]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c AC |
2 | |
3 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, | |
083ae935 DJ |
4 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 |
5 | Free Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "gdbcore.h" | |
28 | #include "frame.h" | |
29 | #include "target.h" | |
30 | #include "value.h" | |
31 | #include "symfile.h" | |
32 | #include "objfiles.h" | |
33 | #include "gdbcmd.h" | |
34 | #include "call-cmds.h" | |
88987551 | 35 | #include "gdb_regex.h" |
c906108c SS |
36 | #include "expression.h" |
37 | #include "language.h" | |
38 | #include "demangle.h" | |
39 | #include "inferior.h" | |
c5f0f3d0 | 40 | #include "linespec.h" |
0378c332 | 41 | #include "source.h" |
a7fdf62f | 42 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 43 | #include "objc-lang.h" |
c906108c | 44 | |
2de7ced7 DJ |
45 | #include "hashtab.h" |
46 | ||
04ea0df1 | 47 | #include "gdb_obstack.h" |
fe898f56 | 48 | #include "block.h" |
de4f826b | 49 | #include "dictionary.h" |
c906108c SS |
50 | |
51 | #include <sys/types.h> | |
52 | #include <fcntl.h> | |
53 | #include "gdb_string.h" | |
54 | #include "gdb_stat.h" | |
55 | #include <ctype.h> | |
015a42b4 | 56 | #include "cp-abi.h" |
c906108c | 57 | |
c906108c SS |
58 | /* Prototypes for local functions */ |
59 | ||
a14ed312 | 60 | static void completion_list_add_name (char *, char *, int, char *, char *); |
c906108c | 61 | |
a14ed312 | 62 | static void rbreak_command (char *, int); |
c906108c | 63 | |
a14ed312 | 64 | static void types_info (char *, int); |
c906108c | 65 | |
a14ed312 | 66 | static void functions_info (char *, int); |
c906108c | 67 | |
a14ed312 | 68 | static void variables_info (char *, int); |
c906108c | 69 | |
a14ed312 | 70 | static void sources_info (char *, int); |
c906108c | 71 | |
a14ed312 | 72 | static void output_source_filename (char *, int *); |
c906108c | 73 | |
a14ed312 | 74 | static int find_line_common (struct linetable *, int, int *); |
c906108c | 75 | |
50641945 FN |
76 | /* This one is used by linespec.c */ |
77 | ||
78 | char *operator_chars (char *p, char **end); | |
79 | ||
3121eff0 | 80 | static struct symbol *lookup_symbol_aux (const char *name, |
5ad1c190 | 81 | const char *linkage_name, |
3121eff0 | 82 | const struct block *block, |
176620f1 | 83 | const domain_enum domain, |
3121eff0 DJ |
84 | int *is_a_field_of_this, |
85 | struct symtab **symtab); | |
fba7f19c | 86 | |
e4051eeb DC |
87 | static |
88 | struct symbol *lookup_symbol_aux_local (const char *name, | |
5ad1c190 | 89 | const char *linkage_name, |
e4051eeb | 90 | const struct block *block, |
176620f1 | 91 | const domain_enum domain, |
89a9d1b1 | 92 | struct symtab **symtab); |
8155455b DC |
93 | |
94 | static | |
95 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
96 | const char *name, | |
5ad1c190 | 97 | const char *linkage_name, |
176620f1 | 98 | const domain_enum domain, |
8155455b DC |
99 | struct symtab **symtab); |
100 | ||
101 | static | |
102 | struct symbol *lookup_symbol_aux_psymtabs (int block_index, | |
103 | const char *name, | |
5ad1c190 | 104 | const char *linkage_name, |
176620f1 | 105 | const domain_enum domain, |
8155455b | 106 | struct symtab **symtab); |
fba7f19c | 107 | |
ae2f03ac | 108 | #if 0 |
406bc4de DC |
109 | static |
110 | struct symbol *lookup_symbol_aux_minsyms (const char *name, | |
5ad1c190 | 111 | const char *linkage_name, |
176620f1 | 112 | const domain_enum domain, |
406bc4de | 113 | int *is_a_field_of_this, |
e45febe2 | 114 | struct symtab **symtab); |
ae2f03ac | 115 | #endif |
406bc4de | 116 | |
a14ed312 | 117 | static struct symbol *find_active_alias (struct symbol *sym, CORE_ADDR addr); |
c906108c SS |
118 | |
119 | /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c */ | |
120 | /* Signals the presence of objects compiled by HP compilers */ | |
121 | int hp_som_som_object_present = 0; | |
122 | ||
a14ed312 | 123 | static void fixup_section (struct general_symbol_info *, struct objfile *); |
c906108c | 124 | |
a14ed312 | 125 | static int file_matches (char *, char **, int); |
c906108c | 126 | |
176620f1 | 127 | static void print_symbol_info (domain_enum, |
a14ed312 | 128 | struct symtab *, struct symbol *, int, char *); |
c906108c | 129 | |
a14ed312 | 130 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 131 | |
176620f1 | 132 | static void symtab_symbol_info (char *, domain_enum, int); |
c906108c | 133 | |
a14ed312 | 134 | void _initialize_symtab (void); |
c906108c SS |
135 | |
136 | /* */ | |
137 | ||
138 | /* The single non-language-specific builtin type */ | |
139 | struct type *builtin_type_error; | |
140 | ||
141 | /* Block in which the most recently searched-for symbol was found. | |
142 | Might be better to make this a parameter to lookup_symbol and | |
143 | value_of_this. */ | |
144 | ||
145 | const struct block *block_found; | |
146 | ||
c906108c SS |
147 | /* Check for a symtab of a specific name; first in symtabs, then in |
148 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
149 | in the symtab filename will also work. */ | |
150 | ||
1b15f1fa TT |
151 | struct symtab * |
152 | lookup_symtab (const char *name) | |
c906108c SS |
153 | { |
154 | register struct symtab *s; | |
155 | register struct partial_symtab *ps; | |
c906108c | 156 | register struct objfile *objfile; |
58d370e0 | 157 | char *real_path = NULL; |
f079a2e5 | 158 | char *full_path = NULL; |
58d370e0 TT |
159 | |
160 | /* Here we are interested in canonicalizing an absolute path, not | |
161 | absolutizing a relative path. */ | |
162 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
163 | { |
164 | full_path = xfullpath (name); | |
165 | make_cleanup (xfree, full_path); | |
166 | real_path = gdb_realpath (name); | |
167 | make_cleanup (xfree, real_path); | |
168 | } | |
c906108c | 169 | |
c5aa993b | 170 | got_symtab: |
c906108c SS |
171 | |
172 | /* First, search for an exact match */ | |
173 | ||
174 | ALL_SYMTABS (objfile, s) | |
58d370e0 | 175 | { |
a7fdf62f | 176 | if (FILENAME_CMP (name, s->filename) == 0) |
58d370e0 | 177 | { |
58d370e0 TT |
178 | return s; |
179 | } | |
f079a2e5 | 180 | |
58d370e0 TT |
181 | /* If the user gave us an absolute path, try to find the file in |
182 | this symtab and use its absolute path. */ | |
f079a2e5 JB |
183 | |
184 | if (full_path != NULL) | |
185 | { | |
186 | const char *fp = symtab_to_filename (s); | |
187 | if (FILENAME_CMP (full_path, fp) == 0) | |
188 | { | |
189 | return s; | |
190 | } | |
191 | } | |
192 | ||
58d370e0 TT |
193 | if (real_path != NULL) |
194 | { | |
25f1b008 | 195 | char *rp = gdb_realpath (symtab_to_filename (s)); |
f079a2e5 | 196 | make_cleanup (xfree, rp); |
58d370e0 TT |
197 | if (FILENAME_CMP (real_path, rp) == 0) |
198 | { | |
58d370e0 TT |
199 | return s; |
200 | } | |
201 | } | |
202 | } | |
203 | ||
c906108c SS |
204 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
205 | ||
caadab2c | 206 | if (lbasename (name) == name) |
c906108c | 207 | ALL_SYMTABS (objfile, s) |
c5aa993b | 208 | { |
31889e00 | 209 | if (FILENAME_CMP (lbasename (s->filename), name) == 0) |
c5aa993b JM |
210 | return s; |
211 | } | |
c906108c SS |
212 | |
213 | /* Same search rules as above apply here, but now we look thru the | |
214 | psymtabs. */ | |
215 | ||
216 | ps = lookup_partial_symtab (name); | |
217 | if (!ps) | |
218 | return (NULL); | |
219 | ||
c5aa993b | 220 | if (ps->readin) |
c906108c | 221 | error ("Internal: readin %s pst for `%s' found when no symtab found.", |
c5aa993b | 222 | ps->filename, name); |
c906108c SS |
223 | |
224 | s = PSYMTAB_TO_SYMTAB (ps); | |
225 | ||
226 | if (s) | |
227 | return s; | |
228 | ||
229 | /* At this point, we have located the psymtab for this file, but | |
230 | the conversion to a symtab has failed. This usually happens | |
231 | when we are looking up an include file. In this case, | |
232 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
233 | been created. So, we need to run through the symtabs again in | |
234 | order to find the file. | |
235 | XXX - This is a crock, and should be fixed inside of the the | |
236 | symbol parsing routines. */ | |
237 | goto got_symtab; | |
238 | } | |
239 | ||
c906108c SS |
240 | /* Lookup the partial symbol table of a source file named NAME. |
241 | *If* there is no '/' in the name, a match after a '/' | |
242 | in the psymtab filename will also work. */ | |
243 | ||
244 | struct partial_symtab * | |
1f8cc6db | 245 | lookup_partial_symtab (const char *name) |
c906108c SS |
246 | { |
247 | register struct partial_symtab *pst; | |
248 | register struct objfile *objfile; | |
f079a2e5 | 249 | char *full_path = NULL; |
58d370e0 TT |
250 | char *real_path = NULL; |
251 | ||
252 | /* Here we are interested in canonicalizing an absolute path, not | |
253 | absolutizing a relative path. */ | |
254 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
255 | { |
256 | full_path = xfullpath (name); | |
257 | make_cleanup (xfree, full_path); | |
258 | real_path = gdb_realpath (name); | |
259 | make_cleanup (xfree, real_path); | |
260 | } | |
c5aa993b | 261 | |
c906108c | 262 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 263 | { |
a7fdf62f | 264 | if (FILENAME_CMP (name, pst->filename) == 0) |
c5aa993b JM |
265 | { |
266 | return (pst); | |
267 | } | |
f079a2e5 | 268 | |
58d370e0 TT |
269 | /* If the user gave us an absolute path, try to find the file in |
270 | this symtab and use its absolute path. */ | |
f079a2e5 | 271 | if (full_path != NULL) |
58d370e0 TT |
272 | { |
273 | if (pst->fullname == NULL) | |
274 | source_full_path_of (pst->filename, &pst->fullname); | |
275 | if (pst->fullname != NULL | |
f079a2e5 | 276 | && FILENAME_CMP (full_path, pst->fullname) == 0) |
58d370e0 | 277 | { |
58d370e0 TT |
278 | return pst; |
279 | } | |
280 | } | |
c906108c | 281 | |
f079a2e5 JB |
282 | if (real_path != NULL) |
283 | { | |
284 | char *rp = NULL; | |
285 | if (pst->fullname == NULL) | |
286 | source_full_path_of (pst->filename, &pst->fullname); | |
287 | if (pst->fullname != NULL) | |
288 | { | |
289 | rp = gdb_realpath (pst->fullname); | |
290 | make_cleanup (xfree, rp); | |
291 | } | |
292 | if (rp != NULL && FILENAME_CMP (real_path, rp) == 0) | |
293 | { | |
294 | return pst; | |
295 | } | |
296 | } | |
297 | } | |
58d370e0 | 298 | |
c906108c SS |
299 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
300 | ||
caadab2c | 301 | if (lbasename (name) == name) |
c906108c | 302 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 303 | { |
31889e00 | 304 | if (FILENAME_CMP (lbasename (pst->filename), name) == 0) |
c5aa993b JM |
305 | return (pst); |
306 | } | |
c906108c SS |
307 | |
308 | return (NULL); | |
309 | } | |
310 | \f | |
311 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
312 | full method name, which consist of the class name (from T), the unadorned | |
313 | method name from METHOD_ID, and the signature for the specific overload, | |
314 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
315 | ||
316 | char * | |
fba45db2 | 317 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
318 | { |
319 | int mangled_name_len; | |
320 | char *mangled_name; | |
321 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
322 | struct fn_field *method = &f[signature_id]; | |
323 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
324 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
325 | char *newname = type_name_no_tag (type); | |
326 | ||
327 | /* Does the form of physname indicate that it is the full mangled name | |
328 | of a constructor (not just the args)? */ | |
329 | int is_full_physname_constructor; | |
330 | ||
331 | int is_constructor; | |
015a42b4 | 332 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
333 | /* Need a new type prefix. */ |
334 | char *const_prefix = method->is_const ? "C" : ""; | |
335 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
336 | char buf[20]; | |
337 | int len = (newname == NULL ? 0 : strlen (newname)); | |
338 | ||
43630227 PS |
339 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
340 | or an operator name. */ | |
341 | if ((physname[0] == '_' && physname[1] == 'Z') | |
342 | || is_operator_name (field_name)) | |
235d1e03 EZ |
343 | return xstrdup (physname); |
344 | ||
015a42b4 | 345 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c SS |
346 | |
347 | is_constructor = | |
c5aa993b | 348 | is_full_physname_constructor || (newname && STREQ (field_name, newname)); |
c906108c SS |
349 | |
350 | if (!is_destructor) | |
c5aa993b | 351 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
352 | |
353 | if (is_destructor || is_full_physname_constructor) | |
354 | { | |
c5aa993b JM |
355 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
356 | strcpy (mangled_name, physname); | |
c906108c SS |
357 | return mangled_name; |
358 | } | |
359 | ||
360 | if (len == 0) | |
361 | { | |
362 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
363 | } | |
364 | else if (physname[0] == 't' || physname[0] == 'Q') | |
365 | { | |
366 | /* The physname for template and qualified methods already includes | |
c5aa993b | 367 | the class name. */ |
c906108c SS |
368 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
369 | newname = NULL; | |
370 | len = 0; | |
371 | } | |
372 | else | |
373 | { | |
374 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
375 | } | |
376 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 377 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 378 | |
c906108c | 379 | { |
c5aa993b | 380 | mangled_name = (char *) xmalloc (mangled_name_len); |
c906108c SS |
381 | if (is_constructor) |
382 | mangled_name[0] = '\0'; | |
383 | else | |
384 | strcpy (mangled_name, field_name); | |
385 | } | |
386 | strcat (mangled_name, buf); | |
387 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
388 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c5aa993b | 389 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
390 | if (newname != NULL) |
391 | strcat (mangled_name, newname); | |
392 | ||
393 | strcat (mangled_name, physname); | |
394 | return (mangled_name); | |
395 | } | |
12af6855 JB |
396 | |
397 | \f | |
89aad1f9 EZ |
398 | /* Initialize the language dependent portion of a symbol |
399 | depending upon the language for the symbol. */ | |
400 | void | |
401 | symbol_init_language_specific (struct general_symbol_info *gsymbol, | |
402 | enum language language) | |
403 | { | |
404 | gsymbol->language = language; | |
405 | if (gsymbol->language == language_cplus | |
5784d15e AF |
406 | || gsymbol->language == language_java |
407 | || gsymbol->language == language_objc) | |
89aad1f9 EZ |
408 | { |
409 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
410 | } | |
89aad1f9 EZ |
411 | else |
412 | { | |
413 | memset (&gsymbol->language_specific, 0, | |
414 | sizeof (gsymbol->language_specific)); | |
415 | } | |
416 | } | |
417 | ||
2de7ced7 DJ |
418 | /* Functions to initialize a symbol's mangled name. */ |
419 | ||
420 | /* Create the hash table used for demangled names. Each hash entry is | |
421 | a pair of strings; one for the mangled name and one for the demangled | |
422 | name. The entry is hashed via just the mangled name. */ | |
423 | ||
424 | static void | |
425 | create_demangled_names_hash (struct objfile *objfile) | |
426 | { | |
427 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
428 | The hash table code will round this up to the next prime number. | |
429 | Choosing a much larger table size wastes memory, and saves only about | |
430 | 1% in symbol reading. */ | |
431 | ||
432 | objfile->demangled_names_hash = htab_create_alloc_ex | |
433 | (256, htab_hash_string, (int (*) (const void *, const void *)) streq, | |
434 | NULL, objfile->md, xmcalloc, xmfree); | |
435 | } | |
12af6855 | 436 | |
2de7ced7 | 437 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
438 | language of that symbol. If the language is set to language_auto, |
439 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
440 | then set the language appropriately. The returned name is allocated |
441 | by the demangler and should be xfree'd. */ | |
12af6855 | 442 | |
2de7ced7 DJ |
443 | static char * |
444 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
445 | const char *mangled) | |
12af6855 | 446 | { |
12af6855 JB |
447 | char *demangled = NULL; |
448 | ||
449 | if (gsymbol->language == language_unknown) | |
450 | gsymbol->language = language_auto; | |
1bae87b9 AF |
451 | |
452 | if (gsymbol->language == language_objc | |
453 | || gsymbol->language == language_auto) | |
454 | { | |
455 | demangled = | |
456 | objc_demangle (mangled, 0); | |
457 | if (demangled != NULL) | |
458 | { | |
459 | gsymbol->language = language_objc; | |
460 | return demangled; | |
461 | } | |
462 | } | |
12af6855 JB |
463 | if (gsymbol->language == language_cplus |
464 | || gsymbol->language == language_auto) | |
465 | { | |
466 | demangled = | |
2de7ced7 | 467 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 468 | if (demangled != NULL) |
2de7ced7 DJ |
469 | { |
470 | gsymbol->language = language_cplus; | |
471 | return demangled; | |
472 | } | |
12af6855 JB |
473 | } |
474 | if (gsymbol->language == language_java) | |
475 | { | |
476 | demangled = | |
2de7ced7 | 477 | cplus_demangle (mangled, |
12af6855 JB |
478 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
479 | if (demangled != NULL) | |
2de7ced7 DJ |
480 | { |
481 | gsymbol->language = language_java; | |
482 | return demangled; | |
483 | } | |
484 | } | |
485 | return NULL; | |
486 | } | |
487 | ||
980cae7a DC |
488 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
489 | on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE | |
490 | is used, and the memory comes from that objfile's symbol_obstack. | |
491 | LINKAGE_NAME is copied, so the pointer can be discarded after | |
492 | calling this function. */ | |
2de7ced7 | 493 | |
d2a52b27 DC |
494 | /* We have to be careful when dealing with Java names: when we run |
495 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
496 | gets demangled as a C++ name. This is unfortunate, but there's not | |
497 | much we can do about it: but when demangling partial symbols and | |
498 | regular symbols, we'd better not reuse the wrong demangled name. | |
499 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
500 | on Java names when storing them in the hash table. */ | |
501 | ||
502 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
503 | don't mind the Java prefix so much: different languages have | |
504 | different demangling requirements, so it's only natural that we | |
505 | need to keep language data around in our demangling cache. But | |
506 | it's not good that the minimal symbol has the wrong demangled name. | |
507 | Unfortunately, I can't think of any easy solution to that | |
508 | problem. */ | |
509 | ||
510 | #define JAVA_PREFIX "##JAVA$$" | |
511 | #define JAVA_PREFIX_LEN 8 | |
512 | ||
2de7ced7 DJ |
513 | void |
514 | symbol_set_names (struct general_symbol_info *gsymbol, | |
980cae7a | 515 | const char *linkage_name, int len, struct objfile *objfile) |
