]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
0fb0cc75 | 4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009 |
083ae935 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "target.h" | |
28 | #include "value.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "call-cmds.h" | |
88987551 | 33 | #include "gdb_regex.h" |
c906108c SS |
34 | #include "expression.h" |
35 | #include "language.h" | |
36 | #include "demangle.h" | |
37 | #include "inferior.h" | |
c5f0f3d0 | 38 | #include "linespec.h" |
0378c332 | 39 | #include "source.h" |
a7fdf62f | 40 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 41 | #include "objc-lang.h" |
1f8173e6 | 42 | #include "ada-lang.h" |
cd6c7346 | 43 | #include "p-lang.h" |
ff013f42 | 44 | #include "addrmap.h" |
c906108c | 45 | |
2de7ced7 DJ |
46 | #include "hashtab.h" |
47 | ||
04ea0df1 | 48 | #include "gdb_obstack.h" |
fe898f56 | 49 | #include "block.h" |
de4f826b | 50 | #include "dictionary.h" |
c906108c SS |
51 | |
52 | #include <sys/types.h> | |
53 | #include <fcntl.h> | |
54 | #include "gdb_string.h" | |
55 | #include "gdb_stat.h" | |
56 | #include <ctype.h> | |
015a42b4 | 57 | #include "cp-abi.h" |
ea53e89f | 58 | #include "observer.h" |
94277a38 | 59 | #include "gdb_assert.h" |
3a40aaa0 | 60 | #include "solist.h" |
9a044a89 TT |
61 | #include "macrotab.h" |
62 | #include "macroscope.h" | |
c906108c | 63 | |
c906108c SS |
64 | /* Prototypes for local functions */ |
65 | ||
a14ed312 | 66 | static void completion_list_add_name (char *, char *, int, char *, char *); |
c906108c | 67 | |
a14ed312 | 68 | static void rbreak_command (char *, int); |
c906108c | 69 | |
a14ed312 | 70 | static void types_info (char *, int); |
c906108c | 71 | |
a14ed312 | 72 | static void functions_info (char *, int); |
c906108c | 73 | |
a14ed312 | 74 | static void variables_info (char *, int); |
c906108c | 75 | |
a14ed312 | 76 | static void sources_info (char *, int); |
c906108c | 77 | |
d092d1a2 | 78 | static void output_source_filename (const char *, int *); |
c906108c | 79 | |
a14ed312 | 80 | static int find_line_common (struct linetable *, int, int *); |
c906108c | 81 | |
50641945 FN |
82 | /* This one is used by linespec.c */ |
83 | ||
84 | char *operator_chars (char *p, char **end); | |
85 | ||
3121eff0 | 86 | static struct symbol *lookup_symbol_aux (const char *name, |
5ad1c190 | 87 | const char *linkage_name, |
3121eff0 | 88 | const struct block *block, |
176620f1 | 89 | const domain_enum domain, |
53c5240f | 90 | enum language language, |
21b556f4 | 91 | int *is_a_field_of_this); |
fba7f19c | 92 | |
e4051eeb DC |
93 | static |
94 | struct symbol *lookup_symbol_aux_local (const char *name, | |
5ad1c190 | 95 | const char *linkage_name, |
e4051eeb | 96 | const struct block *block, |
21b556f4 | 97 | const domain_enum domain); |
8155455b DC |
98 | |
99 | static | |
100 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
101 | const char *name, | |
5ad1c190 | 102 | const char *linkage_name, |
21b556f4 | 103 | const domain_enum domain); |
8155455b DC |
104 | |
105 | static | |
106 | struct symbol *lookup_symbol_aux_psymtabs (int block_index, | |
107 | const char *name, | |
5ad1c190 | 108 | const char *linkage_name, |
21b556f4 | 109 | const domain_enum domain); |
fba7f19c | 110 | |
a14ed312 | 111 | static int file_matches (char *, char **, int); |
c906108c | 112 | |
176620f1 | 113 | static void print_symbol_info (domain_enum, |
a14ed312 | 114 | struct symtab *, struct symbol *, int, char *); |
c906108c | 115 | |
a14ed312 | 116 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 117 | |
176620f1 | 118 | static void symtab_symbol_info (char *, domain_enum, int); |
c906108c | 119 | |
a14ed312 | 120 | void _initialize_symtab (void); |
c906108c SS |
121 | |
122 | /* */ | |
123 | ||
717d2f5a JB |
124 | /* Allow the user to configure the debugger behavior with respect |
125 | to multiple-choice menus when more than one symbol matches during | |
126 | a symbol lookup. */ | |
127 | ||
7fc830e2 MK |
128 | const char multiple_symbols_ask[] = "ask"; |
