |
812 | reupdate the frame info. */ | |
813 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
814 | { | |
815 | fdata->saved_ev = ev_reg; | |
816 | fdata->ev_offset = ev_offset + offset; | |
817 | } | |
818 | } | |
819 | continue; | |
820 | } | |
821 | /* Store gen register rS at (r1+rB). */ | |
822 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
823 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
824 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
825 | { | |
826 | if (pc == (li_found_pc + 4)) | |
827 | { | |
828 | ev_reg = GET_SRC_REG (op); | |
829 | /* If this is the first vector reg to be saved, or if | |
830 | it has a lower number than others previously seen, | |
831 | reupdate the frame info. */ | |
832 | /* We know the contents of rB from the previous instruction. */ | |
833 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
834 | { | |
835 | fdata->saved_ev = ev_reg; | |
836 | fdata->ev_offset = vr_saved_offset + offset; | |
837 | } | |
838 | vr_saved_offset = -1; | |
839 | ev_reg = -1; | |
840 | li_found_pc = 0; | |
841 | } | |
842 | continue; | |
843 | } | |
844 | /* Store gen register r31 at (rA+uimm). */ | |
845 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
846 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
847 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
848 | { | |
849 | /* Wwe know that the source register is 31 already, but | |
850 | it can't hurt to compute it. */ | |
851 | ev_reg = GET_SRC_REG (op); | |
852 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
853 | /* If this is the first vector reg to be saved, or if | |
854 | it has a lower number than others previously seen, | |
855 | reupdate the frame info. */ | |
856 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
857 | { | |
858 | fdata->saved_ev = ev_reg; | |
859 | fdata->ev_offset = ev_offset + offset; | |
860 | } | |
861 | ||
862 | continue; | |
863 | } | |
864 | /* Store gen register S at (r31+r0). | |
865 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
866 | /* 000100 sssss 11111 00000 01100100000 */ | |
867 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
868 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
869 | { | |
870 | if (pc == (li_found_pc + 4)) | |
871 | { | |
872 | if ((op & 0x03e00000) >= 0x01a00000) | |
873 | { | |
874 | ev_reg = GET_SRC_REG (op); | |
875 | /* If this is the first vector reg to be saved, or if | |
876 | it has a lower number than others previously seen, | |
877 | reupdate the frame info. */ | |
878 | /* We know the contents of r0 from the previous | |
879 | instruction. */ | |
880 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
881 | { | |
882 | fdata->saved_ev = ev_reg; | |
883 | fdata->ev_offset = vr_saved_offset + offset; | |
884 | } | |
885 | ev_reg = -1; | |
886 | } | |
887 | vr_saved_offset = -1; | |
888 | li_found_pc = 0; | |
889 | continue; | |
890 | } | |
891 | } | |
892 | /* End BookE related instructions. */ | |
893 | ||
c5aa993b JM |
894 | else |
895 | { | |
55d05f3b KB |
896 | /* Not a recognized prologue instruction. |
897 | Handle optimizer code motions into the prologue by continuing | |
898 | the search if we have no valid frame yet or if the return | |
899 | address is not yet saved in the frame. */ | |
900 | if (fdata->frameless == 0 | |
901 | && (lr_reg == -1 || fdata->nosavedpc == 0)) | |
902 | break; | |
903 | ||
904 | if (op == 0x4e800020 /* blr */ | |
905 | || op == 0x4e800420) /* bctr */ | |
906 | /* Do not scan past epilogue in frameless functions or | |
907 | trampolines. */ | |
908 | break; | |
909 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 910 | /* Never skip branches. */ |
55d05f3b KB |
911 | break; |
912 | ||
913 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
914 | /* Do not scan too many insns, scanning insns is expensive with | |
915 | remote targets. */ | |
916 | break; | |
917 | ||
918 | /* Continue scanning. */ | |
919 | prev_insn_was_prologue_insn = 0; | |
920 | continue; | |
c5aa993b | 921 | } |
c906108c SS |
922 | } |
923 | ||
924 | #if 0 | |
925 | /* I have problems with skipping over __main() that I need to address | |
926 | * sometime. Previously, I used to use misc_function_vector which | |
927 | * didn't work as well as I wanted to be. -MGO */ | |
928 | ||
929 | /* If the first thing after skipping a prolog is a branch to a function, | |
930 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 931 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 932 | work before calling a function right after a prologue, thus we can |
64366f1c | 933 | single out such gcc2 behaviour. */ |
c906108c | 934 | |
c906108c | 935 | |
c5aa993b JM |
936 | if ((op & 0xfc000001) == 0x48000001) |
937 | { /* bl foo, an initializer function? */ | |
938 | op = read_memory_integer (pc + 4, 4); | |
939 | ||
940 | if (op == 0x4def7b82) | |
941 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 942 | |
64366f1c EZ |
943 | /* Check and see if we are in main. If so, skip over this |
944 | initializer function as well. */ | |
c906108c | 945 | |
c5aa993b | 946 | tmp = find_pc_misc_function (pc); |
51cc5b07 | 947 | if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ())) |
c5aa993b JM |
948 | return pc + 8; |
949 | } | |
c906108c | 950 | } |
c906108c | 951 | #endif /* 0 */ |
c5aa993b JM |
952 | |
953 | fdata->offset = -fdata->offset; | |
ddb20c56 | 954 | return last_prologue_pc; |
c906108c SS |
955 | } |
956 | ||
957 | ||
958 | /************************************************************************* | |
f6077098 | 959 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
960 | frames, etc. |
961 | *************************************************************************/ | |
962 | ||
c906108c | 963 | |
64366f1c | 964 | /* Pop the innermost frame, go back to the caller. */ |
c5aa993b | 965 | |
c906108c | 966 | static void |
7a78ae4e | 967 | rs6000_pop_frame (void) |
c906108c | 968 | { |
470d5666 | 969 | CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */ |
c906108c SS |
970 | struct rs6000_framedata fdata; |
971 | struct frame_info *frame = get_current_frame (); | |
470d5666 | 972 | int ii, wordsize; |
c906108c SS |
973 | |
974 | pc = read_pc (); | |
c193f6ac | 975 | sp = get_frame_base (frame); |
c906108c | 976 | |
bdd78e62 | 977 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), |
8b36eed8 AC |
978 | get_frame_base (frame), |
979 | get_frame_base (frame))) | |
c906108c | 980 | { |
7a78ae4e ND |
981 | generic_pop_dummy_frame (); |
982 | flush_cached_frames (); | |
983 | return; | |
c906108c SS |
984 | } |
985 | ||
986 | /* Make sure that all registers are valid. */ | |
73937e03 | 987 | deprecated_read_register_bytes (0, NULL, REGISTER_BYTES); |
c906108c | 988 | |
64366f1c | 989 | /* Figure out previous %pc value. If the function is frameless, it is |
c906108c | 990 | still in the link register, otherwise walk the frames and retrieve the |
64366f1c | 991 | saved %pc value in the previous frame. */ |
c906108c | 992 | |
be41e9f4 | 993 | addr = get_frame_func (frame); |
bdd78e62 | 994 | (void) skip_prologue (addr, get_frame_pc (frame), &fdata); |
c906108c | 995 | |
21283beb | 996 | wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c SS |
997 | if (fdata.frameless) |
998 | prev_sp = sp; | |
999 | else | |
7a78ae4e | 1000 | prev_sp = read_memory_addr (sp, wordsize); |
c906108c | 1001 | if (fdata.lr_offset == 0) |
2188cbdd | 1002 | lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 1003 | else |
7a78ae4e | 1004 | lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize); |
c906108c SS |
1005 | |
1006 | /* reset %pc value. */ | |
1007 | write_register (PC_REGNUM, lr); | |
1008 | ||
64366f1c | 1009 | /* reset register values if any was saved earlier. */ |
c906108c SS |
1010 | |
1011 | if (fdata.saved_gpr != -1) | |
1012 | { | |
1013 | addr = prev_sp + fdata.gpr_offset; | |
c5aa993b JM |
1014 | for (ii = fdata.saved_gpr; ii <= 31; ++ii) |
1015 | { | |
524d7c18 AC |
1016 | read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)], |
1017 | wordsize); | |
7a78ae4e | 1018 | addr += wordsize; |
c5aa993b | 1019 | } |
c906108c SS |
1020 | } |
1021 | ||
1022 | if (fdata.saved_fpr != -1) | |
1023 | { | |
1024 | addr = prev_sp + fdata.fpr_offset; | |
c5aa993b JM |
1025 | for (ii = fdata.saved_fpr; ii <= 31; ++ii) |
1026 | { | |
524d7c18 | 1027 | read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8); |
c5aa993b JM |
1028 | addr += 8; |
1029 | } | |
c906108c SS |
1030 | } |
1031 | ||
1032 | write_register (SP_REGNUM, prev_sp); | |
1033 | target_store_registers (-1); | |
1034 | flush_cached_frames (); | |
1035 | } | |
1036 | ||
7a78ae4e | 1037 | /* Fixup the call sequence of a dummy function, with the real function |
64366f1c | 1038 | address. Its arguments will be passed by gdb. */ |
c906108c | 1039 | |
7a78ae4e ND |
1040 | static void |
1041 | rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun, | |
ea7c478f | 1042 | int nargs, struct value **args, struct type *type, |
7a78ae4e | 1043 | int gcc_p) |
c906108c | 1044 | { |
c906108c SS |
1045 | int ii; |
1046 | CORE_ADDR target_addr; | |
1047 | ||
7a78ae4e | 1048 | if (rs6000_find_toc_address_hook != NULL) |
f6077098 | 1049 | { |
7a78ae4e | 1050 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun); |
2188cbdd EZ |
1051 | write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum, |
1052 | tocvalue); | |
f6077098 | 1053 | } |
c906108c SS |
1054 | } |
1055 | ||
11269d7e AC |
1056 | /* All the ABI's require 16 byte alignment. */ |
1057 | static CORE_ADDR | |
1058 | rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1059 | { | |
1060 | return (addr & -16); | |
1061 | } | |
1062 | ||
7a78ae4e | 1063 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
1064 | the first eight words of the argument list (that might be less than |
1065 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 1066 | passed in r3..r10 registers. float and double parameters are |
64366f1c EZ |
1067 | passed in fpr's, in addition to that. Rest of the parameters if any |
1068 | are passed in user stack. There might be cases in which half of the | |
c906108c SS |
1069 | parameter is copied into registers, the other half is pushed into |
1070 | stack. | |
1071 | ||
7a78ae4e ND |
1072 | Stack must be aligned on 64-bit boundaries when synthesizing |
1073 | function calls. | |
1074 | ||
c906108c SS |
1075 | If the function is returning a structure, then the return address is passed |
1076 | in r3, then the first 7 words of the parameters can be passed in registers, | |
64366f1c | 1077 | starting from r4. */ |
c906108c | 1078 | |
7a78ae4e | 1079 | static CORE_ADDR |
ea7c478f | 1080 | rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
7a78ae4e | 1081 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1082 | { |
1083 | int ii; | |
1084 | int len = 0; | |
c5aa993b JM |
1085 | int argno; /* current argument number */ |
1086 | int argbytes; /* current argument byte */ | |
1087 | char tmp_buffer[50]; | |
1088 | int f_argno = 0; /* current floating point argno */ | |
21283beb | 1089 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c | 1090 | |
ea7c478f | 1091 | struct value *arg = 0; |
c906108c SS |
1092 | struct type *type; |
1093 | ||
1094 | CORE_ADDR saved_sp; | |
1095 | ||
64366f1c EZ |
1096 | /* The first eight words of ther arguments are passed in registers. |
1097 | Copy them appropriately. | |
c906108c SS |
1098 | |
1099 | If the function is returning a `struct', then the first word (which | |
64366f1c | 1100 | will be passed in r3) is used for struct return address. In that |
c906108c | 1101 | case we should advance one word and start from r4 register to copy |
64366f1c | 1102 | parameters. */ |
c906108c | 1103 | |
