]>
Commit | Line | Data |
---|---|---|
7d9884b9 | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
81afee37 | 2 | Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996 |
8918bce0 | 3 | Free Software Foundation, Inc. |
dd3b648e RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
99a7de40 | 7 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 8 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
dd3b648e | 11 | |
99a7de40 | 12 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
99a7de40 | 18 | along with this program; if not, write to the Free Software |
6c9638b4 | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
dd3b648e | 20 | |
dd3b648e | 21 | #include "defs.h" |
2b576293 | 22 | #include "gdb_string.h" |
dd3b648e | 23 | #include "symtab.h" |
1ab3bf1b | 24 | #include "gdbtypes.h" |
dd3b648e RP |
25 | #include "value.h" |
26 | #include "gdbcore.h" | |
27 | #include "frame.h" | |
28 | #include "command.h" | |
f266e564 | 29 | #include "gdbcmd.h" |
ac88ca20 | 30 | #include "target.h" |
acc4efde | 31 | #include "language.h" |
b52cac6b | 32 | #include "scm-lang.h" |
8050a57b | 33 | #include "demangle.h" |
dd3b648e | 34 | |
1ab3bf1b JG |
35 | /* Local function prototypes. */ |
36 | ||
849d0896 PS |
37 | static value_ptr value_headof PARAMS ((value_ptr, struct type *, |
38 | struct type *)); | |
1ab3bf1b | 39 | |
82a2edfb | 40 | static void show_values PARAMS ((char *, int)); |
1ab3bf1b | 41 | |
82a2edfb | 42 | static void show_convenience PARAMS ((char *, int)); |
71b16efa | 43 | |
b607efe7 FF |
44 | static int vb_match PARAMS ((struct type *, int, struct type *)); |
45 | ||
dd3b648e RP |
46 | /* The value-history records all the values printed |
47 | by print commands during this session. Each chunk | |
48 | records 60 consecutive values. The first chunk on | |
49 | the chain records the most recent values. | |
50 | The total number of values is in value_history_count. */ | |
51 | ||
52 | #define VALUE_HISTORY_CHUNK 60 | |
53 | ||
54 | struct value_history_chunk | |
55 | { | |
56 | struct value_history_chunk *next; | |
82a2edfb | 57 | value_ptr values[VALUE_HISTORY_CHUNK]; |
dd3b648e RP |
58 | }; |
59 | ||
60 | /* Chain of chunks now in use. */ | |
61 | ||
62 | static struct value_history_chunk *value_history_chain; | |
63 | ||
64 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
65 | \f |
66 | /* List of all value objects currently allocated | |
67 | (except for those released by calls to release_value) | |
68 | This is so they can be freed after each command. */ | |
69 | ||
82a2edfb | 70 | static value_ptr all_values; |
dd3b648e RP |
71 | |
72 | /* Allocate a value that has the correct length for type TYPE. */ | |
73 | ||
82a2edfb | 74 | value_ptr |
dd3b648e RP |
75 | allocate_value (type) |
76 | struct type *type; | |
77 | { | |
82a2edfb | 78 | register value_ptr val; |
5e548861 | 79 | struct type *atype = check_typedef (type); |
dd3b648e | 80 | |
5e548861 | 81 | val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype)); |
dd3b648e RP |
82 | VALUE_NEXT (val) = all_values; |
83 | all_values = val; | |
84 | VALUE_TYPE (val) = type; | |
85 | VALUE_LVAL (val) = not_lval; | |
86 | VALUE_ADDRESS (val) = 0; | |
87 | VALUE_FRAME (val) = 0; | |
88 | VALUE_OFFSET (val) = 0; | |
89 | VALUE_BITPOS (val) = 0; | |
90 | VALUE_BITSIZE (val) = 0; | |
dd3b648e RP |
91 | VALUE_REGNO (val) = -1; |
92 | VALUE_LAZY (val) = 0; | |
93 | VALUE_OPTIMIZED_OUT (val) = 0; | |
30974778 | 94 | val->modifiable = 1; |
dd3b648e RP |
95 | return val; |
96 | } | |
97 | ||
98 | /* Allocate a value that has the correct length | |
99 | for COUNT repetitions type TYPE. */ | |
100 | ||
82a2edfb | 101 | value_ptr |
dd3b648e RP |
102 | allocate_repeat_value (type, count) |
103 | struct type *type; | |
104 | int count; | |
105 | { | |
398f584f PB |
106 | int low_bound = current_language->string_lower_bound; /* ??? */ |
107 | /* FIXME-type-allocation: need a way to free this type when we are | |
108 | done with it. */ | |
109 | struct type *range_type | |
110 | = create_range_type ((struct type *) NULL, builtin_type_int, | |
111 | low_bound, count + low_bound - 1); | |
112 | /* FIXME-type-allocation: need a way to free this type when we are | |
113 | done with it. */ | |
114 | return allocate_value (create_array_type ((struct type *) NULL, | |
115 | type, range_type)); | |
dd3b648e RP |
116 | } |
117 | ||
fcb887ff JK |
118 | /* Return a mark in the value chain. All values allocated after the |
119 | mark is obtained (except for those released) are subject to being freed | |
120 | if a subsequent value_free_to_mark is passed the mark. */ | |
82a2edfb | 121 | value_ptr |
fcb887ff JK |
122 | value_mark () |
123 | { | |
124 | return all_values; | |
125 | } | |
126 | ||
127 | /* Free all values allocated since MARK was obtained by value_mark | |
128 | (except for those released). */ | |
129 | void | |
130 | value_free_to_mark (mark) | |
82a2edfb | 131 | value_ptr mark; |
fcb887ff | 132 | { |
82a2edfb | 133 | value_ptr val, next; |
fcb887ff JK |
134 | |
135 | for (val = all_values; val && val != mark; val = next) | |
136 | { | |
137 | next = VALUE_NEXT (val); | |
138 | value_free (val); | |
139 | } | |
140 | all_values = val; | |
141 | } | |
142 | ||
dd3b648e RP |
143 | /* Free all the values that have been allocated (except for those released). |
144 | Called after each command, successful or not. */ | |
145 | ||
146 | void | |
147 | free_all_values () | |
148 | { | |
82a2edfb | 149 | register value_ptr val, next; |
dd3b648e RP |
150 | |
151 | for (val = all_values; val; val = next) | |
152 | { | |
153 | next = VALUE_NEXT (val); | |
154 | value_free (val); | |
155 | } | |
156 | ||
157 | all_values = 0; | |
158 | } | |
159 | ||
160 | /* Remove VAL from the chain all_values | |
161 | so it will not be freed automatically. */ | |
162 | ||
163 | void | |
164 | release_value (val) | |
82a2edfb | 165 | register value_ptr val; |
dd3b648e | 166 | { |
82a2edfb | 167 | register value_ptr v; |
dd3b648e RP |
168 | |
169 | if (all_values == val) | |
170 | { | |
171 | all_values = val->next; | |
172 | return; | |
173 | } | |
174 | ||
175 | for (v = all_values; v; v = v->next) | |
176 | { | |
177 | if (v->next == val) | |
178 | { | |
179 | v->next = val->next; | |
180 | break; | |
181 | } | |
182 | } | |
183 | } | |
184 | ||
999dd04b JL |
185 | /* Release all values up to mark */ |
186 | value_ptr | |
187 | value_release_to_mark (mark) | |
188 | value_ptr mark; | |
189 | { | |
190 | value_ptr val, next; | |
191 | ||
192 | for (val = next = all_values; next; next = VALUE_NEXT (next)) | |
193 | if (VALUE_NEXT (next) == mark) | |
194 | { | |
195 | all_values = VALUE_NEXT (next); | |
196 | VALUE_NEXT (next) = 0; | |
197 | return val; | |
198 | } | |
199 | all_values = 0; | |
200 | return val; | |
201 | } | |
202 | ||
dd3b648e RP |
203 | /* Return a copy of the value ARG. |
204 | It contains the same contents, for same memory address, | |
205 | but it's a different block of storage. */ | |
206 | ||
82a2edfb | 207 | value_ptr |
