]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
0b302171 | 3 | Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "symtab.h" | |
22 | #include "gdbtypes.h" | |
23 | #include "gdbcore.h" | |
24 | #include "frame.h" | |
25 | #include "target.h" | |
26 | #include "value.h" | |
27 | #include "symfile.h" | |
28 | #include "objfiles.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "call-cmds.h" | |
88987551 | 31 | #include "gdb_regex.h" |
c906108c SS |
32 | #include "expression.h" |
33 | #include "language.h" | |
34 | #include "demangle.h" | |
35 | #include "inferior.h" | |
c5f0f3d0 | 36 | #include "linespec.h" |
0378c332 | 37 | #include "source.h" |
a7fdf62f | 38 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 39 | #include "objc-lang.h" |
6aecb9c2 | 40 | #include "d-lang.h" |
1f8173e6 | 41 | #include "ada-lang.h" |
a766d390 | 42 | #include "go-lang.h" |
cd6c7346 | 43 | #include "p-lang.h" |
ff013f42 | 44 | #include "addrmap.h" |
c906108c | 45 | |
2de7ced7 DJ |
46 | #include "hashtab.h" |
47 | ||
04ea0df1 | 48 | #include "gdb_obstack.h" |
fe898f56 | 49 | #include "block.h" |
de4f826b | 50 | #include "dictionary.h" |
c906108c SS |
51 | |
52 | #include <sys/types.h> | |
53 | #include <fcntl.h> | |
54 | #include "gdb_string.h" | |
55 | #include "gdb_stat.h" | |
56 | #include <ctype.h> | |
015a42b4 | 57 | #include "cp-abi.h" |
71c25dea | 58 | #include "cp-support.h" |
ea53e89f | 59 | #include "observer.h" |
94277a38 | 60 | #include "gdb_assert.h" |
3a40aaa0 | 61 | #include "solist.h" |
9a044a89 TT |
62 | #include "macrotab.h" |
63 | #include "macroscope.h" | |
c906108c | 64 | |
ccefe4c4 TT |
65 | #include "psymtab.h" |
66 | ||
c906108c SS |
67 | /* Prototypes for local functions */ |
68 | ||
a14ed312 | 69 | static void rbreak_command (char *, int); |
c906108c | 70 | |
a14ed312 | 71 | static void types_info (char *, int); |
c906108c | 72 | |
a14ed312 | 73 | static void functions_info (char *, int); |
c906108c | 74 | |
a14ed312 | 75 | static void variables_info (char *, int); |
c906108c | 76 | |
a14ed312 | 77 | static void sources_info (char *, int); |
c906108c | 78 | |
d092d1a2 | 79 | static void output_source_filename (const char *, int *); |
c906108c | 80 | |
f8eba3c6 | 81 | static int find_line_common (struct linetable *, int, int *, int); |
c906108c | 82 | |
3121eff0 | 83 | static struct symbol *lookup_symbol_aux (const char *name, |
3121eff0 | 84 | const struct block *block, |
176620f1 | 85 | const domain_enum domain, |
53c5240f | 86 | enum language language, |
774b6a14 | 87 | int *is_a_field_of_this); |
fba7f19c | 88 | |
e4051eeb DC |
89 | static |
90 | struct symbol *lookup_symbol_aux_local (const char *name, | |
e4051eeb | 91 | const struct block *block, |
13387711 SW |
92 | const domain_enum domain, |
93 | enum language language); | |
8155455b DC |
94 | |
95 | static | |
96 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
97 | const char *name, | |
99a547d6 JB |
98 | const domain_enum domain, |
99 | struct objfile *exclude_objfile); | |
8155455b DC |
100 | |
101 | static | |
ccefe4c4 TT |
102 | struct symbol *lookup_symbol_aux_quick (struct objfile *objfile, |
103 | int block_index, | |
104 | const char *name, | |
105 | const domain_enum domain); | |
c906108c | 106 | |
a14ed312 | 107 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 108 | |
a14ed312 | 109 | void _initialize_symtab (void); |
c906108c SS |
110 | |
111 | /* */ | |
112 | ||
c011a4f4 DE |
113 | /* Non-zero if a file may be known by two different basenames. |
114 | This is the uncommon case, and significantly slows down gdb. | |
115 | Default set to "off" to not slow down the common case. */ | |
116 | int basenames_may_differ = 0; | |
117 | ||
717d2f5a JB |
118 | /* Allow the user to configure the debugger behavior with respect |
119 | to multiple-choice menus when more than one symbol matches during | |
120 | a symbol lookup. */ | |
121 | ||
7fc830e2 MK |
122 | const char multiple_symbols_ask[] = "ask"; |
123 | const char multiple_symbols_all[] = "all"; | |
124 | const char multiple_symbols_cancel[] = "cancel"; | |
40478521 | 125 | static const char *const multiple_symbols_modes[] = |
717d2f5a JB |
126 | { |
127 | multiple_symbols_ask, | |
128 | multiple_symbols_all, | |
129 | multiple_symbols_cancel, | |
130 | NULL | |
131 | }; | |
132 | static const char *multiple_symbols_mode = multiple_symbols_all; | |
133 | ||
134 | /* Read-only accessor to AUTO_SELECT_MODE. */ | |
135 | ||
136 | const char * | |
137 | multiple_symbols_select_mode (void) | |
138 | { | |
139 | return multiple_symbols_mode; | |
140 | } | |
141 | ||
c906108c | 142 | /* Block in which the most recently searched-for symbol was found. |
9af17804 | 143 | Might be better to make this a parameter to lookup_symbol and |
c378eb4e | 144 | value_of_this. */ |
c906108c SS |
145 | |
146 | const struct block *block_found; | |
147 | ||
4aac40c8 TT |
148 | /* See whether FILENAME matches SEARCH_NAME using the rule that we |
149 | advertise to the user. (The manual's description of linespecs | |
150 | describes what we advertise). SEARCH_LEN is the length of | |
151 | SEARCH_NAME. We assume that SEARCH_NAME is a relative path. | |
152 | Returns true if they match, false otherwise. */ | |
153 | ||
154 | int | |
155 | compare_filenames_for_search (const char *filename, const char *search_name, | |
156 | int search_len) | |
157 | { | |
158 | int len = strlen (filename); | |
4aac40c8 TT |
159 | |
160 | if (len < search_len) | |
161 | return 0; | |
162 | ||
163 | /* The tail of FILENAME must match. */ | |
164 | if (FILENAME_CMP (filename + len - search_len, search_name) != 0) | |
165 | return 0; | |
166 | ||
167 | /* Either the names must completely match, or the character | |
168 | preceding the trailing SEARCH_NAME segment of FILENAME must be a | |
169 | directory separator. */ | |
170 | return (len == search_len | |
171 | || IS_DIR_SEPARATOR (filename[len - search_len - 1]) | |
172 | || (HAS_DRIVE_SPEC (filename) | |
173 | && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len])); | |
174 | } | |
175 | ||
f8eba3c6 TT |
176 | /* Check for a symtab of a specific name by searching some symtabs. |
177 | This is a helper function for callbacks of iterate_over_symtabs. | |
c906108c | 178 | |
f8eba3c6 TT |
179 | The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA |
180 | are identical to the `map_symtabs_matching_filename' method of | |
181 | quick_symbol_functions. | |
182 | ||
183 | FIRST and AFTER_LAST indicate the range of symtabs to search. | |
184 | AFTER_LAST is one past the last symtab to search; NULL means to | |
185 | search until the end of the list. */ | |
186 | ||
187 | int | |
188 | iterate_over_some_symtabs (const char *name, | |
189 | const char *full_path, | |
190 | const char *real_path, | |
191 | int (*callback) (struct symtab *symtab, | |
192 | void *data), | |
193 | void *data, | |
194 | struct symtab *first, | |
195 | struct symtab *after_last) | |
c906108c | 196 | { |
ccefe4c4 | 197 | struct symtab *s = NULL; |
c011a4f4 | 198 | const char* base_name = lbasename (name); |
4aac40c8 TT |
199 | int name_len = strlen (name); |
200 | int is_abs = IS_ABSOLUTE_PATH (name); | |
1f84b619 | 201 | |
f8eba3c6 | 202 | for (s = first; s != NULL && s != after_last; s = s->next) |
f079a2e5 | 203 | { |
4aac40c8 | 204 | /* Exact match is always ok. */ |
f8eba3c6 TT |
205 | if (FILENAME_CMP (name, s->filename) == 0) |
206 | { | |
207 | if (callback (s, data)) | |
208 | return 1; | |
209 | } | |
9af17804 | 210 | |
4aac40c8 TT |
211 | if (!is_abs && compare_filenames_for_search (s->filename, name, name_len)) |
212 | { | |
213 | if (callback (s, data)) | |
214 | return 1; | |
215 | } | |
216 | ||
c011a4f4 DE |
217 | /* Before we invoke realpath, which can get expensive when many |
218 | files are involved, do a quick comparison of the basenames. */ | |
219 | if (! basenames_may_differ | |
220 | && FILENAME_CMP (base_name, lbasename (s->filename)) != 0) | |
221 | continue; | |
222 | ||
58d370e0 TT |
223 | /* If the user gave us an absolute path, try to find the file in |
224 | this symtab and use its absolute path. */ | |
9af17804 | 225 | |
f079a2e5 JB |
226 | if (full_path != NULL) |
227 | { | |
09bcec80 | 228 | const char *fp = symtab_to_fullname (s); |
433759f7 | 229 | |
09bcec80 BR |
230 | if (fp != NULL && FILENAME_CMP (full_path, fp) == 0) |
231 | { | |
f8eba3c6 TT |
232 | if (callback (s, data)) |
233 | return 1; | |
09bcec80 | 234 | } |
4aac40c8 TT |
235 | |
236 | if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name, | |
237 | name_len)) | |
238 | { | |
239 | if (callback (s, data)) | |
240 | return 1; | |
241 | } | |
f079a2e5 JB |
242 | } |
243 | ||
58d370e0 TT |
244 | if (real_path != NULL) |
245 | { | |
09bcec80 | 246 | char *fullname = symtab_to_fullname (s); |
433759f7 | 247 | |
09bcec80 BR |
248 | if (fullname != NULL) |
249 | { | |
250 | char *rp = gdb_realpath (fullname); | |
433759f7 | 251 | |
09bcec80 BR |
252 | make_cleanup (xfree, rp); |
253 | if (FILENAME_CMP (real_path, rp) == 0) | |
f8eba3c6 TT |
254 | { |
255 | if (callback (s, data)) | |
256 | return 1; | |
257 | } | |
4aac40c8 TT |
258 | |
259 | if (!is_abs && compare_filenames_for_search (rp, name, name_len)) | |
260 | { | |
261 | if (callback (s, data)) | |
262 | return 1; | |
263 | } | |
09bcec80 | 264 | } |
58d370e0 | 265 | } |
f8eba3c6 | 266 | } |
58d370e0 | 267 | |
f8eba3c6 TT |
268 | return 0; |
269 | } | |
270 | ||
271 | /* Check for a symtab of a specific name; first in symtabs, then in | |
272 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
273 | in the symtab filename will also work. | |
274 | ||
275 | Calls CALLBACK with each symtab that is found and with the supplied | |
276 | DATA. If CALLBACK returns true, the search stops. */ | |
277 | ||
278 | void | |
279 | iterate_over_symtabs (const char *name, | |
280 | int (*callback) (struct symtab *symtab, | |
281 | void *data), | |
282 | void *data) | |
283 | { | |
284 | struct symtab *s = NULL; | |
285 | struct objfile *objfile; | |
286 | char *real_path = NULL; | |
287 | char *full_path = NULL; | |
288 | struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); | |
289 | ||
290 | /* Here we are interested in canonicalizing an absolute path, not | |
291 | absolutizing a relative path. */ | |
292 | if (IS_ABSOLUTE_PATH (name)) | |
293 | { | |
294 | full_path = xfullpath (name); | |
295 | make_cleanup (xfree, full_path); | |
296 | real_path = gdb_realpath (name); | |
297 | make_cleanup (xfree, real_path); | |
298 | } | |
299 | ||
300 | ALL_OBJFILES (objfile) | |
301 | { | |
302 | if (iterate_over_some_symtabs (name, full_path, real_path, callback, data, | |
303 | objfile->symtabs, NULL)) | |
304 | { | |
305 | do_cleanups (cleanups); | |
306 | return; | |
307 | } | |
308 | } | |
309 | ||
c906108c SS |
310 | /* Same search rules as above apply here, but now we look thru the |
311 | psymtabs. */ | |
312 | ||
ccefe4c4 TT |
313 | ALL_OBJFILES (objfile) |
314 | { | |
315 | if (objfile->sf | |
f8eba3c6 TT |
316 | && objfile->sf->qf->map_symtabs_matching_filename (objfile, |
317 | name, | |
318 | full_path, | |
319 | real_path, | |
320 | callback, | |
321 | data)) | |
ccefe4c4 | 322 | { |
f8eba3c6 TT |
323 | do_cleanups (cleanups); |
324 | return; | |
ccefe4c4 TT |
325 | } |
326 | } | |
c906108c | 327 | |
f8eba3c6 TT |
328 | do_cleanups (cleanups); |
329 | } | |
330 | ||
331 | /* The callback function used by lookup_symtab. */ | |
332 | ||
333 | static int | |
334 | lookup_symtab_callback (struct symtab *symtab, void *data) | |
335 | { | |
336 | struct symtab **result_ptr = data; | |
c906108c | 337 | |
f8eba3c6 TT |
338 | *result_ptr = symtab; |
339 | return 1; | |
c906108c | 340 | } |
f8eba3c6 TT |
341 | |
342 | /* A wrapper for iterate_over_symtabs that returns the first matching | |
343 | symtab, or NULL. */ | |
344 | ||
345 | struct symtab * | |
346 | lookup_symtab (const char *name) | |
347 | { | |
348 | struct symtab *result = NULL; | |
349 | ||
350 | iterate_over_symtabs (name, lookup_symtab_callback, &result); | |
351 | return result; | |
352 | } | |
353 | ||
c906108c SS |
354 | \f |
355 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
356 | full method name, which consist of the class name (from T), the unadorned | |
357 | method name from METHOD_ID, and the signature for the specific overload, | |
c378eb4e | 358 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ |
c906108c SS |
359 | |
360 | char * | |
fba45db2 | 361 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
362 | { |
363 | int mangled_name_len; | |
364 | char *mangled_name; | |
365 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
366 | struct fn_field *method = &f[signature_id]; | |
0d5cff50 | 367 | const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); |
1d06ead6 | 368 | const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); |
0d5cff50 | 369 | const char *newname = type_name_no_tag (type); |
c906108c SS |
370 | |
371 | /* Does the form of physname indicate that it is the full mangled name | |
372 | of a constructor (not just the args)? */ | |
373 | int is_full_physname_constructor; | |
374 | ||
375 | int is_constructor; | |
015a42b4 | 376 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
377 | /* Need a new type prefix. */ |
378 | char *const_prefix = method->is_const ? "C" : ""; | |
379 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
380 | char buf[20]; | |
381 | int len = (newname == NULL ? 0 : strlen (newname)); | |
382 | ||
43630227 PS |
383 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
384 | or an operator name. */ | |
385 | if ((physname[0] == '_' && physname[1] == 'Z') | |
386 | || is_operator_name (field_name)) | |
235d1e03 EZ |
387 | return xstrdup (physname); |
388 | ||
015a42b4 | 389 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c | 390 | |
3e43a32a MS |
391 | is_constructor = is_full_physname_constructor |
392 | || (newname && strcmp (field_name, newname) == 0); | |
c906108c SS |
393 | |
394 | if (!is_destructor) | |
c5aa993b | 395 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
396 | |
397 | if (is_destructor || is_full_physname_constructor) | |
398 | { | |
c5aa993b JM |
399 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
400 | strcpy (mangled_name, physname); | |
c906108c SS |
401 | return mangled_name; |
402 | } | |
403 | ||
404 | if (len == 0) | |
405 | { | |
406 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
407 | } | |
408 | else if (physname[0] == 't' || physname[0] == 'Q') | |
409 | { | |
410 | /* The physname for template and qualified methods already includes | |
c5aa993b | 411 | the class name. */ |
c906108c SS |
412 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
413 | newname = NULL; | |
414 | len = 0; | |
415 | } | |
416 | else | |
417 | { | |
418 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
419 | } | |
420 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 421 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 422 | |
433759f7 MS |
423 | mangled_name = (char *) xmalloc (mangled_name_len); |
424 | if (is_constructor) | |
425 | mangled_name[0] = '\0'; | |
426 | else | |
427 | strcpy (mangled_name, field_name); | |
428 | ||
c906108c SS |
429 | strcat (mangled_name, buf); |
430 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
431 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c378eb4e | 432 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
433 | if (newname != NULL) |
434 | strcat (mangled_name, newname); | |
435 | ||
436 | strcat (mangled_name, physname); | |
437 | return (mangled_name); | |
438 | } | |
12af6855 | 439 | |
29df156d SW |
440 | /* Initialize the cplus_specific structure. 'cplus_specific' should |
441 | only be allocated for use with cplus symbols. */ | |
442 | ||
443 | static void | |
444 | symbol_init_cplus_specific (struct general_symbol_info *gsymbol, | |
445 | struct objfile *objfile) | |
446 | { | |
447 | /* A language_specific structure should not have been previously | |
448 | initialized. */ | |
449 | gdb_assert (gsymbol->language_specific.cplus_specific == NULL); | |
450 | gdb_assert (objfile != NULL); | |
451 | ||
452 | gsymbol->language_specific.cplus_specific = | |
453 | OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific); | |
454 | } | |
455 | ||
b250c185 | 456 | /* Set the demangled name of GSYMBOL to NAME. NAME must be already |
29df156d | 457 | correctly allocated. For C++ symbols a cplus_specific struct is |
c378eb4e | 458 | allocated so OBJFILE must not be NULL. If this is a non C++ symbol |
29df156d | 459 | OBJFILE can be NULL. */ |
eca864fe | 460 | |
b250c185 SW |
461 | void |
462 | symbol_set_demangled_name (struct general_symbol_info *gsymbol, | |
29df156d SW |
463 | char *name, |
464 | struct objfile *objfile) | |
b250c185 | 465 | { |
29df156d SW |
466 | if (gsymbol->language == language_cplus) |
467 | { | |
468 | if (gsymbol->language_specific.cplus_specific == NULL) | |
469 | symbol_init_cplus_specific (gsymbol, objfile); | |
470 | ||
471 | gsymbol->language_specific.cplus_specific->demangled_name = name; | |
472 | } | |
473 | else | |
474 | gsymbol->language_specific.mangled_lang.demangled_name = name; | |
b250c185 SW |
475 | } |
476 | ||
477 | /* Return the demangled name of GSYMBOL. */ | |
eca864fe | 478 | |
0d5cff50 | 479 | const char * |
b250c185 SW |
480 | symbol_get_demangled_name (const struct general_symbol_info *gsymbol) |
481 | { | |
29df156d SW |
482 | if (gsymbol->language == language_cplus) |
483 | { | |
45c58896 SW |
484 | if (gsymbol->language_specific.cplus_specific != NULL) |
485 | return gsymbol->language_specific.cplus_specific->demangled_name; | |
486 | else | |
487 | return NULL; | |
29df156d SW |
488 | } |
489 | else | |
490 | return gsymbol->language_specific.mangled_lang.demangled_name; | |
b250c185 SW |
491 | } |
492 | ||
12af6855 | 493 | \f |
89aad1f9 | 494 | /* Initialize the language dependent portion of a symbol |
c378eb4e | 495 | depending upon the language for the symbol. */ |
eca864fe | 496 | |
89aad1f9 | 497 | void |
33e5013e SW |
498 | symbol_set_language (struct general_symbol_info *gsymbol, |
499 | enum language language) | |
89aad1f9 EZ |
500 | { |
501 | gsymbol->language = language; | |
33e5013e | 502 | if (gsymbol->language == language_d |
a766d390 | 503 | || gsymbol->language == language_go |
5784d15e | 504 | || gsymbol->language == language_java |
f55ee35c JK |
505 | || gsymbol->language == language_objc |
506 | || gsymbol->language == language_fortran) | |
89aad1f9 | 507 | { |
29df156d | 508 | symbol_set_demangled_name (gsymbol, NULL, NULL); |
89aad1f9 | 509 | } |
29df156d SW |
510 | else if (gsymbol->language == language_cplus) |
511 | gsymbol->language_specific.cplus_specific = NULL; | |
89aad1f9 EZ |
512 | else |
513 | { | |
514 | memset (&gsymbol->language_specific, 0, | |
515 | sizeof (gsymbol->language_specific)); | |
516 | } | |
517 | } | |
518 | ||
2de7ced7 DJ |
519 | /* Functions to initialize a symbol's mangled name. */ |
520 | ||
04a679b8 TT |
521 | /* Objects of this type are stored in the demangled name hash table. */ |
522 | struct demangled_name_entry | |
523 | { | |
524 | char *mangled; | |
525 | char demangled[1]; | |
526 | }; | |
527 | ||
528 | /* Hash function for the demangled name hash. */ | |
eca864fe | 529 | |
04a679b8 TT |
530 | static hashval_t |
531 | hash_demangled_name_entry (const void *data) | |
532 | { | |
533 | const struct demangled_name_entry *e = data; | |
433759f7 | 534 | |
04a679b8 TT |
535 | return htab_hash_string (e->mangled); |
536 | } | |
537 | ||
538 | /* Equality function for the demangled name hash. */ | |
eca864fe | 539 | |
04a679b8 TT |
540 | static int |
541 | eq_demangled_name_entry (const void *a, const void *b) | |
542 | { | |
543 | const struct demangled_name_entry *da = a; | |
544 | const struct demangled_name_entry *db = b; | |
433759f7 | 545 | |
04a679b8 TT |
546 | return strcmp (da->mangled, db->mangled) == 0; |
547 | } | |
548 | ||
2de7ced7 DJ |
549 | /* Create the hash table used for demangled names. Each hash entry is |
550 | a pair of strings; one for the mangled name and one for the demangled | |
551 | name. The entry is hashed via just the mangled name. */ | |
552 | ||
553 | static void | |
554 | create_demangled_names_hash (struct objfile *objfile) | |
555 | { | |
556 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
9af17804 | 557 | The hash table code will round this up to the next prime number. |
2de7ced7 DJ |
558 | Choosing a much larger table size wastes memory, and saves only about |
559 | 1% in symbol reading. */ | |
560 | ||
aa2ee5f6 | 561 | objfile->demangled_names_hash = htab_create_alloc |
04a679b8 | 562 | (256, hash_demangled_name_entry, eq_demangled_name_entry, |
aa2ee5f6 | 563 | NULL, xcalloc, xfree); |
2de7ced7 | 564 | } |
12af6855 | 565 | |
2de7ced7 | 566 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
567 | language of that symbol. If the language is set to language_auto, |
568 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
569 | then set the language appropriately. The returned name is allocated |
570 | by the demangler and should be xfree'd. */ | |
12af6855 | 571 | |
2de7ced7 DJ |
572 | static char * |
573 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
574 | const char *mangled) | |
12af6855 | 575 | { |
12af6855 JB |
576 | char *demangled = NULL; |
577 | ||
578 | if (gsymbol->language == language_unknown) | |
579 | gsymbol->language = language_auto; | |
1bae87b9 AF |
580 | |
581 | if (gsymbol->language == language_objc | |
582 | || gsymbol->language == language_auto) | |
583 | { | |
584 | demangled = | |
585 | objc_demangle (mangled, 0); | |
586 | if (demangled != NULL) | |
587 | { | |
588 | gsymbol->language = language_objc; | |
589 | return demangled; | |
590 | } | |
591 | } | |
12af6855 JB |
592 | if (gsymbol->language == language_cplus |
593 | || gsymbol->language == language_auto) | |
594 | { | |
595 | demangled = | |
3f542ed1 | 596 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 597 | if (demangled != NULL) |
2de7ced7 DJ |
598 | { |
599 | gsymbol->language = language_cplus; | |
600 | return demangled; | |
601 | } | |
12af6855 JB |
602 | } |
603 | if (gsymbol->language == language_java) | |
604 | { | |
605 | demangled = | |
2de7ced7 | 606 | cplus_demangle (mangled, |
12af6855 JB |
607 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
608 | if (demangled != NULL) | |
2de7ced7 DJ |
609 | { |
610 | gsymbol->language = language_java; | |
611 | return demangled; | |
612 | } | |
613 | } | |
6aecb9c2 JB |
614 | if (gsymbol->language == language_d |
615 | || gsymbol->language == language_auto) | |
616 | { | |
617 | demangled = d_demangle(mangled, 0); | |
618 | if (demangled != NULL) | |
619 | { | |
620 | gsymbol->language = language_d; | |
621 | return demangled; | |
622 | } | |
623 | } | |
a766d390 DE |
624 | /* FIXME(dje): Continually adding languages here is clumsy. |
625 | Better to just call la_demangle if !auto, and if auto then call | |
626 | a utility routine that tries successive languages in turn and reports | |
627 | which one it finds. I realize the la_demangle options may be different | |
628 | for different languages but there's already a FIXME for that. */ | |
629 | if (gsymbol->language == language_go | |
630 | || gsymbol->language == language_auto) | |
631 | { | |
632 | demangled = go_demangle (mangled, 0); | |
633 | if (demangled != NULL) | |
634 | { | |
635 | gsymbol->language = language_go; | |
636 | return demangled; | |
637 | } | |
638 | } | |
639 | ||
f55ee35c JK |
640 | /* We could support `gsymbol->language == language_fortran' here to provide |
641 | module namespaces also for inferiors with only minimal symbol table (ELF | |
642 | symbols). Just the mangling standard is not standardized across compilers | |
643 | and there is no DW_AT_producer available for inferiors with only the ELF | |
644 | symbols to check the mangling kind. */ | |
2de7ced7 DJ |
645 | return NULL; |
646 | } | |
647 | ||
980cae7a | 648 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
04a679b8 TT |
649 | on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the |
650 | objfile's obstack; but if COPY_NAME is 0 and if NAME is | |
651 | NUL-terminated, then this function assumes that NAME is already | |
652 | correctly saved (either permanently or with a lifetime tied to the | |
653 | objfile), and it will not be copied. | |
654 | ||
655 | The hash table corresponding to OBJFILE is used, and the memory | |
656 | comes from that objfile's objfile_obstack. LINKAGE_NAME is copied, | |
657 | so the pointer can be discarded after calling this function. */ | |
2de7ced7 | 658 | |