c5aa993b | 1104 | ii = struct_return ? 1 : 0; |
c906108c SS |
1105 | |
1106 | /* | |
c5aa993b JM |
1107 | effectively indirect call... gcc does... |
1108 | ||
1109 | return_val example( float, int); | |
1110 | ||
1111 | eabi: | |
1112 | float in fp0, int in r3 | |
1113 | offset of stack on overflow 8/16 | |
1114 | for varargs, must go by type. | |
1115 | power open: | |
1116 | float in r3&r4, int in r5 | |
1117 | offset of stack on overflow different | |
1118 | both: | |
1119 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
1120 | pay attention to arg promotion. | |
1121 | User may have to cast\args to handle promotion correctly | |
1122 | since gdb won't know if prototype supplied or not. | |
1123 | */ | |
c906108c | 1124 | |
c5aa993b JM |
1125 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
1126 | { | |
f6077098 | 1127 | int reg_size = REGISTER_RAW_SIZE (ii + 3); |
c5aa993b JM |
1128 | |
1129 | arg = args[argno]; | |
1130 | type = check_typedef (VALUE_TYPE (arg)); | |
1131 | len = TYPE_LENGTH (type); | |
1132 | ||
1133 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1134 | { | |
1135 | ||
64366f1c | 1136 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
c5aa993b | 1137 | There are 13 fpr's reserved for passing parameters. At this point |
64366f1c | 1138 | there is no way we would run out of them. */ |
c5aa993b JM |
1139 | |
1140 | if (len > 8) | |
1141 | printf_unfiltered ( | |
1142 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
1143 | ||
524d7c18 | 1144 | memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], |
c5aa993b JM |
1145 | VALUE_CONTENTS (arg), |
1146 | len); | |
1147 | ++f_argno; | |
1148 | } | |
1149 | ||
f6077098 | 1150 | if (len > reg_size) |
c5aa993b JM |
1151 | { |
1152 | ||
64366f1c | 1153 | /* Argument takes more than one register. */ |
c5aa993b JM |
1154 | while (argbytes < len) |
1155 | { | |
524d7c18 AC |
1156 | memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, |
1157 | reg_size); | |
1158 | memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)], | |
c5aa993b | 1159 | ((char *) VALUE_CONTENTS (arg)) + argbytes, |
f6077098 KB |
1160 | (len - argbytes) > reg_size |
1161 | ? reg_size : len - argbytes); | |
1162 | ++ii, argbytes += reg_size; | |
c5aa993b JM |
1163 | |
1164 | if (ii >= 8) | |
1165 | goto ran_out_of_registers_for_arguments; | |
1166 | } | |
1167 | argbytes = 0; | |
1168 | --ii; | |
1169 | } | |
1170 | else | |
64366f1c EZ |
1171 | { |
1172 | /* Argument can fit in one register. No problem. */ | |
d7449b42 | 1173 | int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0; |
524d7c18 AC |
1174 | memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size); |
1175 | memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj, | |
f6077098 | 1176 | VALUE_CONTENTS (arg), len); |
c5aa993b JM |
1177 | } |
1178 | ++argno; | |
c906108c | 1179 | } |
c906108c SS |
1180 | |
1181 | ran_out_of_registers_for_arguments: | |
1182 | ||
7a78ae4e | 1183 | saved_sp = read_sp (); |
cc9836a8 | 1184 | |
64366f1c | 1185 | /* Location for 8 parameters are always reserved. */ |
7a78ae4e | 1186 | sp -= wordsize * 8; |
f6077098 | 1187 | |
64366f1c | 1188 | /* Another six words for back chain, TOC register, link register, etc. */ |
7a78ae4e | 1189 | sp -= wordsize * 6; |
f6077098 | 1190 | |
64366f1c | 1191 | /* Stack pointer must be quadword aligned. */ |
7a78ae4e | 1192 | sp &= -16; |
c906108c | 1193 | |
64366f1c EZ |
1194 | /* If there are more arguments, allocate space for them in |
1195 | the stack, then push them starting from the ninth one. */ | |
c906108c | 1196 | |
c5aa993b JM |
1197 | if ((argno < nargs) || argbytes) |
1198 | { | |
1199 | int space = 0, jj; | |
c906108c | 1200 | |
c5aa993b JM |
1201 | if (argbytes) |
1202 | { | |
1203 | space += ((len - argbytes + 3) & -4); | |
1204 | jj = argno + 1; | |
1205 | } | |
1206 | else | |
1207 | jj = argno; | |
c906108c | 1208 | |
c5aa993b JM |
1209 | for (; jj < nargs; ++jj) |
1210 | { | |
ea7c478f | 1211 | struct value *val = args[jj]; |
c5aa993b JM |
1212 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; |
1213 | } | |
c906108c | 1214 | |
64366f1c | 1215 | /* Add location required for the rest of the parameters. */ |
f6077098 | 1216 | space = (space + 15) & -16; |
c5aa993b | 1217 | sp -= space; |
c906108c | 1218 | |
64366f1c EZ |
1219 | /* This is another instance we need to be concerned about |
1220 | securing our stack space. If we write anything underneath %sp | |
1221 | (r1), we might conflict with the kernel who thinks he is free | |
1222 | to use this area. So, update %sp first before doing anything | |
1223 | else. */ | |
c906108c | 1224 | |
c5aa993b | 1225 | write_register (SP_REGNUM, sp); |
c906108c | 1226 | |
64366f1c EZ |
1227 | /* If the last argument copied into the registers didn't fit there |
1228 | completely, push the rest of it into stack. */ | |
c906108c | 1229 | |
c5aa993b JM |
1230 | if (argbytes) |
1231 | { | |
1232 | write_memory (sp + 24 + (ii * 4), | |
1233 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
1234 | len - argbytes); | |
1235 | ++argno; | |
1236 | ii += ((len - argbytes + 3) & -4) / 4; | |
1237 | } | |
c906108c | 1238 | |
64366f1c | 1239 | /* Push the rest of the arguments into stack. */ |
c5aa993b JM |
1240 | for (; argno < nargs; ++argno) |
1241 | { | |
c906108c | 1242 | |
c5aa993b JM |
1243 | arg = args[argno]; |
1244 | type = check_typedef (VALUE_TYPE (arg)); | |
1245 | len = TYPE_LENGTH (type); | |
c906108c SS |
1246 | |
1247 | ||
64366f1c EZ |
1248 | /* Float types should be passed in fpr's, as well as in the |
1249 | stack. */ | |
c5aa993b JM |
1250 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
1251 | { | |
c906108c | 1252 | |
c5aa993b JM |
1253 | if (len > 8) |
1254 | printf_unfiltered ( | |
1255 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
c906108c | 1256 | |
524d7c18 | 1257 | memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], |
c5aa993b JM |
1258 | VALUE_CONTENTS (arg), |
1259 | len); | |
1260 | ++f_argno; | |
1261 | } | |
c906108c | 1262 | |
c5aa993b JM |
1263 | write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len); |
1264 | ii += ((len + 3) & -4) / 4; | |
1265 | } | |
c906108c | 1266 | } |
c906108c | 1267 | else |
64366f1c | 1268 | /* Secure stack areas first, before doing anything else. */ |
c906108c SS |
1269 | write_register (SP_REGNUM, sp); |
1270 | ||
c906108c SS |
1271 | /* set back chain properly */ |
1272 | store_address (tmp_buffer, 4, saved_sp); | |
1273 | write_memory (sp, tmp_buffer, 4); | |
1274 | ||
1275 | target_store_registers (-1); | |
1276 | return sp; | |
1277 | } | |
c906108c SS |
1278 | |
1279 | /* Function: ppc_push_return_address (pc, sp) | |
64366f1c | 1280 | Set up the return address for the inferior function call. */ |
c906108c | 1281 | |
7a78ae4e ND |
1282 | static CORE_ADDR |
1283 | ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
c906108c | 1284 | { |
2188cbdd EZ |
1285 | write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum, |
1286 | CALL_DUMMY_ADDRESS ()); | |
c906108c SS |
1287 | return sp; |
1288 | } | |
1289 | ||
7a78ae4e | 1290 | /* Extract a function return value of type TYPE from raw register array |
64366f1c | 1291 | REGBUF, and copy that return value into VALBUF in virtual format. */ |
96ff0de4 | 1292 | static void |
46d79c04 | 1293 | e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf) |
96ff0de4 EZ |
1294 | { |
1295 | int offset = 0; | |
1296 | int vallen = TYPE_LENGTH (valtype); | |
1297 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
1298 | ||
1299 | if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY | |
1300 | && vallen == 8 | |
1301 | && TYPE_VECTOR (valtype)) | |
1302 | { | |
1303 | regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf); | |
1304 | } | |
1305 | else | |
1306 | { | |
1307 | /* Return value is copied starting from r3. Note that r3 for us | |
1308 | is a pseudo register. */ | |
1309 | int offset = 0; | |
1310 | int return_regnum = tdep->ppc_gp0_regnum + 3; | |
1311 | int reg_size = REGISTER_RAW_SIZE (return_regnum); | |
1312 | int reg_part_size; | |
1313 | char *val_buffer; | |
1314 | int copied = 0; | |
1315 | int i = 0; | |
1316 | ||
1317 | /* Compute where we will start storing the value from. */ | |
1318 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1319 | { | |
1320 | if (vallen <= reg_size) | |
1321 | offset = reg_size - vallen; | |
1322 | else | |
1323 | offset = reg_size + (reg_size - vallen); | |
1324 | } | |
1325 | ||
1326 | /* How big does the local buffer need to be? */ | |
1327 | if (vallen <= reg_size) | |
1328 | val_buffer = alloca (reg_size); | |
1329 | else | |
1330 | val_buffer = alloca (vallen); | |
1331 | ||
1332 | /* Read all we need into our private buffer. We copy it in | |
1333 | chunks that are as long as one register, never shorter, even | |
1334 | if the value is smaller than the register. */ | |
1335 | while (copied < vallen) | |
1336 | { | |
1337 | reg_part_size = REGISTER_RAW_SIZE (return_regnum + i); | |
1338 | /* It is a pseudo/cooked register. */ | |
1339 | regcache_cooked_read (regbuf, return_regnum + i, | |
1340 | val_buffer + copied); | |
1341 | copied += reg_part_size; | |
1342 | i++; | |
1343 | } | |
1344 | /* Put the stuff in the return buffer. */ | |
1345 | memcpy (valbuf, val_buffer + offset, vallen); | |
1346 | } | |
1347 | } | |
c906108c | 1348 | |
7a78ae4e ND |
1349 | static void |
1350 | rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) | |
c906108c SS |
1351 | { |
1352 | int offset = 0; | |
ace1378a | 1353 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c | 1354 | |
c5aa993b JM |
1355 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
1356 | { | |
c906108c | 1357 | |
c5aa993b JM |
1358 | double dd; |
1359 | float ff; | |
1360 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. | |
1361 | We need to truncate the return value into float size (4 byte) if | |
64366f1c | 1362 | necessary. */ |
c906108c | 1363 | |
c5aa993b JM |
1364 | if (TYPE_LENGTH (valtype) > 4) /* this is a double */ |
1365 | memcpy (valbuf, | |
1366 | ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], | |
1367 | TYPE_LENGTH (valtype)); | |
1368 | else | |
1369 | { /* float */ | |
1370 | memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8); | |
1371 | ff = (float) dd; | |
1372 | memcpy (valbuf, &ff, sizeof (float)); | |
1373 | } | |
1374 | } | |
ace1378a EZ |
1375 | else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY |
1376 | && TYPE_LENGTH (valtype) == 16 | |
1377 | && TYPE_VECTOR (valtype)) | |
1378 | { | |
1379 | memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), | |
1380 | TYPE_LENGTH (valtype)); | |
1381 | } | |
c5aa993b JM |
1382 | else |
1383 | { | |
1384 | /* return value is copied starting from r3. */ | |
d7449b42 | 1385 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
c5aa993b JM |
1386 | && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3)) |
1387 | offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype); | |
1388 | ||
1389 | memcpy (valbuf, | |
1390 | regbuf + REGISTER_BYTE (3) + offset, | |
c906108c | 1391 | TYPE_LENGTH (valtype)); |
c906108c | 1392 | } |
c906108c SS |
1393 | } |
1394 | ||
977adac5 ND |
1395 | /* Return whether handle_inferior_event() should proceed through code |
1396 | starting at PC in function NAME when stepping. | |
1397 | ||
1398 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
1399 | handle memory references that are too distant to fit in instructions | |
1400 | generated by the compiler. For example, if 'foo' in the following | |
1401 | instruction: | |
1402 | ||
1403 | lwz r9,foo(r2) | |
1404 | ||
1405 | is greater than 32767, the linker might replace the lwz with a branch to | |