dd3b648e | 208 | value_copy (arg) |
82a2edfb | 209 | value_ptr arg; |
dd3b648e | 210 | { |
dd3b648e | 211 | register struct type *type = VALUE_TYPE (arg); |
398f584f | 212 | register value_ptr val = allocate_value (type); |
dd3b648e RP |
213 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
214 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
215 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
216 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
217 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
5e711e7f | 218 | VALUE_FRAME (val) = VALUE_FRAME (arg); |
dd3b648e RP |
219 | VALUE_REGNO (val) = VALUE_REGNO (arg); |
220 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
5e711e7f | 221 | VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg); |
30974778 | 222 | val->modifiable = arg->modifiable; |
dd3b648e RP |
223 | if (!VALUE_LAZY (val)) |
224 | { | |
51b57ded | 225 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), |
398f584f | 226 | TYPE_LENGTH (VALUE_TYPE (arg))); |
dd3b648e RP |
227 | } |
228 | return val; | |
229 | } | |
230 | \f | |
231 | /* Access to the value history. */ | |
232 | ||
233 | /* Record a new value in the value history. | |
234 | Returns the absolute history index of the entry. | |
235 | Result of -1 indicates the value was not saved; otherwise it is the | |
236 | value history index of this new item. */ | |
237 | ||
238 | int | |
239 | record_latest_value (val) | |
82a2edfb | 240 | value_ptr val; |
dd3b648e RP |
241 | { |
242 | int i; | |
243 | ||
26a859ec PS |
244 | /* We don't want this value to have anything to do with the inferior anymore. |
245 | In particular, "set $1 = 50" should not affect the variable from which | |
246 | the value was taken, and fast watchpoints should be able to assume that | |
247 | a value on the value history never changes. */ | |
248 | if (VALUE_LAZY (val)) | |
249 | value_fetch_lazy (val); | |
250 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
251 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
252 | but the current contents of that location. c'est la vie... */ | |
253 | val->modifiable = 0; | |
254 | release_value (val); | |
255 | ||
dd3b648e RP |
256 | /* Here we treat value_history_count as origin-zero |
257 | and applying to the value being stored now. */ | |
258 | ||
259 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
260 | if (i == 0) | |
261 | { | |
262 | register struct value_history_chunk *new | |
263 | = (struct value_history_chunk *) | |
264 | xmalloc (sizeof (struct value_history_chunk)); | |
4ed3a9ea | 265 | memset (new->values, 0, sizeof new->values); |
dd3b648e RP |
266 | new->next = value_history_chain; |
267 | value_history_chain = new; | |
268 | } | |
269 | ||
270 | value_history_chain->values[i] = val; | |
4abc83b9 | 271 | |
dd3b648e RP |
272 | /* Now we regard value_history_count as origin-one |
273 | and applying to the value just stored. */ | |
274 | ||
275 | return ++value_history_count; | |
276 | } | |
277 | ||
278 | /* Return a copy of the value in the history with sequence number NUM. */ | |
279 | ||
82a2edfb | 280 | value_ptr |
dd3b648e RP |
281 | access_value_history (num) |
282 | int num; | |
283 | { | |
284 | register struct value_history_chunk *chunk; | |
285 | register int i; | |
286 | register int absnum = num; | |
287 | ||
288 | if (absnum <= 0) | |
289 | absnum += value_history_count; | |
290 | ||
291 | if (absnum <= 0) | |
292 | { | |
293 | if (num == 0) | |
294 | error ("The history is empty."); | |
295 | else if (num == 1) | |
296 | error ("There is only one value in the history."); | |
297 | else | |
298 | error ("History does not go back to $$%d.", -num); | |
299 | } | |
300 | if (absnum > value_history_count) | |
301 | error ("History has not yet reached $%d.", absnum); | |
302 | ||
303 | absnum--; | |
304 | ||
305 | /* Now absnum is always absolute and origin zero. */ | |
306 | ||
307 | chunk = value_history_chain; | |
308 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
309 | i > 0; i--) | |
310 | chunk = chunk->next; | |
311 | ||
312 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
313 | } | |
314 | ||
315 | /* Clear the value history entirely. | |
316 | Must be done when new symbol tables are loaded, | |
317 | because the type pointers become invalid. */ | |
318 | ||
319 | void | |
320 | clear_value_history () | |
321 | { | |
322 | register struct value_history_chunk *next; | |
323 | register int i; | |
82a2edfb | 324 | register value_ptr val; |
dd3b648e RP |
325 | |
326 | while (value_history_chain) | |
327 | { | |
328 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
a8a69e63 | 329 | if ((val = value_history_chain->values[i]) != NULL) |
be772100 | 330 | free ((PTR)val); |
dd3b648e | 331 | next = value_history_chain->next; |
be772100 | 332 | free ((PTR)value_history_chain); |
dd3b648e RP |
333 | value_history_chain = next; |
334 | } | |
335 | value_history_count = 0; | |
336 | } | |
337 | ||
338 | static void | |
f266e564 | 339 | show_values (num_exp, from_tty) |
dd3b648e RP |
340 | char *num_exp; |
341 | int from_tty; | |
342 | { | |
343 | register int i; | |
82a2edfb | 344 | register value_ptr val; |
dd3b648e RP |
345 | static int num = 1; |
346 | ||
347 | if (num_exp) | |
348 | { | |
46c28185 RP |
349 | /* "info history +" should print from the stored position. |
350 | "info history <exp>" should print around value number <exp>. */ | |
351 | if (num_exp[0] != '+' || num_exp[1] != '\0') | |
dd3b648e RP |
352 | num = parse_and_eval_address (num_exp) - 5; |
353 | } | |
354 | else | |
355 | { | |
356 | /* "info history" means print the last 10 values. */ | |
357 | num = value_history_count - 9; | |
358 | } | |
359 | ||
360 | if (num <= 0) | |
361 | num = 1; | |
362 | ||
363 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
364 | { | |
365 | val = access_value_history (i); | |
366 | printf_filtered ("$%d = ", i); | |
199b2450 | 367 | value_print (val, gdb_stdout, 0, Val_pretty_default); |
dd3b648e RP |
368 | printf_filtered ("\n"); |
369 | } | |
370 | ||
371 | /* The next "info history +" should start after what we just printed. */ | |
372 | num += 10; | |
373 | ||
374 | /* Hitting just return after this command should do the same thing as | |
375 | "info history +". If num_exp is null, this is unnecessary, since | |
376 | "info history +" is not useful after "info history". */ | |
377 | if (from_tty && num_exp) | |
378 | { | |
379 | num_exp[0] = '+'; | |
380 | num_exp[1] = '\0'; | |
381 | } | |
382 | } | |
383 | \f | |
384 | /* Internal variables. These are variables within the debugger | |
385 | that hold values assigned by debugger commands. | |
386 | The user refers to them with a '$' prefix | |
387 | that does not appear in the variable names stored internally. */ | |
388 | ||
389 | static struct internalvar *internalvars; | |
390 | ||
391 | /* Look up an internal variable with name NAME. NAME should not | |
392 | normally include a dollar sign. | |
393 | ||
394 | If the specified internal variable does not exist, | |