2de7ced7 DJ |
516 | { |
517 | char **slot; | |
980cae7a DC |
518 | /* A 0-terminated copy of the linkage name. */ |
519 | const char *linkage_name_copy; | |
d2a52b27 DC |
520 | /* A copy of the linkage name that might have a special Java prefix |
521 | added to it, for use when looking names up in the hash table. */ | |
522 | const char *lookup_name; | |
523 | /* The length of lookup_name. */ | |
524 | int lookup_len; | |
2de7ced7 DJ |
525 | |
526 | if (objfile->demangled_names_hash == NULL) | |
527 | create_demangled_names_hash (objfile); | |
528 | ||
980cae7a DC |
529 | /* The stabs reader generally provides names that are not |
530 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
531 | can just use the given copy, unless we're in the Java case. */ |
532 | if (gsymbol->language == language_java) | |
533 | { | |
534 | char *alloc_name; | |
535 | lookup_len = len + JAVA_PREFIX_LEN; | |
536 | ||
537 | alloc_name = alloca (lookup_len + 1); | |
538 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
539 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
540 | alloc_name[lookup_len] = '\0'; | |
541 | ||
542 | lookup_name = alloc_name; | |
543 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
544 | } | |
545 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 546 | { |
980cae7a | 547 | char *alloc_name; |
d2a52b27 | 548 | lookup_len = len; |
980cae7a | 549 | |
d2a52b27 | 550 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 551 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 552 | alloc_name[lookup_len] = '\0'; |
980cae7a | 553 | |
d2a52b27 | 554 | lookup_name = alloc_name; |
980cae7a | 555 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
556 | } |
557 | else | |
980cae7a | 558 | { |
d2a52b27 DC |
559 | lookup_len = len; |
560 | lookup_name = linkage_name; | |
980cae7a DC |
561 | linkage_name_copy = linkage_name; |
562 | } | |
2de7ced7 | 563 | |
980cae7a | 564 | slot = (char **) htab_find_slot (objfile->demangled_names_hash, |
d2a52b27 | 565 | lookup_name, INSERT); |
2de7ced7 DJ |
566 | |
567 | /* If this name is not in the hash table, add it. */ | |
568 | if (*slot == NULL) | |
569 | { | |
980cae7a DC |
570 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
571 | linkage_name_copy); | |
2de7ced7 DJ |
572 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
573 | ||
574 | /* If there is a demangled name, place it right after the mangled name. | |
575 | Otherwise, just place a second zero byte after the end of the mangled | |
576 | name. */ | |
577 | *slot = obstack_alloc (&objfile->symbol_obstack, | |
d2a52b27 DC |
578 | lookup_len + demangled_len + 2); |
579 | memcpy (*slot, lookup_name, lookup_len + 1); | |
980cae7a | 580 | if (demangled_name != NULL) |
2de7ced7 | 581 | { |
d2a52b27 | 582 | memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1); |
2de7ced7 DJ |
583 | xfree (demangled_name); |
584 | } | |
585 | else | |
d2a52b27 | 586 | (*slot)[lookup_len + 1] = '\0'; |
2de7ced7 DJ |
587 | } |
588 | ||
d2a52b27 DC |
589 | gsymbol->name = *slot + lookup_len - len; |
590 | if ((*slot)[lookup_len + 1] != '\0') | |
2de7ced7 | 591 | gsymbol->language_specific.cplus_specific.demangled_name |
d2a52b27 | 592 | = &(*slot)[lookup_len + 1]; |
2de7ced7 DJ |
593 | else |
594 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
595 | } | |
596 | ||
597 | /* Initialize the demangled name of GSYMBOL if possible. Any required space | |
598 | to store the name is obtained from the specified obstack. The function | |
599 | symbol_set_names, above, should be used instead where possible for more | |
600 | efficient memory usage. */ | |
601 | ||
602 | void | |
603 | symbol_init_demangled_name (struct general_symbol_info *gsymbol, | |
604 | struct obstack *obstack) | |
605 | { | |
606 | char *mangled = gsymbol->name; | |
607 | char *demangled = NULL; | |
608 | ||
609 | demangled = symbol_find_demangled_name (gsymbol, mangled); | |
610 | if (gsymbol->language == language_cplus | |
1bae87b9 AF |
611 | || gsymbol->language == language_java |
612 | || gsymbol->language == language_objc) | |
2de7ced7 DJ |
613 | { |
614 | if (demangled) | |
615 | { | |
616 | gsymbol->language_specific.cplus_specific.demangled_name | |
617 | = obsavestring (demangled, strlen (demangled), obstack); | |
618 | xfree (demangled); | |
619 | } | |
12af6855 | 620 | else |
2de7ced7 DJ |
621 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; |
622 | } | |
623 | else | |
624 | { | |
625 | /* Unknown language; just clean up quietly. */ | |
626 | if (demangled) | |
627 | xfree (demangled); | |
12af6855 | 628 | } |
12af6855 JB |
629 | } |
630 | ||
22abf04a DC |
631 | /* Return the source code name of a symbol. In languages where |
632 | demangling is necessary, this is the demangled name. */ | |
633 | ||
634 | char * | |
635 | symbol_natural_name (const struct general_symbol_info *gsymbol) | |
636 | { | |
637 | if ((gsymbol->language == language_cplus | |
638 | || gsymbol->language == language_java | |
639 | || gsymbol->language == language_objc) | |
640 | && (gsymbol->language_specific.cplus_specific.demangled_name != NULL)) | |
641 | { | |
642 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
643 | } | |
644 | else | |
645 | { | |
646 | return gsymbol->name; | |
647 | } | |
648 | } | |
649 | ||
9cc0d196 EZ |
650 | /* Return the demangled name for a symbol based on the language for |
651 | that symbol. If no demangled name exists, return NULL. */ | |
652 | char * | |
653 | symbol_demangled_name (struct general_symbol_info *gsymbol) | |
654 | { | |
655 | if (gsymbol->language == language_cplus | |
5784d15e AF |
656 | || gsymbol->language == language_java |
657 | || gsymbol->language == language_objc) | |
9cc0d196 | 658 | return gsymbol->language_specific.cplus_specific.demangled_name; |
12af6855 | 659 | |
9cc0d196 EZ |
660 | else |
661 | return NULL; | |
9cc0d196 | 662 | } |
fe39c653 EZ |
663 | |
664 | /* Initialize the structure fields to zero values. */ | |
665 | void | |
666 | init_sal (struct symtab_and_line *sal) | |
667 | { | |
668 | sal->symtab = 0; | |
669 | sal->section = 0; | |
670 | sal->line = 0; | |
671 | sal->pc = 0; | |
672 | sal->end = 0; | |
673 | } | |
c906108c SS |
674 | \f |
675 | ||
c5aa993b | 676 | |
c906108c SS |
677 | /* Find which partial symtab on contains PC and SECTION. Return 0 if none. */ |
678 | ||
679 | struct partial_symtab * | |
fba45db2 | 680 | find_pc_sect_psymtab (CORE_ADDR pc, asection *section) |
c906108c SS |
681 | { |
682 | register struct partial_symtab *pst; | |
683 | register struct objfile *objfile; | |
8a48e967 DJ |
684 | struct minimal_symbol *msymbol; |
685 | ||
686 | /* If we know that this is not a text address, return failure. This is | |
687 | necessary because we loop based on texthigh and textlow, which do | |
688 | not include the data ranges. */ | |
689 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
690 | if (msymbol | |
691 | && (msymbol->type == mst_data | |
692 | || msymbol->type == mst_bss | |
693 | || msymbol->type == mst_abs | |
694 | || msymbol->type == mst_file_data | |
695 | || msymbol->type == mst_file_bss)) | |
696 | return NULL; | |
c906108c SS |
697 | |
698 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 699 | { |
c5aa993b | 700 | if (pc >= pst->textlow && pc < pst->texthigh) |
c5aa993b | 701 | { |
c5aa993b JM |
702 | struct partial_symtab *tpst; |
703 | ||
704 | /* An objfile that has its functions reordered might have | |
705 | many partial symbol tables containing the PC, but | |
706 | we want the partial symbol table that contains the | |
707 | function containing the PC. */ | |
708 | if (!(objfile->flags & OBJF_REORDERED) && | |
709 | section == 0) /* can't validate section this way */ | |
710 | return (pst); | |
711 | ||
c5aa993b JM |
712 | if (msymbol == NULL) |
713 | return (pst); | |
714 | ||
715 | for (tpst = pst; tpst != NULL; tpst = tpst->next) | |
716 | { | |
c5aa993b | 717 | if (pc >= tpst->textlow && pc < tpst->texthigh) |
c5aa993b JM |
718 | { |
719 | struct partial_symbol *p; | |
c906108c | 720 | |
c5aa993b JM |
721 | p = find_pc_sect_psymbol (tpst, pc, section); |
722 | if (p != NULL | |
723 | && SYMBOL_VALUE_ADDRESS (p) | |
724 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
725 | return (tpst); | |
726 | } | |
727 | } | |
728 | return (pst); | |
729 | } | |
730 | } | |
c906108c SS |
731 | return (NULL); |
732 | } | |
733 | ||
734 | /* Find which partial symtab contains PC. Return 0 if none. | |
735 | Backward compatibility, no section */ | |
736 | ||
737 | struct partial_symtab * | |
fba45db2 | 738 | find_pc_psymtab (CORE_ADDR pc) |
c906108c SS |
739 | { |
740 | return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc)); | |
741 | } | |
742 | ||
743 | /* Find which partial symbol within a psymtab matches PC and SECTION. | |
744 | Return 0 if none. Check all psymtabs if PSYMTAB is 0. */ | |
745 | ||
746 | struct partial_symbol * | |
fba45db2 KB |
747 | find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc, |
748 | asection *section) | |
c906108c SS |
749 | { |
750 | struct partial_symbol *best = NULL, *p, **pp; | |
751 | CORE_ADDR best_pc; | |
c5aa993b | 752 | |
c906108c SS |
753 | if (!psymtab) |
754 | psymtab = find_pc_sect_psymtab (pc, section); | |
755 | if (!psymtab) | |
756 | return 0; | |
757 | ||
758 | /* Cope with programs that start at address 0 */ | |
759 | best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0; | |
760 | ||
761 | /* Search the global symbols as well as the static symbols, so that | |
762 | find_pc_partial_function doesn't use a minimal symbol and thus | |
763 | cache a bad endaddr. */ | |
764 | for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset; | |
c5aa993b JM |
765 | (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset) |
766 | < psymtab->n_global_syms); | |
c906108c SS |
767 | pp++) |
768 | { | |
769 | p = *pp; | |
176620f1 | 770 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
771 | && SYMBOL_CLASS (p) == LOC_BLOCK |
772 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
773 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
774 | || (psymtab->textlow == 0 | |
775 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) | |
776 | { | |
c5aa993b | 777 | if (section) /* match on a specific section */ |
c906108c SS |
778 | { |
779 | fixup_psymbol_section (p, psymtab->objfile); | |
780 | if (SYMBOL_BFD_SECTION (p) != section) | |
781 | continue; | |
782 | } | |
783 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
784 | best = p; | |
785 | } | |
786 | } | |
787 | ||
788 | for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset; | |
c5aa993b JM |
789 | (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset) |
790 | < psymtab->n_static_syms); | |
c906108c SS |
791 | pp++) |
792 | { | |
793 | p = *pp; | |
176620f1 | 794 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
795 | && SYMBOL_CLASS (p) == LOC_BLOCK |
796 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
797 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
c5aa993b | 798 | || (psymtab->textlow == 0 |
c906108c SS |
799 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) |
800 | { | |
c5aa993b | 801 | if (section) /* match on a specific section */ |
c906108c SS |
802 | { |
803 | fixup_psymbol_section (p, psymtab->objfile); | |
804 | if (SYMBOL_BFD_SECTION (p) != section) | |
805 | continue; | |
806 | } | |
807 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
808 | best = p; | |
809 | } | |
810 | } | |
811 | ||
812 | return best; | |
813 | } | |
814 | ||
815 | /* Find which partial symbol within a psymtab matches PC. Return 0 if none. | |
816 | Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */ | |
817 | ||
818 | struct partial_symbol * | |
fba45db2 | 819 | find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc) |
c906108c SS |
820 | { |
821 | return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc)); | |
822 | } | |
823 | \f | |
824 | /* Debug symbols usually don't have section information. We need to dig that | |
825 | out of the minimal symbols and stash that in the debug symbol. */ | |
826 | ||
827 | static void | |
fba45db2 | 828 | fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile) |
c906108c SS |
829 | { |
830 | struct minimal_symbol *msym; | |
831 | msym = lookup_minimal_symbol (ginfo->name, NULL, objfile); | |
832 | ||
833 | if (msym) | |
7a78d0ee KB |
834 | { |
835 | ginfo->bfd_section = SYMBOL_BFD_SECTION (msym); | |
836 | ginfo->section = SYMBOL_SECTION (msym); | |
837 | } | |
c906108c SS |
838 | } |
839 | ||
840 | struct symbol * | |
fba45db2 | 841 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c SS |
842 | { |
843 | if (!sym) | |
844 | return NULL; | |
845 | ||
846 | if (SYMBOL_BFD_SECTION (sym)) | |
847 | return sym; | |
848 | ||
849 | fixup_section (&sym->ginfo, objfile); | |
850 | ||
851 | return sym; | |
852 | } | |
853 | ||
7a78d0ee | 854 | struct partial_symbol * |
fba45db2 | 855 | fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile) |
c906108c SS |
856 | { |
857 | if (!psym) | |
858 | return NULL; | |
859 | ||
860 | if (SYMBOL_BFD_SECTION (psym)) | |
861 | return psym; | |
862 | ||
863 | fixup_section (&psym->ginfo, objfile); | |
864 | ||
865 | return psym; | |
866 | } | |
867 | ||
868 | /* Find the definition for a specified symbol name NAME | |
176620f1 | 869 | in domain DOMAIN, visible from lexical block BLOCK. |
c906108c SS |
870 | Returns the struct symbol pointer, or zero if no symbol is found. |
871 | If SYMTAB is non-NULL, store the symbol table in which the | |
872 | symbol was found there, or NULL if not found. | |
873 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if | |
874 | NAME is a field of the current implied argument `this'. If so set | |
875 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. | |
876 | BLOCK_FOUND is set to the block in which NAME is found (in the case of | |
877 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
878 | ||
879 | /* This function has a bunch of loops in it and it would seem to be | |
880 | attractive to put in some QUIT's (though I'm not really sure | |
881 | whether it can run long enough to be really important). But there | |
882 | are a few calls for which it would appear to be bad news to quit | |
7ca9f392 AC |
883 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
884 | that there is C++ code below which can error(), but that probably | |
885 | doesn't affect these calls since they are looking for a known | |
886 | variable and thus can probably assume it will never hit the C++ | |
887 | code). */ | |
c906108c SS |
888 | |
889 | struct symbol * | |
fba7f19c | 890 | lookup_symbol (const char *name, const struct block *block, |
176620f1 | 891 | const domain_enum domain, int *is_a_field_of_this, |
fba45db2 | 892 | struct symtab **symtab) |
c906108c | 893 | { |
729051e6 DJ |
894 | char *demangled_name = NULL; |
895 | const char *modified_name = NULL; | |
3121eff0 | 896 | const char *mangled_name = NULL; |
fba7f19c EZ |
897 | int needtofreename = 0; |
898 | struct symbol *returnval; | |
c906108c | 899 | |
729051e6 DJ |
900 | modified_name = name; |
901 | ||
902 | /* If we are using C++ language, demangle the name before doing a lookup, so | |
903 | we can always binary search. */ | |
904 | if (current_language->la_language == language_cplus) | |
905 | { | |
906 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
907 | if (demangled_name) | |
908 | { | |
909 | mangled_name = name; | |
910 | modified_name = demangled_name; | |
911 | needtofreename = 1; | |
912 | } | |
913 | } | |
914 | ||
63872f9d JG |
915 | if (case_sensitivity == case_sensitive_off) |
916 | { | |
917 | char *copy; | |
918 | int len, i; | |
919 | ||
920 | len = strlen (name); | |
921 | copy = (char *) alloca (len + 1); | |
922 | for (i= 0; i < len; i++) | |
923 | copy[i] = tolower (name[i]); | |
924 | copy[len] = 0; | |
fba7f19c | 925 | modified_name = copy; |
63872f9d | 926 | } |
fba7f19c | 927 | |
3121eff0 | 928 | returnval = lookup_symbol_aux (modified_name, mangled_name, block, |
176620f1 | 929 | domain, is_a_field_of_this, symtab); |
fba7f19c | 930 | if (needtofreename) |
729051e6 | 931 | xfree (demangled_name); |
fba7f19c EZ |
932 | |
933 | return returnval; | |
934 | } | |
935 | ||
5ad1c190 DC |
936 | /* Behave like lookup_symbol_aux except that NAME is the natural name |
937 | of the symbol that we're looking for and, if LINKAGE_NAME is | |
938 | non-NULL, ensure that the symbol's linkage name matches as | |
939 | well. */ | |
940 | ||
fba7f19c | 941 | static struct symbol * |
5ad1c190 | 942 | lookup_symbol_aux (const char *name, const char *linkage_name, |
176620f1 | 943 | const struct block *block, const domain_enum domain, |
3121eff0 | 944 | int *is_a_field_of_this, struct symtab **symtab) |
fba7f19c | 945 | { |
8155455b | 946 | struct symbol *sym; |
406bc4de | 947 | |
9a146a11 EZ |
948 | /* Make sure we do something sensible with is_a_field_of_this, since |
949 | the callers that set this parameter to some non-null value will | |
950 | certainly use it later and expect it to be either 0 or 1. | |
951 | If we don't set it, the contents of is_a_field_of_this are | |
952 | undefined. */ | |
953 | if (is_a_field_of_this != NULL) | |
954 | *is_a_field_of_this = 0; | |
955 | ||
e4051eeb DC |
956 | /* Search specified block and its superiors. Don't search |
957 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 958 | |
5ad1c190 | 959 | sym = lookup_symbol_aux_local (name, linkage_name, block, domain, |
89a9d1b1 | 960 | symtab); |
8155455b DC |
961 | if (sym != NULL) |
962 | return sym; | |
c906108c | 963 | |
5f9a71c3 DC |
964 | /* If requested to do so by the caller and if appropriate for the |
965 | current language, check to see if NAME is a field of `this'. */ | |
966 | ||
967 | if (current_language->la_value_of_this != NULL | |
968 | && is_a_field_of_this != NULL) | |
c906108c | 969 | { |
5f9a71c3 | 970 | struct value *v = current_language->la_value_of_this (0); |
c5aa993b | 971 | |
c906108c SS |
972 | if (v && check_field (v, name)) |
973 | { | |
974 | *is_a_field_of_this = 1; | |
975 | if (symtab != NULL) | |
976 | *symtab = NULL; | |
977 | return NULL; | |
978 | } | |
979 | } | |
980 | ||
5f9a71c3 DC |
981 | /* Now do whatever is appropriate for the current language to look |
982 | up static and global variables. */ | |
c906108c | 983 | |
5f9a71c3 DC |
984 | sym = current_language->la_lookup_symbol_nonlocal (name, linkage_name, |
985 | block, domain, | |
986 | symtab); | |
8155455b DC |
987 | if (sym != NULL) |
988 | return sym; | |
c906108c | 989 | |
8155455b DC |
990 | /* Now search all static file-level symbols. Not strictly correct, |
991 | but more useful than an error. Do the symtabs first, then check | |
992 | the psymtabs. If a psymtab indicates the existence of the | |
993 | desired name as a file-level static, then do psymtab-to-symtab | |
c906108c SS |
994 | conversion on the fly and return the found symbol. */ |
995 | ||
5ad1c190 | 996 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, |
176620f1 | 997 | domain, symtab); |
8155455b DC |
998 | if (sym != NULL) |