1406 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
1407 | back to where execution should continue. | |
1408 | ||
1409 | GDB should silently step over @FIX code, just like AIX dbx does. | |
1410 | Unfortunately, the linker uses the "b" instruction for the branches, | |
1411 | meaning that the link register doesn't get set. Therefore, GDB's usual | |
1412 | step_over_function() mechanism won't work. | |
1413 | ||
1414 | Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks | |
1415 | in handle_inferior_event() to skip past @FIX code. */ | |
1416 | ||
1417 | int | |
1418 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
1419 | { | |
1420 | return name && !strncmp (name, "@FIX", 4); | |
1421 | } | |
1422 | ||
1423 | /* Skip code that the user doesn't want to see when stepping: | |
1424 | ||
1425 | 1. Indirect function calls use a piece of trampoline code to do context | |
1426 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
1427 | its first instruction (as when we have single-stepped to here). | |
1428 | ||
1429 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 1430 | indirect function call trampolines). |
977adac5 ND |
1431 | |
1432 | 3. Skip bigtoc fixup code. | |
1433 | ||
c906108c | 1434 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 1435 | code that should be skipped. */ |
c906108c SS |
1436 | |
1437 | CORE_ADDR | |
7a78ae4e | 1438 | rs6000_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
1439 | { |
1440 | register unsigned int ii, op; | |
977adac5 | 1441 | int rel; |
c906108c | 1442 | CORE_ADDR solib_target_pc; |
977adac5 | 1443 | struct minimal_symbol *msymbol; |
c906108c | 1444 | |
c5aa993b JM |
1445 | static unsigned trampoline_code[] = |
1446 | { | |
1447 | 0x800b0000, /* l r0,0x0(r11) */ | |
1448 | 0x90410014, /* st r2,0x14(r1) */ | |
1449 | 0x7c0903a6, /* mtctr r0 */ | |
1450 | 0x804b0004, /* l r2,0x4(r11) */ | |
1451 | 0x816b0008, /* l r11,0x8(r11) */ | |
1452 | 0x4e800420, /* bctr */ | |
1453 | 0x4e800020, /* br */ | |
1454 | 0 | |
c906108c SS |
1455 | }; |
1456 | ||
977adac5 ND |
1457 | /* Check for bigtoc fixup code. */ |
1458 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
22abf04a | 1459 | if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol))) |
977adac5 ND |
1460 | { |
1461 | /* Double-check that the third instruction from PC is relative "b". */ | |
1462 | op = read_memory_integer (pc + 8, 4); | |
1463 | if ((op & 0xfc000003) == 0x48000000) | |
1464 | { | |
1465 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
1466 | add it to the containing PC. */ | |
1467 | rel = ((int)(op << 6) >> 6); | |
1468 | return pc + 8 + rel; | |
1469 | } | |
1470 | } | |
1471 | ||
c906108c SS |
1472 | /* If pc is in a shared library trampoline, return its target. */ |
1473 | solib_target_pc = find_solib_trampoline_target (pc); | |
1474 | if (solib_target_pc) | |
1475 | return solib_target_pc; | |
1476 | ||
c5aa993b JM |
1477 | for (ii = 0; trampoline_code[ii]; ++ii) |
1478 | { | |
1479 | op = read_memory_integer (pc + (ii * 4), 4); | |
1480 | if (op != trampoline_code[ii]) | |
1481 | return 0; | |
1482 | } | |
1483 | ii = read_register (11); /* r11 holds destination addr */ | |
21283beb | 1484 | pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */ |
c906108c SS |
1485 | return pc; |
1486 | } | |
1487 | ||
1488 | /* Determines whether the function FI has a frame on the stack or not. */ | |
1489 | ||
9aa1e687 | 1490 | int |
c877c8e6 | 1491 | rs6000_frameless_function_invocation (struct frame_info *fi) |
c906108c SS |
1492 | { |
1493 | CORE_ADDR func_start; | |
1494 | struct rs6000_framedata fdata; | |
1495 | ||
1496 | /* Don't even think about framelessness except on the innermost frame | |
1497 | or if the function was interrupted by a signal. */ | |
75e3c1f9 AC |
1498 | if (get_next_frame (fi) != NULL |
1499 | && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME)) | |
c906108c | 1500 | return 0; |
c5aa993b | 1501 | |
be41e9f4 | 1502 | func_start = get_frame_func (fi); |
c906108c SS |
1503 | |
1504 | /* If we failed to find the start of the function, it is a mistake | |
64366f1c | 1505 | to inspect the instructions. */ |
c906108c SS |
1506 | |
1507 | if (!func_start) | |
1508 | { | |
1509 | /* A frame with a zero PC is usually created by dereferencing a NULL | |
c5aa993b | 1510 | function pointer, normally causing an immediate core dump of the |
64366f1c | 1511 | inferior. Mark function as frameless, as the inferior has no chance |
c5aa993b | 1512 | of setting up a stack frame. */ |
bdd78e62 | 1513 | if (get_frame_pc (fi) == 0) |
c906108c SS |
1514 | return 1; |
1515 | else | |
1516 | return 0; | |
1517 | } | |
1518 | ||
bdd78e62 | 1519 | (void) skip_prologue (func_start, get_frame_pc (fi), &fdata); |
c906108c SS |
1520 | return fdata.frameless; |
1521 | } | |
1522 | ||
64366f1c | 1523 | /* Return the PC saved in a frame. */ |
c906108c | 1524 | |
9aa1e687 | 1525 | CORE_ADDR |
c877c8e6 | 1526 | rs6000_frame_saved_pc (struct frame_info *fi) |
c906108c SS |
1527 | { |
1528 | CORE_ADDR func_start; | |
1529 | struct rs6000_framedata fdata; | |
21283beb | 1530 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
a88376a3 | 1531 | int wordsize = tdep->wordsize; |
c906108c | 1532 | |
5a203e44 | 1533 | if ((get_frame_type (fi) == SIGTRAMP_FRAME)) |
8b36eed8 AC |
1534 | return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET, |
1535 | wordsize); | |
c906108c | 1536 | |
bdd78e62 | 1537 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), |
8b36eed8 AC |
1538 | get_frame_base (fi), |
1539 | get_frame_base (fi))) | |
bdd78e62 | 1540 | return deprecated_read_register_dummy (get_frame_pc (fi), |
8b36eed8 | 1541 | get_frame_base (fi), PC_REGNUM); |
c906108c | 1542 | |
be41e9f4 | 1543 | func_start = get_frame_func (fi); |
c906108c SS |
1544 | |
1545 | /* If we failed to find the start of the function, it is a mistake | |
64366f1c | 1546 | to inspect the instructions. */ |
c906108c SS |
1547 | if (!func_start) |
1548 | return 0; | |
1549 | ||
bdd78e62 | 1550 | (void) skip_prologue (func_start, get_frame_pc (fi), &fdata); |
c906108c | 1551 | |
75e3c1f9 | 1552 | if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL) |
c906108c | 1553 | { |
75e3c1f9 | 1554 | if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME)) |
8b36eed8 AC |
1555 | return read_memory_addr ((get_frame_base (get_next_frame (fi)) |
1556 | + SIG_FRAME_LR_OFFSET), | |
7a78ae4e | 1557 | wordsize); |
bdd78e62 | 1558 | else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0)) |
8b69000d AC |
1559 | /* The link register wasn't saved by this frame and the next |
1560 | (inner, newer) frame is a dummy. Get the link register | |
1561 | value by unwinding it from that [dummy] frame. */ | |
1562 | { | |
1563 | ULONGEST lr; | |
1564 | frame_unwind_unsigned_register (get_next_frame (fi), | |
1565 | tdep->ppc_lr_regnum, &lr); | |
1566 | return lr; | |
1567 | } | |
c906108c | 1568 | else |
618ce49f AC |
1569 | return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) |
1570 | + tdep->lr_frame_offset, | |
7a78ae4e | 1571 | wordsize); |
c906108c SS |
1572 | } |
1573 | ||
1574 | if (fdata.lr_offset == 0) | |
2188cbdd | 1575 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 1576 | |
618ce49f AC |
1577 | return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset, |
1578 | wordsize); | |
c906108c SS |
1579 | } |
1580 | ||
1581 | /* If saved registers of frame FI are not known yet, read and cache them. | |
1582 | &FDATAP contains rs6000_framedata; TDATAP can be NULL, | |
1583 | in which case the framedata are read. */ | |
1584 | ||
1585 | static void | |
7a78ae4e | 1586 | frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap) |
c906108c | 1587 | { |
c5aa993b | 1588 | CORE_ADDR frame_addr; |
c906108c | 1589 | struct rs6000_framedata work_fdata; |
6be8bc0c EZ |
1590 | struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch); |
1591 | int wordsize = tdep->wordsize; | |
c906108c | 1592 | |
c9012c71 | 1593 | if (get_frame_saved_regs (fi)) |
c906108c | 1594 | return; |
c5aa993b | 1595 | |
c906108c SS |
1596 | if (fdatap == NULL) |
1597 | { | |
1598 | fdatap = &work_fdata; | |
be41e9f4 | 1599 | (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap); |
c906108c SS |
1600 | } |
1601 | ||
1602 | frame_saved_regs_zalloc (fi); | |
1603 | ||
1604 | /* If there were any saved registers, figure out parent's stack | |
64366f1c | 1605 | pointer. */ |
c906108c | 1606 | /* The following is true only if the frame doesn't have a call to |
64366f1c | 1607 | alloca(), FIXME. */ |
c906108c | 1608 | |
6be8bc0c EZ |
1609 | if (fdatap->saved_fpr == 0 |
1610 | && fdatap->saved_gpr == 0 | |
1611 | && fdatap->saved_vr == 0 | |
96ff0de4 | 1612 | && fdatap->saved_ev == 0 |
6be8bc0c EZ |
1613 | && fdatap->lr_offset == 0 |
1614 | && fdatap->cr_offset == 0 | |
96ff0de4 EZ |
1615 | && fdatap->vr_offset == 0 |
1616 | && fdatap->ev_offset == 0) | |
c906108c | 1617 | frame_addr = 0; |
c906108c | 1618 | else |
bf75c8c1 AC |
1619 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most |
1620 | address of the current frame. Things might be easier if the | |
1621 | ->frame pointed to the outer-most address of the frame. In the | |
1622 | mean time, the address of the prev frame is used as the base | |
1623 | address of this frame. */ | |
618ce49f | 1624 | frame_addr = DEPRECATED_FRAME_CHAIN (fi); |
c5aa993b | 1625 | |
c906108c SS |
1626 | /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr. |
1627 | All fpr's from saved_fpr to fp31 are saved. */ | |
1628 | ||
1629 | if (fdatap->saved_fpr >= 0) | |
1630 | { | |
1631 | int i; | |
7a78ae4e | 1632 | CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset; |
c906108c SS |
1633 | for (i = fdatap->saved_fpr; i < 32; i++) |
1634 | { | |
c9012c71 | 1635 | get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr; |
7a78ae4e | 1636 | fpr_addr += 8; |
c906108c SS |
1637 | } |
1638 | } | |
1639 | ||
1640 | /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr. | |
1641 | All gpr's from saved_gpr to gpr31 are saved. */ | |
1642 | ||
1643 | if (fdatap->saved_gpr >= 0) | |
1644 | { | |
1645 | int i; | |
7a78ae4e | 1646 | CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset; |
c906108c SS |
1647 | for (i = fdatap->saved_gpr; i < 32; i++) |
1648 | { | |
366cfc9e | 1649 | get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr; |
7a78ae4e | 1650 | gpr_addr += wordsize; |
c906108c SS |
1651 | } |
1652 | } | |
1653 | ||
6be8bc0c EZ |
1654 | /* if != -1, fdatap->saved_vr is the smallest number of saved_vr. |
1655 | All vr's from saved_vr to vr31 are saved. */ | |
1656 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
1657 | { | |
1658 | if (fdatap->saved_vr >= 0) | |
1659 | { | |
1660 | int i; | |
1661 | CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset; | |
1662 | for (i = fdatap->saved_vr; i < 32; i++) | |
1663 | { | |
c9012c71 | 1664 | get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr; |
6be8bc0c EZ |
1665 | vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum); |
1666 | } | |
1667 | } | |
1668 | } | |
1669 | ||
96ff0de4 EZ |
1670 | /* if != -1, fdatap->saved_ev is the smallest number of saved_ev. |
1671 | All vr's from saved_ev to ev31 are saved. ????? */ | |
1672 | if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) | |
1673 | { | |
1674 | if (fdatap->saved_ev >= 0) | |
1675 | { | |
1676 | int i; | |
1677 | CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset; | |
1678 | for (i = fdatap->saved_ev; i < 32; i++) | |
1679 | { | |
c9012c71 AC |
1680 | get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr; |
1681 | get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4; | |
96ff0de4 EZ |
1682 | ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum); |