d2a52b27 DC |
659 | /* We have to be careful when dealing with Java names: when we run |
660 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
661 | gets demangled as a C++ name. This is unfortunate, but there's not | |
662 | much we can do about it: but when demangling partial symbols and | |
663 | regular symbols, we'd better not reuse the wrong demangled name. | |
664 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
665 | on Java names when storing them in the hash table. */ | |
666 | ||
667 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
668 | don't mind the Java prefix so much: different languages have | |
669 | different demangling requirements, so it's only natural that we | |
670 | need to keep language data around in our demangling cache. But | |
671 | it's not good that the minimal symbol has the wrong demangled name. | |
672 | Unfortunately, I can't think of any easy solution to that | |
673 | problem. */ | |
674 | ||
675 | #define JAVA_PREFIX "##JAVA$$" | |
676 | #define JAVA_PREFIX_LEN 8 | |
677 | ||
2de7ced7 DJ |
678 | void |
679 | symbol_set_names (struct general_symbol_info *gsymbol, | |
04a679b8 TT |
680 | const char *linkage_name, int len, int copy_name, |
681 | struct objfile *objfile) | |
2de7ced7 | 682 | { |
04a679b8 | 683 | struct demangled_name_entry **slot; |
980cae7a DC |
684 | /* A 0-terminated copy of the linkage name. */ |
685 | const char *linkage_name_copy; | |
d2a52b27 DC |
686 | /* A copy of the linkage name that might have a special Java prefix |
687 | added to it, for use when looking names up in the hash table. */ | |
688 | const char *lookup_name; | |
689 | /* The length of lookup_name. */ | |
690 | int lookup_len; | |
04a679b8 | 691 | struct demangled_name_entry entry; |
2de7ced7 | 692 | |
b06ead72 JB |
693 | if (gsymbol->language == language_ada) |
694 | { | |
695 | /* In Ada, we do the symbol lookups using the mangled name, so | |
696 | we can save some space by not storing the demangled name. | |
697 | ||
698 | As a side note, we have also observed some overlap between | |
699 | the C++ mangling and Ada mangling, similarly to what has | |
700 | been observed with Java. Because we don't store the demangled | |
701 | name with the symbol, we don't need to use the same trick | |
702 | as Java. */ | |
04a679b8 | 703 | if (!copy_name) |
0d5cff50 | 704 | gsymbol->name = linkage_name; |
04a679b8 TT |
705 | else |
706 | { | |
0d5cff50 DE |
707 | char *name = obstack_alloc (&objfile->objfile_obstack, len + 1); |
708 | ||
709 | memcpy (name, linkage_name, len); | |
710 | name[len] = '\0'; | |
711 | gsymbol->name = name; | |
04a679b8 | 712 | } |
29df156d | 713 | symbol_set_demangled_name (gsymbol, NULL, NULL); |
b06ead72 JB |
714 | |
715 | return; | |
716 | } | |
717 | ||
04a679b8 TT |
718 | if (objfile->demangled_names_hash == NULL) |
719 | create_demangled_names_hash (objfile); | |
720 | ||
980cae7a DC |
721 | /* The stabs reader generally provides names that are not |
722 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
723 | can just use the given copy, unless we're in the Java case. */ |
724 | if (gsymbol->language == language_java) | |
725 | { | |
726 | char *alloc_name; | |
d2a52b27 | 727 | |
433759f7 | 728 | lookup_len = len + JAVA_PREFIX_LEN; |
d2a52b27 DC |
729 | alloc_name = alloca (lookup_len + 1); |
730 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
731 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
732 | alloc_name[lookup_len] = '\0'; | |
733 | ||
734 | lookup_name = alloc_name; | |
735 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
736 | } | |
737 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 738 | { |
980cae7a DC |
739 | char *alloc_name; |
740 | ||
433759f7 | 741 | lookup_len = len; |
d2a52b27 | 742 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 743 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 744 | alloc_name[lookup_len] = '\0'; |
980cae7a | 745 | |
d2a52b27 | 746 | lookup_name = alloc_name; |
980cae7a | 747 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
748 | } |
749 | else | |
980cae7a | 750 | { |
d2a52b27 DC |
751 | lookup_len = len; |
752 | lookup_name = linkage_name; | |
980cae7a DC |
753 | linkage_name_copy = linkage_name; |
754 | } | |
2de7ced7 | 755 | |
04a679b8 TT |
756 | entry.mangled = (char *) lookup_name; |
757 | slot = ((struct demangled_name_entry **) | |
758 | htab_find_slot (objfile->demangled_names_hash, | |
759 | &entry, INSERT)); | |
2de7ced7 DJ |
760 | |
761 | /* If this name is not in the hash table, add it. */ | |
a766d390 DE |
762 | if (*slot == NULL |
763 | /* A C version of the symbol may have already snuck into the table. | |
764 | This happens to, e.g., main.init (__go_init_main). Cope. */ | |
765 | || (gsymbol->language == language_go | |
766 | && (*slot)->demangled[0] == '\0')) | |
2de7ced7 | 767 | { |
980cae7a DC |
768 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
769 | linkage_name_copy); | |
2de7ced7 DJ |
770 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
771 | ||
04a679b8 TT |
772 | /* Suppose we have demangled_name==NULL, copy_name==0, and |
773 | lookup_name==linkage_name. In this case, we already have the | |
774 | mangled name saved, and we don't have a demangled name. So, | |
775 | you might think we could save a little space by not recording | |
776 | this in the hash table at all. | |
777 | ||
778 | It turns out that it is actually important to still save such | |
779 | an entry in the hash table, because storing this name gives | |
705b5767 | 780 | us better bcache hit rates for partial symbols. */ |
04a679b8 TT |
781 | if (!copy_name && lookup_name == linkage_name) |
782 | { | |
783 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
784 | offsetof (struct demangled_name_entry, | |
785 | demangled) | |
786 | + demangled_len + 1); | |
787 | (*slot)->mangled = (char *) lookup_name; | |
788 | } | |
789 | else | |
790 | { | |
791 | /* If we must copy the mangled name, put it directly after | |
792 | the demangled name so we can have a single | |
793 | allocation. */ | |
794 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
795 | offsetof (struct demangled_name_entry, | |
796 | demangled) | |
797 | + lookup_len + demangled_len + 2); | |
798 | (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]); | |
799 | strcpy ((*slot)->mangled, lookup_name); | |
800 | } | |
801 | ||
980cae7a | 802 | if (demangled_name != NULL) |
2de7ced7 | 803 | { |
04a679b8 | 804 | strcpy ((*slot)->demangled, demangled_name); |
2de7ced7 DJ |
805 | xfree (demangled_name); |
806 | } | |
807 | else | |
04a679b8 | 808 | (*slot)->demangled[0] = '\0'; |
2de7ced7 DJ |
809 | } |
810 | ||
72dcaf82 | 811 | gsymbol->name = (*slot)->mangled + lookup_len - len; |
04a679b8 | 812 | if ((*slot)->demangled[0] != '\0') |
29df156d | 813 | symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile); |
2de7ced7 | 814 | else |
29df156d | 815 | symbol_set_demangled_name (gsymbol, NULL, objfile); |
2de7ced7 DJ |
816 | } |
817 | ||
22abf04a DC |
818 | /* Return the source code name of a symbol. In languages where |
819 | demangling is necessary, this is the demangled name. */ | |
820 | ||
0d5cff50 | 821 | const char * |
22abf04a DC |
822 | symbol_natural_name (const struct general_symbol_info *gsymbol) |
823 | { | |
9af17804 | 824 | switch (gsymbol->language) |
22abf04a | 825 | { |
1f8173e6 | 826 | case language_cplus: |
6aecb9c2 | 827 | case language_d: |
a766d390 | 828 | case language_go: |
1f8173e6 PH |
829 | case language_java: |
830 | case language_objc: | |
f55ee35c | 831 | case language_fortran: |
b250c185 SW |
832 | if (symbol_get_demangled_name (gsymbol) != NULL) |
833 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
834 | break; |
835 | case language_ada: | |
b250c185 SW |
836 | if (symbol_get_demangled_name (gsymbol) != NULL) |
837 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
838 | else |
839 | return ada_decode_symbol (gsymbol); | |
840 | break; | |
841 | default: | |
842 | break; | |
22abf04a | 843 | } |
1f8173e6 | 844 | return gsymbol->name; |
22abf04a DC |
845 | } |
846 | ||
9cc0d196 | 847 | /* Return the demangled name for a symbol based on the language for |
c378eb4e | 848 | that symbol. If no demangled name exists, return NULL. */ |
eca864fe | 849 | |
0d5cff50 | 850 | const char * |
df8a16a1 | 851 | symbol_demangled_name (const struct general_symbol_info *gsymbol) |
9cc0d196 | 852 | { |
c6e5ee5e SDJ |
853 | const char *dem_name = NULL; |
854 | ||
9af17804 | 855 | switch (gsymbol->language) |
1f8173e6 PH |
856 | { |
857 | case language_cplus: | |
6aecb9c2 | 858 | case language_d: |
a766d390 | 859 | case language_go: |
1f8173e6 PH |
860 | case language_java: |
861 | case language_objc: | |
f55ee35c | 862 | case language_fortran: |
c6e5ee5e | 863 | dem_name = symbol_get_demangled_name (gsymbol); |
1f8173e6 PH |
864 | break; |
865 | case language_ada: | |
c6e5ee5e SDJ |
866 | dem_name = symbol_get_demangled_name (gsymbol); |
867 | if (dem_name == NULL) | |
868 | dem_name = ada_decode_symbol (gsymbol); | |
1f8173e6 PH |
869 | break; |
870 | default: | |
871 | break; | |
872 | } | |
c6e5ee5e | 873 | return dem_name; |
9cc0d196 | 874 | } |
fe39c653 | 875 | |
4725b721 PH |
876 | /* Return the search name of a symbol---generally the demangled or |
877 | linkage name of the symbol, depending on how it will be searched for. | |
9af17804 | 878 | If there is no distinct demangled name, then returns the same value |
c378eb4e | 879 | (same pointer) as SYMBOL_LINKAGE_NAME. */ |
eca864fe | 880 | |
0d5cff50 | 881 | const char * |
fc062ac6 JB |
882 | symbol_search_name (const struct general_symbol_info *gsymbol) |
883 | { | |
1f8173e6 PH |
884 | if (gsymbol->language == language_ada) |
885 | return gsymbol->name; | |
886 | else | |
887 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
888 | } |
889 | ||
fe39c653 | 890 | /* Initialize the structure fields to zero values. */ |
eca864fe | 891 | |
fe39c653 EZ |
892 | void |
893 | init_sal (struct symtab_and_line *sal) | |
894 | { | |
6c95b8df | 895 | sal->pspace = NULL; |
fe39c653 EZ |
896 | sal->symtab = 0; |
897 | sal->section = 0; | |
898 | sal->line = 0; | |
899 | sal->pc = 0; | |
900 | sal->end = 0; | |
ed0616c6 VP |
901 | sal->explicit_pc = 0; |
902 | sal->explicit_line = 0; | |
55aa24fb | 903 | sal->probe = NULL; |
fe39c653 | 904 | } |
c906108c SS |
905 | \f |
906 | ||
94277a38 DJ |
907 | /* Return 1 if the two sections are the same, or if they could |
908 | plausibly be copies of each other, one in an original object | |
909 | file and another in a separated debug file. */ | |
910 | ||
911 | int | |
714835d5 UW |
912 | matching_obj_sections (struct obj_section *obj_first, |
913 | struct obj_section *obj_second) | |
94277a38 | 914 | { |
714835d5 UW |
915 | asection *first = obj_first? obj_first->the_bfd_section : NULL; |
916 | asection *second = obj_second? obj_second->the_bfd_section : NULL; | |
94277a38 DJ |
917 | struct objfile *obj; |
918 | ||
919 | /* If they're the same section, then they match. */ | |
920 | if (first == second) | |
921 | return 1; | |
922 | ||
923 | /* If either is NULL, give up. */ | |
924 | if (first == NULL || second == NULL) | |
925 | return 0; | |
926 | ||
927 | /* This doesn't apply to absolute symbols. */ | |
928 | if (first->owner == NULL || second->owner == NULL) | |
929 | return 0; | |
930 | ||
931 | /* If they're in the same object file, they must be different sections. */ | |
932 | if (first->owner == second->owner) | |
933 | return 0; | |
934 | ||
935 | /* Check whether the two sections are potentially corresponding. They must | |
936 | have the same size, address, and name. We can't compare section indexes, | |
937 | which would be more reliable, because some sections may have been | |
938 | stripped. */ | |
939 | if (bfd_get_section_size (first) != bfd_get_section_size (second)) | |
940 | return 0; | |
941 | ||
818f79f6 | 942 | /* In-memory addresses may start at a different offset, relativize them. */ |
94277a38 | 943 | if (bfd_get_section_vma (first->owner, first) |
818f79f6 DJ |
944 | - bfd_get_start_address (first->owner) |
945 | != bfd_get_section_vma (second->owner, second) | |
946 | - bfd_get_start_address (second->owner)) | |
94277a38 DJ |
947 | return 0; |
948 | ||
949 | if (bfd_get_section_name (first->owner, first) == NULL | |
950 | || bfd_get_section_name (second->owner, second) == NULL | |
951 | || strcmp (bfd_get_section_name (first->owner, first), | |
952 | bfd_get_section_name (second->owner, second)) != 0) | |
953 | return 0; | |
954 | ||
955 | /* Otherwise check that they are in corresponding objfiles. */ | |
956 | ||
957 | ALL_OBJFILES (obj) | |
958 | if (obj->obfd == first->owner) | |
959 | break; | |
960 | gdb_assert (obj != NULL); | |
961 | ||
962 | if (obj->separate_debug_objfile != NULL | |
963 | && obj->separate_debug_objfile->obfd == second->owner) | |
964 | return 1; | |
965 | if (obj->separate_debug_objfile_backlink != NULL | |
966 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
967 | return 1; | |
968 | ||
969 | return 0; | |
970 | } | |
c5aa993b | 971 | |
ccefe4c4 TT |
972 | struct symtab * |
973 | find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section) | |
c906108c | 974 | { |
52f0bd74 | 975 | struct objfile *objfile; |
8a48e967 DJ |
976 | struct minimal_symbol *msymbol; |
977 | ||
978 | /* If we know that this is not a text address, return failure. This is | |
979 | necessary because we loop based on texthigh and textlow, which do | |
980 | not include the data ranges. */ | |
981 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
982 | if (msymbol | |
712f90be TT |
983 | && (MSYMBOL_TYPE (msymbol) == mst_data |
984 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
985 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
986 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
987 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 988 | return NULL; |
c906108c | 989 | |
ff013f42 | 990 | ALL_OBJFILES (objfile) |
ccefe4c4 TT |
991 | { |
992 | struct symtab *result = NULL; | |
433759f7 | 993 | |
ccefe4c4 TT |
994 | if (objfile->sf) |
995 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol, | |
996 | pc, section, 0); | |
997 | if (result) | |
998 | return result; | |
999 | } | |
ff013f42 JK |
1000 | |
1001 | return NULL; | |
c906108c | 1002 | } |
c906108c SS |
1003 | \f |
1004 | /* Debug symbols usually don't have section information. We need to dig that | |
1005 | out of the minimal symbols and stash that in the debug symbol. */ | |
1006 | ||
ccefe4c4 | 1007 | void |
907fc202 UW |
1008 | fixup_section (struct general_symbol_info *ginfo, |
1009 | CORE_ADDR addr, struct objfile *objfile) | |
c906108c SS |
1010 | { |
1011 | struct minimal_symbol *msym; | |
c906108c | 1012 | |
bccdca4a UW |
1013 | /* First, check whether a minimal symbol with the same name exists |
1014 | and points to the same address. The address check is required | |
1015 | e.g. on PowerPC64, where the minimal symbol for a function will | |
1016 | point to the function descriptor, while the debug symbol will | |
1017 | point to the actual function code. */ | |
907fc202 UW |
1018 | msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); |
1019 | if (msym) | |
7a78d0ee | 1020 | { |
714835d5 | 1021 | ginfo->obj_section = SYMBOL_OBJ_SECTION (msym); |
7a78d0ee KB |
1022 | ginfo->section = SYMBOL_SECTION (msym); |
1023 | } | |
907fc202 | 1024 | else |
19e2d14b KB |
1025 | { |
1026 | /* Static, function-local variables do appear in the linker | |
1027 | (minimal) symbols, but are frequently given names that won't | |
1028 | be found via lookup_minimal_symbol(). E.g., it has been | |
1029 | observed in frv-uclinux (ELF) executables that a static, | |
1030 | function-local variable named "foo" might appear in the | |
1031 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
1032 | point in attempting to extend the lookup-by-name mechanism to | |
1033 | handle this case due to the fact that there can be multiple | |
1034 | names. | |
9af17804 | 1035 | |
19e2d14b KB |
1036 | So, instead, search the section table when lookup by name has |
1037 | failed. The ``addr'' and ``endaddr'' fields may have already | |
1038 | been relocated. If so, the relocation offset (i.e. the | |
1039 | ANOFFSET value) needs to be subtracted from these values when | |
1040 | performing the comparison. We unconditionally subtract it, | |
1041 | because, when no relocation has been performed, the ANOFFSET | |
1042 | value will simply be zero. | |
9af17804 | 1043 | |
19e2d14b KB |
1044 | The address of the symbol whose section we're fixing up HAS |
1045 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
1046 | the section isn't yet known and knowing the section is | |
1047 | necessary in order to add the correct relocation value. In | |
1048 | other words, we wouldn't even be in this function (attempting | |
1049 | to compute the section) if it were already known. | |
1050 | ||
1051 | Note that it is possible to search the minimal symbols | |
1052 | (subtracting the relocation value if necessary) to find the | |
1053 | matching minimal symbol, but this is overkill and much less | |
1054 | efficient. It is not necessary to find the matching minimal | |
9af17804 DE |
1055 | symbol, only its section. |
1056 | ||
19e2d14b KB |
1057 | Note that this technique (of doing a section table search) |
1058 | can fail when unrelocated section addresses overlap. For | |
1059 | this reason, we still attempt a lookup by name prior to doing | |
1060 | a search of the section table. */ | |
9af17804 | 1061 | |
19e2d14b | 1062 | struct obj_section *s; |
433759f7 | 1063 | |
19e2d14b KB |
1064 | ALL_OBJFILE_OSECTIONS (objfile, s) |
1065 | { | |
1066 | int idx = s->the_bfd_section->index; | |
1067 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); | |
1068 | ||
f1f6aadf PA |
1069 | if (obj_section_addr (s) - offset <= addr |
1070 | && addr < obj_section_endaddr (s) - offset) | |
19e2d14b | 1071 | { |
714835d5 | 1072 | ginfo->obj_section = s; |
19e2d14b KB |
1073 | ginfo->section = idx; |
1074 | return; | |
1075 | } | |
1076 | } | |
1077 | } | |
c906108c SS |
1078 | } |
1079 | ||
1080 | struct symbol * | |
fba45db2 | 1081 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c | 1082 | { |
907fc202 UW |
1083 | CORE_ADDR addr; |
1084 | ||
c906108c SS |
1085 | if (!sym) |
1086 | return NULL; | |
1087 | ||
714835d5 | 1088 | if (SYMBOL_OBJ_SECTION (sym)) |
c906108c SS |
1089 | return sym; |
1090 | ||
907fc202 UW |
1091 | /* We either have an OBJFILE, or we can get at it from the sym's |
1092 | symtab. Anything else is a bug. */ | |
1093 | gdb_assert (objfile || SYMBOL_SYMTAB (sym)); | |
1094 | ||
1095 | if (objfile == NULL) | |
1096 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
1097 | ||
1098 | /* We should have an objfile by now. */ | |
1099 | gdb_assert (objfile); | |
1100 | ||
1101 | switch (SYMBOL_CLASS (sym)) | |
1102 | { | |
1103 | case LOC_STATIC: | |
1104 | case LOC_LABEL: | |
907fc202 UW |
1105 | addr = SYMBOL_VALUE_ADDRESS (sym); |
1106 | break; | |
1107 | case LOC_BLOCK: | |
1108 | addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1109 | break; | |
1110 | ||
1111 | default: | |
1112 | /* Nothing else will be listed in the minsyms -- no use looking | |
1113 | it up. */ | |
1114 | return sym; | |
1115 | } | |
1116 | ||
1117 | fixup_section (&sym->ginfo, addr, objfile); | |
c906108c SS |
1118 | |
1119 | return sym; | |
1120 | } | |
1121 | ||
f8eba3c6 TT |
1122 | /* Compute the demangled form of NAME as used by the various symbol |
1123 | lookup functions. The result is stored in *RESULT_NAME. Returns a | |
1124 | cleanup which can be used to clean up the result. | |
1125 | ||
1126 | For Ada, this function just sets *RESULT_NAME to NAME, unmodified. | |
1127 | Normally, Ada symbol lookups are performed using the encoded name | |
1128 | rather than the demangled name, and so it might seem to make sense | |
1129 | for this function to return an encoded version of NAME. | |
1130 | Unfortunately, we cannot do this, because this function is used in | |
1131 | circumstances where it is not appropriate to try to encode NAME. | |
1132 | For instance, when displaying the frame info, we demangle the name | |
1133 | of each parameter, and then perform a symbol lookup inside our | |
1134 | function using that demangled name. In Ada, certain functions | |
1135 | have internally-generated parameters whose name contain uppercase | |
1136 | characters. Encoding those name would result in those uppercase | |
1137 | characters to become lowercase, and thus cause the symbol lookup | |
1138 | to fail. */ | |
c906108c | 1139 | |
f8eba3c6 TT |
1140 | struct cleanup * |
1141 | demangle_for_lookup (const char *name, enum language lang, | |
1142 | const char **result_name) | |
c906108c | 1143 | { |
729051e6 DJ |
1144 | char *demangled_name = NULL; |
1145 | const char *modified_name = NULL; | |
9ee6bb93 | 1146 | struct cleanup *cleanup = make_cleanup (null_cleanup, 0); |
c906108c | 1147 | |
729051e6 DJ |
1148 | modified_name = name; |
1149 | ||
a766d390 | 1150 | /* If we are using C++, D, Go, or Java, demangle the name before doing a |
c378eb4e | 1151 | lookup, so we can always binary search. */ |
53c5240f | 1152 | if (lang == language_cplus) |
729051e6 DJ |
1153 | { |
1154 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1155 | if (demangled_name) | |
1156 | { | |
729051e6 | 1157 | modified_name = demangled_name; |
9ee6bb93 | 1158 | make_cleanup (xfree, demangled_name); |
729051e6 | 1159 | } |
71c25dea TT |
1160 | else |
1161 | { | |
1162 | /* If we were given a non-mangled name, canonicalize it | |
1163 | according to the language (so far only for C++). */ | |
1164 | demangled_name = cp_canonicalize_string (name); | |
1165 | if (demangled_name) | |
1166 | { | |
1167 | modified_name = demangled_name; | |
1168 | make_cleanup (xfree, demangled_name); | |
1169 | } | |
1170 | } | |
729051e6 | 1171 | } |
53c5240f | 1172 | else if (lang == language_java) |
987504bb | 1173 | { |
9af17804 | 1174 | demangled_name = cplus_demangle (name, |
987504bb JJ |
1175 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); |
1176 | if (demangled_name) | |
1177 | { | |
987504bb | 1178 | modified_name = demangled_name; |
9ee6bb93 | 1179 | make_cleanup (xfree, demangled_name); |
987504bb JJ |
1180 | } |
1181 | } | |
6aecb9c2 JB |
1182 | else if (lang == language_d) |
1183 | { | |
1184 | demangled_name = d_demangle (name, 0); | |
1185 | if (demangled_name) | |
1186 | { | |
1187 | modified_name = demangled_name; | |
1188 | make_cleanup (xfree, demangled_name); | |
1189 | } | |
1190 | } | |
a766d390 DE |
1191 | else if (lang == language_go) |
1192 | { | |
1193 | demangled_name = go_demangle (name, 0); | |
1194 | if (demangled_name) | |
1195 | { | |
1196 | modified_name = demangled_name; | |
1197 | make_cleanup (xfree, demangled_name); | |
1198 | } | |
1199 | } | |
729051e6 | 1200 | |
f8eba3c6 TT |
1201 | *result_name = modified_name; |
1202 | return cleanup; | |
1203 | } | |
1204 | ||
1205 | /* Find the definition for a specified symbol name NAME | |
1206 | in domain DOMAIN, visible from lexical block BLOCK. | |
1207 | Returns the struct symbol pointer, or zero if no symbol is found. | |
1208 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if | |
1209 | NAME is a field of the current implied argument `this'. If so set | |
1210 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. | |
1211 | BLOCK_FOUND is set to the block in which NAME is found (in the case of | |
1212 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
1213 | ||
7e082072 DE |
1214 | /* This function (or rather its subordinates) have a bunch of loops and |
1215 | it would seem to be attractive to put in some QUIT's (though I'm not really | |
1216 | sure whether it can run long enough to be really important). But there | |
f8eba3c6 | 1217 | are a few calls for which it would appear to be bad news to quit |
7e082072 | 1218 | out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note |
f8eba3c6 TT |
1219 | that there is C++ code below which can error(), but that probably |
1220 | doesn't affect these calls since they are looking for a known | |
1221 | variable and thus can probably assume it will never hit the C++ | |
1222 | code). */ | |
1223 | ||
1224 | struct symbol * | |
1225 | lookup_symbol_in_language (const char *name, const struct block *block, | |
1226 | const domain_enum domain, enum language lang, | |
1227 | int *is_a_field_of_this) | |
1228 | { | |
1229 | const char *modified_name; | |
1230 | struct symbol *returnval; | |
1231 | struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name); | |
