]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
28e7fd62 | 3 | Copyright (C) 1986-2013 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "symtab.h" | |
22 | #include "gdbtypes.h" | |
23 | #include "gdbcore.h" | |
24 | #include "frame.h" | |
25 | #include "target.h" | |
26 | #include "value.h" | |
27 | #include "symfile.h" | |
28 | #include "objfiles.h" | |
29 | #include "gdbcmd.h" | |
88987551 | 30 | #include "gdb_regex.h" |
c906108c SS |
31 | #include "expression.h" |
32 | #include "language.h" | |
33 | #include "demangle.h" | |
34 | #include "inferior.h" | |
0378c332 | 35 | #include "source.h" |
a7fdf62f | 36 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 37 | #include "objc-lang.h" |
6aecb9c2 | 38 | #include "d-lang.h" |
1f8173e6 | 39 | #include "ada-lang.h" |
a766d390 | 40 | #include "go-lang.h" |
cd6c7346 | 41 | #include "p-lang.h" |
ff013f42 | 42 | #include "addrmap.h" |
529480d0 | 43 | #include "cli/cli-utils.h" |
c906108c | 44 | |
2de7ced7 DJ |
45 | #include "hashtab.h" |
46 | ||
04ea0df1 | 47 | #include "gdb_obstack.h" |
fe898f56 | 48 | #include "block.h" |
de4f826b | 49 | #include "dictionary.h" |
c906108c SS |
50 | |
51 | #include <sys/types.h> | |
52 | #include <fcntl.h> | |
0e9f083f | 53 | #include <string.h> |
53ce3c39 | 54 | #include <sys/stat.h> |
c906108c | 55 | #include <ctype.h> |
015a42b4 | 56 | #include "cp-abi.h" |
71c25dea | 57 | #include "cp-support.h" |
ea53e89f | 58 | #include "observer.h" |
94277a38 | 59 | #include "gdb_assert.h" |
3a40aaa0 | 60 | #include "solist.h" |
9a044a89 TT |
61 | #include "macrotab.h" |
62 | #include "macroscope.h" | |
c906108c | 63 | |
ccefe4c4 | 64 | #include "psymtab.h" |
270140bd | 65 | #include "parser-defs.h" |
ccefe4c4 | 66 | |
c906108c SS |
67 | /* Prototypes for local functions */ |
68 | ||
a14ed312 | 69 | static void rbreak_command (char *, int); |
c906108c | 70 | |
a14ed312 | 71 | static void types_info (char *, int); |
c906108c | 72 | |
a14ed312 | 73 | static void functions_info (char *, int); |
c906108c | 74 | |
a14ed312 | 75 | static void variables_info (char *, int); |
c906108c | 76 | |
a14ed312 | 77 | static void sources_info (char *, int); |
c906108c | 78 | |
f8eba3c6 | 79 | static int find_line_common (struct linetable *, int, int *, int); |
c906108c | 80 | |
3121eff0 | 81 | static struct symbol *lookup_symbol_aux (const char *name, |
3121eff0 | 82 | const struct block *block, |
176620f1 | 83 | const domain_enum domain, |
53c5240f | 84 | enum language language, |
1993b719 | 85 | struct field_of_this_result *is_a_field_of_this); |
fba7f19c | 86 | |
e4051eeb DC |
87 | static |
88 | struct symbol *lookup_symbol_aux_local (const char *name, | |
e4051eeb | 89 | const struct block *block, |
13387711 SW |
90 | const domain_enum domain, |
91 | enum language language); | |
8155455b DC |
92 | |
93 | static | |
94 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
95 | const char *name, | |
67ff19f7 | 96 | const domain_enum domain); |
8155455b DC |
97 | |
98 | static | |
ccefe4c4 TT |
99 | struct symbol *lookup_symbol_aux_quick (struct objfile *objfile, |
100 | int block_index, | |
101 | const char *name, | |
102 | const domain_enum domain); | |
c906108c | 103 | |
a14ed312 | 104 | void _initialize_symtab (void); |
c906108c SS |
105 | |
106 | /* */ | |
107 | ||
45cfd468 | 108 | /* When non-zero, print debugging messages related to symtab creation. */ |
db0fec5c | 109 | unsigned int symtab_create_debug = 0; |
45cfd468 | 110 | |
c011a4f4 DE |
111 | /* Non-zero if a file may be known by two different basenames. |
112 | This is the uncommon case, and significantly slows down gdb. | |
113 | Default set to "off" to not slow down the common case. */ | |
114 | int basenames_may_differ = 0; | |
115 | ||
717d2f5a JB |
116 | /* Allow the user to configure the debugger behavior with respect |
117 | to multiple-choice menus when more than one symbol matches during | |
118 | a symbol lookup. */ | |
119 | ||
7fc830e2 MK |
120 | const char multiple_symbols_ask[] = "ask"; |
121 | const char multiple_symbols_all[] = "all"; | |
122 | const char multiple_symbols_cancel[] = "cancel"; | |
40478521 | 123 | static const char *const multiple_symbols_modes[] = |
717d2f5a JB |
124 | { |
125 | multiple_symbols_ask, | |
126 | multiple_symbols_all, | |
127 | multiple_symbols_cancel, | |
128 | NULL | |
129 | }; | |
130 | static const char *multiple_symbols_mode = multiple_symbols_all; | |
131 | ||
132 | /* Read-only accessor to AUTO_SELECT_MODE. */ | |
133 | ||
134 | const char * | |
135 | multiple_symbols_select_mode (void) | |
136 | { | |
137 | return multiple_symbols_mode; | |
138 | } | |
139 | ||
c906108c | 140 | /* Block in which the most recently searched-for symbol was found. |
9af17804 | 141 | Might be better to make this a parameter to lookup_symbol and |
c378eb4e | 142 | value_of_this. */ |
c906108c SS |
143 | |
144 | const struct block *block_found; | |
145 | ||
20c681d1 DE |
146 | /* Return the name of a domain_enum. */ |
147 | ||
148 | const char * | |
149 | domain_name (domain_enum e) | |
150 | { | |
151 | switch (e) | |
152 | { | |
153 | case UNDEF_DOMAIN: return "UNDEF_DOMAIN"; | |
154 | case VAR_DOMAIN: return "VAR_DOMAIN"; | |
155 | case STRUCT_DOMAIN: return "STRUCT_DOMAIN"; | |
156 | case LABEL_DOMAIN: return "LABEL_DOMAIN"; | |
157 | case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN"; | |
158 | default: gdb_assert_not_reached ("bad domain_enum"); | |
159 | } | |
160 | } | |
161 | ||
162 | /* Return the name of a search_domain . */ | |
163 | ||
164 | const char * | |
165 | search_domain_name (enum search_domain e) | |
166 | { | |
167 | switch (e) | |
168 | { | |
169 | case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN"; | |
170 | case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN"; | |
171 | case TYPES_DOMAIN: return "TYPES_DOMAIN"; | |
172 | case ALL_DOMAIN: return "ALL_DOMAIN"; | |
173 | default: gdb_assert_not_reached ("bad search_domain"); | |
174 | } | |
175 | } | |
176 | ||
db0fec5c DE |
177 | /* Set the primary field in SYMTAB. */ |
178 | ||
179 | void | |
180 | set_symtab_primary (struct symtab *symtab, int primary) | |
181 | { | |
182 | symtab->primary = primary; | |
183 | ||
184 | if (symtab_create_debug && primary) | |
185 | { | |
186 | fprintf_unfiltered (gdb_stdlog, | |
187 | "Created primary symtab %s for %s.\n", | |
188 | host_address_to_string (symtab), | |
189 | symtab_to_filename_for_display (symtab)); | |
190 | } | |
191 | } | |
192 | ||
4aac40c8 TT |
193 | /* See whether FILENAME matches SEARCH_NAME using the rule that we |
194 | advertise to the user. (The manual's description of linespecs | |
af529f8f JK |
195 | describes what we advertise). Returns true if they match, false |
196 | otherwise. */ | |
4aac40c8 TT |
197 | |
198 | int | |
b57a636e | 199 | compare_filenames_for_search (const char *filename, const char *search_name) |
4aac40c8 TT |
200 | { |
201 | int len = strlen (filename); | |
b57a636e | 202 | size_t search_len = strlen (search_name); |
4aac40c8 TT |
203 | |
204 | if (len < search_len) | |
205 | return 0; | |
206 | ||
207 | /* The tail of FILENAME must match. */ | |
208 | if (FILENAME_CMP (filename + len - search_len, search_name) != 0) | |
209 | return 0; | |
210 | ||
211 | /* Either the names must completely match, or the character | |
212 | preceding the trailing SEARCH_NAME segment of FILENAME must be a | |
d84fca2c JK |
213 | directory separator. |
214 | ||
af529f8f JK |
215 | The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c" |
216 | cannot match FILENAME "/path//dir/file.c" - as user has requested | |
217 | absolute path. The sama applies for "c:\file.c" possibly | |
218 | incorrectly hypothetically matching "d:\dir\c:\file.c". | |
219 | ||
d84fca2c JK |
220 | The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c" |
221 | compatible with SEARCH_NAME "file.c". In such case a compiler had | |
222 | to put the "c:file.c" name into debug info. Such compatibility | |
223 | works only on GDB built for DOS host. */ | |
4aac40c8 | 224 | return (len == search_len |
af529f8f JK |
225 | || (!IS_ABSOLUTE_PATH (search_name) |
226 | && IS_DIR_SEPARATOR (filename[len - search_len - 1])) | |
4aac40c8 TT |
227 | || (HAS_DRIVE_SPEC (filename) |
228 | && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len])); | |
229 | } | |
230 | ||
f8eba3c6 TT |
231 | /* Check for a symtab of a specific name by searching some symtabs. |
232 | This is a helper function for callbacks of iterate_over_symtabs. | |
c906108c | 233 | |
b2d23133 DE |
234 | If NAME is not absolute, then REAL_PATH is NULL |
235 | If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME. | |
236 | ||
f5b95b50 | 237 | The return value, NAME, REAL_PATH, CALLBACK, and DATA |
f8eba3c6 TT |
238 | are identical to the `map_symtabs_matching_filename' method of |
239 | quick_symbol_functions. | |
240 | ||
241 | FIRST and AFTER_LAST indicate the range of symtabs to search. | |
242 | AFTER_LAST is one past the last symtab to search; NULL means to | |
243 | search until the end of the list. */ | |
244 | ||
245 | int | |
246 | iterate_over_some_symtabs (const char *name, | |
f8eba3c6 TT |
247 | const char *real_path, |
248 | int (*callback) (struct symtab *symtab, | |
249 | void *data), | |
250 | void *data, | |
251 | struct symtab *first, | |
252 | struct symtab *after_last) | |
c906108c | 253 | { |
ccefe4c4 | 254 | struct symtab *s = NULL; |
c011a4f4 | 255 | const char* base_name = lbasename (name); |
1f84b619 | 256 | |
f8eba3c6 | 257 | for (s = first; s != NULL && s != after_last; s = s->next) |
f079a2e5 | 258 | { |
af529f8f | 259 | if (compare_filenames_for_search (s->filename, name)) |
4aac40c8 TT |
260 | { |
261 | if (callback (s, data)) | |
262 | return 1; | |
288e77a7 | 263 | continue; |
4aac40c8 TT |
264 | } |
265 | ||
a94e8645 DE |
266 | /* Before we invoke realpath, which can get expensive when many |
267 | files are involved, do a quick comparison of the basenames. */ | |
268 | if (! basenames_may_differ | |
269 | && FILENAME_CMP (base_name, lbasename (s->filename)) != 0) | |
288e77a7 | 270 | continue; |
a94e8645 DE |
271 | |
272 | if (compare_filenames_for_search (symtab_to_fullname (s), name)) | |
273 | { | |
274 | if (callback (s, data)) | |
275 | return 1; | |
276 | continue; | |
277 | } | |
278 | ||
279 | /* If the user gave us an absolute path, try to find the file in | |
280 | this symtab and use its absolute path. */ | |
a94e8645 DE |
281 | if (real_path != NULL) |
282 | { | |
283 | const char *fullname = symtab_to_fullname (s); | |
284 | ||
285 | gdb_assert (IS_ABSOLUTE_PATH (real_path)); | |
286 | gdb_assert (IS_ABSOLUTE_PATH (name)); | |
287 | if (FILENAME_CMP (real_path, fullname) == 0) | |
288 | { | |
289 | if (callback (s, data)) | |
290 | return 1; | |
291 | continue; | |
292 | } | |
293 | } | |
f8eba3c6 | 294 | } |
58d370e0 | 295 | |
f8eba3c6 TT |
296 | return 0; |
297 | } | |
298 | ||
299 | /* Check for a symtab of a specific name; first in symtabs, then in | |
300 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
301 | in the symtab filename will also work. | |
302 | ||
303 | Calls CALLBACK with each symtab that is found and with the supplied | |
304 | DATA. If CALLBACK returns true, the search stops. */ | |
305 | ||
306 | void | |
307 | iterate_over_symtabs (const char *name, | |
308 | int (*callback) (struct symtab *symtab, | |
309 | void *data), | |
310 | void *data) | |
311 | { | |
f8eba3c6 TT |
312 | struct objfile *objfile; |
313 | char *real_path = NULL; | |
f8eba3c6 TT |
314 | struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); |
315 | ||
316 | /* Here we are interested in canonicalizing an absolute path, not | |
317 | absolutizing a relative path. */ | |
318 | if (IS_ABSOLUTE_PATH (name)) | |
319 | { | |
f8eba3c6 TT |
320 | real_path = gdb_realpath (name); |
321 | make_cleanup (xfree, real_path); | |
af529f8f | 322 | gdb_assert (IS_ABSOLUTE_PATH (real_path)); |
f8eba3c6 TT |
323 | } |
324 | ||
325 | ALL_OBJFILES (objfile) | |
326 | { | |
f5b95b50 | 327 | if (iterate_over_some_symtabs (name, real_path, callback, data, |
f8eba3c6 TT |
328 | objfile->symtabs, NULL)) |
329 | { | |
330 | do_cleanups (cleanups); | |
331 | return; | |
332 | } | |
333 | } | |
334 | ||
c906108c SS |
335 | /* Same search rules as above apply here, but now we look thru the |
336 | psymtabs. */ | |
337 | ||
ccefe4c4 TT |
338 | ALL_OBJFILES (objfile) |
339 | { | |
340 | if (objfile->sf | |
f8eba3c6 TT |
341 | && objfile->sf->qf->map_symtabs_matching_filename (objfile, |
342 | name, | |
f8eba3c6 TT |
343 | real_path, |
344 | callback, | |
345 | data)) | |
ccefe4c4 | 346 | { |
f8eba3c6 TT |
347 | do_cleanups (cleanups); |
348 | return; | |
ccefe4c4 TT |
349 | } |
350 | } | |
c906108c | 351 | |
f8eba3c6 TT |
352 | do_cleanups (cleanups); |
353 | } | |
354 | ||
355 | /* The callback function used by lookup_symtab. */ | |
356 | ||
357 | static int | |
358 | lookup_symtab_callback (struct symtab *symtab, void *data) | |
359 | { | |
360 | struct symtab **result_ptr = data; | |
c906108c | 361 | |
f8eba3c6 TT |
362 | *result_ptr = symtab; |
363 | return 1; | |
c906108c | 364 | } |
f8eba3c6 TT |
365 | |
366 | /* A wrapper for iterate_over_symtabs that returns the first matching | |
367 | symtab, or NULL. */ | |
368 | ||
369 | struct symtab * | |
370 | lookup_symtab (const char *name) | |
371 | { | |
372 | struct symtab *result = NULL; | |
373 | ||
374 | iterate_over_symtabs (name, lookup_symtab_callback, &result); | |
375 | return result; | |
376 | } | |
377 | ||
c906108c SS |
378 | \f |
379 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
380 | full method name, which consist of the class name (from T), the unadorned | |
381 | method name from METHOD_ID, and the signature for the specific overload, | |
c378eb4e | 382 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ |
c906108c SS |
383 | |
384 | char * | |
fba45db2 | 385 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
386 | { |
387 | int mangled_name_len; | |
388 | char *mangled_name; | |
389 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
390 | struct fn_field *method = &f[signature_id]; | |
0d5cff50 | 391 | const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); |
1d06ead6 | 392 | const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); |
0d5cff50 | 393 | const char *newname = type_name_no_tag (type); |
c906108c SS |
394 | |
395 | /* Does the form of physname indicate that it is the full mangled name | |
396 | of a constructor (not just the args)? */ | |
397 | int is_full_physname_constructor; | |
398 | ||
399 | int is_constructor; | |
015a42b4 | 400 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
401 | /* Need a new type prefix. */ |
402 | char *const_prefix = method->is_const ? "C" : ""; | |
403 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
404 | char buf[20]; | |
405 | int len = (newname == NULL ? 0 : strlen (newname)); | |
406 | ||
43630227 PS |
407 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
408 | or an operator name. */ | |
409 | if ((physname[0] == '_' && physname[1] == 'Z') | |
410 | || is_operator_name (field_name)) | |
235d1e03 EZ |
411 | return xstrdup (physname); |
412 | ||
015a42b4 | 413 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c | 414 | |
3e43a32a MS |
415 | is_constructor = is_full_physname_constructor |
416 | || (newname && strcmp (field_name, newname) == 0); | |
c906108c SS |
417 | |
418 | if (!is_destructor) | |
c5aa993b | 419 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
420 | |
421 | if (is_destructor || is_full_physname_constructor) | |
422 | { | |
c5aa993b JM |
423 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
424 | strcpy (mangled_name, physname); | |
c906108c SS |
425 | return mangled_name; |
426 | } | |
427 | ||
428 | if (len == 0) | |
429 | { | |
8c042590 | 430 | xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); |
c906108c SS |
431 | } |
432 | else if (physname[0] == 't' || physname[0] == 'Q') | |
433 | { | |
434 | /* The physname for template and qualified methods already includes | |
c5aa993b | 435 | the class name. */ |
8c042590 | 436 | xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); |
c906108c SS |
437 | newname = NULL; |
438 | len = 0; | |
439 | } | |
440 | else | |
441 | { | |
8c042590 PM |
442 | xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix, |
443 | volatile_prefix, len); | |
c906108c SS |
444 | } |
445 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 446 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 447 | |
433759f7 MS |
448 | mangled_name = (char *) xmalloc (mangled_name_len); |
449 | if (is_constructor) | |
450 | mangled_name[0] = '\0'; | |
451 | else | |
452 | strcpy (mangled_name, field_name); | |
453 | ||
c906108c SS |
454 | strcat (mangled_name, buf); |
455 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
456 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c378eb4e | 457 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
458 | if (newname != NULL) |
459 | strcat (mangled_name, newname); | |
460 | ||
461 | strcat (mangled_name, physname); | |
462 | return (mangled_name); | |
463 | } | |
12af6855 | 464 | |
29df156d SW |
465 | /* Initialize the cplus_specific structure. 'cplus_specific' should |
466 | only be allocated for use with cplus symbols. */ | |
467 | ||
468 | static void | |
469 | symbol_init_cplus_specific (struct general_symbol_info *gsymbol, | |
ccde22c0 | 470 | struct obstack *obstack) |
29df156d SW |
471 | { |
472 | /* A language_specific structure should not have been previously | |
473 | initialized. */ | |
474 | gdb_assert (gsymbol->language_specific.cplus_specific == NULL); | |
ccde22c0 | 475 | gdb_assert (obstack != NULL); |
29df156d SW |
476 | |
477 | gsymbol->language_specific.cplus_specific = | |
ccde22c0 | 478 | OBSTACK_ZALLOC (obstack, struct cplus_specific); |
29df156d SW |
479 | } |
480 | ||
b250c185 | 481 | /* Set the demangled name of GSYMBOL to NAME. NAME must be already |
29df156d | 482 | correctly allocated. For C++ symbols a cplus_specific struct is |
c378eb4e | 483 | allocated so OBJFILE must not be NULL. If this is a non C++ symbol |
29df156d | 484 | OBJFILE can be NULL. */ |
eca864fe | 485 | |
b250c185 SW |
486 | void |
487 | symbol_set_demangled_name (struct general_symbol_info *gsymbol, | |
cfc594ee | 488 | const char *name, |
ccde22c0 | 489 | struct obstack *obstack) |
b250c185 | 490 | { |
29df156d SW |
491 | if (gsymbol->language == language_cplus) |
492 | { | |
493 | if (gsymbol->language_specific.cplus_specific == NULL) | |
ccde22c0 | 494 | symbol_init_cplus_specific (gsymbol, obstack); |
29df156d SW |
495 | |
496 | gsymbol->language_specific.cplus_specific->demangled_name = name; | |
497 | } | |
f85f34ed TT |
498 | else if (gsymbol->language == language_ada) |
499 | { | |
500 | if (name == NULL) | |
501 | { | |
502 | gsymbol->ada_mangled = 0; | |
503 | gsymbol->language_specific.obstack = obstack; | |
504 | } | |
505 | else | |
506 | { | |
507 | gsymbol->ada_mangled = 1; | |
508 | gsymbol->language_specific.mangled_lang.demangled_name = name; | |
509 | } | |
510 | } | |
29df156d SW |
511 | else |
512 | gsymbol->language_specific.mangled_lang.demangled_name = name; | |
b250c185 SW |
513 | } |
514 | ||
515 | /* Return the demangled name of GSYMBOL. */ | |
eca864fe | 516 | |
0d5cff50 | 517 | const char * |
b250c185 SW |
518 | symbol_get_demangled_name (const struct general_symbol_info *gsymbol) |
519 | { | |
29df156d SW |
520 | if (gsymbol->language == language_cplus) |
521 | { | |
45c58896 SW |
522 | if (gsymbol->language_specific.cplus_specific != NULL) |
523 | return gsymbol->language_specific.cplus_specific->demangled_name; | |
524 | else | |
525 | return NULL; | |
29df156d | 526 | } |
f85f34ed TT |
527 | else if (gsymbol->language == language_ada) |
528 | { | |
529 | if (!gsymbol->ada_mangled) | |
530 | return NULL; | |
531 | /* Fall through. */ | |
532 | } | |
533 | ||
534 | return gsymbol->language_specific.mangled_lang.demangled_name; | |
b250c185 SW |
535 | } |
536 | ||
12af6855 | 537 | \f |
89aad1f9 | 538 | /* Initialize the language dependent portion of a symbol |
c378eb4e | 539 | depending upon the language for the symbol. */ |
eca864fe | 540 | |
89aad1f9 | 541 | void |
33e5013e | 542 | symbol_set_language (struct general_symbol_info *gsymbol, |
f85f34ed TT |
543 | enum language language, |
544 | struct obstack *obstack) | |
89aad1f9 EZ |
545 | { |
546 | gsymbol->language = language; | |
33e5013e | 547 | if (gsymbol->language == language_d |
a766d390 | 548 | || gsymbol->language == language_go |
5784d15e | 549 | || gsymbol->language == language_java |
f55ee35c JK |
550 | || gsymbol->language == language_objc |
551 | || gsymbol->language == language_fortran) | |
89aad1f9 | 552 | { |
f85f34ed TT |
553 | symbol_set_demangled_name (gsymbol, NULL, obstack); |
554 | } | |
555 | else if (gsymbol->language == language_ada) | |
556 | { | |
557 | gdb_assert (gsymbol->ada_mangled == 0); | |
558 | gsymbol->language_specific.obstack = obstack; | |
89aad1f9 | 559 | } |
29df156d SW |
560 | else if (gsymbol->language == language_cplus) |
561 | gsymbol->language_specific.cplus_specific = NULL; | |
89aad1f9 EZ |
562 | else |
563 | { | |
564 | memset (&gsymbol->language_specific, 0, | |
565 | sizeof (gsymbol->language_specific)); | |
566 | } | |
567 | } | |
568 | ||
2de7ced7 DJ |
569 | /* Functions to initialize a symbol's mangled name. */ |
570 | ||
04a679b8 TT |
571 | /* Objects of this type are stored in the demangled name hash table. */ |
572 | struct demangled_name_entry | |
573 | { | |
9d2ceabe | 574 | const char *mangled; |
04a679b8 TT |
575 | char demangled[1]; |
576 | }; | |
577 | ||
578 | /* Hash function for the demangled name hash. */ | |
eca864fe | 579 | |
04a679b8 TT |
580 | static hashval_t |
581 | hash_demangled_name_entry (const void *data) | |
582 | { | |
583 | const struct demangled_name_entry *e = data; | |
433759f7 | 584 | |
04a679b8 TT |
585 | return htab_hash_string (e->mangled); |
586 | } | |
587 | ||
588 | /* Equality function for the demangled name hash. */ | |
eca864fe | 589 | |
04a679b8 TT |
590 | static int |
591 | eq_demangled_name_entry (const void *a, const void *b) | |
592 | { | |
593 | const struct demangled_name_entry *da = a; | |
594 | const struct demangled_name_entry *db = b; | |
433759f7 | 595 | |
04a679b8 TT |
596 | return strcmp (da->mangled, db->mangled) == 0; |
597 | } | |
598 | ||
2de7ced7 DJ |
599 | /* Create the hash table used for demangled names. Each hash entry is |
600 | a pair of strings; one for the mangled name and one for the demangled | |
601 | name. The entry is hashed via just the mangled name. */ | |
602 | ||
603 | static void | |
604 | create_demangled_names_hash (struct objfile *objfile) | |
605 | { | |
606 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
9af17804 | 607 | The hash table code will round this up to the next prime number. |
2de7ced7 DJ |
608 | Choosing a much larger table size wastes memory, and saves only about |
609 | 1% in symbol reading. */ | |
610 | ||
84a1243b | 611 | objfile->per_bfd->demangled_names_hash = htab_create_alloc |
04a679b8 | 612 | (256, hash_demangled_name_entry, eq_demangled_name_entry, |
aa2ee5f6 | 613 | NULL, xcalloc, xfree); |
2de7ced7 | 614 | } |
12af6855 | 615 | |
2de7ced7 | 616 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
617 | language of that symbol. If the language is set to language_auto, |
618 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
619 | then set the language appropriately. The returned name is allocated |
620 | by the demangler and should be xfree'd. */ | |
12af6855 | 621 | |
2de7ced7 DJ |
622 | static char * |
623 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
624 | const char *mangled) | |
12af6855 | 625 | { |
12af6855 JB |
626 | char *demangled = NULL; |
627 | ||
628 | if (gsymbol->language == language_unknown) | |
629 | gsymbol->language = language_auto; | |
1bae87b9 AF |
630 | |
631 | if (gsymbol->language == language_objc | |
632 | || gsymbol->language == language_auto) | |
633 | { | |
634 | demangled = | |
635 | objc_demangle (mangled, 0); | |
636 | if (demangled != NULL) | |
637 | { | |
638 | gsymbol->language = language_objc; | |
639 | return demangled; | |
640 | } | |
641 | } | |
12af6855 JB |
642 | if (gsymbol->language == language_cplus |
643 | || gsymbol->language == language_auto) | |
644 | { | |
645 | demangled = | |
8de20a37 | 646 | gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 647 | if (demangled != NULL) |
2de7ced7 DJ |
648 | { |
649 | gsymbol->language = language_cplus; | |
650 | return demangled; | |
651 | } | |
12af6855 JB |
652 | } |
653 | if (gsymbol->language == language_java) | |
654 | { | |
655 | demangled = | |
8de20a37 TT |
656 | gdb_demangle (mangled, |
657 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); | |
12af6855 | 658 | if (demangled != NULL) |
2de7ced7 DJ |
659 | { |
660 | gsymbol->language = language_java; | |
661 | return demangled; | |
662 | } | |
663 | } | |
6aecb9c2 JB |
664 | if (gsymbol->language == language_d |
665 | || gsymbol->language == language_auto) | |
666 | { | |
667 | demangled = d_demangle(mangled, 0); | |
668 | if (demangled != NULL) | |
669 | { | |
670 | gsymbol->language = language_d; | |
671 | return demangled; | |
672 | } | |
673 | } | |
a766d390 DE |
674 | /* FIXME(dje): Continually adding languages here is clumsy. |
675 | Better to just call la_demangle if !auto, and if auto then call | |
676 | a utility routine that tries successive languages in turn and reports | |
677 | which one it finds. I realize the la_demangle options may be different | |
678 | for different languages but there's already a FIXME for that. */ | |
679 | if (gsymbol->language == language_go | |
680 | || gsymbol->language == language_auto) | |
681 | { | |
682 | demangled = go_demangle (mangled, 0); | |
683 | if (demangled != NULL) | |
684 | { | |
685 | gsymbol->language = language_go; | |
686 | return demangled; | |
687 | } | |
688 | } | |
689 | ||
f55ee35c JK |
690 | /* We could support `gsymbol->language == language_fortran' here to provide |
691 | module namespaces also for inferiors with only minimal symbol table (ELF | |
692 | symbols). Just the mangling standard is not standardized across compilers | |
693 | and there is no DW_AT_producer available for inferiors with only the ELF | |
694 | symbols to check the mangling kind. */ | |
2de7ced7 DJ |
695 | return NULL; |
696 | } | |
697 | ||
980cae7a | 698 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
04a679b8 TT |
699 | on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the |
700 | objfile's obstack; but if COPY_NAME is 0 and if NAME is | |