395 | one is created, with a void value. */ | |
396 | ||
397 | struct internalvar * | |
398 | lookup_internalvar (name) | |
399 | char *name; | |
400 | { | |
401 | register struct internalvar *var; | |
402 | ||
403 | for (var = internalvars; var; var = var->next) | |
2e4964ad | 404 | if (STREQ (var->name, name)) |
dd3b648e RP |
405 | return var; |
406 | ||
407 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
58ae87f6 | 408 | var->name = concat (name, NULL); |
dd3b648e RP |
409 | var->value = allocate_value (builtin_type_void); |
410 | release_value (var->value); | |
411 | var->next = internalvars; | |
412 | internalvars = var; | |
413 | return var; | |
414 | } | |
415 | ||
82a2edfb | 416 | value_ptr |
dd3b648e RP |
417 | value_of_internalvar (var) |
418 | struct internalvar *var; | |
419 | { | |
82a2edfb | 420 | register value_ptr val; |
dd3b648e RP |
421 | |
422 | #ifdef IS_TRAPPED_INTERNALVAR | |
423 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
424 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
425 | #endif | |
426 | ||
427 | val = value_copy (var->value); | |
428 | if (VALUE_LAZY (val)) | |
429 | value_fetch_lazy (val); | |
430 | VALUE_LVAL (val) = lval_internalvar; | |
431 | VALUE_INTERNALVAR (val) = var; | |
432 | return val; | |
433 | } | |
434 | ||
435 | void | |
436 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
437 | struct internalvar *var; | |
438 | int offset, bitpos, bitsize; | |
82a2edfb | 439 | value_ptr newval; |
dd3b648e RP |
440 | { |
441 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
442 | ||
443 | #ifdef IS_TRAPPED_INTERNALVAR | |
444 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
445 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
446 | #endif | |
447 | ||
448 | if (bitsize) | |
58e49e21 | 449 | modify_field (addr, value_as_long (newval), |
dd3b648e RP |
450 | bitpos, bitsize); |
451 | else | |
4ed3a9ea | 452 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); |
dd3b648e RP |
453 | } |
454 | ||
455 | void | |
456 | set_internalvar (var, val) | |
457 | struct internalvar *var; | |
82a2edfb | 458 | value_ptr val; |
dd3b648e | 459 | { |
51f83933 JK |
460 | value_ptr newval; |
461 | ||
dd3b648e RP |
462 | #ifdef IS_TRAPPED_INTERNALVAR |
463 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
464 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
465 | #endif | |
466 | ||
51f83933 | 467 | newval = value_copy (val); |
ade01652 | 468 | newval->modifiable = 1; |
51f83933 | 469 | |
6fab5bef JG |
470 | /* Force the value to be fetched from the target now, to avoid problems |
471 | later when this internalvar is referenced and the target is gone or | |
472 | has changed. */ | |
51f83933 JK |
473 | if (VALUE_LAZY (newval)) |
474 | value_fetch_lazy (newval); | |
475 | ||
476 | /* Begin code which must not call error(). If var->value points to | |
477 | something free'd, an error() obviously leaves a dangling pointer. | |
478 | But we also get a danling pointer if var->value points to | |
479 | something in the value chain (i.e., before release_value is | |
480 | called), because after the error free_all_values will get called before | |
481 | long. */ | |
482 | free ((PTR)var->value); | |
483 | var->value = newval; | |
484 | release_value (newval); | |
485 | /* End code which must not call error(). */ | |
dd3b648e RP |
486 | } |
487 | ||
488 | char * | |
489 | internalvar_name (var) | |
490 | struct internalvar *var; | |
491 | { | |
492 | return var->name; | |
493 | } | |
494 | ||
495 | /* Free all internalvars. Done when new symtabs are loaded, | |
496 | because that makes the values invalid. */ | |
497 | ||
498 | void | |
499 | clear_internalvars () | |
500 | { | |
501 | register struct internalvar *var; | |
502 | ||
503 | while (internalvars) | |
504 | { | |
505 | var = internalvars; | |
506 | internalvars = var->next; | |
be772100 JG |
507 | free ((PTR)var->name); |
508 | free ((PTR)var->value); | |
509 | free ((PTR)var); | |
dd3b648e RP |
510 | } |
511 | } | |
512 | ||
513 | static void | |
ac88ca20 JG |
514 | show_convenience (ignore, from_tty) |
515 | char *ignore; | |
516 | int from_tty; | |
dd3b648e RP |
517 | { |
518 | register struct internalvar *var; | |
519 | int varseen = 0; | |
520 | ||
521 | for (var = internalvars; var; var = var->next) | |
522 | { | |
523 | #ifdef IS_TRAPPED_INTERNALVAR | |
524 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
525 | continue; | |
526 | #endif | |
527 | if (!varseen) | |
528 | { | |
dd3b648e RP |
529 | varseen = 1; |
530 | } | |
afe4ca15 | 531 | printf_filtered ("$%s = ", var->name); |
199b2450 | 532 | value_print (var->value, gdb_stdout, 0, Val_pretty_default); |
afe4ca15 | 533 | printf_filtered ("\n"); |
dd3b648e RP |
534 | } |
535 | if (!varseen) | |
199b2450 | 536 | printf_unfiltered ("No debugger convenience variables now defined.\n\ |
dd3b648e RP |
537 | Convenience variables have names starting with \"$\";\n\ |
538 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
539 | } | |
540 | \f | |
541 | /* Extract a value as a C number (either long or double). | |
542 | Knows how to convert fixed values to double, or | |
543 | floating values to long. | |
544 | Does not deallocate the value. */ | |
545 | ||
546 | LONGEST | |
547 | value_as_long (val) | |
82a2edfb | 548 | register value_ptr val; |
dd3b648e RP |
549 | { |
550 | /* This coerces arrays and functions, which is necessary (e.g. | |
551 | in disassemble_command). It also dereferences references, which | |
552 | I suspect is the most logical thing to do. */ | |
533bda77 | 553 | COERCE_ARRAY (val); |
dd3b648e RP |
554 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); |
555 | } | |
556 | ||
aa220473 | 557 | DOUBLEST |
dd3b648e | 558 | value_as_double (val) |
82a2edfb | 559 | register value_ptr val; |
dd3b648e | 560 | { |
aa220473 | 561 | DOUBLEST foo; |
dd3b648e RP |
562 | int inv; |
563 | ||
564 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
565 | if (inv) | |
566 | error ("Invalid floating value found in program."); | |
567 | return foo; | |
568 | } | |
e1ce8aa5 JK |
569 | /* Extract a value as a C pointer. |
570 | Does not deallocate the value. */ | |
571 | CORE_ADDR | |
572 | value_as_pointer (val) | |
82a2edfb | 573 | value_ptr val; |
e1ce8aa5 | 574 | { |
2bff8e38 JK |
575 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
576 | whether we want this to be true eventually. */ | |
b2ccb6a4 JK |
577 | #if 0 |
578 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
579 | non-address (e.g. argument to "signal", "info break", etc.), or | |
580 | for pointers to char, in which the low bits *are* significant. */ | |
ae0ea72e | 581 | return ADDR_BITS_REMOVE(value_as_long (val)); |
b2ccb6a4 JK |
582 | #else |
583 | return value_as_long (val); | |
584 | #endif | |
e1ce8aa5 | 585 | } |
dd3b648e RP |
586 | \f |
587 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
588 | as a long, or as a double, assuming the raw data is described | |
589 | by type TYPE. Knows how to convert different sizes of values | |