1232 | ||
94af9270 | 1233 | returnval = lookup_symbol_aux (modified_name, block, domain, lang, |
774b6a14 | 1234 | is_a_field_of_this); |
9ee6bb93 | 1235 | do_cleanups (cleanup); |
fba7f19c | 1236 | |
9af17804 | 1237 | return returnval; |
fba7f19c EZ |
1238 | } |
1239 | ||
53c5240f PA |
1240 | /* Behave like lookup_symbol_in_language, but performed with the |
1241 | current language. */ | |
1242 | ||
1243 | struct symbol * | |
1244 | lookup_symbol (const char *name, const struct block *block, | |
2570f2b7 | 1245 | domain_enum domain, int *is_a_field_of_this) |
53c5240f PA |
1246 | { |
1247 | return lookup_symbol_in_language (name, block, domain, | |
1248 | current_language->la_language, | |
2570f2b7 | 1249 | is_a_field_of_this); |
53c5240f PA |
1250 | } |
1251 | ||
66a17cb6 TT |
1252 | /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if |
1253 | found, or NULL if not found. */ | |
1254 | ||
1255 | struct symbol * | |
1256 | lookup_language_this (const struct language_defn *lang, | |
1257 | const struct block *block) | |
1258 | { | |
1259 | if (lang->la_name_of_this == NULL || block == NULL) | |
1260 | return NULL; | |
1261 | ||
03de6823 | 1262 | while (block) |
66a17cb6 TT |
1263 | { |
1264 | struct symbol *sym; | |
1265 | ||
1266 | sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN); | |
1267 | if (sym != NULL) | |
f149aabd TT |
1268 | { |
1269 | block_found = block; | |
1270 | return sym; | |
1271 | } | |
66a17cb6 | 1272 | if (BLOCK_FUNCTION (block)) |
03de6823 | 1273 | break; |
66a17cb6 TT |
1274 | block = BLOCK_SUPERBLOCK (block); |
1275 | } | |
03de6823 TT |
1276 | |
1277 | return NULL; | |
66a17cb6 TT |
1278 | } |
1279 | ||
53c5240f | 1280 | /* Behave like lookup_symbol except that NAME is the natural name |
7e082072 | 1281 | (e.g., demangled name) of the symbol that we're looking for. */ |
5ad1c190 | 1282 | |
fba7f19c | 1283 | static struct symbol * |
94af9270 KS |
1284 | lookup_symbol_aux (const char *name, const struct block *block, |
1285 | const domain_enum domain, enum language language, | |
774b6a14 | 1286 | int *is_a_field_of_this) |
fba7f19c | 1287 | { |
8155455b | 1288 | struct symbol *sym; |
53c5240f | 1289 | const struct language_defn *langdef; |
406bc4de | 1290 | |
9a146a11 EZ |
1291 | /* Make sure we do something sensible with is_a_field_of_this, since |
1292 | the callers that set this parameter to some non-null value will | |
1293 | certainly use it later and expect it to be either 0 or 1. | |
1294 | If we don't set it, the contents of is_a_field_of_this are | |
1295 | undefined. */ | |
1296 | if (is_a_field_of_this != NULL) | |
1297 | *is_a_field_of_this = 0; | |
1298 | ||
e4051eeb DC |
1299 | /* Search specified block and its superiors. Don't search |
1300 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1301 | |
13387711 | 1302 | sym = lookup_symbol_aux_local (name, block, domain, language); |
8155455b DC |
1303 | if (sym != NULL) |
1304 | return sym; | |
c906108c | 1305 | |
53c5240f | 1306 | /* If requested to do so by the caller and if appropriate for LANGUAGE, |
13387711 | 1307 | check to see if NAME is a field of `this'. */ |
53c5240f PA |
1308 | |
1309 | langdef = language_def (language); | |
5f9a71c3 | 1310 | |
66a17cb6 | 1311 | if (is_a_field_of_this != NULL) |
c906108c | 1312 | { |
66a17cb6 | 1313 | struct symbol *sym = lookup_language_this (langdef, block); |
2b2d9e11 | 1314 | |
2b2d9e11 | 1315 | if (sym) |
c906108c | 1316 | { |
2b2d9e11 | 1317 | struct type *t = sym->type; |
9af17804 | 1318 | |
2b2d9e11 VP |
1319 | /* I'm not really sure that type of this can ever |
1320 | be typedefed; just be safe. */ | |
1321 | CHECK_TYPEDEF (t); | |
1322 | if (TYPE_CODE (t) == TYPE_CODE_PTR | |
1323 | || TYPE_CODE (t) == TYPE_CODE_REF) | |
1324 | t = TYPE_TARGET_TYPE (t); | |
9af17804 | 1325 | |
2b2d9e11 VP |
1326 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1327 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
9af17804 | 1328 | error (_("Internal error: `%s' is not an aggregate"), |
2b2d9e11 | 1329 | langdef->la_name_of_this); |
9af17804 | 1330 | |
2b2d9e11 VP |
1331 | if (check_field (t, name)) |
1332 | { | |
1333 | *is_a_field_of_this = 1; | |
2b2d9e11 VP |
1334 | return NULL; |
1335 | } | |
c906108c SS |
1336 | } |
1337 | } | |
1338 | ||
53c5240f | 1339 | /* Now do whatever is appropriate for LANGUAGE to look |
774b6a14 | 1340 | up static and global variables. */ |
c906108c | 1341 | |
774b6a14 TT |
1342 | sym = langdef->la_lookup_symbol_nonlocal (name, block, domain); |
1343 | if (sym != NULL) | |
1344 | return sym; | |
c906108c | 1345 | |
774b6a14 TT |
1346 | /* Now search all static file-level symbols. Not strictly correct, |
1347 | but more useful than an error. */ | |
41f62f39 JK |
1348 | |
1349 | return lookup_static_symbol_aux (name, domain); | |
1350 | } | |
1351 | ||
1352 | /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs | |
1353 | first, then check the psymtabs. If a psymtab indicates the existence of the | |
1354 | desired name as a file-level static, then do psymtab-to-symtab conversion on | |
c378eb4e | 1355 | the fly and return the found symbol. */ |
41f62f39 JK |
1356 | |
1357 | struct symbol * | |
1358 | lookup_static_symbol_aux (const char *name, const domain_enum domain) | |
1359 | { | |
1360 | struct objfile *objfile; | |
1361 | struct symbol *sym; | |
c906108c | 1362 | |
99a547d6 | 1363 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain, NULL); |
8155455b DC |
1364 | if (sym != NULL) |
1365 | return sym; | |
9af17804 | 1366 | |
ccefe4c4 TT |
1367 | ALL_OBJFILES (objfile) |
1368 | { | |
1369 | sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain); | |
1370 | if (sym != NULL) | |
1371 | return sym; | |
1372 | } | |
c906108c | 1373 | |
8155455b | 1374 | return NULL; |
c906108c | 1375 | } |
8155455b | 1376 | |
e4051eeb | 1377 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1378 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1379 | |
1380 | static struct symbol * | |
94af9270 | 1381 | lookup_symbol_aux_local (const char *name, const struct block *block, |
13387711 SW |
1382 | const domain_enum domain, |
1383 | enum language language) | |
8155455b DC |
1384 | { |
1385 | struct symbol *sym; | |
89a9d1b1 | 1386 | const struct block *static_block = block_static_block (block); |
13387711 SW |
1387 | const char *scope = block_scope (block); |
1388 | ||
e4051eeb DC |
1389 | /* Check if either no block is specified or it's a global block. */ |
1390 | ||
89a9d1b1 DC |
1391 | if (static_block == NULL) |
1392 | return NULL; | |
e4051eeb | 1393 | |
89a9d1b1 | 1394 | while (block != static_block) |
f61e8913 | 1395 | { |
94af9270 | 1396 | sym = lookup_symbol_aux_block (name, block, domain); |
f61e8913 DC |
1397 | if (sym != NULL) |
1398 | return sym; | |
edb3359d | 1399 | |
f55ee35c | 1400 | if (language == language_cplus || language == language_fortran) |
13387711 | 1401 | { |
34eaf542 TT |
1402 | sym = cp_lookup_symbol_imports_or_template (scope, name, block, |
1403 | domain); | |
13387711 SW |
1404 | if (sym != NULL) |
1405 | return sym; | |
1406 | } | |
1407 | ||
edb3359d DJ |
1408 | if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) |
1409 | break; | |
f61e8913 DC |
1410 | block = BLOCK_SUPERBLOCK (block); |
1411 | } | |
1412 | ||
edb3359d | 1413 | /* We've reached the edge of the function without finding a result. */ |
e4051eeb | 1414 | |
f61e8913 DC |
1415 | return NULL; |
1416 | } | |
1417 | ||
3a40aaa0 UW |
1418 | /* Look up OBJFILE to BLOCK. */ |
1419 | ||
c0201579 | 1420 | struct objfile * |
3a40aaa0 UW |
1421 | lookup_objfile_from_block (const struct block *block) |
1422 | { | |
1423 | struct objfile *obj; | |
1424 | struct symtab *s; | |
1425 | ||
1426 | if (block == NULL) | |
1427 | return NULL; | |
1428 | ||
1429 | block = block_global_block (block); | |
1430 | /* Go through SYMTABS. */ | |
1431 | ALL_SYMTABS (obj, s) | |
1432 | if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)) | |
61f0d762 JK |
1433 | { |
1434 | if (obj->separate_debug_objfile_backlink) | |
1435 | obj = obj->separate_debug_objfile_backlink; | |
1436 | ||
1437 | return obj; | |
1438 | } | |
3a40aaa0 UW |
1439 | |
1440 | return NULL; | |
1441 | } | |
1442 | ||
6c9353d3 PA |
1443 | /* Look up a symbol in a block; if found, fixup the symbol, and set |
1444 | block_found appropriately. */ | |
f61e8913 | 1445 | |
5f9a71c3 | 1446 | struct symbol * |
94af9270 | 1447 | lookup_symbol_aux_block (const char *name, const struct block *block, |
21b556f4 | 1448 | const domain_enum domain) |
f61e8913 DC |
1449 | { |
1450 | struct symbol *sym; | |
f61e8913 | 1451 | |
94af9270 | 1452 | sym = lookup_block_symbol (block, name, domain); |
f61e8913 | 1453 | if (sym) |
8155455b | 1454 | { |
f61e8913 | 1455 | block_found = block; |
21b556f4 | 1456 | return fixup_symbol_section (sym, NULL); |
8155455b DC |
1457 | } |
1458 | ||
1459 | return NULL; | |
1460 | } | |
1461 | ||
3a40aaa0 UW |
1462 | /* Check all global symbols in OBJFILE in symtabs and |
1463 | psymtabs. */ | |
1464 | ||
1465 | struct symbol * | |
15d123c9 | 1466 | lookup_global_symbol_from_objfile (const struct objfile *main_objfile, |
3a40aaa0 | 1467 | const char *name, |
21b556f4 | 1468 | const domain_enum domain) |
3a40aaa0 | 1469 | { |
15d123c9 | 1470 | const struct objfile *objfile; |
3a40aaa0 UW |
1471 | struct symbol *sym; |
1472 | struct blockvector *bv; | |
1473 | const struct block *block; | |
1474 | struct symtab *s; | |
3a40aaa0 | 1475 | |
15d123c9 TG |
1476 | for (objfile = main_objfile; |
1477 | objfile; | |
1478 | objfile = objfile_separate_debug_iterate (main_objfile, objfile)) | |
1479 | { | |
1480 | /* Go through symtabs. */ | |
78e5175a DE |
1481 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
1482 | { | |
1483 | bv = BLOCKVECTOR (s); | |
1484 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1485 | sym = lookup_block_symbol (block, name, domain); | |
1486 | if (sym) | |
1487 | { | |
1488 | block_found = block; | |
1489 | return fixup_symbol_section (sym, (struct objfile *)objfile); | |
1490 | } | |
1491 | } | |
15d123c9 | 1492 | |
ccefe4c4 TT |
1493 | sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK, |
1494 | name, domain); | |
1495 | if (sym) | |
1496 | return sym; | |
15d123c9 | 1497 | } |
56e3f43c | 1498 | |
3a40aaa0 UW |
1499 | return NULL; |
1500 | } | |
1501 | ||
99a547d6 JB |
1502 | /* Check to see if the symbol is defined in one of the OBJFILE's |
1503 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
8155455b DC |
1504 | depending on whether or not we want to search global symbols or |
1505 | static symbols. */ | |
1506 | ||
1507 | static struct symbol * | |
99a547d6 JB |
1508 | lookup_symbol_aux_objfile (struct objfile *objfile, int block_index, |
1509 | const char *name, const domain_enum domain) | |
8155455b | 1510 | { |
99a547d6 | 1511 | struct symbol *sym = NULL; |
8155455b DC |
1512 | struct blockvector *bv; |
1513 | const struct block *block; | |
1514 | struct symtab *s; | |
1515 | ||
99a547d6 JB |
1516 | if (objfile->sf) |
1517 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index, | |
1518 | name, domain); | |
1519 | ||
d790cf0a DE |
1520 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
1521 | { | |
1522 | bv = BLOCKVECTOR (s); | |
1523 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
1524 | sym = lookup_block_symbol (block, name, domain); | |
1525 | if (sym) | |
1526 | { | |
1527 | block_found = block; | |
1528 | return fixup_symbol_section (sym, objfile); | |
1529 | } | |
1530 | } | |
99a547d6 JB |
1531 | |
1532 | return NULL; | |
1533 | } | |
1534 | ||
1535 | /* Same as lookup_symbol_aux_objfile, except that it searches all | |
1536 | objfiles except for EXCLUDE_OBJFILE. Return the first match found. | |
1537 | ||
1538 | If EXCLUDE_OBJFILE is NULL, then all objfiles are searched. */ | |
1539 | ||
1540 | static struct symbol * | |
1541 | lookup_symbol_aux_symtabs (int block_index, const char *name, | |
1542 | const domain_enum domain, | |
1543 | struct objfile *exclude_objfile) | |
1544 | { | |
1545 | struct symbol *sym; | |
1546 | struct objfile *objfile; | |
1547 | ||
58b6ab13 | 1548 | ALL_OBJFILES (objfile) |
8155455b | 1549 | { |
99a547d6 JB |
1550 | if (objfile != exclude_objfile) |
1551 | { | |
1552 | sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain); | |
1553 | if (sym) | |
1554 | return sym; | |
1555 | } | |
8155455b DC |
1556 | } |
1557 | ||
1558 | return NULL; | |
1559 | } | |
1560 | ||
ccefe4c4 TT |
1561 | /* A helper function for lookup_symbol_aux that interfaces with the |
1562 | "quick" symbol table functions. */ | |
8155455b DC |
1563 | |
1564 | static struct symbol * | |
ccefe4c4 TT |
1565 | lookup_symbol_aux_quick (struct objfile *objfile, int kind, |
1566 | const char *name, const domain_enum domain) | |
8155455b | 1567 | { |
ccefe4c4 | 1568 | struct symtab *symtab; |
8155455b DC |
1569 | struct blockvector *bv; |
1570 | const struct block *block; | |
ccefe4c4 | 1571 | struct symbol *sym; |
8155455b | 1572 | |
ccefe4c4 TT |
1573 | if (!objfile->sf) |
1574 | return NULL; | |
1575 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain); | |
1576 | if (!symtab) | |
1577 | return NULL; | |
8155455b | 1578 | |
ccefe4c4 TT |
1579 | bv = BLOCKVECTOR (symtab); |
1580 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1581 | sym = lookup_block_symbol (block, name, domain); | |
1582 | if (!sym) | |
1583 | { | |
1584 | /* This shouldn't be necessary, but as a last resort try | |
1585 | looking in the statics even though the psymtab claimed | |
c378eb4e | 1586 | the symbol was global, or vice-versa. It's possible |
ccefe4c4 TT |
1587 | that the psymtab gets it wrong in some cases. */ |
1588 | ||
1589 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1590 | If that happens, isn't it likely to be a GDB error, in | |
1591 | which case we should fix the GDB error rather than | |
1592 | silently dealing with it here? So I'd vote for | |
1593 | removing the check for the symbol in the other | |
1594 | block. */ | |
1595 | block = BLOCKVECTOR_BLOCK (bv, | |
1596 | kind == GLOBAL_BLOCK ? | |
1597 | STATIC_BLOCK : GLOBAL_BLOCK); | |
1598 | sym = lookup_block_symbol (block, name, domain); | |
1599 | if (!sym) | |
3e43a32a MS |
1600 | error (_("\ |
1601 | Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ | |
1602 | %s may be an inlined function, or may be a template function\n\ | |
1603 | (if a template, try specifying an instantiation: %s<type>)."), | |
ccefe4c4 TT |
1604 | kind == GLOBAL_BLOCK ? "global" : "static", |
1605 | name, symtab->filename, name, name); | |
1606 | } | |
1607 | return fixup_symbol_section (sym, objfile); | |
8155455b DC |
1608 | } |
1609 | ||
5f9a71c3 DC |
1610 | /* A default version of lookup_symbol_nonlocal for use by languages |
1611 | that can't think of anything better to do. This implements the C | |
1612 | lookup rules. */ | |
1613 | ||
1614 | struct symbol * | |
1615 | basic_lookup_symbol_nonlocal (const char *name, | |
5f9a71c3 | 1616 | const struct block *block, |
21b556f4 | 1617 | const domain_enum domain) |
5f9a71c3 DC |
1618 | { |
1619 | struct symbol *sym; | |
1620 | ||
1621 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1622 | this (or what turned into this) was part of lookup_symbol_aux; | |
1623 | I'm much less worried about these questions now, since these | |
1624 | decisions have turned out well, but I leave these comments here | |
1625 | for posterity. */ | |
1626 | ||
1627 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1628 | not it would be appropriate to search the current global block | |
1629 | here as well. (That's what this code used to do before the | |
1630 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1631 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1632 | next. On the other hand, if decode_line_1 is passed an argument | |
1633 | like filename:var, then the user presumably wants 'var' to be | |
1634 | searched for in filename. On the third hand, there shouldn't be | |
1635 | multiple global variables all of which are named 'var', and it's | |
1636 | not like decode_line_1 has ever restricted its search to only | |
1637 | global variables in a single filename. All in all, only | |
1638 | searching the static block here seems best: it's correct and it's | |
1639 | cleanest. */ | |
1640 | ||
1641 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1642 | issue here: if you usually search for global symbols in the | |
1643 | current file, then it would be slightly better to search the | |
1644 | current global block before searching all the symtabs. But there | |
1645 | are other factors that have a much greater effect on performance | |
1646 | than that one, so I don't think we should worry about that for | |
1647 | now. */ | |
1648 | ||
94af9270 | 1649 | sym = lookup_symbol_static (name, block, domain); |
5f9a71c3 DC |
1650 | if (sym != NULL) |
1651 | return sym; | |
1652 | ||
94af9270 | 1653 | return lookup_symbol_global (name, block, domain); |
5f9a71c3 DC |
1654 | } |
1655 | ||
1656 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1657 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1658 | ||
1659 | struct symbol * | |
1660 | lookup_symbol_static (const char *name, | |
5f9a71c3 | 1661 | const struct block *block, |
21b556f4 | 1662 | const domain_enum domain) |
5f9a71c3 DC |
1663 | { |
1664 | const struct block *static_block = block_static_block (block); | |
1665 | ||
1666 | if (static_block != NULL) | |
94af9270 | 1667 | return lookup_symbol_aux_block (name, static_block, domain); |
5f9a71c3 DC |
1668 | else |
1669 | return NULL; | |
1670 | } | |
1671 | ||
1672 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1673 | necessary). */ | |
1674 | ||
1675 | struct symbol * | |
1676 | lookup_symbol_global (const char *name, | |
3a40aaa0 | 1677 | const struct block *block, |
21b556f4 | 1678 | const domain_enum domain) |
5f9a71c3 | 1679 | { |
3a40aaa0 | 1680 | struct symbol *sym = NULL; |
99a547d6 | 1681 | struct objfile *block_objfile = NULL; |
3a40aaa0 UW |
1682 | struct objfile *objfile = NULL; |
1683 | ||
1684 | /* Call library-specific lookup procedure. */ | |
99a547d6 JB |
1685 | block_objfile = lookup_objfile_from_block (block); |
1686 | if (block_objfile != NULL) | |
1687 | sym = solib_global_lookup (block_objfile, name, domain); | |
3a40aaa0 UW |
1688 | if (sym != NULL) |
1689 | return sym; | |
5f9a71c3 | 1690 | |
99a547d6 JB |
1691 | /* If BLOCK_OBJFILE is not NULL, then search this objfile first. |
1692 | In case the global symbol is defined in multiple objfiles, | |
1693 | we have a better chance of finding the most relevant symbol. */ | |
1694 | ||
1695 | if (block_objfile != NULL) | |
1696 | { | |
1697 | sym = lookup_symbol_aux_objfile (block_objfile, GLOBAL_BLOCK, | |
1698 | name, domain); | |
1699 | if (sym == NULL) | |
1700 | sym = lookup_symbol_aux_quick (block_objfile, GLOBAL_BLOCK, | |
1701 | name, domain); | |
1702 | if (sym != NULL) | |
1703 | return sym; | |
1704 | } | |
1705 | ||
1706 | /* Symbol not found in the BLOCK_OBJFILE, so try all the other | |
1707 | objfiles, starting with symtabs first, and then partial symtabs. */ | |
1708 | ||
1709 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain, block_objfile); | |
5f9a71c3 DC |
1710 | if (sym != NULL) |
1711 | return sym; | |
1712 | ||
ccefe4c4 TT |
1713 | ALL_OBJFILES (objfile) |
1714 | { | |
99a547d6 JB |
1715 | if (objfile != block_objfile) |
1716 | { | |
1717 | sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain); | |
1718 | if (sym) | |
1719 | return sym; | |
1720 | } | |
ccefe4c4 TT |
1721 | } |
1722 | ||
1723 | return NULL; | |
5f9a71c3 DC |
1724 | } |
1725 | ||
5eeb2539 | 1726 | int |
9af17804 | 1727 | symbol_matches_domain (enum language symbol_language, |
5eeb2539 AR |
1728 | domain_enum symbol_domain, |
1729 | domain_enum domain) | |
1730 | { | |
9af17804 | 1731 | /* For C++ "struct foo { ... }" also defines a typedef for "foo". |
5eeb2539 AR |
1732 | A Java class declaration also defines a typedef for the class. |
1733 | Similarly, any Ada type declaration implicitly defines a typedef. */ | |
1734 | if (symbol_language == language_cplus | |
6aecb9c2 | 1735 | || symbol_language == language_d |
5eeb2539 AR |
1736 | || symbol_language == language_java |
1737 | || symbol_language == language_ada) | |
1738 | { | |
1739 | if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) | |
1740 | && symbol_domain == STRUCT_DOMAIN) | |
1741 | return 1; | |
1742 | } | |
1743 | /* For all other languages, strict match is required. */ | |
1744 | return (symbol_domain == domain); | |
1745 | } | |
1746 | ||
ccefe4c4 TT |
1747 | /* Look up a type named NAME in the struct_domain. The type returned |
1748 | must not be opaque -- i.e., must have at least one field | |
1749 | defined. */ | |
c906108c | 1750 | |
ccefe4c4 TT |
1751 | struct type * |
1752 | lookup_transparent_type (const char *name) | |
c906108c | 1753 | { |
ccefe4c4 TT |
1754 | return current_language->la_lookup_transparent_type (name); |
1755 | } | |
9af17804 | 1756 | |
ccefe4c4 TT |
1757 | /* A helper for basic_lookup_transparent_type that interfaces with the |
1758 | "quick" symbol table functions. */ | |
357e46e7 | 1759 | |
ccefe4c4 TT |
1760 | static struct type * |
1761 | basic_lookup_transparent_type_quick (struct objfile *objfile, int kind, | |
1762 | const char *name) | |
1763 | { | |
1764 | struct symtab *symtab; | |
1765 | struct blockvector *bv; | |
1766 | struct block *block; | |
1767 | struct symbol *sym; | |
c906108c | 1768 | |
ccefe4c4 TT |
1769 | if (!objfile->sf) |
1770 | return NULL; | |
1771 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN); | |
1772 | if (!symtab) | |
1773 | return NULL; | |
c906108c | 1774 | |
ccefe4c4 TT |
1775 | bv = BLOCKVECTOR (symtab); |
1776 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1777 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1778 | if (!sym) | |
9af17804 | 1779 | { |
ccefe4c4 TT |
1780 | int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK; |
1781 | ||
1782 | /* This shouldn't be necessary, but as a last resort | |
1783 | * try looking in the 'other kind' even though the psymtab | |
c378eb4e | 1784 | * claimed the symbol was one thing. It's possible that |
ccefe4c4 TT |
1785 | * the psymtab gets it wrong in some cases. |
1786 | */ | |
1787 | block = BLOCKVECTOR_BLOCK (bv, other_kind); | |
1788 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1789 | if (!sym) | |
c378eb4e | 1790 | /* FIXME; error is wrong in one case. */ |
3e43a32a MS |
1791 | error (_("\ |
1792 | Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ | |
ccefe4c4 TT |
1793 | %s may be an inlined function, or may be a template function\n\ |
1794 | (if a template, try specifying an instantiation: %s<type>)."), | |
1795 | name, symtab->filename, name, name); | |
c906108c | 1796 | } |
ccefe4c4 TT |
1797 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1798 | return SYMBOL_TYPE (sym); | |
c906108c | 1799 | |
ccefe4c4 | 1800 | return NULL; |
b368761e | 1801 | } |
c906108c | 1802 | |
b368761e DC |
1803 | /* The standard implementation of lookup_transparent_type. This code |
1804 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1805 | up types were just left out. In particular it's assumed here that | |
1806 | types are available in struct_domain and only at file-static or | |
1807 | global blocks. */ | |
c906108c SS |
1808 | |
1809 | struct type * | |
b368761e | 1810 | basic_lookup_transparent_type (const char *name) |
c906108c | 1811 | { |
52f0bd74 AC |
1812 | struct symbol *sym; |
1813 | struct symtab *s = NULL; | |
c906108c | 1814 | struct blockvector *bv; |
52f0bd74 AC |
1815 | struct objfile *objfile; |
1816 | struct block *block; | |
ccefe4c4 | 1817 | struct type *t; |
c906108c SS |
1818 | |
1819 | /* Now search all the global symbols. Do the symtab's first, then | |
c378eb4e | 1820 | check the psymtab's. If a psymtab indicates the existence |
c906108c SS |
1821 | of the desired name as a global, then do psymtab-to-symtab |
1822 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1823 | |
58b6ab13 | 1824 | ALL_OBJFILES (objfile) |
c5aa993b | 1825 | { |
774b6a14 TT |
1826 | if (objfile->sf) |
1827 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, | |
1828 | GLOBAL_BLOCK, | |
1829 | name, STRUCT_DOMAIN); | |
1830 | ||
d790cf0a DE |
1831 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
1832 | { | |
1833 | bv = BLOCKVECTOR (s); | |
1834 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1835 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1836 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1837 | { | |
1838 | return SYMBOL_TYPE (sym); | |