1683 | } | |
1684 | } | |
1685 | } | |
1686 | ||
c906108c SS |
1687 | /* If != 0, fdatap->cr_offset is the offset from the frame that holds |
1688 | the CR. */ | |
1689 | if (fdatap->cr_offset != 0) | |
c9012c71 | 1690 | get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset; |
c906108c SS |
1691 | |
1692 | /* If != 0, fdatap->lr_offset is the offset from the frame that holds | |
1693 | the LR. */ | |
1694 | if (fdatap->lr_offset != 0) | |
c9012c71 | 1695 | get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset; |
6be8bc0c EZ |
1696 | |
1697 | /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds | |
1698 | the VRSAVE. */ | |
1699 | if (fdatap->vrsave_offset != 0) | |
c9012c71 | 1700 | get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset; |
c906108c SS |
1701 | } |
1702 | ||
1703 | /* Return the address of a frame. This is the inital %sp value when the frame | |
64366f1c EZ |
1704 | was first allocated. For functions calling alloca(), it might be saved in |
1705 | an alloca register. */ | |
c906108c SS |
1706 | |
1707 | static CORE_ADDR | |
7a78ae4e | 1708 | frame_initial_stack_address (struct frame_info *fi) |
c906108c SS |
1709 | { |
1710 | CORE_ADDR tmpaddr; | |
1711 | struct rs6000_framedata fdata; | |
1712 | struct frame_info *callee_fi; | |
1713 | ||
64366f1c EZ |
1714 | /* If the initial stack pointer (frame address) of this frame is known, |
1715 | just return it. */ | |
c906108c | 1716 | |
c9012c71 AC |
1717 | if (get_frame_extra_info (fi)->initial_sp) |
1718 | return get_frame_extra_info (fi)->initial_sp; | |
c906108c | 1719 | |
64366f1c | 1720 | /* Find out if this function is using an alloca register. */ |
c906108c | 1721 | |
be41e9f4 | 1722 | (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata); |
c906108c | 1723 | |
64366f1c EZ |
1724 | /* If saved registers of this frame are not known yet, read and |
1725 | cache them. */ | |
c906108c | 1726 | |
c9012c71 | 1727 | if (!get_frame_saved_regs (fi)) |
c906108c SS |
1728 | frame_get_saved_regs (fi, &fdata); |
1729 | ||
1730 | /* If no alloca register used, then fi->frame is the value of the %sp for | |
64366f1c | 1731 | this frame, and it is good enough. */ |
c906108c SS |
1732 | |
1733 | if (fdata.alloca_reg < 0) | |
1734 | { | |
c9012c71 AC |
1735 | get_frame_extra_info (fi)->initial_sp = get_frame_base (fi); |
1736 | return get_frame_extra_info (fi)->initial_sp; | |
c906108c SS |
1737 | } |
1738 | ||
953836b2 AC |
1739 | /* There is an alloca register, use its value, in the current frame, |
1740 | as the initial stack pointer. */ | |
1741 | { | |
1742 | char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE); | |
1743 | if (frame_register_read (fi, fdata.alloca_reg, tmpbuf)) | |
1744 | { | |
c9012c71 | 1745 | get_frame_extra_info (fi)->initial_sp |
953836b2 AC |
1746 | = extract_unsigned_integer (tmpbuf, |
1747 | REGISTER_RAW_SIZE (fdata.alloca_reg)); | |
1748 | } | |
1749 | else | |
1750 | /* NOTE: cagney/2002-04-17: At present the only time | |
1751 | frame_register_read will fail is when the register isn't | |
1752 | available. If that does happen, use the frame. */ | |
c9012c71 | 1753 | get_frame_extra_info (fi)->initial_sp = get_frame_base (fi); |
953836b2 | 1754 | } |
c9012c71 | 1755 | return get_frame_extra_info (fi)->initial_sp; |
c906108c SS |
1756 | } |
1757 | ||
7a78ae4e ND |
1758 | /* Describe the pointer in each stack frame to the previous stack frame |
1759 | (its caller). */ | |
1760 | ||
618ce49f AC |
1761 | /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces |
1762 | the frame's chain-pointer. */ | |
7a78ae4e ND |
1763 | |
1764 | /* In the case of the RS/6000, the frame's nominal address | |
1765 | is the address of a 4-byte word containing the calling frame's address. */ | |
1766 | ||
9aa1e687 | 1767 | CORE_ADDR |
7a78ae4e | 1768 | rs6000_frame_chain (struct frame_info *thisframe) |
c906108c | 1769 | { |
7a78ae4e | 1770 | CORE_ADDR fp, fpp, lr; |
21283beb | 1771 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c | 1772 | |
bdd78e62 | 1773 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe), |
8b36eed8 AC |
1774 | get_frame_base (thisframe), |
1775 | get_frame_base (thisframe))) | |
9f3b7f07 AC |
1776 | /* A dummy frame always correctly chains back to the previous |
1777 | frame. */ | |
8b36eed8 | 1778 | return read_memory_addr (get_frame_base (thisframe), wordsize); |
c906108c | 1779 | |
bdd78e62 AC |
1780 | if (inside_entry_file (get_frame_pc (thisframe)) |
1781 | || get_frame_pc (thisframe) == entry_point_address ()) | |
c906108c SS |
1782 | return 0; |
1783 | ||
5a203e44 | 1784 | if ((get_frame_type (thisframe) == SIGTRAMP_FRAME)) |
8b36eed8 AC |
1785 | fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET, |
1786 | wordsize); | |
75e3c1f9 AC |
1787 | else if (get_next_frame (thisframe) != NULL |
1788 | && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME) | |
c877c8e6 | 1789 | && FRAMELESS_FUNCTION_INVOCATION (thisframe)) |
c906108c SS |
1790 | /* A frameless function interrupted by a signal did not change the |
1791 | frame pointer. */ | |
c193f6ac | 1792 | fp = get_frame_base (thisframe); |
c906108c | 1793 | else |
8b36eed8 | 1794 | fp = read_memory_addr (get_frame_base (thisframe), wordsize); |
7a78ae4e ND |
1795 | return fp; |
1796 | } | |
1797 | ||
1798 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG | |
64366f1c | 1799 | isn't available with that word size, return 0. */ |
7a78ae4e ND |
1800 | |
1801 | static int | |
1802 | regsize (const struct reg *reg, int wordsize) | |
1803 | { | |
1804 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
1805 | } | |
1806 | ||
1807 | /* Return the name of register number N, or null if no such register exists | |
64366f1c | 1808 | in the current architecture. */ |
7a78ae4e | 1809 | |
fa88f677 | 1810 | static const char * |
7a78ae4e ND |
1811 | rs6000_register_name (int n) |
1812 | { | |
21283beb | 1813 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1814 | const struct reg *reg = tdep->regs + n; |
1815 | ||
1816 | if (!regsize (reg, tdep->wordsize)) | |
1817 | return NULL; | |
1818 | return reg->name; | |
1819 | } | |
1820 | ||
1821 | /* Index within `registers' of the first byte of the space for | |
1822 | register N. */ | |
1823 | ||
1824 | static int | |
1825 | rs6000_register_byte (int n) | |
1826 | { | |
21283beb | 1827 | return gdbarch_tdep (current_gdbarch)->regoff[n]; |
7a78ae4e ND |
1828 | } |
1829 | ||
1830 | /* Return the number of bytes of storage in the actual machine representation | |
64366f1c | 1831 | for register N if that register is available, else return 0. */ |
7a78ae4e ND |
1832 | |
1833 | static int | |
1834 | rs6000_register_raw_size (int n) | |
1835 | { | |
21283beb | 1836 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1837 | const struct reg *reg = tdep->regs + n; |
1838 | return regsize (reg, tdep->wordsize); | |
1839 | } | |
1840 | ||
7a78ae4e ND |
1841 | /* Return the GDB type object for the "standard" data type |
1842 | of data in register N. */ | |
1843 | ||
1844 | static struct type * | |
fba45db2 | 1845 | rs6000_register_virtual_type (int n) |
7a78ae4e | 1846 | { |
21283beb | 1847 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1848 | const struct reg *reg = tdep->regs + n; |
1849 | ||
1fcc0bb8 EZ |
1850 | if (reg->fpr) |
1851 | return builtin_type_double; | |
1852 | else | |
1853 | { | |
1854 | int size = regsize (reg, tdep->wordsize); | |
1855 | switch (size) | |
1856 | { | |
1857 | case 8: | |
c8001721 EZ |
1858 | if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum) |
1859 | return builtin_type_vec64; | |
1860 | else | |
1861 | return builtin_type_int64; | |
1fcc0bb8 EZ |
1862 | break; |
1863 | case 16: | |
08cf96df | 1864 | return builtin_type_vec128; |
1fcc0bb8 EZ |
1865 | break; |
1866 | default: | |
1867 | return builtin_type_int32; | |
1868 | break; | |
1869 | } | |
1870 | } | |
7a78ae4e ND |
1871 | } |
1872 | ||
7a78ae4e ND |
1873 | /* Return whether register N requires conversion when moving from raw format |
1874 | to virtual format. | |
1875 | ||
1876 | The register format for RS/6000 floating point registers is always | |
64366f1c | 1877 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
1878 | |
1879 | static int | |
1880 | rs6000_register_convertible (int n) | |
1881 | { | |
21283beb | 1882 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n; |
7a78ae4e ND |
1883 | return reg->fpr; |
1884 | } | |
1885 | ||
1886 | /* Convert data from raw format for register N in buffer FROM | |
64366f1c | 1887 | to virtual format with type TYPE in buffer TO. */ |
7a78ae4e ND |
1888 | |
1889 | static void | |
1890 | rs6000_register_convert_to_virtual (int n, struct type *type, | |
1891 | char *from, char *to) | |
1892 | { | |
1893 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
7a292a7a | 1894 | { |
f1908289 AC |
1895 | double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n)); |
1896 | deprecated_store_floating (to, TYPE_LENGTH (type), val); | |
7a78ae4e ND |
1897 | } |
1898 | else | |
1899 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1900 | } | |
1901 | ||
1902 | /* Convert data from virtual format with type TYPE in buffer FROM | |
64366f1c | 1903 | to raw format for register N in buffer TO. */ |
7a292a7a | 1904 | |
7a78ae4e ND |
1905 | static void |
1906 | rs6000_register_convert_to_raw (struct type *type, int n, | |
1907 | char *from, char *to) | |
1908 | { | |
1909 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
1910 | { | |
f1908289 AC |
1911 | double val = deprecated_extract_floating (from, TYPE_LENGTH (type)); |
1912 | deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val); | |
7a292a7a | 1913 | } |
7a78ae4e ND |
1914 | else |
1915 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1916 | } | |
c906108c | 1917 | |
c8001721 EZ |
1918 | static void |
1919 | e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
1920 | int reg_nr, void *buffer) | |
1921 | { | |
1922 | int base_regnum; | |
1923 | int offset = 0; | |
1924 | char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); | |
1925 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1926 | ||
1927 | if (reg_nr >= tdep->ppc_gp0_regnum | |
1928 | && reg_nr <= tdep->ppc_gplast_regnum) | |
1929 | { | |
1930 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1931 | ||
1932 | /* Build the value in the provided buffer. */ | |
1933 | /* Read the raw register of which this one is the lower portion. */ | |
1934 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
1935 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1936 | offset = 4; | |
1937 | memcpy ((char *) buffer, temp_buffer + offset, 4); | |
1938 | } | |
1939 | } | |
1940 | ||
1941 | static void | |
1942 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
1943 | int reg_nr, const void *buffer) | |
1944 | { | |
1945 | int base_regnum; | |
1946 | int offset = 0; | |
1947 | char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); | |
1948 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1949 | ||
1950 | if (reg_nr >= tdep->ppc_gp0_regnum | |
1951 | && reg_nr <= tdep->ppc_gplast_regnum) | |
1952 | { | |
1953 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1954 | /* reg_nr is 32 bit here, and base_regnum is 64 bits. */ | |
1955 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1956 | offset = 4; | |
1957 | ||
1958 | /* Let's read the value of the base register into a temporary | |
1959 | buffer, so that overwriting the last four bytes with the new | |
1960 | value of the pseudo will leave the upper 4 bytes unchanged. */ | |
1961 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
1962 | ||
1963 | /* Write as an 8 byte quantity. */ | |