701 | NUL-terminated, then this function assumes that NAME is already | |
702 | correctly saved (either permanently or with a lifetime tied to the | |
703 | objfile), and it will not be copied. | |
704 | ||
705 | The hash table corresponding to OBJFILE is used, and the memory | |
84a1243b | 706 | comes from the per-BFD storage_obstack. LINKAGE_NAME is copied, |
04a679b8 | 707 | so the pointer can be discarded after calling this function. */ |
2de7ced7 | 708 | |
d2a52b27 DC |
709 | /* We have to be careful when dealing with Java names: when we run |
710 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
711 | gets demangled as a C++ name. This is unfortunate, but there's not | |
712 | much we can do about it: but when demangling partial symbols and | |
713 | regular symbols, we'd better not reuse the wrong demangled name. | |
714 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
715 | on Java names when storing them in the hash table. */ | |
716 | ||
717 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
718 | don't mind the Java prefix so much: different languages have | |
719 | different demangling requirements, so it's only natural that we | |
720 | need to keep language data around in our demangling cache. But | |
721 | it's not good that the minimal symbol has the wrong demangled name. | |
722 | Unfortunately, I can't think of any easy solution to that | |
723 | problem. */ | |
724 | ||
725 | #define JAVA_PREFIX "##JAVA$$" | |
726 | #define JAVA_PREFIX_LEN 8 | |
727 | ||
2de7ced7 DJ |
728 | void |
729 | symbol_set_names (struct general_symbol_info *gsymbol, | |
04a679b8 TT |
730 | const char *linkage_name, int len, int copy_name, |
731 | struct objfile *objfile) | |
2de7ced7 | 732 | { |
04a679b8 | 733 | struct demangled_name_entry **slot; |
980cae7a DC |
734 | /* A 0-terminated copy of the linkage name. */ |
735 | const char *linkage_name_copy; | |
d2a52b27 DC |
736 | /* A copy of the linkage name that might have a special Java prefix |
737 | added to it, for use when looking names up in the hash table. */ | |
738 | const char *lookup_name; | |
739 | /* The length of lookup_name. */ | |
740 | int lookup_len; | |
04a679b8 | 741 | struct demangled_name_entry entry; |
84a1243b | 742 | struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd; |
2de7ced7 | 743 | |
b06ead72 JB |
744 | if (gsymbol->language == language_ada) |
745 | { | |
746 | /* In Ada, we do the symbol lookups using the mangled name, so | |
747 | we can save some space by not storing the demangled name. | |
748 | ||
749 | As a side note, we have also observed some overlap between | |
750 | the C++ mangling and Ada mangling, similarly to what has | |
751 | been observed with Java. Because we don't store the demangled | |
752 | name with the symbol, we don't need to use the same trick | |
753 | as Java. */ | |
04a679b8 | 754 | if (!copy_name) |
0d5cff50 | 755 | gsymbol->name = linkage_name; |
04a679b8 TT |
756 | else |
757 | { | |
84a1243b | 758 | char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1); |
0d5cff50 DE |
759 | |
760 | memcpy (name, linkage_name, len); | |
761 | name[len] = '\0'; | |
762 | gsymbol->name = name; | |
04a679b8 | 763 | } |
84a1243b | 764 | symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack); |
b06ead72 JB |
765 | |
766 | return; | |
767 | } | |
768 | ||
84a1243b | 769 | if (per_bfd->demangled_names_hash == NULL) |
04a679b8 TT |
770 | create_demangled_names_hash (objfile); |
771 | ||
980cae7a DC |
772 | /* The stabs reader generally provides names that are not |
773 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
774 | can just use the given copy, unless we're in the Java case. */ |
775 | if (gsymbol->language == language_java) | |
776 | { | |
777 | char *alloc_name; | |
d2a52b27 | 778 | |
433759f7 | 779 | lookup_len = len + JAVA_PREFIX_LEN; |
d2a52b27 DC |
780 | alloc_name = alloca (lookup_len + 1); |
781 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
782 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
783 | alloc_name[lookup_len] = '\0'; | |
784 | ||
785 | lookup_name = alloc_name; | |
786 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
787 | } | |
788 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 789 | { |
980cae7a DC |
790 | char *alloc_name; |
791 | ||
433759f7 | 792 | lookup_len = len; |
d2a52b27 | 793 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 794 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 795 | alloc_name[lookup_len] = '\0'; |
980cae7a | 796 | |
d2a52b27 | 797 | lookup_name = alloc_name; |
980cae7a | 798 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
799 | } |
800 | else | |
980cae7a | 801 | { |
d2a52b27 DC |
802 | lookup_len = len; |
803 | lookup_name = linkage_name; | |
980cae7a DC |
804 | linkage_name_copy = linkage_name; |
805 | } | |
2de7ced7 | 806 | |
9d2ceabe | 807 | entry.mangled = lookup_name; |
04a679b8 | 808 | slot = ((struct demangled_name_entry **) |
84a1243b | 809 | htab_find_slot (per_bfd->demangled_names_hash, |
04a679b8 | 810 | &entry, INSERT)); |
2de7ced7 DJ |
811 | |
812 | /* If this name is not in the hash table, add it. */ | |
a766d390 DE |
813 | if (*slot == NULL |
814 | /* A C version of the symbol may have already snuck into the table. | |
815 | This happens to, e.g., main.init (__go_init_main). Cope. */ | |
816 | || (gsymbol->language == language_go | |
817 | && (*slot)->demangled[0] == '\0')) | |
2de7ced7 | 818 | { |
980cae7a DC |
819 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
820 | linkage_name_copy); | |
2de7ced7 DJ |
821 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
822 | ||
04a679b8 TT |
823 | /* Suppose we have demangled_name==NULL, copy_name==0, and |
824 | lookup_name==linkage_name. In this case, we already have the | |
825 | mangled name saved, and we don't have a demangled name. So, | |
826 | you might think we could save a little space by not recording | |
827 | this in the hash table at all. | |
828 | ||
829 | It turns out that it is actually important to still save such | |
830 | an entry in the hash table, because storing this name gives | |
705b5767 | 831 | us better bcache hit rates for partial symbols. */ |
04a679b8 TT |
832 | if (!copy_name && lookup_name == linkage_name) |
833 | { | |
84a1243b | 834 | *slot = obstack_alloc (&per_bfd->storage_obstack, |
04a679b8 TT |
835 | offsetof (struct demangled_name_entry, |
836 | demangled) | |
837 | + demangled_len + 1); | |
9d2ceabe | 838 | (*slot)->mangled = lookup_name; |
04a679b8 TT |
839 | } |
840 | else | |
841 | { | |
9d2ceabe TT |
842 | char *mangled_ptr; |
843 | ||
04a679b8 TT |
844 | /* If we must copy the mangled name, put it directly after |
845 | the demangled name so we can have a single | |
846 | allocation. */ | |
84a1243b | 847 | *slot = obstack_alloc (&per_bfd->storage_obstack, |
04a679b8 TT |
848 | offsetof (struct demangled_name_entry, |
849 | demangled) | |
850 | + lookup_len + demangled_len + 2); | |
9d2ceabe TT |
851 | mangled_ptr = &((*slot)->demangled[demangled_len + 1]); |
852 | strcpy (mangled_ptr, lookup_name); | |
853 | (*slot)->mangled = mangled_ptr; | |
04a679b8 TT |
854 | } |
855 | ||
980cae7a | 856 | if (demangled_name != NULL) |
2de7ced7 | 857 | { |
04a679b8 | 858 | strcpy ((*slot)->demangled, demangled_name); |
2de7ced7 DJ |
859 | xfree (demangled_name); |
860 | } | |
861 | else | |
04a679b8 | 862 | (*slot)->demangled[0] = '\0'; |
2de7ced7 DJ |
863 | } |
864 | ||
72dcaf82 | 865 | gsymbol->name = (*slot)->mangled + lookup_len - len; |
04a679b8 | 866 | if ((*slot)->demangled[0] != '\0') |
ccde22c0 | 867 | symbol_set_demangled_name (gsymbol, (*slot)->demangled, |
84a1243b | 868 | &per_bfd->storage_obstack); |
2de7ced7 | 869 | else |
84a1243b | 870 | symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack); |
2de7ced7 DJ |
871 | } |
872 | ||
22abf04a DC |
873 | /* Return the source code name of a symbol. In languages where |
874 | demangling is necessary, this is the demangled name. */ | |
875 | ||
0d5cff50 | 876 | const char * |
22abf04a DC |
877 | symbol_natural_name (const struct general_symbol_info *gsymbol) |
878 | { | |
9af17804 | 879 | switch (gsymbol->language) |
22abf04a | 880 | { |
1f8173e6 | 881 | case language_cplus: |
6aecb9c2 | 882 | case language_d: |
a766d390 | 883 | case language_go: |
1f8173e6 PH |
884 | case language_java: |
885 | case language_objc: | |
f55ee35c | 886 | case language_fortran: |
b250c185 SW |
887 | if (symbol_get_demangled_name (gsymbol) != NULL) |
888 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
889 | break; |
890 | case language_ada: | |
f85f34ed | 891 | return ada_decode_symbol (gsymbol); |
1f8173e6 PH |
892 | default: |
893 | break; | |
22abf04a | 894 | } |
1f8173e6 | 895 | return gsymbol->name; |
22abf04a DC |
896 | } |
897 | ||
9cc0d196 | 898 | /* Return the demangled name for a symbol based on the language for |
c378eb4e | 899 | that symbol. If no demangled name exists, return NULL. */ |
eca864fe | 900 | |
0d5cff50 | 901 | const char * |
df8a16a1 | 902 | symbol_demangled_name (const struct general_symbol_info *gsymbol) |
9cc0d196 | 903 | { |
c6e5ee5e SDJ |
904 | const char *dem_name = NULL; |
905 | ||
9af17804 | 906 | switch (gsymbol->language) |
1f8173e6 PH |
907 | { |
908 | case language_cplus: | |
6aecb9c2 | 909 | case language_d: |
a766d390 | 910 | case language_go: |
1f8173e6 PH |
911 | case language_java: |
912 | case language_objc: | |
f55ee35c | 913 | case language_fortran: |
c6e5ee5e | 914 | dem_name = symbol_get_demangled_name (gsymbol); |
1f8173e6 PH |
915 | break; |
916 | case language_ada: | |
f85f34ed | 917 | dem_name = ada_decode_symbol (gsymbol); |
1f8173e6 PH |
918 | break; |
919 | default: | |
920 | break; | |
921 | } | |
c6e5ee5e | 922 | return dem_name; |
9cc0d196 | 923 | } |
fe39c653 | 924 | |
4725b721 PH |
925 | /* Return the search name of a symbol---generally the demangled or |
926 | linkage name of the symbol, depending on how it will be searched for. | |
9af17804 | 927 | If there is no distinct demangled name, then returns the same value |
c378eb4e | 928 | (same pointer) as SYMBOL_LINKAGE_NAME. */ |
eca864fe | 929 | |
0d5cff50 | 930 | const char * |
fc062ac6 JB |
931 | symbol_search_name (const struct general_symbol_info *gsymbol) |
932 | { | |
1f8173e6 PH |
933 | if (gsymbol->language == language_ada) |
934 | return gsymbol->name; | |
935 | else | |
936 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
937 | } |
938 | ||
fe39c653 | 939 | /* Initialize the structure fields to zero values. */ |
eca864fe | 940 | |
fe39c653 EZ |
941 | void |
942 | init_sal (struct symtab_and_line *sal) | |
943 | { | |
6c95b8df | 944 | sal->pspace = NULL; |
fe39c653 EZ |
945 | sal->symtab = 0; |
946 | sal->section = 0; | |
947 | sal->line = 0; | |
948 | sal->pc = 0; | |
949 | sal->end = 0; | |
ed0616c6 VP |
950 | sal->explicit_pc = 0; |
951 | sal->explicit_line = 0; | |
55aa24fb | 952 | sal->probe = NULL; |
fe39c653 | 953 | } |
c906108c SS |
954 | \f |
955 | ||
94277a38 DJ |
956 | /* Return 1 if the two sections are the same, or if they could |
957 | plausibly be copies of each other, one in an original object | |
958 | file and another in a separated debug file. */ | |
959 | ||
960 | int | |
714835d5 UW |
961 | matching_obj_sections (struct obj_section *obj_first, |
962 | struct obj_section *obj_second) | |
94277a38 | 963 | { |
714835d5 UW |
964 | asection *first = obj_first? obj_first->the_bfd_section : NULL; |
965 | asection *second = obj_second? obj_second->the_bfd_section : NULL; | |
94277a38 DJ |
966 | struct objfile *obj; |
967 | ||
968 | /* If they're the same section, then they match. */ | |
969 | if (first == second) | |
970 | return 1; | |
971 | ||
972 | /* If either is NULL, give up. */ | |
973 | if (first == NULL || second == NULL) | |
974 | return 0; | |
975 | ||
976 | /* This doesn't apply to absolute symbols. */ | |
977 | if (first->owner == NULL || second->owner == NULL) | |
978 | return 0; | |
979 | ||
980 | /* If they're in the same object file, they must be different sections. */ | |
981 | if (first->owner == second->owner) | |
982 | return 0; | |
983 | ||
984 | /* Check whether the two sections are potentially corresponding. They must | |
985 | have the same size, address, and name. We can't compare section indexes, | |
986 | which would be more reliable, because some sections may have been | |
987 | stripped. */ | |
988 | if (bfd_get_section_size (first) != bfd_get_section_size (second)) | |
989 | return 0; | |
990 | ||
818f79f6 | 991 | /* In-memory addresses may start at a different offset, relativize them. */ |
94277a38 | 992 | if (bfd_get_section_vma (first->owner, first) |
818f79f6 DJ |
993 | - bfd_get_start_address (first->owner) |
994 | != bfd_get_section_vma (second->owner, second) | |
995 | - bfd_get_start_address (second->owner)) | |
94277a38 DJ |
996 | return 0; |
997 | ||
998 | if (bfd_get_section_name (first->owner, first) == NULL | |
999 | || bfd_get_section_name (second->owner, second) == NULL | |
1000 | || strcmp (bfd_get_section_name (first->owner, first), | |
1001 | bfd_get_section_name (second->owner, second)) != 0) | |
1002 | return 0; | |
1003 | ||
1004 | /* Otherwise check that they are in corresponding objfiles. */ | |
1005 | ||
1006 | ALL_OBJFILES (obj) | |
1007 | if (obj->obfd == first->owner) | |
1008 | break; | |
1009 | gdb_assert (obj != NULL); | |
1010 | ||
1011 | if (obj->separate_debug_objfile != NULL | |
1012 | && obj->separate_debug_objfile->obfd == second->owner) | |
1013 | return 1; | |
1014 | if (obj->separate_debug_objfile_backlink != NULL | |
1015 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
1016 | return 1; | |
1017 | ||
1018 | return 0; | |
1019 | } | |
c5aa993b | 1020 | |
ccefe4c4 TT |
1021 | struct symtab * |
1022 | find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section) | |
c906108c | 1023 | { |
52f0bd74 | 1024 | struct objfile *objfile; |
8a48e967 DJ |
1025 | struct minimal_symbol *msymbol; |
1026 | ||
1027 | /* If we know that this is not a text address, return failure. This is | |
1028 | necessary because we loop based on texthigh and textlow, which do | |
1029 | not include the data ranges. */ | |
7cbd4a93 | 1030 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym; |
8a48e967 | 1031 | if (msymbol |
712f90be TT |
1032 | && (MSYMBOL_TYPE (msymbol) == mst_data |
1033 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
1034 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
1035 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
1036 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 1037 | return NULL; |
c906108c | 1038 | |
ff013f42 | 1039 | ALL_OBJFILES (objfile) |
ccefe4c4 TT |
1040 | { |
1041 | struct symtab *result = NULL; | |
433759f7 | 1042 | |
ccefe4c4 TT |
1043 | if (objfile->sf) |
1044 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol, | |
1045 | pc, section, 0); | |
1046 | if (result) | |
1047 | return result; | |
1048 | } | |
ff013f42 JK |
1049 | |
1050 | return NULL; | |
c906108c | 1051 | } |
c906108c SS |
1052 | \f |
1053 | /* Debug symbols usually don't have section information. We need to dig that | |
1054 | out of the minimal symbols and stash that in the debug symbol. */ | |
1055 | ||
ccefe4c4 | 1056 | void |
907fc202 UW |
1057 | fixup_section (struct general_symbol_info *ginfo, |
1058 | CORE_ADDR addr, struct objfile *objfile) | |
c906108c SS |
1059 | { |
1060 | struct minimal_symbol *msym; | |
c906108c | 1061 | |
bccdca4a UW |
1062 | /* First, check whether a minimal symbol with the same name exists |
1063 | and points to the same address. The address check is required | |
1064 | e.g. on PowerPC64, where the minimal symbol for a function will | |
1065 | point to the function descriptor, while the debug symbol will | |
1066 | point to the actual function code. */ | |
907fc202 UW |
1067 | msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); |
1068 | if (msym) | |
e27d198c | 1069 | ginfo->section = SYMBOL_SECTION (msym); |
907fc202 | 1070 | else |
19e2d14b KB |
1071 | { |
1072 | /* Static, function-local variables do appear in the linker | |
1073 | (minimal) symbols, but are frequently given names that won't | |
1074 | be found via lookup_minimal_symbol(). E.g., it has been | |
1075 | observed in frv-uclinux (ELF) executables that a static, | |
1076 | function-local variable named "foo" might appear in the | |
1077 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
1078 | point in attempting to extend the lookup-by-name mechanism to | |
1079 | handle this case due to the fact that there can be multiple | |
1080 | names. | |
9af17804 | 1081 | |
19e2d14b KB |
1082 | So, instead, search the section table when lookup by name has |
1083 | failed. The ``addr'' and ``endaddr'' fields may have already | |
1084 | been relocated. If so, the relocation offset (i.e. the | |
1085 | ANOFFSET value) needs to be subtracted from these values when | |
1086 | performing the comparison. We unconditionally subtract it, | |
1087 | because, when no relocation has been performed, the ANOFFSET | |
1088 | value will simply be zero. | |
9af17804 | 1089 | |
19e2d14b KB |
1090 | The address of the symbol whose section we're fixing up HAS |
1091 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
1092 | the section isn't yet known and knowing the section is | |
1093 | necessary in order to add the correct relocation value. In | |
1094 | other words, we wouldn't even be in this function (attempting | |
1095 | to compute the section) if it were already known. | |
1096 | ||
1097 | Note that it is possible to search the minimal symbols | |
1098 | (subtracting the relocation value if necessary) to find the | |
1099 | matching minimal symbol, but this is overkill and much less | |
1100 | efficient. It is not necessary to find the matching minimal | |
9af17804 DE |
1101 | symbol, only its section. |
1102 | ||
19e2d14b KB |
1103 | Note that this technique (of doing a section table search) |
1104 | can fail when unrelocated section addresses overlap. For | |
1105 | this reason, we still attempt a lookup by name prior to doing | |
1106 | a search of the section table. */ | |
9af17804 | 1107 | |
19e2d14b | 1108 | struct obj_section *s; |
e27d198c | 1109 | int fallback = -1; |
433759f7 | 1110 | |
19e2d14b KB |
1111 | ALL_OBJFILE_OSECTIONS (objfile, s) |
1112 | { | |
65cf3563 | 1113 | int idx = s - objfile->sections; |
19e2d14b KB |
1114 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); |
1115 | ||
e27d198c TT |
1116 | if (fallback == -1) |
1117 | fallback = idx; | |
1118 | ||
f1f6aadf PA |
1119 | if (obj_section_addr (s) - offset <= addr |
1120 | && addr < obj_section_endaddr (s) - offset) | |
19e2d14b | 1121 | { |
19e2d14b KB |
1122 | ginfo->section = idx; |
1123 | return; | |
1124 | } | |
1125 | } | |
e27d198c TT |
1126 | |
1127 | /* If we didn't find the section, assume it is in the first | |
1128 | section. If there is no allocated section, then it hardly | |
1129 | matters what we pick, so just pick zero. */ | |
1130 | if (fallback == -1) | |
1131 | ginfo->section = 0; | |
1132 | else | |
1133 | ginfo->section = fallback; | |
19e2d14b | 1134 | } |
c906108c SS |
1135 | } |
1136 | ||
1137 | struct symbol * | |
fba45db2 | 1138 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c | 1139 | { |
907fc202 UW |
1140 | CORE_ADDR addr; |
1141 | ||
c906108c SS |
1142 | if (!sym) |
1143 | return NULL; | |
1144 | ||
907fc202 UW |
1145 | /* We either have an OBJFILE, or we can get at it from the sym's |
1146 | symtab. Anything else is a bug. */ | |
1147 | gdb_assert (objfile || SYMBOL_SYMTAB (sym)); | |
1148 | ||
1149 | if (objfile == NULL) | |
1150 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
1151 | ||
e27d198c TT |
1152 | if (SYMBOL_OBJ_SECTION (objfile, sym)) |
1153 | return sym; | |
1154 | ||
907fc202 UW |
1155 | /* We should have an objfile by now. */ |
1156 | gdb_assert (objfile); | |
1157 | ||
1158 | switch (SYMBOL_CLASS (sym)) | |
1159 | { | |
1160 | case LOC_STATIC: | |
1161 | case LOC_LABEL: | |
907fc202 UW |
1162 | addr = SYMBOL_VALUE_ADDRESS (sym); |
1163 | break; | |
1164 | case LOC_BLOCK: | |
1165 | addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1166 | break; | |
1167 | ||
1168 | default: | |
1169 | /* Nothing else will be listed in the minsyms -- no use looking | |
1170 | it up. */ | |
1171 | return sym; | |
1172 | } | |
1173 | ||
1174 | fixup_section (&sym->ginfo, addr, objfile); | |
c906108c SS |
1175 | |
1176 | return sym; | |
1177 | } | |
1178 | ||
f8eba3c6 TT |
1179 | /* Compute the demangled form of NAME as used by the various symbol |
1180 | lookup functions. The result is stored in *RESULT_NAME. Returns a | |
1181 | cleanup which can be used to clean up the result. | |
1182 | ||
1183 | For Ada, this function just sets *RESULT_NAME to NAME, unmodified. | |
1184 | Normally, Ada symbol lookups are performed using the encoded name | |
1185 | rather than the demangled name, and so it might seem to make sense | |
1186 | for this function to return an encoded version of NAME. | |
1187 | Unfortunately, we cannot do this, because this function is used in | |
1188 | circumstances where it is not appropriate to try to encode NAME. | |
1189 | For instance, when displaying the frame info, we demangle the name | |
1190 | of each parameter, and then perform a symbol lookup inside our | |
1191 | function using that demangled name. In Ada, certain functions | |
1192 | have internally-generated parameters whose name contain uppercase | |
1193 | characters. Encoding those name would result in those uppercase | |
1194 | characters to become lowercase, and thus cause the symbol lookup | |
1195 | to fail. */ | |
c906108c | 1196 | |
f8eba3c6 TT |
1197 | struct cleanup * |
1198 | demangle_for_lookup (const char *name, enum language lang, | |
1199 | const char **result_name) | |
c906108c | 1200 | { |
729051e6 DJ |
1201 | char *demangled_name = NULL; |
1202 | const char *modified_name = NULL; | |
9ee6bb93 | 1203 | struct cleanup *cleanup = make_cleanup (null_cleanup, 0); |
c906108c | 1204 | |
729051e6 DJ |
1205 | modified_name = name; |
1206 | ||
a766d390 | 1207 | /* If we are using C++, D, Go, or Java, demangle the name before doing a |
c378eb4e | 1208 | lookup, so we can always binary search. */ |
53c5240f | 1209 | if (lang == language_cplus) |
729051e6 | 1210 | { |
8de20a37 | 1211 | demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS); |
729051e6 DJ |
1212 | if (demangled_name) |
1213 | { | |
729051e6 | 1214 | modified_name = demangled_name; |
9ee6bb93 | 1215 | make_cleanup (xfree, demangled_name); |
729051e6 | 1216 | } |
71c25dea TT |
1217 | else |
1218 | { | |
1219 | /* If we were given a non-mangled name, canonicalize it | |
1220 | according to the language (so far only for C++). */ | |
1221 | demangled_name = cp_canonicalize_string (name); | |
1222 | if (demangled_name) | |
1223 | { | |
1224 | modified_name = demangled_name; | |
1225 | make_cleanup (xfree, demangled_name); | |
1226 | } | |
1227 | } | |
729051e6 | 1228 | } |
53c5240f | 1229 | else if (lang == language_java) |
987504bb | 1230 | { |
8de20a37 TT |
1231 | demangled_name = gdb_demangle (name, |
1232 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); | |
987504bb JJ |
1233 | if (demangled_name) |
1234 | { | |
987504bb | 1235 | modified_name = demangled_name; |
9ee6bb93 | 1236 | make_cleanup (xfree, demangled_name); |
987504bb JJ |
1237 | } |
1238 | } | |
6aecb9c2 JB |
1239 | else if (lang == language_d) |
1240 | { | |
1241 | demangled_name = d_demangle (name, 0); | |
1242 | if (demangled_name) | |
1243 | { | |
1244 | modified_name = demangled_name; | |
1245 | make_cleanup (xfree, demangled_name); | |
1246 | } | |
1247 | } | |
a766d390 DE |
1248 | else if (lang == language_go) |
1249 | { | |
1250 | demangled_name = go_demangle (name, 0); | |
1251 | if (demangled_name) | |
1252 | { | |
1253 | modified_name = demangled_name; | |
1254 | make_cleanup (xfree, demangled_name); | |
1255 | } | |
1256 | } | |
729051e6 | 1257 | |
f8eba3c6 TT |
1258 | *result_name = modified_name; |
1259 | return cleanup; | |
1260 | } | |
1261 | ||
1262 | /* Find the definition for a specified symbol name NAME | |
1263 | in domain DOMAIN, visible from lexical block BLOCK. | |
1264 | Returns the struct symbol pointer, or zero if no symbol is found. | |
1265 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if | |
1266 | NAME is a field of the current implied argument `this'. If so set | |
1267 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. | |
1268 | BLOCK_FOUND is set to the block in which NAME is found (in the case of | |
1269 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
1270 | ||
7e082072 DE |
1271 | /* This function (or rather its subordinates) have a bunch of loops and |
1272 | it would seem to be attractive to put in some QUIT's (though I'm not really | |
1273 | sure whether it can run long enough to be really important). But there | |
f8eba3c6 | 1274 | are a few calls for which it would appear to be bad news to quit |
7e082072 | 1275 | out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note |
f8eba3c6 TT |
1276 | that there is C++ code below which can error(), but that probably |
1277 | doesn't affect these calls since they are looking for a known | |
1278 | variable and thus can probably assume it will never hit the C++ | |
1279 | code). */ | |
1280 | ||
1281 | struct symbol * | |
1282 | lookup_symbol_in_language (const char *name, const struct block *block, | |
1283 | const domain_enum domain, enum language lang, | |
1993b719 | 1284 | struct field_of_this_result *is_a_field_of_this) |
f8eba3c6 TT |
1285 | { |
1286 | const char *modified_name; | |
1287 | struct symbol *returnval; | |
1288 | struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name); | |
1289 | ||
94af9270 | 1290 | returnval = lookup_symbol_aux (modified_name, block, domain, lang, |
774b6a14 | 1291 | is_a_field_of_this); |
9ee6bb93 | 1292 | do_cleanups (cleanup); |
fba7f19c | 1293 | |
9af17804 | 1294 | return returnval; |
fba7f19c EZ |
1295 | } |
1296 | ||
53c5240f PA |
1297 | /* Behave like lookup_symbol_in_language, but performed with the |
1298 | current language. */ | |
1299 | ||
1300 | struct symbol * | |
1301 | lookup_symbol (const char *name, const struct block *block, | |
1993b719 TT |
1302 | domain_enum domain, |
1303 | struct field_of_this_result *is_a_field_of_this) | |
53c5240f PA |
1304 | { |
1305 | return lookup_symbol_in_language (name, block, domain, | |
1306 | current_language->la_language, | |
2570f2b7 | 1307 | is_a_field_of_this); |
53c5240f PA |
1308 | } |
1309 | ||
66a17cb6 TT |
1310 | /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if |