1839 | } | |
1840 | } | |
c5aa993b | 1841 | } |
c906108c | 1842 | |
ccefe4c4 | 1843 | ALL_OBJFILES (objfile) |
c5aa993b | 1844 | { |
ccefe4c4 TT |
1845 | t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name); |
1846 | if (t) | |
1847 | return t; | |
c5aa993b | 1848 | } |
c906108c SS |
1849 | |
1850 | /* Now search the static file-level symbols. | |
1851 | Not strictly correct, but more useful than an error. | |
1852 | Do the symtab's first, then | |
c378eb4e | 1853 | check the psymtab's. If a psymtab indicates the existence |
c906108c | 1854 | of the desired name as a file-level static, then do psymtab-to-symtab |
c378eb4e | 1855 | conversion on the fly and return the found symbol. */ |
c906108c | 1856 | |
54ec275a | 1857 | ALL_OBJFILES (objfile) |
c5aa993b | 1858 | { |
774b6a14 TT |
1859 | if (objfile->sf) |
1860 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK, | |
1861 | name, STRUCT_DOMAIN); | |
1862 | ||
78e5175a | 1863 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
c5aa993b | 1864 | { |
54ec275a KS |
1865 | bv = BLOCKVECTOR (s); |
1866 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1867 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1868 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1869 | { | |
1870 | return SYMBOL_TYPE (sym); | |
1871 | } | |
c5aa993b JM |
1872 | } |
1873 | } | |
c906108c | 1874 | |
ccefe4c4 | 1875 | ALL_OBJFILES (objfile) |
c5aa993b | 1876 | { |
ccefe4c4 TT |
1877 | t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name); |
1878 | if (t) | |
1879 | return t; | |
c5aa993b | 1880 | } |
ccefe4c4 | 1881 | |
c906108c SS |
1882 | return (struct type *) 0; |
1883 | } | |
1884 | ||
c378eb4e | 1885 | /* Find the name of the file containing main(). */ |
c906108c | 1886 | /* FIXME: What about languages without main() or specially linked |
c378eb4e | 1887 | executables that have no main() ? */ |
c906108c | 1888 | |
dd786858 | 1889 | const char * |
ccefe4c4 | 1890 | find_main_filename (void) |
c906108c | 1891 | { |
52f0bd74 | 1892 | struct objfile *objfile; |
dd786858 | 1893 | char *name = main_name (); |
c906108c | 1894 | |
ccefe4c4 | 1895 | ALL_OBJFILES (objfile) |
c5aa993b | 1896 | { |
dd786858 TT |
1897 | const char *result; |
1898 | ||
ccefe4c4 TT |
1899 | if (!objfile->sf) |
1900 | continue; | |
1901 | result = objfile->sf->qf->find_symbol_file (objfile, name); | |
1902 | if (result) | |
1903 | return result; | |
c5aa993b | 1904 | } |
c906108c SS |
1905 | return (NULL); |
1906 | } | |
1907 | ||
176620f1 | 1908 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1909 | |
1910 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1911 | to find a match during the binary search of the non-encoded names, but | |
1912 | for now we don't worry about the slight inefficiency of looking for | |
1913 | a match we'll never find, since it will go pretty quick. Once the | |
1914 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 | 1915 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
9af17804 | 1916 | symbol (language_cplus or language_objc set) has both the encoded and |
c378eb4e | 1917 | non-encoded names tested for a match. */ |
c906108c SS |
1918 | |
1919 | struct symbol * | |
aa1ee363 | 1920 | lookup_block_symbol (const struct block *block, const char *name, |
176620f1 | 1921 | const domain_enum domain) |
c906108c | 1922 | { |
8157b174 | 1923 | struct block_iterator iter; |
de4f826b | 1924 | struct symbol *sym; |
c906108c | 1925 | |
de4f826b | 1926 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1927 | { |
8157b174 | 1928 | for (sym = block_iter_name_first (block, name, &iter); |
de4f826b | 1929 | sym != NULL; |
8157b174 | 1930 | sym = block_iter_name_next (name, &iter)) |
261397f8 | 1931 | { |
5eeb2539 | 1932 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 1933 | SYMBOL_DOMAIN (sym), domain)) |
261397f8 DJ |
1934 | return sym; |
1935 | } | |
1936 | return NULL; | |
1937 | } | |
526e70c0 | 1938 | else |
c906108c | 1939 | { |
526e70c0 DC |
1940 | /* Note that parameter symbols do not always show up last in the |
1941 | list; this loop makes sure to take anything else other than | |
1942 | parameter symbols first; it only uses parameter symbols as a | |
1943 | last resort. Note that this only takes up extra computation | |
1944 | time on a match. */ | |
de4f826b DC |
1945 | |
1946 | struct symbol *sym_found = NULL; | |
1947 | ||
8157b174 | 1948 | for (sym = block_iter_name_first (block, name, &iter); |
de4f826b | 1949 | sym != NULL; |
8157b174 | 1950 | sym = block_iter_name_next (name, &iter)) |
c906108c | 1951 | { |
5eeb2539 | 1952 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 1953 | SYMBOL_DOMAIN (sym), domain)) |
c906108c | 1954 | { |
c906108c | 1955 | sym_found = sym; |
2a2d4dc3 | 1956 | if (!SYMBOL_IS_ARGUMENT (sym)) |
c906108c SS |
1957 | { |
1958 | break; | |
1959 | } | |
1960 | } | |
c906108c | 1961 | } |
c378eb4e | 1962 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 1963 | } |
c906108c SS |
1964 | } |
1965 | ||
f8eba3c6 TT |
1966 | /* Iterate over the symbols named NAME, matching DOMAIN, starting with |
1967 | BLOCK. | |
1968 | ||
1969 | For each symbol that matches, CALLBACK is called. The symbol and | |
1970 | DATA are passed to the callback. | |
1971 | ||
1972 | If CALLBACK returns zero, the iteration ends. Otherwise, the | |
1973 | search continues. This function iterates upward through blocks. | |
1974 | When the outermost block has been finished, the function | |
1975 | returns. */ | |
1976 | ||
1977 | void | |
1978 | iterate_over_symbols (const struct block *block, const char *name, | |
1979 | const domain_enum domain, | |
8e704927 | 1980 | symbol_found_callback_ftype *callback, |
f8eba3c6 TT |
1981 | void *data) |
1982 | { | |
1983 | while (block) | |
1984 | { | |
8157b174 | 1985 | struct block_iterator iter; |
f8eba3c6 TT |
1986 | struct symbol *sym; |
1987 | ||
8157b174 | 1988 | for (sym = block_iter_name_first (block, name, &iter); |
f8eba3c6 | 1989 | sym != NULL; |
8157b174 | 1990 | sym = block_iter_name_next (name, &iter)) |
f8eba3c6 TT |
1991 | { |
1992 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), | |
1993 | SYMBOL_DOMAIN (sym), domain)) | |
1994 | { | |
1995 | if (!callback (sym, data)) | |
1996 | return; | |
1997 | } | |
1998 | } | |
1999 | ||
2000 | block = BLOCK_SUPERBLOCK (block); | |
2001 | } | |
2002 | } | |
2003 | ||
c906108c | 2004 | /* Find the symtab associated with PC and SECTION. Look through the |
c378eb4e | 2005 | psymtabs and read in another symtab if necessary. */ |
c906108c SS |
2006 | |
2007 | struct symtab * | |
714835d5 | 2008 | find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 2009 | { |
52f0bd74 | 2010 | struct block *b; |
c906108c | 2011 | struct blockvector *bv; |
52f0bd74 AC |
2012 | struct symtab *s = NULL; |
2013 | struct symtab *best_s = NULL; | |
52f0bd74 | 2014 | struct objfile *objfile; |
6c95b8df | 2015 | struct program_space *pspace; |
c906108c | 2016 | CORE_ADDR distance = 0; |
8a48e967 DJ |
2017 | struct minimal_symbol *msymbol; |
2018 | ||
6c95b8df PA |
2019 | pspace = current_program_space; |
2020 | ||
8a48e967 DJ |
2021 | /* If we know that this is not a text address, return failure. This is |
2022 | necessary because we loop based on the block's high and low code | |
2023 | addresses, which do not include the data ranges, and because | |
2024 | we call find_pc_sect_psymtab which has a similar restriction based | |
2025 | on the partial_symtab's texthigh and textlow. */ | |
2026 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
2027 | if (msymbol | |
712f90be TT |
2028 | && (MSYMBOL_TYPE (msymbol) == mst_data |
2029 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
2030 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
2031 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
2032 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 2033 | return NULL; |
c906108c SS |
2034 | |
2035 | /* Search all symtabs for the one whose file contains our address, and which | |
2036 | is the smallest of all the ones containing the address. This is designed | |
2037 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
2038 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
2039 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
2040 | ||
2041 | This happens for native ecoff format, where code from included files | |
c378eb4e | 2042 | gets its own symtab. The symtab for the included file should have |
c906108c SS |
2043 | been read in already via the dependency mechanism. |
2044 | It might be swifter to create several symtabs with the same name | |
2045 | like xcoff does (I'm not sure). | |
2046 | ||
2047 | It also happens for objfiles that have their functions reordered. | |
2048 | For these, the symtab we are looking for is not necessarily read in. */ | |
2049 | ||
11309657 | 2050 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
2051 | { |
2052 | bv = BLOCKVECTOR (s); | |
2053 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 2054 | |
c5aa993b | 2055 | if (BLOCK_START (b) <= pc |
c5aa993b | 2056 | && BLOCK_END (b) > pc |
c5aa993b JM |
2057 | && (distance == 0 |
2058 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
2059 | { | |
2060 | /* For an objfile that has its functions reordered, | |
2061 | find_pc_psymtab will find the proper partial symbol table | |
2062 | and we simply return its corresponding symtab. */ | |
2063 | /* In order to better support objfiles that contain both | |
2064 | stabs and coff debugging info, we continue on if a psymtab | |
c378eb4e | 2065 | can't be found. */ |
ccefe4c4 | 2066 | if ((objfile->flags & OBJF_REORDERED) && objfile->sf) |
c5aa993b | 2067 | { |
ccefe4c4 | 2068 | struct symtab *result; |
433759f7 | 2069 | |
ccefe4c4 TT |
2070 | result |
2071 | = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
2072 | msymbol, | |
2073 | pc, section, | |
2074 | 0); | |
2075 | if (result) | |
2076 | return result; | |
c5aa993b JM |
2077 | } |
2078 | if (section != 0) | |
2079 | { | |
8157b174 | 2080 | struct block_iterator iter; |
261397f8 | 2081 | struct symbol *sym = NULL; |
c906108c | 2082 | |
de4f826b | 2083 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 2084 | { |
261397f8 | 2085 | fixup_symbol_section (sym, objfile); |
714835d5 | 2086 | if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section)) |
c5aa993b JM |
2087 | break; |
2088 | } | |
de4f826b | 2089 | if (sym == NULL) |
c378eb4e MS |
2090 | continue; /* No symbol in this symtab matches |
2091 | section. */ | |
c5aa993b JM |
2092 | } |
2093 | distance = BLOCK_END (b) - BLOCK_START (b); | |
2094 | best_s = s; | |
2095 | } | |
2096 | } | |
c906108c SS |
2097 | |
2098 | if (best_s != NULL) | |
c5aa993b | 2099 | return (best_s); |
c906108c | 2100 | |
ccefe4c4 TT |
2101 | ALL_OBJFILES (objfile) |
2102 | { | |
2103 | struct symtab *result; | |
433759f7 | 2104 | |
ccefe4c4 TT |
2105 | if (!objfile->sf) |
2106 | continue; | |
2107 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
2108 | msymbol, | |
2109 | pc, section, | |
2110 | 1); | |
2111 | if (result) | |
2112 | return result; | |
2113 | } | |
2114 | ||
2115 | return NULL; | |
c906108c SS |
2116 | } |
2117 | ||
c378eb4e MS |
2118 | /* Find the symtab associated with PC. Look through the psymtabs and read |
2119 | in another symtab if necessary. Backward compatibility, no section. */ | |
c906108c SS |
2120 | |
2121 | struct symtab * | |
fba45db2 | 2122 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
2123 | { |
2124 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
2125 | } | |
c906108c | 2126 | \f |
c5aa993b | 2127 | |
7e73cedf | 2128 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
2129 | Return a structure containing a symtab pointer, a line number, |
2130 | and a pc range for the entire source line. | |
2131 | The value's .pc field is NOT the specified pc. | |
2132 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
2133 | use the line that ends there. Otherwise, in that case, the line | |
2134 | that begins there is used. */ | |
2135 | ||
2136 | /* The big complication here is that a line may start in one file, and end just | |
2137 | before the start of another file. This usually occurs when you #include | |
2138 | code in the middle of a subroutine. To properly find the end of a line's PC | |
2139 | range, we must search all symtabs associated with this compilation unit, and | |
2140 | find the one whose first PC is closer than that of the next line in this | |
2141 | symtab. */ | |
2142 | ||
2143 | /* If it's worth the effort, we could be using a binary search. */ | |
2144 | ||
2145 | struct symtab_and_line | |
714835d5 | 2146 | find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) |
c906108c SS |
2147 | { |
2148 | struct symtab *s; | |
52f0bd74 AC |
2149 | struct linetable *l; |
2150 | int len; | |
2151 | int i; | |
2152 | struct linetable_entry *item; | |
c906108c SS |
2153 | struct symtab_and_line val; |
2154 | struct blockvector *bv; | |
2155 | struct minimal_symbol *msymbol; | |
2156 | struct minimal_symbol *mfunsym; | |
93b55aa1 | 2157 | struct objfile *objfile; |
c906108c SS |
2158 | |
2159 | /* Info on best line seen so far, and where it starts, and its file. */ | |
2160 | ||
2161 | struct linetable_entry *best = NULL; | |
2162 | CORE_ADDR best_end = 0; | |
2163 | struct symtab *best_symtab = 0; | |
2164 | ||
2165 | /* Store here the first line number | |
2166 | of a file which contains the line at the smallest pc after PC. | |
2167 | If we don't find a line whose range contains PC, | |
2168 | we will use a line one less than this, | |
2169 | with a range from the start of that file to the first line's pc. */ | |
2170 | struct linetable_entry *alt = NULL; | |
2171 | struct symtab *alt_symtab = 0; | |
2172 | ||
2173 | /* Info on best line seen in this file. */ | |
2174 | ||
2175 | struct linetable_entry *prev; | |
2176 | ||
2177 | /* If this pc is not from the current frame, | |
2178 | it is the address of the end of a call instruction. | |
2179 | Quite likely that is the start of the following statement. | |
2180 | But what we want is the statement containing the instruction. | |
2181 | Fudge the pc to make sure we get that. */ | |
2182 | ||
fe39c653 | 2183 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 2184 | |
6c95b8df PA |
2185 | val.pspace = current_program_space; |
2186 | ||
b77b1eb7 JB |
2187 | /* It's tempting to assume that, if we can't find debugging info for |
2188 | any function enclosing PC, that we shouldn't search for line | |
2189 | number info, either. However, GAS can emit line number info for | |
2190 | assembly files --- very helpful when debugging hand-written | |
2191 | assembly code. In such a case, we'd have no debug info for the | |
2192 | function, but we would have line info. */ | |
648f4f79 | 2193 | |
c906108c SS |
2194 | if (notcurrent) |
2195 | pc -= 1; | |
2196 | ||
c5aa993b | 2197 | /* elz: added this because this function returned the wrong |
c906108c | 2198 | information if the pc belongs to a stub (import/export) |
c378eb4e | 2199 | to call a shlib function. This stub would be anywhere between |
9af17804 | 2200 | two functions in the target, and the line info was erroneously |
c378eb4e MS |
2201 | taken to be the one of the line before the pc. */ |
2202 | ||
c906108c | 2203 | /* RT: Further explanation: |
c5aa993b | 2204 | |
c906108c SS |
2205 | * We have stubs (trampolines) inserted between procedures. |
2206 | * | |
2207 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
2208 | * exists in the main image. | |
2209 | * | |
2210 | * In the minimal symbol table, we have a bunch of symbols | |
c378eb4e | 2211 | * sorted by start address. The stubs are marked as "trampoline", |
c906108c SS |
2212 | * the others appear as text. E.g.: |
2213 | * | |
9af17804 | 2214 | * Minimal symbol table for main image |
c906108c SS |
2215 | * main: code for main (text symbol) |
2216 | * shr1: stub (trampoline symbol) | |
2217 | * foo: code for foo (text symbol) | |
2218 | * ... | |
2219 | * Minimal symbol table for "shr1" image: | |
2220 | * ... | |
2221 | * shr1: code for shr1 (text symbol) | |
2222 | * ... | |
2223 | * | |
2224 | * So the code below is trying to detect if we are in the stub | |
2225 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
2226 | * and if found, do the symbolization from the real-code address | |
2227 | * rather than the stub address. | |
2228 | * | |
2229 | * Assumptions being made about the minimal symbol table: | |
2230 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
c378eb4e | 2231 | * if we're really in the trampoline.s If we're beyond it (say |
9af17804 | 2232 | * we're in "foo" in the above example), it'll have a closer |
c906108c SS |
2233 | * symbol (the "foo" text symbol for example) and will not |
2234 | * return the trampoline. | |
2235 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
2236 | * corresponding to the trampoline, and whose address will | |
c378eb4e | 2237 | * be different than the trampoline address. I put in a sanity |
c906108c SS |
2238 | * check for the address being the same, to avoid an |
2239 | * infinite recursion. | |
2240 | */ | |
c5aa993b JM |
2241 | msymbol = lookup_minimal_symbol_by_pc (pc); |
2242 | if (msymbol != NULL) | |
c906108c | 2243 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 2244 | { |
2335f48e | 2245 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 2246 | NULL); |
c5aa993b JM |
2247 | if (mfunsym == NULL) |
2248 | /* I eliminated this warning since it is coming out | |
2249 | * in the following situation: | |
2250 | * gdb shmain // test program with shared libraries | |
2251 | * (gdb) break shr1 // function in shared lib | |
2252 | * Warning: In stub for ... | |
9af17804 | 2253 | * In the above situation, the shared lib is not loaded yet, |
c5aa993b JM |
2254 | * so of course we can't find the real func/line info, |
2255 | * but the "break" still works, and the warning is annoying. | |
c378eb4e | 2256 | * So I commented out the warning. RT */ |
3e43a32a | 2257 | /* warning ("In stub for %s; unable to find real function/line info", |
c378eb4e MS |
2258 | SYMBOL_LINKAGE_NAME (msymbol)); */ |
2259 | ; | |
c5aa993b | 2260 | /* fall through */ |
3e43a32a MS |
2261 | else if (SYMBOL_VALUE_ADDRESS (mfunsym) |
2262 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
c5aa993b | 2263 | /* Avoid infinite recursion */ |
c378eb4e | 2264 | /* See above comment about why warning is commented out. */ |
3e43a32a | 2265 | /* warning ("In stub for %s; unable to find real function/line info", |
c378eb4e MS |
2266 | SYMBOL_LINKAGE_NAME (msymbol)); */ |
2267 | ; | |
c5aa993b JM |
2268 | /* fall through */ |
2269 | else | |
82cf6c60 | 2270 | return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0); |
c5aa993b | 2271 | } |
c906108c SS |
2272 | |
2273 | ||
2274 | s = find_pc_sect_symtab (pc, section); | |
2275 | if (!s) | |
2276 | { | |
c378eb4e | 2277 | /* If no symbol information, return previous pc. */ |
c906108c SS |
2278 | if (notcurrent) |
2279 | pc++; | |
2280 | val.pc = pc; | |
2281 | return val; | |
2282 | } | |
2283 | ||
2284 | bv = BLOCKVECTOR (s); | |
93b55aa1 | 2285 | objfile = s->objfile; |
c906108c SS |
2286 | |
2287 | /* Look at all the symtabs that share this blockvector. | |
2288 | They all have the same apriori range, that we found was right; | |
2289 | but they have different line tables. */ | |
2290 | ||
93b55aa1 | 2291 | ALL_OBJFILE_SYMTABS (objfile, s) |
c906108c | 2292 | { |
93b55aa1 JK |
2293 | if (BLOCKVECTOR (s) != bv) |
2294 | continue; | |
2295 | ||
c906108c SS |
2296 | /* Find the best line in this symtab. */ |
2297 | l = LINETABLE (s); | |
2298 | if (!l) | |
c5aa993b | 2299 | continue; |
c906108c SS |
2300 | len = l->nitems; |
2301 | if (len <= 0) | |
2302 | { | |
2303 | /* I think len can be zero if the symtab lacks line numbers | |
2304 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2305 | I'm not sure which, and maybe it depends on the symbol | |
2306 | reader). */ | |
2307 | continue; | |
2308 | } | |
2309 | ||
2310 | prev = NULL; | |
c378eb4e | 2311 | item = l->item; /* Get first line info. */ |
c906108c SS |
2312 | |
2313 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2314 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2315 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2316 | { | |
2317 | alt = item; | |
2318 | alt_symtab = s; | |
2319 | } | |
2320 | ||
2321 | for (i = 0; i < len; i++, item++) | |
2322 | { | |
2323 | /* Leave prev pointing to the linetable entry for the last line | |
2324 | that started at or before PC. */ | |
2325 | if (item->pc > pc) | |
2326 | break; | |
2327 | ||
2328 | prev = item; | |
2329 | } | |
2330 | ||
2331 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2332 | item points at the next line. If we ran off the end of the linetable |
2333 | (pc >= start of the last line), then prev == item. If pc < start of | |
2334 | the first line, prev will not be set. */ | |
c906108c SS |
2335 | |
2336 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2337 | If so, record this file, and its best line, as best so far. Don't |
2338 | save prev if it represents the end of a function (i.e. line number | |
2339 | 0) instead of a real line. */ | |
c906108c | 2340 | |
083ae935 | 2341 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2342 | { |
2343 | best = prev; | |
2344 | best_symtab = s; | |
25d53da1 KB |
2345 | |
2346 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2347 | if (best_end <= best->pc) | |
2348 | best_end = 0; | |
c906108c | 2349 | } |
25d53da1 KB |
2350 | |
2351 | /* If another line (denoted by ITEM) is in the linetable and its | |
2352 | PC is after BEST's PC, but before the current BEST_END, then | |
2353 | use ITEM's PC as the new best_end. */ | |
2354 | if (best && i < len && item->pc > best->pc | |
2355 | && (best_end == 0 || best_end > item->pc)) | |
2356 | best_end = item->pc; | |
c906108c SS |
2357 | } |
2358 | ||
2359 | if (!best_symtab) | |
2360 | { | |
e86e87f7 DJ |
2361 | /* If we didn't find any line number info, just return zeros. |
2362 | We used to return alt->line - 1 here, but that could be | |
2363 | anywhere; if we don't have line number info for this PC, | |
2364 | don't make some up. */ | |
2365 | val.pc = pc; | |
c906108c | 2366 | } |
e8717518 FF |
2367 | else if (best->line == 0) |
2368 | { | |
2369 | /* If our best fit is in a range of PC's for which no line | |
2370 | number info is available (line number is zero) then we didn't | |
c378eb4e | 2371 | find any valid line information. */ |
e8717518 FF |
2372 | val.pc = pc; |
2373 | } | |
c906108c SS |
2374 | else |
2375 | { | |
2376 | val.symtab = best_symtab; | |
2377 | val.line = best->line; | |
2378 | val.pc = best->pc; | |
2379 | if (best_end && (!alt || best_end < alt->pc)) | |
2380 | val.end = best_end; | |
2381 | else if (alt) | |
2382 | val.end = alt->pc; | |
2383 | else | |
2384 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2385 | } | |
2386 | val.section = section; | |
2387 | return val; | |
2388 | } | |
2389 | ||
c378eb4e | 2390 | /* Backward compatibility (no section). */ |
c906108c SS |
2391 | |
2392 | struct symtab_and_line | |
fba45db2 | 2393 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2394 | { |
714835d5 | 2395 | struct obj_section *section; |
c906108c SS |
2396 | |
2397 | section = find_pc_overlay (pc); | |
2398 | if (pc_in_unmapped_range (pc, section)) | |
2399 | pc = overlay_mapped_address (pc, section); | |
2400 | return find_pc_sect_line (pc, section, notcurrent); | |
2401 | } | |
c906108c | 2402 | \f |
c906108c SS |
2403 | /* Find line number LINE in any symtab whose name is the same as |
2404 | SYMTAB. | |
2405 | ||
2406 | If found, return the symtab that contains the linetable in which it was | |
2407 | found, set *INDEX to the index in the linetable of the best entry | |
2408 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2409 | exact match. | |
2410 | ||
2411 | If not found, return NULL. */ | |
2412 | ||
50641945 | 2413 | struct symtab * |
433759f7 MS |
2414 | find_line_symtab (struct symtab *symtab, int line, |
2415 | int *index, int *exact_match) | |
c906108c | 2416 | { |
6f43c46f | 2417 | int exact = 0; /* Initialized here to avoid a compiler warning. */ |
c906108c SS |
2418 | |
2419 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2420 | so far seen. */ | |
2421 | ||
2422 | int best_index; | |
2423 | struct linetable *best_linetable; | |
2424 | struct symtab *best_symtab; | |
2425 | ||
2426 | /* First try looking it up in the given symtab. */ | |
2427 | best_linetable = LINETABLE (symtab); | |
2428 | best_symtab = symtab; | |