999 | return sym; | |
1000 | ||
5ad1c190 | 1001 | sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, |
176620f1 | 1002 | domain, symtab); |
8155455b DC |
1003 | if (sym != NULL) |
1004 | return sym; | |
c906108c | 1005 | |
c906108c SS |
1006 | if (symtab != NULL) |
1007 | *symtab = NULL; | |
8155455b | 1008 | return NULL; |
c906108c | 1009 | } |
8155455b | 1010 | |
e4051eeb | 1011 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1012 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1013 | |
1014 | static struct symbol * | |
5ad1c190 | 1015 | lookup_symbol_aux_local (const char *name, const char *linkage_name, |
8155455b | 1016 | const struct block *block, |
176620f1 | 1017 | const domain_enum domain, |
89a9d1b1 | 1018 | struct symtab **symtab) |
8155455b DC |
1019 | { |
1020 | struct symbol *sym; | |
89a9d1b1 DC |
1021 | const struct block *static_block = block_static_block (block); |
1022 | ||
e4051eeb DC |
1023 | /* Check if either no block is specified or it's a global block. */ |
1024 | ||
89a9d1b1 DC |
1025 | if (static_block == NULL) |
1026 | return NULL; | |
e4051eeb | 1027 | |
89a9d1b1 | 1028 | while (block != static_block) |
f61e8913 | 1029 | { |
5ad1c190 | 1030 | sym = lookup_symbol_aux_block (name, linkage_name, block, domain, |
f61e8913 DC |
1031 | symtab); |
1032 | if (sym != NULL) | |
1033 | return sym; | |
1034 | block = BLOCK_SUPERBLOCK (block); | |
1035 | } | |
1036 | ||
89a9d1b1 | 1037 | /* We've reached the static block without finding a result. */ |
e4051eeb | 1038 | |
f61e8913 DC |
1039 | return NULL; |
1040 | } | |
1041 | ||
1042 | /* Look up a symbol in a block; if found, locate its symtab, fixup the | |
1043 | symbol, and set block_found appropriately. */ | |
1044 | ||
5f9a71c3 | 1045 | struct symbol * |
5ad1c190 | 1046 | lookup_symbol_aux_block (const char *name, const char *linkage_name, |
f61e8913 | 1047 | const struct block *block, |
176620f1 | 1048 | const domain_enum domain, |
f61e8913 DC |
1049 | struct symtab **symtab) |
1050 | { | |
1051 | struct symbol *sym; | |
8155455b DC |
1052 | struct objfile *objfile = NULL; |
1053 | struct blockvector *bv; | |
1054 | struct block *b; | |
1055 | struct symtab *s = NULL; | |
f61e8913 | 1056 | |
5ad1c190 | 1057 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
f61e8913 | 1058 | if (sym) |
8155455b | 1059 | { |
f61e8913 DC |
1060 | block_found = block; |
1061 | if (symtab != NULL) | |
8155455b | 1062 | { |
f61e8913 DC |
1063 | /* Search the list of symtabs for one which contains the |
1064 | address of the start of this block. */ | |
1065 | ALL_SYMTABS (objfile, s) | |
8155455b | 1066 | { |
f61e8913 DC |
1067 | bv = BLOCKVECTOR (s); |
1068 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1069 | if (BLOCK_START (b) <= BLOCK_START (block) | |
1070 | && BLOCK_END (b) > BLOCK_START (block)) | |
1071 | goto found; | |
8155455b | 1072 | } |
f61e8913 DC |
1073 | found: |
1074 | *symtab = s; | |
8155455b | 1075 | } |
f61e8913 DC |
1076 | |
1077 | return fixup_symbol_section (sym, objfile); | |
8155455b DC |
1078 | } |
1079 | ||
1080 | return NULL; | |
1081 | } | |
1082 | ||
1083 | /* Check to see if the symbol is defined in one of the symtabs. | |
1084 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
1085 | depending on whether or not we want to search global symbols or | |
1086 | static symbols. */ | |
1087 | ||
1088 | static struct symbol * | |
1089 | lookup_symbol_aux_symtabs (int block_index, | |
5ad1c190 | 1090 | const char *name, const char *linkage_name, |
176620f1 | 1091 | const domain_enum domain, |
8155455b DC |
1092 | struct symtab **symtab) |
1093 | { | |
1094 | struct symbol *sym; | |
1095 | struct objfile *objfile; | |
1096 | struct blockvector *bv; | |
1097 | const struct block *block; | |
1098 | struct symtab *s; | |
1099 | ||
1100 | ALL_SYMTABS (objfile, s) | |
1101 | { | |
1102 | bv = BLOCKVECTOR (s); | |
1103 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1104 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1105 | if (sym) |
1106 | { | |
1107 | block_found = block; | |
1108 | if (symtab != NULL) | |
1109 | *symtab = s; | |
1110 | return fixup_symbol_section (sym, objfile); | |
1111 | } | |
1112 | } | |
1113 | ||
1114 | return NULL; | |
1115 | } | |
1116 | ||
1117 | /* Check to see if the symbol is defined in one of the partial | |
1118 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or | |
1119 | STATIC_BLOCK, depending on whether or not we want to search global | |
1120 | symbols or static symbols. */ | |
1121 | ||
1122 | static struct symbol * | |
1123 | lookup_symbol_aux_psymtabs (int block_index, const char *name, | |
5ad1c190 | 1124 | const char *linkage_name, |
176620f1 | 1125 | const domain_enum domain, |
8155455b DC |
1126 | struct symtab **symtab) |
1127 | { | |
1128 | struct symbol *sym; | |
1129 | struct objfile *objfile; | |
1130 | struct blockvector *bv; | |
1131 | const struct block *block; | |
1132 | struct partial_symtab *ps; | |
1133 | struct symtab *s; | |
1134 | const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0); | |
1135 | ||
1136 | ALL_PSYMTABS (objfile, ps) | |
1137 | { | |
1138 | if (!ps->readin | |
5ad1c190 | 1139 | && lookup_partial_symbol (ps, name, linkage_name, |
176620f1 | 1140 | psymtab_index, domain)) |
8155455b DC |
1141 | { |
1142 | s = PSYMTAB_TO_SYMTAB (ps); | |
1143 | bv = BLOCKVECTOR (s); | |
1144 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1145 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1146 | if (!sym) |
1147 | { | |
1148 | /* This shouldn't be necessary, but as a last resort try | |
1149 | looking in the statics even though the psymtab claimed | |
1150 | the symbol was global, or vice-versa. It's possible | |
1151 | that the psymtab gets it wrong in some cases. */ | |
1152 | ||
1153 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1154 | If that happens, isn't it likely to be a GDB error, in | |
1155 | which case we should fix the GDB error rather than | |
1156 | silently dealing with it here? So I'd vote for | |
1157 | removing the check for the symbol in the other | |
1158 | block. */ | |
1159 | block = BLOCKVECTOR_BLOCK (bv, | |
1160 | block_index == GLOBAL_BLOCK ? | |
1161 | STATIC_BLOCK : GLOBAL_BLOCK); | |
5ad1c190 | 1162 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1163 | if (!sym) |
1164 | error ("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>).", | |
1165 | block_index == GLOBAL_BLOCK ? "global" : "static", | |
1166 | name, ps->filename, name, name); | |
1167 | } | |
1168 | if (symtab != NULL) | |
1169 | *symtab = s; | |
1170 | return fixup_symbol_section (sym, objfile); | |
1171 | } | |
1172 | } | |
1173 | ||
1174 | return NULL; | |
1175 | } | |
1176 | ||
ae2f03ac | 1177 | #if 0 |
406bc4de DC |
1178 | /* Check for the possibility of the symbol being a function or a |
1179 | mangled variable that is stored in one of the minimal symbol | |
1180 | tables. Eventually, all global symbols might be resolved in this | |
1181 | way. */ | |
1182 | ||
e45febe2 DC |
1183 | /* NOTE: carlton/2002-12-05: At one point, this function was part of |
1184 | lookup_symbol_aux, and what are now 'return' statements within | |
1185 | lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if | |
1186 | sym was NULL. As far as I can tell, this was basically accidental; | |
1187 | it didn't happen every time that msymbol was non-NULL, but only if | |
1188 | some additional conditions held as well, and it caused problems | |
1189 | with HP-generated symbol tables. */ | |
1190 | ||
ae2f03ac EZ |
1191 | /* NOTE: carlton/2003-05-14: This function was once used as part of |
1192 | lookup_symbol. It is currently unnecessary for correctness | |
1193 | reasons, however, and using it doesn't seem to be any faster than | |
1194 | using lookup_symbol_aux_psymtabs, so I'm commenting it out. */ | |
1195 | ||
406bc4de DC |
1196 | static struct symbol * |
1197 | lookup_symbol_aux_minsyms (const char *name, | |
5ad1c190 | 1198 | const char *linkage_name, |
176620f1 | 1199 | const domain_enum domain, |
406bc4de | 1200 | int *is_a_field_of_this, |
e45febe2 | 1201 | struct symtab **symtab) |
406bc4de DC |
1202 | { |
1203 | struct symbol *sym; | |
1204 | struct blockvector *bv; | |
1205 | const struct block *block; | |
1206 | struct minimal_symbol *msymbol; | |
1207 | struct symtab *s; | |
1208 | ||
176620f1 | 1209 | if (domain == VAR_DOMAIN) |
406bc4de DC |
1210 | { |
1211 | msymbol = lookup_minimal_symbol (name, NULL, NULL); | |
1212 | ||
1213 | if (msymbol != NULL) | |
1214 | { | |
1215 | /* OK, we found a minimal symbol in spite of not finding any | |
1216 | symbol. There are various possible explanations for | |
1217 | this. One possibility is the symbol exists in code not | |
1218 | compiled -g. Another possibility is that the 'psymtab' | |
1219 | isn't doing its job. A third possibility, related to #2, | |
1220 | is that we were confused by name-mangling. For instance, | |
1221 | maybe the psymtab isn't doing its job because it only | |
1222 | know about demangled names, but we were given a mangled | |
1223 | name... */ | |
1224 | ||
1225 | /* We first use the address in the msymbol to try to locate | |
1226 | the appropriate symtab. Note that find_pc_sect_symtab() | |
1227 | has a side-effect of doing psymtab-to-symtab expansion, | |
1228 | for the found symtab. */ | |
1229 | s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol), | |
1230 | SYMBOL_BFD_SECTION (msymbol)); | |
1231 | if (s != NULL) | |
1232 | { | |
1233 | /* This is a function which has a symtab for its address. */ | |
1234 | bv = BLOCKVECTOR (s); | |
1235 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1236 | ||
2335f48e | 1237 | /* This call used to pass `SYMBOL_LINKAGE_NAME (msymbol)' as the |
406bc4de DC |
1238 | `name' argument to lookup_block_symbol. But the name |
1239 | of a minimal symbol is always mangled, so that seems | |
1240 | to be clearly the wrong thing to pass as the | |
1241 | unmangled name. */ | |
1242 | sym = | |
5ad1c190 | 1243 | lookup_block_symbol (block, name, linkage_name, domain); |
406bc4de DC |
1244 | /* We kept static functions in minimal symbol table as well as |
1245 | in static scope. We want to find them in the symbol table. */ | |
1246 | if (!sym) | |
1247 | { | |
1248 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1249 | sym = lookup_block_symbol (block, name, | |
5ad1c190 | 1250 | linkage_name, domain); |
406bc4de DC |
1251 | } |
1252 | ||
1253 | /* NOTE: carlton/2002-12-04: The following comment was | |
1254 | taken from a time when two versions of this function | |
1255 | were part of the body of lookup_symbol_aux: this | |
1256 | comment was taken from the version of the function | |
1257 | that was #ifdef HPUXHPPA, and the comment was right | |
1258 | before the 'return NULL' part of lookup_symbol_aux. | |
1259 | (Hence the "Fall through and return 0" comment.) | |
1260 | Elena did some digging into the situation for | |
1261 | Fortran, and she reports: | |
1262 | ||
1263 | "I asked around (thanks to Jeff Knaggs), and I think | |
1264 | the story for Fortran goes like this: | |
1265 | ||
1266 | "Apparently, in older Fortrans, '_' was not part of | |
1267 | the user namespace. g77 attached a final '_' to | |
1268 | procedure names as the exported symbols for linkage | |
1269 | (foo_) , but the symbols went in the debug info just | |
1270 | like 'foo'. The rationale behind this is not | |
1271 | completely clear, and maybe it was done to other | |
1272 | symbols as well, not just procedures." */ | |
1273 | ||
1274 | /* If we get here with sym == 0, the symbol was | |
1275 | found in the minimal symbol table | |
1276 | but not in the symtab. | |
1277 | Fall through and return 0 to use the msymbol | |
1278 | definition of "foo_". | |
1279 | (Note that outer code generally follows up a call | |
1280 | to this routine with a call to lookup_minimal_symbol(), | |
1281 | so a 0 return means we'll just flow into that other routine). | |
1282 | ||
1283 | This happens for Fortran "foo_" symbols, | |
1284 | which are "foo" in the symtab. | |
1285 | ||
1286 | This can also happen if "asm" is used to make a | |
1287 | regular symbol but not a debugging symbol, e.g. | |
1288 | asm(".globl _main"); | |
1289 | asm("_main:"); | |
1290 | */ | |
1291 | ||
1292 | if (symtab != NULL && sym != NULL) | |
1293 | *symtab = s; | |
406bc4de DC |
1294 | return fixup_symbol_section (sym, s->objfile); |
1295 | } | |
406bc4de DC |
1296 | } |
1297 | } | |
1298 | ||
1299 | return NULL; | |
1300 | } | |
ae2f03ac | 1301 | #endif /* 0 */ |
406bc4de | 1302 | |
5f9a71c3 DC |
1303 | /* A default version of lookup_symbol_nonlocal for use by languages |
1304 | that can't think of anything better to do. This implements the C | |
1305 | lookup rules. */ | |
1306 | ||
1307 | struct symbol * | |
1308 | basic_lookup_symbol_nonlocal (const char *name, | |
1309 | const char *linkage_name, | |
1310 | const struct block *block, | |
1311 | const domain_enum domain, | |
1312 | struct symtab **symtab) | |
1313 | { | |
1314 | struct symbol *sym; | |
1315 | ||
1316 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1317 | this (or what turned into this) was part of lookup_symbol_aux; | |
1318 | I'm much less worried about these questions now, since these | |
1319 | decisions have turned out well, but I leave these comments here | |
1320 | for posterity. */ | |
1321 | ||
1322 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1323 | not it would be appropriate to search the current global block | |
1324 | here as well. (That's what this code used to do before the | |
1325 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1326 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1327 | next. On the other hand, if decode_line_1 is passed an argument | |
1328 | like filename:var, then the user presumably wants 'var' to be | |
1329 | searched for in filename. On the third hand, there shouldn't be | |
1330 | multiple global variables all of which are named 'var', and it's | |
1331 | not like decode_line_1 has ever restricted its search to only | |
1332 | global variables in a single filename. All in all, only | |
1333 | searching the static block here seems best: it's correct and it's | |
1334 | cleanest. */ | |
1335 | ||
1336 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1337 | issue here: if you usually search for global symbols in the | |
1338 | current file, then it would be slightly better to search the | |
1339 | current global block before searching all the symtabs. But there | |
1340 | are other factors that have a much greater effect on performance | |
1341 | than that one, so I don't think we should worry about that for | |
1342 | now. */ | |
1343 | ||
1344 | sym = lookup_symbol_static (name, linkage_name, block, domain, symtab); | |
1345 | if (sym != NULL) | |
1346 | return sym; | |
1347 | ||
1348 | return lookup_symbol_global (name, linkage_name, domain, symtab); | |
1349 | } | |
1350 | ||
1351 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1352 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1353 | ||
1354 | struct symbol * | |
1355 | lookup_symbol_static (const char *name, | |
1356 | const char *linkage_name, | |
1357 | const struct block *block, | |
1358 | const domain_enum domain, | |
1359 | struct symtab **symtab) | |
1360 | { | |
1361 | const struct block *static_block = block_static_block (block); | |
1362 | ||
1363 | if (static_block != NULL) | |
1364 | return lookup_symbol_aux_block (name, linkage_name, static_block, | |
1365 | domain, symtab); | |
1366 | else | |
1367 | return NULL; | |
1368 | } | |
1369 | ||
1370 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1371 | necessary). */ | |
1372 | ||
1373 | struct symbol * | |
1374 | lookup_symbol_global (const char *name, | |
1375 | const char *linkage_name, | |
1376 | const domain_enum domain, | |
1377 | struct symtab **symtab) | |
1378 | { | |
1379 | struct symbol *sym; | |
1380 | ||
1381 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, | |
1382 | domain, symtab); | |
1383 | if (sym != NULL) | |
1384 | return sym; | |
1385 | ||
1386 | return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, | |
1387 | domain, symtab); | |
1388 | } | |
1389 | ||
3d4e8fd2 DC |
1390 | /* Look, in partial_symtab PST, for symbol whose natural name is NAME. |
1391 | If LINKAGE_NAME is non-NULL, check in addition that the symbol's | |
1392 | linkage name matches it. Check the global symbols if GLOBAL, the | |
1393 | static symbols if not */ | |
c906108c | 1394 | |
b6429628 | 1395 | struct partial_symbol * |
3d4e8fd2 DC |
1396 | lookup_partial_symbol (struct partial_symtab *pst, const char *name, |
1397 | const char *linkage_name, int global, | |
176620f1 | 1398 | domain_enum domain) |
c906108c | 1399 | { |
357e46e7 | 1400 | struct partial_symbol *temp; |
c906108c | 1401 | struct partial_symbol **start, **psym; |
38d49aff | 1402 | struct partial_symbol **top, **real_top, **bottom, **center; |
c906108c SS |
1403 | int length = (global ? pst->n_global_syms : pst->n_static_syms); |
1404 | int do_linear_search = 1; | |
357e46e7 | 1405 | |
c906108c SS |
1406 | if (length == 0) |
1407 | { | |
1408 | return (NULL); | |
1409 | } | |
c906108c SS |
1410 | start = (global ? |
1411 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
c5aa993b | 1412 | pst->objfile->static_psymbols.list + pst->statics_offset); |
357e46e7 | 1413 | |
c5aa993b | 1414 | if (global) /* This means we can use a binary search. */ |
c906108c SS |
1415 | { |
1416 | do_linear_search = 0; | |
1417 | ||
1418 | /* Binary search. This search is guaranteed to end with center | |
0fe19209 DC |
1419 | pointing at the earliest partial symbol whose name might be |
1420 | correct. At that point *all* partial symbols with an | |
1421 | appropriate name will be checked against the correct | |
176620f1 | 1422 | domain. */ |
c906108c SS |
1423 | |
1424 | bottom = start; | |
1425 | top = start + length - 1; | |
38d49aff | 1426 | real_top = top; |
c906108c SS |
1427 | while (top > bottom) |
1428 | { | |
1429 | center = bottom + (top - bottom) / 2; | |
1430 | if (!(center < top)) | |
e1e9e218 | 1431 | internal_error (__FILE__, __LINE__, "failed internal consistency check"); |
c906108c | 1432 | if (!do_linear_search |
357e46e7 | 1433 | && (SYMBOL_LANGUAGE (*center) == language_java)) |
c906108c SS |
1434 | { |
1435 | do_linear_search = 1; | |
1436 | } | |
c8be8951 | 1437 | if (strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*center), name) >= 0) |
c906108c SS |
1438 | { |
1439 | top = center; | |
1440 | } | |
1441 | else | |
1442 | { | |
1443 | bottom = center + 1; | |
1444 | } | |
1445 | } | |
1446 | if (!(top == bottom)) | |
e1e9e218 | 1447 | internal_error (__FILE__, __LINE__, "failed internal consistency check"); |
357e46e7 | 1448 | |
3d4e8fd2 DC |
1449 | while (top <= real_top |
1450 | && (linkage_name != NULL | |
1451 | ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0 | |
1452 | : SYMBOL_MATCHES_NATURAL_NAME (*top,name))) | |
c906108c | 1453 | { |
176620f1 | 1454 | if (SYMBOL_DOMAIN (*top) == domain) |
c906108c | 1455 | { |