129 | const char multiple_symbols_all[] = "all"; | |
130 | const char multiple_symbols_cancel[] = "cancel"; | |
717d2f5a JB |
131 | static const char *multiple_symbols_modes[] = |
132 | { | |
133 | multiple_symbols_ask, | |
134 | multiple_symbols_all, | |
135 | multiple_symbols_cancel, | |
136 | NULL | |
137 | }; | |
138 | static const char *multiple_symbols_mode = multiple_symbols_all; | |
139 | ||
140 | /* Read-only accessor to AUTO_SELECT_MODE. */ | |
141 | ||
142 | const char * | |
143 | multiple_symbols_select_mode (void) | |
144 | { | |
145 | return multiple_symbols_mode; | |
146 | } | |
147 | ||
c906108c SS |
148 | /* The single non-language-specific builtin type */ |
149 | struct type *builtin_type_error; | |
150 | ||
151 | /* Block in which the most recently searched-for symbol was found. | |
9af17804 | 152 | Might be better to make this a parameter to lookup_symbol and |
c906108c SS |
153 | value_of_this. */ |
154 | ||
155 | const struct block *block_found; | |
156 | ||
c906108c SS |
157 | /* Check for a symtab of a specific name; first in symtabs, then in |
158 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
159 | in the symtab filename will also work. */ | |
160 | ||
1b15f1fa TT |
161 | struct symtab * |
162 | lookup_symtab (const char *name) | |
c906108c | 163 | { |
52f0bd74 AC |
164 | struct symtab *s; |
165 | struct partial_symtab *ps; | |
166 | struct objfile *objfile; | |
58d370e0 | 167 | char *real_path = NULL; |
f079a2e5 | 168 | char *full_path = NULL; |
58d370e0 TT |
169 | |
170 | /* Here we are interested in canonicalizing an absolute path, not | |
171 | absolutizing a relative path. */ | |
172 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
173 | { |
174 | full_path = xfullpath (name); | |
175 | make_cleanup (xfree, full_path); | |
176 | real_path = gdb_realpath (name); | |
177 | make_cleanup (xfree, real_path); | |
178 | } | |
c906108c | 179 | |
c5aa993b | 180 | got_symtab: |
c906108c SS |
181 | |
182 | /* First, search for an exact match */ | |
183 | ||
184 | ALL_SYMTABS (objfile, s) | |
58d370e0 | 185 | { |
a7fdf62f | 186 | if (FILENAME_CMP (name, s->filename) == 0) |
58d370e0 | 187 | { |
58d370e0 TT |
188 | return s; |
189 | } | |
9af17804 | 190 | |
58d370e0 TT |
191 | /* If the user gave us an absolute path, try to find the file in |
192 | this symtab and use its absolute path. */ | |
9af17804 | 193 | |
f079a2e5 JB |
194 | if (full_path != NULL) |
195 | { | |
09bcec80 BR |
196 | const char *fp = symtab_to_fullname (s); |
197 | if (fp != NULL && FILENAME_CMP (full_path, fp) == 0) | |
198 | { | |
199 | return s; | |
200 | } | |
f079a2e5 JB |
201 | } |
202 | ||
58d370e0 TT |
203 | if (real_path != NULL) |
204 | { | |
09bcec80 BR |
205 | char *fullname = symtab_to_fullname (s); |
206 | if (fullname != NULL) | |
207 | { | |
208 | char *rp = gdb_realpath (fullname); | |
209 | make_cleanup (xfree, rp); | |
210 | if (FILENAME_CMP (real_path, rp) == 0) | |
211 | { | |
212 | return s; | |
213 | } | |
214 | } | |
58d370e0 TT |
215 | } |
216 | } | |
217 | ||
c906108c SS |
218 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
219 | ||
caadab2c | 220 | if (lbasename (name) == name) |
c906108c | 221 | ALL_SYMTABS (objfile, s) |
c5aa993b | 222 | { |
31889e00 | 223 | if (FILENAME_CMP (lbasename (s->filename), name) == 0) |
c5aa993b JM |
224 | return s; |
225 | } | |
c906108c SS |
226 | |
227 | /* Same search rules as above apply here, but now we look thru the | |
228 | psymtabs. */ | |
229 | ||
230 | ps = lookup_partial_symtab (name); | |
231 | if (!ps) | |
232 | return (NULL); | |
233 | ||
c5aa993b | 234 | if (ps->readin) |
8a3fe4f8 | 235 | error (_("Internal: readin %s pst for `%s' found when no symtab found."), |
c5aa993b | 236 | ps->filename, name); |
c906108c SS |
237 | |
238 | s = PSYMTAB_TO_SYMTAB (ps); | |
239 | ||
240 | if (s) | |
241 | return s; | |
242 | ||
243 | /* At this point, we have located the psymtab for this file, but | |
244 | the conversion to a symtab has failed. This usually happens | |
245 | when we are looking up an include file. In this case, | |