f8eba3c6 | 2429 | best_index = find_line_common (best_linetable, line, &exact, 0); |
c906108c SS |
2430 | if (best_index < 0 || !exact) |
2431 | { | |
2432 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2433 | another symtab with the same name. In the case of xcoff, |
2434 | multiple csects for one source file (produced by IBM's FORTRAN | |
2435 | compiler) produce multiple symtabs (this is unavoidable | |
2436 | assuming csects can be at arbitrary places in memory and that | |
2437 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2438 | |
2439 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2440 | or 0 if none has been seen so far. |
2441 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2442 | int best; |
2443 | ||
2444 | struct objfile *objfile; | |
2445 | struct symtab *s; | |
2446 | ||
2447 | if (best_index >= 0) | |
2448 | best = best_linetable->item[best_index].line; | |
2449 | else | |
2450 | best = 0; | |
2451 | ||
ccefe4c4 | 2452 | ALL_OBJFILES (objfile) |
51432cca | 2453 | { |
ccefe4c4 TT |
2454 | if (objfile->sf) |
2455 | objfile->sf->qf->expand_symtabs_with_filename (objfile, | |
2456 | symtab->filename); | |
51432cca CES |
2457 | } |
2458 | ||
3ffc00b8 JB |
2459 | /* Get symbol full file name if possible. */ |
2460 | symtab_to_fullname (symtab); | |
2461 | ||
c906108c | 2462 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
2463 | { |
2464 | struct linetable *l; | |
2465 | int ind; | |
c906108c | 2466 | |
3ffc00b8 | 2467 | if (FILENAME_CMP (symtab->filename, s->filename) != 0) |
c5aa993b | 2468 | continue; |
3ffc00b8 JB |
2469 | if (symtab->fullname != NULL |
2470 | && symtab_to_fullname (s) != NULL | |
2471 | && FILENAME_CMP (symtab->fullname, s->fullname) != 0) | |
2472 | continue; | |
c5aa993b | 2473 | l = LINETABLE (s); |
f8eba3c6 | 2474 | ind = find_line_common (l, line, &exact, 0); |
c5aa993b JM |
2475 | if (ind >= 0) |
2476 | { | |
2477 | if (exact) | |
2478 | { | |
2479 | best_index = ind; | |
2480 | best_linetable = l; | |
2481 | best_symtab = s; | |
2482 | goto done; | |
2483 | } | |
2484 | if (best == 0 || l->item[ind].line < best) | |
2485 | { | |
2486 | best = l->item[ind].line; | |
2487 | best_index = ind; | |
2488 | best_linetable = l; | |
2489 | best_symtab = s; | |
2490 | } | |
2491 | } | |
2492 | } | |
c906108c | 2493 | } |
c5aa993b | 2494 | done: |
c906108c SS |
2495 | if (best_index < 0) |
2496 | return NULL; | |
2497 | ||
2498 | if (index) | |
2499 | *index = best_index; | |
2500 | if (exact_match) | |
2501 | *exact_match = exact; | |
2502 | ||
2503 | return best_symtab; | |
2504 | } | |
f8eba3c6 TT |
2505 | |
2506 | /* Given SYMTAB, returns all the PCs function in the symtab that | |
2507 | exactly match LINE. Returns NULL if there are no exact matches, | |
2508 | but updates BEST_ITEM in this case. */ | |
2509 | ||
2510 | VEC (CORE_ADDR) * | |
2511 | find_pcs_for_symtab_line (struct symtab *symtab, int line, | |
2512 | struct linetable_entry **best_item) | |
2513 | { | |
2514 | int start = 0, ix; | |
2515 | struct symbol *previous_function = NULL; | |
2516 | VEC (CORE_ADDR) *result = NULL; | |
2517 | ||
2518 | /* First, collect all the PCs that are at this line. */ | |
2519 | while (1) | |
2520 | { | |
2521 | int was_exact; | |
2522 | int idx; | |
2523 | ||
2524 | idx = find_line_common (LINETABLE (symtab), line, &was_exact, start); | |
2525 | if (idx < 0) | |
2526 | break; | |
2527 | ||
2528 | if (!was_exact) | |
2529 | { | |
2530 | struct linetable_entry *item = &LINETABLE (symtab)->item[idx]; | |
2531 | ||
2532 | if (*best_item == NULL || item->line < (*best_item)->line) | |
2533 | *best_item = item; | |
2534 | ||
2535 | break; | |
2536 | } | |
2537 | ||
2538 | VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc); | |
2539 | start = idx + 1; | |
2540 | } | |
2541 | ||
2542 | return result; | |
2543 | } | |
2544 | ||
c906108c SS |
2545 | \f |
2546 | /* Set the PC value for a given source file and line number and return true. | |
2547 | Returns zero for invalid line number (and sets the PC to 0). | |
2548 | The source file is specified with a struct symtab. */ | |
2549 | ||
2550 | int | |
fba45db2 | 2551 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2552 | { |
2553 | struct linetable *l; | |
2554 | int ind; | |
2555 | ||
2556 | *pc = 0; | |
2557 | if (symtab == 0) | |
2558 | return 0; | |
2559 | ||
2560 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2561 | if (symtab != NULL) | |
2562 | { | |
2563 | l = LINETABLE (symtab); | |
2564 | *pc = l->item[ind].pc; | |
2565 | return 1; | |
2566 | } | |
2567 | else | |
2568 | return 0; | |
2569 | } | |
2570 | ||
2571 | /* Find the range of pc values in a line. | |
2572 | Store the starting pc of the line into *STARTPTR | |
2573 | and the ending pc (start of next line) into *ENDPTR. | |
2574 | Returns 1 to indicate success. | |
2575 | Returns 0 if could not find the specified line. */ | |
2576 | ||
2577 | int | |
fba45db2 KB |
2578 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2579 | CORE_ADDR *endptr) | |
c906108c SS |
2580 | { |
2581 | CORE_ADDR startaddr; | |
2582 | struct symtab_and_line found_sal; | |
2583 | ||
2584 | startaddr = sal.pc; | |
c5aa993b | 2585 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2586 | return 0; |
2587 | ||
2588 | /* This whole function is based on address. For example, if line 10 has | |
2589 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2590 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2591 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2592 | This also insures that we never give a range like "starts at 0x134 | |
2593 | and ends at 0x12c". */ | |
2594 | ||
2595 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2596 | if (found_sal.line != sal.line) | |
2597 | { | |
2598 | /* The specified line (sal) has zero bytes. */ | |
2599 | *startptr = found_sal.pc; | |
2600 | *endptr = found_sal.pc; | |
2601 | } | |
2602 | else | |
2603 | { | |
2604 | *startptr = found_sal.pc; | |
2605 | *endptr = found_sal.end; | |
2606 | } | |
2607 | return 1; | |
2608 | } | |
2609 | ||
2610 | /* Given a line table and a line number, return the index into the line | |
2611 | table for the pc of the nearest line whose number is >= the specified one. | |
2612 | Return -1 if none is found. The value is >= 0 if it is an index. | |
f8eba3c6 | 2613 | START is the index at which to start searching the line table. |
c906108c SS |
2614 | |
2615 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2616 | ||
2617 | static int | |
aa1ee363 | 2618 | find_line_common (struct linetable *l, int lineno, |
f8eba3c6 | 2619 | int *exact_match, int start) |
c906108c | 2620 | { |
52f0bd74 AC |
2621 | int i; |
2622 | int len; | |
c906108c SS |
2623 | |
2624 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2625 | or 0 if none has been seen so far. | |
2626 | BEST_INDEX identifies the item for it. */ | |
2627 | ||
2628 | int best_index = -1; | |
2629 | int best = 0; | |
2630 | ||
b7589f7d DJ |
2631 | *exact_match = 0; |
2632 | ||
c906108c SS |
2633 | if (lineno <= 0) |
2634 | return -1; | |
2635 | if (l == 0) | |
2636 | return -1; | |
2637 | ||
2638 | len = l->nitems; | |
f8eba3c6 | 2639 | for (i = start; i < len; i++) |
c906108c | 2640 | { |
aa1ee363 | 2641 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2642 | |
2643 | if (item->line == lineno) | |
2644 | { | |
2645 | /* Return the first (lowest address) entry which matches. */ | |
2646 | *exact_match = 1; | |
2647 | return i; | |
2648 | } | |
2649 | ||
2650 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2651 | { | |
2652 | best = item->line; | |
2653 | best_index = i; | |
2654 | } | |
2655 | } | |
2656 | ||
2657 | /* If we got here, we didn't get an exact match. */ | |
c906108c SS |
2658 | return best_index; |
2659 | } | |
2660 | ||
2661 | int | |
fba45db2 | 2662 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2663 | { |
2664 | struct symtab_and_line sal; | |
433759f7 | 2665 | |
c906108c SS |
2666 | sal = find_pc_line (pc, 0); |
2667 | *startptr = sal.pc; | |
2668 | *endptr = sal.end; | |
2669 | return sal.symtab != 0; | |
2670 | } | |
2671 | ||
8c7a1ee8 EZ |
2672 | /* Given a function start address FUNC_ADDR and SYMTAB, find the first |
2673 | address for that function that has an entry in SYMTAB's line info | |
2674 | table. If such an entry cannot be found, return FUNC_ADDR | |
2675 | unaltered. */ | |
eca864fe | 2676 | |
70221824 | 2677 | static CORE_ADDR |
8c7a1ee8 EZ |
2678 | skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) |
2679 | { | |
2680 | CORE_ADDR func_start, func_end; | |
2681 | struct linetable *l; | |
952a6d41 | 2682 | int i; |
8c7a1ee8 EZ |
2683 | |
2684 | /* Give up if this symbol has no lineinfo table. */ | |
2685 | l = LINETABLE (symtab); | |
2686 | if (l == NULL) | |
2687 | return func_addr; | |
2688 | ||
2689 | /* Get the range for the function's PC values, or give up if we | |
2690 | cannot, for some reason. */ | |
2691 | if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) | |
2692 | return func_addr; | |
2693 | ||
2694 | /* Linetable entries are ordered by PC values, see the commentary in | |
2695 | symtab.h where `struct linetable' is defined. Thus, the first | |
2696 | entry whose PC is in the range [FUNC_START..FUNC_END[ is the | |
2697 | address we are looking for. */ | |
2698 | for (i = 0; i < l->nitems; i++) | |
2699 | { | |
2700 | struct linetable_entry *item = &(l->item[i]); | |
2701 | ||
2702 | /* Don't use line numbers of zero, they mark special entries in | |
2703 | the table. See the commentary on symtab.h before the | |
2704 | definition of struct linetable. */ | |
2705 | if (item->line > 0 && func_start <= item->pc && item->pc < func_end) | |
2706 | return item->pc; | |
2707 | } | |
2708 | ||
2709 | return func_addr; | |
2710 | } | |
2711 | ||
c906108c SS |
2712 | /* Given a function symbol SYM, find the symtab and line for the start |
2713 | of the function. | |
2714 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2715 | of real code inside the function. */ | |
2716 | ||
50641945 | 2717 | struct symtab_and_line |
fba45db2 | 2718 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c | 2719 | { |
059acae7 UW |
2720 | struct symtab_and_line sal; |
2721 | ||
2722 | fixup_symbol_section (sym, NULL); | |
2723 | sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), | |
2724 | SYMBOL_OBJ_SECTION (sym), 0); | |
2725 | ||
86da934b UW |
2726 | /* We always should have a line for the function start address. |
2727 | If we don't, something is odd. Create a plain SAL refering | |
2728 | just the PC and hope that skip_prologue_sal (if requested) | |
2729 | can find a line number for after the prologue. */ | |
2730 | if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym))) | |
2731 | { | |
2732 | init_sal (&sal); | |
2733 | sal.pspace = current_program_space; | |
2734 | sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2735 | sal.section = SYMBOL_OBJ_SECTION (sym); | |
2736 | } | |
2737 | ||
059acae7 UW |
2738 | if (funfirstline) |
2739 | skip_prologue_sal (&sal); | |
bccdca4a | 2740 | |
059acae7 UW |
2741 | return sal; |
2742 | } | |
2743 | ||
2744 | /* Adjust SAL to the first instruction past the function prologue. | |
2745 | If the PC was explicitly specified, the SAL is not changed. | |
2746 | If the line number was explicitly specified, at most the SAL's PC | |
2747 | is updated. If SAL is already past the prologue, then do nothing. */ | |
eca864fe | 2748 | |
059acae7 UW |
2749 | void |
2750 | skip_prologue_sal (struct symtab_and_line *sal) | |
2751 | { | |
2752 | struct symbol *sym; | |
2753 | struct symtab_and_line start_sal; | |
2754 | struct cleanup *old_chain; | |
8be455d7 | 2755 | CORE_ADDR pc, saved_pc; |
059acae7 UW |
2756 | struct obj_section *section; |
2757 | const char *name; | |
2758 | struct objfile *objfile; | |
2759 | struct gdbarch *gdbarch; | |
edb3359d | 2760 | struct block *b, *function_block; |
8be455d7 | 2761 | int force_skip, skip; |
c906108c | 2762 | |
059acae7 UW |
2763 | /* Do not change the SAL is PC was specified explicitly. */ |
2764 | if (sal->explicit_pc) | |
2765 | return; | |
6c95b8df PA |
2766 | |
2767 | old_chain = save_current_space_and_thread (); | |
059acae7 | 2768 | switch_to_program_space_and_thread (sal->pspace); |
6c95b8df | 2769 | |
059acae7 UW |
2770 | sym = find_pc_sect_function (sal->pc, sal->section); |
2771 | if (sym != NULL) | |
bccdca4a | 2772 | { |
059acae7 UW |
2773 | fixup_symbol_section (sym, NULL); |
2774 | ||
2775 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2776 | section = SYMBOL_OBJ_SECTION (sym); | |
2777 | name = SYMBOL_LINKAGE_NAME (sym); | |
2778 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
c906108c | 2779 | } |
059acae7 UW |
2780 | else |
2781 | { | |
2782 | struct minimal_symbol *msymbol | |
2783 | = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); | |
433759f7 | 2784 | |
059acae7 UW |
2785 | if (msymbol == NULL) |
2786 | { | |
2787 | do_cleanups (old_chain); | |
2788 | return; | |
2789 | } | |
2790 | ||
2791 | pc = SYMBOL_VALUE_ADDRESS (msymbol); | |
2792 | section = SYMBOL_OBJ_SECTION (msymbol); | |
2793 | name = SYMBOL_LINKAGE_NAME (msymbol); | |
2794 | objfile = msymbol_objfile (msymbol); | |
2795 | } | |
2796 | ||
2797 | gdbarch = get_objfile_arch (objfile); | |
2798 | ||
8be455d7 JK |
2799 | /* Process the prologue in two passes. In the first pass try to skip the |
2800 | prologue (SKIP is true) and verify there is a real need for it (indicated | |
2801 | by FORCE_SKIP). If no such reason was found run a second pass where the | |
2802 | prologue is not skipped (SKIP is false). */ | |
059acae7 | 2803 | |
8be455d7 JK |
2804 | skip = 1; |
2805 | force_skip = 1; | |
059acae7 | 2806 | |
8be455d7 JK |
2807 | /* Be conservative - allow direct PC (without skipping prologue) only if we |
2808 | have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not | |
2809 | have to be set by the caller so we use SYM instead. */ | |
2810 | if (sym && SYMBOL_SYMTAB (sym)->locations_valid) | |
2811 | force_skip = 0; | |
059acae7 | 2812 | |
8be455d7 JK |
2813 | saved_pc = pc; |
2814 | do | |
c906108c | 2815 | { |
8be455d7 | 2816 | pc = saved_pc; |
4309257c | 2817 | |
8be455d7 JK |
2818 | /* If the function is in an unmapped overlay, use its unmapped LMA address, |
2819 | so that gdbarch_skip_prologue has something unique to work on. */ | |
2820 | if (section_is_overlay (section) && !section_is_mapped (section)) | |
2821 | pc = overlay_unmapped_address (pc, section); | |
2822 | ||
2823 | /* Skip "first line" of function (which is actually its prologue). */ | |
2824 | pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
2825 | if (skip) | |
2826 | pc = gdbarch_skip_prologue (gdbarch, pc); | |
2827 | ||
2828 | /* For overlays, map pc back into its mapped VMA range. */ | |
2829 | pc = overlay_mapped_address (pc, section); | |
2830 | ||
2831 | /* Calculate line number. */ | |
059acae7 | 2832 | start_sal = find_pc_sect_line (pc, section, 0); |
8be455d7 JK |
2833 | |
2834 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next | |
2835 | line is still part of the same function. */ | |
2836 | if (skip && start_sal.pc != pc | |
b1d96efd JK |
2837 | && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end |
2838 | && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
8be455d7 JK |
2839 | : (lookup_minimal_symbol_by_pc_section (start_sal.end, section) |
2840 | == lookup_minimal_symbol_by_pc_section (pc, section)))) | |
2841 | { | |
2842 | /* First pc of next line */ | |
2843 | pc = start_sal.end; | |
2844 | /* Recalculate the line number (might not be N+1). */ | |
2845 | start_sal = find_pc_sect_line (pc, section, 0); | |
2846 | } | |
2847 | ||
2848 | /* On targets with executable formats that don't have a concept of | |
2849 | constructors (ELF with .init has, PE doesn't), gcc emits a call | |
2850 | to `__main' in `main' between the prologue and before user | |
2851 | code. */ | |
2852 | if (gdbarch_skip_main_prologue_p (gdbarch) | |
7ccffd7c | 2853 | && name && strcmp_iw (name, "main") == 0) |
8be455d7 JK |
2854 | { |
2855 | pc = gdbarch_skip_main_prologue (gdbarch, pc); | |
2856 | /* Recalculate the line number (might not be N+1). */ | |
2857 | start_sal = find_pc_sect_line (pc, section, 0); | |
2858 | force_skip = 1; | |
2859 | } | |
4309257c | 2860 | } |
8be455d7 | 2861 | while (!force_skip && skip--); |
4309257c | 2862 | |
8c7a1ee8 EZ |
2863 | /* If we still don't have a valid source line, try to find the first |
2864 | PC in the lineinfo table that belongs to the same function. This | |
2865 | happens with COFF debug info, which does not seem to have an | |
2866 | entry in lineinfo table for the code after the prologue which has | |
2867 | no direct relation to source. For example, this was found to be | |
2868 | the case with the DJGPP target using "gcc -gcoff" when the | |
2869 | compiler inserted code after the prologue to make sure the stack | |
2870 | is aligned. */ | |
8be455d7 | 2871 | if (!force_skip && sym && start_sal.symtab == NULL) |
8c7a1ee8 EZ |
2872 | { |
2873 | pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym)); | |
2874 | /* Recalculate the line number. */ | |
059acae7 | 2875 | start_sal = find_pc_sect_line (pc, section, 0); |
8c7a1ee8 EZ |
2876 | } |
2877 | ||
059acae7 UW |
2878 | do_cleanups (old_chain); |
2879 | ||
2880 | /* If we're already past the prologue, leave SAL unchanged. Otherwise | |
2881 | forward SAL to the end of the prologue. */ | |
2882 | if (sal->pc >= pc) | |
2883 | return; | |
2884 | ||
2885 | sal->pc = pc; | |
2886 | sal->section = section; | |
2887 | ||
2888 | /* Unless the explicit_line flag was set, update the SAL line | |
2889 | and symtab to correspond to the modified PC location. */ | |
2890 | if (sal->explicit_line) | |
2891 | return; | |
2892 | ||
2893 | sal->symtab = start_sal.symtab; | |
2894 | sal->line = start_sal.line; | |
2895 | sal->end = start_sal.end; | |
c906108c | 2896 | |
edb3359d DJ |
2897 | /* Check if we are now inside an inlined function. If we can, |
2898 | use the call site of the function instead. */ | |
059acae7 | 2899 | b = block_for_pc_sect (sal->pc, sal->section); |
edb3359d DJ |
2900 | function_block = NULL; |
2901 | while (b != NULL) | |
2902 | { | |
2903 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
2904 | function_block = b; | |
2905 | else if (BLOCK_FUNCTION (b) != NULL) | |
2906 | break; | |
2907 | b = BLOCK_SUPERBLOCK (b); | |
2908 | } | |
2909 | if (function_block != NULL | |
2910 | && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) | |
2911 | { | |
059acae7 UW |
2912 | sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); |
2913 | sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block)); | |
edb3359d | 2914 | } |
c906108c | 2915 | } |
50641945 | 2916 | |
c906108c SS |
2917 | /* If P is of the form "operator[ \t]+..." where `...' is |
2918 | some legitimate operator text, return a pointer to the | |
2919 | beginning of the substring of the operator text. | |
2920 | Otherwise, return "". */ | |
eca864fe | 2921 | |
fc9f3a69 | 2922 | static char * |
fba45db2 | 2923 | operator_chars (char *p, char **end) |
c906108c SS |
2924 | { |
2925 | *end = ""; | |
2926 | if (strncmp (p, "operator", 8)) | |
2927 | return *end; | |
2928 | p += 8; | |
2929 | ||
2930 | /* Don't get faked out by `operator' being part of a longer | |
2931 | identifier. */ | |
c5aa993b | 2932 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2933 | return *end; |
2934 | ||
2935 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2936 | while (*p == ' ' || *p == '\t') | |
2937 | p++; | |
2938 | ||
c378eb4e | 2939 | /* Recognize 'operator TYPENAME'. */ |
c906108c | 2940 | |
c5aa993b | 2941 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2942 | { |
aa1ee363 | 2943 | char *q = p + 1; |
433759f7 | 2944 | |
c5aa993b | 2945 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2946 | q++; |
2947 | *end = q; | |
2948 | return p; | |
2949 | } | |
2950 | ||
53e8ad3d MS |
2951 | while (*p) |
2952 | switch (*p) | |
2953 | { | |
2954 | case '\\': /* regexp quoting */ | |
2955 | if (p[1] == '*') | |
2956 | { | |
3e43a32a | 2957 | if (p[2] == '=') /* 'operator\*=' */ |
53e8ad3d MS |
2958 | *end = p + 3; |
2959 | else /* 'operator\*' */ | |
2960 | *end = p + 2; | |
2961 | return p; | |
2962 | } | |
2963 | else if (p[1] == '[') | |
2964 | { | |
2965 | if (p[2] == ']') | |
3e43a32a MS |
2966 | error (_("mismatched quoting on brackets, " |
2967 | "try 'operator\\[\\]'")); | |
53e8ad3d MS |
2968 | else if (p[2] == '\\' && p[3] == ']') |
2969 | { | |
2970 | *end = p + 4; /* 'operator\[\]' */ | |
2971 | return p; | |
2972 | } | |
2973 | else | |
8a3fe4f8 | 2974 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d | 2975 | } |
9af17804 | 2976 | else |
53e8ad3d | 2977 | { |
c378eb4e | 2978 | /* Gratuitous qoute: skip it and move on. */ |
53e8ad3d MS |
2979 | p++; |
2980 | continue; | |
2981 | } | |
2982 | break; | |
2983 | case '!': | |
2984 | case '=': | |
2985 | case '*': | |
2986 | case '/': | |
2987 | case '%': | |
2988 | case '^': | |
2989 | if (p[1] == '=') | |
2990 | *end = p + 2; | |
2991 | else | |
2992 | *end = p + 1; | |
2993 | return p; | |
2994 | case '<': | |
2995 | case '>': | |
2996 | case '+': | |
2997 | case '-': | |
2998 | case '&': | |
2999 | case '|': | |
3000 | if (p[0] == '-' && p[1] == '>') | |
3001 | { | |
c378eb4e | 3002 | /* Struct pointer member operator 'operator->'. */ |
53e8ad3d MS |
3003 | if (p[2] == '*') |
3004 | { | |
3005 | *end = p + 3; /* 'operator->*' */ | |
3006 | return p; | |
3007 | } | |
3008 | else if (p[2] == '\\') | |
3009 | { | |
3010 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
3011 | return p; | |
3012 | } | |
3013 | else | |
3014 | { | |
3015 | *end = p + 2; /* 'operator->' */ | |
3016 | return p; | |
3017 | } | |
3018 | } | |
3019 | if (p[1] == '=' || p[1] == p[0]) | |
3020 | *end = p + 2; | |
3021 | else | |
3022 | *end = p + 1; | |
3023 | return p; | |
3024 | case '~': | |
3025 | case ',': | |
c5aa993b | 3026 | *end = p + 1; |
53e8ad3d MS |
3027 | return p; |
3028 | case '(': | |
3029 | if (p[1] != ')') | |
3e43a32a MS |
3030 | error (_("`operator ()' must be specified " |
3031 | "without whitespace in `()'")); | |
c5aa993b | 3032 | *end = p + 2; |
53e8ad3d MS |
3033 | return p; |
3034 | case '?': | |
3035 | if (p[1] != ':') | |
3e43a32a MS |
3036 | error (_("`operator ?:' must be specified " |
3037 | "without whitespace in `?:'")); | |
53e8ad3d MS |
3038 | *end = p + 2; |
3039 | return p; | |
3040 | case '[': | |
3041 | if (p[1] != ']') | |
3e43a32a MS |
3042 | error (_("`operator []' must be specified " |
3043 | "without whitespace in `[]'")); | |
53e8ad3d MS |
3044 | *end = p + 2; |
3045 | return p; | |
3046 | default: | |
8a3fe4f8 | 3047 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
3048 | break; |
3049 | } | |
3050 | ||
c906108c SS |
3051 | *end = ""; |
3052 | return *end; | |
3053 | } | |
c906108c | 3054 | \f |
c5aa993b | 3055 | |
c94fdfd0 EZ |
3056 | /* If FILE is not already in the table of files, return zero; |
3057 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
3058 | is non-zero. If *FIRST is non-zero, forget the old table | |
3059 | contents. */ | |
eca864fe | 3060 | |
c94fdfd0 EZ |
3061 | static int |
3062 | filename_seen (const char *file, int add, int *first) | |
c906108c | 3063 | { |
c94fdfd0 EZ |
3064 | /* Table of files seen so far. */ |
3065 | static const char **tab = NULL; | |
c906108c SS |
3066 | /* Allocated size of tab in elements. |
3067 | Start with one 256-byte block (when using GNU malloc.c). | |
3068 | 24 is the malloc overhead when range checking is in effect. */ | |
3069 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
3070 | /* Current size of tab in elements. */ | |
3071 | static int tab_cur_size; | |
c94fdfd0 | 3072 | const char **p; |
c906108c SS |
3073 | |
3074 | if (*first) | |
3075 | { | |
3076 | if (tab == NULL) | |
c94fdfd0 | 3077 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
3078 | tab_cur_size = 0; |
3079 | } | |
3080 | ||
c94fdfd0 | 3081 | /* Is FILE in tab? */ |
c906108c | 3082 | for (p = tab; p < tab + tab_cur_size; p++) |
0ba1096a | 3083 | if (filename_cmp (*p, file) == 0) |
c94fdfd0 EZ |
3084 | return 1; |
3085 | ||
3086 | /* No; maybe add it to tab. */ | |
3087 | if (add) | |
c906108c | 3088 | { |
c94fdfd0 EZ |
3089 | if (tab_cur_size == tab_alloc_size) |
3090 | { | |
3091 | tab_alloc_size *= 2; | |
3092 | tab = (const char **) xrealloc ((char *) tab, | |
3093 | tab_alloc_size * sizeof (*tab)); | |
3094 | } | |
3095 | tab[tab_cur_size++] = file; | |
c906108c | 3096 | } |
c906108c | 3097 | |
c94fdfd0 EZ |
3098 | return 0; |
3099 | } | |
3100 | ||