357e46e7 | 1456 | return (*top); |
c906108c | 1457 | } |
c5aa993b | 1458 | top++; |
c906108c SS |
1459 | } |
1460 | } | |
1461 | ||
1462 | /* Can't use a binary search or else we found during the binary search that | |
1463 | we should also do a linear search. */ | |
1464 | ||
1465 | if (do_linear_search) | |
357e46e7 | 1466 | { |
c906108c SS |
1467 | for (psym = start; psym < start + length; psym++) |
1468 | { | |
176620f1 | 1469 | if (domain == SYMBOL_DOMAIN (*psym)) |
c906108c | 1470 | { |
3d4e8fd2 DC |
1471 | if (linkage_name != NULL |
1472 | ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0 | |
1473 | : SYMBOL_MATCHES_NATURAL_NAME (*psym, name)) | |
c906108c SS |
1474 | { |
1475 | return (*psym); | |
1476 | } | |
1477 | } | |
1478 | } | |
1479 | } | |
1480 | ||
1481 | return (NULL); | |
1482 | } | |
1483 | ||
176620f1 | 1484 | /* Look up a type named NAME in the struct_domain. The type returned |
c906108c SS |
1485 | must not be opaque -- i.e., must have at least one field defined |
1486 | ||
1487 | This code was modelled on lookup_symbol -- the parts not relevant to looking | |
1488 | up types were just left out. In particular it's assumed here that types | |
176620f1 | 1489 | are available in struct_domain and only at file-static or global blocks. */ |
c906108c SS |
1490 | |
1491 | ||
1492 | struct type * | |
fba45db2 | 1493 | lookup_transparent_type (const char *name) |
c906108c SS |
1494 | { |
1495 | register struct symbol *sym; | |
1496 | register struct symtab *s = NULL; | |
1497 | register struct partial_symtab *ps; | |
1498 | struct blockvector *bv; | |
1499 | register struct objfile *objfile; | |
1500 | register struct block *block; | |
c906108c SS |
1501 | |
1502 | /* Now search all the global symbols. Do the symtab's first, then | |
1503 | check the psymtab's. If a psymtab indicates the existence | |
1504 | of the desired name as a global, then do psymtab-to-symtab | |
1505 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1506 | |
c906108c | 1507 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
1508 | { |
1509 | bv = BLOCKVECTOR (s); | |
1510 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1511 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1512 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1513 | { | |
1514 | return SYMBOL_TYPE (sym); | |
1515 | } | |
1516 | } | |
c906108c SS |
1517 | |
1518 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1519 | { |
3d4e8fd2 | 1520 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, |
176620f1 | 1521 | 1, STRUCT_DOMAIN)) |
c5aa993b JM |
1522 | { |
1523 | s = PSYMTAB_TO_SYMTAB (ps); | |
1524 | bv = BLOCKVECTOR (s); | |
1525 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1526 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1527 | if (!sym) |
1528 | { | |
1529 | /* This shouldn't be necessary, but as a last resort | |
1530 | * try looking in the statics even though the psymtab | |
1531 | * claimed the symbol was global. It's possible that | |
1532 | * the psymtab gets it wrong in some cases. | |
1533 | */ | |
1534 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1535 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1536 | if (!sym) |
1537 | error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ | |
c906108c SS |
1538 | %s may be an inlined function, or may be a template function\n\ |
1539 | (if a template, try specifying an instantiation: %s<type>).", | |
c5aa993b JM |
1540 | name, ps->filename, name, name); |
1541 | } | |
1542 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1543 | return SYMBOL_TYPE (sym); | |
1544 | } | |
1545 | } | |
c906108c SS |
1546 | |
1547 | /* Now search the static file-level symbols. | |
1548 | Not strictly correct, but more useful than an error. | |
1549 | Do the symtab's first, then | |
1550 | check the psymtab's. If a psymtab indicates the existence | |
1551 | of the desired name as a file-level static, then do psymtab-to-symtab | |
1552 | conversion on the fly and return the found symbol. | |
1553 | */ | |
1554 | ||
1555 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
1556 | { |
1557 | bv = BLOCKVECTOR (s); | |
1558 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1559 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1560 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1561 | { | |
1562 | return SYMBOL_TYPE (sym); | |
1563 | } | |
1564 | } | |
c906108c SS |
1565 | |
1566 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1567 | { |
176620f1 | 1568 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN)) |
c5aa993b JM |
1569 | { |
1570 | s = PSYMTAB_TO_SYMTAB (ps); | |
1571 | bv = BLOCKVECTOR (s); | |
1572 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1573 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1574 | if (!sym) |
1575 | { | |
1576 | /* This shouldn't be necessary, but as a last resort | |
1577 | * try looking in the globals even though the psymtab | |
1578 | * claimed the symbol was static. It's possible that | |
1579 | * the psymtab gets it wrong in some cases. | |
1580 | */ | |
1581 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1582 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1583 | if (!sym) |
1584 | error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ | |
c906108c SS |
1585 | %s may be an inlined function, or may be a template function\n\ |
1586 | (if a template, try specifying an instantiation: %s<type>).", | |
c5aa993b JM |
1587 | name, ps->filename, name, name); |
1588 | } | |
1589 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1590 | return SYMBOL_TYPE (sym); | |
1591 | } | |
1592 | } | |
c906108c SS |
1593 | return (struct type *) 0; |
1594 | } | |
1595 | ||
1596 | ||
1597 | /* Find the psymtab containing main(). */ | |
1598 | /* FIXME: What about languages without main() or specially linked | |
1599 | executables that have no main() ? */ | |
1600 | ||
1601 | struct partial_symtab * | |
fba45db2 | 1602 | find_main_psymtab (void) |
c906108c SS |
1603 | { |
1604 | register struct partial_symtab *pst; | |
1605 | register struct objfile *objfile; | |
1606 | ||
1607 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 1608 | { |
176620f1 | 1609 | if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN)) |
c5aa993b JM |
1610 | { |
1611 | return (pst); | |
1612 | } | |
1613 | } | |
c906108c SS |
1614 | return (NULL); |
1615 | } | |
1616 | ||
176620f1 | 1617 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1618 | |
1619 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1620 | to find a match during the binary search of the non-encoded names, but | |
1621 | for now we don't worry about the slight inefficiency of looking for | |
1622 | a match we'll never find, since it will go pretty quick. Once the | |
1623 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 AF |
1624 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
1625 | symbol (language_cplus or language_objc set) has both the encoded and | |
1626 | non-encoded names tested for a match. | |
3121eff0 | 1627 | |
5ad1c190 | 1628 | If LINKAGE_NAME is non-NULL, verify that any symbol we find has this |
3121eff0 DJ |
1629 | particular mangled name. |
1630 | */ | |
c906108c SS |
1631 | |
1632 | struct symbol * | |
fba45db2 | 1633 | lookup_block_symbol (register const struct block *block, const char *name, |
5ad1c190 | 1634 | const char *linkage_name, |
176620f1 | 1635 | const domain_enum domain) |
c906108c | 1636 | { |
de4f826b DC |
1637 | struct dict_iterator iter; |
1638 | struct symbol *sym; | |
c906108c | 1639 | |
de4f826b | 1640 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1641 | { |
de4f826b DC |
1642 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); |
1643 | sym != NULL; | |
1644 | sym = dict_iter_name_next (name, &iter)) | |
261397f8 | 1645 | { |
de4f826b DC |
1646 | if (SYMBOL_DOMAIN (sym) == domain |
1647 | && (linkage_name != NULL | |
1648 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
261397f8 DJ |
1649 | return sym; |
1650 | } | |
1651 | return NULL; | |
1652 | } | |
526e70c0 | 1653 | else |
c906108c | 1654 | { |
526e70c0 DC |
1655 | /* Note that parameter symbols do not always show up last in the |
1656 | list; this loop makes sure to take anything else other than | |
1657 | parameter symbols first; it only uses parameter symbols as a | |
1658 | last resort. Note that this only takes up extra computation | |
1659 | time on a match. */ | |
de4f826b DC |
1660 | |
1661 | struct symbol *sym_found = NULL; | |
1662 | ||
1663 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); | |
1664 | sym != NULL; | |
1665 | sym = dict_iter_name_next (name, &iter)) | |
c906108c | 1666 | { |
176620f1 | 1667 | if (SYMBOL_DOMAIN (sym) == domain |
de4f826b DC |
1668 | && (linkage_name != NULL |
1669 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
c906108c SS |
1670 | { |
1671 | /* If SYM has aliases, then use any alias that is active | |
c5aa993b JM |
1672 | at the current PC. If no alias is active at the current |
1673 | PC, then use the main symbol. | |
c906108c | 1674 | |
c5aa993b | 1675 | ?!? Is checking the current pc correct? Is this routine |
a0b3c4fd JM |
1676 | ever called to look up a symbol from another context? |
1677 | ||
de4f826b DC |
1678 | FIXME: No, it's not correct. If someone sets a |
1679 | conditional breakpoint at an address, then the | |
1680 | breakpoint's `struct expression' should refer to the | |
1681 | `struct symbol' appropriate for the breakpoint's | |
1682 | address, which may not be the PC. | |
a0b3c4fd | 1683 | |
de4f826b DC |
1684 | Even if it were never called from another context, |
1685 | it's totally bizarre for lookup_symbol's behavior to | |
1686 | depend on the value of the inferior's current PC. We | |
1687 | should pass in the appropriate PC as well as the | |
1688 | block. The interface to lookup_symbol should change | |
1689 | to require the caller to provide a PC. */ | |
a0b3c4fd | 1690 | |
c5aa993b JM |
1691 | if (SYMBOL_ALIASES (sym)) |
1692 | sym = find_active_alias (sym, read_pc ()); | |
c906108c SS |
1693 | |
1694 | sym_found = sym; | |
1695 | if (SYMBOL_CLASS (sym) != LOC_ARG && | |
1696 | SYMBOL_CLASS (sym) != LOC_LOCAL_ARG && | |
1697 | SYMBOL_CLASS (sym) != LOC_REF_ARG && | |
1698 | SYMBOL_CLASS (sym) != LOC_REGPARM && | |
1699 | SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR && | |
4c2df51b DJ |
1700 | SYMBOL_CLASS (sym) != LOC_BASEREG_ARG && |
1701 | SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG) | |
c906108c SS |
1702 | { |
1703 | break; | |
1704 | } | |
1705 | } | |
c906108c | 1706 | } |
de4f826b | 1707 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 1708 | } |
c906108c SS |
1709 | } |
1710 | ||
1711 | /* Given a main symbol SYM and ADDR, search through the alias | |
1712 | list to determine if an alias is active at ADDR and return | |
1713 | the active alias. | |
1714 | ||
1715 | If no alias is active, then return SYM. */ | |
1716 | ||
1717 | static struct symbol * | |
fba45db2 | 1718 | find_active_alias (struct symbol *sym, CORE_ADDR addr) |
c906108c SS |
1719 | { |
1720 | struct range_list *r; | |
1721 | struct alias_list *aliases; | |
1722 | ||
1723 | /* If we have aliases, check them first. */ | |
1724 | aliases = SYMBOL_ALIASES (sym); | |
1725 | ||
1726 | while (aliases) | |
1727 | { | |
1728 | if (!SYMBOL_RANGES (aliases->sym)) | |
c5aa993b | 1729 | return aliases->sym; |
c906108c SS |
1730 | for (r = SYMBOL_RANGES (aliases->sym); r; r = r->next) |
1731 | { | |
1732 | if (r->start <= addr && r->end > addr) | |
1733 | return aliases->sym; | |
1734 | } | |
1735 | aliases = aliases->next; | |
1736 | } | |
1737 | ||
1738 | /* Nothing found, return the main symbol. */ | |
1739 | return sym; | |
1740 | } | |
c906108c | 1741 | \f |
c5aa993b | 1742 | |
c906108c SS |
1743 | /* Find the symtab associated with PC and SECTION. Look through the |
1744 | psymtabs and read in another symtab if necessary. */ | |
1745 | ||
1746 | struct symtab * | |
fba45db2 | 1747 | find_pc_sect_symtab (CORE_ADDR pc, asection *section) |
c906108c SS |
1748 | { |
1749 | register struct block *b; | |
1750 | struct blockvector *bv; | |
1751 | register struct symtab *s = NULL; | |
1752 | register struct symtab *best_s = NULL; | |
1753 | register struct partial_symtab *ps; | |
1754 | register struct objfile *objfile; | |
1755 | CORE_ADDR distance = 0; | |
8a48e967 DJ |
1756 | struct minimal_symbol *msymbol; |
1757 | ||
1758 | /* If we know that this is not a text address, return failure. This is | |
1759 | necessary because we loop based on the block's high and low code | |
1760 | addresses, which do not include the data ranges, and because | |
1761 | we call find_pc_sect_psymtab which has a similar restriction based | |
1762 | on the partial_symtab's texthigh and textlow. */ | |
1763 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
1764 | if (msymbol | |
1765 | && (msymbol->type == mst_data | |
1766 | || msymbol->type == mst_bss | |
1767 | || msymbol->type == mst_abs | |
1768 | || msymbol->type == mst_file_data | |
1769 | || msymbol->type == mst_file_bss)) | |
1770 | return NULL; | |
c906108c SS |
1771 | |
1772 | /* Search all symtabs for the one whose file contains our address, and which | |
1773 | is the smallest of all the ones containing the address. This is designed | |
1774 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
1775 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
1776 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
1777 | ||
1778 | This happens for native ecoff format, where code from included files | |
1779 | gets its own symtab. The symtab for the included file should have | |
1780 | been read in already via the dependency mechanism. | |
1781 | It might be swifter to create several symtabs with the same name | |
1782 | like xcoff does (I'm not sure). | |
1783 | ||
1784 | It also happens for objfiles that have their functions reordered. | |
1785 | For these, the symtab we are looking for is not necessarily read in. */ | |
1786 | ||
1787 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
1788 | { |
1789 | bv = BLOCKVECTOR (s); | |
1790 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 1791 | |
c5aa993b | 1792 | if (BLOCK_START (b) <= pc |
c5aa993b | 1793 | && BLOCK_END (b) > pc |
c5aa993b JM |
1794 | && (distance == 0 |
1795 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
1796 | { | |
1797 | /* For an objfile that has its functions reordered, | |
1798 | find_pc_psymtab will find the proper partial symbol table | |
1799 | and we simply return its corresponding symtab. */ | |
1800 | /* In order to better support objfiles that contain both | |
1801 | stabs and coff debugging info, we continue on if a psymtab | |
1802 | can't be found. */ | |
1803 | if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs) | |
1804 | { | |
1805 | ps = find_pc_sect_psymtab (pc, section); | |
1806 | if (ps) | |
1807 | return PSYMTAB_TO_SYMTAB (ps); | |
1808 | } | |
1809 | if (section != 0) | |
1810 | { | |
de4f826b | 1811 | struct dict_iterator iter; |
261397f8 | 1812 | struct symbol *sym = NULL; |
c906108c | 1813 | |
de4f826b | 1814 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 1815 | { |
261397f8 DJ |
1816 | fixup_symbol_section (sym, objfile); |
1817 | if (section == SYMBOL_BFD_SECTION (sym)) | |
c5aa993b JM |
1818 | break; |
1819 | } | |
de4f826b | 1820 | if (sym == NULL) |
c5aa993b JM |
1821 | continue; /* no symbol in this symtab matches section */ |
1822 | } | |
1823 | distance = BLOCK_END (b) - BLOCK_START (b); | |
1824 | best_s = s; | |
1825 | } | |
1826 | } | |
c906108c SS |
1827 | |
1828 | if (best_s != NULL) | |
c5aa993b | 1829 | return (best_s); |
c906108c SS |
1830 | |
1831 | s = NULL; | |
1832 | ps = find_pc_sect_psymtab (pc, section); | |
1833 | if (ps) | |
1834 | { | |
1835 | if (ps->readin) | |
1836 | /* Might want to error() here (in case symtab is corrupt and | |
1837 | will cause a core dump), but maybe we can successfully | |
1838 | continue, so let's not. */ | |
c906108c | 1839 | warning ("\ |
d730266b AC |
1840 | (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n", |
1841 | paddr_nz (pc)); | |
c906108c SS |
1842 | s = PSYMTAB_TO_SYMTAB (ps); |
1843 | } | |
1844 | return (s); | |
1845 | } | |
1846 | ||
1847 | /* Find the symtab associated with PC. Look through the psymtabs and | |
1848 | read in another symtab if necessary. Backward compatibility, no section */ | |
1849 | ||
1850 | struct symtab * | |
fba45db2 | 1851 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
1852 | { |
1853 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
1854 | } | |
c906108c | 1855 | \f |
c5aa993b | 1856 | |
7e73cedf | 1857 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
1858 | Return a structure containing a symtab pointer, a line number, |
1859 | and a pc range for the entire source line. | |
1860 | The value's .pc field is NOT the specified pc. | |
1861 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
1862 | use the line that ends there. Otherwise, in that case, the line | |
1863 | that begins there is used. */ | |
1864 | ||
1865 | /* The big complication here is that a line may start in one file, and end just | |
1866 | before the start of another file. This usually occurs when you #include | |
1867 | code in the middle of a subroutine. To properly find the end of a line's PC | |
1868 | range, we must search all symtabs associated with this compilation unit, and | |
1869 | find the one whose first PC is closer than that of the next line in this | |
1870 | symtab. */ | |
1871 | ||
1872 | /* If it's worth the effort, we could be using a binary search. */ | |
1873 | ||
1874 | struct symtab_and_line | |
fba45db2 | 1875 | find_pc_sect_line (CORE_ADDR pc, struct sec *section, int notcurrent) |
c906108c SS |
1876 | { |
1877 | struct symtab *s; | |
1878 | register struct linetable *l; | |
1879 | register int len; | |
1880 | register int i; | |
1881 | register struct linetable_entry *item; | |
1882 | struct symtab_and_line val; | |
1883 | struct blockvector *bv; | |
1884 | struct minimal_symbol *msymbol; | |
1885 | struct minimal_symbol *mfunsym; | |
1886 | ||
1887 | /* Info on best line seen so far, and where it starts, and its file. */ | |
1888 | ||
1889 | struct linetable_entry *best = NULL; | |
1890 | CORE_ADDR best_end = 0; | |
1891 | struct symtab *best_symtab = 0; | |
1892 | ||
1893 | /* Store here the first line number | |
1894 | of a file which contains the line at the smallest pc after PC. | |
1895 | If we don't find a line whose range contains PC, | |
1896 | we will use a line one less than this, | |
1897 | with a range from the start of that file to the first line's pc. */ | |
1898 | struct linetable_entry *alt = NULL; | |
1899 | struct symtab *alt_symtab = 0; | |
1900 | ||
1901 | /* Info on best line seen in this file. */ | |
1902 | ||
1903 | struct linetable_entry *prev; | |
1904 | ||
1905 | /* If this pc is not from the current frame, | |
1906 | it is the address of the end of a call instruction. | |
1907 | Quite likely that is the start of the following statement. | |