590 | and can convert between fixed and floating point. We don't assume | |
591 | any alignment for the raw data. Return value is in host byte order. | |
592 | ||
593 | If you want functions and arrays to be coerced to pointers, and | |
594 | references to be dereferenced, call value_as_long() instead. | |
595 | ||
596 | C++: It is assumed that the front-end has taken care of | |
597 | all matters concerning pointers to members. A pointer | |
598 | to member which reaches here is considered to be equivalent | |
599 | to an INT (or some size). After all, it is only an offset. */ | |
600 | ||
601 | LONGEST | |
602 | unpack_long (type, valaddr) | |
603 | struct type *type; | |
604 | char *valaddr; | |
605 | { | |
606 | register enum type_code code = TYPE_CODE (type); | |
607 | register int len = TYPE_LENGTH (type); | |
608 | register int nosign = TYPE_UNSIGNED (type); | |
609 | ||
3c02944a PB |
610 | if (current_language->la_language == language_scm |
611 | && is_scmvalue_type (type)) | |
612 | return scm_unpack (type, valaddr, TYPE_CODE_INT); | |
613 | ||
bf5c0d64 | 614 | switch (code) |
dd3b648e | 615 | { |
5e548861 PB |
616 | case TYPE_CODE_TYPEDEF: |
617 | return unpack_long (check_typedef (type), valaddr); | |
bf5c0d64 JK |
618 | case TYPE_CODE_ENUM: |
619 | case TYPE_CODE_BOOL: | |
620 | case TYPE_CODE_INT: | |
621 | case TYPE_CODE_CHAR: | |
b96bc1e4 | 622 | case TYPE_CODE_RANGE: |
bf5c0d64 JK |
623 | if (nosign) |
624 | return extract_unsigned_integer (valaddr, len); | |
dd3b648e | 625 | else |
bf5c0d64 JK |
626 | return extract_signed_integer (valaddr, len); |
627 | ||
628 | case TYPE_CODE_FLT: | |
629 | return extract_floating (valaddr, len); | |
630 | ||
631 | case TYPE_CODE_PTR: | |
632 | case TYPE_CODE_REF: | |
633 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
634 | whether we want this to be true eventually. */ | |
34df79fc | 635 | return extract_address (valaddr, len); |
dd3b648e | 636 | |
bf5c0d64 JK |
637 | case TYPE_CODE_MEMBER: |
638 | error ("not implemented: member types in unpack_long"); | |
639 | ||
640 | default: | |
ca0865db | 641 | error ("Value can't be converted to integer."); |
bf5c0d64 JK |
642 | } |
643 | return 0; /* Placate lint. */ | |
dd3b648e RP |
644 | } |
645 | ||
646 | /* Return a double value from the specified type and address. | |
647 | INVP points to an int which is set to 0 for valid value, | |
648 | 1 for invalid value (bad float format). In either case, | |
649 | the returned double is OK to use. Argument is in target | |
650 | format, result is in host format. */ | |
651 | ||
aa220473 | 652 | DOUBLEST |
dd3b648e RP |
653 | unpack_double (type, valaddr, invp) |
654 | struct type *type; | |
655 | char *valaddr; | |
656 | int *invp; | |
657 | { | |
658 | register enum type_code code = TYPE_CODE (type); | |
659 | register int len = TYPE_LENGTH (type); | |
660 | register int nosign = TYPE_UNSIGNED (type); | |
661 | ||
662 | *invp = 0; /* Assume valid. */ | |
5e548861 | 663 | CHECK_TYPEDEF (type); |
dd3b648e RP |
664 | if (code == TYPE_CODE_FLT) |
665 | { | |
ac57e5ad | 666 | #ifdef INVALID_FLOAT |
dd3b648e RP |
667 | if (INVALID_FLOAT (valaddr, len)) |
668 | { | |
669 | *invp = 1; | |
670 | return 1.234567891011121314; | |
671 | } | |
ac57e5ad | 672 | #endif |
89ce0c8f JK |
673 | return extract_floating (valaddr, len); |
674 | } | |
675 | else if (nosign) | |
676 | { | |
677 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
678 | return (unsigned LONGEST) unpack_long (type, valaddr); | |
679 | } | |
680 | else | |
681 | { | |
682 | /* Signed -- we are OK with unpack_long. */ | |
683 | return unpack_long (type, valaddr); | |
dd3b648e | 684 | } |
dd3b648e | 685 | } |
e1ce8aa5 JK |
686 | |
687 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
688 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
689 | We don't assume any alignment for the raw data. Return value is in | |
690 | host byte order. | |
691 | ||
692 | If you want functions and arrays to be coerced to pointers, and | |
693 | references to be dereferenced, call value_as_pointer() instead. | |
694 | ||
695 | C++: It is assumed that the front-end has taken care of | |
696 | all matters concerning pointers to members. A pointer | |
697 | to member which reaches here is considered to be equivalent | |
698 | to an INT (or some size). After all, it is only an offset. */ | |
699 | ||
700 | CORE_ADDR | |
701 | unpack_pointer (type, valaddr) | |
702 | struct type *type; | |
703 | char *valaddr; | |
704 | { | |
2bff8e38 JK |
705 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
706 | whether we want this to be true eventually. */ | |
707 | return unpack_long (type, valaddr); | |
e1ce8aa5 | 708 | } |
dd3b648e RP |
709 | \f |
710 | /* Given a value ARG1 (offset by OFFSET bytes) | |
711 | of a struct or union type ARG_TYPE, | |
712 | extract and return the value of one of its fields. | |
713 | FIELDNO says which field. | |
714 | ||
715 | For C++, must also be able to return values from static fields */ | |
716 | ||
82a2edfb | 717 | value_ptr |
dd3b648e | 718 | value_primitive_field (arg1, offset, fieldno, arg_type) |
82a2edfb | 719 | register value_ptr arg1; |
dd3b648e RP |
720 | int offset; |
721 | register int fieldno; | |
722 | register struct type *arg_type; | |
723 | { | |
82a2edfb | 724 | register value_ptr v; |
dd3b648e RP |
725 | register struct type *type; |
726 | ||
5e548861 | 727 | CHECK_TYPEDEF (arg_type); |
dd3b648e RP |
728 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
729 | ||
730 | /* Handle packed fields */ | |
731 | ||
732 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
733 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
734 | { | |
96b2f51c | 735 | v = value_from_longest (type, |
dd3b648e RP |
736 | unpack_field_as_long (arg_type, |
737 | VALUE_CONTENTS (arg1), | |
738 | fieldno)); | |
739 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
740 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
741 | } | |
742 | else | |
743 | { | |
744 | v = allocate_value (type); | |
745 | if (VALUE_LAZY (arg1)) | |
746 | VALUE_LAZY (v) = 1; | |
747 | else | |
4ed3a9ea FF |
748 | memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, |
749 | TYPE_LENGTH (type)); | |
dd3b648e RP |
750 | } |
751 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
752 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
753 | VALUE_LVAL (v) = lval_internalvar_component; | |
754 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
755 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
756 | return v; | |
757 | } | |
758 | ||
759 | /* Given a value ARG1 of a struct or union type, | |
760 | extract and return the value of one of its fields. | |
761 | FIELDNO says which field. | |
762 | ||
763 | For C++, must also be able to return values from static fields */ | |
764 | ||
82a2edfb | 765 | value_ptr |
dd3b648e | 766 | value_field (arg1, fieldno) |
82a2edfb | 767 | register value_ptr arg1; |
dd3b648e RP |
768 | register int fieldno; |