1964 | memcpy (temp_buffer + offset, (char *) buffer, 4); | |
1965 | regcache_raw_write (regcache, base_regnum, temp_buffer); | |
1966 | } | |
1967 | } | |
1968 | ||
1969 | /* Convert a dwarf2 register number to a gdb REGNUM. */ | |
1970 | static int | |
1971 | e500_dwarf2_reg_to_regnum (int num) | |
1972 | { | |
1973 | int regnum; | |
1974 | if (0 <= num && num <= 31) | |
1975 | return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum; | |
1976 | else | |
1977 | return num; | |
1978 | } | |
1979 | ||
2188cbdd | 1980 | /* Convert a dbx stab register number (from `r' declaration) to a gdb |
64366f1c | 1981 | REGNUM. */ |
2188cbdd EZ |
1982 | static int |
1983 | rs6000_stab_reg_to_regnum (int num) | |
1984 | { | |
1985 | int regnum; | |
1986 | switch (num) | |
1987 | { | |
1988 | case 64: | |
1989 | regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum; | |
1990 | break; | |
1991 | case 65: | |
1992 | regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum; | |
1993 | break; | |
1994 | case 66: | |
1995 | regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum; | |
1996 | break; | |
1997 | case 76: | |
1998 | regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum; | |
1999 | break; | |
2000 | default: | |
2001 | regnum = num; | |
2002 | break; | |
2003 | } | |
2004 | return regnum; | |
2005 | } | |
2006 | ||
7a78ae4e | 2007 | /* Store the address of the place in which to copy the structure the |
11269d7e | 2008 | subroutine will return. */ |
7a78ae4e ND |
2009 | |
2010 | static void | |
2011 | rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2012 | { | |
da3eff49 AC |
2013 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2014 | write_register (tdep->ppc_gp0_regnum + 3, addr); | |
7a78ae4e ND |
2015 | } |
2016 | ||
2017 | /* Write into appropriate registers a function return value | |
2018 | of type TYPE, given in virtual format. */ | |
96ff0de4 EZ |
2019 | static void |
2020 | e500_store_return_value (struct type *type, char *valbuf) | |
2021 | { | |
2022 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2023 | ||
2024 | /* Everything is returned in GPR3 and up. */ | |
2025 | int copied = 0; | |
2026 | int i = 0; | |
2027 | int len = TYPE_LENGTH (type); | |
2028 | while (copied < len) | |
2029 | { | |
2030 | int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i; | |
2031 | int reg_size = REGISTER_RAW_SIZE (regnum); | |
2032 | char *reg_val_buf = alloca (reg_size); | |
2033 | ||
2034 | memcpy (reg_val_buf, valbuf + copied, reg_size); | |
2035 | copied += reg_size; | |
4caf0990 | 2036 | deprecated_write_register_gen (regnum, reg_val_buf); |
96ff0de4 EZ |
2037 | i++; |
2038 | } | |
2039 | } | |
7a78ae4e ND |
2040 | |
2041 | static void | |
2042 | rs6000_store_return_value (struct type *type, char *valbuf) | |
2043 | { | |
ace1378a EZ |
2044 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2045 | ||
7a78ae4e ND |
2046 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
2047 | ||
2048 | /* Floating point values are returned starting from FPR1 and up. | |
2049 | Say a double_double_double type could be returned in | |
64366f1c | 2050 | FPR1/FPR2/FPR3 triple. */ |
7a78ae4e | 2051 | |
73937e03 AC |
2052 | deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf, |
2053 | TYPE_LENGTH (type)); | |
ace1378a EZ |
2054 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) |
2055 | { | |
2056 | if (TYPE_LENGTH (type) == 16 | |
2057 | && TYPE_VECTOR (type)) | |
73937e03 AC |
2058 | deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), |
2059 | valbuf, TYPE_LENGTH (type)); | |
ace1378a | 2060 | } |
7a78ae4e | 2061 | else |
64366f1c | 2062 | /* Everything else is returned in GPR3 and up. */ |
73937e03 AC |
2063 | deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3), |
2064 | valbuf, TYPE_LENGTH (type)); | |
7a78ae4e ND |
2065 | } |
2066 | ||
2067 | /* Extract from an array REGBUF containing the (raw) register state | |
2068 | the address in which a function should return its structure value, | |
2069 | as a CORE_ADDR (or an expression that can be used as one). */ | |
2070 | ||
2071 | static CORE_ADDR | |
11269d7e AC |
2072 | rs6000_extract_struct_value_address (struct regcache *regcache) |
2073 | { | |
2074 | /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior | |
2075 | function call GDB knows the address of the struct return value | |
2076 | and hence, should not need to call this function. Unfortunately, | |
e8a8712a AC |
2077 | the current call_function_by_hand() code only saves the most |
2078 | recent struct address leading to occasional calls. The code | |
2079 | should instead maintain a stack of such addresses (in the dummy | |
2080 | frame object). */ | |
11269d7e AC |
2081 | /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've |
2082 | really got no idea where the return value is being stored. While | |
2083 | r3, on function entry, contained the address it will have since | |
2084 | been reused (scratch) and hence wouldn't be valid */ | |
2085 | return 0; | |
7a78ae4e ND |
2086 | } |
2087 | ||
2088 | /* Return whether PC is in a dummy function call. | |
2089 | ||
2090 | FIXME: This just checks for the end of the stack, which is broken | |
64366f1c | 2091 | for things like stepping through gcc nested function stubs. */ |
7a78ae4e ND |
2092 | |
2093 | static int | |
2094 | rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp) | |
2095 | { | |
2096 | return sp < pc && pc < fp; | |
2097 | } | |
2098 | ||
64366f1c | 2099 | /* Hook called when a new child process is started. */ |
7a78ae4e ND |
2100 | |
2101 | void | |
2102 | rs6000_create_inferior (int pid) | |
2103 | { | |
2104 | if (rs6000_set_host_arch_hook) | |
2105 | rs6000_set_host_arch_hook (pid); | |
c906108c SS |
2106 | } |
2107 | \f | |
7a78ae4e ND |
2108 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR). |
2109 | ||
2110 | Usually a function pointer's representation is simply the address | |
2111 | of the function. On the RS/6000 however, a function pointer is | |
2112 | represented by a pointer to a TOC entry. This TOC entry contains | |
2113 | three words, the first word is the address of the function, the | |
2114 | second word is the TOC pointer (r2), and the third word is the | |
2115 | static chain value. Throughout GDB it is currently assumed that a | |
2116 | function pointer contains the address of the function, which is not | |
2117 | easy to fix. In addition, the conversion of a function address to | |
2118 | a function pointer would require allocation of a TOC entry in the | |
2119 | inferior's memory space, with all its drawbacks. To be able to | |
2120 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 2121 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
2122 | function address from a function pointer. */ |
2123 | ||
f517ea4e PS |
2124 | /* Return real function address if ADDR (a function pointer) is in the data |
2125 | space and is therefore a special function pointer. */ | |
c906108c | 2126 | |
7a78ae4e ND |
2127 | CORE_ADDR |
2128 | rs6000_convert_from_func_ptr_addr (CORE_ADDR addr) | |
c906108c SS |
2129 | { |
2130 | struct obj_section *s; | |
2131 | ||
2132 | s = find_pc_section (addr); | |
2133 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 2134 | return addr; |
c906108c | 2135 | |
7a78ae4e | 2136 | /* ADDR is in the data space, so it's a special function pointer. */ |
21283beb | 2137 | return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize); |
c906108c | 2138 | } |
c906108c | 2139 | \f |
c5aa993b | 2140 | |
7a78ae4e | 2141 | /* Handling the various POWER/PowerPC variants. */ |
c906108c SS |
2142 | |
2143 | ||
7a78ae4e ND |
2144 | /* The arrays here called registers_MUMBLE hold information about available |
2145 | registers. | |
c906108c SS |
2146 | |
2147 | For each family of PPC variants, I've tried to isolate out the | |
2148 | common registers and put them up front, so that as long as you get | |
2149 | the general family right, GDB will correctly identify the registers | |
2150 | common to that family. The common register sets are: | |
2151 | ||
2152 | For the 60x family: hid0 hid1 iabr dabr pir | |
2153 | ||
2154 | For the 505 and 860 family: eie eid nri | |
2155 | ||
2156 | For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi | |
c5aa993b JM |
2157 | tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 |
2158 | pbu1 pbl2 pbu2 | |
c906108c SS |
2159 | |
2160 | Most of these register groups aren't anything formal. I arrived at | |
2161 | them by looking at the registers that occurred in more than one | |
6f5987a6 KB |
2162 | processor. |
2163 | ||
2164 | Note: kevinb/2002-04-30: Support for the fpscr register was added | |
2165 | during April, 2002. Slot 70 is being used for PowerPC and slot 71 | |
2166 | for Power. For PowerPC, slot 70 was unused and was already in the | |
2167 | PPC_UISA_SPRS which is ideally where fpscr should go. For Power, | |
2168 | slot 70 was being used for "mq", so the next available slot (71) | |
2169 | was chosen. It would have been nice to be able to make the | |
2170 | register numbers the same across processor cores, but this wasn't | |
2171 | possible without either 1) renumbering some registers for some | |
2172 | processors or 2) assigning fpscr to a really high slot that's | |
2173 | larger than any current register number. Doing (1) is bad because | |
2174 | existing stubs would break. Doing (2) is undesirable because it | |
2175 | would introduce a really large gap between fpscr and the rest of | |
2176 | the registers for most processors. */ | |
7a78ae4e | 2177 | |
64366f1c | 2178 | /* Convenience macros for populating register arrays. */ |
7a78ae4e | 2179 | |
64366f1c | 2180 | /* Within another macro, convert S to a string. */ |
7a78ae4e ND |
2181 | |
2182 | #define STR(s) #s | |
2183 | ||
2184 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems | |
64366f1c | 2185 | and 64 bits on 64-bit systems. */ |
489461e2 | 2186 | #define R(name) { STR(name), 4, 8, 0, 0 } |
7a78ae4e ND |
2187 | |
2188 | /* Return a struct reg defining register NAME that's 32 bits on all | |
64366f1c | 2189 | systems. */ |
489461e2 | 2190 | #define R4(name) { STR(name), 4, 4, 0, 0 } |
7a78ae4e ND |
2191 | |
2192 | /* Return a struct reg defining register NAME that's 64 bits on all | |
64366f1c | 2193 | systems. */ |
489461e2 | 2194 | #define R8(name) { STR(name), 8, 8, 0, 0 } |
7a78ae4e | 2195 | |
1fcc0bb8 | 2196 | /* Return a struct reg defining register NAME that's 128 bits on all |
64366f1c | 2197 | systems. */ |
489461e2 | 2198 | #define R16(name) { STR(name), 16, 16, 0, 0 } |
1fcc0bb8 | 2199 | |
64366f1c | 2200 | /* Return a struct reg defining floating-point register NAME. */ |
489461e2 EZ |
2201 | #define F(name) { STR(name), 8, 8, 1, 0 } |
2202 | ||
64366f1c | 2203 | /* Return a struct reg defining a pseudo register NAME. */ |
489461e2 | 2204 | #define P(name) { STR(name), 4, 8, 0, 1} |
7a78ae4e ND |
2205 | |
2206 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit | |
64366f1c | 2207 | systems and that doesn't exist on 64-bit systems. */ |
489461e2 | 2208 | #define R32(name) { STR(name), 4, 0, 0, 0 } |
7a78ae4e ND |
2209 | |
2210 | /* Return a struct reg defining register NAME that's 64 bits on 64-bit | |
64366f1c | 2211 | systems and that doesn't exist on 32-bit systems. */ |
489461e2 | 2212 | #define R64(name) { STR(name), 0, 8, 0, 0 } |
7a78ae4e | 2213 | |
64366f1c | 2214 | /* Return a struct reg placeholder for a register that doesn't exist. */ |
489461e2 | 2215 | #define R0 { 0, 0, 0, 0, 0 } |
7a78ae4e ND |
2216 | |
2217 | /* UISA registers common across all architectures, including POWER. */ | |
2218 | ||
2219 | #define COMMON_UISA_REGS \ | |