3101 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
3102 | NAME is the name to print and *FIRST is nonzero if this is the first | |
3103 | name printed. Set *FIRST to zero. */ | |
eca864fe | 3104 | |
c94fdfd0 | 3105 | static void |
d092d1a2 | 3106 | output_source_filename (const char *name, int *first) |
c94fdfd0 EZ |
3107 | { |
3108 | /* Since a single source file can result in several partial symbol | |
3109 | tables, we need to avoid printing it more than once. Note: if | |
3110 | some of the psymtabs are read in and some are not, it gets | |
3111 | printed both under "Source files for which symbols have been | |
3112 | read" and "Source files for which symbols will be read in on | |
3113 | demand". I consider this a reasonable way to deal with the | |
3114 | situation. I'm not sure whether this can also happen for | |
3115 | symtabs; it doesn't hurt to check. */ | |
3116 | ||
3117 | /* Was NAME already seen? */ | |
3118 | if (filename_seen (name, 1, first)) | |
3119 | { | |
3120 | /* Yes; don't print it again. */ | |
3121 | return; | |
3122 | } | |
3123 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
3124 | if (*first) |
3125 | { | |
3126 | *first = 0; | |
3127 | } | |
3128 | else | |
3129 | { | |
3130 | printf_filtered (", "); | |
3131 | } | |
3132 | ||
3133 | wrap_here (""); | |
3134 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 3135 | } |
c906108c | 3136 | |
ccefe4c4 | 3137 | /* A callback for map_partial_symbol_filenames. */ |
eca864fe | 3138 | |
ccefe4c4 | 3139 | static void |
533a737e | 3140 | output_partial_symbol_filename (const char *filename, const char *fullname, |
ccefe4c4 TT |
3141 | void *data) |
3142 | { | |
3143 | output_source_filename (fullname ? fullname : filename, data); | |
3144 | } | |
3145 | ||
c906108c | 3146 | static void |
fba45db2 | 3147 | sources_info (char *ignore, int from_tty) |
c906108c | 3148 | { |
52f0bd74 | 3149 | struct symtab *s; |
52f0bd74 | 3150 | struct objfile *objfile; |
c906108c | 3151 | int first; |
c5aa993b | 3152 | |
c906108c SS |
3153 | if (!have_full_symbols () && !have_partial_symbols ()) |
3154 | { | |
8a3fe4f8 | 3155 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 3156 | } |
c5aa993b | 3157 | |
c906108c SS |
3158 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
3159 | ||
3160 | first = 1; | |
3161 | ALL_SYMTABS (objfile, s) | |
c5aa993b | 3162 | { |
d092d1a2 | 3163 | const char *fullname = symtab_to_fullname (s); |
433759f7 | 3164 | |
d092d1a2 | 3165 | output_source_filename (fullname ? fullname : s->filename, &first); |
c5aa993b | 3166 | } |
c906108c | 3167 | printf_filtered ("\n\n"); |
c5aa993b | 3168 | |
3e43a32a MS |
3169 | printf_filtered ("Source files for which symbols " |
3170 | "will be read in on demand:\n\n"); | |
c906108c SS |
3171 | |
3172 | first = 1; | |
74e2f255 DE |
3173 | map_partial_symbol_filenames (output_partial_symbol_filename, &first, |
3174 | 1 /*need_fullname*/); | |
c906108c SS |
3175 | printf_filtered ("\n"); |
3176 | } | |
3177 | ||
3178 | static int | |
ccefe4c4 | 3179 | file_matches (const char *file, char *files[], int nfiles) |
c906108c SS |
3180 | { |
3181 | int i; | |
3182 | ||
3183 | if (file != NULL && nfiles != 0) | |
3184 | { | |
3185 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 3186 | { |
0ba1096a | 3187 | if (filename_cmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
3188 | return 1; |
3189 | } | |
c906108c SS |
3190 | } |
3191 | else if (nfiles == 0) | |
3192 | return 1; | |
3193 | return 0; | |
3194 | } | |
3195 | ||
c378eb4e | 3196 | /* Free any memory associated with a search. */ |
eca864fe | 3197 | |
c906108c | 3198 | void |
fba45db2 | 3199 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
3200 | { |
3201 | struct symbol_search *p; | |
3202 | struct symbol_search *next; | |
3203 | ||
3204 | for (p = symbols; p != NULL; p = next) | |
3205 | { | |
3206 | next = p->next; | |
b8c9b27d | 3207 | xfree (p); |
c906108c SS |
3208 | } |
3209 | } | |
3210 | ||
5bd98722 AC |
3211 | static void |
3212 | do_free_search_symbols_cleanup (void *symbols) | |
3213 | { | |
3214 | free_search_symbols (symbols); | |
3215 | } | |
3216 | ||
3217 | struct cleanup * | |
3218 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
3219 | { | |
3220 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
3221 | } | |
3222 | ||
434d2d4f DJ |
3223 | /* Helper function for sort_search_symbols and qsort. Can only |
3224 | sort symbols, not minimal symbols. */ | |
eca864fe | 3225 | |
434d2d4f DJ |
3226 | static int |
3227 | compare_search_syms (const void *sa, const void *sb) | |
3228 | { | |
3229 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
3230 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
3231 | ||
de5ad195 DC |
3232 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
3233 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
3234 | } |
3235 | ||
3236 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
3237 | prevtail where it is, but update its next pointer to point to | |
3238 | the first of the sorted symbols. */ | |
eca864fe | 3239 | |
434d2d4f DJ |
3240 | static struct symbol_search * |
3241 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
3242 | { | |
3243 | struct symbol_search **symbols, *symp, *old_next; | |
3244 | int i; | |
3245 | ||
3246 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
3247 | * nfound); | |
3248 | symp = prevtail->next; | |
3249 | for (i = 0; i < nfound; i++) | |
3250 | { | |
3251 | symbols[i] = symp; | |
3252 | symp = symp->next; | |
3253 | } | |
3254 | /* Generally NULL. */ | |
3255 | old_next = symp; | |
3256 | ||
3257 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
3258 | compare_search_syms); | |
3259 | ||
3260 | symp = prevtail; | |
3261 | for (i = 0; i < nfound; i++) | |
3262 | { | |
3263 | symp->next = symbols[i]; | |
3264 | symp = symp->next; | |
3265 | } | |
3266 | symp->next = old_next; | |
3267 | ||
8ed32cc0 | 3268 | xfree (symbols); |
434d2d4f DJ |
3269 | return symp; |
3270 | } | |
5bd98722 | 3271 | |
ccefe4c4 TT |
3272 | /* An object of this type is passed as the user_data to the |
3273 | expand_symtabs_matching method. */ | |
3274 | struct search_symbols_data | |
3275 | { | |
3276 | int nfiles; | |
3277 | char **files; | |
681bf369 JK |
3278 | |
3279 | /* It is true if PREG contains valid data, false otherwise. */ | |
3280 | unsigned preg_p : 1; | |
3281 | regex_t preg; | |
ccefe4c4 TT |
3282 | }; |
3283 | ||
3284 | /* A callback for expand_symtabs_matching. */ | |
eca864fe | 3285 | |
ccefe4c4 TT |
3286 | static int |
3287 | search_symbols_file_matches (const char *filename, void *user_data) | |
3288 | { | |
3289 | struct search_symbols_data *data = user_data; | |
433759f7 | 3290 | |
ccefe4c4 TT |
3291 | return file_matches (filename, data->files, data->nfiles); |
3292 | } | |
3293 | ||
3294 | /* A callback for expand_symtabs_matching. */ | |
eca864fe | 3295 | |
ccefe4c4 | 3296 | static int |
e078317b | 3297 | search_symbols_name_matches (const char *symname, void *user_data) |
ccefe4c4 TT |
3298 | { |
3299 | struct search_symbols_data *data = user_data; | |
433759f7 | 3300 | |
681bf369 | 3301 | return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0; |
ccefe4c4 TT |
3302 | } |
3303 | ||
c906108c SS |
3304 | /* Search the symbol table for matches to the regular expression REGEXP, |
3305 | returning the results in *MATCHES. | |
3306 | ||
3307 | Only symbols of KIND are searched: | |
e8930875 JK |
3308 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, |
3309 | and constants (enums) | |
176620f1 EZ |
3310 | FUNCTIONS_DOMAIN - search all functions |
3311 | TYPES_DOMAIN - search all type names | |
7b08b9eb | 3312 | ALL_DOMAIN - an internal error for this function |
c906108c SS |
3313 | |
3314 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
3315 | |
3316 | The results are sorted locally; each symtab's global and static blocks are | |
c378eb4e MS |
3317 | separately alphabetized. */ |
3318 | ||
c906108c | 3319 | void |
8903c50d TT |
3320 | search_symbols (char *regexp, enum search_domain kind, |
3321 | int nfiles, char *files[], | |
fd118b61 | 3322 | struct symbol_search **matches) |
c906108c | 3323 | { |
52f0bd74 | 3324 | struct symtab *s; |
52f0bd74 | 3325 | struct blockvector *bv; |
52f0bd74 AC |
3326 | struct block *b; |
3327 | int i = 0; | |
8157b174 | 3328 | struct block_iterator iter; |
52f0bd74 | 3329 | struct symbol *sym; |
c906108c SS |
3330 | struct objfile *objfile; |
3331 | struct minimal_symbol *msymbol; | |
c906108c | 3332 | int found_misc = 0; |
bc043ef3 | 3333 | static const enum minimal_symbol_type types[] |
e8930875 | 3334 | = {mst_data, mst_text, mst_abs}; |
bc043ef3 | 3335 | static const enum minimal_symbol_type types2[] |
e8930875 | 3336 | = {mst_bss, mst_file_text, mst_abs}; |
bc043ef3 | 3337 | static const enum minimal_symbol_type types3[] |
e8930875 | 3338 | = {mst_file_data, mst_solib_trampoline, mst_abs}; |
bc043ef3 | 3339 | static const enum minimal_symbol_type types4[] |
e8930875 | 3340 | = {mst_file_bss, mst_text_gnu_ifunc, mst_abs}; |
c906108c SS |
3341 | enum minimal_symbol_type ourtype; |
3342 | enum minimal_symbol_type ourtype2; | |
3343 | enum minimal_symbol_type ourtype3; | |
3344 | enum minimal_symbol_type ourtype4; | |
3345 | struct symbol_search *sr; | |
3346 | struct symbol_search *psr; | |
3347 | struct symbol_search *tail; | |
ccefe4c4 | 3348 | struct search_symbols_data datum; |
c906108c | 3349 | |
681bf369 JK |
3350 | /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current |
3351 | CLEANUP_CHAIN is freed only in the case of an error. */ | |
3352 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
3353 | struct cleanup *retval_chain; | |
3354 | ||
e8930875 JK |
3355 | gdb_assert (kind <= TYPES_DOMAIN); |
3356 | ||
8903c50d TT |
3357 | ourtype = types[kind]; |
3358 | ourtype2 = types2[kind]; | |
3359 | ourtype3 = types3[kind]; | |
3360 | ourtype4 = types4[kind]; | |
c906108c SS |
3361 | |
3362 | sr = *matches = NULL; | |
3363 | tail = NULL; | |
681bf369 | 3364 | datum.preg_p = 0; |
c906108c SS |
3365 | |
3366 | if (regexp != NULL) | |
3367 | { | |
3368 | /* Make sure spacing is right for C++ operators. | |
3369 | This is just a courtesy to make the matching less sensitive | |
3370 | to how many spaces the user leaves between 'operator' | |
c378eb4e | 3371 | and <TYPENAME> or <OPERATOR>. */ |
c906108c SS |
3372 | char *opend; |
3373 | char *opname = operator_chars (regexp, &opend); | |
681bf369 | 3374 | int errcode; |
433759f7 | 3375 | |
c906108c | 3376 | if (*opname) |
c5aa993b | 3377 | { |
3e43a32a MS |
3378 | int fix = -1; /* -1 means ok; otherwise number of |
3379 | spaces needed. */ | |
433759f7 | 3380 | |
c5aa993b JM |
3381 | if (isalpha (*opname) || *opname == '_' || *opname == '$') |
3382 | { | |
c378eb4e | 3383 | /* There should 1 space between 'operator' and 'TYPENAME'. */ |
c5aa993b JM |
3384 | if (opname[-1] != ' ' || opname[-2] == ' ') |
3385 | fix = 1; | |
3386 | } | |
3387 | else | |
3388 | { | |
c378eb4e | 3389 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ |
c5aa993b JM |
3390 | if (opname[-1] == ' ') |
3391 | fix = 0; | |
3392 | } | |
c378eb4e | 3393 | /* If wrong number of spaces, fix it. */ |
c5aa993b JM |
3394 | if (fix >= 0) |
3395 | { | |
045f55a6 | 3396 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
433759f7 | 3397 | |
c5aa993b JM |
3398 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
3399 | regexp = tmp; | |
3400 | } | |
3401 | } | |
3402 | ||
559a7a62 JK |
3403 | errcode = regcomp (&datum.preg, regexp, |
3404 | REG_NOSUB | (case_sensitivity == case_sensitive_off | |
3405 | ? REG_ICASE : 0)); | |
681bf369 JK |
3406 | if (errcode != 0) |
3407 | { | |
3408 | char *err = get_regcomp_error (errcode, &datum.preg); | |
3409 | ||
3410 | make_cleanup (xfree, err); | |
3411 | error (_("Invalid regexp (%s): %s"), err, regexp); | |
3412 | } | |
3413 | datum.preg_p = 1; | |
3414 | make_regfree_cleanup (&datum.preg); | |
c906108c SS |
3415 | } |
3416 | ||
3417 | /* Search through the partial symtabs *first* for all symbols | |
3418 | matching the regexp. That way we don't have to reproduce all of | |
c378eb4e | 3419 | the machinery below. */ |
c906108c | 3420 | |
ccefe4c4 TT |
3421 | datum.nfiles = nfiles; |
3422 | datum.files = files; | |
ccefe4c4 | 3423 | ALL_OBJFILES (objfile) |
c5aa993b | 3424 | { |
ccefe4c4 TT |
3425 | if (objfile->sf) |
3426 | objfile->sf->qf->expand_symtabs_matching (objfile, | |
71cddcc1 DE |
3427 | (nfiles == 0 |
3428 | ? NULL | |
3429 | : search_symbols_file_matches), | |
ccefe4c4 TT |
3430 | search_symbols_name_matches, |
3431 | kind, | |
3432 | &datum); | |
c5aa993b | 3433 | } |
c906108c | 3434 | |
681bf369 JK |
3435 | retval_chain = old_chain; |
3436 | ||
c906108c SS |
3437 | /* Here, we search through the minimal symbol tables for functions |
3438 | and variables that match, and force their symbols to be read. | |
3439 | This is in particular necessary for demangled variable names, | |
3440 | which are no longer put into the partial symbol tables. | |
3441 | The symbol will then be found during the scan of symtabs below. | |
3442 | ||
3443 | For functions, find_pc_symtab should succeed if we have debug info | |
3444 | for the function, for variables we have to call lookup_symbol | |
3445 | to determine if the variable has debug info. | |
3446 | If the lookup fails, set found_misc so that we will rescan to print | |
c378eb4e | 3447 | any matching symbols without debug info. */ |
c906108c | 3448 | |
176620f1 | 3449 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
3450 | { |
3451 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3452 | { |
89295b4d PP |
3453 | QUIT; |
3454 | ||
d50bd42b DE |
3455 | if (MSYMBOL_TYPE (msymbol) == ourtype |
3456 | || MSYMBOL_TYPE (msymbol) == ourtype2 | |
3457 | || MSYMBOL_TYPE (msymbol) == ourtype3 | |
3458 | || MSYMBOL_TYPE (msymbol) == ourtype4) | |
c5aa993b | 3459 | { |
681bf369 JK |
3460 | if (!datum.preg_p |
3461 | || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0, | |
3462 | NULL, 0) == 0) | |
c5aa993b JM |
3463 | { |
3464 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
3465 | { | |
b1262a02 DC |
3466 | /* FIXME: carlton/2003-02-04: Given that the |
3467 | semantics of lookup_symbol keeps on changing | |
3468 | slightly, it would be a nice idea if we had a | |
3469 | function lookup_symbol_minsym that found the | |
3470 | symbol associated to a given minimal symbol (if | |
3471 | any). */ | |
176620f1 | 3472 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 3473 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 3474 | (struct block *) NULL, |
2570f2b7 | 3475 | VAR_DOMAIN, 0) |
53c5240f | 3476 | == NULL) |
b1262a02 | 3477 | found_misc = 1; |
c5aa993b JM |
3478 | } |
3479 | } | |
3480 | } | |
3481 | } | |
c906108c SS |
3482 | } |
3483 | ||
11309657 | 3484 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3485 | { |
3486 | bv = BLOCKVECTOR (s); | |
d50bd42b DE |
3487 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3488 | { | |
3489 | struct symbol_search *prevtail = tail; | |
3490 | int nfound = 0; | |
433759f7 | 3491 | |
d50bd42b DE |
3492 | b = BLOCKVECTOR_BLOCK (bv, i); |
3493 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
3494 | { | |
3495 | struct symtab *real_symtab = SYMBOL_SYMTAB (sym); | |
3496 | ||
3497 | QUIT; | |
3498 | ||
3499 | if (file_matches (real_symtab->filename, files, nfiles) | |
3500 | && ((!datum.preg_p | |
3501 | || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0, | |
3502 | NULL, 0) == 0) | |
3503 | && ((kind == VARIABLES_DOMAIN | |
3504 | && SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
3505 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
3506 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
3507 | /* LOC_CONST can be used for more than just enums, | |
3508 | e.g., c++ static const members. | |
3509 | We only want to skip enums here. */ | |
3510 | && !(SYMBOL_CLASS (sym) == LOC_CONST | |
3511 | && TYPE_CODE (SYMBOL_TYPE (sym)) | |
3512 | == TYPE_CODE_ENUM)) | |
3513 | || (kind == FUNCTIONS_DOMAIN | |
3514 | && SYMBOL_CLASS (sym) == LOC_BLOCK) | |
3515 | || (kind == TYPES_DOMAIN | |
3516 | && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) | |
3517 | { | |
3518 | /* match */ | |
3519 | psr = (struct symbol_search *) | |
3520 | xmalloc (sizeof (struct symbol_search)); | |
3521 | psr->block = i; | |
3522 | psr->symtab = real_symtab; | |
3523 | psr->symbol = sym; | |
3524 | psr->msymbol = NULL; | |
3525 | psr->next = NULL; | |
3526 | if (tail == NULL) | |
3527 | sr = psr; | |
3528 | else | |
3529 | tail->next = psr; | |
3530 | tail = psr; | |
3531 | nfound ++; | |
3532 | } | |
3533 | } | |
3534 | if (nfound > 0) | |
3535 | { | |
3536 | if (prevtail == NULL) | |
3537 | { | |
3538 | struct symbol_search dummy; | |
434d2d4f | 3539 | |
d50bd42b DE |
3540 | dummy.next = sr; |
3541 | tail = sort_search_symbols (&dummy, nfound); | |
3542 | sr = dummy.next; | |
434d2d4f | 3543 | |
d50bd42b DE |
3544 | make_cleanup_free_search_symbols (sr); |
3545 | } | |
3546 | else | |
3547 | tail = sort_search_symbols (prevtail, nfound); | |
3548 | } | |
3549 | } | |
c5aa993b | 3550 | } |
c906108c SS |
3551 | |
3552 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3553 | no debug symbols, then print directly from the msymbol_vector. */ | |
3554 | ||
176620f1 | 3555 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
3556 | { |
3557 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3558 | { |
89295b4d PP |
3559 | QUIT; |
3560 | ||
d50bd42b DE |
3561 | if (MSYMBOL_TYPE (msymbol) == ourtype |
3562 | || MSYMBOL_TYPE (msymbol) == ourtype2 | |
3563 | || MSYMBOL_TYPE (msymbol) == ourtype3 | |
3564 | || MSYMBOL_TYPE (msymbol) == ourtype4) | |
c5aa993b | 3565 | { |
681bf369 JK |
3566 | if (!datum.preg_p |
3567 | || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0, | |
3568 | NULL, 0) == 0) | |
c5aa993b | 3569 | { |
c378eb4e | 3570 | /* Functions: Look up by address. */ |
176620f1 | 3571 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3572 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3573 | { | |
c378eb4e | 3574 | /* Variables/Absolutes: Look up by name. */ |
2335f48e | 3575 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
2570f2b7 UW |
3576 | (struct block *) NULL, VAR_DOMAIN, 0) |
3577 | == NULL) | |
c5aa993b JM |
3578 | { |
3579 | /* match */ | |
3e43a32a MS |
3580 | psr = (struct symbol_search *) |
3581 | xmalloc (sizeof (struct symbol_search)); | |
c5aa993b JM |
3582 | psr->block = i; |
3583 | psr->msymbol = msymbol; | |
3584 | psr->symtab = NULL; | |
3585 | psr->symbol = NULL; | |
3586 | psr->next = NULL; | |
3587 | if (tail == NULL) | |
3588 | { | |
3589 | sr = psr; | |
681bf369 | 3590 | make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3591 | } |
3592 | else | |
3593 | tail->next = psr; | |
3594 | tail = psr; | |
3595 | } | |
3596 | } | |
3597 | } | |
3598 | } | |
3599 | } | |
c906108c SS |
3600 | } |
3601 | ||
681bf369 JK |
3602 | discard_cleanups (retval_chain); |
3603 | do_cleanups (old_chain); | |
c906108c | 3604 | *matches = sr; |
c906108c SS |
3605 | } |
3606 | ||
3607 | /* Helper function for symtab_symbol_info, this function uses | |
3608 | the data returned from search_symbols() to print information | |
c378eb4e MS |
3609 | regarding the match to gdb_stdout. */ |
3610 | ||
c906108c | 3611 | static void |
8903c50d TT |
3612 | print_symbol_info (enum search_domain kind, |
3613 | struct symtab *s, struct symbol *sym, | |
fba45db2 | 3614 | int block, char *last) |
c906108c | 3615 | { |
0ba1096a | 3616 | if (last == NULL || filename_cmp (last, s->filename) != 0) |
c906108c SS |
3617 | { |
3618 | fputs_filtered ("\nFile ", gdb_stdout); | |
3619 | fputs_filtered (s->filename, gdb_stdout); | |
3620 | fputs_filtered (":\n", gdb_stdout); | |
3621 | } | |
3622 | ||
176620f1 | 3623 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3624 | printf_filtered ("static "); |
c5aa993b | 3625 | |
c378eb4e | 3626 | /* Typedef that is not a C++ class. */ |
176620f1 EZ |
3627 | if (kind == TYPES_DOMAIN |
3628 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3629 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c378eb4e | 3630 | /* variable, func, or typedef-that-is-c++-class. */ |
d50bd42b DE |
3631 | else if (kind < TYPES_DOMAIN |
3632 | || (kind == TYPES_DOMAIN | |
3633 | && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3634 | { |
3635 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3636 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3637 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3638 | gdb_stdout, 0); |
c906108c SS |
3639 | |
3640 | printf_filtered (";\n"); | |
3641 | } | |
c906108c SS |
3642 | } |
3643 | ||
3644 | /* This help function for symtab_symbol_info() prints information | |
c378eb4e MS |
3645 | for non-debugging symbols to gdb_stdout. */ |
3646 | ||
c906108c | 3647 | static void |
fba45db2 | 3648 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3649 | { |
d80b854b | 3650 | struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol)); |
3ac4495a MS |
3651 | char *tmp; |
3652 | ||
d80b854b | 3653 | if (gdbarch_addr_bit (gdbarch) <= 32) |
bb599908 PH |
3654 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3655 | & (CORE_ADDR) 0xffffffff, | |
3656 | 8); | |
3ac4495a | 3657 | else |
bb599908 PH |
3658 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3659 | 16); | |
3ac4495a | 3660 | printf_filtered ("%s %s\n", |
de5ad195 | 3661 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3662 | } |
3663 | ||
3664 | /* This is the guts of the commands "info functions", "info types", and | |
c378eb4e | 3665 | "info variables". It calls search_symbols to find all matches and then |
c906108c | 3666 | print_[m]symbol_info to print out some useful information about the |
c378eb4e MS |
3667 | matches. */ |
3668 | ||
c906108c | 3669 | static void |
8903c50d | 3670 | symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty) |
c906108c | 3671 | { |
bc043ef3 | 3672 | static const char * const classnames[] = |
e8930875 | 3673 | {"variable", "function", "type"}; |
c906108c SS |
3674 | struct symbol_search *symbols; |
3675 | struct symbol_search *p; | |
3676 | struct cleanup *old_chain; | |
3677 | char *last_filename = NULL; | |
3678 | int first = 1; | |
3679 | ||
e8930875 JK |
3680 | gdb_assert (kind <= TYPES_DOMAIN); |
3681 | ||
c378eb4e | 3682 | /* Must make sure that if we're interrupted, symbols gets freed. */ |
c906108c | 3683 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); |
5bd98722 | 3684 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3685 | |
3686 | printf_filtered (regexp | |
c5aa993b JM |
3687 | ? "All %ss matching regular expression \"%s\":\n" |
3688 | : "All defined %ss:\n", | |
8903c50d | 3689 | classnames[kind], regexp); |
c906108c SS |
3690 | |
3691 | for (p = symbols; p != NULL; p = p->next) | |
3692 | { | |
3693 | QUIT; | |
3694 | ||
3695 | if (p->msymbol != NULL) | |
c5aa993b JM |
3696 | { |
3697 | if (first) | |
3698 | { | |
3699 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3700 | first = 0; | |
3701 | } | |
3702 | print_msymbol_info (p->msymbol); | |
3703 | } | |
c906108c | 3704 | else |
c5aa993b JM |
3705 | { |
3706 | print_symbol_info (kind, | |
3707 | p->symtab, | |
3708 | p->symbol, | |
3709 | p->block, | |
3710 | last_filename); | |
3711 | last_filename = p->symtab->filename; | |
3712 | } | |
c906108c SS |
3713 | } |
3714 | ||
3715 | do_cleanups (old_chain); | |
3716 | } | |
3717 | ||
3718 | static void | |
fba45db2 | 3719 | variables_info (char *regexp, int from_tty) |
c906108c | 3720 | { |
176620f1 | 3721 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3722 | } |
3723 | ||
3724 | static void | |
fba45db2 | 3725 | functions_info (char *regexp, int from_tty) |
c906108c | 3726 | { |
176620f1 | 3727 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3728 | } |
3729 | ||
357e46e7 | 3730 | |
c906108c | 3731 | static void |
fba45db2 | 3732 | types_info (char *regexp, int from_tty) |
c906108c | 3733 | { |
176620f1 | 3734 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3735 | } |
3736 | ||
c378eb4e | 3737 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3738 | |
8b93c638 | 3739 | void |
fba45db2 | 3740 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3741 | { |
3742 | rbreak_command (regexp, from_tty); | |
3743 | } | |
8926118c | 3744 | |
95a42b64 TT |
3745 | /* A cleanup function that calls end_rbreak_breakpoints. */ |
3746 | ||
3747 | static void | |
3748 | do_end_rbreak_breakpoints (void *ignore) | |
3749 | { | |
3750 | end_rbreak_breakpoints (); | |
3751 | } | |
3752 | ||
c906108c | 3753 | static void |