769 | { | |
770 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
771 | } | |
772 | ||
545af6ce PB |
773 | /* Return a non-virtual function as a value. |
774 | F is the list of member functions which contains the desired method. | |
775 | J is an index into F which provides the desired method. */ | |
776 | ||
82a2edfb | 777 | value_ptr |
94603999 | 778 | value_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 779 | value_ptr *arg1p; |
545af6ce PB |
780 | struct fn_field *f; |
781 | int j; | |
94603999 JG |
782 | struct type *type; |
783 | int offset; | |
dd3b648e | 784 | { |
82a2edfb | 785 | register value_ptr v; |
94603999 | 786 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
dd3b648e RP |
787 | struct symbol *sym; |
788 | ||
545af6ce | 789 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), |
dd3b648e | 790 | 0, VAR_NAMESPACE, 0, NULL); |
f1c6dbf6 | 791 | if (! sym) |
82a2edfb | 792 | return NULL; |
f1c6dbf6 KH |
793 | /* |
794 | error ("Internal error: could not find physical method named %s", | |
545af6ce | 795 | TYPE_FN_FIELD_PHYSNAME (f, j)); |
f1c6dbf6 | 796 | */ |
dd3b648e | 797 | |
94603999 | 798 | v = allocate_value (ftype); |
dd3b648e | 799 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); |
94603999 JG |
800 | VALUE_TYPE (v) = ftype; |
801 | ||
802 | if (arg1p) | |
803 | { | |
804 | if (type != VALUE_TYPE (*arg1p)) | |
805 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
806 | value_addr (*arg1p))); | |
807 | ||
dcd8fd8c | 808 | /* Move the `this' pointer according to the offset. |
94603999 | 809 | VALUE_OFFSET (*arg1p) += offset; |
dcd8fd8c | 810 | */ |
94603999 JG |
811 | } |
812 | ||
dd3b648e RP |
813 | return v; |
814 | } | |
815 | ||
816 | /* Return a virtual function as a value. | |
817 | ARG1 is the object which provides the virtual function | |
94603999 | 818 | table pointer. *ARG1P is side-effected in calling this function. |
dd3b648e RP |
819 | F is the list of member functions which contains the desired virtual |
820 | function. | |
e532974c JK |
821 | J is an index into F which provides the desired virtual function. |
822 | ||
823 | TYPE is the type in which F is located. */ | |
82a2edfb | 824 | value_ptr |
94603999 | 825 | value_virtual_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 826 | value_ptr *arg1p; |
dd3b648e RP |
827 | struct fn_field *f; |
828 | int j; | |
e532974c | 829 | struct type *type; |
94603999 | 830 | int offset; |
dd3b648e | 831 | { |
82a2edfb | 832 | value_ptr arg1 = *arg1p; |
5e548861 PB |
833 | struct type *type1 = check_typedef (VALUE_TYPE (arg1)); |
834 | struct type *entry_type; | |
dd3b648e RP |
835 | /* First, get the virtual function table pointer. That comes |
836 | with a strange type, so cast it to type `pointer to long' (which | |
837 | should serve just fine as a function type). Then, index into | |
838 | the table, and convert final value to appropriate function type. */ | |
82a2edfb JK |
839 | value_ptr entry, vfn, vtbl; |
840 | value_ptr vi = value_from_longest (builtin_type_int, | |
841 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); | |
e532974c JK |
842 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
843 | struct type *context; | |
844 | if (fcontext == NULL) | |
845 | /* We don't have an fcontext (e.g. the program was compiled with | |
846 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
847 | This won't work right for multiple inheritance, but at least we | |
848 | should do as well as GDB 3.x did. */ | |
849 | fcontext = TYPE_VPTR_BASETYPE (type); | |
850 | context = lookup_pointer_type (fcontext); | |
851 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
5e548861 PB |
852 | if (TYPE_TARGET_TYPE (context) != type1) |
853 | { | |
854 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
855 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
856 | } | |
dd3b648e | 857 | |
5e548861 | 858 | context = type1; |
e532974c | 859 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
860 | |
861 | /* This type may have been defined before its virtual function table | |
862 | was. If so, fill in the virtual function table entry for the | |
863 | type now. */ | |
864 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 865 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
866 | |
867 | /* The virtual function table is now an array of structures | |
868 | which have the form { int16 offset, delta; void *pfn; }. */ | |
94603999 JG |
869 | vtbl = value_ind (value_primitive_field (arg1, 0, |
870 | TYPE_VPTR_FIELDNO (context), | |
871 | TYPE_VPTR_BASETYPE (context))); | |
dd3b648e RP |
872 | |
873 | /* Index into the virtual function table. This is hard-coded because | |
874 | looking up a field is not cheap, and it may be important to save | |
875 | time, e.g. if the user has set a conditional breakpoint calling | |
876 | a virtual function. */ | |
877 | entry = value_subscript (vtbl, vi); | |
5e548861 | 878 | entry_type = check_typedef (VALUE_TYPE (entry)); |
dd3b648e | 879 | |
5e548861 | 880 | if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT) |
dd3b648e | 881 | { |
36a2283d PB |
882 | /* Move the `this' pointer according to the virtual function table. */ |
883 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)); | |
884 | ||
885 | if (! VALUE_LAZY (arg1)) | |
886 | { | |
887 | VALUE_LAZY (arg1) = 1; | |
888 | value_fetch_lazy (arg1); | |
889 | } | |
dd3b648e | 890 | |
36a2283d PB |
891 | vfn = value_field (entry, 2); |
892 | } | |
5e548861 | 893 | else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR) |
36a2283d PB |
894 | vfn = entry; |
895 | else | |
896 | error ("I'm confused: virtual function table has bad type"); | |
dd3b648e RP |
897 | /* Reinstantiate the function pointer with the correct type. */ |
898 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
899 | ||
94603999 | 900 | *arg1p = arg1; |
dd3b648e RP |
901 | return vfn; |
902 | } | |
903 | ||
71b16efa JK |
904 | /* ARG is a pointer to an object we know to be at least |
905 | a DTYPE. BTYPE is the most derived basetype that has | |
906 | already been searched (and need not be searched again). | |
907 | After looking at the vtables between BTYPE and DTYPE, | |
908 | return the most derived type we find. The caller must | |
909 | be satisfied when the return value == DTYPE. | |
910 | ||
911 | FIXME-tiemann: should work with dossier entries as well. */ | |
912 | ||
82a2edfb | 913 | static value_ptr |
7cb0f870 | 914 | value_headof (in_arg, btype, dtype) |
82a2edfb | 915 | value_ptr in_arg; |
71b16efa JK |
916 | struct type *btype, *dtype; |
917 | { | |
918 | /* First collect the vtables we must look at for this object. */ | |
919 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
82a2edfb | 920 | value_ptr arg, vtbl, entry, best_entry = 0; |
71b16efa JK |
921 | int i, nelems; |
922 | int offset, best_offset = 0; | |
923 | struct symbol *sym; | |
924 | CORE_ADDR pc_for_sym; | |
925 | char *demangled_name; | |
1ab3bf1b JG |
926 | struct minimal_symbol *msymbol; |
927 | ||