1311 | found, or NULL if not found. */ | |
1312 | ||
1313 | struct symbol * | |
1314 | lookup_language_this (const struct language_defn *lang, | |
1315 | const struct block *block) | |
1316 | { | |
1317 | if (lang->la_name_of_this == NULL || block == NULL) | |
1318 | return NULL; | |
1319 | ||
03de6823 | 1320 | while (block) |
66a17cb6 TT |
1321 | { |
1322 | struct symbol *sym; | |
1323 | ||
1324 | sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN); | |
1325 | if (sym != NULL) | |
f149aabd TT |
1326 | { |
1327 | block_found = block; | |
1328 | return sym; | |
1329 | } | |
66a17cb6 | 1330 | if (BLOCK_FUNCTION (block)) |
03de6823 | 1331 | break; |
66a17cb6 TT |
1332 | block = BLOCK_SUPERBLOCK (block); |
1333 | } | |
03de6823 TT |
1334 | |
1335 | return NULL; | |
66a17cb6 TT |
1336 | } |
1337 | ||
2dc3df72 TT |
1338 | /* Given TYPE, a structure/union, |
1339 | return 1 if the component named NAME from the ultimate target | |
1340 | structure/union is defined, otherwise, return 0. */ | |
1341 | ||
1342 | static int | |
1993b719 TT |
1343 | check_field (struct type *type, const char *name, |
1344 | struct field_of_this_result *is_a_field_of_this) | |
2dc3df72 TT |
1345 | { |
1346 | int i; | |
1347 | ||
1348 | /* The type may be a stub. */ | |
1349 | CHECK_TYPEDEF (type); | |
1350 | ||
1351 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1352 | { | |
1353 | const char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1354 | ||
1355 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) | |
1993b719 TT |
1356 | { |
1357 | is_a_field_of_this->type = type; | |
1358 | is_a_field_of_this->field = &TYPE_FIELD (type, i); | |
1359 | return 1; | |
1360 | } | |
2dc3df72 TT |
1361 | } |
1362 | ||
1363 | /* C++: If it was not found as a data field, then try to return it | |
1364 | as a pointer to a method. */ | |
1365 | ||
1366 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
1367 | { | |
1368 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) | |
1993b719 TT |
1369 | { |
1370 | is_a_field_of_this->type = type; | |
1371 | is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i); | |
1372 | return 1; | |
1373 | } | |
2dc3df72 TT |
1374 | } |
1375 | ||
1376 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1993b719 | 1377 | if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this)) |
2dc3df72 TT |
1378 | return 1; |
1379 | ||
1380 | return 0; | |
1381 | } | |
1382 | ||
53c5240f | 1383 | /* Behave like lookup_symbol except that NAME is the natural name |
7e082072 | 1384 | (e.g., demangled name) of the symbol that we're looking for. */ |
5ad1c190 | 1385 | |
fba7f19c | 1386 | static struct symbol * |
94af9270 KS |
1387 | lookup_symbol_aux (const char *name, const struct block *block, |
1388 | const domain_enum domain, enum language language, | |
1993b719 | 1389 | struct field_of_this_result *is_a_field_of_this) |
fba7f19c | 1390 | { |
8155455b | 1391 | struct symbol *sym; |
53c5240f | 1392 | const struct language_defn *langdef; |
406bc4de | 1393 | |
9a146a11 EZ |
1394 | /* Make sure we do something sensible with is_a_field_of_this, since |
1395 | the callers that set this parameter to some non-null value will | |
1993b719 TT |
1396 | certainly use it later. If we don't set it, the contents of |
1397 | is_a_field_of_this are undefined. */ | |
9a146a11 | 1398 | if (is_a_field_of_this != NULL) |
1993b719 | 1399 | memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this)); |
9a146a11 | 1400 | |
e4051eeb DC |
1401 | /* Search specified block and its superiors. Don't search |
1402 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1403 | |
13387711 | 1404 | sym = lookup_symbol_aux_local (name, block, domain, language); |
8155455b DC |
1405 | if (sym != NULL) |
1406 | return sym; | |
c906108c | 1407 | |
53c5240f | 1408 | /* If requested to do so by the caller and if appropriate for LANGUAGE, |
13387711 | 1409 | check to see if NAME is a field of `this'. */ |
53c5240f PA |
1410 | |
1411 | langdef = language_def (language); | |
5f9a71c3 | 1412 | |
6592e36f TT |
1413 | /* Don't do this check if we are searching for a struct. It will |
1414 | not be found by check_field, but will be found by other | |
1415 | means. */ | |
1416 | if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN) | |
c906108c | 1417 | { |
66a17cb6 | 1418 | struct symbol *sym = lookup_language_this (langdef, block); |
2b2d9e11 | 1419 | |
2b2d9e11 | 1420 | if (sym) |
c906108c | 1421 | { |
2b2d9e11 | 1422 | struct type *t = sym->type; |
9af17804 | 1423 | |
2b2d9e11 VP |
1424 | /* I'm not really sure that type of this can ever |
1425 | be typedefed; just be safe. */ | |
1426 | CHECK_TYPEDEF (t); | |
1427 | if (TYPE_CODE (t) == TYPE_CODE_PTR | |
1428 | || TYPE_CODE (t) == TYPE_CODE_REF) | |
1429 | t = TYPE_TARGET_TYPE (t); | |
9af17804 | 1430 | |
2b2d9e11 VP |
1431 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1432 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
9af17804 | 1433 | error (_("Internal error: `%s' is not an aggregate"), |
2b2d9e11 | 1434 | langdef->la_name_of_this); |
9af17804 | 1435 | |
1993b719 TT |
1436 | if (check_field (t, name, is_a_field_of_this)) |
1437 | return NULL; | |
c906108c SS |
1438 | } |
1439 | } | |
1440 | ||
53c5240f | 1441 | /* Now do whatever is appropriate for LANGUAGE to look |
774b6a14 | 1442 | up static and global variables. */ |
c906108c | 1443 | |
774b6a14 TT |
1444 | sym = langdef->la_lookup_symbol_nonlocal (name, block, domain); |
1445 | if (sym != NULL) | |
1446 | return sym; | |
c906108c | 1447 | |
774b6a14 TT |
1448 | /* Now search all static file-level symbols. Not strictly correct, |
1449 | but more useful than an error. */ | |
41f62f39 JK |
1450 | |
1451 | return lookup_static_symbol_aux (name, domain); | |
1452 | } | |
1453 | ||
1454 | /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs | |
1455 | first, then check the psymtabs. If a psymtab indicates the existence of the | |
1456 | desired name as a file-level static, then do psymtab-to-symtab conversion on | |
c378eb4e | 1457 | the fly and return the found symbol. */ |
41f62f39 JK |
1458 | |
1459 | struct symbol * | |
1460 | lookup_static_symbol_aux (const char *name, const domain_enum domain) | |
1461 | { | |
1462 | struct objfile *objfile; | |
1463 | struct symbol *sym; | |
c906108c | 1464 | |
67ff19f7 | 1465 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain); |
8155455b DC |
1466 | if (sym != NULL) |
1467 | return sym; | |
9af17804 | 1468 | |
ccefe4c4 TT |
1469 | ALL_OBJFILES (objfile) |
1470 | { | |
1471 | sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain); | |
1472 | if (sym != NULL) | |
1473 | return sym; | |
1474 | } | |
c906108c | 1475 | |
8155455b | 1476 | return NULL; |
c906108c | 1477 | } |
8155455b | 1478 | |
e4051eeb | 1479 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1480 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1481 | |
1482 | static struct symbol * | |
94af9270 | 1483 | lookup_symbol_aux_local (const char *name, const struct block *block, |
13387711 SW |
1484 | const domain_enum domain, |
1485 | enum language language) | |
8155455b DC |
1486 | { |
1487 | struct symbol *sym; | |
89a9d1b1 | 1488 | const struct block *static_block = block_static_block (block); |
13387711 SW |
1489 | const char *scope = block_scope (block); |
1490 | ||
e4051eeb DC |
1491 | /* Check if either no block is specified or it's a global block. */ |
1492 | ||
89a9d1b1 DC |
1493 | if (static_block == NULL) |
1494 | return NULL; | |
e4051eeb | 1495 | |
89a9d1b1 | 1496 | while (block != static_block) |
f61e8913 | 1497 | { |
94af9270 | 1498 | sym = lookup_symbol_aux_block (name, block, domain); |
f61e8913 DC |
1499 | if (sym != NULL) |
1500 | return sym; | |
edb3359d | 1501 | |
f55ee35c | 1502 | if (language == language_cplus || language == language_fortran) |
13387711 | 1503 | { |
34eaf542 TT |
1504 | sym = cp_lookup_symbol_imports_or_template (scope, name, block, |
1505 | domain); | |
13387711 SW |
1506 | if (sym != NULL) |
1507 | return sym; | |
1508 | } | |
1509 | ||
edb3359d DJ |
1510 | if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) |
1511 | break; | |
f61e8913 DC |
1512 | block = BLOCK_SUPERBLOCK (block); |
1513 | } | |
1514 | ||
edb3359d | 1515 | /* We've reached the edge of the function without finding a result. */ |
e4051eeb | 1516 | |
f61e8913 DC |
1517 | return NULL; |
1518 | } | |
1519 | ||
3a40aaa0 UW |
1520 | /* Look up OBJFILE to BLOCK. */ |
1521 | ||
c0201579 | 1522 | struct objfile * |
3a40aaa0 UW |
1523 | lookup_objfile_from_block (const struct block *block) |
1524 | { | |
1525 | struct objfile *obj; | |
1526 | struct symtab *s; | |
1527 | ||
1528 | if (block == NULL) | |
1529 | return NULL; | |
1530 | ||
1531 | block = block_global_block (block); | |
1532 | /* Go through SYMTABS. */ | |
1533 | ALL_SYMTABS (obj, s) | |
1534 | if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)) | |
61f0d762 JK |
1535 | { |
1536 | if (obj->separate_debug_objfile_backlink) | |
1537 | obj = obj->separate_debug_objfile_backlink; | |
1538 | ||
1539 | return obj; | |
1540 | } | |
3a40aaa0 UW |
1541 | |
1542 | return NULL; | |
1543 | } | |
1544 | ||
6c9353d3 PA |
1545 | /* Look up a symbol in a block; if found, fixup the symbol, and set |
1546 | block_found appropriately. */ | |
f61e8913 | 1547 | |
5f9a71c3 | 1548 | struct symbol * |
94af9270 | 1549 | lookup_symbol_aux_block (const char *name, const struct block *block, |
21b556f4 | 1550 | const domain_enum domain) |
f61e8913 DC |
1551 | { |
1552 | struct symbol *sym; | |
f61e8913 | 1553 | |
94af9270 | 1554 | sym = lookup_block_symbol (block, name, domain); |
f61e8913 | 1555 | if (sym) |
8155455b | 1556 | { |
f61e8913 | 1557 | block_found = block; |
21b556f4 | 1558 | return fixup_symbol_section (sym, NULL); |
8155455b DC |
1559 | } |
1560 | ||
1561 | return NULL; | |
1562 | } | |
1563 | ||
3a40aaa0 UW |
1564 | /* Check all global symbols in OBJFILE in symtabs and |
1565 | psymtabs. */ | |
1566 | ||
1567 | struct symbol * | |
15d123c9 | 1568 | lookup_global_symbol_from_objfile (const struct objfile *main_objfile, |
3a40aaa0 | 1569 | const char *name, |
21b556f4 | 1570 | const domain_enum domain) |
3a40aaa0 | 1571 | { |
15d123c9 | 1572 | const struct objfile *objfile; |
3a40aaa0 UW |
1573 | struct symbol *sym; |
1574 | struct blockvector *bv; | |
1575 | const struct block *block; | |
1576 | struct symtab *s; | |
3a40aaa0 | 1577 | |
15d123c9 TG |
1578 | for (objfile = main_objfile; |
1579 | objfile; | |
1580 | objfile = objfile_separate_debug_iterate (main_objfile, objfile)) | |
1581 | { | |
1582 | /* Go through symtabs. */ | |
78e5175a DE |
1583 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
1584 | { | |
1585 | bv = BLOCKVECTOR (s); | |
1586 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1587 | sym = lookup_block_symbol (block, name, domain); | |
1588 | if (sym) | |
1589 | { | |
1590 | block_found = block; | |
1591 | return fixup_symbol_section (sym, (struct objfile *)objfile); | |
1592 | } | |
1593 | } | |
15d123c9 | 1594 | |
ccefe4c4 TT |
1595 | sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK, |
1596 | name, domain); | |
1597 | if (sym) | |
1598 | return sym; | |
15d123c9 | 1599 | } |
56e3f43c | 1600 | |
3a40aaa0 UW |
1601 | return NULL; |
1602 | } | |
1603 | ||
19630284 JB |
1604 | /* Check to see if the symbol is defined in one of the OBJFILE's |
1605 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
8155455b DC |
1606 | depending on whether or not we want to search global symbols or |
1607 | static symbols. */ | |
1608 | ||
19630284 JB |
1609 | static struct symbol * |
1610 | lookup_symbol_aux_objfile (struct objfile *objfile, int block_index, | |
1611 | const char *name, const domain_enum domain) | |
1612 | { | |
1613 | struct symbol *sym = NULL; | |
1614 | struct blockvector *bv; | |
1615 | const struct block *block; | |
1616 | struct symtab *s; | |
1617 | ||
a743abeb DE |
1618 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
1619 | { | |
1620 | bv = BLOCKVECTOR (s); | |
1621 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
1622 | sym = lookup_block_symbol (block, name, domain); | |
1623 | if (sym) | |
1624 | { | |
1625 | block_found = block; | |
1626 | return fixup_symbol_section (sym, objfile); | |
1627 | } | |
1628 | } | |
19630284 JB |
1629 | |
1630 | return NULL; | |
1631 | } | |
1632 | ||
1633 | /* Same as lookup_symbol_aux_objfile, except that it searches all | |
1634 | objfiles. Return the first match found. */ | |
1635 | ||
8155455b | 1636 | static struct symbol * |
67ff19f7 JB |
1637 | lookup_symbol_aux_symtabs (int block_index, const char *name, |
1638 | const domain_enum domain) | |
8155455b | 1639 | { |
67ff19f7 JB |
1640 | struct symbol *sym; |
1641 | struct objfile *objfile; | |
8155455b | 1642 | |
67ff19f7 JB |
1643 | ALL_OBJFILES (objfile) |
1644 | { | |
19630284 JB |
1645 | sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain); |
1646 | if (sym) | |
1647 | return sym; | |
8155455b DC |
1648 | } |
1649 | ||
1650 | return NULL; | |
1651 | } | |
1652 | ||
422d65e7 DE |
1653 | /* Wrapper around lookup_symbol_aux_objfile for search_symbols. |
1654 | Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE | |
1655 | and all related objfiles. */ | |
1656 | ||
1657 | static struct symbol * | |
1658 | lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile, | |
1659 | const char *linkage_name, | |
1660 | domain_enum domain) | |
1661 | { | |
1662 | enum language lang = current_language->la_language; | |
1663 | const char *modified_name; | |
1664 | struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang, | |
1665 | &modified_name); | |
1666 | struct objfile *main_objfile, *cur_objfile; | |
1667 | ||
1668 | if (objfile->separate_debug_objfile_backlink) | |
1669 | main_objfile = objfile->separate_debug_objfile_backlink; | |
1670 | else | |
1671 | main_objfile = objfile; | |
1672 | ||
1673 | for (cur_objfile = main_objfile; | |
1674 | cur_objfile; | |
1675 | cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile)) | |
1676 | { | |
1677 | struct symbol *sym; | |
1678 | ||
1679 | sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK, | |
1680 | modified_name, domain); | |
1681 | if (sym == NULL) | |
1682 | sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK, | |
1683 | modified_name, domain); | |
1684 | if (sym != NULL) | |
1685 | { | |
1686 | do_cleanups (cleanup); | |
1687 | return sym; | |
1688 | } | |
1689 | } | |
1690 | ||
1691 | do_cleanups (cleanup); | |
1692 | return NULL; | |
1693 | } | |
1694 | ||
08c23b0d TT |
1695 | /* A helper function that throws an exception when a symbol was found |
1696 | in a psymtab but not in a symtab. */ | |
1697 | ||
1698 | static void ATTRIBUTE_NORETURN | |
1699 | error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab) | |
1700 | { | |
1701 | error (_("\ | |
1702 | Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ | |
1703 | %s may be an inlined function, or may be a template function\n \ | |
1704 | (if a template, try specifying an instantiation: %s<type>)."), | |
1705 | kind == GLOBAL_BLOCK ? "global" : "static", | |
1706 | name, symtab_to_filename_for_display (symtab), name, name); | |
1707 | } | |
1708 | ||
ccefe4c4 TT |
1709 | /* A helper function for lookup_symbol_aux that interfaces with the |
1710 | "quick" symbol table functions. */ | |
8155455b DC |
1711 | |
1712 | static struct symbol * | |
ccefe4c4 TT |
1713 | lookup_symbol_aux_quick (struct objfile *objfile, int kind, |
1714 | const char *name, const domain_enum domain) | |
8155455b | 1715 | { |
ccefe4c4 | 1716 | struct symtab *symtab; |
8155455b DC |
1717 | struct blockvector *bv; |
1718 | const struct block *block; | |
ccefe4c4 | 1719 | struct symbol *sym; |
8155455b | 1720 | |
ccefe4c4 TT |
1721 | if (!objfile->sf) |
1722 | return NULL; | |
1723 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain); | |
1724 | if (!symtab) | |
1725 | return NULL; | |
8155455b | 1726 | |
ccefe4c4 TT |
1727 | bv = BLOCKVECTOR (symtab); |
1728 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1729 | sym = lookup_block_symbol (block, name, domain); | |
1730 | if (!sym) | |
08c23b0d | 1731 | error_in_psymtab_expansion (kind, name, symtab); |
ccefe4c4 | 1732 | return fixup_symbol_section (sym, objfile); |
8155455b DC |
1733 | } |
1734 | ||
5f9a71c3 DC |
1735 | /* A default version of lookup_symbol_nonlocal for use by languages |
1736 | that can't think of anything better to do. This implements the C | |
1737 | lookup rules. */ | |
1738 | ||
1739 | struct symbol * | |
1740 | basic_lookup_symbol_nonlocal (const char *name, | |
5f9a71c3 | 1741 | const struct block *block, |
21b556f4 | 1742 | const domain_enum domain) |
5f9a71c3 DC |
1743 | { |
1744 | struct symbol *sym; | |
1745 | ||
1746 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1747 | this (or what turned into this) was part of lookup_symbol_aux; | |
1748 | I'm much less worried about these questions now, since these | |
1749 | decisions have turned out well, but I leave these comments here | |
1750 | for posterity. */ | |
1751 | ||
1752 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1753 | not it would be appropriate to search the current global block | |
1754 | here as well. (That's what this code used to do before the | |
1755 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1756 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1757 | next. On the other hand, if decode_line_1 is passed an argument | |
1758 | like filename:var, then the user presumably wants 'var' to be | |
1759 | searched for in filename. On the third hand, there shouldn't be | |
1760 | multiple global variables all of which are named 'var', and it's | |
1761 | not like decode_line_1 has ever restricted its search to only | |
1762 | global variables in a single filename. All in all, only | |
1763 | searching the static block here seems best: it's correct and it's | |
1764 | cleanest. */ | |
1765 | ||
1766 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1767 | issue here: if you usually search for global symbols in the | |
1768 | current file, then it would be slightly better to search the | |
1769 | current global block before searching all the symtabs. But there | |
1770 | are other factors that have a much greater effect on performance | |
1771 | than that one, so I don't think we should worry about that for | |
1772 | now. */ | |
1773 | ||
94af9270 | 1774 | sym = lookup_symbol_static (name, block, domain); |
5f9a71c3 DC |
1775 | if (sym != NULL) |
1776 | return sym; | |
1777 | ||
94af9270 | 1778 | return lookup_symbol_global (name, block, domain); |
5f9a71c3 DC |
1779 | } |
1780 | ||
1781 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1782 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1783 | ||
1784 | struct symbol * | |
1785 | lookup_symbol_static (const char *name, | |
5f9a71c3 | 1786 | const struct block *block, |
21b556f4 | 1787 | const domain_enum domain) |
5f9a71c3 DC |
1788 | { |
1789 | const struct block *static_block = block_static_block (block); | |
1790 | ||
1791 | if (static_block != NULL) | |
94af9270 | 1792 | return lookup_symbol_aux_block (name, static_block, domain); |
5f9a71c3 DC |
1793 | else |
1794 | return NULL; | |
1795 | } | |
1796 | ||
19630284 JB |
1797 | /* Private data to be used with lookup_symbol_global_iterator_cb. */ |
1798 | ||
1799 | struct global_sym_lookup_data | |
1800 | { | |
1801 | /* The name of the symbol we are searching for. */ | |
1802 | const char *name; | |
1803 | ||
1804 | /* The domain to use for our search. */ | |
1805 | domain_enum domain; | |
1806 | ||
1807 | /* The field where the callback should store the symbol if found. | |
1808 | It should be initialized to NULL before the search is started. */ | |
1809 | struct symbol *result; | |
1810 | }; | |
1811 | ||
1812 | /* A callback function for gdbarch_iterate_over_objfiles_in_search_order. | |
1813 | It searches by name for a symbol in the GLOBAL_BLOCK of the given | |
1814 | OBJFILE. The arguments for the search are passed via CB_DATA, | |
1815 | which in reality is a pointer to struct global_sym_lookup_data. */ | |
1816 | ||
1817 | static int | |
1818 | lookup_symbol_global_iterator_cb (struct objfile *objfile, | |
1819 | void *cb_data) | |
1820 | { | |
1821 | struct global_sym_lookup_data *data = | |
1822 | (struct global_sym_lookup_data *) cb_data; | |
1823 | ||
1824 | gdb_assert (data->result == NULL); | |
1825 | ||
1826 | data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK, | |
1827 | data->name, data->domain); | |
1828 | if (data->result == NULL) | |
1829 | data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, | |
1830 | data->name, data->domain); | |
1831 | ||
1832 | /* If we found a match, tell the iterator to stop. Otherwise, | |
1833 | keep going. */ | |
1834 | return (data->result != NULL); | |
1835 | } | |
1836 | ||
5f9a71c3 DC |
1837 | /* Lookup a symbol in all files' global blocks (searching psymtabs if |
1838 | necessary). */ | |
1839 | ||
1840 | struct symbol * | |
1841 | lookup_symbol_global (const char *name, | |
3a40aaa0 | 1842 | const struct block *block, |
21b556f4 | 1843 | const domain_enum domain) |
5f9a71c3 | 1844 | { |
3a40aaa0 UW |
1845 | struct symbol *sym = NULL; |
1846 | struct objfile *objfile = NULL; | |
19630284 | 1847 | struct global_sym_lookup_data lookup_data; |
3a40aaa0 UW |
1848 | |
1849 | /* Call library-specific lookup procedure. */ | |
67ff19f7 JB |
1850 | objfile = lookup_objfile_from_block (block); |
1851 | if (objfile != NULL) | |
1852 | sym = solib_global_lookup (objfile, name, domain); | |
3a40aaa0 UW |
1853 | if (sym != NULL) |
1854 | return sym; | |
5f9a71c3 | 1855 | |
19630284 JB |
1856 | memset (&lookup_data, 0, sizeof (lookup_data)); |
1857 | lookup_data.name = name; | |
1858 | lookup_data.domain = domain; | |
1859 | gdbarch_iterate_over_objfiles_in_search_order | |
f5656ead | 1860 | (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (), |
19630284 | 1861 | lookup_symbol_global_iterator_cb, &lookup_data, objfile); |
5f9a71c3 | 1862 | |
19630284 | 1863 | return lookup_data.result; |
5f9a71c3 DC |
1864 | } |
1865 | ||
5eeb2539 | 1866 | int |
9af17804 | 1867 | symbol_matches_domain (enum language symbol_language, |
5eeb2539 AR |
1868 | domain_enum symbol_domain, |
1869 | domain_enum domain) | |
1870 | { | |
9af17804 | 1871 | /* For C++ "struct foo { ... }" also defines a typedef for "foo". |
5eeb2539 AR |
1872 | A Java class declaration also defines a typedef for the class. |
1873 | Similarly, any Ada type declaration implicitly defines a typedef. */ | |
1874 | if (symbol_language == language_cplus | |
6aecb9c2 | 1875 | || symbol_language == language_d |
5eeb2539 AR |
1876 | || symbol_language == language_java |
1877 | || symbol_language == language_ada) | |
1878 | { | |
1879 | if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) | |
1880 | && symbol_domain == STRUCT_DOMAIN) | |
1881 | return 1; | |
1882 | } | |
1883 | /* For all other languages, strict match is required. */ | |
1884 | return (symbol_domain == domain); | |
1885 | } | |
1886 | ||
ccefe4c4 TT |
1887 | /* Look up a type named NAME in the struct_domain. The type returned |
1888 | must not be opaque -- i.e., must have at least one field | |
1889 | defined. */ | |
c906108c | 1890 | |
ccefe4c4 TT |
1891 | struct type * |
1892 | lookup_transparent_type (const char *name) | |
c906108c | 1893 | { |
ccefe4c4 TT |
1894 | return current_language->la_lookup_transparent_type (name); |
1895 | } | |
9af17804 | 1896 | |
ccefe4c4 TT |
1897 | /* A helper for basic_lookup_transparent_type that interfaces with the |
1898 | "quick" symbol table functions. */ | |
357e46e7 | 1899 | |
ccefe4c4 TT |
1900 | static struct type * |
1901 | basic_lookup_transparent_type_quick (struct objfile *objfile, int kind, | |
1902 | const char *name) | |
1903 | { | |
1904 | struct symtab *symtab; | |
1905 | struct blockvector *bv; | |
1906 | struct block *block; | |
1907 | struct symbol *sym; | |
c906108c | 1908 | |
ccefe4c4 TT |
1909 | if (!objfile->sf) |
1910 | return NULL; | |
1911 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN); | |
1912 | if (!symtab) | |
1913 | return NULL; | |
c906108c | 1914 | |
ccefe4c4 TT |
1915 | bv = BLOCKVECTOR (symtab); |
1916 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1917 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1918 | if (!sym) | |
08c23b0d TT |
1919 | error_in_psymtab_expansion (kind, name, symtab); |
1920 | ||
ccefe4c4 TT |
1921 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1922 | return SYMBOL_TYPE (sym); | |
c906108c | 1923 | |
ccefe4c4 | 1924 | return NULL; |
b368761e | 1925 | } |
c906108c | 1926 | |
b368761e DC |
1927 | /* The standard implementation of lookup_transparent_type. This code |
1928 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1929 | up types were just left out. In particular it's assumed here that | |
1930 | types are available in struct_domain and only at file-static or | |
1931 | global blocks. */ | |
c906108c SS |
1932 | |
1933 | struct type * | |
b368761e | 1934 | basic_lookup_transparent_type (const char *name) |
c906108c | 1935 | { |
52f0bd74 AC |
1936 | struct symbol *sym; |
1937 | struct symtab *s = NULL; | |
c906108c | 1938 | struct blockvector *bv; |
52f0bd74 AC |
1939 | struct objfile *objfile; |
1940 | struct block *block; | |
ccefe4c4 | 1941 | struct type *t; |
c906108c SS |
1942 | |
1943 | /* Now search all the global symbols. Do the symtab's first, then | |
c378eb4e | 1944 | check the psymtab's. If a psymtab indicates the existence |
c906108c SS |
1945 | of the desired name as a global, then do psymtab-to-symtab |
1946 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1947 | |
58b6ab13 | 1948 | ALL_OBJFILES (objfile) |
c5aa993b | 1949 | { |
d790cf0a DE |
1950 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
1951 | { | |
1952 | bv = BLOCKVECTOR (s); | |
1953 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1954 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1955 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1956 | { | |
1957 | return SYMBOL_TYPE (sym); | |
1958 | } | |
1959 | } | |
c5aa993b | 1960 | } |
c906108c | 1961 | |
ccefe4c4 | 1962 | ALL_OBJFILES (objfile) |
c5aa993b | 1963 | { |
ccefe4c4 TT |
1964 | t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name); |
1965 | if (t) | |
1966 | return t; | |
c5aa993b | 1967 | } |
c906108c SS |
1968 | |
1969 | /* Now search the static file-level symbols. | |
1970 | Not strictly correct, but more useful than an error. | |
1971 | Do the symtab's first, then | |
c378eb4e | 1972 | check the psymtab's. If a psymtab indicates the existence |