fba45db2 | 3754 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3755 | { |
3756 | struct symbol_search *ss; | |
3757 | struct symbol_search *p; | |
3758 | struct cleanup *old_chain; | |
95a42b64 TT |
3759 | char *string = NULL; |
3760 | int len = 0; | |
9c1e305a | 3761 | char **files = NULL, *file_name; |
8bd10a10 | 3762 | int nfiles = 0; |
c906108c | 3763 | |
8bd10a10 CM |
3764 | if (regexp) |
3765 | { | |
3766 | char *colon = strchr (regexp, ':'); | |
433759f7 | 3767 | |
8bd10a10 CM |
3768 | if (colon && *(colon + 1) != ':') |
3769 | { | |
3770 | int colon_index; | |
8bd10a10 CM |
3771 | |
3772 | colon_index = colon - regexp; | |
3773 | file_name = alloca (colon_index + 1); | |
3774 | memcpy (file_name, regexp, colon_index); | |
3775 | file_name[colon_index--] = 0; | |
3776 | while (isspace (file_name[colon_index])) | |
3777 | file_name[colon_index--] = 0; | |
3778 | files = &file_name; | |
3779 | nfiles = 1; | |
3780 | regexp = colon + 1; | |
3781 | while (isspace (*regexp)) regexp++; | |
3782 | } | |
3783 | } | |
3784 | ||
3785 | search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss); | |
5bd98722 | 3786 | old_chain = make_cleanup_free_search_symbols (ss); |
95a42b64 | 3787 | make_cleanup (free_current_contents, &string); |
c906108c | 3788 | |
95a42b64 TT |
3789 | start_rbreak_breakpoints (); |
3790 | make_cleanup (do_end_rbreak_breakpoints, NULL); | |
c906108c SS |
3791 | for (p = ss; p != NULL; p = p->next) |
3792 | { | |
3793 | if (p->msymbol == NULL) | |
c5aa993b | 3794 | { |
95a42b64 TT |
3795 | int newlen = (strlen (p->symtab->filename) |
3796 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3797 | + 4); | |
433759f7 | 3798 | |
95a42b64 TT |
3799 | if (newlen > len) |
3800 | { | |
3801 | string = xrealloc (string, newlen); | |
3802 | len = newlen; | |
3803 | } | |
c5aa993b JM |
3804 | strcpy (string, p->symtab->filename); |
3805 | strcat (string, ":'"); | |
2335f48e | 3806 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3807 | strcat (string, "'"); |
3808 | break_command (string, from_tty); | |
176620f1 | 3809 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3810 | p->symtab, |
3811 | p->symbol, | |
3812 | p->block, | |
3813 | p->symtab->filename); | |
3814 | } | |
c906108c | 3815 | else |
c5aa993b | 3816 | { |
433759f7 MS |
3817 | int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3); |
3818 | ||
95a42b64 TT |
3819 | if (newlen > len) |
3820 | { | |
3821 | string = xrealloc (string, newlen); | |
3822 | len = newlen; | |
3823 | } | |
6214f497 DJ |
3824 | strcpy (string, "'"); |
3825 | strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol)); | |
3826 | strcat (string, "'"); | |
3827 | ||
3828 | break_command (string, from_tty); | |
c5aa993b | 3829 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3830 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3831 | } |
c906108c SS |
3832 | } |
3833 | ||
3834 | do_cleanups (old_chain); | |
3835 | } | |
c906108c | 3836 | \f |
c5aa993b | 3837 | |
1976171a JK |
3838 | /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN. |
3839 | ||
3840 | Either sym_text[sym_text_len] != '(' and then we search for any | |
3841 | symbol starting with SYM_TEXT text. | |
3842 | ||
3843 | Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to | |
3844 | be terminated at that point. Partial symbol tables do not have parameters | |
3845 | information. */ | |
3846 | ||
3847 | static int | |
3848 | compare_symbol_name (const char *name, const char *sym_text, int sym_text_len) | |
3849 | { | |
3850 | int (*ncmp) (const char *, const char *, size_t); | |
3851 | ||
3852 | ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp); | |
3853 | ||
3854 | if (ncmp (name, sym_text, sym_text_len) != 0) | |
3855 | return 0; | |
3856 | ||
3857 | if (sym_text[sym_text_len] == '(') | |
3858 | { | |
3859 | /* User searches for `name(someth...'. Require NAME to be terminated. | |
3860 | Normally psymtabs and gdbindex have no parameter types so '\0' will be | |
3861 | present but accept even parameters presence. In this case this | |
3862 | function is in fact strcmp_iw but whitespace skipping is not supported | |
3863 | for tab completion. */ | |
3864 | ||
3865 | if (name[sym_text_len] != '\0' && name[sym_text_len] != '(') | |
3866 | return 0; | |
3867 | } | |
3868 | ||
3869 | return 1; | |
3870 | } | |
3871 | ||
821296b7 SA |
3872 | /* Free any memory associated with a completion list. */ |
3873 | ||
3874 | static void | |
3875 | free_completion_list (char ***list_ptr) | |
3876 | { | |
3877 | int i = 0; | |
3878 | char **list = *list_ptr; | |
3879 | ||
3880 | while (list[i] != NULL) | |
3881 | { | |
3882 | xfree (list[i]); | |
3883 | i++; | |
3884 | } | |
3885 | xfree (list); | |
3886 | } | |
3887 | ||
3888 | /* Callback for make_cleanup. */ | |
3889 | ||
3890 | static void | |
3891 | do_free_completion_list (void *list) | |
3892 | { | |
3893 | free_completion_list (list); | |
3894 | } | |
3895 | ||
c906108c SS |
3896 | /* Helper routine for make_symbol_completion_list. */ |
3897 | ||
3898 | static int return_val_size; | |
3899 | static int return_val_index; | |
3900 | static char **return_val; | |
3901 | ||
3902 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3903 | completion_list_add_name \ |
2335f48e | 3904 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3905 | |
3906 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b | 3907 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
c378eb4e | 3908 | characters. If so, add it to the current completion list. */ |
c906108c SS |
3909 | |
3910 | static void | |
0d5cff50 DE |
3911 | completion_list_add_name (const char *symname, |
3912 | const char *sym_text, int sym_text_len, | |
3913 | const char *text, const char *word) | |
c906108c SS |
3914 | { |
3915 | int newsize; | |
c906108c | 3916 | |
c378eb4e | 3917 | /* Clip symbols that cannot match. */ |
1976171a JK |
3918 | if (!compare_symbol_name (symname, sym_text, sym_text_len)) |
3919 | return; | |
c906108c | 3920 | |
c906108c | 3921 | /* We have a match for a completion, so add SYMNAME to the current list |
c378eb4e | 3922 | of matches. Note that the name is moved to freshly malloc'd space. */ |
c906108c SS |
3923 | |
3924 | { | |
3925 | char *new; | |
433759f7 | 3926 | |
c906108c SS |
3927 | if (word == sym_text) |
3928 | { | |
3929 | new = xmalloc (strlen (symname) + 5); | |
3930 | strcpy (new, symname); | |
3931 | } | |
3932 | else if (word > sym_text) | |
3933 | { | |
3934 | /* Return some portion of symname. */ | |
3935 | new = xmalloc (strlen (symname) + 5); | |
3936 | strcpy (new, symname + (word - sym_text)); | |
3937 | } | |
3938 | else | |
3939 | { | |
3940 | /* Return some of SYM_TEXT plus symname. */ | |
3941 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3942 | strncpy (new, word, sym_text - word); | |
3943 | new[sym_text - word] = '\0'; | |
3944 | strcat (new, symname); | |
3945 | } | |
3946 | ||
c906108c SS |
3947 | if (return_val_index + 3 > return_val_size) |
3948 | { | |
3949 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3950 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3951 | } | |
3952 | return_val[return_val_index++] = new; | |
3953 | return_val[return_val_index] = NULL; | |
3954 | } | |
3955 | } | |
3956 | ||
69636828 AF |
3957 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3958 | again and feed all the selectors into the mill. */ | |
3959 | ||
3960 | static void | |
0d5cff50 DE |
3961 | completion_list_objc_symbol (struct minimal_symbol *msymbol, |
3962 | const char *sym_text, int sym_text_len, | |
3963 | const char *text, const char *word) | |
69636828 AF |
3964 | { |
3965 | static char *tmp = NULL; | |
3966 | static unsigned int tmplen = 0; | |
9af17804 | 3967 | |
0d5cff50 | 3968 | const char *method, *category, *selector; |
69636828 | 3969 | char *tmp2 = NULL; |
9af17804 | 3970 | |
69636828 AF |
3971 | method = SYMBOL_NATURAL_NAME (msymbol); |
3972 | ||
3973 | /* Is it a method? */ | |
3974 | if ((method[0] != '-') && (method[0] != '+')) | |
3975 | return; | |
3976 | ||
3977 | if (sym_text[0] == '[') | |
3978 | /* Complete on shortened method method. */ | |
3979 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
9af17804 | 3980 | |
69636828 AF |
3981 | while ((strlen (method) + 1) >= tmplen) |
3982 | { | |
3983 | if (tmplen == 0) | |
3984 | tmplen = 1024; | |
3985 | else | |
3986 | tmplen *= 2; | |
3987 | tmp = xrealloc (tmp, tmplen); | |
3988 | } | |
3989 | selector = strchr (method, ' '); | |
3990 | if (selector != NULL) | |
3991 | selector++; | |
9af17804 | 3992 | |
69636828 | 3993 | category = strchr (method, '('); |
9af17804 | 3994 | |
69636828 AF |
3995 | if ((category != NULL) && (selector != NULL)) |
3996 | { | |
3997 | memcpy (tmp, method, (category - method)); | |
3998 | tmp[category - method] = ' '; | |
3999 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
4000 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
4001 | if (sym_text[0] == '[') | |
4002 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
4003 | } | |
9af17804 | 4004 | |
69636828 AF |
4005 | if (selector != NULL) |
4006 | { | |
4007 | /* Complete on selector only. */ | |
4008 | strcpy (tmp, selector); | |
4009 | tmp2 = strchr (tmp, ']'); | |
4010 | if (tmp2 != NULL) | |
4011 | *tmp2 = '\0'; | |
9af17804 | 4012 | |
69636828 AF |
4013 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
4014 | } | |
4015 | } | |
4016 | ||
4017 | /* Break the non-quoted text based on the characters which are in | |
c378eb4e | 4018 | symbols. FIXME: This should probably be language-specific. */ |
69636828 AF |
4019 | |
4020 | static char * | |
4021 | language_search_unquoted_string (char *text, char *p) | |
4022 | { | |
4023 | for (; p > text; --p) | |
4024 | { | |
4025 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
4026 | continue; | |
4027 | else | |
4028 | { | |
4029 | if ((current_language->la_language == language_objc)) | |
4030 | { | |
c378eb4e | 4031 | if (p[-1] == ':') /* Might be part of a method name. */ |
69636828 AF |
4032 | continue; |
4033 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
c378eb4e | 4034 | p -= 2; /* Beginning of a method name. */ |
69636828 | 4035 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') |
c378eb4e | 4036 | { /* Might be part of a method name. */ |
69636828 AF |
4037 | char *t = p; |
4038 | ||
4039 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
4040 | that we are in the middle of a method name. However, | |
4041 | finding "-[" or "+[" should be pretty un-ambiguous. | |
4042 | Unfortunately we have to find it now to decide. */ | |
4043 | ||
4044 | while (t > text) | |
4045 | if (isalnum (t[-1]) || t[-1] == '_' || | |
4046 | t[-1] == ' ' || t[-1] == ':' || | |
4047 | t[-1] == '(' || t[-1] == ')') | |
4048 | --t; | |
4049 | else | |
4050 | break; | |
4051 | ||
4052 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
c378eb4e MS |
4053 | p = t - 2; /* Method name detected. */ |
4054 | /* Else we leave with p unchanged. */ | |
69636828 AF |
4055 | } |
4056 | } | |
4057 | break; | |
4058 | } | |
4059 | } | |
4060 | return p; | |
4061 | } | |
4062 | ||
edb3359d DJ |
4063 | static void |
4064 | completion_list_add_fields (struct symbol *sym, char *sym_text, | |
4065 | int sym_text_len, char *text, char *word) | |
4066 | { | |
4067 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4068 | { | |
4069 | struct type *t = SYMBOL_TYPE (sym); | |
4070 | enum type_code c = TYPE_CODE (t); | |
4071 | int j; | |
4072 | ||
4073 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
4074 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
4075 | if (TYPE_FIELD_NAME (t, j)) | |
4076 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
4077 | sym_text, sym_text_len, text, word); | |
4078 | } | |
4079 | } | |
4080 | ||
ccefe4c4 | 4081 | /* Type of the user_data argument passed to add_macro_name or |
7b08b9eb | 4082 | expand_partial_symbol_name. The contents are simply whatever is |
ccefe4c4 TT |
4083 | needed by completion_list_add_name. */ |
4084 | struct add_name_data | |
9a044a89 TT |
4085 | { |
4086 | char *sym_text; | |
4087 | int sym_text_len; | |
4088 | char *text; | |
4089 | char *word; | |
4090 | }; | |
4091 | ||
4092 | /* A callback used with macro_for_each and macro_for_each_in_scope. | |
4093 | This adds a macro's name to the current completion list. */ | |
eca864fe | 4094 | |
9a044a89 TT |
4095 | static void |
4096 | add_macro_name (const char *name, const struct macro_definition *ignore, | |
9b158ba0 | 4097 | struct macro_source_file *ignore2, int ignore3, |
9a044a89 TT |
4098 | void *user_data) |
4099 | { | |
ccefe4c4 | 4100 | struct add_name_data *datum = (struct add_name_data *) user_data; |
433759f7 | 4101 | |
ccefe4c4 TT |
4102 | completion_list_add_name ((char *) name, |
4103 | datum->sym_text, datum->sym_text_len, | |
4104 | datum->text, datum->word); | |
4105 | } | |
4106 | ||
7b08b9eb | 4107 | /* A callback for expand_partial_symbol_names. */ |
eca864fe | 4108 | |
7b08b9eb | 4109 | static int |
e078317b | 4110 | expand_partial_symbol_name (const char *name, void *user_data) |
ccefe4c4 TT |
4111 | { |
4112 | struct add_name_data *datum = (struct add_name_data *) user_data; | |
165195f4 | 4113 | |
1976171a | 4114 | return compare_symbol_name (name, datum->sym_text, datum->sym_text_len); |
9a044a89 TT |
4115 | } |
4116 | ||
c906108c | 4117 | char ** |
f55ee35c JK |
4118 | default_make_symbol_completion_list_break_on (char *text, char *word, |
4119 | const char *break_on) | |
c906108c | 4120 | { |
41d27058 JB |
4121 | /* Problem: All of the symbols have to be copied because readline |
4122 | frees them. I'm not going to worry about this; hopefully there | |
4123 | won't be that many. */ | |
4124 | ||
de4f826b DC |
4125 | struct symbol *sym; |
4126 | struct symtab *s; | |
de4f826b DC |
4127 | struct minimal_symbol *msymbol; |
4128 | struct objfile *objfile; | |
edb3359d DJ |
4129 | struct block *b; |
4130 | const struct block *surrounding_static_block, *surrounding_global_block; | |
8157b174 | 4131 | struct block_iterator iter; |
c906108c SS |
4132 | /* The symbol we are completing on. Points in same buffer as text. */ |
4133 | char *sym_text; | |
4134 | /* Length of sym_text. */ | |
4135 | int sym_text_len; | |
ccefe4c4 | 4136 | struct add_name_data datum; |
821296b7 | 4137 | struct cleanup *back_to; |
c906108c | 4138 | |
41d27058 | 4139 | /* Now look for the symbol we are supposed to complete on. */ |
c906108c SS |
4140 | { |
4141 | char *p; | |
4142 | char quote_found; | |
4143 | char *quote_pos = NULL; | |
4144 | ||
4145 | /* First see if this is a quoted string. */ | |
4146 | quote_found = '\0'; | |
4147 | for (p = text; *p != '\0'; ++p) | |
4148 | { | |
4149 | if (quote_found != '\0') | |
4150 | { | |
4151 | if (*p == quote_found) | |
4152 | /* Found close quote. */ | |
4153 | quote_found = '\0'; | |
4154 | else if (*p == '\\' && p[1] == quote_found) | |
4155 | /* A backslash followed by the quote character | |
c5aa993b | 4156 | doesn't end the string. */ |
c906108c SS |
4157 | ++p; |
4158 | } | |
4159 | else if (*p == '\'' || *p == '"') | |
4160 | { | |
4161 | quote_found = *p; | |
4162 | quote_pos = p; | |
4163 | } | |
4164 | } | |
4165 | if (quote_found == '\'') | |
4166 | /* A string within single quotes can be a symbol, so complete on it. */ | |
4167 | sym_text = quote_pos + 1; | |
4168 | else if (quote_found == '"') | |
4169 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 4170 | to complete it any other way. */ |
c94fdfd0 EZ |
4171 | { |
4172 | return_val = (char **) xmalloc (sizeof (char *)); | |
4173 | return_val[0] = NULL; | |
4174 | return return_val; | |
4175 | } | |
c906108c SS |
4176 | else |
4177 | { | |
4178 | /* It is not a quoted string. Break it based on the characters | |
4179 | which are in symbols. */ | |
4180 | while (p > text) | |
4181 | { | |
95699ff0 | 4182 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' |
f55ee35c | 4183 | || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) |
c906108c SS |
4184 | --p; |
4185 | else | |
4186 | break; | |
4187 | } | |
4188 | sym_text = p; | |
4189 | } | |
4190 | } | |
4191 | ||
4192 | sym_text_len = strlen (sym_text); | |
4193 | ||
1976171a JK |
4194 | /* Prepare SYM_TEXT_LEN for compare_symbol_name. */ |
4195 | ||
4196 | if (current_language->la_language == language_cplus | |
4197 | || current_language->la_language == language_java | |
4198 | || current_language->la_language == language_fortran) | |
4199 | { | |
4200 | /* These languages may have parameters entered by user but they are never | |
4201 | present in the partial symbol tables. */ | |
4202 | ||
4203 | const char *cs = memchr (sym_text, '(', sym_text_len); | |
4204 | ||
4205 | if (cs) | |
4206 | sym_text_len = cs - sym_text; | |
4207 | } | |
4208 | gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '('); | |
4209 | ||
c906108c SS |
4210 | return_val_size = 100; |
4211 | return_val_index = 0; | |
4212 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
4213 | return_val[0] = NULL; | |
821296b7 | 4214 | back_to = make_cleanup (do_free_completion_list, &return_val); |
c906108c | 4215 | |
ccefe4c4 TT |
4216 | datum.sym_text = sym_text; |
4217 | datum.sym_text_len = sym_text_len; | |
4218 | datum.text = text; | |
4219 | datum.word = word; | |
4220 | ||
c906108c | 4221 | /* Look through the partial symtabs for all symbols which begin |
7b08b9eb JK |
4222 | by matching SYM_TEXT. Expand all CUs that you find to the list. |
4223 | The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */ | |
4224 | expand_partial_symbol_names (expand_partial_symbol_name, &datum); | |
c906108c SS |
4225 | |
4226 | /* At this point scan through the misc symbol vectors and add each | |
4227 | symbol you find to the list. Eventually we want to ignore | |
4228 | anything that isn't a text symbol (everything else will be | |
4229 | handled by the psymtab code above). */ | |
4230 | ||
4231 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
4232 | { |
4233 | QUIT; | |
4234 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
9af17804 | 4235 | |
69636828 | 4236 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); |
c5aa993b | 4237 | } |
c906108c SS |
4238 | |
4239 | /* Search upwards from currently selected frame (so that we can | |
edb3359d DJ |
4240 | complete on local vars). Also catch fields of types defined in |
4241 | this places which match our text string. Only complete on types | |
c378eb4e | 4242 | visible from current context. */ |
edb3359d DJ |
4243 | |
4244 | b = get_selected_block (0); | |
4245 | surrounding_static_block = block_static_block (b); | |
4246 | surrounding_global_block = block_global_block (b); | |
4247 | if (surrounding_static_block != NULL) | |
4248 | while (b != surrounding_static_block) | |
4249 | { | |
4250 | QUIT; | |
c906108c | 4251 | |
edb3359d DJ |
4252 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
4253 | { | |
4254 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, | |
4255 | word); | |
4256 | completion_list_add_fields (sym, sym_text, sym_text_len, text, | |
4257 | word); | |
4258 | } | |
c5aa993b | 4259 | |
edb3359d DJ |
4260 | /* Stop when we encounter an enclosing function. Do not stop for |
4261 | non-inlined functions - the locals of the enclosing function | |
4262 | are in scope for a nested function. */ | |
4263 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
4264 | break; | |
4265 | b = BLOCK_SUPERBLOCK (b); | |
4266 | } | |
c906108c | 4267 | |
edb3359d | 4268 | /* Add fields from the file's types; symbols will be added below. */ |
c906108c | 4269 | |
edb3359d DJ |
4270 | if (surrounding_static_block != NULL) |
4271 | ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) | |
4272 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
4273 | ||
4274 | if (surrounding_global_block != NULL) | |
4275 | ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) | |
4276 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
c906108c SS |
4277 | |
4278 | /* Go through the symtabs and check the externs and statics for | |
4279 | symbols which match. */ | |
4280 | ||
11309657 | 4281 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
4282 | { |
4283 | QUIT; | |
4284 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4285 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 4286 | { |
c5aa993b JM |
4287 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4288 | } | |
4289 | } | |
c906108c | 4290 | |
11309657 | 4291 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
4292 | { |
4293 | QUIT; | |
4294 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4295 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 4296 | { |
c5aa993b JM |
4297 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4298 | } | |
4299 | } | |
c906108c | 4300 | |
9a044a89 TT |
4301 | if (current_language->la_macro_expansion == macro_expansion_c) |
4302 | { | |
4303 | struct macro_scope *scope; | |
9a044a89 TT |
4304 | |
4305 | /* Add any macros visible in the default scope. Note that this | |
4306 | may yield the occasional wrong result, because an expression | |
4307 | might be evaluated in a scope other than the default. For | |
4308 | example, if the user types "break file:line if <TAB>", the | |
4309 | resulting expression will be evaluated at "file:line" -- but | |
4310 | at there does not seem to be a way to detect this at | |
4311 | completion time. */ | |
4312 | scope = default_macro_scope (); | |
4313 | if (scope) | |
4314 | { | |
4315 | macro_for_each_in_scope (scope->file, scope->line, | |
4316 | add_macro_name, &datum); | |
4317 | xfree (scope); | |
4318 | } | |
4319 | ||
4320 | /* User-defined macros are always visible. */ | |
4321 | macro_for_each (macro_user_macros, add_macro_name, &datum); | |
4322 | } | |
4323 | ||
821296b7 | 4324 | discard_cleanups (back_to); |
c906108c SS |
4325 | return (return_val); |
4326 | } | |
4327 | ||
f55ee35c JK |
4328 | char ** |
4329 | default_make_symbol_completion_list (char *text, char *word) | |
4330 | { | |
4331 | return default_make_symbol_completion_list_break_on (text, word, ""); | |
4332 | } | |
4333 | ||
41d27058 JB |
4334 | /* Return a NULL terminated array of all symbols (regardless of class) |
4335 | which begin by matching TEXT. If the answer is no symbols, then | |
4336 | the return value is an array which contains only a NULL pointer. */ | |
4337 | ||
4338 | char ** | |
4339 | make_symbol_completion_list (char *text, char *word) | |
4340 | { | |
4341 | return current_language->la_make_symbol_completion_list (text, word); | |
4342 | } | |
4343 | ||
d8906c6f TJB |
4344 | /* Like make_symbol_completion_list, but suitable for use as a |
4345 | completion function. */ | |
4346 | ||
4347 | char ** | |
4348 | make_symbol_completion_list_fn (struct cmd_list_element *ignore, | |
4349 | char *text, char *word) | |
4350 | { | |
4351 | return make_symbol_completion_list (text, word); | |
4352 | } | |
4353 | ||
c94fdfd0 EZ |
4354 | /* Like make_symbol_completion_list, but returns a list of symbols |
4355 | defined in a source file FILE. */ | |
4356 | ||
4357 | char ** | |
4358 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
4359 | { | |
52f0bd74 AC |
4360 | struct symbol *sym; |
4361 | struct symtab *s; | |
4362 | struct block *b; | |
8157b174 | 4363 | struct block_iterator iter; |
c94fdfd0 EZ |
4364 | /* The symbol we are completing on. Points in same buffer as text. */ |
4365 | char *sym_text; | |
4366 | /* Length of sym_text. */ | |
4367 | int sym_text_len; | |
4368 | ||
4369 | /* Now look for the symbol we are supposed to complete on. | |
4370 | FIXME: This should be language-specific. */ | |
4371 | { | |
4372 | char *p; | |
4373 | char quote_found; | |
4374 | char *quote_pos = NULL; | |
4375 | ||
4376 | /* First see if this is a quoted string. */ | |
4377 | quote_found = '\0'; | |
4378 | for (p = text; *p != '\0'; ++p) | |
4379 | { | |
4380 | if (quote_found != '\0') | |
4381 | { | |
4382 | if (*p == quote_found) | |
4383 | /* Found close quote. */ | |
4384 | quote_found = '\0'; | |
4385 | else if (*p == '\\' && p[1] == quote_found) | |
4386 | /* A backslash followed by the quote character | |
4387 | doesn't end the string. */ | |
4388 | ++p; | |
4389 | } | |
4390 | else if (*p == '\'' || *p == '"') | |
4391 | { | |
4392 | quote_found = *p; | |
4393 | quote_pos = p; | |
4394 | } | |
4395 | } | |
4396 | if (quote_found == '\'') | |
4397 | /* A string within single quotes can be a symbol, so complete on it. */ | |
4398 | sym_text = quote_pos + 1; | |
4399 | else if (quote_found == '"') | |
4400 | /* A double-quoted string is never a symbol, nor does it make sense | |
4401 | to complete it any other way. */ | |