aec4cb91 | 928 | btype = TYPE_VPTR_BASETYPE (dtype); |
5e548861 | 929 | CHECK_TYPEDEF (btype); |
7cb0f870 | 930 | arg = in_arg; |
aec4cb91 | 931 | if (btype != dtype) |
7cb0f870 MT |
932 | arg = value_cast (lookup_pointer_type (btype), arg); |
933 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
934 | |
935 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1ab3bf1b JG |
936 | msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); |
937 | if (msymbol == NULL | |
36a2283d PB |
938 | || (demangled_name = SYMBOL_NAME (msymbol)) == NULL |
939 | || !VTBL_PREFIX_P (demangled_name)) | |
71b16efa JK |
940 | { |
941 | /* If we expected to find a vtable, but did not, let the user | |
942 | know that we aren't happy, but don't throw an error. | |
943 | FIXME: there has to be a better way to do this. */ | |
944 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
7cb0f870 | 945 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); |
71b16efa | 946 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); |
7cb0f870 MT |
947 | VALUE_TYPE (in_arg) = error_type; |
948 | return in_arg; | |
71b16efa JK |
949 | } |
950 | ||
951 | /* Now search through the virtual function table. */ | |
952 | entry = value_ind (vtbl); | |
e1ce8aa5 | 953 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
954 | for (i = 1; i <= nelems; i++) |
955 | { | |
96b2f51c JG |
956 | entry = value_subscript (vtbl, value_from_longest (builtin_type_int, |
957 | (LONGEST) i)); | |
36a2283d | 958 | /* This won't work if we're using thunks. */ |
5e548861 | 959 | if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT) |
36a2283d | 960 | break; |
e1ce8aa5 | 961 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
bcccec8c PB |
962 | /* If we use '<=' we can handle single inheritance |
963 | * where all offsets are zero - just use the first entry found. */ | |
964 | if (offset <= best_offset) | |
71b16efa JK |
965 | { |
966 | best_offset = offset; | |
967 | best_entry = entry; | |
968 | } | |
969 | } | |
71b16efa JK |
970 | /* Move the pointer according to BEST_ENTRY's offset, and figure |
971 | out what type we should return as the new pointer. */ | |
bcccec8c PB |
972 | if (best_entry == 0) |
973 | { | |
974 | /* An alternative method (which should no longer be necessary). | |
975 | * But we leave it in for future use, when we will hopefully | |
976 | * have optimizes the vtable to use thunks instead of offsets. */ | |
977 | /* Use the name of vtable itself to extract a base type. */ | |
f1c6dbf6 | 978 | demangled_name += 4; /* Skip _vt$ prefix. */ |
bcccec8c PB |
979 | } |
980 | else | |
981 | { | |
982 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); | |
983 | sym = find_pc_function (pc_for_sym); | |
8050a57b | 984 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); |
bcccec8c PB |
985 | *(strchr (demangled_name, ':')) = '\0'; |
986 | } | |
71b16efa | 987 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
2e4964ad FF |
988 | if (sym == NULL) |
989 | error ("could not find type declaration for `%s'", demangled_name); | |
bcccec8c PB |
990 | if (best_entry) |
991 | { | |
992 | free (demangled_name); | |
993 | arg = value_add (value_cast (builtin_type_int, arg), | |
994 | value_field (best_entry, 0)); | |
995 | } | |
7cb0f870 | 996 | else arg = in_arg; |
71b16efa JK |
997 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
998 | return arg; | |
999 | } | |
1000 | ||
1001 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
1002 | function tables, probe ARG's tables (including the vtables | |
1003 | of its baseclasses) to figure out the most derived type that ARG | |
1004 | could actually be a pointer to. */ | |
1005 | ||
82a2edfb | 1006 | value_ptr |
71b16efa | 1007 | value_from_vtable_info (arg, type) |
82a2edfb | 1008 | value_ptr arg; |
71b16efa JK |
1009 | struct type *type; |
1010 | { | |
1011 | /* Take care of preliminaries. */ | |
1012 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1013 | fill_in_vptr_fieldno (type); | |
398f584f | 1014 | if (TYPE_VPTR_FIELDNO (type) < 0) |
71b16efa JK |
1015 | return 0; |
1016 | ||
1017 | return value_headof (arg, 0, type); | |
1018 | } | |
1019 | ||
1410f5f1 JK |
1020 | /* Return true if the INDEXth field of TYPE is a virtual baseclass |
1021 | pointer which is for the base class whose type is BASECLASS. */ | |
1022 | ||
1023 | static int | |
1024 | vb_match (type, index, basetype) | |
1025 | struct type *type; | |
1026 | int index; | |
1027 | struct type *basetype; | |
1028 | { | |
1029 | struct type *fieldtype; | |
1410f5f1 JK |
1030 | char *name = TYPE_FIELD_NAME (type, index); |
1031 | char *field_class_name = NULL; | |
1032 | ||
1033 | if (*name != '_') | |
1034 | return 0; | |
f1c6dbf6 | 1035 | /* gcc 2.4 uses _vb$. */ |
81afee37 | 1036 | if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3])) |
1410f5f1 | 1037 | field_class_name = name + 4; |
f1c6dbf6 | 1038 | /* gcc 2.5 will use __vb_. */ |
1410f5f1 JK |
1039 | if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') |
1040 | field_class_name = name + 5; | |
1041 | ||
1042 | if (field_class_name == NULL) | |
1043 | /* This field is not a virtual base class pointer. */ | |
1044 | return 0; | |
1045 | ||
1046 | /* It's a virtual baseclass pointer, now we just need to find out whether | |
1047 | it is for this baseclass. */ | |
1048 | fieldtype = TYPE_FIELD_TYPE (type, index); | |
1049 | if (fieldtype == NULL | |
1050 | || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) | |
1051 | /* "Can't happen". */ | |
1052 | return 0; | |
1053 | ||
1054 | /* What we check for is that either the types are equal (needed for | |
1055 | nameless types) or have the same name. This is ugly, and a more | |
1056 | elegant solution should be devised (which would probably just push | |
1057 | the ugliness into symbol reading unless we change the stabs format). */ | |
1058 | if (TYPE_TARGET_TYPE (fieldtype) == basetype) | |
1059 | return 1; | |
1060 | ||
1061 | if (TYPE_NAME (basetype) != NULL | |
1062 | && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL | |
1063 | && STREQ (TYPE_NAME (basetype), | |
1064 | TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) | |
1065 | return 1; | |
1066 | return 0; | |
1067 | } | |
1068 | ||
94603999 | 1069 | /* Compute the offset of the baseclass which is |
5e548861 PB |
1070 | the INDEXth baseclass of class TYPE, |
1071 | for value at VALADDR (in host) at ADDRESS (in target). | |
1072 | The result is the offset of the baseclass value relative | |
94603999 JG |
1073 | to (the address of)(ARG) + OFFSET. |
1074 | ||
1075 | -1 is returned on error. */ | |
1076 | ||
1077 | int | |
5e548861 | 1078 | baseclass_offset (type, index, valaddr, address) |
94603999 JG |
1079 | struct type *type; |
1080 | int index; | |
5e548861 PB |
1081 | char *valaddr; |
1082 | CORE_ADDR address; | |
94603999 JG |
1083 | { |
1084 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1085 | ||
1086 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1087 | { | |