1908 | But what we want is the statement containing the instruction. | |
1909 | Fudge the pc to make sure we get that. */ | |
1910 | ||
fe39c653 | 1911 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 1912 | |
b77b1eb7 JB |
1913 | /* It's tempting to assume that, if we can't find debugging info for |
1914 | any function enclosing PC, that we shouldn't search for line | |
1915 | number info, either. However, GAS can emit line number info for | |
1916 | assembly files --- very helpful when debugging hand-written | |
1917 | assembly code. In such a case, we'd have no debug info for the | |
1918 | function, but we would have line info. */ | |
648f4f79 | 1919 | |
c906108c SS |
1920 | if (notcurrent) |
1921 | pc -= 1; | |
1922 | ||
c5aa993b | 1923 | /* elz: added this because this function returned the wrong |
c906108c SS |
1924 | information if the pc belongs to a stub (import/export) |
1925 | to call a shlib function. This stub would be anywhere between | |
1926 | two functions in the target, and the line info was erroneously | |
1927 | taken to be the one of the line before the pc. | |
c5aa993b | 1928 | */ |
c906108c | 1929 | /* RT: Further explanation: |
c5aa993b | 1930 | |
c906108c SS |
1931 | * We have stubs (trampolines) inserted between procedures. |
1932 | * | |
1933 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
1934 | * exists in the main image. | |
1935 | * | |
1936 | * In the minimal symbol table, we have a bunch of symbols | |
1937 | * sorted by start address. The stubs are marked as "trampoline", | |
1938 | * the others appear as text. E.g.: | |
1939 | * | |
1940 | * Minimal symbol table for main image | |
1941 | * main: code for main (text symbol) | |
1942 | * shr1: stub (trampoline symbol) | |
1943 | * foo: code for foo (text symbol) | |
1944 | * ... | |
1945 | * Minimal symbol table for "shr1" image: | |
1946 | * ... | |
1947 | * shr1: code for shr1 (text symbol) | |
1948 | * ... | |
1949 | * | |
1950 | * So the code below is trying to detect if we are in the stub | |
1951 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
1952 | * and if found, do the symbolization from the real-code address | |
1953 | * rather than the stub address. | |
1954 | * | |
1955 | * Assumptions being made about the minimal symbol table: | |
1956 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
1957 | * if we're really in the trampoline. If we're beyond it (say | |
1958 | * we're in "foo" in the above example), it'll have a closer | |
1959 | * symbol (the "foo" text symbol for example) and will not | |
1960 | * return the trampoline. | |
1961 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
1962 | * corresponding to the trampoline, and whose address will | |
1963 | * be different than the trampoline address. I put in a sanity | |
1964 | * check for the address being the same, to avoid an | |
1965 | * infinite recursion. | |
1966 | */ | |
c5aa993b JM |
1967 | msymbol = lookup_minimal_symbol_by_pc (pc); |
1968 | if (msymbol != NULL) | |
c906108c | 1969 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 1970 | { |
2335f48e DC |
1971 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
1972 | NULL, NULL); | |
c5aa993b JM |
1973 | if (mfunsym == NULL) |
1974 | /* I eliminated this warning since it is coming out | |
1975 | * in the following situation: | |
1976 | * gdb shmain // test program with shared libraries | |
1977 | * (gdb) break shr1 // function in shared lib | |
1978 | * Warning: In stub for ... | |
1979 | * In the above situation, the shared lib is not loaded yet, | |
1980 | * so of course we can't find the real func/line info, | |
1981 | * but the "break" still works, and the warning is annoying. | |
1982 | * So I commented out the warning. RT */ | |
2335f48e | 1983 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
1984 | /* fall through */ |
1985 | else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol)) | |
1986 | /* Avoid infinite recursion */ | |
1987 | /* See above comment about why warning is commented out */ | |
2335f48e | 1988 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
1989 | /* fall through */ |
1990 | else | |
1991 | return find_pc_line (SYMBOL_VALUE (mfunsym), 0); | |
1992 | } | |
c906108c SS |
1993 | |
1994 | ||
1995 | s = find_pc_sect_symtab (pc, section); | |
1996 | if (!s) | |
1997 | { | |
1998 | /* if no symbol information, return previous pc */ | |
1999 | if (notcurrent) | |
2000 | pc++; | |
2001 | val.pc = pc; | |
2002 | return val; | |
2003 | } | |
2004 | ||
2005 | bv = BLOCKVECTOR (s); | |
2006 | ||
2007 | /* Look at all the symtabs that share this blockvector. | |
2008 | They all have the same apriori range, that we found was right; | |
2009 | but they have different line tables. */ | |
2010 | ||
2011 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
2012 | { | |
2013 | /* Find the best line in this symtab. */ | |
2014 | l = LINETABLE (s); | |
2015 | if (!l) | |
c5aa993b | 2016 | continue; |
c906108c SS |
2017 | len = l->nitems; |
2018 | if (len <= 0) | |
2019 | { | |
2020 | /* I think len can be zero if the symtab lacks line numbers | |
2021 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2022 | I'm not sure which, and maybe it depends on the symbol | |
2023 | reader). */ | |
2024 | continue; | |
2025 | } | |
2026 | ||
2027 | prev = NULL; | |
2028 | item = l->item; /* Get first line info */ | |
2029 | ||
2030 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2031 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2032 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2033 | { | |
2034 | alt = item; | |
2035 | alt_symtab = s; | |
2036 | } | |
2037 | ||
2038 | for (i = 0; i < len; i++, item++) | |
2039 | { | |
2040 | /* Leave prev pointing to the linetable entry for the last line | |
2041 | that started at or before PC. */ | |
2042 | if (item->pc > pc) | |
2043 | break; | |
2044 | ||
2045 | prev = item; | |
2046 | } | |
2047 | ||
2048 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2049 | item points at the next line. If we ran off the end of the linetable |
2050 | (pc >= start of the last line), then prev == item. If pc < start of | |
2051 | the first line, prev will not be set. */ | |
c906108c SS |
2052 | |
2053 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2054 | If so, record this file, and its best line, as best so far. Don't |
2055 | save prev if it represents the end of a function (i.e. line number | |
2056 | 0) instead of a real line. */ | |
c906108c | 2057 | |
083ae935 | 2058 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2059 | { |
2060 | best = prev; | |
2061 | best_symtab = s; | |
25d53da1 KB |
2062 | |
2063 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2064 | if (best_end <= best->pc) | |
2065 | best_end = 0; | |
c906108c | 2066 | } |
25d53da1 KB |
2067 | |
2068 | /* If another line (denoted by ITEM) is in the linetable and its | |
2069 | PC is after BEST's PC, but before the current BEST_END, then | |
2070 | use ITEM's PC as the new best_end. */ | |
2071 | if (best && i < len && item->pc > best->pc | |
2072 | && (best_end == 0 || best_end > item->pc)) | |
2073 | best_end = item->pc; | |
c906108c SS |
2074 | } |
2075 | ||
2076 | if (!best_symtab) | |
2077 | { | |
2078 | if (!alt_symtab) | |
2079 | { /* If we didn't find any line # info, just | |
2080 | return zeros. */ | |
2081 | val.pc = pc; | |
2082 | } | |
2083 | else | |
2084 | { | |
2085 | val.symtab = alt_symtab; | |
2086 | val.line = alt->line - 1; | |
2087 | ||
2088 | /* Don't return line 0, that means that we didn't find the line. */ | |
c5aa993b JM |
2089 | if (val.line == 0) |
2090 | ++val.line; | |
c906108c SS |
2091 | |
2092 | val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2093 | val.end = alt->pc; | |
2094 | } | |
2095 | } | |
e8717518 FF |
2096 | else if (best->line == 0) |
2097 | { | |
2098 | /* If our best fit is in a range of PC's for which no line | |
2099 | number info is available (line number is zero) then we didn't | |
2100 | find any valid line information. */ | |
2101 | val.pc = pc; | |
2102 | } | |
c906108c SS |
2103 | else |
2104 | { | |
2105 | val.symtab = best_symtab; | |
2106 | val.line = best->line; | |
2107 | val.pc = best->pc; | |
2108 | if (best_end && (!alt || best_end < alt->pc)) | |
2109 | val.end = best_end; | |
2110 | else if (alt) | |
2111 | val.end = alt->pc; | |
2112 | else | |
2113 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2114 | } | |
2115 | val.section = section; | |
2116 | return val; | |
2117 | } | |
2118 | ||
2119 | /* Backward compatibility (no section) */ | |
2120 | ||
2121 | struct symtab_and_line | |
fba45db2 | 2122 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2123 | { |
c5aa993b | 2124 | asection *section; |
c906108c SS |
2125 | |
2126 | section = find_pc_overlay (pc); | |
2127 | if (pc_in_unmapped_range (pc, section)) | |
2128 | pc = overlay_mapped_address (pc, section); | |
2129 | return find_pc_sect_line (pc, section, notcurrent); | |
2130 | } | |
c906108c | 2131 | \f |
c906108c SS |
2132 | /* Find line number LINE in any symtab whose name is the same as |
2133 | SYMTAB. | |
2134 | ||
2135 | If found, return the symtab that contains the linetable in which it was | |
2136 | found, set *INDEX to the index in the linetable of the best entry | |
2137 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2138 | exact match. | |
2139 | ||
2140 | If not found, return NULL. */ | |
2141 | ||
50641945 | 2142 | struct symtab * |
fba45db2 | 2143 | find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match) |
c906108c SS |
2144 | { |
2145 | int exact; | |
2146 | ||
2147 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2148 | so far seen. */ | |
2149 | ||
2150 | int best_index; | |
2151 | struct linetable *best_linetable; | |
2152 | struct symtab *best_symtab; | |
2153 | ||
2154 | /* First try looking it up in the given symtab. */ | |
2155 | best_linetable = LINETABLE (symtab); | |
2156 | best_symtab = symtab; | |
2157 | best_index = find_line_common (best_linetable, line, &exact); | |
2158 | if (best_index < 0 || !exact) | |
2159 | { | |
2160 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2161 | another symtab with the same name. In the case of xcoff, |
2162 | multiple csects for one source file (produced by IBM's FORTRAN | |
2163 | compiler) produce multiple symtabs (this is unavoidable | |
2164 | assuming csects can be at arbitrary places in memory and that | |
2165 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2166 | |
2167 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2168 | or 0 if none has been seen so far. |
2169 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2170 | int best; |
2171 | ||
2172 | struct objfile *objfile; | |
2173 | struct symtab *s; | |
2174 | ||
2175 | if (best_index >= 0) | |
2176 | best = best_linetable->item[best_index].line; | |
2177 | else | |
2178 | best = 0; | |
2179 | ||
2180 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
2181 | { |
2182 | struct linetable *l; | |
2183 | int ind; | |
c906108c | 2184 | |
c5aa993b JM |
2185 | if (!STREQ (symtab->filename, s->filename)) |
2186 | continue; | |
2187 | l = LINETABLE (s); | |
2188 | ind = find_line_common (l, line, &exact); | |
2189 | if (ind >= 0) | |
2190 | { | |
2191 | if (exact) | |
2192 | { | |
2193 | best_index = ind; | |
2194 | best_linetable = l; | |
2195 | best_symtab = s; | |
2196 | goto done; | |
2197 | } | |
2198 | if (best == 0 || l->item[ind].line < best) | |
2199 | { | |
2200 | best = l->item[ind].line; | |
2201 | best_index = ind; | |
2202 | best_linetable = l; | |
2203 | best_symtab = s; | |
2204 | } | |
2205 | } | |
2206 | } | |
c906108c | 2207 | } |
c5aa993b | 2208 | done: |
c906108c SS |
2209 | if (best_index < 0) |
2210 | return NULL; | |
2211 | ||
2212 | if (index) | |
2213 | *index = best_index; | |
2214 | if (exact_match) | |
2215 | *exact_match = exact; | |
2216 | ||
2217 | return best_symtab; | |
2218 | } | |
2219 | \f | |
2220 | /* Set the PC value for a given source file and line number and return true. | |
2221 | Returns zero for invalid line number (and sets the PC to 0). | |
2222 | The source file is specified with a struct symtab. */ | |
2223 | ||
2224 | int | |
fba45db2 | 2225 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2226 | { |
2227 | struct linetable *l; | |
2228 | int ind; | |
2229 | ||
2230 | *pc = 0; | |
2231 | if (symtab == 0) | |
2232 | return 0; | |
2233 | ||
2234 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2235 | if (symtab != NULL) | |
2236 | { | |
2237 | l = LINETABLE (symtab); | |
2238 | *pc = l->item[ind].pc; | |
2239 | return 1; | |
2240 | } | |
2241 | else | |
2242 | return 0; | |
2243 | } | |
2244 | ||
2245 | /* Find the range of pc values in a line. | |
2246 | Store the starting pc of the line into *STARTPTR | |
2247 | and the ending pc (start of next line) into *ENDPTR. | |
2248 | Returns 1 to indicate success. | |
2249 | Returns 0 if could not find the specified line. */ | |
2250 | ||
2251 | int | |
fba45db2 KB |
2252 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2253 | CORE_ADDR *endptr) | |
c906108c SS |
2254 | { |
2255 | CORE_ADDR startaddr; | |
2256 | struct symtab_and_line found_sal; | |
2257 | ||
2258 | startaddr = sal.pc; | |
c5aa993b | 2259 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2260 | return 0; |
2261 | ||
2262 | /* This whole function is based on address. For example, if line 10 has | |
2263 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2264 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2265 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2266 | This also insures that we never give a range like "starts at 0x134 | |
2267 | and ends at 0x12c". */ | |
2268 | ||
2269 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2270 | if (found_sal.line != sal.line) | |
2271 | { | |
2272 | /* The specified line (sal) has zero bytes. */ | |
2273 | *startptr = found_sal.pc; | |
2274 | *endptr = found_sal.pc; | |
2275 | } | |
2276 | else | |
2277 | { | |
2278 | *startptr = found_sal.pc; | |
2279 | *endptr = found_sal.end; | |
2280 | } | |
2281 | return 1; | |
2282 | } | |
2283 | ||
2284 | /* Given a line table and a line number, return the index into the line | |
2285 | table for the pc of the nearest line whose number is >= the specified one. | |
2286 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2287 | ||
2288 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2289 | ||
2290 | static int | |
fba45db2 KB |
2291 | find_line_common (register struct linetable *l, register int lineno, |
2292 | int *exact_match) | |
c906108c SS |
2293 | { |
2294 | register int i; | |
2295 | register int len; | |
2296 | ||
2297 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2298 | or 0 if none has been seen so far. | |
2299 | BEST_INDEX identifies the item for it. */ | |
2300 | ||
2301 | int best_index = -1; | |
2302 | int best = 0; | |
2303 | ||
2304 | if (lineno <= 0) | |
2305 | return -1; | |
2306 | if (l == 0) | |
2307 | return -1; | |
2308 | ||
2309 | len = l->nitems; | |
2310 | for (i = 0; i < len; i++) | |
2311 | { | |
2312 | register struct linetable_entry *item = &(l->item[i]); | |
2313 | ||
2314 | if (item->line == lineno) | |
2315 | { | |
2316 | /* Return the first (lowest address) entry which matches. */ | |
2317 | *exact_match = 1; | |
2318 | return i; | |
2319 | } | |
2320 | ||
2321 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2322 | { | |
2323 | best = item->line; | |
2324 | best_index = i; | |
2325 | } | |
2326 | } | |
2327 | ||
2328 | /* If we got here, we didn't get an exact match. */ | |
2329 | ||
2330 | *exact_match = 0; | |
2331 | return best_index; | |
2332 | } | |
2333 | ||
2334 | int | |
fba45db2 | 2335 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2336 | { |
2337 | struct symtab_and_line sal; | |
2338 | sal = find_pc_line (pc, 0); | |
2339 | *startptr = sal.pc; | |
2340 | *endptr = sal.end; | |
2341 | return sal.symtab != 0; | |
2342 | } | |
2343 | ||
2344 | /* Given a function symbol SYM, find the symtab and line for the start | |
2345 | of the function. | |
2346 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2347 | of real code inside the function. */ | |
2348 | ||
50641945 | 2349 | struct symtab_and_line |
fba45db2 | 2350 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c SS |
2351 | { |
2352 | CORE_ADDR pc; | |
2353 | struct symtab_and_line sal; | |
2354 | ||
2355 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2356 | fixup_symbol_section (sym, NULL); | |
2357 | if (funfirstline) | |
c5aa993b | 2358 | { /* skip "first line" of function (which is actually its prologue) */ |
c906108c SS |
2359 | asection *section = SYMBOL_BFD_SECTION (sym); |
2360 | /* If function is in an unmapped overlay, use its unmapped LMA | |
c5aa993b | 2361 | address, so that SKIP_PROLOGUE has something unique to work on */ |
c906108c SS |
2362 | if (section_is_overlay (section) && |
2363 | !section_is_mapped (section)) | |
2364 | pc = overlay_unmapped_address (pc, section); | |
2365 | ||
2366 | pc += FUNCTION_START_OFFSET; | |
b83266a0 | 2367 | pc = SKIP_PROLOGUE (pc); |
c906108c SS |
2368 | |
2369 | /* For overlays, map pc back into its mapped VMA range */ | |
2370 | pc = overlay_mapped_address (pc, section); | |
2371 | } | |
2372 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2373 | ||
2374 | #ifdef PROLOGUE_FIRSTLINE_OVERLAP | |
2375 | /* Convex: no need to suppress code on first line, if any */ | |
2376 | sal.pc = pc; | |
2377 | #else | |
2378 | /* Check if SKIP_PROLOGUE left us in mid-line, and the next | |
2379 | line is still part of the same function. */ | |
2380 | if (sal.pc != pc | |
2381 | && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end | |
2382 | && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
2383 | { | |
2384 | /* First pc of next line */ | |
2385 | pc = sal.end; | |
2386 | /* Recalculate the line number (might not be N+1). */ | |
2387 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2388 | } | |
2389 | sal.pc = pc; | |
2390 | #endif | |
2391 | ||
2392 | return sal; | |
2393 | } | |
50641945 | 2394 | |
c906108c SS |
2395 | /* If P is of the form "operator[ \t]+..." where `...' is |
2396 | some legitimate operator text, return a pointer to the | |
2397 | beginning of the substring of the operator text. | |
2398 | Otherwise, return "". */ | |
2399 | char * | |
fba45db2 | 2400 | operator_chars (char *p, char **end) |
c906108c SS |
2401 | { |
2402 | *end = ""; | |
2403 | if (strncmp (p, "operator", 8)) | |
2404 | return *end; | |
2405 | p += 8; | |
2406 | ||
2407 | /* Don't get faked out by `operator' being part of a longer | |
2408 | identifier. */ | |
c5aa993b | 2409 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2410 | return *end; |
2411 | ||
2412 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2413 | while (*p == ' ' || *p == '\t') | |
2414 | p++; | |
2415 | ||
2416 | /* Recognize 'operator TYPENAME'. */ | |
2417 | ||
c5aa993b | 2418 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2419 | { |
c5aa993b JM |
2420 | register char *q = p + 1; |
2421 | while (isalnum (*q) || *q == '_' || *q == '$') | |