c906108c | 1973 | of the desired name as a file-level static, then do psymtab-to-symtab |
c378eb4e | 1974 | conversion on the fly and return the found symbol. */ |
c906108c | 1975 | |
54ec275a | 1976 | ALL_OBJFILES (objfile) |
c5aa993b | 1977 | { |
78e5175a | 1978 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
c5aa993b | 1979 | { |
54ec275a KS |
1980 | bv = BLOCKVECTOR (s); |
1981 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1982 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1983 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1984 | { | |
1985 | return SYMBOL_TYPE (sym); | |
1986 | } | |
c5aa993b JM |
1987 | } |
1988 | } | |
c906108c | 1989 | |
ccefe4c4 | 1990 | ALL_OBJFILES (objfile) |
c5aa993b | 1991 | { |
ccefe4c4 TT |
1992 | t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name); |
1993 | if (t) | |
1994 | return t; | |
c5aa993b | 1995 | } |
ccefe4c4 | 1996 | |
c906108c SS |
1997 | return (struct type *) 0; |
1998 | } | |
1999 | ||
176620f1 | 2000 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
2001 | |
2002 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
2003 | to find a match during the binary search of the non-encoded names, but | |
2004 | for now we don't worry about the slight inefficiency of looking for | |
2005 | a match we'll never find, since it will go pretty quick. Once the | |
2006 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 | 2007 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
9af17804 | 2008 | symbol (language_cplus or language_objc set) has both the encoded and |
c378eb4e | 2009 | non-encoded names tested for a match. */ |
c906108c SS |
2010 | |
2011 | struct symbol * | |
aa1ee363 | 2012 | lookup_block_symbol (const struct block *block, const char *name, |
176620f1 | 2013 | const domain_enum domain) |
c906108c | 2014 | { |
8157b174 | 2015 | struct block_iterator iter; |
de4f826b | 2016 | struct symbol *sym; |
c906108c | 2017 | |
de4f826b | 2018 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 2019 | { |
8157b174 | 2020 | for (sym = block_iter_name_first (block, name, &iter); |
de4f826b | 2021 | sym != NULL; |
8157b174 | 2022 | sym = block_iter_name_next (name, &iter)) |
261397f8 | 2023 | { |
5eeb2539 | 2024 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 2025 | SYMBOL_DOMAIN (sym), domain)) |
261397f8 DJ |
2026 | return sym; |
2027 | } | |
2028 | return NULL; | |
2029 | } | |
526e70c0 | 2030 | else |
c906108c | 2031 | { |
526e70c0 DC |
2032 | /* Note that parameter symbols do not always show up last in the |
2033 | list; this loop makes sure to take anything else other than | |
2034 | parameter symbols first; it only uses parameter symbols as a | |
2035 | last resort. Note that this only takes up extra computation | |
2036 | time on a match. */ | |
de4f826b DC |
2037 | |
2038 | struct symbol *sym_found = NULL; | |
2039 | ||
8157b174 | 2040 | for (sym = block_iter_name_first (block, name, &iter); |
de4f826b | 2041 | sym != NULL; |
8157b174 | 2042 | sym = block_iter_name_next (name, &iter)) |
c906108c | 2043 | { |
5eeb2539 | 2044 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 2045 | SYMBOL_DOMAIN (sym), domain)) |
c906108c | 2046 | { |
c906108c | 2047 | sym_found = sym; |
2a2d4dc3 | 2048 | if (!SYMBOL_IS_ARGUMENT (sym)) |
c906108c SS |
2049 | { |
2050 | break; | |
2051 | } | |
2052 | } | |
c906108c | 2053 | } |
c378eb4e | 2054 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 2055 | } |
c906108c SS |
2056 | } |
2057 | ||
4eeaa230 | 2058 | /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK. |
f8eba3c6 TT |
2059 | |
2060 | For each symbol that matches, CALLBACK is called. The symbol and | |
2061 | DATA are passed to the callback. | |
2062 | ||
2063 | If CALLBACK returns zero, the iteration ends. Otherwise, the | |
4eeaa230 | 2064 | search continues. */ |
f8eba3c6 TT |
2065 | |
2066 | void | |
2067 | iterate_over_symbols (const struct block *block, const char *name, | |
2068 | const domain_enum domain, | |
8e704927 | 2069 | symbol_found_callback_ftype *callback, |
f8eba3c6 TT |
2070 | void *data) |
2071 | { | |
4eeaa230 DE |
2072 | struct block_iterator iter; |
2073 | struct symbol *sym; | |
f8eba3c6 | 2074 | |
4eeaa230 DE |
2075 | for (sym = block_iter_name_first (block, name, &iter); |
2076 | sym != NULL; | |
2077 | sym = block_iter_name_next (name, &iter)) | |
2078 | { | |
2079 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), | |
2080 | SYMBOL_DOMAIN (sym), domain)) | |
f8eba3c6 | 2081 | { |
4eeaa230 DE |
2082 | if (!callback (sym, data)) |
2083 | return; | |
f8eba3c6 | 2084 | } |
f8eba3c6 TT |
2085 | } |
2086 | } | |
2087 | ||
c906108c | 2088 | /* Find the symtab associated with PC and SECTION. Look through the |
c378eb4e | 2089 | psymtabs and read in another symtab if necessary. */ |
c906108c SS |
2090 | |
2091 | struct symtab * | |
714835d5 | 2092 | find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 2093 | { |
52f0bd74 | 2094 | struct block *b; |
c906108c | 2095 | struct blockvector *bv; |
52f0bd74 AC |
2096 | struct symtab *s = NULL; |
2097 | struct symtab *best_s = NULL; | |
52f0bd74 | 2098 | struct objfile *objfile; |
c906108c | 2099 | CORE_ADDR distance = 0; |
8a48e967 DJ |
2100 | struct minimal_symbol *msymbol; |
2101 | ||
2102 | /* If we know that this is not a text address, return failure. This is | |
2103 | necessary because we loop based on the block's high and low code | |
2104 | addresses, which do not include the data ranges, and because | |
2105 | we call find_pc_sect_psymtab which has a similar restriction based | |
2106 | on the partial_symtab's texthigh and textlow. */ | |
7cbd4a93 | 2107 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym; |
8a48e967 | 2108 | if (msymbol |
712f90be TT |
2109 | && (MSYMBOL_TYPE (msymbol) == mst_data |
2110 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
2111 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
2112 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
2113 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 2114 | return NULL; |
c906108c SS |
2115 | |
2116 | /* Search all symtabs for the one whose file contains our address, and which | |
2117 | is the smallest of all the ones containing the address. This is designed | |
2118 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
2119 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
2120 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
2121 | ||
2122 | This happens for native ecoff format, where code from included files | |
c378eb4e | 2123 | gets its own symtab. The symtab for the included file should have |
c906108c SS |
2124 | been read in already via the dependency mechanism. |
2125 | It might be swifter to create several symtabs with the same name | |
2126 | like xcoff does (I'm not sure). | |
2127 | ||
2128 | It also happens for objfiles that have their functions reordered. | |
2129 | For these, the symtab we are looking for is not necessarily read in. */ | |
2130 | ||
11309657 | 2131 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
2132 | { |
2133 | bv = BLOCKVECTOR (s); | |
2134 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 2135 | |
c5aa993b | 2136 | if (BLOCK_START (b) <= pc |
c5aa993b | 2137 | && BLOCK_END (b) > pc |
c5aa993b JM |
2138 | && (distance == 0 |
2139 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
2140 | { | |
2141 | /* For an objfile that has its functions reordered, | |
2142 | find_pc_psymtab will find the proper partial symbol table | |
2143 | and we simply return its corresponding symtab. */ | |
2144 | /* In order to better support objfiles that contain both | |
2145 | stabs and coff debugging info, we continue on if a psymtab | |
c378eb4e | 2146 | can't be found. */ |
ccefe4c4 | 2147 | if ((objfile->flags & OBJF_REORDERED) && objfile->sf) |
c5aa993b | 2148 | { |
ccefe4c4 | 2149 | struct symtab *result; |
433759f7 | 2150 | |
ccefe4c4 TT |
2151 | result |
2152 | = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
2153 | msymbol, | |
2154 | pc, section, | |
2155 | 0); | |
2156 | if (result) | |
2157 | return result; | |
c5aa993b JM |
2158 | } |
2159 | if (section != 0) | |
2160 | { | |
8157b174 | 2161 | struct block_iterator iter; |
261397f8 | 2162 | struct symbol *sym = NULL; |
c906108c | 2163 | |
de4f826b | 2164 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 2165 | { |
261397f8 | 2166 | fixup_symbol_section (sym, objfile); |
e27d198c TT |
2167 | if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym), |
2168 | section)) | |
c5aa993b JM |
2169 | break; |
2170 | } | |
de4f826b | 2171 | if (sym == NULL) |
c378eb4e MS |
2172 | continue; /* No symbol in this symtab matches |
2173 | section. */ | |
c5aa993b JM |
2174 | } |
2175 | distance = BLOCK_END (b) - BLOCK_START (b); | |
2176 | best_s = s; | |
2177 | } | |
2178 | } | |
c906108c SS |
2179 | |
2180 | if (best_s != NULL) | |
c5aa993b | 2181 | return (best_s); |
c906108c | 2182 | |
072cabfe DE |
2183 | /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */ |
2184 | ||
ccefe4c4 TT |
2185 | ALL_OBJFILES (objfile) |
2186 | { | |
2187 | struct symtab *result; | |
433759f7 | 2188 | |
ccefe4c4 TT |
2189 | if (!objfile->sf) |
2190 | continue; | |
2191 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
2192 | msymbol, | |
2193 | pc, section, | |
2194 | 1); | |
2195 | if (result) | |
2196 | return result; | |
2197 | } | |
2198 | ||
2199 | return NULL; | |
c906108c SS |
2200 | } |
2201 | ||
c378eb4e MS |
2202 | /* Find the symtab associated with PC. Look through the psymtabs and read |
2203 | in another symtab if necessary. Backward compatibility, no section. */ | |
c906108c SS |
2204 | |
2205 | struct symtab * | |
fba45db2 | 2206 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
2207 | { |
2208 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
2209 | } | |
c906108c | 2210 | \f |
c5aa993b | 2211 | |
7e73cedf | 2212 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
2213 | Return a structure containing a symtab pointer, a line number, |
2214 | and a pc range for the entire source line. | |
2215 | The value's .pc field is NOT the specified pc. | |
2216 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
2217 | use the line that ends there. Otherwise, in that case, the line | |
2218 | that begins there is used. */ | |
2219 | ||
2220 | /* The big complication here is that a line may start in one file, and end just | |
2221 | before the start of another file. This usually occurs when you #include | |
2222 | code in the middle of a subroutine. To properly find the end of a line's PC | |
2223 | range, we must search all symtabs associated with this compilation unit, and | |
2224 | find the one whose first PC is closer than that of the next line in this | |
2225 | symtab. */ | |
2226 | ||
2227 | /* If it's worth the effort, we could be using a binary search. */ | |
2228 | ||
2229 | struct symtab_and_line | |
714835d5 | 2230 | find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) |
c906108c SS |
2231 | { |
2232 | struct symtab *s; | |
52f0bd74 AC |
2233 | struct linetable *l; |
2234 | int len; | |
2235 | int i; | |
2236 | struct linetable_entry *item; | |
c906108c SS |
2237 | struct symtab_and_line val; |
2238 | struct blockvector *bv; | |
7cbd4a93 | 2239 | struct bound_minimal_symbol msymbol; |
c906108c | 2240 | struct minimal_symbol *mfunsym; |
93b55aa1 | 2241 | struct objfile *objfile; |
c906108c SS |
2242 | |
2243 | /* Info on best line seen so far, and where it starts, and its file. */ | |
2244 | ||
2245 | struct linetable_entry *best = NULL; | |
2246 | CORE_ADDR best_end = 0; | |
2247 | struct symtab *best_symtab = 0; | |
2248 | ||
2249 | /* Store here the first line number | |
2250 | of a file which contains the line at the smallest pc after PC. | |
2251 | If we don't find a line whose range contains PC, | |
2252 | we will use a line one less than this, | |
2253 | with a range from the start of that file to the first line's pc. */ | |
2254 | struct linetable_entry *alt = NULL; | |
c906108c SS |
2255 | |
2256 | /* Info on best line seen in this file. */ | |
2257 | ||
2258 | struct linetable_entry *prev; | |
2259 | ||
2260 | /* If this pc is not from the current frame, | |
2261 | it is the address of the end of a call instruction. | |
2262 | Quite likely that is the start of the following statement. | |
2263 | But what we want is the statement containing the instruction. | |
2264 | Fudge the pc to make sure we get that. */ | |
2265 | ||
fe39c653 | 2266 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 2267 | |
6c95b8df PA |
2268 | val.pspace = current_program_space; |
2269 | ||
b77b1eb7 JB |
2270 | /* It's tempting to assume that, if we can't find debugging info for |
2271 | any function enclosing PC, that we shouldn't search for line | |
2272 | number info, either. However, GAS can emit line number info for | |
2273 | assembly files --- very helpful when debugging hand-written | |
2274 | assembly code. In such a case, we'd have no debug info for the | |
2275 | function, but we would have line info. */ | |
648f4f79 | 2276 | |
c906108c SS |
2277 | if (notcurrent) |
2278 | pc -= 1; | |
2279 | ||
c5aa993b | 2280 | /* elz: added this because this function returned the wrong |
c906108c | 2281 | information if the pc belongs to a stub (import/export) |
c378eb4e | 2282 | to call a shlib function. This stub would be anywhere between |
9af17804 | 2283 | two functions in the target, and the line info was erroneously |
c378eb4e MS |
2284 | taken to be the one of the line before the pc. */ |
2285 | ||
c906108c | 2286 | /* RT: Further explanation: |
c5aa993b | 2287 | |
c906108c SS |
2288 | * We have stubs (trampolines) inserted between procedures. |
2289 | * | |
2290 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
2291 | * exists in the main image. | |
2292 | * | |
2293 | * In the minimal symbol table, we have a bunch of symbols | |
c378eb4e | 2294 | * sorted by start address. The stubs are marked as "trampoline", |
c906108c SS |
2295 | * the others appear as text. E.g.: |
2296 | * | |
9af17804 | 2297 | * Minimal symbol table for main image |
c906108c SS |
2298 | * main: code for main (text symbol) |
2299 | * shr1: stub (trampoline symbol) | |
2300 | * foo: code for foo (text symbol) | |
2301 | * ... | |
2302 | * Minimal symbol table for "shr1" image: | |
2303 | * ... | |
2304 | * shr1: code for shr1 (text symbol) | |
2305 | * ... | |
2306 | * | |
2307 | * So the code below is trying to detect if we are in the stub | |
2308 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
2309 | * and if found, do the symbolization from the real-code address | |
2310 | * rather than the stub address. | |
2311 | * | |
2312 | * Assumptions being made about the minimal symbol table: | |
2313 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
c378eb4e | 2314 | * if we're really in the trampoline.s If we're beyond it (say |
9af17804 | 2315 | * we're in "foo" in the above example), it'll have a closer |
c906108c SS |
2316 | * symbol (the "foo" text symbol for example) and will not |
2317 | * return the trampoline. | |
2318 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
2319 | * corresponding to the trampoline, and whose address will | |
c378eb4e | 2320 | * be different than the trampoline address. I put in a sanity |
c906108c SS |
2321 | * check for the address being the same, to avoid an |
2322 | * infinite recursion. | |
2323 | */ | |
c5aa993b | 2324 | msymbol = lookup_minimal_symbol_by_pc (pc); |
7cbd4a93 TT |
2325 | if (msymbol.minsym != NULL) |
2326 | if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline) | |
c5aa993b | 2327 | { |
7cbd4a93 TT |
2328 | mfunsym |
2329 | = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym), | |
2330 | NULL); | |
c5aa993b JM |
2331 | if (mfunsym == NULL) |
2332 | /* I eliminated this warning since it is coming out | |
2333 | * in the following situation: | |
2334 | * gdb shmain // test program with shared libraries | |
2335 | * (gdb) break shr1 // function in shared lib | |
2336 | * Warning: In stub for ... | |
9af17804 | 2337 | * In the above situation, the shared lib is not loaded yet, |
c5aa993b JM |
2338 | * so of course we can't find the real func/line info, |
2339 | * but the "break" still works, and the warning is annoying. | |
c378eb4e | 2340 | * So I commented out the warning. RT */ |
3e43a32a | 2341 | /* warning ("In stub for %s; unable to find real function/line info", |
c378eb4e MS |
2342 | SYMBOL_LINKAGE_NAME (msymbol)); */ |
2343 | ; | |
c5aa993b | 2344 | /* fall through */ |
3e43a32a | 2345 | else if (SYMBOL_VALUE_ADDRESS (mfunsym) |
7cbd4a93 | 2346 | == SYMBOL_VALUE_ADDRESS (msymbol.minsym)) |
c5aa993b | 2347 | /* Avoid infinite recursion */ |
c378eb4e | 2348 | /* See above comment about why warning is commented out. */ |
3e43a32a | 2349 | /* warning ("In stub for %s; unable to find real function/line info", |
c378eb4e MS |
2350 | SYMBOL_LINKAGE_NAME (msymbol)); */ |
2351 | ; | |
c5aa993b JM |
2352 | /* fall through */ |
2353 | else | |
82cf6c60 | 2354 | return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0); |
c5aa993b | 2355 | } |
c906108c SS |
2356 | |
2357 | ||
2358 | s = find_pc_sect_symtab (pc, section); | |
2359 | if (!s) | |
2360 | { | |
c378eb4e | 2361 | /* If no symbol information, return previous pc. */ |
c906108c SS |
2362 | if (notcurrent) |
2363 | pc++; | |
2364 | val.pc = pc; | |
2365 | return val; | |
2366 | } | |
2367 | ||
2368 | bv = BLOCKVECTOR (s); | |
93b55aa1 | 2369 | objfile = s->objfile; |
c906108c SS |
2370 | |
2371 | /* Look at all the symtabs that share this blockvector. | |
2372 | They all have the same apriori range, that we found was right; | |
2373 | but they have different line tables. */ | |
2374 | ||
93b55aa1 | 2375 | ALL_OBJFILE_SYMTABS (objfile, s) |
c906108c | 2376 | { |
93b55aa1 JK |
2377 | if (BLOCKVECTOR (s) != bv) |
2378 | continue; | |
2379 | ||
c906108c SS |
2380 | /* Find the best line in this symtab. */ |
2381 | l = LINETABLE (s); | |
2382 | if (!l) | |
c5aa993b | 2383 | continue; |
c906108c SS |
2384 | len = l->nitems; |
2385 | if (len <= 0) | |
2386 | { | |
2387 | /* I think len can be zero if the symtab lacks line numbers | |
2388 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2389 | I'm not sure which, and maybe it depends on the symbol | |
2390 | reader). */ | |
2391 | continue; | |
2392 | } | |
2393 | ||
2394 | prev = NULL; | |
c378eb4e | 2395 | item = l->item; /* Get first line info. */ |
c906108c SS |
2396 | |
2397 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2398 | If so, record this file, and its first line, as best alternate. */ |
c906108c | 2399 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
c656bca5 | 2400 | alt = item; |
c906108c SS |
2401 | |
2402 | for (i = 0; i < len; i++, item++) | |
2403 | { | |
2404 | /* Leave prev pointing to the linetable entry for the last line | |
2405 | that started at or before PC. */ | |
2406 | if (item->pc > pc) | |
2407 | break; | |
2408 | ||
2409 | prev = item; | |
2410 | } | |
2411 | ||
2412 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2413 | item points at the next line. If we ran off the end of the linetable |
2414 | (pc >= start of the last line), then prev == item. If pc < start of | |
2415 | the first line, prev will not be set. */ | |
c906108c SS |
2416 | |
2417 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2418 | If so, record this file, and its best line, as best so far. Don't |
2419 | save prev if it represents the end of a function (i.e. line number | |
2420 | 0) instead of a real line. */ | |
c906108c | 2421 | |
083ae935 | 2422 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2423 | { |
2424 | best = prev; | |
2425 | best_symtab = s; | |
25d53da1 KB |
2426 | |
2427 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2428 | if (best_end <= best->pc) | |
2429 | best_end = 0; | |
c906108c | 2430 | } |
25d53da1 KB |
2431 | |
2432 | /* If another line (denoted by ITEM) is in the linetable and its | |
2433 | PC is after BEST's PC, but before the current BEST_END, then | |
2434 | use ITEM's PC as the new best_end. */ | |
2435 | if (best && i < len && item->pc > best->pc | |
2436 | && (best_end == 0 || best_end > item->pc)) | |
2437 | best_end = item->pc; | |
c906108c SS |
2438 | } |
2439 | ||
2440 | if (!best_symtab) | |
2441 | { | |
e86e87f7 DJ |
2442 | /* If we didn't find any line number info, just return zeros. |
2443 | We used to return alt->line - 1 here, but that could be | |
2444 | anywhere; if we don't have line number info for this PC, | |
2445 | don't make some up. */ | |
2446 | val.pc = pc; | |
c906108c | 2447 | } |
e8717518 FF |
2448 | else if (best->line == 0) |
2449 | { | |
2450 | /* If our best fit is in a range of PC's for which no line | |
2451 | number info is available (line number is zero) then we didn't | |
c378eb4e | 2452 | find any valid line information. */ |
e8717518 FF |
2453 | val.pc = pc; |
2454 | } | |
c906108c SS |
2455 | else |
2456 | { | |
2457 | val.symtab = best_symtab; | |
2458 | val.line = best->line; | |
2459 | val.pc = best->pc; | |
2460 | if (best_end && (!alt || best_end < alt->pc)) | |
2461 | val.end = best_end; | |
2462 | else if (alt) | |
2463 | val.end = alt->pc; | |
2464 | else | |
2465 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2466 | } | |
2467 | val.section = section; | |
2468 | return val; | |
2469 | } | |
2470 | ||
c378eb4e | 2471 | /* Backward compatibility (no section). */ |
c906108c SS |
2472 | |
2473 | struct symtab_and_line | |
fba45db2 | 2474 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2475 | { |
714835d5 | 2476 | struct obj_section *section; |
c906108c SS |
2477 | |
2478 | section = find_pc_overlay (pc); | |
2479 | if (pc_in_unmapped_range (pc, section)) | |
2480 | pc = overlay_mapped_address (pc, section); | |
2481 | return find_pc_sect_line (pc, section, notcurrent); | |
2482 | } | |
c906108c | 2483 | \f |
c906108c SS |
2484 | /* Find line number LINE in any symtab whose name is the same as |
2485 | SYMTAB. | |
2486 | ||
2487 | If found, return the symtab that contains the linetable in which it was | |
2488 | found, set *INDEX to the index in the linetable of the best entry | |
2489 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2490 | exact match. | |
2491 | ||
2492 | If not found, return NULL. */ | |
2493 | ||
50641945 | 2494 | struct symtab * |
433759f7 MS |
2495 | find_line_symtab (struct symtab *symtab, int line, |
2496 | int *index, int *exact_match) | |
c906108c | 2497 | { |
6f43c46f | 2498 | int exact = 0; /* Initialized here to avoid a compiler warning. */ |
c906108c SS |
2499 | |
2500 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2501 | so far seen. */ | |
2502 | ||
2503 | int best_index; | |
2504 | struct linetable *best_linetable; | |
2505 | struct symtab *best_symtab; | |
2506 | ||
2507 | /* First try looking it up in the given symtab. */ | |
2508 | best_linetable = LINETABLE (symtab); | |
2509 | best_symtab = symtab; | |
f8eba3c6 | 2510 | best_index = find_line_common (best_linetable, line, &exact, 0); |
c906108c SS |
2511 | if (best_index < 0 || !exact) |
2512 | { | |
2513 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2514 | another symtab with the same name. In the case of xcoff, |
2515 | multiple csects for one source file (produced by IBM's FORTRAN | |
2516 | compiler) produce multiple symtabs (this is unavoidable | |
2517 | assuming csects can be at arbitrary places in memory and that | |
2518 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2519 | |
2520 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2521 | or 0 if none has been seen so far. |
2522 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2523 | int best; |
2524 | ||
2525 | struct objfile *objfile; | |
2526 | struct symtab *s; | |
2527 | ||
2528 | if (best_index >= 0) | |
2529 | best = best_linetable->item[best_index].line; | |
2530 | else | |
2531 | best = 0; | |
2532 | ||
ccefe4c4 | 2533 | ALL_OBJFILES (objfile) |
51432cca | 2534 | { |
ccefe4c4 | 2535 | if (objfile->sf) |
652a8996 | 2536 | objfile->sf->qf->expand_symtabs_with_fullname (objfile, |
05cba821 | 2537 | symtab_to_fullname (symtab)); |
51432cca CES |
2538 | } |
2539 | ||
c906108c | 2540 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
2541 | { |
2542 | struct linetable *l; | |
2543 | int ind; | |
c906108c | 2544 | |
3ffc00b8 | 2545 | if (FILENAME_CMP (symtab->filename, s->filename) != 0) |
c5aa993b | 2546 | continue; |
d180bcbd JK |
2547 | if (FILENAME_CMP (symtab_to_fullname (symtab), |
2548 | symtab_to_fullname (s)) != 0) | |
3ffc00b8 | 2549 | continue; |
c5aa993b | 2550 | l = LINETABLE (s); |
f8eba3c6 | 2551 | ind = find_line_common (l, line, &exact, 0); |
c5aa993b JM |
2552 | if (ind >= 0) |
2553 | { | |
2554 | if (exact) | |
2555 | { | |
2556 | best_index = ind; | |
2557 | best_linetable = l; | |
2558 | best_symtab = s; | |
2559 | goto done; | |
2560 | } | |
2561 | if (best == 0 || l->item[ind].line < best) | |
2562 | { | |
2563 | best = l->item[ind].line; | |
2564 | best_index = ind; | |
2565 | best_linetable = l; | |
2566 | best_symtab = s; | |
2567 | } | |
2568 | } | |
2569 | } | |
c906108c | 2570 | } |
c5aa993b | 2571 | done: |
c906108c SS |
2572 | if (best_index < 0) |
2573 | return NULL; | |
2574 | ||
2575 | if (index) | |
2576 | *index = best_index; | |
2577 | if (exact_match) | |
2578 | *exact_match = exact; | |
2579 | ||
2580 | return best_symtab; | |
2581 | } | |
f8eba3c6 TT |
2582 | |
2583 | /* Given SYMTAB, returns all the PCs function in the symtab that | |
2584 | exactly match LINE. Returns NULL if there are no exact matches, | |
2585 | but updates BEST_ITEM in this case. */ | |
2586 | ||
2587 | VEC (CORE_ADDR) * | |
2588 | find_pcs_for_symtab_line (struct symtab *symtab, int line, | |
2589 | struct linetable_entry **best_item) | |
2590 | { | |
c656bca5 | 2591 | int start = 0; |
f8eba3c6 TT |
2592 | VEC (CORE_ADDR) *result = NULL; |
2593 | ||
2594 | /* First, collect all the PCs that are at this line. */ | |
2595 | while (1) | |
2596 | { | |
2597 | int was_exact; | |
2598 | int idx; | |
2599 | ||
2600 | idx = find_line_common (LINETABLE (symtab), line, &was_exact, start); | |
2601 | if (idx < 0) | |
2602 | break; | |
2603 | ||
2604 | if (!was_exact) | |
2605 | { | |
2606 | struct linetable_entry *item = &LINETABLE (symtab)->item[idx]; | |
2607 | ||
2608 | if (*best_item == NULL || item->line < (*best_item)->line) | |
2609 | *best_item = item; | |
2610 | ||
2611 | break; | |
2612 | } | |
2613 | ||
2614 | VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc); | |
2615 | start = idx + 1; | |
2616 | } | |
2617 | ||
2618 | return result; | |
2619 | } | |
2620 | ||
c906108c SS |
2621 | \f |