1088 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1089 | register int i, len = TYPE_NFIELDS (type); | |
1090 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
94603999 | 1091 | |
94603999 JG |
1092 | /* First look for the virtual baseclass pointer |
1093 | in the fields. */ | |
1094 | for (i = n_baseclasses; i < len; i++) | |
1095 | { | |
1410f5f1 | 1096 | if (vb_match (type, i, basetype)) |
94603999 JG |
1097 | { |
1098 | CORE_ADDR addr | |
1099 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
5e548861 | 1100 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
94603999 | 1101 | |
5e548861 | 1102 | return addr - (LONGEST) address; |
94603999 JG |
1103 | } |
1104 | } | |
1105 | /* Not in the fields, so try looking through the baseclasses. */ | |
1106 | for (i = index+1; i < n_baseclasses; i++) | |
1107 | { | |
1108 | int boffset = | |
5e548861 | 1109 | baseclass_offset (type, i, valaddr, address); |
94603999 JG |
1110 | if (boffset) |
1111 | return boffset; | |
1112 | } | |
1113 | /* Not found. */ | |
1114 | return -1; | |
1115 | } | |
1116 | ||
1117 | /* Baseclass is easily computed. */ | |
1118 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1119 | } | |
dd3b648e | 1120 | \f |
4db8e515 FF |
1121 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
1122 | VALADDR. | |
1123 | ||
1124 | Extracting bits depends on endianness of the machine. Compute the | |
1125 | number of least significant bits to discard. For big endian machines, | |
1126 | we compute the total number of bits in the anonymous object, subtract | |
1127 | off the bit count from the MSB of the object to the MSB of the | |
1128 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1129 | count. For little endian machines, the discard count is simply the | |
1130 | number of bits from the LSB of the anonymous object to the LSB of the | |
1131 | bitfield. | |
1132 | ||
1133 | If the field is signed, we also do sign extension. */ | |
1134 | ||
1135 | LONGEST | |
dd3b648e RP |
1136 | unpack_field_as_long (type, valaddr, fieldno) |
1137 | struct type *type; | |
1138 | char *valaddr; | |
1139 | int fieldno; | |
1140 | { | |
4db8e515 FF |
1141 | unsigned LONGEST val; |
1142 | unsigned LONGEST valmask; | |
dd3b648e RP |
1143 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
1144 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
4db8e515 | 1145 | int lsbcount; |
dd3b648e | 1146 | |
34df79fc | 1147 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); |
4db8e515 FF |
1148 | |
1149 | /* Extract bits. See comment above. */ | |
dd3b648e | 1150 | |
b8176214 ILT |
1151 | if (BITS_BIG_ENDIAN) |
1152 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); | |
1153 | else | |
1154 | lsbcount = (bitpos % 8); | |
4db8e515 | 1155 | val >>= lsbcount; |
dd3b648e | 1156 | |
4db8e515 FF |
1157 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
1158 | If the field is signed, and is negative, then sign extend. */ | |
1159 | ||
b52cac6b | 1160 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) |
4db8e515 FF |
1161 | { |
1162 | valmask = (((unsigned LONGEST) 1) << bitsize) - 1; | |
1163 | val &= valmask; | |
1164 | if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) | |
1165 | { | |
1166 | if (val & (valmask ^ (valmask >> 1))) | |
1167 | { | |
1168 | val |= ~valmask; | |
1169 | } | |
1170 | } | |
1171 | } | |
1172 | return (val); | |
dd3b648e RP |
1173 | } |
1174 | ||
3f2e006b JG |
1175 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1176 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1177 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1178 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1179 | ||
dd3b648e RP |
1180 | void |
1181 | modify_field (addr, fieldval, bitpos, bitsize) | |
1182 | char *addr; | |
58e49e21 | 1183 | LONGEST fieldval; |
dd3b648e RP |
1184 | int bitpos, bitsize; |
1185 | { | |
58e49e21 | 1186 | LONGEST oword; |
dd3b648e | 1187 | |
080868b4 PS |
1188 | /* If a negative fieldval fits in the field in question, chop |
1189 | off the sign extension bits. */ | |
b52cac6b | 1190 | if (bitsize < (8 * (int) sizeof (fieldval)) |
080868b4 PS |
1191 | && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0) |
1192 | fieldval = fieldval & ((1 << bitsize) - 1); | |
1193 | ||
1194 | /* Warn if value is too big to fit in the field in question. */ | |
b52cac6b | 1195 | if (bitsize < (8 * (int) sizeof (fieldval)) |
61a7292f | 1196 | && 0 != (fieldval & ~((1<<bitsize)-1))) |
58e49e21 JK |
1197 | { |
1198 | /* FIXME: would like to include fieldval in the message, but | |
1199 | we don't have a sprintf_longest. */ | |
080868b4 PS |
1200 | warning ("Value does not fit in %d bits.", bitsize); |
1201 | ||
1202 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
1203 | fieldval = fieldval & ((1 << bitsize) - 1); | |
58e49e21 | 1204 | } |
34df79fc JK |
1205 | |
1206 | oword = extract_signed_integer (addr, sizeof oword); | |
dd3b648e | 1207 | |
3f2e006b | 1208 | /* Shifting for bit field depends on endianness of the target machine. */ |
b8176214 ILT |
1209 | if (BITS_BIG_ENDIAN) |
1210 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; | |
dd3b648e | 1211 | |
58e49e21 | 1212 | /* Mask out old value, while avoiding shifts >= size of oword */ |
b52cac6b | 1213 | if (bitsize < 8 * (int) sizeof (oword)) |
58e49e21 | 1214 | oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos); |
c3a21801 | 1215 | else |
58e49e21 | 1216 | oword &= ~((~(unsigned LONGEST)0) << bitpos); |
dd3b648e | 1217 | oword |= fieldval << bitpos; |
3f2e006b | 1218 | |
34df79fc | 1219 | store_signed_integer (addr, sizeof oword, oword); |
dd3b648e RP |
1220 | } |
1221 | \f | |
1222 | /* Convert C numbers into newly allocated values */ | |
1223 | ||
82a2edfb | 1224 | value_ptr |
96b2f51c | 1225 | value_from_longest (type, num) |
dd3b648e RP |
1226 | struct type *type; |
1227 | register LONGEST num; | |
1228 | { | |
82a2edfb | 1229 | register value_ptr val = allocate_value (type); |
5e548861 PB |
1230 | register enum type_code code; |
1231 | register int len; | |
1232 | retry: | |
1233 | code = TYPE_CODE (type); | |
1234 | len = TYPE_LENGTH (type); | |
dd3b648e | 1235 | |
34df79fc | 1236 | switch (code) |
dd3b648e | 1237 | { |
5e548861 PB |
1238 | case TYPE_CODE_TYPEDEF: |
1239 | type = check_typedef (type); | |
1240 | goto retry; | |
34df79fc JK |
1241 | case TYPE_CODE_INT: |
1242 | case TYPE_CODE_CHAR: | |
1243 | case TYPE_CODE_ENUM: | |
1244 | case TYPE_CODE_BOOL: | |
b96bc1e4 | 1245 | case TYPE_CODE_RANGE: |
34df79fc JK |
1246 | store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); |
1247 | break; | |
1248 | ||
1249 | case TYPE_CODE_REF: | |
1250 | case TYPE_CODE_PTR: | |
1251 | /* This assumes that all pointers of a given length | |
1252 | have the same form. */ | |
1253 | store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num); | |
1254 | break; | |
1255 | ||
1256 | default: | |
1257 | error ("Unexpected type encountered for integer constant."); | |
dd3b648e | 1258 | } |
dd3b648e RP |
1259 | return val; |
1260 | } | |