c906108c SS |
2422 | q++; |
2423 | *end = q; | |
2424 | return p; | |
2425 | } | |
2426 | ||
53e8ad3d MS |
2427 | while (*p) |
2428 | switch (*p) | |
2429 | { | |
2430 | case '\\': /* regexp quoting */ | |
2431 | if (p[1] == '*') | |
2432 | { | |
2433 | if (p[2] == '=') /* 'operator\*=' */ | |
2434 | *end = p + 3; | |
2435 | else /* 'operator\*' */ | |
2436 | *end = p + 2; | |
2437 | return p; | |
2438 | } | |
2439 | else if (p[1] == '[') | |
2440 | { | |
2441 | if (p[2] == ']') | |
2442 | error ("mismatched quoting on brackets, try 'operator\\[\\]'"); | |
2443 | else if (p[2] == '\\' && p[3] == ']') | |
2444 | { | |
2445 | *end = p + 4; /* 'operator\[\]' */ | |
2446 | return p; | |
2447 | } | |
2448 | else | |
2449 | error ("nothing is allowed between '[' and ']'"); | |
2450 | } | |
2451 | else | |
2452 | { | |
2453 | /* Gratuitous qoute: skip it and move on. */ | |
2454 | p++; | |
2455 | continue; | |
2456 | } | |
2457 | break; | |
2458 | case '!': | |
2459 | case '=': | |
2460 | case '*': | |
2461 | case '/': | |
2462 | case '%': | |
2463 | case '^': | |
2464 | if (p[1] == '=') | |
2465 | *end = p + 2; | |
2466 | else | |
2467 | *end = p + 1; | |
2468 | return p; | |
2469 | case '<': | |
2470 | case '>': | |
2471 | case '+': | |
2472 | case '-': | |
2473 | case '&': | |
2474 | case '|': | |
2475 | if (p[0] == '-' && p[1] == '>') | |
2476 | { | |
2477 | /* Struct pointer member operator 'operator->'. */ | |
2478 | if (p[2] == '*') | |
2479 | { | |
2480 | *end = p + 3; /* 'operator->*' */ | |
2481 | return p; | |
2482 | } | |
2483 | else if (p[2] == '\\') | |
2484 | { | |
2485 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
2486 | return p; | |
2487 | } | |
2488 | else | |
2489 | { | |
2490 | *end = p + 2; /* 'operator->' */ | |
2491 | return p; | |
2492 | } | |
2493 | } | |
2494 | if (p[1] == '=' || p[1] == p[0]) | |
2495 | *end = p + 2; | |
2496 | else | |
2497 | *end = p + 1; | |
2498 | return p; | |
2499 | case '~': | |
2500 | case ',': | |
c5aa993b | 2501 | *end = p + 1; |
53e8ad3d MS |
2502 | return p; |
2503 | case '(': | |
2504 | if (p[1] != ')') | |
2505 | error ("`operator ()' must be specified without whitespace in `()'"); | |
c5aa993b | 2506 | *end = p + 2; |
53e8ad3d MS |
2507 | return p; |
2508 | case '?': | |
2509 | if (p[1] != ':') | |
2510 | error ("`operator ?:' must be specified without whitespace in `?:'"); | |
2511 | *end = p + 2; | |
2512 | return p; | |
2513 | case '[': | |
2514 | if (p[1] != ']') | |
2515 | error ("`operator []' must be specified without whitespace in `[]'"); | |
2516 | *end = p + 2; | |
2517 | return p; | |
2518 | default: | |
2519 | error ("`operator %s' not supported", p); | |
2520 | break; | |
2521 | } | |
2522 | ||
c906108c SS |
2523 | *end = ""; |
2524 | return *end; | |
2525 | } | |
c906108c | 2526 | \f |
c5aa993b | 2527 | |
c94fdfd0 EZ |
2528 | /* If FILE is not already in the table of files, return zero; |
2529 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
2530 | is non-zero. If *FIRST is non-zero, forget the old table | |
2531 | contents. */ | |
2532 | static int | |
2533 | filename_seen (const char *file, int add, int *first) | |
c906108c | 2534 | { |
c94fdfd0 EZ |
2535 | /* Table of files seen so far. */ |
2536 | static const char **tab = NULL; | |
c906108c SS |
2537 | /* Allocated size of tab in elements. |
2538 | Start with one 256-byte block (when using GNU malloc.c). | |
2539 | 24 is the malloc overhead when range checking is in effect. */ | |
2540 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
2541 | /* Current size of tab in elements. */ | |
2542 | static int tab_cur_size; | |
c94fdfd0 | 2543 | const char **p; |
c906108c SS |
2544 | |
2545 | if (*first) | |
2546 | { | |
2547 | if (tab == NULL) | |
c94fdfd0 | 2548 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
2549 | tab_cur_size = 0; |
2550 | } | |
2551 | ||
c94fdfd0 | 2552 | /* Is FILE in tab? */ |
c906108c | 2553 | for (p = tab; p < tab + tab_cur_size; p++) |
c94fdfd0 EZ |
2554 | if (strcmp (*p, file) == 0) |
2555 | return 1; | |
2556 | ||
2557 | /* No; maybe add it to tab. */ | |
2558 | if (add) | |
c906108c | 2559 | { |
c94fdfd0 EZ |
2560 | if (tab_cur_size == tab_alloc_size) |
2561 | { | |
2562 | tab_alloc_size *= 2; | |
2563 | tab = (const char **) xrealloc ((char *) tab, | |
2564 | tab_alloc_size * sizeof (*tab)); | |
2565 | } | |
2566 | tab[tab_cur_size++] = file; | |
c906108c | 2567 | } |
c906108c | 2568 | |
c94fdfd0 EZ |
2569 | return 0; |
2570 | } | |
2571 | ||
2572 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
2573 | NAME is the name to print and *FIRST is nonzero if this is the first | |
2574 | name printed. Set *FIRST to zero. */ | |
2575 | static void | |
2576 | output_source_filename (char *name, int *first) | |
2577 | { | |
2578 | /* Since a single source file can result in several partial symbol | |
2579 | tables, we need to avoid printing it more than once. Note: if | |
2580 | some of the psymtabs are read in and some are not, it gets | |
2581 | printed both under "Source files for which symbols have been | |
2582 | read" and "Source files for which symbols will be read in on | |
2583 | demand". I consider this a reasonable way to deal with the | |
2584 | situation. I'm not sure whether this can also happen for | |
2585 | symtabs; it doesn't hurt to check. */ | |
2586 | ||
2587 | /* Was NAME already seen? */ | |
2588 | if (filename_seen (name, 1, first)) | |
2589 | { | |
2590 | /* Yes; don't print it again. */ | |
2591 | return; | |
2592 | } | |
2593 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
2594 | if (*first) |
2595 | { | |
2596 | *first = 0; | |
2597 | } | |
2598 | else | |
2599 | { | |
2600 | printf_filtered (", "); | |
2601 | } | |
2602 | ||
2603 | wrap_here (""); | |
2604 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 2605 | } |
c906108c SS |
2606 | |
2607 | static void | |
fba45db2 | 2608 | sources_info (char *ignore, int from_tty) |
c906108c SS |
2609 | { |
2610 | register struct symtab *s; | |
2611 | register struct partial_symtab *ps; | |
2612 | register struct objfile *objfile; | |
2613 | int first; | |
c5aa993b | 2614 | |
c906108c SS |
2615 | if (!have_full_symbols () && !have_partial_symbols ()) |
2616 | { | |
e85428fc | 2617 | error ("No symbol table is loaded. Use the \"file\" command."); |
c906108c | 2618 | } |
c5aa993b | 2619 | |
c906108c SS |
2620 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
2621 | ||
2622 | first = 1; | |
2623 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
2624 | { |
2625 | output_source_filename (s->filename, &first); | |
2626 | } | |
c906108c | 2627 | printf_filtered ("\n\n"); |
c5aa993b | 2628 | |
c906108c SS |
2629 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
2630 | ||
2631 | first = 1; | |
2632 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2633 | { |
2634 | if (!ps->readin) | |
2635 | { | |
2636 | output_source_filename (ps->filename, &first); | |
2637 | } | |
2638 | } | |
c906108c SS |
2639 | printf_filtered ("\n"); |
2640 | } | |
2641 | ||
2642 | static int | |
fd118b61 | 2643 | file_matches (char *file, char *files[], int nfiles) |
c906108c SS |
2644 | { |
2645 | int i; | |
2646 | ||
2647 | if (file != NULL && nfiles != 0) | |
2648 | { | |
2649 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 2650 | { |
31889e00 | 2651 | if (strcmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
2652 | return 1; |
2653 | } | |
c906108c SS |
2654 | } |
2655 | else if (nfiles == 0) | |
2656 | return 1; | |
2657 | return 0; | |
2658 | } | |
2659 | ||
2660 | /* Free any memory associated with a search. */ | |
2661 | void | |
fba45db2 | 2662 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
2663 | { |
2664 | struct symbol_search *p; | |
2665 | struct symbol_search *next; | |
2666 | ||
2667 | for (p = symbols; p != NULL; p = next) | |
2668 | { | |
2669 | next = p->next; | |
b8c9b27d | 2670 | xfree (p); |
c906108c SS |
2671 | } |
2672 | } | |
2673 | ||
5bd98722 AC |
2674 | static void |
2675 | do_free_search_symbols_cleanup (void *symbols) | |
2676 | { | |
2677 | free_search_symbols (symbols); | |
2678 | } | |
2679 | ||
2680 | struct cleanup * | |
2681 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
2682 | { | |
2683 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
2684 | } | |
2685 | ||
434d2d4f DJ |
2686 | /* Helper function for sort_search_symbols and qsort. Can only |
2687 | sort symbols, not minimal symbols. */ | |
2688 | static int | |
2689 | compare_search_syms (const void *sa, const void *sb) | |
2690 | { | |
2691 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
2692 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
2693 | ||
de5ad195 DC |
2694 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
2695 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
2696 | } |
2697 | ||
2698 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
2699 | prevtail where it is, but update its next pointer to point to | |
2700 | the first of the sorted symbols. */ | |
2701 | static struct symbol_search * | |
2702 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
2703 | { | |
2704 | struct symbol_search **symbols, *symp, *old_next; | |
2705 | int i; | |
2706 | ||
2707 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
2708 | * nfound); | |
2709 | symp = prevtail->next; | |
2710 | for (i = 0; i < nfound; i++) | |
2711 | { | |
2712 | symbols[i] = symp; | |
2713 | symp = symp->next; | |
2714 | } | |
2715 | /* Generally NULL. */ | |
2716 | old_next = symp; | |
2717 | ||
2718 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
2719 | compare_search_syms); | |
2720 | ||
2721 | symp = prevtail; | |
2722 | for (i = 0; i < nfound; i++) | |
2723 | { | |
2724 | symp->next = symbols[i]; | |
2725 | symp = symp->next; | |
2726 | } | |
2727 | symp->next = old_next; | |
2728 | ||
8ed32cc0 | 2729 | xfree (symbols); |
434d2d4f DJ |
2730 | return symp; |
2731 | } | |
5bd98722 | 2732 | |
c906108c SS |
2733 | /* Search the symbol table for matches to the regular expression REGEXP, |
2734 | returning the results in *MATCHES. | |
2735 | ||
2736 | Only symbols of KIND are searched: | |
176620f1 EZ |
2737 | FUNCTIONS_DOMAIN - search all functions |
2738 | TYPES_DOMAIN - search all type names | |
2739 | METHODS_DOMAIN - search all methods NOT IMPLEMENTED | |
2740 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, | |
c5aa993b | 2741 | and constants (enums) |
c906108c SS |
2742 | |
2743 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
2744 | |
2745 | The results are sorted locally; each symtab's global and static blocks are | |
2746 | separately alphabetized. | |
c5aa993b | 2747 | */ |
c906108c | 2748 | void |
176620f1 | 2749 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
fd118b61 | 2750 | struct symbol_search **matches) |
c906108c SS |
2751 | { |
2752 | register struct symtab *s; | |
2753 | register struct partial_symtab *ps; | |
2754 | register struct blockvector *bv; | |
2755 | struct blockvector *prev_bv = 0; | |
2756 | register struct block *b; | |
2757 | register int i = 0; | |
de4f826b | 2758 | struct dict_iterator iter; |
c906108c SS |
2759 | register struct symbol *sym; |
2760 | struct partial_symbol **psym; | |
2761 | struct objfile *objfile; | |
2762 | struct minimal_symbol *msymbol; | |
2763 | char *val; | |
2764 | int found_misc = 0; | |
2765 | static enum minimal_symbol_type types[] | |
c5aa993b JM |
2766 | = |
2767 | {mst_data, mst_text, mst_abs, mst_unknown}; | |
c906108c | 2768 | static enum minimal_symbol_type types2[] |
c5aa993b JM |
2769 | = |
2770 | {mst_bss, mst_file_text, mst_abs, mst_unknown}; | |
c906108c | 2771 | static enum minimal_symbol_type types3[] |
c5aa993b JM |
2772 | = |
2773 | {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; | |
c906108c | 2774 | static enum minimal_symbol_type types4[] |
c5aa993b JM |
2775 | = |
2776 | {mst_file_bss, mst_text, mst_abs, mst_unknown}; | |
c906108c SS |
2777 | enum minimal_symbol_type ourtype; |
2778 | enum minimal_symbol_type ourtype2; | |
2779 | enum minimal_symbol_type ourtype3; | |
2780 | enum minimal_symbol_type ourtype4; | |
2781 | struct symbol_search *sr; | |
2782 | struct symbol_search *psr; | |
2783 | struct symbol_search *tail; | |
2784 | struct cleanup *old_chain = NULL; | |
2785 | ||
176620f1 EZ |
2786 | if (kind < VARIABLES_DOMAIN) |
2787 | error ("must search on specific domain"); | |
c906108c | 2788 | |
176620f1 EZ |
2789 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
2790 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; | |
2791 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; | |
2792 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; | |
c906108c SS |
2793 | |
2794 | sr = *matches = NULL; | |
2795 | tail = NULL; | |
2796 | ||
2797 | if (regexp != NULL) | |
2798 | { | |
2799 | /* Make sure spacing is right for C++ operators. | |
2800 | This is just a courtesy to make the matching less sensitive | |
2801 | to how many spaces the user leaves between 'operator' | |
2802 | and <TYPENAME> or <OPERATOR>. */ | |
2803 | char *opend; | |
2804 | char *opname = operator_chars (regexp, &opend); | |
2805 | if (*opname) | |
c5aa993b JM |
2806 | { |
2807 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ | |
2808 | if (isalpha (*opname) || *opname == '_' || *opname == '$') | |
2809 | { | |
2810 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
2811 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
2812 | fix = 1; | |
2813 | } | |
2814 | else | |
2815 | { | |
2816 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
2817 | if (opname[-1] == ' ') | |
2818 | fix = 0; | |
2819 | } | |
2820 | /* If wrong number of spaces, fix it. */ | |
2821 | if (fix >= 0) | |
2822 | { | |
045f55a6 | 2823 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
c5aa993b JM |
2824 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
2825 | regexp = tmp; | |
2826 | } | |
2827 | } | |
2828 | ||
c906108c | 2829 | if (0 != (val = re_comp (regexp))) |
c5aa993b | 2830 | error ("Invalid regexp (%s): %s", val, regexp); |
c906108c SS |
2831 | } |
2832 | ||
2833 | /* Search through the partial symtabs *first* for all symbols | |
2834 | matching the regexp. That way we don't have to reproduce all of | |
2835 | the machinery below. */ | |
2836 | ||
2837 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2838 | { |
2839 | struct partial_symbol **bound, **gbound, **sbound; | |
2840 | int keep_going = 1; | |
2841 | ||
2842 | if (ps->readin) | |
2843 | continue; | |
2844 | ||
2845 | gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms; | |
2846 | sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms; | |
2847 | bound = gbound; | |
2848 | ||
2849 | /* Go through all of the symbols stored in a partial | |
2850 | symtab in one loop. */ | |
2851 | psym = objfile->global_psymbols.list + ps->globals_offset; | |
2852 | while (keep_going) | |
2853 | { | |
2854 | if (psym >= bound) | |
2855 | { | |
2856 | if (bound == gbound && ps->n_static_syms != 0) | |
2857 | { | |
2858 | psym = objfile->static_psymbols.list + ps->statics_offset; | |
2859 | bound = sbound; | |
2860 | } | |
2861 | else | |
2862 | keep_going = 0; | |
2863 | continue; | |
2864 | } | |
2865 | else | |
2866 | { | |
2867 | QUIT; | |
2868 | ||
2869 | /* If it would match (logic taken from loop below) | |
2870 | load the file and go on to the next one */ | |
2871 | if (file_matches (ps->filename, files, nfiles) | |
25120b0d DC |
2872 | && ((regexp == NULL |
2873 | || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0) | |
176620f1 | 2874 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF |
c5aa993b | 2875 | && SYMBOL_CLASS (*psym) != LOC_BLOCK) |
176620f1 EZ |
2876 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK) |
2877 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF) | |
2878 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)))) | |
c5aa993b JM |
2879 | { |
2880 | PSYMTAB_TO_SYMTAB (ps); | |
2881 | keep_going = 0; | |
2882 | } | |
2883 | } | |
2884 | psym++; | |
2885 | } | |
2886 | } | |
c906108c SS |
2887 | |
2888 | /* Here, we search through the minimal symbol tables for functions | |
2889 | and variables that match, and force their symbols to be read. | |
2890 | This is in particular necessary for demangled variable names, | |
2891 | which are no longer put into the partial symbol tables. | |
2892 | The symbol will then be found during the scan of symtabs below. | |
2893 | ||
2894 | For functions, find_pc_symtab should succeed if we have debug info | |
2895 | for the function, for variables we have to call lookup_symbol | |
2896 | to determine if the variable has debug info. | |
2897 | If the lookup fails, set found_misc so that we will rescan to print | |
2898 | any matching symbols without debug info. | |
c5aa993b | 2899 | */ |
c906108c | 2900 | |
176620f1 | 2901 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
2902 | { |
2903 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
2904 | { |
2905 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
2906 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
2907 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
2908 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
2909 | { | |
25120b0d DC |
2910 | if (regexp == NULL |
2911 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
2912 | { |
2913 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
2914 | { | |
b1262a02 DC |
2915 | /* FIXME: carlton/2003-02-04: Given that the |
2916 | semantics of lookup_symbol keeps on changing | |
2917 | slightly, it would be a nice idea if we had a | |
2918 | function lookup_symbol_minsym that found the | |
2919 | symbol associated to a given minimal symbol (if | |
2920 | any). */ | |
176620f1 | 2921 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 2922 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 2923 | (struct block *) NULL, |
176620f1 | 2924 | VAR_DOMAIN, |
b1262a02 DC |
2925 | 0, (struct symtab **) NULL) == NULL) |
2926 | found_misc = 1; | |
c5aa993b JM |
2927 | } |
2928 | } | |
2929 | } | |
2930 | } | |
c906108c SS |
2931 | } |
2932 | ||
2933 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
2934 | { |
2935 | bv = BLOCKVECTOR (s); | |
2936 | /* Often many files share a blockvector. | |
2937 | Scan each blockvector only once so that | |
2938 | we don't get every symbol many times. | |
2939 | It happens that the first symtab in the list | |
2940 | for any given blockvector is the main file. */ | |
2941 | if (bv != prev_bv) | |
2942 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
2943 | { | |
434d2d4f DJ |
2944 | struct symbol_search *prevtail = tail; |
2945 | int nfound = 0; | |
c5aa993b | 2946 | b = BLOCKVECTOR_BLOCK (bv, i); |
de4f826b | 2947 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b JM |
2948 | { |
2949 | QUIT; | |
c5aa993b | 2950 | if (file_matches (s->filename, files, nfiles) |
25120b0d DC |
2951 | && ((regexp == NULL |
2952 | || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0) | |
176620f1 | 2953 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF |
c5aa993b JM |
2954 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