2622 | /* Set the PC value for a given source file and line number and return true. | |
2623 | Returns zero for invalid line number (and sets the PC to 0). | |
2624 | The source file is specified with a struct symtab. */ | |
2625 | ||
2626 | int | |
fba45db2 | 2627 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2628 | { |
2629 | struct linetable *l; | |
2630 | int ind; | |
2631 | ||
2632 | *pc = 0; | |
2633 | if (symtab == 0) | |
2634 | return 0; | |
2635 | ||
2636 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2637 | if (symtab != NULL) | |
2638 | { | |
2639 | l = LINETABLE (symtab); | |
2640 | *pc = l->item[ind].pc; | |
2641 | return 1; | |
2642 | } | |
2643 | else | |
2644 | return 0; | |
2645 | } | |
2646 | ||
2647 | /* Find the range of pc values in a line. | |
2648 | Store the starting pc of the line into *STARTPTR | |
2649 | and the ending pc (start of next line) into *ENDPTR. | |
2650 | Returns 1 to indicate success. | |
2651 | Returns 0 if could not find the specified line. */ | |
2652 | ||
2653 | int | |
fba45db2 KB |
2654 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2655 | CORE_ADDR *endptr) | |
c906108c SS |
2656 | { |
2657 | CORE_ADDR startaddr; | |
2658 | struct symtab_and_line found_sal; | |
2659 | ||
2660 | startaddr = sal.pc; | |
c5aa993b | 2661 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2662 | return 0; |
2663 | ||
2664 | /* This whole function is based on address. For example, if line 10 has | |
2665 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2666 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2667 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2668 | This also insures that we never give a range like "starts at 0x134 | |
2669 | and ends at 0x12c". */ | |
2670 | ||
2671 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2672 | if (found_sal.line != sal.line) | |
2673 | { | |
2674 | /* The specified line (sal) has zero bytes. */ | |
2675 | *startptr = found_sal.pc; | |
2676 | *endptr = found_sal.pc; | |
2677 | } | |
2678 | else | |
2679 | { | |
2680 | *startptr = found_sal.pc; | |
2681 | *endptr = found_sal.end; | |
2682 | } | |
2683 | return 1; | |
2684 | } | |
2685 | ||
2686 | /* Given a line table and a line number, return the index into the line | |
2687 | table for the pc of the nearest line whose number is >= the specified one. | |
2688 | Return -1 if none is found. The value is >= 0 if it is an index. | |
f8eba3c6 | 2689 | START is the index at which to start searching the line table. |
c906108c SS |
2690 | |
2691 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2692 | ||
2693 | static int | |
aa1ee363 | 2694 | find_line_common (struct linetable *l, int lineno, |
f8eba3c6 | 2695 | int *exact_match, int start) |
c906108c | 2696 | { |
52f0bd74 AC |
2697 | int i; |
2698 | int len; | |
c906108c SS |
2699 | |
2700 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2701 | or 0 if none has been seen so far. | |
2702 | BEST_INDEX identifies the item for it. */ | |
2703 | ||
2704 | int best_index = -1; | |
2705 | int best = 0; | |
2706 | ||
b7589f7d DJ |
2707 | *exact_match = 0; |
2708 | ||
c906108c SS |
2709 | if (lineno <= 0) |
2710 | return -1; | |
2711 | if (l == 0) | |
2712 | return -1; | |
2713 | ||
2714 | len = l->nitems; | |
f8eba3c6 | 2715 | for (i = start; i < len; i++) |
c906108c | 2716 | { |
aa1ee363 | 2717 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2718 | |
2719 | if (item->line == lineno) | |
2720 | { | |
2721 | /* Return the first (lowest address) entry which matches. */ | |
2722 | *exact_match = 1; | |
2723 | return i; | |
2724 | } | |
2725 | ||
2726 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2727 | { | |
2728 | best = item->line; | |
2729 | best_index = i; | |
2730 | } | |
2731 | } | |
2732 | ||
2733 | /* If we got here, we didn't get an exact match. */ | |
c906108c SS |
2734 | return best_index; |
2735 | } | |
2736 | ||
2737 | int | |
fba45db2 | 2738 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2739 | { |
2740 | struct symtab_and_line sal; | |
433759f7 | 2741 | |
c906108c SS |
2742 | sal = find_pc_line (pc, 0); |
2743 | *startptr = sal.pc; | |
2744 | *endptr = sal.end; | |
2745 | return sal.symtab != 0; | |
2746 | } | |
2747 | ||
8c7a1ee8 EZ |
2748 | /* Given a function start address FUNC_ADDR and SYMTAB, find the first |
2749 | address for that function that has an entry in SYMTAB's line info | |
2750 | table. If such an entry cannot be found, return FUNC_ADDR | |
2751 | unaltered. */ | |
eca864fe | 2752 | |
70221824 | 2753 | static CORE_ADDR |
8c7a1ee8 EZ |
2754 | skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) |
2755 | { | |
2756 | CORE_ADDR func_start, func_end; | |
2757 | struct linetable *l; | |
952a6d41 | 2758 | int i; |
8c7a1ee8 EZ |
2759 | |
2760 | /* Give up if this symbol has no lineinfo table. */ | |
2761 | l = LINETABLE (symtab); | |
2762 | if (l == NULL) | |
2763 | return func_addr; | |
2764 | ||
2765 | /* Get the range for the function's PC values, or give up if we | |
2766 | cannot, for some reason. */ | |
2767 | if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) | |
2768 | return func_addr; | |
2769 | ||
2770 | /* Linetable entries are ordered by PC values, see the commentary in | |
2771 | symtab.h where `struct linetable' is defined. Thus, the first | |
2772 | entry whose PC is in the range [FUNC_START..FUNC_END[ is the | |
2773 | address we are looking for. */ | |
2774 | for (i = 0; i < l->nitems; i++) | |
2775 | { | |
2776 | struct linetable_entry *item = &(l->item[i]); | |
2777 | ||
2778 | /* Don't use line numbers of zero, they mark special entries in | |
2779 | the table. See the commentary on symtab.h before the | |
2780 | definition of struct linetable. */ | |
2781 | if (item->line > 0 && func_start <= item->pc && item->pc < func_end) | |
2782 | return item->pc; | |
2783 | } | |
2784 | ||
2785 | return func_addr; | |
2786 | } | |
2787 | ||
c906108c SS |
2788 | /* Given a function symbol SYM, find the symtab and line for the start |
2789 | of the function. | |
2790 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2791 | of real code inside the function. */ | |
2792 | ||
50641945 | 2793 | struct symtab_and_line |
fba45db2 | 2794 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c | 2795 | { |
059acae7 UW |
2796 | struct symtab_and_line sal; |
2797 | ||
2798 | fixup_symbol_section (sym, NULL); | |
2799 | sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), | |
e27d198c | 2800 | SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0); |
059acae7 | 2801 | |
86da934b UW |
2802 | /* We always should have a line for the function start address. |
2803 | If we don't, something is odd. Create a plain SAL refering | |
2804 | just the PC and hope that skip_prologue_sal (if requested) | |
2805 | can find a line number for after the prologue. */ | |
2806 | if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym))) | |
2807 | { | |
2808 | init_sal (&sal); | |
2809 | sal.pspace = current_program_space; | |
2810 | sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
e27d198c | 2811 | sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym); |
86da934b UW |
2812 | } |
2813 | ||
059acae7 UW |
2814 | if (funfirstline) |
2815 | skip_prologue_sal (&sal); | |
bccdca4a | 2816 | |
059acae7 UW |
2817 | return sal; |
2818 | } | |
2819 | ||
2820 | /* Adjust SAL to the first instruction past the function prologue. | |
2821 | If the PC was explicitly specified, the SAL is not changed. | |
2822 | If the line number was explicitly specified, at most the SAL's PC | |
2823 | is updated. If SAL is already past the prologue, then do nothing. */ | |
eca864fe | 2824 | |
059acae7 UW |
2825 | void |
2826 | skip_prologue_sal (struct symtab_and_line *sal) | |
2827 | { | |
2828 | struct symbol *sym; | |
2829 | struct symtab_and_line start_sal; | |
2830 | struct cleanup *old_chain; | |
8be455d7 | 2831 | CORE_ADDR pc, saved_pc; |
059acae7 UW |
2832 | struct obj_section *section; |
2833 | const char *name; | |
2834 | struct objfile *objfile; | |
2835 | struct gdbarch *gdbarch; | |
edb3359d | 2836 | struct block *b, *function_block; |
8be455d7 | 2837 | int force_skip, skip; |
c906108c | 2838 | |
a4b411d6 | 2839 | /* Do not change the SAL if PC was specified explicitly. */ |
059acae7 UW |
2840 | if (sal->explicit_pc) |
2841 | return; | |
6c95b8df PA |
2842 | |
2843 | old_chain = save_current_space_and_thread (); | |
059acae7 | 2844 | switch_to_program_space_and_thread (sal->pspace); |
6c95b8df | 2845 | |
059acae7 UW |
2846 | sym = find_pc_sect_function (sal->pc, sal->section); |
2847 | if (sym != NULL) | |
bccdca4a | 2848 | { |
059acae7 UW |
2849 | fixup_symbol_section (sym, NULL); |
2850 | ||
2851 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
e27d198c | 2852 | section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym); |
059acae7 UW |
2853 | name = SYMBOL_LINKAGE_NAME (sym); |
2854 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
c906108c | 2855 | } |
059acae7 UW |
2856 | else |
2857 | { | |
7c7b6655 TT |
2858 | struct bound_minimal_symbol msymbol |
2859 | = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); | |
433759f7 | 2860 | |
7c7b6655 | 2861 | if (msymbol.minsym == NULL) |
059acae7 UW |
2862 | { |
2863 | do_cleanups (old_chain); | |
2864 | return; | |
2865 | } | |
2866 | ||
7c7b6655 TT |
2867 | objfile = msymbol.objfile; |
2868 | pc = SYMBOL_VALUE_ADDRESS (msymbol.minsym); | |
2869 | section = SYMBOL_OBJ_SECTION (objfile, msymbol.minsym); | |
2870 | name = SYMBOL_LINKAGE_NAME (msymbol.minsym); | |
059acae7 UW |
2871 | } |
2872 | ||
2873 | gdbarch = get_objfile_arch (objfile); | |
2874 | ||
8be455d7 JK |
2875 | /* Process the prologue in two passes. In the first pass try to skip the |
2876 | prologue (SKIP is true) and verify there is a real need for it (indicated | |
2877 | by FORCE_SKIP). If no such reason was found run a second pass where the | |
2878 | prologue is not skipped (SKIP is false). */ | |
059acae7 | 2879 | |
8be455d7 JK |
2880 | skip = 1; |
2881 | force_skip = 1; | |
059acae7 | 2882 | |
8be455d7 JK |
2883 | /* Be conservative - allow direct PC (without skipping prologue) only if we |
2884 | have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not | |
2885 | have to be set by the caller so we use SYM instead. */ | |
2886 | if (sym && SYMBOL_SYMTAB (sym)->locations_valid) | |
2887 | force_skip = 0; | |
059acae7 | 2888 | |
8be455d7 JK |
2889 | saved_pc = pc; |
2890 | do | |
c906108c | 2891 | { |
8be455d7 | 2892 | pc = saved_pc; |
4309257c | 2893 | |
8be455d7 JK |
2894 | /* If the function is in an unmapped overlay, use its unmapped LMA address, |
2895 | so that gdbarch_skip_prologue has something unique to work on. */ | |
2896 | if (section_is_overlay (section) && !section_is_mapped (section)) | |
2897 | pc = overlay_unmapped_address (pc, section); | |
2898 | ||
2899 | /* Skip "first line" of function (which is actually its prologue). */ | |
2900 | pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
2901 | if (skip) | |
2902 | pc = gdbarch_skip_prologue (gdbarch, pc); | |
2903 | ||
2904 | /* For overlays, map pc back into its mapped VMA range. */ | |
2905 | pc = overlay_mapped_address (pc, section); | |
2906 | ||
2907 | /* Calculate line number. */ | |
059acae7 | 2908 | start_sal = find_pc_sect_line (pc, section, 0); |
8be455d7 JK |
2909 | |
2910 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next | |
2911 | line is still part of the same function. */ | |
2912 | if (skip && start_sal.pc != pc | |
b1d96efd JK |
2913 | && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end |
2914 | && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
7cbd4a93 TT |
2915 | : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym |
2916 | == lookup_minimal_symbol_by_pc_section (pc, section).minsym))) | |
8be455d7 JK |
2917 | { |
2918 | /* First pc of next line */ | |
2919 | pc = start_sal.end; | |
2920 | /* Recalculate the line number (might not be N+1). */ | |
2921 | start_sal = find_pc_sect_line (pc, section, 0); | |
2922 | } | |
2923 | ||
2924 | /* On targets with executable formats that don't have a concept of | |
2925 | constructors (ELF with .init has, PE doesn't), gcc emits a call | |
2926 | to `__main' in `main' between the prologue and before user | |
2927 | code. */ | |
2928 | if (gdbarch_skip_main_prologue_p (gdbarch) | |
7ccffd7c | 2929 | && name && strcmp_iw (name, "main") == 0) |
8be455d7 JK |
2930 | { |
2931 | pc = gdbarch_skip_main_prologue (gdbarch, pc); | |
2932 | /* Recalculate the line number (might not be N+1). */ | |
2933 | start_sal = find_pc_sect_line (pc, section, 0); | |
2934 | force_skip = 1; | |
2935 | } | |
4309257c | 2936 | } |
8be455d7 | 2937 | while (!force_skip && skip--); |
4309257c | 2938 | |
8c7a1ee8 EZ |
2939 | /* If we still don't have a valid source line, try to find the first |
2940 | PC in the lineinfo table that belongs to the same function. This | |
2941 | happens with COFF debug info, which does not seem to have an | |
2942 | entry in lineinfo table for the code after the prologue which has | |
2943 | no direct relation to source. For example, this was found to be | |
2944 | the case with the DJGPP target using "gcc -gcoff" when the | |
2945 | compiler inserted code after the prologue to make sure the stack | |
2946 | is aligned. */ | |
8be455d7 | 2947 | if (!force_skip && sym && start_sal.symtab == NULL) |
8c7a1ee8 EZ |
2948 | { |
2949 | pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym)); | |
2950 | /* Recalculate the line number. */ | |
059acae7 | 2951 | start_sal = find_pc_sect_line (pc, section, 0); |
8c7a1ee8 EZ |
2952 | } |
2953 | ||
059acae7 UW |
2954 | do_cleanups (old_chain); |
2955 | ||
2956 | /* If we're already past the prologue, leave SAL unchanged. Otherwise | |
2957 | forward SAL to the end of the prologue. */ | |
2958 | if (sal->pc >= pc) | |
2959 | return; | |
2960 | ||
2961 | sal->pc = pc; | |
2962 | sal->section = section; | |
2963 | ||
2964 | /* Unless the explicit_line flag was set, update the SAL line | |
2965 | and symtab to correspond to the modified PC location. */ | |
2966 | if (sal->explicit_line) | |
2967 | return; | |
2968 | ||
2969 | sal->symtab = start_sal.symtab; | |
2970 | sal->line = start_sal.line; | |
2971 | sal->end = start_sal.end; | |
c906108c | 2972 | |
edb3359d DJ |
2973 | /* Check if we are now inside an inlined function. If we can, |
2974 | use the call site of the function instead. */ | |
059acae7 | 2975 | b = block_for_pc_sect (sal->pc, sal->section); |
edb3359d DJ |
2976 | function_block = NULL; |
2977 | while (b != NULL) | |
2978 | { | |
2979 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
2980 | function_block = b; | |
2981 | else if (BLOCK_FUNCTION (b) != NULL) | |
2982 | break; | |
2983 | b = BLOCK_SUPERBLOCK (b); | |
2984 | } | |
2985 | if (function_block != NULL | |
2986 | && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) | |
2987 | { | |
059acae7 UW |
2988 | sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); |
2989 | sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block)); | |
edb3359d | 2990 | } |
c906108c | 2991 | } |
50641945 | 2992 | |
c906108c SS |
2993 | /* If P is of the form "operator[ \t]+..." where `...' is |
2994 | some legitimate operator text, return a pointer to the | |
2995 | beginning of the substring of the operator text. | |
2996 | Otherwise, return "". */ | |
eca864fe | 2997 | |
fc9f3a69 | 2998 | static char * |
fba45db2 | 2999 | operator_chars (char *p, char **end) |
c906108c SS |
3000 | { |
3001 | *end = ""; | |
3002 | if (strncmp (p, "operator", 8)) | |
3003 | return *end; | |
3004 | p += 8; | |
3005 | ||
3006 | /* Don't get faked out by `operator' being part of a longer | |
3007 | identifier. */ | |
c5aa993b | 3008 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
3009 | return *end; |
3010 | ||
3011 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
3012 | while (*p == ' ' || *p == '\t') | |
3013 | p++; | |
3014 | ||
c378eb4e | 3015 | /* Recognize 'operator TYPENAME'. */ |
c906108c | 3016 | |
c5aa993b | 3017 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 3018 | { |
aa1ee363 | 3019 | char *q = p + 1; |
433759f7 | 3020 | |
c5aa993b | 3021 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
3022 | q++; |
3023 | *end = q; | |
3024 | return p; | |
3025 | } | |
3026 | ||
53e8ad3d MS |
3027 | while (*p) |
3028 | switch (*p) | |
3029 | { | |
3030 | case '\\': /* regexp quoting */ | |
3031 | if (p[1] == '*') | |
3032 | { | |
3e43a32a | 3033 | if (p[2] == '=') /* 'operator\*=' */ |
53e8ad3d MS |
3034 | *end = p + 3; |
3035 | else /* 'operator\*' */ | |
3036 | *end = p + 2; | |
3037 | return p; | |
3038 | } | |
3039 | else if (p[1] == '[') | |
3040 | { | |
3041 | if (p[2] == ']') | |
3e43a32a MS |
3042 | error (_("mismatched quoting on brackets, " |
3043 | "try 'operator\\[\\]'")); | |
53e8ad3d MS |
3044 | else if (p[2] == '\\' && p[3] == ']') |
3045 | { | |
3046 | *end = p + 4; /* 'operator\[\]' */ | |
3047 | return p; | |
3048 | } | |
3049 | else | |
8a3fe4f8 | 3050 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d | 3051 | } |
9af17804 | 3052 | else |
53e8ad3d | 3053 | { |
c378eb4e | 3054 | /* Gratuitous qoute: skip it and move on. */ |
53e8ad3d MS |
3055 | p++; |
3056 | continue; | |
3057 | } | |
3058 | break; | |
3059 | case '!': | |
3060 | case '=': | |
3061 | case '*': | |
3062 | case '/': | |
3063 | case '%': | |
3064 | case '^': | |
3065 | if (p[1] == '=') | |
3066 | *end = p + 2; | |
3067 | else | |
3068 | *end = p + 1; | |
3069 | return p; | |
3070 | case '<': | |
3071 | case '>': | |
3072 | case '+': | |
3073 | case '-': | |
3074 | case '&': | |
3075 | case '|': | |
3076 | if (p[0] == '-' && p[1] == '>') | |
3077 | { | |
c378eb4e | 3078 | /* Struct pointer member operator 'operator->'. */ |
53e8ad3d MS |
3079 | if (p[2] == '*') |
3080 | { | |
3081 | *end = p + 3; /* 'operator->*' */ | |
3082 | return p; | |
3083 | } | |
3084 | else if (p[2] == '\\') | |
3085 | { | |
3086 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
3087 | return p; | |
3088 | } | |
3089 | else | |
3090 | { | |
3091 | *end = p + 2; /* 'operator->' */ | |
3092 | return p; | |
3093 | } | |
3094 | } | |
3095 | if (p[1] == '=' || p[1] == p[0]) | |
3096 | *end = p + 2; | |
3097 | else | |
3098 | *end = p + 1; | |
3099 | return p; | |
3100 | case '~': | |
3101 | case ',': | |
c5aa993b | 3102 | *end = p + 1; |
53e8ad3d MS |
3103 | return p; |
3104 | case '(': | |
3105 | if (p[1] != ')') | |
3e43a32a MS |
3106 | error (_("`operator ()' must be specified " |
3107 | "without whitespace in `()'")); | |
c5aa993b | 3108 | *end = p + 2; |
53e8ad3d MS |
3109 | return p; |
3110 | case '?': | |
3111 | if (p[1] != ':') | |
3e43a32a MS |
3112 | error (_("`operator ?:' must be specified " |
3113 | "without whitespace in `?:'")); | |
53e8ad3d MS |
3114 | *end = p + 2; |
3115 | return p; | |
3116 | case '[': | |
3117 | if (p[1] != ']') | |
3e43a32a MS |
3118 | error (_("`operator []' must be specified " |
3119 | "without whitespace in `[]'")); | |
53e8ad3d MS |
3120 | *end = p + 2; |
3121 | return p; | |
3122 | default: | |
8a3fe4f8 | 3123 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
3124 | break; |
3125 | } | |
3126 | ||
c906108c SS |
3127 | *end = ""; |
3128 | return *end; | |
3129 | } | |
c906108c | 3130 | \f |
c5aa993b | 3131 | |
9fdc877b DE |
3132 | /* Cache to watch for file names already seen by filename_seen. */ |
3133 | ||
3134 | struct filename_seen_cache | |
3135 | { | |
3136 | /* Table of files seen so far. */ | |
2908cac6 DE |
3137 | htab_t tab; |
3138 | /* Initial size of the table. It automagically grows from here. */ | |
9fdc877b | 3139 | #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100 |
9fdc877b DE |
3140 | }; |
3141 | ||
3142 | /* filename_seen_cache constructor. */ | |
3143 | ||
3144 | static struct filename_seen_cache * | |
3145 | create_filename_seen_cache (void) | |
3146 | { | |
3147 | struct filename_seen_cache *cache; | |
3148 | ||
3149 | cache = XNEW (struct filename_seen_cache); | |
2908cac6 DE |
3150 | cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE, |
3151 | filename_hash, filename_eq, | |
3152 | NULL, xcalloc, xfree); | |
9fdc877b DE |
3153 | |
3154 | return cache; | |
3155 | } | |
3156 | ||
3157 | /* Empty the cache, but do not delete it. */ | |
3158 | ||
3159 | static void | |
2908cac6 | 3160 | clear_filename_seen_cache (struct filename_seen_cache *cache) |
9fdc877b | 3161 | { |
2908cac6 | 3162 | htab_empty (cache->tab); |
9fdc877b DE |
3163 | } |
3164 | ||
3165 | /* filename_seen_cache destructor. | |
3166 | This takes a void * argument as it is generally used as a cleanup. */ | |
3167 | ||
3168 | static void | |
3169 | delete_filename_seen_cache (void *ptr) | |
3170 | { | |
3171 | struct filename_seen_cache *cache = ptr; | |
3172 | ||
2908cac6 | 3173 | htab_delete (cache->tab); |
9fdc877b DE |
3174 | xfree (cache); |
3175 | } | |
3176 | ||
a2b6eff5 | 3177 | /* If FILE is not already in the table of files in CACHE, return zero; |
c94fdfd0 | 3178 | otherwise return non-zero. Optionally add FILE to the table if ADD |
2908cac6 DE |
3179 | is non-zero. |
3180 | ||
3181 | NOTE: We don't manage space for FILE, we assume FILE lives as long | |
3182 | as the caller needs. */ | |
eca864fe | 3183 | |
c94fdfd0 | 3184 | static int |
9fdc877b | 3185 | filename_seen (struct filename_seen_cache *cache, const char *file, int add) |
c906108c | 3186 | { |
2908cac6 | 3187 | void **slot; |
c906108c | 3188 | |
c94fdfd0 | 3189 | /* Is FILE in tab? */ |
2908cac6 DE |
3190 | slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT); |
3191 | if (*slot != NULL) | |
3192 | return 1; | |
c94fdfd0 EZ |
3193 | |
3194 | /* No; maybe add it to tab. */ | |
3195 | if (add) | |
2908cac6 | 3196 | *slot = (char *) file; |
c906108c | 3197 | |
c94fdfd0 EZ |
3198 | return 0; |
3199 | } | |
3200 | ||
9fdc877b DE |
3201 | /* Data structure to maintain printing state for output_source_filename. */ |
3202 | ||
3203 | struct output_source_filename_data | |
3204 | { | |
3205 | /* Cache of what we've seen so far. */ | |
3206 | struct filename_seen_cache *filename_seen_cache; | |
3207 | ||
3208 | /* Flag of whether we're printing the first one. */ | |
3209 | int first; | |
3210 | }; | |
3211 | ||
c94fdfd0 | 3212 | /* Slave routine for sources_info. Force line breaks at ,'s. |
9fdc877b DE |
3213 | NAME is the name to print. |
3214 | DATA contains the state for printing and watching for duplicates. */ | |
eca864fe | 3215 | |
c94fdfd0 | 3216 | static void |
9fdc877b DE |
3217 | output_source_filename (const char *name, |
3218 | struct output_source_filename_data *data) | |
c94fdfd0 EZ |
3219 | { |
3220 | /* Since a single source file can result in several partial symbol | |
3221 | tables, we need to avoid printing it more than once. Note: if | |
3222 | some of the psymtabs are read in and some are not, it gets | |
3223 | printed both under "Source files for which symbols have been | |
3224 | read" and "Source files for which symbols will be read in on | |
3225 | demand". I consider this a reasonable way to deal with the | |
3226 | situation. I'm not sure whether this can also happen for | |
3227 | symtabs; it doesn't hurt to check. */ | |
3228 | ||
3229 | /* Was NAME already seen? */ | |
9fdc877b | 3230 | if (filename_seen (data->filename_seen_cache, name, 1)) |
c94fdfd0 EZ |
3231 | { |
3232 | /* Yes; don't print it again. */ | |
3233 | return; | |
3234 | } | |
9fdc877b | 3235 | |
c94fdfd0 | 3236 | /* No; print it and reset *FIRST. */ |
9fdc877b DE |
3237 | if (! data->first) |
3238 | printf_filtered (", "); | |
3239 | data->first = 0; | |
c906108c SS |
3240 | |
3241 | wrap_here (""); | |
3242 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 3243 | } |
c906108c | 3244 | |
ccefe4c4 | 3245 | /* A callback for map_partial_symbol_filenames. */ |
eca864fe | 3246 | |
ccefe4c4 | 3247 | static void |
533a737e | 3248 | output_partial_symbol_filename (const char *filename, const char *fullname, |
ccefe4c4 TT |
3249 | void *data) |
3250 | { | |
3251 | output_source_filename (fullname ? fullname : filename, data); | |
3252 | } | |
3253 | ||
c906108c | 3254 | static void |
fba45db2 | 3255 | sources_info (char *ignore, int from_tty) |
c906108c | 3256 | { |
52f0bd74 | 3257 | struct symtab *s; |
52f0bd74 | 3258 | struct objfile *objfile; |
9fdc877b DE |
3259 | struct output_source_filename_data data; |
3260 | struct cleanup *cleanups; | |
c5aa993b | 3261 | |
c906108c SS |
3262 | if (!have_full_symbols () && !have_partial_symbols ()) |
3263 | { | |
8a3fe4f8 | 3264 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 3265 | } |
c5aa993b | 3266 | |
9fdc877b DE |
3267 | data.filename_seen_cache = create_filename_seen_cache (); |
3268 | cleanups = make_cleanup (delete_filename_seen_cache, | |
3269 | data.filename_seen_cache); | |
3270 | ||
c906108c SS |
3271 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
3272 | ||
9fdc877b | 3273 | data.first = 1; |
c906108c | 3274 | ALL_SYMTABS (objfile, s) |
c5aa993b | 3275 | { |
d092d1a2 | 3276 | const char *fullname = symtab_to_fullname (s); |
433759f7 | 3277 | |
f35a17b5 | 3278 | output_source_filename (fullname, &data); |
c5aa993b | 3279 | } |
c906108c | 3280 | printf_filtered ("\n\n"); |
c5aa993b | 3281 | |
3e43a32a MS |
3282 | printf_filtered ("Source files for which symbols " |
3283 | "will be read in on demand:\n\n"); | |
c906108c | 3284 | |
9fdc877b DE |
3285 | clear_filename_seen_cache (data.filename_seen_cache); |
3286 | data.first = 1; | |
3287 | map_partial_symbol_filenames (output_partial_symbol_filename, &data, | |
74e2f255 | 3288 | 1 /*need_fullname*/); |
c906108c | 3289 | printf_filtered ("\n"); |
9fdc877b DE |
3290 | |
3291 | do_cleanups (cleanups); | |
c906108c SS |
3292 | } |
3293 | ||
fbd9ab74 JK |
3294 | /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is |
3295 | non-zero compare only lbasename of FILES. */ | |
3296 | ||
c906108c | 3297 | static int |
fbd9ab74 | 3298 | file_matches (const char *file, char *files[], int nfiles, int basenames) |
c906108c SS |
3299 | { |
3300 | int i; | |
3301 | ||
3302 | if (file != NULL && nfiles != 0) | |
3303 | { | |
3304 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 3305 | { |
fbd9ab74 JK |
3306 | if (compare_filenames_for_search (file, (basenames |
3307 | ? lbasename (files[i]) | |
3308 | : files[i]))) | |
c5aa993b JM |
3309 | return 1; |
3310 | } | |
c906108c SS |
3311 | } |
3312 | else if (nfiles == 0) | |
3313 | return 1; | |
3314 | return 0; | |
3315 | } | |
3316 | ||
c378eb4e | 3317 | /* Free any memory associated with a search. */ |
eca864fe | 3318 | |
c906108c | 3319 | void |
fba45db2 | 3320 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