1261 | ||
82a2edfb | 1262 | value_ptr |
dd3b648e RP |
1263 | value_from_double (type, num) |
1264 | struct type *type; | |
aa220473 | 1265 | DOUBLEST num; |
dd3b648e | 1266 | { |
82a2edfb | 1267 | register value_ptr val = allocate_value (type); |
5e548861 PB |
1268 | struct type *base_type = check_typedef (type); |
1269 | register enum type_code code = TYPE_CODE (base_type); | |
1270 | register int len = TYPE_LENGTH (base_type); | |
dd3b648e RP |
1271 | |
1272 | if (code == TYPE_CODE_FLT) | |
1273 | { | |
bf5c0d64 | 1274 | store_floating (VALUE_CONTENTS_RAW (val), len, num); |
dd3b648e RP |
1275 | } |
1276 | else | |
1277 | error ("Unexpected type encountered for floating constant."); | |
1278 | ||
dd3b648e RP |
1279 | return val; |
1280 | } | |
1281 | \f | |
1282 | /* Deal with the value that is "about to be returned". */ | |
1283 | ||
1284 | /* Return the value that a function returning now | |
1285 | would be returning to its caller, assuming its type is VALTYPE. | |
1286 | RETBUF is where we look for what ought to be the contents | |
1287 | of the registers (in raw form). This is because it is often | |
1288 | desirable to restore old values to those registers | |
1289 | after saving the contents of interest, and then call | |
1290 | this function using the saved values. | |
1291 | struct_return is non-zero when the function in question is | |
1292 | using the structure return conventions on the machine in question; | |
1293 | 0 when it is using the value returning conventions (this often | |
1294 | means returning pointer to where structure is vs. returning value). */ | |
1295 | ||
82a2edfb | 1296 | value_ptr |
dd3b648e RP |
1297 | value_being_returned (valtype, retbuf, struct_return) |
1298 | register struct type *valtype; | |
1299 | char retbuf[REGISTER_BYTES]; | |
1300 | int struct_return; | |
1301 | /*ARGSUSED*/ | |
1302 | { | |
82a2edfb | 1303 | register value_ptr val; |
dd3b648e RP |
1304 | CORE_ADDR addr; |
1305 | ||
1306 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1307 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1308 | if (struct_return) { | |
1309 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1310 | if (!addr) | |
1311 | error ("Function return value unknown"); | |
1312 | return value_at (valtype, addr); | |
1313 | } | |
1314 | #endif | |
1315 | ||
1316 | val = allocate_value (valtype); | |
5e548861 | 1317 | CHECK_TYPEDEF (valtype); |
dd3b648e RP |
1318 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); |
1319 | ||
1320 | return val; | |
1321 | } | |
1322 | ||
1323 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1324 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1325 | and TYPE is the type (which is known to be struct, union or array). | |
1326 | ||
1327 | On most machines, the struct convention is used unless we are | |
1328 | using gcc and the type is of a special size. */ | |
9925b928 JK |
1329 | /* As of about 31 Mar 93, GCC was changed to be compatible with the |
1330 | native compiler. GCC 2.3.3 was the last release that did it the | |
1331 | old way. Since gcc2_compiled was not changed, we have no | |
1332 | way to correctly win in all cases, so we just do the right thing | |
1333 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1334 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1335 | would cause more chaos than dealing with some struct returns being | |
1336 | handled wrong. */ | |
dd3b648e RP |
1337 | #if !defined (USE_STRUCT_CONVENTION) |
1338 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
9925b928 JK |
1339 | (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \ |
1340 | || TYPE_LENGTH (value_type) == 2 \ | |
1341 | || TYPE_LENGTH (value_type) == 4 \ | |
1342 | || TYPE_LENGTH (value_type) == 8 \ | |
1343 | ) \ | |
dd3b648e RP |
1344 | )) |
1345 | #endif | |
1346 | ||
aa220473 SG |
1347 | /* Some fundamental types (such as long double) are returned on the stack for |
1348 | certain architectures. This macro should return true for any type besides | |
1349 | struct, union or array that gets returned on the stack. */ | |
1350 | ||
1351 | #ifndef RETURN_VALUE_ON_STACK | |
1352 | #define RETURN_VALUE_ON_STACK(TYPE) 0 | |
1353 | #endif | |
1354 | ||
dd3b648e RP |
1355 | /* Return true if the function specified is using the structure returning |
1356 | convention on this machine to return arguments, or 0 if it is using | |
1357 | the value returning convention. FUNCTION is the value representing | |
1358 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1359 | is the type returned by the function. GCC_P is nonzero if compiled | |
1360 | with GCC. */ | |
1361 | ||
1362 | int | |
1363 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
82a2edfb | 1364 | value_ptr function; |
dd3b648e RP |
1365 | CORE_ADDR funcaddr; |
1366 | struct type *value_type; | |
1367 | int gcc_p; | |
1368 | /*ARGSUSED*/ | |
1369 | { | |
1370 | register enum type_code code = TYPE_CODE (value_type); | |
1371 | ||
1372 | if (code == TYPE_CODE_ERROR) | |
1373 | error ("Function return type unknown."); | |
1374 | ||
aa220473 SG |
1375 | if (code == TYPE_CODE_STRUCT |
1376 | || code == TYPE_CODE_UNION | |
1377 | || code == TYPE_CODE_ARRAY | |
1378 | || RETURN_VALUE_ON_STACK (value_type)) | |
dd3b648e RP |
1379 | return USE_STRUCT_CONVENTION (gcc_p, value_type); |
1380 | ||
1381 | return 0; | |
1382 | } | |
1383 | ||
1384 | /* Store VAL so it will be returned if a function returns now. | |
1385 | Does not verify that VAL's type matches what the current | |
1386 | function wants to return. */ | |
1387 | ||
1388 | void | |
1389 | set_return_value (val) | |
82a2edfb | 1390 | value_ptr val; |
dd3b648e | 1391 | { |
5e548861 PB |
1392 | struct type *type = check_typedef (VALUE_TYPE (val)); |
1393 | register enum type_code code = TYPE_CODE (type); | |
dd3b648e RP |
1394 | |
1395 | if (code == TYPE_CODE_ERROR) | |
1396 | error ("Function return type unknown."); | |
1397 | ||
f1d77e90 JG |
1398 | if ( code == TYPE_CODE_STRUCT |
1399 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ | |
1400 | error ("GDB does not support specifying a struct or union return value."); | |
dd3b648e | 1401 | |
5e548861 | 1402 | STORE_RETURN_VALUE (type, VALUE_CONTENTS (val)); |
dd3b648e RP |
1403 | } |
1404 | \f | |
1405 | void | |
1406 | _initialize_values () | |
1407 | { | |
f266e564 | 1408 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1409 | "Debugger convenience (\"$foo\") variables.\n\ |
1410 | These variables are created when you assign them values;\n\ | |
1411 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1412 | A few convenience variables are given values automatically:\n\ | |
1413 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1414 | \"$__\" holds the contents of the last address examined with \"x\".", |
1415 | &showlist); | |
dd3b648e | 1416 | |
f266e564 JK |
1417 | add_cmd ("values", no_class, show_values, |
1418 | "Elements of value history around item number IDX (or last ten).", | |
1419 | &showlist); | |
dd3b648e | 1420 | } |