2955 | && SYMBOL_CLASS (sym) != LOC_CONST) | |
176620f1 EZ |
2956 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK) |
2957 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
2958 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)))) | |
c5aa993b JM |
2959 | { |
2960 | /* match */ | |
2961 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
2962 | psr->block = i; | |
2963 | psr->symtab = s; | |
2964 | psr->symbol = sym; | |
2965 | psr->msymbol = NULL; | |
2966 | psr->next = NULL; | |
2967 | if (tail == NULL) | |
434d2d4f | 2968 | sr = psr; |
c5aa993b JM |
2969 | else |
2970 | tail->next = psr; | |
2971 | tail = psr; | |
434d2d4f DJ |
2972 | nfound ++; |
2973 | } | |
2974 | } | |
2975 | if (nfound > 0) | |
2976 | { | |
2977 | if (prevtail == NULL) | |
2978 | { | |
2979 | struct symbol_search dummy; | |
2980 | ||
2981 | dummy.next = sr; | |
2982 | tail = sort_search_symbols (&dummy, nfound); | |
2983 | sr = dummy.next; | |
2984 | ||
2985 | old_chain = make_cleanup_free_search_symbols (sr); | |
c5aa993b | 2986 | } |
434d2d4f DJ |
2987 | else |
2988 | tail = sort_search_symbols (prevtail, nfound); | |
c5aa993b JM |
2989 | } |
2990 | } | |
2991 | prev_bv = bv; | |
2992 | } | |
c906108c SS |
2993 | |
2994 | /* If there are no eyes, avoid all contact. I mean, if there are | |
2995 | no debug symbols, then print directly from the msymbol_vector. */ | |
2996 | ||
176620f1 | 2997 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
2998 | { |
2999 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3000 | { |
3001 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3002 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3003 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3004 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3005 | { | |
25120b0d DC |
3006 | if (regexp == NULL |
3007 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3008 | { |
3009 | /* Functions: Look up by address. */ | |
176620f1 | 3010 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3011 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3012 | { | |
3013 | /* Variables/Absolutes: Look up by name */ | |
2335f48e | 3014 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
176620f1 | 3015 | (struct block *) NULL, VAR_DOMAIN, |
c5aa993b JM |
3016 | 0, (struct symtab **) NULL) == NULL) |
3017 | { | |
3018 | /* match */ | |
3019 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3020 | psr->block = i; | |
3021 | psr->msymbol = msymbol; | |
3022 | psr->symtab = NULL; | |
3023 | psr->symbol = NULL; | |
3024 | psr->next = NULL; | |
3025 | if (tail == NULL) | |
3026 | { | |
3027 | sr = psr; | |
5bd98722 | 3028 | old_chain = make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3029 | } |
3030 | else | |
3031 | tail->next = psr; | |
3032 | tail = psr; | |
3033 | } | |
3034 | } | |
3035 | } | |
3036 | } | |
3037 | } | |
c906108c SS |
3038 | } |
3039 | ||
3040 | *matches = sr; | |
3041 | if (sr != NULL) | |
3042 | discard_cleanups (old_chain); | |
3043 | } | |
3044 | ||
3045 | /* Helper function for symtab_symbol_info, this function uses | |
3046 | the data returned from search_symbols() to print information | |
3047 | regarding the match to gdb_stdout. | |
c5aa993b | 3048 | */ |
c906108c | 3049 | static void |
176620f1 | 3050 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
fba45db2 | 3051 | int block, char *last) |
c906108c SS |
3052 | { |
3053 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3054 | { | |
3055 | fputs_filtered ("\nFile ", gdb_stdout); | |
3056 | fputs_filtered (s->filename, gdb_stdout); | |
3057 | fputs_filtered (":\n", gdb_stdout); | |
3058 | } | |
3059 | ||
176620f1 | 3060 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3061 | printf_filtered ("static "); |
c5aa993b | 3062 | |
c906108c | 3063 | /* Typedef that is not a C++ class */ |
176620f1 EZ |
3064 | if (kind == TYPES_DOMAIN |
3065 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3066 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c906108c | 3067 | /* variable, func, or typedef-that-is-c++-class */ |
176620f1 EZ |
3068 | else if (kind < TYPES_DOMAIN || |
3069 | (kind == TYPES_DOMAIN && | |
3070 | SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3071 | { |
3072 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3073 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3074 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3075 | gdb_stdout, 0); |
c906108c SS |
3076 | |
3077 | printf_filtered (";\n"); | |
3078 | } | |
c906108c SS |
3079 | } |
3080 | ||
3081 | /* This help function for symtab_symbol_info() prints information | |
3082 | for non-debugging symbols to gdb_stdout. | |
c5aa993b | 3083 | */ |
c906108c | 3084 | static void |
fba45db2 | 3085 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3086 | { |
3ac4495a MS |
3087 | char *tmp; |
3088 | ||
3089 | if (TARGET_ADDR_BIT <= 32) | |
14a5e767 AC |
3090 | tmp = local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3091 | & (CORE_ADDR) 0xffffffff, | |
3092 | "08l"); | |
3ac4495a | 3093 | else |
14a5e767 AC |
3094 | tmp = local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3095 | "016l"); | |
3ac4495a | 3096 | printf_filtered ("%s %s\n", |
de5ad195 | 3097 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3098 | } |
3099 | ||
3100 | /* This is the guts of the commands "info functions", "info types", and | |
3101 | "info variables". It calls search_symbols to find all matches and then | |
3102 | print_[m]symbol_info to print out some useful information about the | |
3103 | matches. | |
c5aa993b | 3104 | */ |
c906108c | 3105 | static void |
176620f1 | 3106 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
c906108c SS |
3107 | { |
3108 | static char *classnames[] | |
c5aa993b JM |
3109 | = |
3110 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3111 | struct symbol_search *symbols; |
3112 | struct symbol_search *p; | |
3113 | struct cleanup *old_chain; | |
3114 | char *last_filename = NULL; | |
3115 | int first = 1; | |
3116 | ||
3117 | /* must make sure that if we're interrupted, symbols gets freed */ | |
3118 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); | |
5bd98722 | 3119 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3120 | |
3121 | printf_filtered (regexp | |
c5aa993b JM |
3122 | ? "All %ss matching regular expression \"%s\":\n" |
3123 | : "All defined %ss:\n", | |
176620f1 | 3124 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
c906108c SS |
3125 | |
3126 | for (p = symbols; p != NULL; p = p->next) | |
3127 | { | |
3128 | QUIT; | |
3129 | ||
3130 | if (p->msymbol != NULL) | |
c5aa993b JM |
3131 | { |
3132 | if (first) | |
3133 | { | |
3134 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3135 | first = 0; | |
3136 | } | |
3137 | print_msymbol_info (p->msymbol); | |
3138 | } | |
c906108c | 3139 | else |
c5aa993b JM |
3140 | { |
3141 | print_symbol_info (kind, | |
3142 | p->symtab, | |
3143 | p->symbol, | |
3144 | p->block, | |
3145 | last_filename); | |
3146 | last_filename = p->symtab->filename; | |
3147 | } | |
c906108c SS |
3148 | } |
3149 | ||
3150 | do_cleanups (old_chain); | |
3151 | } | |
3152 | ||
3153 | static void | |
fba45db2 | 3154 | variables_info (char *regexp, int from_tty) |
c906108c | 3155 | { |
176620f1 | 3156 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3157 | } |
3158 | ||
3159 | static void | |
fba45db2 | 3160 | functions_info (char *regexp, int from_tty) |
c906108c | 3161 | { |
176620f1 | 3162 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3163 | } |
3164 | ||
357e46e7 | 3165 | |
c906108c | 3166 | static void |
fba45db2 | 3167 | types_info (char *regexp, int from_tty) |
c906108c | 3168 | { |
176620f1 | 3169 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3170 | } |
3171 | ||
c906108c | 3172 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3173 | |
8b93c638 | 3174 | void |
fba45db2 | 3175 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3176 | { |
3177 | rbreak_command (regexp, from_tty); | |
3178 | } | |
8926118c | 3179 | |
c906108c | 3180 | static void |
fba45db2 | 3181 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3182 | { |
3183 | struct symbol_search *ss; | |
3184 | struct symbol_search *p; | |
3185 | struct cleanup *old_chain; | |
3186 | ||
176620f1 | 3187 | search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss); |
5bd98722 | 3188 | old_chain = make_cleanup_free_search_symbols (ss); |
c906108c SS |
3189 | |
3190 | for (p = ss; p != NULL; p = p->next) | |
3191 | { | |
3192 | if (p->msymbol == NULL) | |
c5aa993b | 3193 | { |
2335f48e DC |
3194 | char *string = alloca (strlen (p->symtab->filename) |
3195 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3196 | + 4); | |
c5aa993b JM |
3197 | strcpy (string, p->symtab->filename); |
3198 | strcat (string, ":'"); | |
2335f48e | 3199 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3200 | strcat (string, "'"); |
3201 | break_command (string, from_tty); | |
176620f1 | 3202 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3203 | p->symtab, |
3204 | p->symbol, | |
3205 | p->block, | |
3206 | p->symtab->filename); | |
3207 | } | |
c906108c | 3208 | else |
c5aa993b | 3209 | { |
2335f48e | 3210 | break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty); |
c5aa993b | 3211 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3212 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3213 | } |
c906108c SS |
3214 | } |
3215 | ||
3216 | do_cleanups (old_chain); | |
3217 | } | |
c906108c | 3218 | \f |
c5aa993b | 3219 | |
c906108c SS |
3220 | /* Helper routine for make_symbol_completion_list. */ |
3221 | ||
3222 | static int return_val_size; | |
3223 | static int return_val_index; | |
3224 | static char **return_val; | |
3225 | ||
3226 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3227 | completion_list_add_name \ |
2335f48e | 3228 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3229 | |
3230 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
3231 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
3232 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
3233 | |
3234 | static void | |
fba45db2 KB |
3235 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3236 | char *text, char *word) | |
c906108c SS |
3237 | { |
3238 | int newsize; | |
3239 | int i; | |
3240 | ||
3241 | /* clip symbols that cannot match */ | |
3242 | ||
3243 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
3244 | { | |
3245 | return; | |
3246 | } | |
3247 | ||
c906108c SS |
3248 | /* We have a match for a completion, so add SYMNAME to the current list |
3249 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
3250 | ||
3251 | { | |
3252 | char *new; | |
3253 | if (word == sym_text) | |
3254 | { | |
3255 | new = xmalloc (strlen (symname) + 5); | |
3256 | strcpy (new, symname); | |
3257 | } | |
3258 | else if (word > sym_text) | |
3259 | { | |
3260 | /* Return some portion of symname. */ | |
3261 | new = xmalloc (strlen (symname) + 5); | |
3262 | strcpy (new, symname + (word - sym_text)); | |
3263 | } | |
3264 | else | |
3265 | { | |
3266 | /* Return some of SYM_TEXT plus symname. */ | |
3267 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3268 | strncpy (new, word, sym_text - word); | |
3269 | new[sym_text - word] = '\0'; | |
3270 | strcat (new, symname); | |
3271 | } | |
3272 | ||
c906108c SS |
3273 | if (return_val_index + 3 > return_val_size) |
3274 | { | |
3275 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3276 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3277 | } | |
3278 | return_val[return_val_index++] = new; | |
3279 | return_val[return_val_index] = NULL; | |
3280 | } | |
3281 | } | |
3282 | ||
69636828 AF |
3283 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3284 | again and feed all the selectors into the mill. */ | |
3285 | ||
3286 | static void | |
3287 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, | |
3288 | int sym_text_len, char *text, char *word) | |
3289 | { | |
3290 | static char *tmp = NULL; | |
3291 | static unsigned int tmplen = 0; | |
3292 | ||
3293 | char *method, *category, *selector; | |
3294 | char *tmp2 = NULL; | |
3295 | ||
3296 | method = SYMBOL_NATURAL_NAME (msymbol); | |
3297 | ||
3298 | /* Is it a method? */ | |
3299 | if ((method[0] != '-') && (method[0] != '+')) | |
3300 | return; | |
3301 | ||
3302 | if (sym_text[0] == '[') | |
3303 | /* Complete on shortened method method. */ | |
3304 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
3305 | ||
3306 | while ((strlen (method) + 1) >= tmplen) | |
3307 | { | |
3308 | if (tmplen == 0) | |
3309 | tmplen = 1024; | |
3310 | else | |
3311 | tmplen *= 2; | |
3312 | tmp = xrealloc (tmp, tmplen); | |
3313 | } | |
3314 | selector = strchr (method, ' '); | |
3315 | if (selector != NULL) | |
3316 | selector++; | |
3317 | ||
3318 | category = strchr (method, '('); | |
3319 | ||
3320 | if ((category != NULL) && (selector != NULL)) | |
3321 | { | |
3322 | memcpy (tmp, method, (category - method)); | |
3323 | tmp[category - method] = ' '; | |
3324 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
3325 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3326 | if (sym_text[0] == '[') | |
3327 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
3328 | } | |
3329 | ||
3330 | if (selector != NULL) | |
3331 | { | |
3332 | /* Complete on selector only. */ | |
3333 | strcpy (tmp, selector); | |
3334 | tmp2 = strchr (tmp, ']'); | |
3335 | if (tmp2 != NULL) | |
3336 | *tmp2 = '\0'; | |
3337 | ||
3338 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3339 | } | |
3340 | } | |
3341 | ||
3342 | /* Break the non-quoted text based on the characters which are in | |
3343 | symbols. FIXME: This should probably be language-specific. */ | |
3344 | ||
3345 | static char * | |
3346 | language_search_unquoted_string (char *text, char *p) | |
3347 | { | |
3348 | for (; p > text; --p) | |
3349 | { | |
3350 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3351 | continue; | |
3352 | else | |
3353 | { | |
3354 | if ((current_language->la_language == language_objc)) | |
3355 | { | |
3356 | if (p[-1] == ':') /* might be part of a method name */ | |
3357 | continue; | |
3358 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
3359 | p -= 2; /* beginning of a method name */ | |
3360 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') | |
3361 | { /* might be part of a method name */ | |
3362 | char *t = p; | |
3363 | ||
3364 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
3365 | that we are in the middle of a method name. However, | |
3366 | finding "-[" or "+[" should be pretty un-ambiguous. | |
3367 | Unfortunately we have to find it now to decide. */ | |
3368 | ||
3369 | while (t > text) | |
3370 | if (isalnum (t[-1]) || t[-1] == '_' || | |
3371 | t[-1] == ' ' || t[-1] == ':' || | |
3372 | t[-1] == '(' || t[-1] == ')') | |
3373 | --t; | |
3374 | else | |
3375 | break; | |
3376 | ||
3377 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
3378 | p = t - 2; /* method name detected */ | |
3379 | /* else we leave with p unchanged */ | |
3380 | } | |
3381 | } | |
3382 | break; | |
3383 | } | |
3384 | } | |
3385 | return p; | |
3386 | } | |
3387 | ||
3388 | ||
c94fdfd0 EZ |
3389 | /* Return a NULL terminated array of all symbols (regardless of class) |
3390 | which begin by matching TEXT. If the answer is no symbols, then | |
3391 | the return value is an array which contains only a NULL pointer. | |
c906108c SS |
3392 | |
3393 | Problem: All of the symbols have to be copied because readline frees them. | |
3394 | I'm not going to worry about this; hopefully there won't be that many. */ | |
3395 | ||
3396 | char ** | |
fba45db2 | 3397 | make_symbol_completion_list (char *text, char *word) |
c906108c | 3398 | { |
de4f826b DC |
3399 | struct symbol *sym; |
3400 | struct symtab *s; | |
3401 | struct partial_symtab *ps; | |
3402 | struct minimal_symbol *msymbol; | |
3403 | struct objfile *objfile; | |
3404 | struct block *b, *surrounding_static_block = 0; | |
3405 | struct dict_iterator iter; | |
3406 | int j; | |
c906108c SS |
3407 | struct partial_symbol **psym; |
3408 | /* The symbol we are completing on. Points in same buffer as text. */ | |
3409 | char *sym_text; | |
3410 | /* Length of sym_text. */ | |
3411 | int sym_text_len; | |
3412 | ||
3413 | /* Now look for the symbol we are supposed to complete on. | |
3414 | FIXME: This should be language-specific. */ | |
3415 | { | |
3416 | char *p; | |
3417 | char quote_found; | |
3418 | char *quote_pos = NULL; | |
3419 | ||
3420 | /* First see if this is a quoted string. */ | |
3421 | quote_found = '\0'; | |
3422 | for (p = text; *p != '\0'; ++p) | |
3423 | { | |
3424 | if (quote_found != '\0') | |
3425 | { | |
3426 | if (*p == quote_found) | |
3427 | /* Found close quote. */ | |
3428 | quote_found = '\0'; | |
3429 | else if (*p == '\\' && p[1] == quote_found) | |
3430 | /* A backslash followed by the quote character | |
c5aa993b | 3431 | doesn't end the string. */ |
c906108c SS |
3432 | ++p; |
3433 | } | |
3434 | else if (*p == '\'' || *p == '"') | |
3435 | { | |
3436 | quote_found = *p; | |
3437 | quote_pos = p; | |
3438 | } | |
3439 | } | |
3440 | if (quote_found == '\'') | |
3441 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3442 | sym_text = quote_pos + 1; | |
3443 | else if (quote_found == '"') | |
3444 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 3445 | to complete it any other way. */ |
c94fdfd0 EZ |
3446 | { |
3447 | return_val = (char **) xmalloc (sizeof (char *)); | |
3448 | return_val[0] = NULL; | |
3449 | return return_val; | |
3450 | } | |
c906108c SS |
3451 | else |
3452 | { | |
3453 | /* It is not a quoted string. Break it based on the characters | |
3454 | which are in symbols. */ | |
3455 | while (p > text) | |
3456 | { | |
3457 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3458 | --p; | |
3459 | else | |
3460 | break; | |
3461 | } | |
3462 | sym_text = p; | |
3463 | } | |
3464 | } | |
3465 | ||
3466 | sym_text_len = strlen (sym_text); | |
3467 | ||
3468 | return_val_size = 100; | |
3469 | return_val_index = 0; | |
3470 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3471 | return_val[0] = NULL; | |
3472 | ||
3473 | /* Look through the partial symtabs for all symbols which begin | |
3474 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
3475 | ||
3476 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3477 | { |
3478 | /* If the psymtab's been read in we'll get it when we search | |
3479 | through the blockvector. */ | |
3480 | if (ps->readin) | |
3481 | continue; | |
3482 | ||
3483 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
3484 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
3485 | + ps->n_global_syms); | |
3486 | psym++) | |
3487 | { | |
3488 | /* If interrupted, then quit. */ | |
3489 | QUIT; | |
3490 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3491 | } | |
3492 | ||
3493 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
3494 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
3495 | + ps->n_static_syms); | |
3496 | psym++) | |
3497 | { | |
3498 | QUIT; | |