3321 | { |
3322 | struct symbol_search *p; | |
3323 | struct symbol_search *next; | |
3324 | ||
3325 | for (p = symbols; p != NULL; p = next) | |
3326 | { | |
3327 | next = p->next; | |
b8c9b27d | 3328 | xfree (p); |
c906108c SS |
3329 | } |
3330 | } | |
3331 | ||
5bd98722 | 3332 | static void |
b52109bc | 3333 | do_free_search_symbols_cleanup (void *symbolsp) |
5bd98722 | 3334 | { |
b52109bc DE |
3335 | struct symbol_search *symbols = *(struct symbol_search **) symbolsp; |
3336 | ||
5bd98722 AC |
3337 | free_search_symbols (symbols); |
3338 | } | |
3339 | ||
3340 | struct cleanup * | |
b52109bc | 3341 | make_cleanup_free_search_symbols (struct symbol_search **symbolsp) |
5bd98722 | 3342 | { |
b52109bc | 3343 | return make_cleanup (do_free_search_symbols_cleanup, symbolsp); |
5bd98722 AC |
3344 | } |
3345 | ||
b52109bc | 3346 | /* Helper function for sort_search_symbols_remove_dups and qsort. Can only |
434d2d4f | 3347 | sort symbols, not minimal symbols. */ |
eca864fe | 3348 | |
434d2d4f DJ |
3349 | static int |
3350 | compare_search_syms (const void *sa, const void *sb) | |
3351 | { | |
b52109bc DE |
3352 | struct symbol_search *sym_a = *(struct symbol_search **) sa; |
3353 | struct symbol_search *sym_b = *(struct symbol_search **) sb; | |
3354 | int c; | |
3355 | ||
042a84d9 | 3356 | c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename); |
b52109bc DE |
3357 | if (c != 0) |
3358 | return c; | |
434d2d4f | 3359 | |
b52109bc DE |
3360 | if (sym_a->block != sym_b->block) |
3361 | return sym_a->block - sym_b->block; | |
3362 | ||
3363 | return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol), | |
3364 | SYMBOL_PRINT_NAME (sym_b->symbol)); | |
434d2d4f DJ |
3365 | } |
3366 | ||
b52109bc DE |
3367 | /* Sort the NFOUND symbols in list FOUND and remove duplicates. |
3368 | The duplicates are freed, and the new list is returned in | |
3369 | *NEW_HEAD, *NEW_TAIL. */ | |
3370 | ||
3371 | static void | |
3372 | sort_search_symbols_remove_dups (struct symbol_search *found, int nfound, | |
3373 | struct symbol_search **new_head, | |
3374 | struct symbol_search **new_tail) | |
434d2d4f DJ |
3375 | { |
3376 | struct symbol_search **symbols, *symp, *old_next; | |
b52109bc | 3377 | int i, j, nunique; |
434d2d4f | 3378 | |
b52109bc DE |
3379 | gdb_assert (found != NULL && nfound > 0); |
3380 | ||
3381 | /* Build an array out of the list so we can easily sort them. */ | |
434d2d4f DJ |
3382 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) |
3383 | * nfound); | |
b52109bc | 3384 | symp = found; |
434d2d4f DJ |
3385 | for (i = 0; i < nfound; i++) |
3386 | { | |
b52109bc DE |
3387 | gdb_assert (symp != NULL); |
3388 | gdb_assert (symp->block >= 0 && symp->block <= 1); | |
434d2d4f DJ |
3389 | symbols[i] = symp; |
3390 | symp = symp->next; | |
3391 | } | |
b52109bc | 3392 | gdb_assert (symp == NULL); |
434d2d4f DJ |
3393 | |
3394 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
3395 | compare_search_syms); | |
3396 | ||
b52109bc DE |
3397 | /* Collapse out the dups. */ |
3398 | for (i = 1, j = 1; i < nfound; ++i) | |
434d2d4f | 3399 | { |
6b9780fb | 3400 | if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0) |
b52109bc DE |
3401 | symbols[j++] = symbols[i]; |
3402 | else | |
3403 | xfree (symbols[i]); | |
434d2d4f | 3404 | } |
b52109bc DE |
3405 | nunique = j; |
3406 | symbols[j - 1]->next = NULL; | |
3407 | ||
3408 | /* Rebuild the linked list. */ | |
3409 | for (i = 0; i < nunique - 1; i++) | |
3410 | symbols[i]->next = symbols[i + 1]; | |
3411 | symbols[nunique - 1]->next = NULL; | |
434d2d4f | 3412 | |
b52109bc DE |
3413 | *new_head = symbols[0]; |
3414 | *new_tail = symbols[nunique - 1]; | |
8ed32cc0 | 3415 | xfree (symbols); |
434d2d4f | 3416 | } |
5bd98722 | 3417 | |
ccefe4c4 TT |
3418 | /* An object of this type is passed as the user_data to the |
3419 | expand_symtabs_matching method. */ | |
3420 | struct search_symbols_data | |
3421 | { | |
3422 | int nfiles; | |
3423 | char **files; | |
681bf369 JK |
3424 | |
3425 | /* It is true if PREG contains valid data, false otherwise. */ | |
3426 | unsigned preg_p : 1; | |
3427 | regex_t preg; | |
ccefe4c4 TT |
3428 | }; |
3429 | ||
3430 | /* A callback for expand_symtabs_matching. */ | |
eca864fe | 3431 | |
ccefe4c4 | 3432 | static int |
fbd9ab74 JK |
3433 | search_symbols_file_matches (const char *filename, void *user_data, |
3434 | int basenames) | |
ccefe4c4 TT |
3435 | { |
3436 | struct search_symbols_data *data = user_data; | |
433759f7 | 3437 | |
fbd9ab74 | 3438 | return file_matches (filename, data->files, data->nfiles, basenames); |
ccefe4c4 TT |
3439 | } |
3440 | ||
3441 | /* A callback for expand_symtabs_matching. */ | |
eca864fe | 3442 | |
ccefe4c4 | 3443 | static int |
e078317b | 3444 | search_symbols_name_matches (const char *symname, void *user_data) |
ccefe4c4 TT |
3445 | { |
3446 | struct search_symbols_data *data = user_data; | |
433759f7 | 3447 | |
681bf369 | 3448 | return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0; |
ccefe4c4 TT |
3449 | } |
3450 | ||
c906108c SS |
3451 | /* Search the symbol table for matches to the regular expression REGEXP, |
3452 | returning the results in *MATCHES. | |
3453 | ||
3454 | Only symbols of KIND are searched: | |
e8930875 JK |
3455 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, |
3456 | and constants (enums) | |
176620f1 EZ |
3457 | FUNCTIONS_DOMAIN - search all functions |
3458 | TYPES_DOMAIN - search all type names | |
7b08b9eb | 3459 | ALL_DOMAIN - an internal error for this function |
c906108c SS |
3460 | |
3461 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f | 3462 | |
b52109bc DE |
3463 | Within each file the results are sorted locally; each symtab's global and |
3464 | static blocks are separately alphabetized. | |
3465 | Duplicate entries are removed. */ | |
c378eb4e | 3466 | |
c906108c | 3467 | void |
8903c50d TT |
3468 | search_symbols (char *regexp, enum search_domain kind, |
3469 | int nfiles, char *files[], | |
fd118b61 | 3470 | struct symbol_search **matches) |
c906108c | 3471 | { |
52f0bd74 | 3472 | struct symtab *s; |
52f0bd74 | 3473 | struct blockvector *bv; |
52f0bd74 AC |
3474 | struct block *b; |
3475 | int i = 0; | |
8157b174 | 3476 | struct block_iterator iter; |
52f0bd74 | 3477 | struct symbol *sym; |
c906108c SS |
3478 | struct objfile *objfile; |
3479 | struct minimal_symbol *msymbol; | |
c906108c | 3480 | int found_misc = 0; |
bc043ef3 | 3481 | static const enum minimal_symbol_type types[] |
e8930875 | 3482 | = {mst_data, mst_text, mst_abs}; |
bc043ef3 | 3483 | static const enum minimal_symbol_type types2[] |
e8930875 | 3484 | = {mst_bss, mst_file_text, mst_abs}; |
bc043ef3 | 3485 | static const enum minimal_symbol_type types3[] |
e8930875 | 3486 | = {mst_file_data, mst_solib_trampoline, mst_abs}; |
bc043ef3 | 3487 | static const enum minimal_symbol_type types4[] |
e8930875 | 3488 | = {mst_file_bss, mst_text_gnu_ifunc, mst_abs}; |
c906108c SS |
3489 | enum minimal_symbol_type ourtype; |
3490 | enum minimal_symbol_type ourtype2; | |
3491 | enum minimal_symbol_type ourtype3; | |
3492 | enum minimal_symbol_type ourtype4; | |
b52109bc | 3493 | struct symbol_search *found; |
c906108c | 3494 | struct symbol_search *tail; |
ccefe4c4 | 3495 | struct search_symbols_data datum; |
b52109bc | 3496 | int nfound; |
c906108c | 3497 | |
681bf369 JK |
3498 | /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current |
3499 | CLEANUP_CHAIN is freed only in the case of an error. */ | |
3500 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
3501 | struct cleanup *retval_chain; | |
3502 | ||
e8930875 JK |
3503 | gdb_assert (kind <= TYPES_DOMAIN); |
3504 | ||
8903c50d TT |
3505 | ourtype = types[kind]; |
3506 | ourtype2 = types2[kind]; | |
3507 | ourtype3 = types3[kind]; | |
3508 | ourtype4 = types4[kind]; | |
c906108c | 3509 | |
b52109bc | 3510 | *matches = NULL; |
681bf369 | 3511 | datum.preg_p = 0; |
c906108c SS |
3512 | |
3513 | if (regexp != NULL) | |
3514 | { | |
3515 | /* Make sure spacing is right for C++ operators. | |
3516 | This is just a courtesy to make the matching less sensitive | |
3517 | to how many spaces the user leaves between 'operator' | |
c378eb4e | 3518 | and <TYPENAME> or <OPERATOR>. */ |
c906108c SS |
3519 | char *opend; |
3520 | char *opname = operator_chars (regexp, &opend); | |
681bf369 | 3521 | int errcode; |
433759f7 | 3522 | |
c906108c | 3523 | if (*opname) |
c5aa993b | 3524 | { |
3e43a32a MS |
3525 | int fix = -1; /* -1 means ok; otherwise number of |
3526 | spaces needed. */ | |
433759f7 | 3527 | |
c5aa993b JM |
3528 | if (isalpha (*opname) || *opname == '_' || *opname == '$') |
3529 | { | |
c378eb4e | 3530 | /* There should 1 space between 'operator' and 'TYPENAME'. */ |
c5aa993b JM |
3531 | if (opname[-1] != ' ' || opname[-2] == ' ') |
3532 | fix = 1; | |
3533 | } | |
3534 | else | |
3535 | { | |
c378eb4e | 3536 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ |
c5aa993b JM |
3537 | if (opname[-1] == ' ') |
3538 | fix = 0; | |
3539 | } | |
c378eb4e | 3540 | /* If wrong number of spaces, fix it. */ |
c5aa993b JM |
3541 | if (fix >= 0) |
3542 | { | |
045f55a6 | 3543 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
433759f7 | 3544 | |
c5aa993b JM |
3545 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
3546 | regexp = tmp; | |
3547 | } | |
3548 | } | |
3549 | ||
559a7a62 JK |
3550 | errcode = regcomp (&datum.preg, regexp, |
3551 | REG_NOSUB | (case_sensitivity == case_sensitive_off | |
3552 | ? REG_ICASE : 0)); | |
681bf369 JK |
3553 | if (errcode != 0) |
3554 | { | |
3555 | char *err = get_regcomp_error (errcode, &datum.preg); | |
3556 | ||
3557 | make_cleanup (xfree, err); | |
3558 | error (_("Invalid regexp (%s): %s"), err, regexp); | |
3559 | } | |
3560 | datum.preg_p = 1; | |
3561 | make_regfree_cleanup (&datum.preg); | |
c906108c SS |
3562 | } |
3563 | ||
3564 | /* Search through the partial symtabs *first* for all symbols | |
3565 | matching the regexp. That way we don't have to reproduce all of | |
c378eb4e | 3566 | the machinery below. */ |
c906108c | 3567 | |
ccefe4c4 TT |
3568 | datum.nfiles = nfiles; |
3569 | datum.files = files; | |
ccefe4c4 | 3570 | ALL_OBJFILES (objfile) |
c5aa993b | 3571 | { |
ccefe4c4 TT |
3572 | if (objfile->sf) |
3573 | objfile->sf->qf->expand_symtabs_matching (objfile, | |
71cddcc1 DE |
3574 | (nfiles == 0 |
3575 | ? NULL | |
3576 | : search_symbols_file_matches), | |
ccefe4c4 TT |
3577 | search_symbols_name_matches, |
3578 | kind, | |
3579 | &datum); | |
c5aa993b | 3580 | } |
c906108c SS |
3581 | |
3582 | /* Here, we search through the minimal symbol tables for functions | |
3583 | and variables that match, and force their symbols to be read. | |
3584 | This is in particular necessary for demangled variable names, | |
3585 | which are no longer put into the partial symbol tables. | |
3586 | The symbol will then be found during the scan of symtabs below. | |
3587 | ||
3588 | For functions, find_pc_symtab should succeed if we have debug info | |
422d65e7 DE |
3589 | for the function, for variables we have to call |
3590 | lookup_symbol_in_objfile_from_linkage_name to determine if the variable | |
3591 | has debug info. | |
c906108c | 3592 | If the lookup fails, set found_misc so that we will rescan to print |
422d65e7 DE |
3593 | any matching symbols without debug info. |
3594 | We only search the objfile the msymbol came from, we no longer search | |
3595 | all objfiles. In large programs (1000s of shared libs) searching all | |
3596 | objfiles is not worth the pain. */ | |
c906108c | 3597 | |
176620f1 | 3598 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
3599 | { |
3600 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3601 | { |
89295b4d PP |
3602 | QUIT; |
3603 | ||
422d65e7 DE |
3604 | if (msymbol->created_by_gdb) |
3605 | continue; | |
3606 | ||
d50bd42b DE |
3607 | if (MSYMBOL_TYPE (msymbol) == ourtype |
3608 | || MSYMBOL_TYPE (msymbol) == ourtype2 | |
3609 | || MSYMBOL_TYPE (msymbol) == ourtype3 | |
3610 | || MSYMBOL_TYPE (msymbol) == ourtype4) | |
c5aa993b | 3611 | { |
681bf369 JK |
3612 | if (!datum.preg_p |
3613 | || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0, | |
3614 | NULL, 0) == 0) | |
c5aa993b | 3615 | { |
422d65e7 DE |
3616 | /* Note: An important side-effect of these lookup functions |
3617 | is to expand the symbol table if msymbol is found, for the | |
3618 | benefit of the next loop on ALL_PRIMARY_SYMTABS. */ | |
3619 | if (kind == FUNCTIONS_DOMAIN | |
3620 | ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL | |
3621 | : (lookup_symbol_in_objfile_from_linkage_name | |
3622 | (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN) | |
3623 | == NULL)) | |
3624 | found_misc = 1; | |
c5aa993b JM |
3625 | } |
3626 | } | |
3627 | } | |
c906108c SS |
3628 | } |
3629 | ||
b52109bc DE |
3630 | found = NULL; |
3631 | tail = NULL; | |
3632 | nfound = 0; | |
3633 | retval_chain = make_cleanup_free_search_symbols (&found); | |
3634 | ||
11309657 | 3635 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3636 | { |
3637 | bv = BLOCKVECTOR (s); | |
d50bd42b DE |
3638 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3639 | { | |
d50bd42b DE |
3640 | b = BLOCKVECTOR_BLOCK (bv, i); |
3641 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
3642 | { | |
3643 | struct symtab *real_symtab = SYMBOL_SYMTAB (sym); | |
3644 | ||
3645 | QUIT; | |
3646 | ||
fbd9ab74 JK |
3647 | /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be |
3648 | a substring of symtab_to_fullname as it may contain "./" etc. */ | |
3649 | if ((file_matches (real_symtab->filename, files, nfiles, 0) | |
3650 | || ((basenames_may_differ | |
3651 | || file_matches (lbasename (real_symtab->filename), | |
3652 | files, nfiles, 1)) | |
3653 | && file_matches (symtab_to_fullname (real_symtab), | |
3654 | files, nfiles, 0))) | |
d50bd42b DE |
3655 | && ((!datum.preg_p |
3656 | || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0, | |
3657 | NULL, 0) == 0) | |
3658 | && ((kind == VARIABLES_DOMAIN | |
3659 | && SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
3660 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
3661 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
3662 | /* LOC_CONST can be used for more than just enums, | |
3663 | e.g., c++ static const members. | |
3664 | We only want to skip enums here. */ | |
3665 | && !(SYMBOL_CLASS (sym) == LOC_CONST | |
3666 | && TYPE_CODE (SYMBOL_TYPE (sym)) | |
3667 | == TYPE_CODE_ENUM)) | |
3668 | || (kind == FUNCTIONS_DOMAIN | |
3669 | && SYMBOL_CLASS (sym) == LOC_BLOCK) | |
3670 | || (kind == TYPES_DOMAIN | |
3671 | && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) | |
3672 | { | |
3673 | /* match */ | |
b52109bc | 3674 | struct symbol_search *psr = (struct symbol_search *) |
d50bd42b DE |
3675 | xmalloc (sizeof (struct symbol_search)); |
3676 | psr->block = i; | |
3677 | psr->symtab = real_symtab; | |
3678 | psr->symbol = sym; | |
7c7b6655 | 3679 | memset (&psr->msymbol, 0, sizeof (psr->msymbol)); |
d50bd42b DE |
3680 | psr->next = NULL; |
3681 | if (tail == NULL) | |
b52109bc | 3682 | found = psr; |
d50bd42b DE |
3683 | else |
3684 | tail->next = psr; | |
3685 | tail = psr; | |
3686 | nfound ++; | |
3687 | } | |
3688 | } | |
d50bd42b | 3689 | } |
c5aa993b | 3690 | } |
c906108c | 3691 | |
b52109bc DE |
3692 | if (found != NULL) |
3693 | { | |
3694 | sort_search_symbols_remove_dups (found, nfound, &found, &tail); | |
3695 | /* Note: nfound is no longer useful beyond this point. */ | |
3696 | } | |
3697 | ||
c906108c SS |
3698 | /* If there are no eyes, avoid all contact. I mean, if there are |
3699 | no debug symbols, then print directly from the msymbol_vector. */ | |
3700 | ||
422d65e7 | 3701 | if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN)) |
c906108c SS |
3702 | { |
3703 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3704 | { |
89295b4d PP |
3705 | QUIT; |
3706 | ||
422d65e7 DE |
3707 | if (msymbol->created_by_gdb) |
3708 | continue; | |
3709 | ||
d50bd42b DE |
3710 | if (MSYMBOL_TYPE (msymbol) == ourtype |
3711 | || MSYMBOL_TYPE (msymbol) == ourtype2 | |
3712 | || MSYMBOL_TYPE (msymbol) == ourtype3 | |
3713 | || MSYMBOL_TYPE (msymbol) == ourtype4) | |
c5aa993b | 3714 | { |
681bf369 JK |
3715 | if (!datum.preg_p |
3716 | || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0, | |
3717 | NULL, 0) == 0) | |
c5aa993b | 3718 | { |
422d65e7 DE |
3719 | /* For functions we can do a quick check of whether the |
3720 | symbol might be found via find_pc_symtab. */ | |
3721 | if (kind != FUNCTIONS_DOMAIN | |
3722 | || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL) | |
c5aa993b | 3723 | { |
422d65e7 DE |
3724 | if (lookup_symbol_in_objfile_from_linkage_name |
3725 | (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN) | |
3726 | == NULL) | |
c5aa993b JM |
3727 | { |
3728 | /* match */ | |
b52109bc | 3729 | struct symbol_search *psr = (struct symbol_search *) |
3e43a32a | 3730 | xmalloc (sizeof (struct symbol_search)); |
c5aa993b | 3731 | psr->block = i; |
7c7b6655 TT |
3732 | psr->msymbol.minsym = msymbol; |
3733 | psr->msymbol.objfile = objfile; | |
c5aa993b JM |
3734 | psr->symtab = NULL; |
3735 | psr->symbol = NULL; | |
3736 | psr->next = NULL; | |
3737 | if (tail == NULL) | |
b52109bc | 3738 | found = psr; |
c5aa993b JM |
3739 | else |
3740 | tail->next = psr; | |
3741 | tail = psr; | |
3742 | } | |
3743 | } | |
3744 | } | |
3745 | } | |
3746 | } | |
c906108c SS |
3747 | } |
3748 | ||
681bf369 JK |
3749 | discard_cleanups (retval_chain); |
3750 | do_cleanups (old_chain); | |
b52109bc | 3751 | *matches = found; |
c906108c SS |
3752 | } |
3753 | ||
3754 | /* Helper function for symtab_symbol_info, this function uses | |
3755 | the data returned from search_symbols() to print information | |
c378eb4e MS |
3756 | regarding the match to gdb_stdout. */ |
3757 | ||
c906108c | 3758 | static void |
8903c50d TT |
3759 | print_symbol_info (enum search_domain kind, |
3760 | struct symtab *s, struct symbol *sym, | |
05cba821 | 3761 | int block, const char *last) |
c906108c | 3762 | { |
05cba821 JK |
3763 | const char *s_filename = symtab_to_filename_for_display (s); |
3764 | ||
3765 | if (last == NULL || filename_cmp (last, s_filename) != 0) | |
c906108c SS |
3766 | { |
3767 | fputs_filtered ("\nFile ", gdb_stdout); | |
05cba821 | 3768 | fputs_filtered (s_filename, gdb_stdout); |
c906108c SS |
3769 | fputs_filtered (":\n", gdb_stdout); |
3770 | } | |
3771 | ||
176620f1 | 3772 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3773 | printf_filtered ("static "); |
c5aa993b | 3774 | |
c378eb4e | 3775 | /* Typedef that is not a C++ class. */ |
176620f1 EZ |
3776 | if (kind == TYPES_DOMAIN |
3777 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3778 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c378eb4e | 3779 | /* variable, func, or typedef-that-is-c++-class. */ |
d50bd42b DE |
3780 | else if (kind < TYPES_DOMAIN |
3781 | || (kind == TYPES_DOMAIN | |
3782 | && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3783 | { |
3784 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3785 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3786 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3787 | gdb_stdout, 0); |
c906108c SS |
3788 | |
3789 | printf_filtered (";\n"); | |
3790 | } | |
c906108c SS |
3791 | } |
3792 | ||
3793 | /* This help function for symtab_symbol_info() prints information | |
c378eb4e MS |
3794 | for non-debugging symbols to gdb_stdout. */ |
3795 | ||
c906108c | 3796 | static void |
7c7b6655 | 3797 | print_msymbol_info (struct bound_minimal_symbol msymbol) |
c906108c | 3798 | { |
7c7b6655 | 3799 | struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile); |
3ac4495a MS |
3800 | char *tmp; |
3801 | ||
d80b854b | 3802 | if (gdbarch_addr_bit (gdbarch) <= 32) |
7c7b6655 | 3803 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym) |
bb599908 PH |
3804 | & (CORE_ADDR) 0xffffffff, |
3805 | 8); | |
3ac4495a | 3806 | else |
7c7b6655 | 3807 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym), |
bb599908 | 3808 | 16); |
3ac4495a | 3809 | printf_filtered ("%s %s\n", |
7c7b6655 | 3810 | tmp, SYMBOL_PRINT_NAME (msymbol.minsym)); |
c906108c SS |
3811 | } |
3812 | ||
3813 | /* This is the guts of the commands "info functions", "info types", and | |
c378eb4e | 3814 | "info variables". It calls search_symbols to find all matches and then |
c906108c | 3815 | print_[m]symbol_info to print out some useful information about the |
c378eb4e MS |
3816 | matches. */ |
3817 | ||
c906108c | 3818 | static void |
8903c50d | 3819 | symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty) |
c906108c | 3820 | { |
bc043ef3 | 3821 | static const char * const classnames[] = |
e8930875 | 3822 | {"variable", "function", "type"}; |
c906108c SS |
3823 | struct symbol_search *symbols; |
3824 | struct symbol_search *p; | |
3825 | struct cleanup *old_chain; | |
05cba821 | 3826 | const char *last_filename = NULL; |
c906108c SS |
3827 | int first = 1; |
3828 | ||
e8930875 JK |
3829 | gdb_assert (kind <= TYPES_DOMAIN); |
3830 | ||
c378eb4e | 3831 | /* Must make sure that if we're interrupted, symbols gets freed. */ |
c906108c | 3832 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); |
b52109bc | 3833 | old_chain = make_cleanup_free_search_symbols (&symbols); |
c906108c | 3834 | |
ca242aad YQ |
3835 | if (regexp != NULL) |
3836 | printf_filtered (_("All %ss matching regular expression \"%s\":\n"), | |
3837 | classnames[kind], regexp); | |
3838 | else | |
3839 | printf_filtered (_("All defined %ss:\n"), classnames[kind]); | |
c906108c SS |
3840 | |
3841 | for (p = symbols; p != NULL; p = p->next) | |
3842 | { | |
3843 | QUIT; | |
3844 | ||
7c7b6655 | 3845 | if (p->msymbol.minsym != NULL) |
c5aa993b JM |
3846 | { |
3847 | if (first) | |
3848 | { | |
ca242aad | 3849 | printf_filtered (_("\nNon-debugging symbols:\n")); |
c5aa993b JM |
3850 | first = 0; |
3851 | } | |
3852 | print_msymbol_info (p->msymbol); | |
3853 | } | |
c906108c | 3854 | else |
c5aa993b JM |
3855 | { |
3856 | print_symbol_info (kind, | |
3857 | p->symtab, | |
3858 | p->symbol, | |
3859 | p->block, | |
3860 | last_filename); | |
05cba821 | 3861 | last_filename = symtab_to_filename_for_display (p->symtab); |
c5aa993b | 3862 | } |
c906108c SS |
3863 | } |
3864 | ||
3865 | do_cleanups (old_chain); | |
3866 | } | |
3867 | ||
3868 | static void | |
fba45db2 | 3869 | variables_info (char *regexp, int from_tty) |
c906108c | 3870 | { |
176620f1 | 3871 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3872 | } |
3873 | ||
3874 | static void | |
fba45db2 | 3875 | functions_info (char *regexp, int from_tty) |
c906108c | 3876 | { |
176620f1 | 3877 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3878 | } |
3879 | ||
357e46e7 | 3880 | |
c906108c | 3881 | static void |
fba45db2 | 3882 | types_info (char *regexp, int from_tty) |
c906108c | 3883 | { |
176620f1 | 3884 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3885 | } |
3886 | ||
c378eb4e | 3887 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3888 | |
8b93c638 | 3889 | void |
fba45db2 | 3890 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3891 | { |
3892 | rbreak_command (regexp, from_tty); | |
3893 | } | |
8926118c | 3894 | |
95a42b64 TT |
3895 | /* A cleanup function that calls end_rbreak_breakpoints. */ |
3896 | ||
3897 | static void | |
3898 | do_end_rbreak_breakpoints (void *ignore) | |
3899 | { | |
3900 | end_rbreak_breakpoints (); | |
3901 | } | |
3902 | ||
c906108c | 3903 | static void |
fba45db2 | 3904 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3905 | { |
3906 | struct symbol_search *ss; | |
3907 | struct symbol_search *p; | |
3908 | struct cleanup *old_chain; | |
95a42b64 TT |
3909 | char *string = NULL; |
3910 | int len = 0; | |
9c1e305a | 3911 | char **files = NULL, *file_name; |
8bd10a10 | 3912 | int nfiles = 0; |
c906108c | 3913 | |
8bd10a10 CM |
3914 | if (regexp) |
3915 | { | |
3916 | char *colon = strchr (regexp, ':'); | |
433759f7 | 3917 | |
8bd10a10 CM |
3918 | if (colon && *(colon + 1) != ':') |
3919 | { | |
3920 | int colon_index; | |
8bd10a10 CM |
3921 | |
3922 | colon_index = colon - regexp; | |
3923 | file_name = alloca (colon_index + 1); | |
3924 | memcpy (file_name, regexp, colon_index); | |
3925 | file_name[colon_index--] = 0; | |
3926 | while (isspace (file_name[colon_index])) | |
3927 | file_name[colon_index--] = 0; | |
3928 | files = &file_name; | |
3929 | nfiles = 1; | |
529480d0 | 3930 | regexp = skip_spaces (colon + 1); |
8bd10a10 CM |
3931 | } |
3932 | } | |
3933 | ||
3934 | search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss); | |
b52109bc | 3935 | old_chain = make_cleanup_free_search_symbols (&ss); |
95a42b64 | 3936 | make_cleanup (free_current_contents, &string); |
c906108c | 3937 | |
95a42b64 TT |
3938 | start_rbreak_breakpoints (); |
3939 | make_cleanup (do_end_rbreak_breakpoints, NULL); | |
c906108c SS |
3940 | for (p = ss; p != NULL; p = p->next) |
3941 | { | |
7c7b6655 | 3942 | if (p->msymbol.minsym == NULL) |
c5aa993b | 3943 | { |
05cba821 JK |
3944 | const char *fullname = symtab_to_fullname (p->symtab); |
3945 | ||
3946 | int newlen = (strlen (fullname) | |
95a42b64 TT |
3947 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) |
3948 | + 4); | |
433759f7 | 3949 | |
95a42b64 TT |
3950 | if (newlen > len) |
3951 | { | |
3952 | string = xrealloc (string, newlen); | |
3953 | len = newlen; | |
3954 | } | |
05cba821 | 3955 | strcpy (string, fullname); |
c5aa993b | 3956 | strcat (string, ":'"); |
2335f48e | 3957 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3958 | strcat (string, "'"); |
3959 | break_command (string, from_tty); | |
176620f1 | 3960 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3961 | p->symtab, |
3962 | p->symbol, | |
3963 | p->block, | |
05cba821 | 3964 | symtab_to_filename_for_display (p->symtab)); |
c5aa993b | 3965 | } |
c906108c | 3966 | else |
c5aa993b | 3967 | { |
7c7b6655 | 3968 | int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3); |
433759f7 | 3969 | |
95a42b64 TT |
3970 | if (newlen > len) |
3971 | { | |
3972 | string = xrealloc (string, newlen); | |
3973 | len = newlen; | |
3974 | } | |
6214f497 | 3975 | strcpy (string, "'"); |
7c7b6655 | 3976 | strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol.minsym)); |
6214f497 DJ |
3977 | strcat (string, "'"); |
3978 | ||
3979 | break_command (string, from_tty); | |
c5aa993b | 3980 | printf_filtered ("<function, no debug info> %s;\n", |
7c7b6655 | 3981 | SYMBOL_PRINT_NAME (p->msymbol.minsym)); |
c5aa993b | 3982 | } |
c906108c SS |
3983 | } |
3984 | ||
3985 | do_cleanups (old_chain); | |