246 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
247 | been created. So, we need to run through the symtabs again in | |
248 | order to find the file. | |
249 | XXX - This is a crock, and should be fixed inside of the the | |
250 | symbol parsing routines. */ | |
251 | goto got_symtab; | |
252 | } | |
253 | ||
c906108c SS |
254 | /* Lookup the partial symbol table of a source file named NAME. |
255 | *If* there is no '/' in the name, a match after a '/' | |
256 | in the psymtab filename will also work. */ | |
257 | ||
258 | struct partial_symtab * | |
1f8cc6db | 259 | lookup_partial_symtab (const char *name) |
c906108c | 260 | { |
52f0bd74 AC |
261 | struct partial_symtab *pst; |
262 | struct objfile *objfile; | |
f079a2e5 | 263 | char *full_path = NULL; |
58d370e0 TT |
264 | char *real_path = NULL; |
265 | ||
266 | /* Here we are interested in canonicalizing an absolute path, not | |
267 | absolutizing a relative path. */ | |
268 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
269 | { |
270 | full_path = xfullpath (name); | |
271 | make_cleanup (xfree, full_path); | |
272 | real_path = gdb_realpath (name); | |
273 | make_cleanup (xfree, real_path); | |
274 | } | |
c5aa993b | 275 | |
c906108c | 276 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 277 | { |
a7fdf62f | 278 | if (FILENAME_CMP (name, pst->filename) == 0) |
c5aa993b JM |
279 | { |
280 | return (pst); | |
281 | } | |
f079a2e5 | 282 | |
58d370e0 TT |
283 | /* If the user gave us an absolute path, try to find the file in |
284 | this symtab and use its absolute path. */ | |
f079a2e5 | 285 | if (full_path != NULL) |
58d370e0 | 286 | { |
d9c8471e | 287 | psymtab_to_fullname (pst); |
58d370e0 | 288 | if (pst->fullname != NULL |
f079a2e5 | 289 | && FILENAME_CMP (full_path, pst->fullname) == 0) |
58d370e0 | 290 | { |
58d370e0 TT |
291 | return pst; |
292 | } | |
293 | } | |
c906108c | 294 | |
f079a2e5 JB |
295 | if (real_path != NULL) |
296 | { | |
297 | char *rp = NULL; | |
d9c8471e | 298 | psymtab_to_fullname (pst); |
f079a2e5 JB |
299 | if (pst->fullname != NULL) |
300 | { | |
301 | rp = gdb_realpath (pst->fullname); | |
302 | make_cleanup (xfree, rp); | |
303 | } | |
304 | if (rp != NULL && FILENAME_CMP (real_path, rp) == 0) | |
305 | { | |
306 | return pst; | |
307 | } | |
308 | } | |
309 | } | |
58d370e0 | 310 | |
c906108c SS |
311 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
312 | ||
caadab2c | 313 | if (lbasename (name) == name) |
c906108c | 314 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 315 | { |
31889e00 | 316 | if (FILENAME_CMP (lbasename (pst->filename), name) == 0) |
c5aa993b JM |
317 | return (pst); |
318 | } | |
c906108c SS |
319 | |
320 | return (NULL); | |
321 | } | |
322 | \f | |
323 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
324 | full method name, which consist of the class name (from T), the unadorned | |
325 | method name from METHOD_ID, and the signature for the specific overload, | |
326 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
327 | ||
328 | char * | |
fba45db2 | 329 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
330 | { |
331 | int mangled_name_len; | |
332 | char *mangled_name; | |
333 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
334 | struct fn_field *method = &f[signature_id]; | |
335 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
336 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
337 | char *newname = type_name_no_tag (type); | |
338 | ||
339 | /* Does the form of physname indicate that it is the full mangled name | |
340 | of a constructor (not just the args)? */ | |
341 | int is_full_physname_constructor; | |
342 | ||
343 | int is_constructor; | |
015a42b4 | 344 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
345 | /* Need a new type prefix. */ |
346 | char *const_prefix = method->is_const ? "C" : ""; | |
347 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
348 | char buf[20]; | |
349 | int len = (newname == NULL ? 0 : strlen (newname)); | |
350 | ||
43630227 PS |
351 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