4402 | { | |
4403 | return_val = (char **) xmalloc (sizeof (char *)); | |
4404 | return_val[0] = NULL; | |
4405 | return return_val; | |
4406 | } | |
4407 | else | |
4408 | { | |
69636828 AF |
4409 | /* Not a quoted string. */ |
4410 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
4411 | } |
4412 | } | |
4413 | ||
4414 | sym_text_len = strlen (sym_text); | |
4415 | ||
4416 | return_val_size = 10; | |
4417 | return_val_index = 0; | |
4418 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
4419 | return_val[0] = NULL; | |
4420 | ||
4421 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
4422 | in). */ | |
4423 | s = lookup_symtab (srcfile); | |
4424 | if (s == NULL) | |
4425 | { | |
4426 | /* Maybe they typed the file with leading directories, while the | |
4427 | symbol tables record only its basename. */ | |
31889e00 | 4428 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
4429 | |
4430 | if (tail > srcfile) | |
4431 | s = lookup_symtab (tail); | |
4432 | } | |
4433 | ||
4434 | /* If we have no symtab for that file, return an empty list. */ | |
4435 | if (s == NULL) | |
4436 | return (return_val); | |
4437 | ||
4438 | /* Go through this symtab and check the externs and statics for | |
4439 | symbols which match. */ | |
4440 | ||
4441 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4442 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4443 | { |
c94fdfd0 EZ |
4444 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4445 | } | |
4446 | ||
4447 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4448 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4449 | { |
c94fdfd0 EZ |
4450 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4451 | } | |
4452 | ||
4453 | return (return_val); | |
4454 | } | |
4455 | ||
4456 | /* A helper function for make_source_files_completion_list. It adds | |
4457 | another file name to a list of possible completions, growing the | |
4458 | list as necessary. */ | |
4459 | ||
4460 | static void | |
4461 | add_filename_to_list (const char *fname, char *text, char *word, | |
4462 | char ***list, int *list_used, int *list_alloced) | |
4463 | { | |
4464 | char *new; | |
4465 | size_t fnlen = strlen (fname); | |
4466 | ||
4467 | if (*list_used + 1 >= *list_alloced) | |
4468 | { | |
4469 | *list_alloced *= 2; | |
4470 | *list = (char **) xrealloc ((char *) *list, | |
4471 | *list_alloced * sizeof (char *)); | |
4472 | } | |
4473 | ||
4474 | if (word == text) | |
4475 | { | |
4476 | /* Return exactly fname. */ | |
4477 | new = xmalloc (fnlen + 5); | |
4478 | strcpy (new, fname); | |
4479 | } | |
4480 | else if (word > text) | |
4481 | { | |
4482 | /* Return some portion of fname. */ | |
4483 | new = xmalloc (fnlen + 5); | |
4484 | strcpy (new, fname + (word - text)); | |
4485 | } | |
4486 | else | |
4487 | { | |
4488 | /* Return some of TEXT plus fname. */ | |
4489 | new = xmalloc (fnlen + (text - word) + 5); | |
4490 | strncpy (new, word, text - word); | |
4491 | new[text - word] = '\0'; | |
4492 | strcat (new, fname); | |
4493 | } | |
4494 | (*list)[*list_used] = new; | |
4495 | (*list)[++*list_used] = NULL; | |
4496 | } | |
4497 | ||
4498 | static int | |
4499 | not_interesting_fname (const char *fname) | |
4500 | { | |
4501 | static const char *illegal_aliens[] = { | |
4502 | "_globals_", /* inserted by coff_symtab_read */ | |
4503 | NULL | |
4504 | }; | |
4505 | int i; | |
4506 | ||
4507 | for (i = 0; illegal_aliens[i]; i++) | |
4508 | { | |
0ba1096a | 4509 | if (filename_cmp (fname, illegal_aliens[i]) == 0) |
c94fdfd0 EZ |
4510 | return 1; |
4511 | } | |
4512 | return 0; | |
4513 | } | |
4514 | ||
ccefe4c4 TT |
4515 | /* An object of this type is passed as the user_data argument to |
4516 | map_partial_symbol_filenames. */ | |
4517 | struct add_partial_filename_data | |
4518 | { | |
4519 | int *first; | |
4520 | char *text; | |
4521 | char *word; | |
4522 | int text_len; | |
4523 | char ***list; | |
4524 | int *list_used; | |
4525 | int *list_alloced; | |
4526 | }; | |
4527 | ||
4528 | /* A callback for map_partial_symbol_filenames. */ | |
eca864fe | 4529 | |
ccefe4c4 | 4530 | static void |
2837d59e | 4531 | maybe_add_partial_symtab_filename (const char *filename, const char *fullname, |
ccefe4c4 TT |
4532 | void *user_data) |
4533 | { | |
4534 | struct add_partial_filename_data *data = user_data; | |
4535 | ||
4536 | if (not_interesting_fname (filename)) | |
4537 | return; | |
4538 | if (!filename_seen (filename, 1, data->first) | |
0ba1096a | 4539 | && filename_ncmp (filename, data->text, data->text_len) == 0) |
ccefe4c4 TT |
4540 | { |
4541 | /* This file matches for a completion; add it to the | |
4542 | current list of matches. */ | |
4543 | add_filename_to_list (filename, data->text, data->word, | |
4544 | data->list, data->list_used, data->list_alloced); | |
4545 | } | |
4546 | else | |
4547 | { | |
4548 | const char *base_name = lbasename (filename); | |
433759f7 | 4549 | |
ccefe4c4 TT |
4550 | if (base_name != filename |
4551 | && !filename_seen (base_name, 1, data->first) | |
0ba1096a | 4552 | && filename_ncmp (base_name, data->text, data->text_len) == 0) |
ccefe4c4 TT |
4553 | add_filename_to_list (base_name, data->text, data->word, |
4554 | data->list, data->list_used, data->list_alloced); | |
4555 | } | |
4556 | } | |
4557 | ||
c94fdfd0 EZ |
4558 | /* Return a NULL terminated array of all source files whose names |
4559 | begin with matching TEXT. The file names are looked up in the | |
4560 | symbol tables of this program. If the answer is no matchess, then | |
4561 | the return value is an array which contains only a NULL pointer. */ | |
4562 | ||
4563 | char ** | |
4564 | make_source_files_completion_list (char *text, char *word) | |
4565 | { | |
52f0bd74 | 4566 | struct symtab *s; |
52f0bd74 | 4567 | struct objfile *objfile; |
c94fdfd0 EZ |
4568 | int first = 1; |
4569 | int list_alloced = 1; | |
4570 | int list_used = 0; | |
4571 | size_t text_len = strlen (text); | |
4572 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 4573 | const char *base_name; |
ccefe4c4 | 4574 | struct add_partial_filename_data datum; |
821296b7 | 4575 | struct cleanup *back_to; |
c94fdfd0 EZ |
4576 | |
4577 | list[0] = NULL; | |
4578 | ||
4579 | if (!have_full_symbols () && !have_partial_symbols ()) | |
4580 | return list; | |
4581 | ||
821296b7 SA |
4582 | back_to = make_cleanup (do_free_completion_list, &list); |
4583 | ||
c94fdfd0 EZ |
4584 | ALL_SYMTABS (objfile, s) |
4585 | { | |
4586 | if (not_interesting_fname (s->filename)) | |
4587 | continue; | |
4588 | if (!filename_seen (s->filename, 1, &first) | |
0ba1096a | 4589 | && filename_ncmp (s->filename, text, text_len) == 0) |
c94fdfd0 EZ |
4590 | { |
4591 | /* This file matches for a completion; add it to the current | |
4592 | list of matches. */ | |
4593 | add_filename_to_list (s->filename, text, word, | |
4594 | &list, &list_used, &list_alloced); | |
4595 | } | |
4596 | else | |
4597 | { | |
4598 | /* NOTE: We allow the user to type a base name when the | |
4599 | debug info records leading directories, but not the other | |
4600 | way around. This is what subroutines of breakpoint | |
4601 | command do when they parse file names. */ | |
31889e00 | 4602 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
4603 | if (base_name != s->filename |
4604 | && !filename_seen (base_name, 1, &first) | |
0ba1096a | 4605 | && filename_ncmp (base_name, text, text_len) == 0) |
c94fdfd0 EZ |
4606 | add_filename_to_list (base_name, text, word, |
4607 | &list, &list_used, &list_alloced); | |
4608 | } | |
4609 | } | |
4610 | ||
ccefe4c4 TT |
4611 | datum.first = &first; |
4612 | datum.text = text; | |
4613 | datum.word = word; | |
4614 | datum.text_len = text_len; | |
4615 | datum.list = &list; | |
4616 | datum.list_used = &list_used; | |
4617 | datum.list_alloced = &list_alloced; | |
74e2f255 DE |
4618 | map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum, |
4619 | 0 /*need_fullname*/); | |
821296b7 | 4620 | discard_cleanups (back_to); |
c94fdfd0 EZ |
4621 | |
4622 | return list; | |
4623 | } | |
4624 | ||
c906108c SS |
4625 | /* Determine if PC is in the prologue of a function. The prologue is the area |
4626 | between the first instruction of a function, and the first executable line. | |
4627 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
4628 | ||
4629 | If non-zero, func_start is where we think the prologue starts, possibly | |
c378eb4e | 4630 | by previous examination of symbol table information. */ |
c906108c SS |
4631 | |
4632 | int | |
d80b854b | 4633 | in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
4634 | { |
4635 | struct symtab_and_line sal; | |
4636 | CORE_ADDR func_addr, func_end; | |
4637 | ||
54cf9c03 EZ |
4638 | /* We have several sources of information we can consult to figure |
4639 | this out. | |
4640 | - Compilers usually emit line number info that marks the prologue | |
4641 | as its own "source line". So the ending address of that "line" | |
4642 | is the end of the prologue. If available, this is the most | |
4643 | reliable method. | |
4644 | - The minimal symbols and partial symbols, which can usually tell | |
4645 | us the starting and ending addresses of a function. | |
4646 | - If we know the function's start address, we can call the | |
a433963d | 4647 | architecture-defined gdbarch_skip_prologue function to analyze the |
54cf9c03 EZ |
4648 | instruction stream and guess where the prologue ends. |
4649 | - Our `func_start' argument; if non-zero, this is the caller's | |
4650 | best guess as to the function's entry point. At the time of | |
4651 | this writing, handle_inferior_event doesn't get this right, so | |
4652 | it should be our last resort. */ | |
4653 | ||
4654 | /* Consult the partial symbol table, to find which function | |
4655 | the PC is in. */ | |
4656 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
4657 | { | |
4658 | CORE_ADDR prologue_end; | |
c906108c | 4659 | |
54cf9c03 EZ |
4660 | /* We don't even have minsym information, so fall back to using |
4661 | func_start, if given. */ | |
4662 | if (! func_start) | |
4663 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 4664 | |
d80b854b | 4665 | prologue_end = gdbarch_skip_prologue (gdbarch, func_start); |
c906108c | 4666 | |
54cf9c03 EZ |
4667 | return func_start <= pc && pc < prologue_end; |
4668 | } | |
c906108c | 4669 | |
54cf9c03 EZ |
4670 | /* If we have line number information for the function, that's |
4671 | usually pretty reliable. */ | |
4672 | sal = find_pc_line (func_addr, 0); | |
c906108c | 4673 | |
54cf9c03 EZ |
4674 | /* Now sal describes the source line at the function's entry point, |
4675 | which (by convention) is the prologue. The end of that "line", | |
4676 | sal.end, is the end of the prologue. | |
4677 | ||
4678 | Note that, for functions whose source code is all on a single | |
4679 | line, the line number information doesn't always end up this way. | |
4680 | So we must verify that our purported end-of-prologue address is | |
4681 | *within* the function, not at its start or end. */ | |
4682 | if (sal.line == 0 | |
4683 | || sal.end <= func_addr | |
4684 | || func_end <= sal.end) | |
4685 | { | |
4686 | /* We don't have any good line number info, so use the minsym | |
4687 | information, together with the architecture-specific prologue | |
4688 | scanning code. */ | |
d80b854b | 4689 | CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr); |
c906108c | 4690 | |
54cf9c03 EZ |
4691 | return func_addr <= pc && pc < prologue_end; |
4692 | } | |
c906108c | 4693 | |
54cf9c03 EZ |
4694 | /* We have line number info, and it looks good. */ |
4695 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4696 | } |
4697 | ||
634aa483 AC |
4698 | /* Given PC at the function's start address, attempt to find the |
4699 | prologue end using SAL information. Return zero if the skip fails. | |
4700 | ||
4701 | A non-optimized prologue traditionally has one SAL for the function | |
4702 | and a second for the function body. A single line function has | |
4703 | them both pointing at the same line. | |
4704 | ||
4705 | An optimized prologue is similar but the prologue may contain | |
4706 | instructions (SALs) from the instruction body. Need to skip those | |
4707 | while not getting into the function body. | |
4708 | ||
4709 | The functions end point and an increasing SAL line are used as | |
4710 | indicators of the prologue's endpoint. | |
4711 | ||
7475b06c TJB |
4712 | This code is based on the function refine_prologue_limit |
4713 | (found in ia64). */ | |
634aa483 AC |
4714 | |
4715 | CORE_ADDR | |
d80b854b | 4716 | skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) |
634aa483 AC |
4717 | { |
4718 | struct symtab_and_line prologue_sal; | |
4719 | CORE_ADDR start_pc; | |
4720 | CORE_ADDR end_pc; | |
d54be744 | 4721 | struct block *bl; |
634aa483 AC |
4722 | |
4723 | /* Get an initial range for the function. */ | |
4724 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
d80b854b | 4725 | start_pc += gdbarch_deprecated_function_start_offset (gdbarch); |
634aa483 AC |
4726 | |
4727 | prologue_sal = find_pc_line (start_pc, 0); | |
4728 | if (prologue_sal.line != 0) | |
4729 | { | |
e5dd4106 | 4730 | /* For languages other than assembly, treat two consecutive line |
d54be744 DJ |
4731 | entries at the same address as a zero-instruction prologue. |
4732 | The GNU assembler emits separate line notes for each instruction | |
4733 | in a multi-instruction macro, but compilers generally will not | |
4734 | do this. */ | |
4735 | if (prologue_sal.symtab->language != language_asm) | |
4736 | { | |
4737 | struct linetable *linetable = LINETABLE (prologue_sal.symtab); | |
d54be744 DJ |
4738 | int idx = 0; |
4739 | ||
4740 | /* Skip any earlier lines, and any end-of-sequence marker | |
4741 | from a previous function. */ | |
4742 | while (linetable->item[idx].pc != prologue_sal.pc | |
4743 | || linetable->item[idx].line == 0) | |
4744 | idx++; | |
4745 | ||
4746 | if (idx+1 < linetable->nitems | |
4747 | && linetable->item[idx+1].line != 0 | |
4748 | && linetable->item[idx+1].pc == start_pc) | |
4749 | return start_pc; | |
4750 | } | |
4751 | ||
576c2025 FF |
4752 | /* If there is only one sal that covers the entire function, |
4753 | then it is probably a single line function, like | |
c378eb4e | 4754 | "foo(){}". */ |
91934273 | 4755 | if (prologue_sal.end >= end_pc) |
4e463ff5 | 4756 | return 0; |
d54be744 | 4757 | |
634aa483 AC |
4758 | while (prologue_sal.end < end_pc) |
4759 | { | |
4760 | struct symtab_and_line sal; | |
4761 | ||
4762 | sal = find_pc_line (prologue_sal.end, 0); | |
4763 | if (sal.line == 0) | |
4764 | break; | |
4765 | /* Assume that a consecutive SAL for the same (or larger) | |
4766 | line mark the prologue -> body transition. */ | |
4767 | if (sal.line >= prologue_sal.line) | |
4768 | break; | |
edb3359d DJ |
4769 | |
4770 | /* The line number is smaller. Check that it's from the | |
4771 | same function, not something inlined. If it's inlined, | |
4772 | then there is no point comparing the line numbers. */ | |
4773 | bl = block_for_pc (prologue_sal.end); | |
4774 | while (bl) | |
4775 | { | |
4776 | if (block_inlined_p (bl)) | |
4777 | break; | |
4778 | if (BLOCK_FUNCTION (bl)) | |
4779 | { | |
4780 | bl = NULL; | |
4781 | break; | |
4782 | } | |
4783 | bl = BLOCK_SUPERBLOCK (bl); | |
4784 | } | |
4785 | if (bl != NULL) | |
4786 | break; | |
4787 | ||
634aa483 AC |
4788 | /* The case in which compiler's optimizer/scheduler has |
4789 | moved instructions into the prologue. We look ahead in | |
4790 | the function looking for address ranges whose | |
4791 | corresponding line number is less the first one that we | |
4792 | found for the function. This is more conservative then | |
4793 | refine_prologue_limit which scans a large number of SALs | |
c378eb4e | 4794 | looking for any in the prologue. */ |
634aa483 AC |
4795 | prologue_sal = sal; |
4796 | } | |
4797 | } | |
d54be744 DJ |
4798 | |
4799 | if (prologue_sal.end < end_pc) | |
4800 | /* Return the end of this line, or zero if we could not find a | |
4801 | line. */ | |
4802 | return prologue_sal.end; | |
4803 | else | |
4804 | /* Don't return END_PC, which is past the end of the function. */ | |
4805 | return prologue_sal.pc; | |
634aa483 | 4806 | } |
c906108c | 4807 | \f |
50641945 | 4808 | struct symtabs_and_lines |
f8eba3c6 | 4809 | decode_line_spec (char *string, int flags) |
50641945 FN |
4810 | { |
4811 | struct symtabs_and_lines sals; | |
0378c332 | 4812 | struct symtab_and_line cursal; |
9af17804 | 4813 | |
50641945 | 4814 | if (string == 0) |
8a3fe4f8 | 4815 | error (_("Empty line specification.")); |
9af17804 | 4816 | |
c378eb4e MS |
4817 | /* We use whatever is set as the current source line. We do not try |
4818 | and get a default or it will recursively call us! */ | |
0378c332 | 4819 | cursal = get_current_source_symtab_and_line (); |
9af17804 | 4820 | |
f8eba3c6 TT |
4821 | sals = decode_line_1 (&string, flags, |
4822 | cursal.symtab, cursal.line); | |
0378c332 | 4823 | |
50641945 | 4824 | if (*string) |
8a3fe4f8 | 4825 | error (_("Junk at end of line specification: %s"), string); |
50641945 FN |
4826 | return sals; |
4827 | } | |
c5aa993b | 4828 | |
51cc5b07 AC |
4829 | /* Track MAIN */ |
4830 | static char *name_of_main; | |
01f8c46d | 4831 | enum language language_of_main = language_unknown; |
51cc5b07 AC |
4832 | |
4833 | void | |
4834 | set_main_name (const char *name) | |
4835 | { | |
4836 | if (name_of_main != NULL) | |
4837 | { | |
4838 | xfree (name_of_main); | |
4839 | name_of_main = NULL; | |
01f8c46d | 4840 | language_of_main = language_unknown; |
51cc5b07 AC |
4841 | } |
4842 | if (name != NULL) | |
4843 | { | |
4844 | name_of_main = xstrdup (name); | |
01f8c46d | 4845 | language_of_main = language_unknown; |
51cc5b07 AC |
4846 | } |
4847 | } | |
4848 | ||
ea53e89f JB |
4849 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4850 | accordingly. */ | |
4851 | ||
4852 | static void | |
4853 | find_main_name (void) | |
4854 | { | |
cd6c7346 | 4855 | const char *new_main_name; |
ea53e89f JB |
4856 | |
4857 | /* Try to see if the main procedure is in Ada. */ | |
4858 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
4859 | be to add a new method in the language vector, and call this | |
4860 | method for each language until one of them returns a non-empty | |
4861 | name. This would allow us to remove this hard-coded call to | |
4862 | an Ada function. It is not clear that this is a better approach | |
4863 | at this point, because all methods need to be written in a way | |
c378eb4e | 4864 | such that false positives never be returned. For instance, it is |
ea53e89f JB |
4865 | important that a method does not return a wrong name for the main |
4866 | procedure if the main procedure is actually written in a different | |
4867 | language. It is easy to guaranty this with Ada, since we use a | |
4868 | special symbol generated only when the main in Ada to find the name | |
c378eb4e | 4869 | of the main procedure. It is difficult however to see how this can |
ea53e89f JB |
4870 | be guarantied for languages such as C, for instance. This suggests |
4871 | that order of call for these methods becomes important, which means | |
4872 | a more complicated approach. */ | |
4873 | new_main_name = ada_main_name (); | |
4874 | if (new_main_name != NULL) | |
9af17804 | 4875 | { |
ea53e89f JB |
4876 | set_main_name (new_main_name); |
4877 | return; | |
4878 | } | |
4879 | ||
a766d390 DE |
4880 | new_main_name = go_main_name (); |
4881 | if (new_main_name != NULL) | |
4882 | { | |
4883 | set_main_name (new_main_name); | |
4884 | return; | |
4885 | } | |
4886 | ||
cd6c7346 PM |
4887 | new_main_name = pascal_main_name (); |
4888 | if (new_main_name != NULL) | |
9af17804 | 4889 | { |
cd6c7346 PM |
4890 | set_main_name (new_main_name); |
4891 | return; | |
4892 | } | |
4893 | ||
ea53e89f JB |
4894 | /* The languages above didn't identify the name of the main procedure. |
4895 | Fallback to "main". */ | |
4896 | set_main_name ("main"); | |
4897 | } | |
4898 | ||
51cc5b07 AC |
4899 | char * |
4900 | main_name (void) | |
4901 | { | |
ea53e89f JB |
4902 | if (name_of_main == NULL) |
4903 | find_main_name (); | |
4904 | ||
4905 | return name_of_main; | |
51cc5b07 AC |
4906 | } |
4907 | ||
ea53e89f JB |
4908 | /* Handle ``executable_changed'' events for the symtab module. */ |
4909 | ||
4910 | static void | |
781b42b0 | 4911 | symtab_observer_executable_changed (void) |
ea53e89f JB |
4912 | { |
4913 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
4914 | set_main_name (NULL); | |
4915 | } | |
51cc5b07 | 4916 | |
a6c727b2 DJ |
4917 | /* Return 1 if the supplied producer string matches the ARM RealView |
4918 | compiler (armcc). */ | |
4919 | ||
4920 | int | |
4921 | producer_is_realview (const char *producer) | |
4922 | { | |
4923 | static const char *const arm_idents[] = { | |
4924 | "ARM C Compiler, ADS", | |
4925 | "Thumb C Compiler, ADS", | |
4926 | "ARM C++ Compiler, ADS", | |
4927 | "Thumb C++ Compiler, ADS", | |
4928 | "ARM/Thumb C/C++ Compiler, RVCT", | |
4929 | "ARM C/C++ Compiler, RVCT" | |
4930 | }; | |
4931 | int i; | |
4932 | ||
4933 | if (producer == NULL) | |
4934 | return 0; | |
4935 | ||
4936 | for (i = 0; i < ARRAY_SIZE (arm_idents); i++) | |
4937 | if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0) | |
4938 | return 1; | |
4939 | ||
4940 | return 0; | |
4941 | } | |
ed0616c6 | 4942 | |
c906108c | 4943 | void |
fba45db2 | 4944 | _initialize_symtab (void) |
c906108c | 4945 | { |
1bedd215 AC |
4946 | add_info ("variables", variables_info, _("\ |
4947 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 4948 | if (dbx_commands) |
1bedd215 AC |
4949 | add_com ("whereis", class_info, variables_info, _("\ |
4950 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4951 | |
4952 | add_info ("functions", functions_info, | |
1bedd215 | 4953 | _("All function names, or those matching REGEXP.")); |
c906108c SS |
4954 | |
4955 | /* FIXME: This command has at least the following problems: | |
4956 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4957 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4958 | typedef struct foo *FOO |
4959 | type_print prints "FOO" when we want to make it (in this situation) | |
4960 | print "struct foo *". | |
c906108c SS |
4961 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4962 | there is much disagreement "info types" can be fixed). */ | |
4963 | add_info ("types", types_info, | |
1bedd215 | 4964 | _("All type names, or those matching REGEXP.")); |
c906108c | 4965 | |
c906108c | 4966 | add_info ("sources", sources_info, |
1bedd215 | 4967 | _("Source files in the program.")); |
c906108c SS |
4968 | |
4969 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 4970 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
4971 | |
4972 | if (xdb_commands) | |
4973 | { | |
1bedd215 AC |
4974 | add_com ("lf", class_info, sources_info, |
4975 | _("Source files in the program")); | |
4976 | add_com ("lg", class_info, variables_info, _("\ | |
4977 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4978 | } |
4979 | ||
717d2f5a JB |
4980 | add_setshow_enum_cmd ("multiple-symbols", no_class, |
4981 | multiple_symbols_modes, &multiple_symbols_mode, | |
4982 | _("\ | |
4983 | Set the debugger behavior when more than one symbol are possible matches\n\ | |
4984 | in an expression."), _("\ | |
4985 | Show how the debugger handles ambiguities in expressions."), _("\ | |
4986 | Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), | |
4987 | NULL, NULL, &setlist, &showlist); | |
4988 | ||
c011a4f4 DE |
4989 | add_setshow_boolean_cmd ("basenames-may-differ", class_obscure, |
4990 | &basenames_may_differ, _("\ | |
4991 | Set whether a source file may have multiple base names."), _("\ | |
4992 | Show whether a source file may have multiple base names."), _("\ | |
4993 | (A \"base name\" is the name of a file with the directory part removed.\n\ | |
4994 | Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\ | |
4995 | If set, GDB will canonicalize file names (e.g., expand symlinks)\n\ | |
4996 | before comparing them. Canonicalization is an expensive operation,\n\ | |
4997 | but it allows the same file be known by more than one base name.\n\ | |
4998 | If not set (the default), all source files are assumed to have just\n\ | |
4999 | one base name, and gdb will do file name comparisons more efficiently."), | |
5000 | NULL, NULL, | |
5001 | &setlist, &showlist); | |
5002 | ||
ea53e89f | 5003 | observer_attach_executable_changed (symtab_observer_executable_changed); |
c906108c | 5004 | } |