3986 | } | |
c906108c | 3987 | \f |
c5aa993b | 3988 | |
1976171a JK |
3989 | /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN. |
3990 | ||
3991 | Either sym_text[sym_text_len] != '(' and then we search for any | |
3992 | symbol starting with SYM_TEXT text. | |
3993 | ||
3994 | Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to | |
3995 | be terminated at that point. Partial symbol tables do not have parameters | |
3996 | information. */ | |
3997 | ||
3998 | static int | |
3999 | compare_symbol_name (const char *name, const char *sym_text, int sym_text_len) | |
4000 | { | |
4001 | int (*ncmp) (const char *, const char *, size_t); | |
4002 | ||
4003 | ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp); | |
4004 | ||
4005 | if (ncmp (name, sym_text, sym_text_len) != 0) | |
4006 | return 0; | |
4007 | ||
4008 | if (sym_text[sym_text_len] == '(') | |
4009 | { | |
4010 | /* User searches for `name(someth...'. Require NAME to be terminated. | |
4011 | Normally psymtabs and gdbindex have no parameter types so '\0' will be | |
4012 | present but accept even parameters presence. In this case this | |
4013 | function is in fact strcmp_iw but whitespace skipping is not supported | |
4014 | for tab completion. */ | |
4015 | ||
4016 | if (name[sym_text_len] != '\0' && name[sym_text_len] != '(') | |
4017 | return 0; | |
4018 | } | |
4019 | ||
4020 | return 1; | |
4021 | } | |
4022 | ||
821296b7 SA |
4023 | /* Free any memory associated with a completion list. */ |
4024 | ||
4025 | static void | |
49c4e619 | 4026 | free_completion_list (VEC (char_ptr) **list_ptr) |
821296b7 | 4027 | { |
49c4e619 TT |
4028 | int i; |
4029 | char *p; | |
821296b7 | 4030 | |
49c4e619 TT |
4031 | for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i) |
4032 | xfree (p); | |
4033 | VEC_free (char_ptr, *list_ptr); | |
821296b7 SA |
4034 | } |
4035 | ||
4036 | /* Callback for make_cleanup. */ | |
4037 | ||
4038 | static void | |
4039 | do_free_completion_list (void *list) | |
4040 | { | |
4041 | free_completion_list (list); | |
4042 | } | |
4043 | ||
c906108c SS |
4044 | /* Helper routine for make_symbol_completion_list. */ |
4045 | ||
49c4e619 | 4046 | static VEC (char_ptr) *return_val; |
c906108c SS |
4047 | |
4048 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 4049 | completion_list_add_name \ |
2335f48e | 4050 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
4051 | |
4052 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b | 4053 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
c378eb4e | 4054 | characters. If so, add it to the current completion list. */ |
c906108c SS |
4055 | |
4056 | static void | |
0d5cff50 DE |
4057 | completion_list_add_name (const char *symname, |
4058 | const char *sym_text, int sym_text_len, | |
4059 | const char *text, const char *word) | |
c906108c | 4060 | { |
c378eb4e | 4061 | /* Clip symbols that cannot match. */ |
1976171a JK |
4062 | if (!compare_symbol_name (symname, sym_text, sym_text_len)) |
4063 | return; | |
c906108c | 4064 | |
c906108c | 4065 | /* We have a match for a completion, so add SYMNAME to the current list |
c378eb4e | 4066 | of matches. Note that the name is moved to freshly malloc'd space. */ |
c906108c SS |
4067 | |
4068 | { | |
4069 | char *new; | |
433759f7 | 4070 | |
c906108c SS |
4071 | if (word == sym_text) |
4072 | { | |
4073 | new = xmalloc (strlen (symname) + 5); | |
4074 | strcpy (new, symname); | |
4075 | } | |
4076 | else if (word > sym_text) | |
4077 | { | |
4078 | /* Return some portion of symname. */ | |
4079 | new = xmalloc (strlen (symname) + 5); | |
4080 | strcpy (new, symname + (word - sym_text)); | |
4081 | } | |
4082 | else | |
4083 | { | |
4084 | /* Return some of SYM_TEXT plus symname. */ | |
4085 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
4086 | strncpy (new, word, sym_text - word); | |
4087 | new[sym_text - word] = '\0'; | |
4088 | strcat (new, symname); | |
4089 | } | |
4090 | ||
49c4e619 | 4091 | VEC_safe_push (char_ptr, return_val, new); |
c906108c SS |
4092 | } |
4093 | } | |
4094 | ||
69636828 AF |
4095 | /* ObjC: In case we are completing on a selector, look as the msymbol |
4096 | again and feed all the selectors into the mill. */ | |
4097 | ||
4098 | static void | |
0d5cff50 DE |
4099 | completion_list_objc_symbol (struct minimal_symbol *msymbol, |
4100 | const char *sym_text, int sym_text_len, | |
4101 | const char *text, const char *word) | |
69636828 AF |
4102 | { |
4103 | static char *tmp = NULL; | |
4104 | static unsigned int tmplen = 0; | |
9af17804 | 4105 | |
0d5cff50 | 4106 | const char *method, *category, *selector; |
69636828 | 4107 | char *tmp2 = NULL; |
9af17804 | 4108 | |
69636828 AF |
4109 | method = SYMBOL_NATURAL_NAME (msymbol); |
4110 | ||
4111 | /* Is it a method? */ | |
4112 | if ((method[0] != '-') && (method[0] != '+')) | |
4113 | return; | |
4114 | ||
4115 | if (sym_text[0] == '[') | |
4116 | /* Complete on shortened method method. */ | |
4117 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
9af17804 | 4118 | |
69636828 AF |
4119 | while ((strlen (method) + 1) >= tmplen) |
4120 | { | |
4121 | if (tmplen == 0) | |
4122 | tmplen = 1024; | |
4123 | else | |
4124 | tmplen *= 2; | |
4125 | tmp = xrealloc (tmp, tmplen); | |
4126 | } | |
4127 | selector = strchr (method, ' '); | |
4128 | if (selector != NULL) | |
4129 | selector++; | |
9af17804 | 4130 | |
69636828 | 4131 | category = strchr (method, '('); |
9af17804 | 4132 | |
69636828 AF |
4133 | if ((category != NULL) && (selector != NULL)) |
4134 | { | |
4135 | memcpy (tmp, method, (category - method)); | |
4136 | tmp[category - method] = ' '; | |
4137 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
4138 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
4139 | if (sym_text[0] == '[') | |
4140 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
4141 | } | |
9af17804 | 4142 | |
69636828 AF |
4143 | if (selector != NULL) |
4144 | { | |
4145 | /* Complete on selector only. */ | |
4146 | strcpy (tmp, selector); | |
4147 | tmp2 = strchr (tmp, ']'); | |
4148 | if (tmp2 != NULL) | |
4149 | *tmp2 = '\0'; | |
9af17804 | 4150 | |
69636828 AF |
4151 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
4152 | } | |
4153 | } | |
4154 | ||
4155 | /* Break the non-quoted text based on the characters which are in | |
c378eb4e | 4156 | symbols. FIXME: This should probably be language-specific. */ |
69636828 | 4157 | |
6f937416 PA |
4158 | static const char * |
4159 | language_search_unquoted_string (const char *text, const char *p) | |
69636828 AF |
4160 | { |
4161 | for (; p > text; --p) | |
4162 | { | |
4163 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
4164 | continue; | |
4165 | else | |
4166 | { | |
4167 | if ((current_language->la_language == language_objc)) | |
4168 | { | |
c378eb4e | 4169 | if (p[-1] == ':') /* Might be part of a method name. */ |
69636828 AF |
4170 | continue; |
4171 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
c378eb4e | 4172 | p -= 2; /* Beginning of a method name. */ |
69636828 | 4173 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') |
c378eb4e | 4174 | { /* Might be part of a method name. */ |
6f937416 | 4175 | const char *t = p; |
69636828 AF |
4176 | |
4177 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
4178 | that we are in the middle of a method name. However, | |
4179 | finding "-[" or "+[" should be pretty un-ambiguous. | |
4180 | Unfortunately we have to find it now to decide. */ | |
4181 | ||
4182 | while (t > text) | |
4183 | if (isalnum (t[-1]) || t[-1] == '_' || | |
4184 | t[-1] == ' ' || t[-1] == ':' || | |
4185 | t[-1] == '(' || t[-1] == ')') | |
4186 | --t; | |
4187 | else | |
4188 | break; | |
4189 | ||
4190 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
c378eb4e MS |
4191 | p = t - 2; /* Method name detected. */ |
4192 | /* Else we leave with p unchanged. */ | |
69636828 AF |
4193 | } |
4194 | } | |
4195 | break; | |
4196 | } | |
4197 | } | |
4198 | return p; | |
4199 | } | |
4200 | ||
edb3359d | 4201 | static void |
6f937416 PA |
4202 | completion_list_add_fields (struct symbol *sym, const char *sym_text, |
4203 | int sym_text_len, const char *text, | |
4204 | const char *word) | |
edb3359d DJ |
4205 | { |
4206 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4207 | { | |
4208 | struct type *t = SYMBOL_TYPE (sym); | |
4209 | enum type_code c = TYPE_CODE (t); | |
4210 | int j; | |
4211 | ||
4212 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
4213 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
4214 | if (TYPE_FIELD_NAME (t, j)) | |
4215 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
4216 | sym_text, sym_text_len, text, word); | |
4217 | } | |
4218 | } | |
4219 | ||
ccefe4c4 | 4220 | /* Type of the user_data argument passed to add_macro_name or |
7b08b9eb | 4221 | expand_partial_symbol_name. The contents are simply whatever is |
ccefe4c4 TT |
4222 | needed by completion_list_add_name. */ |
4223 | struct add_name_data | |
9a044a89 | 4224 | { |
6f937416 | 4225 | const char *sym_text; |
9a044a89 | 4226 | int sym_text_len; |
6f937416 PA |
4227 | const char *text; |
4228 | const char *word; | |
9a044a89 TT |
4229 | }; |
4230 | ||
4231 | /* A callback used with macro_for_each and macro_for_each_in_scope. | |
4232 | This adds a macro's name to the current completion list. */ | |
eca864fe | 4233 | |
9a044a89 TT |
4234 | static void |
4235 | add_macro_name (const char *name, const struct macro_definition *ignore, | |
9b158ba0 | 4236 | struct macro_source_file *ignore2, int ignore3, |
9a044a89 TT |
4237 | void *user_data) |
4238 | { | |
ccefe4c4 | 4239 | struct add_name_data *datum = (struct add_name_data *) user_data; |
433759f7 | 4240 | |
ccefe4c4 TT |
4241 | completion_list_add_name ((char *) name, |
4242 | datum->sym_text, datum->sym_text_len, | |
4243 | datum->text, datum->word); | |
4244 | } | |
4245 | ||
7b08b9eb | 4246 | /* A callback for expand_partial_symbol_names. */ |
eca864fe | 4247 | |
7b08b9eb | 4248 | static int |
e078317b | 4249 | expand_partial_symbol_name (const char *name, void *user_data) |
ccefe4c4 TT |
4250 | { |
4251 | struct add_name_data *datum = (struct add_name_data *) user_data; | |
165195f4 | 4252 | |
1976171a | 4253 | return compare_symbol_name (name, datum->sym_text, datum->sym_text_len); |
9a044a89 TT |
4254 | } |
4255 | ||
49c4e619 | 4256 | VEC (char_ptr) * |
6f937416 PA |
4257 | default_make_symbol_completion_list_break_on (const char *text, |
4258 | const char *word, | |
2f68a895 TT |
4259 | const char *break_on, |
4260 | enum type_code code) | |
c906108c | 4261 | { |
41d27058 JB |
4262 | /* Problem: All of the symbols have to be copied because readline |
4263 | frees them. I'm not going to worry about this; hopefully there | |
4264 | won't be that many. */ | |
4265 | ||
de4f826b DC |
4266 | struct symbol *sym; |
4267 | struct symtab *s; | |
de4f826b DC |
4268 | struct minimal_symbol *msymbol; |
4269 | struct objfile *objfile; | |
edb3359d DJ |
4270 | struct block *b; |
4271 | const struct block *surrounding_static_block, *surrounding_global_block; | |
8157b174 | 4272 | struct block_iterator iter; |
c906108c | 4273 | /* The symbol we are completing on. Points in same buffer as text. */ |
6f937416 | 4274 | const char *sym_text; |
c906108c SS |
4275 | /* Length of sym_text. */ |
4276 | int sym_text_len; | |
ccefe4c4 | 4277 | struct add_name_data datum; |
821296b7 | 4278 | struct cleanup *back_to; |
c906108c | 4279 | |
41d27058 | 4280 | /* Now look for the symbol we are supposed to complete on. */ |
c906108c | 4281 | { |
6f937416 | 4282 | const char *p; |
c906108c | 4283 | char quote_found; |
6f937416 | 4284 | const char *quote_pos = NULL; |
c906108c SS |
4285 | |
4286 | /* First see if this is a quoted string. */ | |
4287 | quote_found = '\0'; | |
4288 | for (p = text; *p != '\0'; ++p) | |
4289 | { | |
4290 | if (quote_found != '\0') | |
4291 | { | |
4292 | if (*p == quote_found) | |
4293 | /* Found close quote. */ | |
4294 | quote_found = '\0'; | |
4295 | else if (*p == '\\' && p[1] == quote_found) | |
4296 | /* A backslash followed by the quote character | |
c5aa993b | 4297 | doesn't end the string. */ |
c906108c SS |
4298 | ++p; |
4299 | } | |
4300 | else if (*p == '\'' || *p == '"') | |
4301 | { | |
4302 | quote_found = *p; | |
4303 | quote_pos = p; | |
4304 | } | |
4305 | } | |
4306 | if (quote_found == '\'') | |
4307 | /* A string within single quotes can be a symbol, so complete on it. */ | |
4308 | sym_text = quote_pos + 1; | |
4309 | else if (quote_found == '"') | |
4310 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 4311 | to complete it any other way. */ |
c94fdfd0 | 4312 | { |
49c4e619 | 4313 | return NULL; |
c94fdfd0 | 4314 | } |
c906108c SS |
4315 | else |
4316 | { | |
4317 | /* It is not a quoted string. Break it based on the characters | |
4318 | which are in symbols. */ | |
4319 | while (p > text) | |
4320 | { | |
95699ff0 | 4321 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' |
f55ee35c | 4322 | || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) |
c906108c SS |
4323 | --p; |
4324 | else | |
4325 | break; | |
4326 | } | |
4327 | sym_text = p; | |
4328 | } | |
4329 | } | |
4330 | ||
4331 | sym_text_len = strlen (sym_text); | |
4332 | ||
1976171a JK |
4333 | /* Prepare SYM_TEXT_LEN for compare_symbol_name. */ |
4334 | ||
4335 | if (current_language->la_language == language_cplus | |
4336 | || current_language->la_language == language_java | |
4337 | || current_language->la_language == language_fortran) | |
4338 | { | |
4339 | /* These languages may have parameters entered by user but they are never | |
4340 | present in the partial symbol tables. */ | |
4341 | ||
4342 | const char *cs = memchr (sym_text, '(', sym_text_len); | |
4343 | ||
4344 | if (cs) | |
4345 | sym_text_len = cs - sym_text; | |
4346 | } | |
4347 | gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '('); | |
4348 | ||
49c4e619 | 4349 | return_val = NULL; |
821296b7 | 4350 | back_to = make_cleanup (do_free_completion_list, &return_val); |
c906108c | 4351 | |
ccefe4c4 TT |
4352 | datum.sym_text = sym_text; |
4353 | datum.sym_text_len = sym_text_len; | |
4354 | datum.text = text; | |
4355 | datum.word = word; | |
4356 | ||
c906108c | 4357 | /* Look through the partial symtabs for all symbols which begin |
7b08b9eb JK |
4358 | by matching SYM_TEXT. Expand all CUs that you find to the list. |
4359 | The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */ | |
4360 | expand_partial_symbol_names (expand_partial_symbol_name, &datum); | |
c906108c SS |
4361 | |
4362 | /* At this point scan through the misc symbol vectors and add each | |
4363 | symbol you find to the list. Eventually we want to ignore | |
4364 | anything that isn't a text symbol (everything else will be | |
4365 | handled by the psymtab code above). */ | |
4366 | ||
2f68a895 TT |
4367 | if (code == TYPE_CODE_UNDEF) |
4368 | { | |
4369 | ALL_MSYMBOLS (objfile, msymbol) | |
4370 | { | |
4371 | QUIT; | |
4372 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, | |
4373 | word); | |
9af17804 | 4374 | |
2f68a895 TT |
4375 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, |
4376 | word); | |
4377 | } | |
4378 | } | |
c906108c SS |
4379 | |
4380 | /* Search upwards from currently selected frame (so that we can | |
edb3359d DJ |
4381 | complete on local vars). Also catch fields of types defined in |
4382 | this places which match our text string. Only complete on types | |
c378eb4e | 4383 | visible from current context. */ |
edb3359d DJ |
4384 | |
4385 | b = get_selected_block (0); | |
4386 | surrounding_static_block = block_static_block (b); | |
4387 | surrounding_global_block = block_global_block (b); | |
4388 | if (surrounding_static_block != NULL) | |
4389 | while (b != surrounding_static_block) | |
4390 | { | |
4391 | QUIT; | |
c906108c | 4392 | |
edb3359d DJ |
4393 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
4394 | { | |
2f68a895 TT |
4395 | if (code == TYPE_CODE_UNDEF) |
4396 | { | |
4397 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, | |
4398 | word); | |
4399 | completion_list_add_fields (sym, sym_text, sym_text_len, text, | |
4400 | word); | |
4401 | } | |
4402 | else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN | |
4403 | && TYPE_CODE (SYMBOL_TYPE (sym)) == code) | |
4404 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, | |
4405 | word); | |
edb3359d | 4406 | } |
c5aa993b | 4407 | |
edb3359d DJ |
4408 | /* Stop when we encounter an enclosing function. Do not stop for |
4409 | non-inlined functions - the locals of the enclosing function | |
4410 | are in scope for a nested function. */ | |
4411 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
4412 | break; | |
4413 | b = BLOCK_SUPERBLOCK (b); | |
4414 | } | |
c906108c | 4415 | |
edb3359d | 4416 | /* Add fields from the file's types; symbols will be added below. */ |
c906108c | 4417 | |
2f68a895 TT |
4418 | if (code == TYPE_CODE_UNDEF) |
4419 | { | |
4420 | if (surrounding_static_block != NULL) | |
4421 | ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) | |
4422 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
edb3359d | 4423 | |
2f68a895 TT |
4424 | if (surrounding_global_block != NULL) |
4425 | ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) | |
4426 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
4427 | } | |
c906108c SS |
4428 | |
4429 | /* Go through the symtabs and check the externs and statics for | |
4430 | symbols which match. */ | |
4431 | ||
11309657 | 4432 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
4433 | { |
4434 | QUIT; | |
4435 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4436 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 4437 | { |
2f68a895 TT |
4438 | if (code == TYPE_CODE_UNDEF |
4439 | || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN | |
4440 | && TYPE_CODE (SYMBOL_TYPE (sym)) == code)) | |
4441 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); | |
c5aa993b JM |
4442 | } |
4443 | } | |
c906108c | 4444 | |
11309657 | 4445 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
4446 | { |
4447 | QUIT; | |
4448 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4449 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 4450 | { |
2f68a895 TT |
4451 | if (code == TYPE_CODE_UNDEF |
4452 | || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN | |
4453 | && TYPE_CODE (SYMBOL_TYPE (sym)) == code)) | |
4454 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); | |
c5aa993b JM |
4455 | } |
4456 | } | |
c906108c | 4457 | |
2f68a895 TT |
4458 | /* Skip macros if we are completing a struct tag -- arguable but |
4459 | usually what is expected. */ | |
4460 | if (current_language->la_macro_expansion == macro_expansion_c | |
4461 | && code == TYPE_CODE_UNDEF) | |
9a044a89 TT |
4462 | { |
4463 | struct macro_scope *scope; | |
9a044a89 TT |
4464 | |
4465 | /* Add any macros visible in the default scope. Note that this | |
4466 | may yield the occasional wrong result, because an expression | |
4467 | might be evaluated in a scope other than the default. For | |
4468 | example, if the user types "break file:line if <TAB>", the | |
4469 | resulting expression will be evaluated at "file:line" -- but | |
4470 | at there does not seem to be a way to detect this at | |
4471 | completion time. */ | |
4472 | scope = default_macro_scope (); | |
4473 | if (scope) | |
4474 | { | |
4475 | macro_for_each_in_scope (scope->file, scope->line, | |
4476 | add_macro_name, &datum); | |
4477 | xfree (scope); | |
4478 | } | |
4479 | ||
4480 | /* User-defined macros are always visible. */ | |
4481 | macro_for_each (macro_user_macros, add_macro_name, &datum); | |
4482 | } | |
4483 | ||
821296b7 | 4484 | discard_cleanups (back_to); |
c906108c SS |
4485 | return (return_val); |
4486 | } | |
4487 | ||
49c4e619 | 4488 | VEC (char_ptr) * |
6f937416 | 4489 | default_make_symbol_completion_list (const char *text, const char *word, |
2f68a895 | 4490 | enum type_code code) |
f55ee35c | 4491 | { |
2f68a895 | 4492 | return default_make_symbol_completion_list_break_on (text, word, "", code); |
f55ee35c JK |
4493 | } |
4494 | ||
49c4e619 TT |
4495 | /* Return a vector of all symbols (regardless of class) which begin by |
4496 | matching TEXT. If the answer is no symbols, then the return value | |
4497 | is NULL. */ | |
41d27058 | 4498 | |
49c4e619 | 4499 | VEC (char_ptr) * |
6f937416 | 4500 | make_symbol_completion_list (const char *text, const char *word) |
41d27058 | 4501 | { |
2f68a895 TT |
4502 | return current_language->la_make_symbol_completion_list (text, word, |
4503 | TYPE_CODE_UNDEF); | |
4504 | } | |
4505 | ||
4506 | /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN | |
4507 | symbols whose type code is CODE. */ | |
4508 | ||
4509 | VEC (char_ptr) * | |
6f937416 PA |
4510 | make_symbol_completion_type (const char *text, const char *word, |
4511 | enum type_code code) | |
2f68a895 TT |
4512 | { |
4513 | gdb_assert (code == TYPE_CODE_UNION | |
4514 | || code == TYPE_CODE_STRUCT | |
4515 | || code == TYPE_CODE_CLASS | |
4516 | || code == TYPE_CODE_ENUM); | |
4517 | return current_language->la_make_symbol_completion_list (text, word, code); | |
41d27058 JB |
4518 | } |
4519 | ||
d8906c6f TJB |
4520 | /* Like make_symbol_completion_list, but suitable for use as a |
4521 | completion function. */ | |
4522 | ||
49c4e619 | 4523 | VEC (char_ptr) * |
d8906c6f | 4524 | make_symbol_completion_list_fn (struct cmd_list_element *ignore, |
6f937416 | 4525 | const char *text, const char *word) |
d8906c6f TJB |
4526 | { |
4527 | return make_symbol_completion_list (text, word); | |
4528 | } | |
4529 | ||
c94fdfd0 EZ |
4530 | /* Like make_symbol_completion_list, but returns a list of symbols |
4531 | defined in a source file FILE. */ | |
4532 | ||
49c4e619 | 4533 | VEC (char_ptr) * |
6f937416 PA |
4534 | make_file_symbol_completion_list (const char *text, const char *word, |
4535 | const char *srcfile) | |
c94fdfd0 | 4536 | { |
52f0bd74 AC |
4537 | struct symbol *sym; |
4538 | struct symtab *s; | |
4539 | struct block *b; | |
8157b174 | 4540 | struct block_iterator iter; |
c94fdfd0 | 4541 | /* The symbol we are completing on. Points in same buffer as text. */ |
6f937416 | 4542 | const char *sym_text; |
c94fdfd0 EZ |
4543 | /* Length of sym_text. */ |
4544 | int sym_text_len; | |
4545 | ||
4546 | /* Now look for the symbol we are supposed to complete on. | |
4547 | FIXME: This should be language-specific. */ | |
4548 | { | |
6f937416 | 4549 | const char *p; |
c94fdfd0 | 4550 | char quote_found; |
6f937416 | 4551 | const char *quote_pos = NULL; |
c94fdfd0 EZ |
4552 | |
4553 | /* First see if this is a quoted string. */ | |
4554 | quote_found = '\0'; | |
4555 | for (p = text; *p != '\0'; ++p) | |
4556 | { | |
4557 | if (quote_found != '\0') | |
4558 | { | |
4559 | if (*p == quote_found) | |
4560 | /* Found close quote. */ | |
4561 | quote_found = '\0'; | |
4562 | else if (*p == '\\' && p[1] == quote_found) | |
4563 | /* A backslash followed by the quote character | |
4564 | doesn't end the string. */ | |
4565 | ++p; | |
4566 | } | |
4567 | else if (*p == '\'' || *p == '"') | |
4568 | { | |
4569 | quote_found = *p; | |
4570 | quote_pos = p; | |
4571 | } | |
4572 | } | |
4573 | if (quote_found == '\'') | |
4574 | /* A string within single quotes can be a symbol, so complete on it. */ | |
4575 | sym_text = quote_pos + 1; | |
4576 | else if (quote_found == '"') | |
4577 | /* A double-quoted string is never a symbol, nor does it make sense | |
4578 | to complete it any other way. */ | |
4579 | { | |
49c4e619 | 4580 | return NULL; |
c94fdfd0 EZ |
4581 | } |
4582 | else | |
4583 | { | |
69636828 AF |
4584 | /* Not a quoted string. */ |
4585 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
4586 | } |
4587 | } | |
4588 | ||
4589 | sym_text_len = strlen (sym_text); | |
4590 | ||
49c4e619 | 4591 | return_val = NULL; |
c94fdfd0 EZ |
4592 | |
4593 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
4594 | in). */ | |
4595 | s = lookup_symtab (srcfile); | |
4596 | if (s == NULL) | |
4597 | { | |
4598 | /* Maybe they typed the file with leading directories, while the | |
4599 | symbol tables record only its basename. */ | |
31889e00 | 4600 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
4601 | |
4602 | if (tail > srcfile) | |
4603 | s = lookup_symtab (tail); | |
4604 | } | |
4605 | ||
4606 | /* If we have no symtab for that file, return an empty list. */ | |
4607 | if (s == NULL) | |
4608 | return (return_val); | |
4609 | ||
4610 | /* Go through this symtab and check the externs and statics for | |
4611 | symbols which match. */ | |
4612 | ||
4613 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4614 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4615 | { |
c94fdfd0 EZ |
4616 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4617 | } | |
4618 | ||
4619 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4620 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4621 | { |
c94fdfd0 EZ |
4622 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4623 | } | |
4624 | ||
4625 | return (return_val); | |
4626 | } | |
4627 | ||
4628 | /* A helper function for make_source_files_completion_list. It adds | |
4629 | another file name to a list of possible completions, growing the | |
4630 | list as necessary. */ | |
4631 | ||
4632 | static void | |
6f937416 | 4633 | add_filename_to_list (const char *fname, const char *text, const char *word, |
49c4e619 | 4634 | VEC (char_ptr) **list) |
c94fdfd0 EZ |
4635 | { |
4636 | char *new; | |
4637 | size_t fnlen = strlen (fname); | |
4638 | ||
c94fdfd0 EZ |
4639 | if (word == text) |
4640 | { | |
4641 | /* Return exactly fname. */ | |
4642 | new = xmalloc (fnlen + 5); | |
4643 | strcpy (new, fname); | |
4644 | } | |
4645 | else if (word > text) | |
4646 | { | |
4647 | /* Return some portion of fname. */ | |
4648 | new = xmalloc (fnlen + 5); | |
4649 | strcpy (new, fname + (word - text)); | |
4650 | } | |
4651 | else | |
4652 | { | |
4653 | /* Return some of TEXT plus fname. */ | |
4654 | new = xmalloc (fnlen + (text - word) + 5); | |
4655 | strncpy (new, word, text - word); | |
4656 | new[text - word] = '\0'; | |
4657 | strcat (new, fname); | |
4658 | } | |
49c4e619 | 4659 | VEC_safe_push (char_ptr, *list, new); |
c94fdfd0 EZ |
4660 | } |
4661 | ||
4662 | static int | |
4663 | not_interesting_fname (const char *fname) | |
4664 | { | |
4665 | static const char *illegal_aliens[] = { | |
4666 | "_globals_", /* inserted by coff_symtab_read */ | |
4667 | NULL | |
4668 | }; | |
4669 | int i; | |
4670 | ||
4671 | for (i = 0; illegal_aliens[i]; i++) | |
4672 | { | |