352 | or an operator name. */ | |
353 | if ((physname[0] == '_' && physname[1] == 'Z') | |
354 | || is_operator_name (field_name)) | |
235d1e03 EZ |
355 | return xstrdup (physname); |
356 | ||
015a42b4 | 357 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c SS |
358 | |
359 | is_constructor = | |
6314a349 | 360 | is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0); |
c906108c SS |
361 | |
362 | if (!is_destructor) | |
c5aa993b | 363 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
364 | |
365 | if (is_destructor || is_full_physname_constructor) | |
366 | { | |
c5aa993b JM |
367 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
368 | strcpy (mangled_name, physname); | |
c906108c SS |
369 | return mangled_name; |
370 | } | |
371 | ||
372 | if (len == 0) | |
373 | { | |
374 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
375 | } | |
376 | else if (physname[0] == 't' || physname[0] == 'Q') | |
377 | { | |
378 | /* The physname for template and qualified methods already includes | |
c5aa993b | 379 | the class name. */ |
c906108c SS |
380 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
381 | newname = NULL; | |
382 | len = 0; | |
383 | } | |
384 | else | |
385 | { | |
386 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
387 | } | |
388 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 389 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 390 | |
c906108c | 391 | { |
c5aa993b | 392 | mangled_name = (char *) xmalloc (mangled_name_len); |
c906108c SS |
393 | if (is_constructor) |
394 | mangled_name[0] = '\0'; | |
395 | else | |
396 | strcpy (mangled_name, field_name); | |
397 | } | |
398 | strcat (mangled_name, buf); | |
399 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
400 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c5aa993b | 401 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
402 | if (newname != NULL) |
403 | strcat (mangled_name, newname); | |
404 | ||
405 | strcat (mangled_name, physname); | |
406 | return (mangled_name); | |
407 | } | |
12af6855 JB |
408 | |
409 | \f | |
89aad1f9 EZ |
410 | /* Initialize the language dependent portion of a symbol |
411 | depending upon the language for the symbol. */ | |
412 | void | |
413 | symbol_init_language_specific (struct general_symbol_info *gsymbol, | |
414 | enum language language) | |
415 | { | |
416 | gsymbol->language = language; | |
417 | if (gsymbol->language == language_cplus | |
5784d15e AF |
418 | || gsymbol->language == language_java |
419 | || gsymbol->language == language_objc) | |
89aad1f9 EZ |
420 | { |
421 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
422 | } | |
89aad1f9 EZ |
423 | else |
424 | { | |
425 | memset (&gsymbol->language_specific, 0, | |
426 | sizeof (gsymbol->language_specific)); | |
427 | } | |
428 | } | |
429 | ||
2de7ced7 DJ |
430 | /* Functions to initialize a symbol's mangled name. */ |
431 | ||
432 | /* Create the hash table used for demangled names. Each hash entry is | |
433 | a pair of strings; one for the mangled name and one for the demangled | |
434 | name. The entry is hashed via just the mangled name. */ | |
435 | ||
436 | static void | |
437 | create_demangled_names_hash (struct objfile *objfile) | |
438 | { | |
439 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
9af17804 | 440 | The hash table code will round this up to the next prime number. |
2de7ced7 DJ |
441 | Choosing a much larger table size wastes memory, and saves only about |
442 | 1% in symbol reading. */ | |
443 | ||
aa2ee5f6 | 444 | objfile->demangled_names_hash = htab_create_alloc |
2de7ced7 | 445 | (256, htab_hash_string, (int (*) (const void *, const void *)) streq, |
aa2ee5f6 | 446 | NULL, xcalloc, xfree); |
2de7ced7 | 447 | } |
12af6855 | 448 | |
2de7ced7 | 449 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
450 | language of that symbol. If the language is set to language_auto, |
451 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
452 | then set the language appropriately. The returned name is allocated |