2220 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2221 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2222 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2223 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2224 | /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ | |
2225 | /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ | |
2226 | /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ | |
2227 | /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ | |
2228 | /* 64 */ R(pc), R(ps) | |
2229 | ||
ebeac11a EZ |
2230 | #define COMMON_UISA_NOFP_REGS \ |
2231 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2232 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2233 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2234 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2235 | /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2236 | /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2237 | /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2238 | /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2239 | /* 64 */ R(pc), R(ps) | |
2240 | ||
7a78ae4e ND |
2241 | /* UISA-level SPRs for PowerPC. */ |
2242 | #define PPC_UISA_SPRS \ | |
e3f36dbd | 2243 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr) |
7a78ae4e | 2244 | |
c8001721 EZ |
2245 | /* UISA-level SPRs for PowerPC without floating point support. */ |
2246 | #define PPC_UISA_NOFP_SPRS \ | |
2247 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0 | |
2248 | ||
7a78ae4e ND |
2249 | /* Segment registers, for PowerPC. */ |
2250 | #define PPC_SEGMENT_REGS \ | |
2251 | /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ | |
2252 | /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ | |
2253 | /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ | |
2254 | /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) | |
2255 | ||
2256 | /* OEA SPRs for PowerPC. */ | |
2257 | #define PPC_OEA_SPRS \ | |
2258 | /* 87 */ R4(pvr), \ | |
2259 | /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \ | |
2260 | /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \ | |
2261 | /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \ | |
2262 | /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \ | |
2263 | /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \ | |
2264 | /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \ | |
2265 | /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \ | |
2266 | /* 116 */ R4(dec), R(dabr), R4(ear) | |
2267 | ||
64366f1c | 2268 | /* AltiVec registers. */ |
1fcc0bb8 EZ |
2269 | #define PPC_ALTIVEC_REGS \ |
2270 | /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \ | |
2271 | /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \ | |
2272 | /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \ | |
2273 | /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \ | |
2274 | /*151*/R4(vscr), R4(vrsave) | |
2275 | ||
c8001721 EZ |
2276 | /* Vectors of hi-lo general purpose registers. */ |
2277 | #define PPC_EV_REGS \ | |
2278 | /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \ | |
2279 | /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \ | |
2280 | /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \ | |
2281 | /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31) | |
2282 | ||
2283 | /* Lower half of the EV registers. */ | |
2284 | #define PPC_GPRS_PSEUDO_REGS \ | |
2285 | /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \ | |
2286 | /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \ | |
2287 | /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \ | |
338ef23d | 2288 | /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31) |
c8001721 | 2289 | |
7a78ae4e | 2290 | /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover |
64366f1c | 2291 | user-level SPR's. */ |
7a78ae4e | 2292 | static const struct reg registers_power[] = |
c906108c | 2293 | { |
7a78ae4e | 2294 | COMMON_UISA_REGS, |
e3f36dbd KB |
2295 | /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq), |
2296 | /* 71 */ R4(fpscr) | |
c906108c SS |
2297 | }; |
2298 | ||
7a78ae4e | 2299 | /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only |
64366f1c | 2300 | view of the PowerPC. */ |
7a78ae4e | 2301 | static const struct reg registers_powerpc[] = |
c906108c | 2302 | { |
7a78ae4e | 2303 | COMMON_UISA_REGS, |
1fcc0bb8 EZ |
2304 | PPC_UISA_SPRS, |
2305 | PPC_ALTIVEC_REGS | |
c906108c SS |
2306 | }; |
2307 | ||
ebeac11a EZ |
2308 | /* PowerPC UISA - a PPC processor as viewed by user-level |
2309 | code, but without floating point registers. */ | |
2310 | static const struct reg registers_powerpc_nofp[] = | |
2311 | { | |
2312 | COMMON_UISA_NOFP_REGS, | |
2313 | PPC_UISA_SPRS | |
2314 | }; | |
2315 | ||
64366f1c | 2316 | /* IBM PowerPC 403. */ |
7a78ae4e | 2317 | static const struct reg registers_403[] = |
c5aa993b | 2318 | { |
7a78ae4e ND |
2319 | COMMON_UISA_REGS, |
2320 | PPC_UISA_SPRS, | |
2321 | PPC_SEGMENT_REGS, | |
2322 | PPC_OEA_SPRS, | |
2323 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
2324 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
2325 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
2326 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
2327 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
2328 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2) | |
c906108c SS |
2329 | }; |
2330 | ||
64366f1c | 2331 | /* IBM PowerPC 403GC. */ |
7a78ae4e | 2332 | static const struct reg registers_403GC[] = |
c5aa993b | 2333 | { |
7a78ae4e ND |
2334 | COMMON_UISA_REGS, |
2335 | PPC_UISA_SPRS, | |
2336 | PPC_SEGMENT_REGS, | |
2337 | PPC_OEA_SPRS, | |
2338 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
2339 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
2340 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
2341 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
2342 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
2343 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2), | |
2344 | /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr), | |
2345 | /* 147 */ R(tbhu), R(tblu) | |
c906108c SS |
2346 | }; |
2347 | ||
64366f1c | 2348 | /* Motorola PowerPC 505. */ |
7a78ae4e | 2349 | static const struct reg registers_505[] = |
c5aa993b | 2350 | { |
7a78ae4e ND |
2351 | COMMON_UISA_REGS, |
2352 | PPC_UISA_SPRS, | |
2353 | PPC_SEGMENT_REGS, | |
2354 | PPC_OEA_SPRS, | |
2355 | /* 119 */ R(eie), R(eid), R(nri) | |
c906108c SS |
2356 | }; |
2357 | ||
64366f1c | 2358 | /* Motorola PowerPC 860 or 850. */ |
7a78ae4e | 2359 | static const struct reg registers_860[] = |
c5aa993b | 2360 | { |
7a78ae4e ND |
2361 | COMMON_UISA_REGS, |
2362 | PPC_UISA_SPRS, | |
2363 | PPC_SEGMENT_REGS, | |
2364 | PPC_OEA_SPRS, | |
2365 | /* 119 */ R(eie), R(eid), R(nri), R(cmpa), | |
2366 | /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr), | |
2367 | /* 127 */ R(der), R(counta), R(countb), R(cmpe), | |
2368 | /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1), | |
2369 | /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst), | |
2370 | /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr), | |
2371 | /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr), | |
2372 | /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc), | |
2373 | /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap), | |
2374 | /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn), | |
2375 | /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1), | |
2376 | /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1) | |
c906108c SS |
2377 | }; |
2378 | ||
7a78ae4e ND |
2379 | /* Motorola PowerPC 601. Note that the 601 has different register numbers |
2380 | for reading and writing RTCU and RTCL. However, how one reads and writes a | |
c906108c | 2381 | register is the stub's problem. */ |
7a78ae4e | 2382 | static const struct reg registers_601[] = |
c5aa993b | 2383 | { |
7a78ae4e ND |
2384 | COMMON_UISA_REGS, |
2385 | PPC_UISA_SPRS, | |
2386 | PPC_SEGMENT_REGS, | |
2387 | PPC_OEA_SPRS, | |
2388 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2389 | /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl) | |
c906108c SS |
2390 | }; |
2391 | ||
64366f1c | 2392 | /* Motorola PowerPC 602. */ |
7a78ae4e | 2393 | static const struct reg registers_602[] = |
c5aa993b | 2394 | { |
7a78ae4e ND |
2395 | COMMON_UISA_REGS, |
2396 | PPC_UISA_SPRS, | |
2397 | PPC_SEGMENT_REGS, | |
2398 | PPC_OEA_SPRS, | |
2399 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2400 | /* 123 */ R0, R(tcr), R(ibr), R(esassr), | |
2401 | /* 127 */ R(sebr), R(ser), R(sp), R(lt) | |
c906108c SS |
2402 | }; |
2403 | ||
64366f1c | 2404 | /* Motorola/IBM PowerPC 603 or 603e. */ |
7a78ae4e | 2405 | static const struct reg registers_603[] = |
c5aa993b | 2406 | { |
7a78ae4e ND |
2407 | COMMON_UISA_REGS, |
2408 | PPC_UISA_SPRS, | |
2409 | PPC_SEGMENT_REGS, | |
2410 | PPC_OEA_SPRS, | |
2411 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2412 | /* 123 */ R0, R(dmiss), R(dcmp), R(hash1), | |
2413 | /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa) | |
c906108c SS |
2414 | }; |
2415 | ||
64366f1c | 2416 | /* Motorola PowerPC 604 or 604e. */ |
7a78ae4e | 2417 | static const struct reg registers_604[] = |
c5aa993b | 2418 | { |
7a78ae4e ND |
2419 | COMMON_UISA_REGS, |
2420 | PPC_UISA_SPRS, | |
2421 | PPC_SEGMENT_REGS, | |
2422 | PPC_OEA_SPRS, | |
2423 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2424 | /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2), | |
2425 | /* 127 */ R(sia), R(sda) | |
c906108c SS |
2426 | }; |
2427 | ||
64366f1c | 2428 | /* Motorola/IBM PowerPC 750 or 740. */ |
7a78ae4e | 2429 | static const struct reg registers_750[] = |
c5aa993b | 2430 | { |
7a78ae4e ND |
2431 | COMMON_UISA_REGS, |
2432 | PPC_UISA_SPRS, | |
2433 | PPC_SEGMENT_REGS, | |
2434 | PPC_OEA_SPRS, | |
2435 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2436 | /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2), | |
2437 | /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4), | |
2438 | /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia), | |
2439 | /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr), | |
2440 | /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3) | |
c906108c SS |
2441 | }; |
2442 | ||
2443 | ||
64366f1c | 2444 | /* Motorola PowerPC 7400. */ |
1fcc0bb8 EZ |
2445 | static const struct reg registers_7400[] = |
2446 | { | |
2447 | /* gpr0-gpr31, fpr0-fpr31 */ | |
2448 | COMMON_UISA_REGS, | |
2449 | /* ctr, xre, lr, cr */ | |
2450 | PPC_UISA_SPRS, | |
2451 | /* sr0-sr15 */ | |
2452 | PPC_SEGMENT_REGS, | |
2453 | PPC_OEA_SPRS, | |
2454 | /* vr0-vr31, vrsave, vscr */ | |
2455 | PPC_ALTIVEC_REGS | |
2456 | /* FIXME? Add more registers? */ | |
2457 | }; | |
2458 | ||
c8001721 EZ |
2459 | /* Motorola e500. */ |
2460 | static const struct reg registers_e500[] = | |
2461 | { | |
2462 | R(pc), R(ps), | |
2463 | /* cr, lr, ctr, xer, "" */ | |
2464 | PPC_UISA_NOFP_SPRS, | |
2465 | /* 7...38 */ | |
2466 | PPC_EV_REGS, | |
338ef23d AC |
2467 | R8(acc), R(spefscr), |
2468 | /* NOTE: Add new registers here the end of the raw register | |
2469 | list and just before the first pseudo register. */ | |
c8001721 EZ |
2470 | /* 39...70 */ |
2471 | PPC_GPRS_PSEUDO_REGS | |
2472 | }; | |
2473 | ||
c906108c | 2474 | /* Information about a particular processor variant. */ |
7a78ae4e | 2475 | |
c906108c | 2476 | struct variant |
c5aa993b JM |
2477 | { |
2478 | /* Name of this variant. */ | |
2479 | char *name; | |
c906108c | 2480 | |
c5aa993b JM |
2481 | /* English description of the variant. */ |
2482 | char *description; | |
c906108c | 2483 | |
64366f1c | 2484 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
2485 | enum bfd_architecture arch; |
2486 | ||