3499 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3500 | } | |
3501 | } | |
c906108c SS |
3502 | |
3503 | /* At this point scan through the misc symbol vectors and add each | |
3504 | symbol you find to the list. Eventually we want to ignore | |
3505 | anything that isn't a text symbol (everything else will be | |
3506 | handled by the psymtab code above). */ | |
3507 | ||
3508 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3509 | { |
3510 | QUIT; | |
3511 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
69636828 AF |
3512 | |
3513 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); | |
c5aa993b | 3514 | } |
c906108c SS |
3515 | |
3516 | /* Search upwards from currently selected frame (so that we can | |
3517 | complete on local vars. */ | |
3518 | ||
ae767bfb | 3519 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) |
c906108c SS |
3520 | { |
3521 | if (!BLOCK_SUPERBLOCK (b)) | |
3522 | { | |
c5aa993b | 3523 | surrounding_static_block = b; /* For elmin of dups */ |
c906108c | 3524 | } |
c5aa993b | 3525 | |
c906108c | 3526 | /* Also catch fields of types defined in this places which match our |
c5aa993b | 3527 | text string. Only complete on types visible from current context. */ |
c906108c | 3528 | |
de4f826b | 3529 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c906108c | 3530 | { |
69636828 | 3531 | QUIT; |
c906108c SS |
3532 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3533 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3534 | { | |
3535 | struct type *t = SYMBOL_TYPE (sym); | |
3536 | enum type_code c = TYPE_CODE (t); | |
3537 | ||
3538 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
3539 | { | |
3540 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
3541 | { | |
3542 | if (TYPE_FIELD_NAME (t, j)) | |
3543 | { | |
3544 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
c5aa993b | 3545 | sym_text, sym_text_len, text, word); |
c906108c SS |
3546 | } |
3547 | } | |
3548 | } | |
3549 | } | |
3550 | } | |
3551 | } | |
3552 | ||
3553 | /* Go through the symtabs and check the externs and statics for | |
3554 | symbols which match. */ | |
3555 | ||
3556 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
3557 | { |
3558 | QUIT; | |
3559 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3560 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3561 | { |
c5aa993b JM |
3562 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3563 | } | |
3564 | } | |
c906108c SS |
3565 | |
3566 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
3567 | { |
3568 | QUIT; | |
3569 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
3570 | /* Don't do this block twice. */ | |
3571 | if (b == surrounding_static_block) | |
3572 | continue; | |
de4f826b | 3573 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3574 | { |
c5aa993b JM |
3575 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3576 | } | |
3577 | } | |
c906108c SS |
3578 | |
3579 | return (return_val); | |
3580 | } | |
3581 | ||
c94fdfd0 EZ |
3582 | /* Like make_symbol_completion_list, but returns a list of symbols |
3583 | defined in a source file FILE. */ | |
3584 | ||
3585 | char ** | |
3586 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
3587 | { | |
3588 | register struct symbol *sym; | |
3589 | register struct symtab *s; | |
3590 | register struct block *b; | |
de4f826b | 3591 | struct dict_iterator iter; |
c94fdfd0 EZ |
3592 | /* The symbol we are completing on. Points in same buffer as text. */ |
3593 | char *sym_text; | |
3594 | /* Length of sym_text. */ | |
3595 | int sym_text_len; | |
3596 | ||
3597 | /* Now look for the symbol we are supposed to complete on. | |
3598 | FIXME: This should be language-specific. */ | |
3599 | { | |
3600 | char *p; | |
3601 | char quote_found; | |
3602 | char *quote_pos = NULL; | |
3603 | ||
3604 | /* First see if this is a quoted string. */ | |
3605 | quote_found = '\0'; | |
3606 | for (p = text; *p != '\0'; ++p) | |
3607 | { | |
3608 | if (quote_found != '\0') | |
3609 | { | |
3610 | if (*p == quote_found) | |
3611 | /* Found close quote. */ | |
3612 | quote_found = '\0'; | |
3613 | else if (*p == '\\' && p[1] == quote_found) | |
3614 | /* A backslash followed by the quote character | |
3615 | doesn't end the string. */ | |
3616 | ++p; | |
3617 | } | |
3618 | else if (*p == '\'' || *p == '"') | |
3619 | { | |
3620 | quote_found = *p; | |
3621 | quote_pos = p; | |
3622 | } | |
3623 | } | |
3624 | if (quote_found == '\'') | |
3625 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3626 | sym_text = quote_pos + 1; | |
3627 | else if (quote_found == '"') | |
3628 | /* A double-quoted string is never a symbol, nor does it make sense | |
3629 | to complete it any other way. */ | |
3630 | { | |
3631 | return_val = (char **) xmalloc (sizeof (char *)); | |
3632 | return_val[0] = NULL; | |
3633 | return return_val; | |
3634 | } | |
3635 | else | |
3636 | { | |
69636828 AF |
3637 | /* Not a quoted string. */ |
3638 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
3639 | } |
3640 | } | |
3641 | ||
3642 | sym_text_len = strlen (sym_text); | |
3643 | ||
3644 | return_val_size = 10; | |
3645 | return_val_index = 0; | |
3646 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3647 | return_val[0] = NULL; | |
3648 | ||
3649 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
3650 | in). */ | |
3651 | s = lookup_symtab (srcfile); | |
3652 | if (s == NULL) | |
3653 | { | |
3654 | /* Maybe they typed the file with leading directories, while the | |
3655 | symbol tables record only its basename. */ | |
31889e00 | 3656 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
3657 | |
3658 | if (tail > srcfile) | |
3659 | s = lookup_symtab (tail); | |
3660 | } | |
3661 | ||
3662 | /* If we have no symtab for that file, return an empty list. */ | |
3663 | if (s == NULL) | |
3664 | return (return_val); | |
3665 | ||
3666 | /* Go through this symtab and check the externs and statics for | |
3667 | symbols which match. */ | |
3668 | ||
3669 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3670 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3671 | { |
c94fdfd0 EZ |
3672 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3673 | } | |
3674 | ||
3675 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 3676 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3677 | { |
c94fdfd0 EZ |
3678 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3679 | } | |
3680 | ||
3681 | return (return_val); | |
3682 | } | |
3683 | ||
3684 | /* A helper function for make_source_files_completion_list. It adds | |
3685 | another file name to a list of possible completions, growing the | |
3686 | list as necessary. */ | |
3687 | ||
3688 | static void | |
3689 | add_filename_to_list (const char *fname, char *text, char *word, | |
3690 | char ***list, int *list_used, int *list_alloced) | |
3691 | { | |
3692 | char *new; | |
3693 | size_t fnlen = strlen (fname); | |
3694 | ||
3695 | if (*list_used + 1 >= *list_alloced) | |
3696 | { | |
3697 | *list_alloced *= 2; | |
3698 | *list = (char **) xrealloc ((char *) *list, | |
3699 | *list_alloced * sizeof (char *)); | |
3700 | } | |
3701 | ||
3702 | if (word == text) | |
3703 | { | |
3704 | /* Return exactly fname. */ | |
3705 | new = xmalloc (fnlen + 5); | |
3706 | strcpy (new, fname); | |
3707 | } | |
3708 | else if (word > text) | |
3709 | { | |
3710 | /* Return some portion of fname. */ | |
3711 | new = xmalloc (fnlen + 5); | |
3712 | strcpy (new, fname + (word - text)); | |
3713 | } | |
3714 | else | |
3715 | { | |
3716 | /* Return some of TEXT plus fname. */ | |
3717 | new = xmalloc (fnlen + (text - word) + 5); | |
3718 | strncpy (new, word, text - word); | |
3719 | new[text - word] = '\0'; | |
3720 | strcat (new, fname); | |
3721 | } | |
3722 | (*list)[*list_used] = new; | |
3723 | (*list)[++*list_used] = NULL; | |
3724 | } | |
3725 | ||
3726 | static int | |
3727 | not_interesting_fname (const char *fname) | |
3728 | { | |
3729 | static const char *illegal_aliens[] = { | |
3730 | "_globals_", /* inserted by coff_symtab_read */ | |
3731 | NULL | |
3732 | }; | |
3733 | int i; | |
3734 | ||
3735 | for (i = 0; illegal_aliens[i]; i++) | |
3736 | { | |
3737 | if (strcmp (fname, illegal_aliens[i]) == 0) | |
3738 | return 1; | |
3739 | } | |
3740 | return 0; | |
3741 | } | |
3742 | ||
3743 | /* Return a NULL terminated array of all source files whose names | |
3744 | begin with matching TEXT. The file names are looked up in the | |
3745 | symbol tables of this program. If the answer is no matchess, then | |
3746 | the return value is an array which contains only a NULL pointer. */ | |
3747 | ||
3748 | char ** | |
3749 | make_source_files_completion_list (char *text, char *word) | |
3750 | { | |
3751 | register struct symtab *s; | |
3752 | register struct partial_symtab *ps; | |
3753 | register struct objfile *objfile; | |
3754 | int first = 1; | |
3755 | int list_alloced = 1; | |
3756 | int list_used = 0; | |
3757 | size_t text_len = strlen (text); | |
3758 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 3759 | const char *base_name; |
c94fdfd0 EZ |
3760 | |
3761 | list[0] = NULL; | |
3762 | ||
3763 | if (!have_full_symbols () && !have_partial_symbols ()) | |
3764 | return list; | |
3765 | ||
3766 | ALL_SYMTABS (objfile, s) | |
3767 | { | |
3768 | if (not_interesting_fname (s->filename)) | |
3769 | continue; | |
3770 | if (!filename_seen (s->filename, 1, &first) | |
3771 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3772 | && strncasecmp (s->filename, text, text_len) == 0 | |
3773 | #else | |
3774 | && strncmp (s->filename, text, text_len) == 0 | |
3775 | #endif | |
3776 | ) | |
3777 | { | |
3778 | /* This file matches for a completion; add it to the current | |
3779 | list of matches. */ | |
3780 | add_filename_to_list (s->filename, text, word, | |
3781 | &list, &list_used, &list_alloced); | |
3782 | } | |
3783 | else | |
3784 | { | |
3785 | /* NOTE: We allow the user to type a base name when the | |
3786 | debug info records leading directories, but not the other | |
3787 | way around. This is what subroutines of breakpoint | |
3788 | command do when they parse file names. */ | |
31889e00 | 3789 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
3790 | if (base_name != s->filename |
3791 | && !filename_seen (base_name, 1, &first) | |
3792 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3793 | && strncasecmp (base_name, text, text_len) == 0 | |
3794 | #else | |
3795 | && strncmp (base_name, text, text_len) == 0 | |
3796 | #endif | |
3797 | ) | |
3798 | add_filename_to_list (base_name, text, word, | |
3799 | &list, &list_used, &list_alloced); | |
3800 | } | |
3801 | } | |
3802 | ||
3803 | ALL_PSYMTABS (objfile, ps) | |
3804 | { | |
3805 | if (not_interesting_fname (ps->filename)) | |
3806 | continue; | |
3807 | if (!ps->readin) | |
3808 | { | |
3809 | if (!filename_seen (ps->filename, 1, &first) | |
3810 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3811 | && strncasecmp (ps->filename, text, text_len) == 0 | |
3812 | #else | |
3813 | && strncmp (ps->filename, text, text_len) == 0 | |
3814 | #endif | |
3815 | ) | |
3816 | { | |
3817 | /* This file matches for a completion; add it to the | |
3818 | current list of matches. */ | |
3819 | add_filename_to_list (ps->filename, text, word, | |
3820 | &list, &list_used, &list_alloced); | |
3821 | ||
3822 | } | |
3823 | else | |
3824 | { | |
31889e00 | 3825 | base_name = lbasename (ps->filename); |
c94fdfd0 EZ |
3826 | if (base_name != ps->filename |
3827 | && !filename_seen (base_name, 1, &first) | |
3828 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3829 | && strncasecmp (base_name, text, text_len) == 0 | |
3830 | #else | |
3831 | && strncmp (base_name, text, text_len) == 0 | |
3832 | #endif | |
3833 | ) | |
3834 | add_filename_to_list (base_name, text, word, | |
3835 | &list, &list_used, &list_alloced); | |
3836 | } | |
3837 | } | |
3838 | } | |
3839 | ||
3840 | return list; | |
3841 | } | |
3842 | ||
c906108c SS |
3843 | /* Determine if PC is in the prologue of a function. The prologue is the area |
3844 | between the first instruction of a function, and the first executable line. | |
3845 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
3846 | ||
3847 | If non-zero, func_start is where we think the prologue starts, possibly | |
3848 | by previous examination of symbol table information. | |
3849 | */ | |
3850 | ||
3851 | int | |
fba45db2 | 3852 | in_prologue (CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
3853 | { |
3854 | struct symtab_and_line sal; | |
3855 | CORE_ADDR func_addr, func_end; | |
3856 | ||
54cf9c03 EZ |
3857 | /* We have several sources of information we can consult to figure |
3858 | this out. | |
3859 | - Compilers usually emit line number info that marks the prologue | |
3860 | as its own "source line". So the ending address of that "line" | |
3861 | is the end of the prologue. If available, this is the most | |
3862 | reliable method. | |
3863 | - The minimal symbols and partial symbols, which can usually tell | |
3864 | us the starting and ending addresses of a function. | |
3865 | - If we know the function's start address, we can call the | |
3866 | architecture-defined SKIP_PROLOGUE function to analyze the | |
3867 | instruction stream and guess where the prologue ends. | |
3868 | - Our `func_start' argument; if non-zero, this is the caller's | |
3869 | best guess as to the function's entry point. At the time of | |
3870 | this writing, handle_inferior_event doesn't get this right, so | |
3871 | it should be our last resort. */ | |
3872 | ||
3873 | /* Consult the partial symbol table, to find which function | |
3874 | the PC is in. */ | |
3875 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
3876 | { | |
3877 | CORE_ADDR prologue_end; | |
c906108c | 3878 | |
54cf9c03 EZ |
3879 | /* We don't even have minsym information, so fall back to using |
3880 | func_start, if given. */ | |
3881 | if (! func_start) | |
3882 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 3883 | |
54cf9c03 | 3884 | prologue_end = SKIP_PROLOGUE (func_start); |
c906108c | 3885 | |
54cf9c03 EZ |
3886 | return func_start <= pc && pc < prologue_end; |
3887 | } | |
c906108c | 3888 | |
54cf9c03 EZ |
3889 | /* If we have line number information for the function, that's |
3890 | usually pretty reliable. */ | |
3891 | sal = find_pc_line (func_addr, 0); | |
c906108c | 3892 | |
54cf9c03 EZ |
3893 | /* Now sal describes the source line at the function's entry point, |
3894 | which (by convention) is the prologue. The end of that "line", | |
3895 | sal.end, is the end of the prologue. | |
3896 | ||
3897 | Note that, for functions whose source code is all on a single | |
3898 | line, the line number information doesn't always end up this way. | |
3899 | So we must verify that our purported end-of-prologue address is | |
3900 | *within* the function, not at its start or end. */ | |
3901 | if (sal.line == 0 | |
3902 | || sal.end <= func_addr | |
3903 | || func_end <= sal.end) | |
3904 | { | |
3905 | /* We don't have any good line number info, so use the minsym | |
3906 | information, together with the architecture-specific prologue | |
3907 | scanning code. */ | |
3908 | CORE_ADDR prologue_end = SKIP_PROLOGUE (func_addr); | |
c906108c | 3909 | |
54cf9c03 EZ |
3910 | return func_addr <= pc && pc < prologue_end; |
3911 | } | |
c906108c | 3912 | |
54cf9c03 EZ |
3913 | /* We have line number info, and it looks good. */ |
3914 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
3915 | } |
3916 | ||
c906108c | 3917 | \f |
50641945 FN |
3918 | struct symtabs_and_lines |
3919 | decode_line_spec (char *string, int funfirstline) | |
3920 | { | |
3921 | struct symtabs_and_lines sals; | |
0378c332 FN |
3922 | struct symtab_and_line cursal; |
3923 | ||
50641945 FN |
3924 | if (string == 0) |
3925 | error ("Empty line specification."); | |
0378c332 FN |
3926 | |
3927 | /* We use whatever is set as the current source line. We do not try | |
3928 | and get a default or it will recursively call us! */ | |
3929 | cursal = get_current_source_symtab_and_line (); | |
3930 | ||
50641945 | 3931 | sals = decode_line_1 (&string, funfirstline, |
0378c332 | 3932 | cursal.symtab, cursal.line, |
50641945 | 3933 | (char ***) NULL); |
0378c332 | 3934 | |
50641945 FN |
3935 | if (*string) |
3936 | error ("Junk at end of line specification: %s", string); | |
3937 | return sals; | |
3938 | } | |
c5aa993b | 3939 | |
51cc5b07 AC |
3940 | /* Track MAIN */ |
3941 | static char *name_of_main; | |
3942 | ||
3943 | void | |
3944 | set_main_name (const char *name) | |
3945 | { | |
3946 | if (name_of_main != NULL) | |
3947 | { | |
3948 | xfree (name_of_main); | |
3949 | name_of_main = NULL; | |
3950 | } | |
3951 | if (name != NULL) | |
3952 | { | |
3953 | name_of_main = xstrdup (name); | |
3954 | } | |
3955 | } | |
3956 | ||
3957 | char * | |
3958 | main_name (void) | |
3959 | { | |
3960 | if (name_of_main != NULL) | |
3961 | return name_of_main; | |
3962 | else | |
3963 | return "main"; | |
3964 | } | |
3965 | ||
3966 | ||
c906108c | 3967 | void |
fba45db2 | 3968 | _initialize_symtab (void) |
c906108c SS |
3969 | { |
3970 | add_info ("variables", variables_info, | |
c5aa993b | 3971 | "All global and static variable names, or those matching REGEXP."); |
c906108c | 3972 | if (dbx_commands) |
c5aa993b JM |
3973 | add_com ("whereis", class_info, variables_info, |
3974 | "All global and static variable names, or those matching REGEXP."); | |
c906108c SS |
3975 | |
3976 | add_info ("functions", functions_info, | |
3977 | "All function names, or those matching REGEXP."); | |
3978 | ||
357e46e7 | 3979 | |
c906108c SS |
3980 | /* FIXME: This command has at least the following problems: |
3981 | 1. It prints builtin types (in a very strange and confusing fashion). | |
3982 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
3983 | typedef struct foo *FOO |
3984 | type_print prints "FOO" when we want to make it (in this situation) | |
3985 | print "struct foo *". | |
c906108c SS |
3986 | I also think "ptype" or "whatis" is more likely to be useful (but if |
3987 | there is much disagreement "info types" can be fixed). */ | |
3988 | add_info ("types", types_info, | |
3989 | "All type names, or those matching REGEXP."); | |
3990 | ||
c906108c SS |
3991 | add_info ("sources", sources_info, |
3992 | "Source files in the program."); | |
3993 | ||
3994 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
c5aa993b | 3995 | "Set a breakpoint for all functions matching REGEXP."); |
c906108c SS |
3996 | |
3997 | if (xdb_commands) | |
3998 | { | |
3999 | add_com ("lf", class_info, sources_info, "Source files in the program"); | |
4000 | add_com ("lg", class_info, variables_info, | |
c5aa993b | 4001 | "All global and static variable names, or those matching REGEXP."); |
c906108c SS |
4002 | } |
4003 | ||
4004 | /* Initialize the one built-in type that isn't language dependent... */ | |
4005 | builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0, | |
4006 | "<unknown type>", (struct objfile *) NULL); | |
4007 | } |