453 | by the demangler and should be xfree'd. */ | |
12af6855 | 454 | |
2de7ced7 DJ |
455 | static char * |
456 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
457 | const char *mangled) | |
12af6855 | 458 | { |
12af6855 JB |
459 | char *demangled = NULL; |
460 | ||
461 | if (gsymbol->language == language_unknown) | |
462 | gsymbol->language = language_auto; | |
1bae87b9 AF |
463 | |
464 | if (gsymbol->language == language_objc | |
465 | || gsymbol->language == language_auto) | |
466 | { | |
467 | demangled = | |
468 | objc_demangle (mangled, 0); | |
469 | if (demangled != NULL) | |
470 | { | |
471 | gsymbol->language = language_objc; | |
472 | return demangled; | |
473 | } | |
474 | } | |
12af6855 JB |
475 | if (gsymbol->language == language_cplus |
476 | || gsymbol->language == language_auto) | |
477 | { | |
478 | demangled = | |
2de7ced7 | 479 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 480 | if (demangled != NULL) |
2de7ced7 DJ |
481 | { |
482 | gsymbol->language = language_cplus; | |
483 | return demangled; | |
484 | } | |
12af6855 JB |
485 | } |
486 | if (gsymbol->language == language_java) | |
487 | { | |
488 | demangled = | |
2de7ced7 | 489 | cplus_demangle (mangled, |
12af6855 JB |
490 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
491 | if (demangled != NULL) | |
2de7ced7 DJ |
492 | { |
493 | gsymbol->language = language_java; | |
494 | return demangled; | |
495 | } | |
496 | } | |
497 | return NULL; | |
498 | } | |
499 | ||
980cae7a DC |
500 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
501 | on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE | |
4a146b47 | 502 | is used, and the memory comes from that objfile's objfile_obstack. |
980cae7a DC |
503 | LINKAGE_NAME is copied, so the pointer can be discarded after |
504 | calling this function. */ | |
2de7ced7 | 505 | |
d2a52b27 DC |
506 | /* We have to be careful when dealing with Java names: when we run |
507 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
508 | gets demangled as a C++ name. This is unfortunate, but there's not | |
509 | much we can do about it: but when demangling partial symbols and | |
510 | regular symbols, we'd better not reuse the wrong demangled name. | |
511 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
512 | on Java names when storing them in the hash table. */ | |
513 | ||
514 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
515 | don't mind the Java prefix so much: different languages have | |
516 | different demangling requirements, so it's only natural that we | |
517 | need to keep language data around in our demangling cache. But | |
518 | it's not good that the minimal symbol has the wrong demangled name. | |
519 | Unfortunately, I can't think of any easy solution to that | |
520 | problem. */ | |
521 | ||
522 | #define JAVA_PREFIX "##JAVA$$" | |
523 | #define JAVA_PREFIX_LEN 8 | |
524 | ||
2de7ced7 DJ |
525 | void |
526 | symbol_set_names (struct general_symbol_info *gsymbol, | |
980cae7a | 527 | const char *linkage_name, int len, struct objfile *objfile) |
2de7ced7 DJ |
528 | { |
529 | char **slot; | |
980cae7a DC |
530 | /* A 0-terminated copy of the linkage name. */ |
531 | const char *linkage_name_copy; | |
d2a52b27 DC |
532 | /* A copy of the linkage name that might have a special Java prefix |
533 | added to it, for use when looking names up in the hash table. */ | |
534 | const char *lookup_name; | |
535 | /* The length of lookup_name. */ | |
536 | int lookup_len; | |
2de7ced7 DJ |
537 | |
538 | if (objfile->demangled_names_hash == NULL) | |
539 | create_demangled_names_hash (objfile); | |
540 | ||
b06ead72 JB |
541 | if (gsymbol->language == language_ada) |
542 | { | |
543 | /* In Ada, we do the symbol lookups using the mangled name, so | |
544 | we can save some space by not storing the demangled name. | |
545 | ||
546 | As a side note, we have also observed some overlap between | |
547 | the C++ mangling and Ada mangling, similarly to what has | |
548 | been observed with Java. Because we don't store the demangled | |