64366f1c | 2487 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
2488 | unsigned long mach; |
2489 | ||
489461e2 EZ |
2490 | /* Number of real registers. */ |
2491 | int nregs; | |
2492 | ||
2493 | /* Number of pseudo registers. */ | |
2494 | int npregs; | |
2495 | ||
2496 | /* Number of total registers (the sum of nregs and npregs). */ | |
2497 | int num_tot_regs; | |
2498 | ||
c5aa993b JM |
2499 | /* Table of register names; registers[R] is the name of the register |
2500 | number R. */ | |
7a78ae4e | 2501 | const struct reg *regs; |
c5aa993b | 2502 | }; |
c906108c | 2503 | |
489461e2 EZ |
2504 | #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0])) |
2505 | ||
2506 | static int | |
2507 | num_registers (const struct reg *reg_list, int num_tot_regs) | |
2508 | { | |
2509 | int i; | |
2510 | int nregs = 0; | |
2511 | ||
2512 | for (i = 0; i < num_tot_regs; i++) | |
2513 | if (!reg_list[i].pseudo) | |
2514 | nregs++; | |
2515 | ||
2516 | return nregs; | |
2517 | } | |
2518 | ||
2519 | static int | |
2520 | num_pseudo_registers (const struct reg *reg_list, int num_tot_regs) | |
2521 | { | |
2522 | int i; | |
2523 | int npregs = 0; | |
2524 | ||
2525 | for (i = 0; i < num_tot_regs; i++) | |
2526 | if (reg_list[i].pseudo) | |
2527 | npregs ++; | |
2528 | ||
2529 | return npregs; | |
2530 | } | |
c906108c | 2531 | |
c906108c SS |
2532 | /* Information in this table comes from the following web sites: |
2533 | IBM: http://www.chips.ibm.com:80/products/embedded/ | |
2534 | Motorola: http://www.mot.com/SPS/PowerPC/ | |
2535 | ||
2536 | I'm sure I've got some of the variant descriptions not quite right. | |
2537 | Please report any inaccuracies you find to GDB's maintainer. | |
2538 | ||
2539 | If you add entries to this table, please be sure to allow the new | |
2540 | value as an argument to the --with-cpu flag, in configure.in. */ | |
2541 | ||
489461e2 | 2542 | static struct variant variants[] = |
c906108c | 2543 | { |
489461e2 | 2544 | |
7a78ae4e | 2545 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
489461e2 EZ |
2546 | bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc), |
2547 | registers_powerpc}, | |
7a78ae4e | 2548 | {"power", "POWER user-level", bfd_arch_rs6000, |
489461e2 EZ |
2549 | bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power), |
2550 | registers_power}, | |
7a78ae4e | 2551 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
489461e2 EZ |
2552 | bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403), |
2553 | registers_403}, | |
7a78ae4e | 2554 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
489461e2 EZ |
2555 | bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601), |
2556 | registers_601}, | |
7a78ae4e | 2557 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
489461e2 EZ |
2558 | bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602), |
2559 | registers_602}, | |
7a78ae4e | 2560 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
489461e2 EZ |
2561 | bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603), |
2562 | registers_603}, | |
7a78ae4e | 2563 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
489461e2 EZ |
2564 | 604, -1, -1, tot_num_registers (registers_604), |
2565 | registers_604}, | |
7a78ae4e | 2566 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
489461e2 EZ |
2567 | bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC), |
2568 | registers_403GC}, | |
7a78ae4e | 2569 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
489461e2 EZ |
2570 | bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505), |
2571 | registers_505}, | |
7a78ae4e | 2572 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
489461e2 EZ |
2573 | bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860), |
2574 | registers_860}, | |
7a78ae4e | 2575 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
489461e2 EZ |
2576 | bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750), |
2577 | registers_750}, | |
1fcc0bb8 | 2578 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
489461e2 EZ |
2579 | bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400), |
2580 | registers_7400}, | |
c8001721 EZ |
2581 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
2582 | bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500), | |
2583 | registers_e500}, | |
7a78ae4e | 2584 | |
5d57ee30 KB |
2585 | /* 64-bit */ |
2586 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
489461e2 EZ |
2587 | bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc), |
2588 | registers_powerpc}, | |
7a78ae4e | 2589 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
489461e2 EZ |
2590 | bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc), |
2591 | registers_powerpc}, | |
5d57ee30 | 2592 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
489461e2 EZ |
2593 | bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc), |
2594 | registers_powerpc}, | |
7a78ae4e | 2595 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
489461e2 EZ |
2596 | bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc), |
2597 | registers_powerpc}, | |
5d57ee30 | 2598 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
489461e2 EZ |
2599 | bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc), |
2600 | registers_powerpc}, | |
5d57ee30 | 2601 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
489461e2 EZ |
2602 | bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc), |
2603 | registers_powerpc}, | |
5d57ee30 | 2604 | |
64366f1c | 2605 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 2606 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
489461e2 EZ |
2607 | bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power), |
2608 | registers_power}, | |
7a78ae4e | 2609 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
489461e2 EZ |
2610 | bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power), |
2611 | registers_power}, | |
7a78ae4e | 2612 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
489461e2 EZ |
2613 | bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power), |
2614 | registers_power}, | |
7a78ae4e | 2615 | |
489461e2 | 2616 | {0, 0, 0, 0, 0, 0, 0, 0} |
c906108c SS |
2617 | }; |
2618 | ||
64366f1c | 2619 | /* Initialize the number of registers and pseudo registers in each variant. */ |
489461e2 EZ |
2620 | |
2621 | static void | |
2622 | init_variants (void) | |
2623 | { | |
2624 | struct variant *v; | |
2625 | ||
2626 | for (v = variants; v->name; v++) | |
2627 | { | |
2628 | if (v->nregs == -1) | |
2629 | v->nregs = num_registers (v->regs, v->num_tot_regs); | |
2630 | if (v->npregs == -1) | |
2631 | v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs); | |
2632 | } | |
2633 | } | |
c906108c | 2634 | |
7a78ae4e | 2635 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 2636 | MACH. If no such variant exists, return null. */ |
c906108c | 2637 | |
7a78ae4e ND |
2638 | static const struct variant * |
2639 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2640 | { |
7a78ae4e | 2641 | const struct variant *v; |
c5aa993b | 2642 | |
7a78ae4e ND |
2643 | for (v = variants; v->name; v++) |
2644 | if (arch == v->arch && mach == v->mach) | |
2645 | return v; | |
c906108c | 2646 | |
7a78ae4e | 2647 | return NULL; |
c906108c | 2648 | } |
9364a0ef EZ |
2649 | |
2650 | static int | |
2651 | gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) | |
2652 | { | |
2653 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2654 | return print_insn_big_powerpc (memaddr, info); | |
2655 | else | |
2656 | return print_insn_little_powerpc (memaddr, info); | |
2657 | } | |
7a78ae4e | 2658 | \f |
7a78ae4e ND |
2659 | /* Initialize the current architecture based on INFO. If possible, re-use an |
2660 | architecture from ARCHES, which is a list of architectures already created | |
2661 | during this debugging session. | |
c906108c | 2662 | |
7a78ae4e | 2663 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 2664 | a binary file. */ |
c906108c | 2665 | |
7a78ae4e ND |
2666 | static struct gdbarch * |
2667 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2668 | { | |
2669 | struct gdbarch *gdbarch; | |
2670 | struct gdbarch_tdep *tdep; | |
9aa1e687 | 2671 | int wordsize, from_xcoff_exec, from_elf_exec, power, i, off; |
7a78ae4e ND |
2672 | struct reg *regs; |
2673 | const struct variant *v; | |
2674 | enum bfd_architecture arch; | |
2675 | unsigned long mach; | |
2676 | bfd abfd; | |
7b112f9c | 2677 | int sysv_abi; |
5bf1c677 | 2678 | asection *sect; |
7a78ae4e | 2679 | |
9aa1e687 | 2680 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
2681 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
2682 | ||
9aa1e687 KB |
2683 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
2684 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2685 | ||
2686 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2687 | ||
e712c1cf | 2688 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 2689 | that, else choose a likely default. */ |
9aa1e687 | 2690 | if (from_xcoff_exec) |
c906108c | 2691 | { |
11ed25ac | 2692 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
2693 | wordsize = 8; |
2694 | else | |
2695 | wordsize = 4; | |
c906108c | 2696 | } |
9aa1e687 KB |
2697 | else if (from_elf_exec) |
2698 | { | |
2699 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
2700 | wordsize = 8; | |
2701 | else | |
2702 | wordsize = 4; | |
2703 | } | |
c906108c | 2704 | else |
7a78ae4e | 2705 | { |
27b15785 KB |
2706 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
2707 | wordsize = info.bfd_arch_info->bits_per_word / | |
2708 | info.bfd_arch_info->bits_per_byte; | |
2709 | else | |
2710 | wordsize = 4; | |
7a78ae4e | 2711 | } |
c906108c | 2712 | |
64366f1c | 2713 | /* Find a candidate among extant architectures. */ |
7a78ae4e ND |
2714 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
2715 | arches != NULL; | |
2716 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2717 | { | |
2718 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
2719 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
64366f1c | 2720 | separate word size check. */ |
7a78ae4e | 2721 | tdep = gdbarch_tdep (arches->gdbarch); |
4be87837 | 2722 | if (tdep && tdep->wordsize == wordsize) |
7a78ae4e ND |
2723 | return arches->gdbarch; |
2724 | } | |
c906108c | 2725 | |
7a78ae4e ND |
2726 | /* None found, create a new architecture from INFO, whose bfd_arch_info |
2727 | validity depends on the source: | |
2728 | - executable useless | |
2729 | - rs6000_host_arch() good | |
2730 | - core file good | |
2731 | - "set arch" trust blindly | |
2732 | - GDB startup useless but harmless */ | |
c906108c | 2733 | |
9aa1e687 | 2734 | if (!from_xcoff_exec) |
c906108c | 2735 | { |
b732d07d | 2736 | arch = info.bfd_arch_info->arch; |
7a78ae4e | 2737 | mach = info.bfd_arch_info->mach; |
c906108c | 2738 | } |
7a78ae4e | 2739 | else |
c906108c | 2740 | { |
7a78ae4e | 2741 | arch = bfd_arch_powerpc; |
35cec841 | 2742 | bfd_default_set_arch_mach (&abfd, arch, 0); |
7a78ae4e | 2743 | info.bfd_arch_info = bfd_get_arch_info (&abfd); |
35cec841 | 2744 | mach = info.bfd_arch_info->mach; |
7a78ae4e ND |
2745 | } |
2746 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
2747 | tdep->wordsize = wordsize; | |
5bf1c677 EZ |
2748 | |
2749 | /* For e500 executables, the apuinfo section is of help here. Such | |
2750 | section contains the identifier and revision number of each | |
2751 | Application-specific Processing Unit that is present on the | |
2752 | chip. The content of the section is determined by the assembler | |
2753 | which looks at each instruction and determines which unit (and | |
2754 | which version of it) can execute it. In our case we just look for | |
2755 | the existance of the section. */ | |