0ba1096a | 4673 | if (filename_cmp (fname, illegal_aliens[i]) == 0) |
c94fdfd0 EZ |
4674 | return 1; |
4675 | } | |
4676 | return 0; | |
4677 | } | |
4678 | ||
ccefe4c4 TT |
4679 | /* An object of this type is passed as the user_data argument to |
4680 | map_partial_symbol_filenames. */ | |
4681 | struct add_partial_filename_data | |
4682 | { | |
9fdc877b | 4683 | struct filename_seen_cache *filename_seen_cache; |
6f937416 PA |
4684 | const char *text; |
4685 | const char *word; | |
ccefe4c4 | 4686 | int text_len; |
49c4e619 | 4687 | VEC (char_ptr) **list; |
ccefe4c4 TT |
4688 | }; |
4689 | ||
4690 | /* A callback for map_partial_symbol_filenames. */ | |
eca864fe | 4691 | |
ccefe4c4 | 4692 | static void |
2837d59e | 4693 | maybe_add_partial_symtab_filename (const char *filename, const char *fullname, |
ccefe4c4 TT |
4694 | void *user_data) |
4695 | { | |
4696 | struct add_partial_filename_data *data = user_data; | |
4697 | ||
4698 | if (not_interesting_fname (filename)) | |
4699 | return; | |
9fdc877b | 4700 | if (!filename_seen (data->filename_seen_cache, filename, 1) |
0ba1096a | 4701 | && filename_ncmp (filename, data->text, data->text_len) == 0) |
ccefe4c4 TT |
4702 | { |
4703 | /* This file matches for a completion; add it to the | |
4704 | current list of matches. */ | |
49c4e619 | 4705 | add_filename_to_list (filename, data->text, data->word, data->list); |
ccefe4c4 TT |
4706 | } |
4707 | else | |
4708 | { | |
4709 | const char *base_name = lbasename (filename); | |
433759f7 | 4710 | |
ccefe4c4 | 4711 | if (base_name != filename |
9fdc877b | 4712 | && !filename_seen (data->filename_seen_cache, base_name, 1) |
0ba1096a | 4713 | && filename_ncmp (base_name, data->text, data->text_len) == 0) |
49c4e619 | 4714 | add_filename_to_list (base_name, data->text, data->word, data->list); |
ccefe4c4 TT |
4715 | } |
4716 | } | |
4717 | ||
49c4e619 TT |
4718 | /* Return a vector of all source files whose names begin with matching |
4719 | TEXT. The file names are looked up in the symbol tables of this | |
4720 | program. If the answer is no matchess, then the return value is | |
4721 | NULL. */ | |
c94fdfd0 | 4722 | |
49c4e619 | 4723 | VEC (char_ptr) * |
6f937416 | 4724 | make_source_files_completion_list (const char *text, const char *word) |
c94fdfd0 | 4725 | { |
52f0bd74 | 4726 | struct symtab *s; |
52f0bd74 | 4727 | struct objfile *objfile; |
c94fdfd0 | 4728 | size_t text_len = strlen (text); |
49c4e619 | 4729 | VEC (char_ptr) *list = NULL; |
31889e00 | 4730 | const char *base_name; |
ccefe4c4 | 4731 | struct add_partial_filename_data datum; |
9fdc877b DE |
4732 | struct filename_seen_cache *filename_seen_cache; |
4733 | struct cleanup *back_to, *cache_cleanup; | |
c94fdfd0 | 4734 | |
c94fdfd0 EZ |
4735 | if (!have_full_symbols () && !have_partial_symbols ()) |
4736 | return list; | |
4737 | ||
821296b7 SA |
4738 | back_to = make_cleanup (do_free_completion_list, &list); |
4739 | ||
9fdc877b DE |
4740 | filename_seen_cache = create_filename_seen_cache (); |
4741 | cache_cleanup = make_cleanup (delete_filename_seen_cache, | |
4742 | filename_seen_cache); | |
4743 | ||
c94fdfd0 EZ |
4744 | ALL_SYMTABS (objfile, s) |
4745 | { | |
4746 | if (not_interesting_fname (s->filename)) | |
4747 | continue; | |
9fdc877b | 4748 | if (!filename_seen (filename_seen_cache, s->filename, 1) |
0ba1096a | 4749 | && filename_ncmp (s->filename, text, text_len) == 0) |
c94fdfd0 EZ |
4750 | { |
4751 | /* This file matches for a completion; add it to the current | |
4752 | list of matches. */ | |
49c4e619 | 4753 | add_filename_to_list (s->filename, text, word, &list); |
c94fdfd0 EZ |
4754 | } |
4755 | else | |
4756 | { | |
4757 | /* NOTE: We allow the user to type a base name when the | |
4758 | debug info records leading directories, but not the other | |
4759 | way around. This is what subroutines of breakpoint | |
4760 | command do when they parse file names. */ | |
31889e00 | 4761 | base_name = lbasename (s->filename); |
c94fdfd0 | 4762 | if (base_name != s->filename |
9fdc877b | 4763 | && !filename_seen (filename_seen_cache, base_name, 1) |
0ba1096a | 4764 | && filename_ncmp (base_name, text, text_len) == 0) |
49c4e619 | 4765 | add_filename_to_list (base_name, text, word, &list); |
c94fdfd0 EZ |
4766 | } |
4767 | } | |
4768 | ||
9fdc877b | 4769 | datum.filename_seen_cache = filename_seen_cache; |
ccefe4c4 TT |
4770 | datum.text = text; |
4771 | datum.word = word; | |
4772 | datum.text_len = text_len; | |
4773 | datum.list = &list; | |
74e2f255 DE |
4774 | map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum, |
4775 | 0 /*need_fullname*/); | |
9fdc877b DE |
4776 | |
4777 | do_cleanups (cache_cleanup); | |
821296b7 | 4778 | discard_cleanups (back_to); |
c94fdfd0 EZ |
4779 | |
4780 | return list; | |
4781 | } | |
4782 | ||
c906108c SS |
4783 | /* Determine if PC is in the prologue of a function. The prologue is the area |
4784 | between the first instruction of a function, and the first executable line. | |
4785 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
4786 | ||
4787 | If non-zero, func_start is where we think the prologue starts, possibly | |
c378eb4e | 4788 | by previous examination of symbol table information. */ |
c906108c SS |
4789 | |
4790 | int | |
d80b854b | 4791 | in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
4792 | { |
4793 | struct symtab_and_line sal; | |
4794 | CORE_ADDR func_addr, func_end; | |
4795 | ||
54cf9c03 EZ |
4796 | /* We have several sources of information we can consult to figure |
4797 | this out. | |
4798 | - Compilers usually emit line number info that marks the prologue | |
4799 | as its own "source line". So the ending address of that "line" | |
4800 | is the end of the prologue. If available, this is the most | |
4801 | reliable method. | |
4802 | - The minimal symbols and partial symbols, which can usually tell | |
4803 | us the starting and ending addresses of a function. | |
4804 | - If we know the function's start address, we can call the | |
a433963d | 4805 | architecture-defined gdbarch_skip_prologue function to analyze the |
54cf9c03 EZ |
4806 | instruction stream and guess where the prologue ends. |
4807 | - Our `func_start' argument; if non-zero, this is the caller's | |
4808 | best guess as to the function's entry point. At the time of | |
4809 | this writing, handle_inferior_event doesn't get this right, so | |
4810 | it should be our last resort. */ | |
4811 | ||
4812 | /* Consult the partial symbol table, to find which function | |
4813 | the PC is in. */ | |
4814 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
4815 | { | |
4816 | CORE_ADDR prologue_end; | |
c906108c | 4817 | |
54cf9c03 EZ |
4818 | /* We don't even have minsym information, so fall back to using |
4819 | func_start, if given. */ | |
4820 | if (! func_start) | |
4821 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 4822 | |
d80b854b | 4823 | prologue_end = gdbarch_skip_prologue (gdbarch, func_start); |
c906108c | 4824 | |
54cf9c03 EZ |
4825 | return func_start <= pc && pc < prologue_end; |
4826 | } | |
c906108c | 4827 | |
54cf9c03 EZ |
4828 | /* If we have line number information for the function, that's |
4829 | usually pretty reliable. */ | |
4830 | sal = find_pc_line (func_addr, 0); | |
c906108c | 4831 | |
54cf9c03 EZ |
4832 | /* Now sal describes the source line at the function's entry point, |
4833 | which (by convention) is the prologue. The end of that "line", | |
4834 | sal.end, is the end of the prologue. | |
4835 | ||
4836 | Note that, for functions whose source code is all on a single | |
4837 | line, the line number information doesn't always end up this way. | |
4838 | So we must verify that our purported end-of-prologue address is | |
4839 | *within* the function, not at its start or end. */ | |
4840 | if (sal.line == 0 | |
4841 | || sal.end <= func_addr | |
4842 | || func_end <= sal.end) | |
4843 | { | |
4844 | /* We don't have any good line number info, so use the minsym | |
4845 | information, together with the architecture-specific prologue | |
4846 | scanning code. */ | |
d80b854b | 4847 | CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr); |
c906108c | 4848 | |
54cf9c03 EZ |
4849 | return func_addr <= pc && pc < prologue_end; |
4850 | } | |
c906108c | 4851 | |
54cf9c03 EZ |
4852 | /* We have line number info, and it looks good. */ |
4853 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4854 | } |
4855 | ||
634aa483 AC |
4856 | /* Given PC at the function's start address, attempt to find the |
4857 | prologue end using SAL information. Return zero if the skip fails. | |
4858 | ||
4859 | A non-optimized prologue traditionally has one SAL for the function | |
4860 | and a second for the function body. A single line function has | |
4861 | them both pointing at the same line. | |
4862 | ||
4863 | An optimized prologue is similar but the prologue may contain | |
4864 | instructions (SALs) from the instruction body. Need to skip those | |
4865 | while not getting into the function body. | |
4866 | ||
4867 | The functions end point and an increasing SAL line are used as | |
4868 | indicators of the prologue's endpoint. | |
4869 | ||
7475b06c TJB |
4870 | This code is based on the function refine_prologue_limit |
4871 | (found in ia64). */ | |
634aa483 AC |
4872 | |
4873 | CORE_ADDR | |
d80b854b | 4874 | skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) |
634aa483 AC |
4875 | { |
4876 | struct symtab_and_line prologue_sal; | |
4877 | CORE_ADDR start_pc; | |
4878 | CORE_ADDR end_pc; | |
d54be744 | 4879 | struct block *bl; |
634aa483 AC |
4880 | |
4881 | /* Get an initial range for the function. */ | |
4882 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
d80b854b | 4883 | start_pc += gdbarch_deprecated_function_start_offset (gdbarch); |
634aa483 AC |
4884 | |
4885 | prologue_sal = find_pc_line (start_pc, 0); | |
4886 | if (prologue_sal.line != 0) | |
4887 | { | |
e5dd4106 | 4888 | /* For languages other than assembly, treat two consecutive line |
d54be744 DJ |
4889 | entries at the same address as a zero-instruction prologue. |
4890 | The GNU assembler emits separate line notes for each instruction | |
4891 | in a multi-instruction macro, but compilers generally will not | |
4892 | do this. */ | |
4893 | if (prologue_sal.symtab->language != language_asm) | |
4894 | { | |
4895 | struct linetable *linetable = LINETABLE (prologue_sal.symtab); | |
d54be744 DJ |
4896 | int idx = 0; |
4897 | ||
4898 | /* Skip any earlier lines, and any end-of-sequence marker | |
4899 | from a previous function. */ | |
4900 | while (linetable->item[idx].pc != prologue_sal.pc | |
4901 | || linetable->item[idx].line == 0) | |
4902 | idx++; | |
4903 | ||
4904 | if (idx+1 < linetable->nitems | |
4905 | && linetable->item[idx+1].line != 0 | |
4906 | && linetable->item[idx+1].pc == start_pc) | |
4907 | return start_pc; | |
4908 | } | |
4909 | ||
576c2025 FF |
4910 | /* If there is only one sal that covers the entire function, |
4911 | then it is probably a single line function, like | |
c378eb4e | 4912 | "foo(){}". */ |
91934273 | 4913 | if (prologue_sal.end >= end_pc) |
4e463ff5 | 4914 | return 0; |
d54be744 | 4915 | |
634aa483 AC |
4916 | while (prologue_sal.end < end_pc) |
4917 | { | |
4918 | struct symtab_and_line sal; | |
4919 | ||
4920 | sal = find_pc_line (prologue_sal.end, 0); | |
4921 | if (sal.line == 0) | |
4922 | break; | |
4923 | /* Assume that a consecutive SAL for the same (or larger) | |
4924 | line mark the prologue -> body transition. */ | |
4925 | if (sal.line >= prologue_sal.line) | |
4926 | break; | |
2077afdd TD |
4927 | /* Likewise if we are in a different symtab altogether |
4928 | (e.g. within a file included via #include). */ | |
4929 | if (sal.symtab != prologue_sal.symtab) | |
4930 | break; | |
edb3359d DJ |
4931 | |
4932 | /* The line number is smaller. Check that it's from the | |
4933 | same function, not something inlined. If it's inlined, | |
4934 | then there is no point comparing the line numbers. */ | |
4935 | bl = block_for_pc (prologue_sal.end); | |
4936 | while (bl) | |
4937 | { | |
4938 | if (block_inlined_p (bl)) | |
4939 | break; | |
4940 | if (BLOCK_FUNCTION (bl)) | |
4941 | { | |
4942 | bl = NULL; | |
4943 | break; | |
4944 | } | |
4945 | bl = BLOCK_SUPERBLOCK (bl); | |
4946 | } | |
4947 | if (bl != NULL) | |
4948 | break; | |
4949 | ||
634aa483 AC |
4950 | /* The case in which compiler's optimizer/scheduler has |
4951 | moved instructions into the prologue. We look ahead in | |
4952 | the function looking for address ranges whose | |
4953 | corresponding line number is less the first one that we | |
4954 | found for the function. This is more conservative then | |
4955 | refine_prologue_limit which scans a large number of SALs | |
c378eb4e | 4956 | looking for any in the prologue. */ |
634aa483 AC |
4957 | prologue_sal = sal; |
4958 | } | |
4959 | } | |
d54be744 DJ |
4960 | |
4961 | if (prologue_sal.end < end_pc) | |
4962 | /* Return the end of this line, or zero if we could not find a | |
4963 | line. */ | |
4964 | return prologue_sal.end; | |
4965 | else | |
4966 | /* Don't return END_PC, which is past the end of the function. */ | |
4967 | return prologue_sal.pc; | |
634aa483 | 4968 | } |
c906108c | 4969 | \f |
51cc5b07 AC |
4970 | /* Track MAIN */ |
4971 | static char *name_of_main; | |
01f8c46d | 4972 | enum language language_of_main = language_unknown; |
51cc5b07 AC |
4973 | |
4974 | void | |
4975 | set_main_name (const char *name) | |
4976 | { | |
4977 | if (name_of_main != NULL) | |
4978 | { | |
4979 | xfree (name_of_main); | |
4980 | name_of_main = NULL; | |
01f8c46d | 4981 | language_of_main = language_unknown; |
51cc5b07 AC |
4982 | } |
4983 | if (name != NULL) | |
4984 | { | |
4985 | name_of_main = xstrdup (name); | |
01f8c46d | 4986 | language_of_main = language_unknown; |
51cc5b07 AC |
4987 | } |
4988 | } | |
4989 | ||
ea53e89f JB |
4990 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4991 | accordingly. */ | |
4992 | ||
4993 | static void | |
4994 | find_main_name (void) | |
4995 | { | |
cd6c7346 | 4996 | const char *new_main_name; |
ea53e89f JB |
4997 | |
4998 | /* Try to see if the main procedure is in Ada. */ | |
4999 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
5000 | be to add a new method in the language vector, and call this | |
5001 | method for each language until one of them returns a non-empty | |
5002 | name. This would allow us to remove this hard-coded call to | |
5003 | an Ada function. It is not clear that this is a better approach | |
5004 | at this point, because all methods need to be written in a way | |
c378eb4e | 5005 | such that false positives never be returned. For instance, it is |
ea53e89f JB |
5006 | important that a method does not return a wrong name for the main |
5007 | procedure if the main procedure is actually written in a different | |
5008 | language. It is easy to guaranty this with Ada, since we use a | |
5009 | special symbol generated only when the main in Ada to find the name | |
c378eb4e | 5010 | of the main procedure. It is difficult however to see how this can |
ea53e89f JB |
5011 | be guarantied for languages such as C, for instance. This suggests |
5012 | that order of call for these methods becomes important, which means | |
5013 | a more complicated approach. */ | |
5014 | new_main_name = ada_main_name (); | |
5015 | if (new_main_name != NULL) | |
9af17804 | 5016 | { |
ea53e89f JB |
5017 | set_main_name (new_main_name); |
5018 | return; | |
5019 | } | |
5020 | ||
a766d390 DE |
5021 | new_main_name = go_main_name (); |
5022 | if (new_main_name != NULL) | |
5023 | { | |
5024 | set_main_name (new_main_name); | |
5025 | return; | |
5026 | } | |
5027 | ||
cd6c7346 PM |
5028 | new_main_name = pascal_main_name (); |
5029 | if (new_main_name != NULL) | |
9af17804 | 5030 | { |
cd6c7346 PM |
5031 | set_main_name (new_main_name); |
5032 | return; | |
5033 | } | |
5034 | ||
ea53e89f JB |
5035 | /* The languages above didn't identify the name of the main procedure. |
5036 | Fallback to "main". */ | |
5037 | set_main_name ("main"); | |
5038 | } | |
5039 | ||
51cc5b07 AC |
5040 | char * |
5041 | main_name (void) | |
5042 | { | |
ea53e89f JB |
5043 | if (name_of_main == NULL) |
5044 | find_main_name (); | |
5045 | ||
5046 | return name_of_main; | |
51cc5b07 AC |
5047 | } |
5048 | ||
ea53e89f JB |
5049 | /* Handle ``executable_changed'' events for the symtab module. */ |
5050 | ||
5051 | static void | |
781b42b0 | 5052 | symtab_observer_executable_changed (void) |
ea53e89f JB |
5053 | { |
5054 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
5055 | set_main_name (NULL); | |
5056 | } | |
51cc5b07 | 5057 | |
a6c727b2 DJ |
5058 | /* Return 1 if the supplied producer string matches the ARM RealView |
5059 | compiler (armcc). */ | |
5060 | ||
5061 | int | |
5062 | producer_is_realview (const char *producer) | |
5063 | { | |
5064 | static const char *const arm_idents[] = { | |
5065 | "ARM C Compiler, ADS", | |
5066 | "Thumb C Compiler, ADS", | |
5067 | "ARM C++ Compiler, ADS", | |
5068 | "Thumb C++ Compiler, ADS", | |
5069 | "ARM/Thumb C/C++ Compiler, RVCT", | |
5070 | "ARM C/C++ Compiler, RVCT" | |
5071 | }; | |
5072 | int i; | |
5073 | ||
5074 | if (producer == NULL) | |
5075 | return 0; | |
5076 | ||
5077 | for (i = 0; i < ARRAY_SIZE (arm_idents); i++) | |
5078 | if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0) | |
5079 | return 1; | |
5080 | ||
5081 | return 0; | |
5082 | } | |
ed0616c6 | 5083 | |
f1e6e072 TT |
5084 | \f |
5085 | ||
5086 | /* The next index to hand out in response to a registration request. */ | |
5087 | ||
5088 | static int next_aclass_value = LOC_FINAL_VALUE; | |
5089 | ||
5090 | /* The maximum number of "aclass" registrations we support. This is | |
5091 | constant for convenience. */ | |
5092 | #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10) | |
5093 | ||
5094 | /* The objects representing the various "aclass" values. The elements | |
5095 | from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent | |
5096 | elements are those registered at gdb initialization time. */ | |
5097 | ||
5098 | static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS]; | |
5099 | ||
5100 | /* The globally visible pointer. This is separate from 'symbol_impl' | |
5101 | so that it can be const. */ | |
5102 | ||
5103 | const struct symbol_impl *symbol_impls = &symbol_impl[0]; | |
5104 | ||
5105 | /* Make sure we saved enough room in struct symbol. */ | |
5106 | ||
5107 | gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS)); | |
5108 | ||
5109 | /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS | |
5110 | is the ops vector associated with this index. This returns the new | |
5111 | index, which should be used as the aclass_index field for symbols | |
5112 | of this type. */ | |
5113 | ||
5114 | int | |
5115 | register_symbol_computed_impl (enum address_class aclass, | |
5116 | const struct symbol_computed_ops *ops) | |
5117 | { | |
5118 | int result = next_aclass_value++; | |
5119 | ||
5120 | gdb_assert (aclass == LOC_COMPUTED); | |
5121 | gdb_assert (result < MAX_SYMBOL_IMPLS); | |
5122 | symbol_impl[result].aclass = aclass; | |
5123 | symbol_impl[result].ops_computed = ops; | |
5124 | ||
24d6c2a0 TT |
5125 | /* Sanity check OPS. */ |
5126 | gdb_assert (ops != NULL); | |
5127 | gdb_assert (ops->tracepoint_var_ref != NULL); | |
5128 | gdb_assert (ops->describe_location != NULL); | |
5129 | gdb_assert (ops->read_needs_frame != NULL); | |
5130 | gdb_assert (ops->read_variable != NULL); | |
5131 | ||
f1e6e072 TT |
5132 | return result; |
5133 | } | |
5134 | ||
5135 | /* Register a function with frame base type. ACLASS must be LOC_BLOCK. | |
5136 | OPS is the ops vector associated with this index. This returns the | |
5137 | new index, which should be used as the aclass_index field for symbols | |
5138 | of this type. */ | |
5139 | ||
5140 | int | |
5141 | register_symbol_block_impl (enum address_class aclass, | |
5142 | const struct symbol_block_ops *ops) | |
5143 | { | |
5144 | int result = next_aclass_value++; | |
5145 | ||
5146 | gdb_assert (aclass == LOC_BLOCK); | |
5147 | gdb_assert (result < MAX_SYMBOL_IMPLS); | |
5148 | symbol_impl[result].aclass = aclass; | |
5149 | symbol_impl[result].ops_block = ops; | |
5150 | ||
5151 | /* Sanity check OPS. */ | |
5152 | gdb_assert (ops != NULL); | |
5153 | gdb_assert (ops->find_frame_base_location != NULL); | |
5154 | ||
5155 | return result; | |
5156 | } | |
5157 | ||
5158 | /* Register a register symbol type. ACLASS must be LOC_REGISTER or | |
5159 | LOC_REGPARM_ADDR. OPS is the register ops vector associated with | |
5160 | this index. This returns the new index, which should be used as | |
5161 | the aclass_index field for symbols of this type. */ | |
5162 | ||
5163 | int | |
5164 | register_symbol_register_impl (enum address_class aclass, | |
5165 | const struct symbol_register_ops *ops) | |
5166 | { | |
5167 | int result = next_aclass_value++; | |
5168 | ||
5169 | gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR); | |
5170 | gdb_assert (result < MAX_SYMBOL_IMPLS); | |
5171 | symbol_impl[result].aclass = aclass; | |
5172 | symbol_impl[result].ops_register = ops; | |
5173 | ||
5174 | return result; | |
5175 | } | |
5176 | ||
5177 | /* Initialize elements of 'symbol_impl' for the constants in enum | |
5178 | address_class. */ | |
5179 | ||
5180 | static void | |
5181 | initialize_ordinary_address_classes (void) | |
5182 | { | |
5183 | int i; | |
5184 | ||
5185 | for (i = 0; i < LOC_FINAL_VALUE; ++i) | |
5186 | symbol_impl[i].aclass = i; | |
5187 | } | |
5188 | ||
5189 | \f | |
5190 | ||
e623cf5d TT |
5191 | /* Initialize the symbol SYM. */ |
5192 | ||
5193 | void | |
5194 | initialize_symbol (struct symbol *sym) | |
5195 | { | |
5196 | memset (sym, 0, sizeof (*sym)); | |
e27d198c | 5197 | SYMBOL_SECTION (sym) = -1; |
e623cf5d TT |
5198 | } |
5199 | ||
5200 | /* Allocate and initialize a new 'struct symbol' on OBJFILE's | |
5201 | obstack. */ | |
5202 | ||
5203 | struct symbol * | |
5204 | allocate_symbol (struct objfile *objfile) | |
5205 | { | |
5206 | struct symbol *result; | |
5207 | ||
5208 | result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol); | |
e27d198c | 5209 | SYMBOL_SECTION (result) = -1; |
e623cf5d TT |
5210 | |
5211 | return result; | |
5212 | } | |
5213 | ||
5214 | /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's | |
5215 | obstack. */ | |
5216 | ||
5217 | struct template_symbol * | |
5218 | allocate_template_symbol (struct objfile *objfile) | |
5219 | { | |
5220 | struct template_symbol *result; | |
5221 | ||
5222 | result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol); | |
e27d198c | 5223 | SYMBOL_SECTION (&result->base) = -1; |
e623cf5d TT |
5224 | |
5225 | return result; | |
5226 | } | |
5227 | ||
5228 | \f | |
5229 | ||
c906108c | 5230 | void |
fba45db2 | 5231 | _initialize_symtab (void) |
c906108c | 5232 | { |
f1e6e072 TT |
5233 | initialize_ordinary_address_classes (); |
5234 | ||
1bedd215 AC |
5235 | add_info ("variables", variables_info, _("\ |
5236 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 5237 | if (dbx_commands) |
1bedd215 AC |
5238 | add_com ("whereis", class_info, variables_info, _("\ |
5239 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
5240 | |
5241 | add_info ("functions", functions_info, | |
1bedd215 | 5242 | _("All function names, or those matching REGEXP.")); |
c906108c SS |
5243 | |
5244 | /* FIXME: This command has at least the following problems: | |
5245 | 1. It prints builtin types (in a very strange and confusing fashion). | |
5246 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
5247 | typedef struct foo *FOO |
5248 | type_print prints "FOO" when we want to make it (in this situation) | |
5249 | print "struct foo *". | |
c906108c SS |
5250 | I also think "ptype" or "whatis" is more likely to be useful (but if |
5251 | there is much disagreement "info types" can be fixed). */ | |
5252 | add_info ("types", types_info, | |
1bedd215 | 5253 | _("All type names, or those matching REGEXP.")); |
c906108c | 5254 | |
c906108c | 5255 | add_info ("sources", sources_info, |
1bedd215 | 5256 | _("Source files in the program.")); |
c906108c SS |
5257 | |
5258 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 5259 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
5260 | |
5261 | if (xdb_commands) | |
5262 | { | |
1bedd215 AC |
5263 | add_com ("lf", class_info, sources_info, |
5264 | _("Source files in the program")); | |
5265 | add_com ("lg", class_info, variables_info, _("\ | |
5266 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
5267 | } |
5268 | ||
717d2f5a JB |
5269 | add_setshow_enum_cmd ("multiple-symbols", no_class, |
5270 | multiple_symbols_modes, &multiple_symbols_mode, | |
5271 | _("\ | |
5272 | Set the debugger behavior when more than one symbol are possible matches\n\ | |
5273 | in an expression."), _("\ | |
5274 | Show how the debugger handles ambiguities in expressions."), _("\ | |
5275 | Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), | |
5276 | NULL, NULL, &setlist, &showlist); | |
5277 | ||
c011a4f4 DE |
5278 | add_setshow_boolean_cmd ("basenames-may-differ", class_obscure, |
5279 | &basenames_may_differ, _("\ | |
5280 | Set whether a source file may have multiple base names."), _("\ | |
5281 | Show whether a source file may have multiple base names."), _("\ | |
5282 | (A \"base name\" is the name of a file with the directory part removed.\n\ | |
5283 | Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\ | |
5284 | If set, GDB will canonicalize file names (e.g., expand symlinks)\n\ | |
5285 | before comparing them. Canonicalization is an expensive operation,\n\ | |
5286 | but it allows the same file be known by more than one base name.\n\ | |
5287 | If not set (the default), all source files are assumed to have just\n\ | |
5288 | one base name, and gdb will do file name comparisons more efficiently."), | |
5289 | NULL, NULL, | |
5290 | &setlist, &showlist); | |
5291 | ||
db0fec5c DE |
5292 | add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug, |
5293 | _("Set debugging of symbol table creation."), | |
5294 | _("Show debugging of symbol table creation."), _("\ | |
5295 | When enabled (non-zero), debugging messages are printed when building\n\ | |
5296 | symbol tables. A value of 1 (one) normally provides enough information.\n\ | |
5297 | A value greater than 1 provides more verbose information."), | |
5298 | NULL, | |
5299 | NULL, | |
5300 | &setdebuglist, &showdebuglist); | |
45cfd468 | 5301 | |
ea53e89f | 5302 | observer_attach_executable_changed (symtab_observer_executable_changed); |
c906108c | 5303 | } |