549 | name with the symbol, we don't need to use the same trick | |
550 | as Java. */ | |
551 | gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1); | |
552 | memcpy (gsymbol->name, linkage_name, len); | |
553 | gsymbol->name[len] = '\0'; | |
554 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
555 | ||
556 | return; | |
557 | } | |
558 | ||
980cae7a DC |
559 | /* The stabs reader generally provides names that are not |
560 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
561 | can just use the given copy, unless we're in the Java case. */ |
562 | if (gsymbol->language == language_java) | |
563 | { | |
564 | char *alloc_name; | |
565 | lookup_len = len + JAVA_PREFIX_LEN; | |
566 | ||
567 | alloc_name = alloca (lookup_len + 1); | |
568 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
569 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
570 | alloc_name[lookup_len] = '\0'; | |
571 | ||
572 | lookup_name = alloc_name; | |
573 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
574 | } | |
575 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 576 | { |
980cae7a | 577 | char *alloc_name; |
d2a52b27 | 578 | lookup_len = len; |
980cae7a | 579 | |
d2a52b27 | 580 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 581 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 582 | alloc_name[lookup_len] = '\0'; |
980cae7a | 583 | |
d2a52b27 | 584 | lookup_name = alloc_name; |
980cae7a | 585 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
586 | } |
587 | else | |
980cae7a | 588 | { |
d2a52b27 DC |
589 | lookup_len = len; |
590 | lookup_name = linkage_name; | |
980cae7a DC |
591 | linkage_name_copy = linkage_name; |
592 | } | |
2de7ced7 | 593 | |
980cae7a | 594 | slot = (char **) htab_find_slot (objfile->demangled_names_hash, |
d2a52b27 | 595 | lookup_name, INSERT); |
2de7ced7 DJ |
596 | |
597 | /* If this name is not in the hash table, add it. */ | |
598 | if (*slot == NULL) | |
599 | { | |
980cae7a DC |
600 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
601 | linkage_name_copy); | |
2de7ced7 DJ |
602 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
603 | ||
604 | /* If there is a demangled name, place it right after the mangled name. | |
605 | Otherwise, just place a second zero byte after the end of the mangled | |
606 | name. */ | |
4a146b47 | 607 | *slot = obstack_alloc (&objfile->objfile_obstack, |
d2a52b27 DC |
608 | lookup_len + demangled_len + 2); |
609 | memcpy (*slot, lookup_name, lookup_len + 1); | |
980cae7a | 610 | if (demangled_name != NULL) |
2de7ced7 | 611 | { |
d2a52b27 | 612 | memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1); |
2de7ced7 DJ |
613 | xfree (demangled_name); |
614 | } | |
615 | else | |
d2a52b27 | 616 | (*slot)[lookup_len + 1] = '\0'; |
2de7ced7 DJ |
617 | } |
618 | ||
d2a52b27 DC |
619 | gsymbol->name = *slot + lookup_len - len; |
620 | if ((*slot)[lookup_len + 1] != '\0') | |
2de7ced7 | 621 | gsymbol->language_specific.cplus_specific.demangled_name |
d2a52b27 | 622 | = &(*slot)[lookup_len + 1]; |
2de7ced7 DJ |
623 | else |
624 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
625 | } | |
626 | ||
22abf04a DC |
627 | /* Return the source code name of a symbol. In languages where |
628 | demangling is necessary, this is the demangled name. */ | |
629 | ||
630 | char * | |
631 | symbol_natural_name (const struct general_symbol_info *gsymbol) | |
632 | { | |
9af17804 | 633 | switch (gsymbol->language) |
22abf04a | 634 | { |
1f8173e6 PH |
635 | case language_cplus: |
636 | case language_java: | |
637 | case language_objc: | |
638 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
639 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
640 | break; | |
641 | case language_ada: | |
642 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
643 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
644 | else | |
645 | return ada_decode_symbol (gsymbol); | |
646 | break; | |
647 | default: | |
648 | break; | |
22abf04a | 649 | } |
1f8173e6 | 650 | return gsymbol->name; |
22abf04a DC |
651 | } |
652 | ||
9cc0d196 EZ |