2756 | ||
2757 | if (info.abfd) | |
2758 | { | |
2759 | sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); | |
2760 | if (sect) | |
2761 | { | |
2762 | arch = info.bfd_arch_info->arch; | |
2763 | mach = bfd_mach_ppc_e500; | |
2764 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
2765 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
2766 | } | |
2767 | } | |
2768 | ||
7a78ae4e ND |
2769 | gdbarch = gdbarch_alloc (&info, tdep); |
2770 | power = arch == bfd_arch_rs6000; | |
2771 | ||
489461e2 EZ |
2772 | /* Initialize the number of real and pseudo registers in each variant. */ |
2773 | init_variants (); | |
2774 | ||
64366f1c | 2775 | /* Choose variant. */ |
7a78ae4e ND |
2776 | v = find_variant_by_arch (arch, mach); |
2777 | if (!v) | |
dd47e6fd EZ |
2778 | return NULL; |
2779 | ||
7a78ae4e ND |
2780 | tdep->regs = v->regs; |
2781 | ||
2188cbdd EZ |
2782 | tdep->ppc_gp0_regnum = 0; |
2783 | tdep->ppc_gplast_regnum = 31; | |
2784 | tdep->ppc_toc_regnum = 2; | |
2785 | tdep->ppc_ps_regnum = 65; | |
2786 | tdep->ppc_cr_regnum = 66; | |
2787 | tdep->ppc_lr_regnum = 67; | |
2788 | tdep->ppc_ctr_regnum = 68; | |
2789 | tdep->ppc_xer_regnum = 69; | |
2790 | if (v->mach == bfd_mach_ppc_601) | |
2791 | tdep->ppc_mq_regnum = 124; | |
e3f36dbd | 2792 | else if (power) |
2188cbdd | 2793 | tdep->ppc_mq_regnum = 70; |
e3f36dbd KB |
2794 | else |
2795 | tdep->ppc_mq_regnum = -1; | |
2796 | tdep->ppc_fpscr_regnum = power ? 71 : 70; | |
2188cbdd | 2797 | |
c8001721 EZ |
2798 | set_gdbarch_pc_regnum (gdbarch, 64); |
2799 | set_gdbarch_sp_regnum (gdbarch, 1); | |
0ba6dca9 | 2800 | set_gdbarch_deprecated_fp_regnum (gdbarch, 1); |
96ff0de4 EZ |
2801 | set_gdbarch_deprecated_extract_return_value (gdbarch, |
2802 | rs6000_extract_return_value); | |
46d79c04 | 2803 | set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value); |
c8001721 | 2804 | |
1fcc0bb8 EZ |
2805 | if (v->arch == bfd_arch_powerpc) |
2806 | switch (v->mach) | |
2807 | { | |
2808 | case bfd_mach_ppc: | |
2809 | tdep->ppc_vr0_regnum = 71; | |
2810 | tdep->ppc_vrsave_regnum = 104; | |
c8001721 EZ |
2811 | tdep->ppc_ev0_regnum = -1; |
2812 | tdep->ppc_ev31_regnum = -1; | |
1fcc0bb8 EZ |
2813 | break; |
2814 | case bfd_mach_ppc_7400: | |
2815 | tdep->ppc_vr0_regnum = 119; | |
54c2a1e6 | 2816 | tdep->ppc_vrsave_regnum = 152; |
c8001721 EZ |
2817 | tdep->ppc_ev0_regnum = -1; |
2818 | tdep->ppc_ev31_regnum = -1; | |
2819 | break; | |
2820 | case bfd_mach_ppc_e500: | |
338ef23d AC |
2821 | tdep->ppc_gp0_regnum = 41; |
2822 | tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1; | |
c8001721 EZ |
2823 | tdep->ppc_toc_regnum = -1; |
2824 | tdep->ppc_ps_regnum = 1; | |
2825 | tdep->ppc_cr_regnum = 2; | |
2826 | tdep->ppc_lr_regnum = 3; | |
2827 | tdep->ppc_ctr_regnum = 4; | |
2828 | tdep->ppc_xer_regnum = 5; | |
2829 | tdep->ppc_ev0_regnum = 7; | |
2830 | tdep->ppc_ev31_regnum = 38; | |
2831 | set_gdbarch_pc_regnum (gdbarch, 0); | |
338ef23d | 2832 | set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1); |
0ba6dca9 | 2833 | set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1); |
c8001721 EZ |
2834 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum); |
2835 | set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); | |
2836 | set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); | |
96ff0de4 | 2837 | set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value); |
46d79c04 | 2838 | set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value); |
1fcc0bb8 EZ |
2839 | break; |
2840 | default: | |
2841 | tdep->ppc_vr0_regnum = -1; | |
2842 | tdep->ppc_vrsave_regnum = -1; | |
c8001721 EZ |
2843 | tdep->ppc_ev0_regnum = -1; |
2844 | tdep->ppc_ev31_regnum = -1; | |
1fcc0bb8 EZ |
2845 | break; |
2846 | } | |
2847 | ||
338ef23d AC |
2848 | /* Sanity check on registers. */ |
2849 | gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0); | |
2850 | ||
a88376a3 KB |
2851 | /* Set lr_frame_offset. */ |
2852 | if (wordsize == 8) | |
2853 | tdep->lr_frame_offset = 16; | |
2854 | else if (sysv_abi) | |
2855 | tdep->lr_frame_offset = 4; | |
2856 | else | |
2857 | tdep->lr_frame_offset = 8; | |
2858 | ||
2859 | /* Calculate byte offsets in raw register array. */ | |
489461e2 EZ |
2860 | tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int)); |
2861 | for (i = off = 0; i < v->num_tot_regs; i++) | |
7a78ae4e ND |
2862 | { |
2863 | tdep->regoff[i] = off; | |
2864 | off += regsize (v->regs + i, wordsize); | |
c906108c SS |
2865 | } |
2866 | ||
56a6dfb9 KB |
2867 | /* Select instruction printer. */ |
2868 | if (arch == power) | |
9364a0ef | 2869 | set_gdbarch_print_insn (gdbarch, print_insn_rs6000); |
56a6dfb9 | 2870 | else |
9364a0ef | 2871 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); |
7495d1dc | 2872 | |
7a78ae4e ND |
2873 | set_gdbarch_read_pc (gdbarch, generic_target_read_pc); |
2874 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); | |
7a78ae4e | 2875 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); |
6c0e89ed | 2876 | set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp); |
7a78ae4e ND |
2877 | |
2878 | set_gdbarch_num_regs (gdbarch, v->nregs); | |
c8001721 | 2879 | set_gdbarch_num_pseudo_regs (gdbarch, v->npregs); |
7a78ae4e | 2880 | set_gdbarch_register_name (gdbarch, rs6000_register_name); |
b1e29e33 | 2881 | set_gdbarch_deprecated_register_size (gdbarch, wordsize); |
7a78ae4e ND |
2882 | set_gdbarch_register_bytes (gdbarch, off); |
2883 | set_gdbarch_register_byte (gdbarch, rs6000_register_byte); | |
2884 | set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size); | |
a0ed5532 | 2885 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16); |
b2e75d78 | 2886 | set_gdbarch_register_virtual_size (gdbarch, generic_register_size); |
a0ed5532 | 2887 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16); |
7a78ae4e ND |
2888 | set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type); |
2889 | ||
2890 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2891 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
2892 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2893 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2894 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2895 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2896 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
ab9fe00e KB |
2897 | if (sysv_abi) |
2898 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
2899 | else | |
2900 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4e409299 | 2901 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e | 2902 | |
b1e29e33 | 2903 | set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy); |
11269d7e | 2904 | set_gdbarch_frame_align (gdbarch, rs6000_frame_align); |
58223630 | 2905 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); |
28f617b3 | 2906 | set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address); |
7a78ae4e | 2907 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
7a78ae4e ND |
2908 | |
2909 | set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible); | |
2910 | set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual); | |
2911 | set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw); | |
2188cbdd | 2912 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
2ea5f656 KB |
2913 | /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments() |
2914 | is correct for the SysV ABI when the wordsize is 8, but I'm also | |
2915 | fairly certain that ppc_sysv_abi_push_arguments() will give even | |
2916 | worse results since it only works for 32-bit code. So, for the moment, | |
2917 | we're better off calling rs6000_push_arguments() since it works for | |
2918 | 64-bit code. At some point in the future, this matter needs to be | |
2919 | revisited. */ | |
2920 | if (sysv_abi && wordsize == 4) | |
b81774d8 | 2921 | set_gdbarch_deprecated_push_arguments (gdbarch, ppc_sysv_abi_push_arguments); |
9aa1e687 | 2922 | else |
b81774d8 | 2923 | set_gdbarch_deprecated_push_arguments (gdbarch, rs6000_push_arguments); |
7a78ae4e | 2924 | |
4183d812 | 2925 | set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return); |
11269d7e | 2926 | set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address); |
749b82f6 | 2927 | set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame); |
7a78ae4e ND |
2928 | |
2929 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); | |
2930 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2931 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2932 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2933 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); | |
2934 | ||
2935 | /* Not sure on this. FIXMEmgo */ | |
2936 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
2937 | ||
8e0662df | 2938 | if (sysv_abi) |
7b112f9c JT |
2939 | set_gdbarch_use_struct_convention (gdbarch, |
2940 | ppc_sysv_abi_use_struct_convention); | |
8e0662df | 2941 | else |
7b112f9c JT |
2942 | set_gdbarch_use_struct_convention (gdbarch, |
2943 | generic_use_struct_convention); | |
8e0662df | 2944 | |
7b112f9c JT |
2945 | set_gdbarch_frameless_function_invocation (gdbarch, |
2946 | rs6000_frameless_function_invocation); | |
618ce49f | 2947 | set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain); |
8bedc050 | 2948 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc); |
7b112f9c | 2949 | |
f30ee0bc | 2950 | set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs); |
e9582e71 | 2951 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info); |
7b112f9c | 2952 | |
15813d3f AC |
2953 | if (!sysv_abi) |
2954 | { | |
2955 | /* Handle RS/6000 function pointers (which are really function | |
2956 | descriptors). */ | |
f517ea4e PS |
2957 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
2958 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 2959 | } |
7a78ae4e ND |
2960 | set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address); |
2961 | set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address); | |
6913c89a | 2962 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call); |
7a78ae4e ND |
2963 | |
2964 | /* We can't tell how many args there are | |
2965 | now that the C compiler delays popping them. */ | |
2966 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
2967 | ||
7b112f9c | 2968 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 2969 | gdbarch_init_osabi (info, gdbarch); |
7b112f9c | 2970 | |
7a78ae4e | 2971 | return gdbarch; |
c906108c SS |
2972 | } |
2973 | ||
7b112f9c JT |
2974 | static void |
2975 | rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
2976 | { | |
2977 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2978 | ||
2979 | if (tdep == NULL) | |
2980 | return; | |
2981 | ||
4be87837 | 2982 | /* FIXME: Dump gdbarch_tdep. */ |
7b112f9c JT |
2983 | } |
2984 | ||
1fcc0bb8 EZ |
2985 | static struct cmd_list_element *info_powerpc_cmdlist = NULL; |
2986 | ||
2987 | static void | |
2988 | rs6000_info_powerpc_command (char *args, int from_tty) | |
2989 | { | |
2990 | help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout); | |
2991 | } | |
2992 | ||
c906108c SS |
2993 | /* Initialization code. */ |
2994 | ||
2995 | void | |
fba45db2 | 2996 | _initialize_rs6000_tdep (void) |
c906108c | 2997 | { |
7b112f9c JT |
2998 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
2999 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
1fcc0bb8 EZ |
3000 | |
3001 | /* Add root prefix command for "info powerpc" commands */ | |
3002 | add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command, | |
3003 | "Various POWERPC info specific commands.", | |
3004 | &info_powerpc_cmdlist, "info powerpc ", 0, &infolist); | |
c906108c | 3005 | } |