653 | /* Return the demangled name for a symbol based on the language for |
654 | that symbol. If no demangled name exists, return NULL. */ | |
655 | char * | |
df8a16a1 | 656 | symbol_demangled_name (const struct general_symbol_info *gsymbol) |
9cc0d196 | 657 | { |
9af17804 | 658 | switch (gsymbol->language) |
1f8173e6 PH |
659 | { |
660 | case language_cplus: | |
661 | case language_java: | |
662 | case language_objc: | |
663 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
664 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
665 | break; | |
666 | case language_ada: | |
667 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
668 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
669 | else | |
670 | return ada_decode_symbol (gsymbol); | |
671 | break; | |
672 | default: | |
673 | break; | |
674 | } | |
675 | return NULL; | |
9cc0d196 | 676 | } |
fe39c653 | 677 | |
4725b721 PH |
678 | /* Return the search name of a symbol---generally the demangled or |
679 | linkage name of the symbol, depending on how it will be searched for. | |
9af17804 | 680 | If there is no distinct demangled name, then returns the same value |
4725b721 | 681 | (same pointer) as SYMBOL_LINKAGE_NAME. */ |
fc062ac6 JB |
682 | char * |
683 | symbol_search_name (const struct general_symbol_info *gsymbol) | |
684 | { | |
1f8173e6 PH |
685 | if (gsymbol->language == language_ada) |
686 | return gsymbol->name; | |
687 | else | |
688 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
689 | } |
690 | ||
fe39c653 EZ |
691 | /* Initialize the structure fields to zero values. */ |
692 | void | |
693 | init_sal (struct symtab_and_line *sal) | |
694 | { | |
695 | sal->symtab = 0; | |
696 | sal->section = 0; | |
697 | sal->line = 0; | |
698 | sal->pc = 0; | |
699 | sal->end = 0; | |
ed0616c6 VP |
700 | sal->explicit_pc = 0; |
701 | sal->explicit_line = 0; | |
fe39c653 | 702 | } |
c906108c SS |
703 | \f |
704 | ||
94277a38 DJ |
705 | /* Return 1 if the two sections are the same, or if they could |
706 | plausibly be copies of each other, one in an original object | |
707 | file and another in a separated debug file. */ | |
708 | ||
709 | int | |
714835d5 UW |
710 | matching_obj_sections (struct obj_section *obj_first, |
711 | struct obj_section *obj_second) | |
94277a38 | 712 | { |
714835d5 UW |
713 | asection *first = obj_first? obj_first->the_bfd_section : NULL; |
714 | asection *second = obj_second? obj_second->the_bfd_section : NULL; | |
94277a38 DJ |
715 | struct objfile *obj; |
716 | ||
717 | /* If they're the same section, then they match. */ | |
718 | if (first == second) | |
719 | return 1; | |
720 | ||
721 | /* If either is NULL, give up. */ | |
722 | if (first == NULL || second == NULL) | |
723 | return 0; | |
724 | ||
725 | /* This doesn't apply to absolute symbols. */ | |
726 | if (first->owner == NULL || second->owner == NULL) | |
727 | return 0; | |
728 | ||
729 | /* If they're in the same object file, they must be different sections. */ | |
730 | if (first->owner == second->owner) | |
731 | return 0; | |
732 | ||
733 | /* Check whether the two sections are potentially corresponding. They must | |
734 | have the same size, address, and name. We can't compare section indexes, | |
735 | which would be more reliable, because some sections may have been | |
736 | stripped. */ | |
737 | if (bfd_get_section_size (first) != bfd_get_section_size (second)) | |
738 | return 0; | |
739 | ||
818f79f6 | 740 | /* In-memory addresses may start at a different offset, relativize them. */ |
94277a38 | 741 | if (bfd_get_section_vma (first->owner, first) |
818f79f6 DJ |
742 | - bfd_get_start_address (first->owner) |
743 | != bfd_get_section_vma (second->owner, second) | |
744 | - bfd_get_start_address (second->owner)) | |
94277a38 DJ |
745 | return 0; |
746 | ||
747 | if (bfd_get_section_name (first->owner, first) == NULL | |
748 | || bfd_get_section_name (second->owner, second) == NULL | |
749 | || strcmp (bfd_get_section_name (first->owner, first), | |
750 | bfd_get_section_name (second->owner, second)) != 0) | |
751 | return 0; | |
752 | ||
753 | /* Otherwise check that they are in corresponding objfiles. */ | |
754 | ||
755 | ALL_OBJFILES (obj) | |
756 | if (obj->obfd == first->owner) | |
757 | break; | |
758 | gdb_assert (obj != NULL); | |
759 | ||
760 | if (obj->separate_debug_objfile != NULL | |
761 | && obj->separate_debug_objfile->obfd == second->owner) | |
762 | return 1; | |
763 | if (obj->separate_debug_objfile_backlink != NULL | |
764 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
765 | return 1; | |
766 | ||
767 | return 0; | |
768 | } | |
c5aa993b | 769 | |
ff013f42 JK |
770 | /* Find which partial symtab contains PC and SECTION starting at psymtab PST. |
771 | We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */ | |
772 | ||
2c0b251b | 773 | static struct partial_symtab * |
714835d5 | 774 | find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section, |
ff013f42 JK |
775 | struct partial_symtab *pst, |
776 | struct minimal_symbol *msymbol) | |
777 | { | |
778 | struct objfile *objfile = pst->objfile; | |
779 | struct partial_symtab *tpst; | |
780 | struct partial_symtab *best_pst = pst; | |
781 | CORE_ADDR best_addr = pst->textlow; | |
782 | ||
783 | /* An objfile that has its functions reordered might have | |
784 | many partial symbol tables containing the PC, but | |
785 | we want the partial symbol table that contains the | |
786 | function containing the PC. */ | |
787 | if (!(objfile->flags & OBJF_REORDERED) && | |
788 | section == 0) /* can't validate section this way */ | |
789 | return pst; | |
790 | ||
791 | if (msymbol == NULL) | |
792 | return (pst); | |
793 | ||
794 | /* The code range of partial symtabs sometimes overlap, so, in | |
795 | the loop below, we need to check all partial symtabs and | |
796 | find the one that fits better for the given PC address. We | |
797 | select the partial symtab that contains a symbol whose | |
798 | address is closest to the PC address. By closest we mean | |
799 | that find_pc_sect_symbol returns the symbol with address | |
800 | that is closest and still less than the given PC. */ | |
801 | for (tpst = pst; tpst != NULL; tpst = tpst->next) | |
802 | { | |
803 | if (pc >= tpst->textlow && pc < tpst->texthigh) | |
804 | { | |
805 | struct partial_symbol *p; | |
806 | CORE_ADDR this_addr; | |
807 | ||
808 | /* NOTE: This assumes that every psymbol has a | |
809 | corresponding msymbol, which is not necessarily | |
810 | true; the debug info might be much richer than the | |
811 | object's symbol table. */ | |
812 | p = find_pc_sect_psymbol (tpst, pc, section); | |
813 | if (p != NULL | |
814 | && SYMBOL_VALUE_ADDRESS (p) | |
815 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
816 | return tpst; | |
817 | ||
818 | /* Also accept the textlow value of a psymtab as a | |
819 | "symbol", to provide some support for partial | |
820 | symbol tables with line information but no debug | |
821 | symbols (e.g. those produced by an assembler). */ | |
822 | if (p != NULL) | |
823 | this_addr = SYMBOL_VALUE_ADDRESS (p); | |
824 | else | |
825 | this_addr = tpst->textlow; | |
826 | ||
827 | /* Check whether it is closer than our current | |
828 | BEST_ADDR. Since this symbol address is | |
829 | necessarily lower or equal to PC, the symbol closer | |
830 | to PC is the symbol which address is the highest. | |
831 | This way we return the psymtab which contains such | |
832 | best match symbol. This can help in cases where the | |
833 | symbol information/debuginfo is not complete, like | |
834 | for instance on IRIX6 with gcc, where no debug info | |
835 | is emitted for statics. (See also the nodebug.exp | |
836 | testcase.) */ | |
837 | if (this_addr > best_addr) | |
838 | { | |
839 | best_addr = this_addr; | |
840 | best_pst = tpst; | |
841 | } | |
842 | } | |
843 | } | |
844 | return best_pst; | |
845 | } | |
846 | ||
ccefbec3 EZ |
847 | /* Find which partial symtab contains PC and SECTION. Return 0 if |
848 | none. We return the psymtab that contains a symbol whose address | |
849 | exactly matches PC, or, if we cannot find an exact match, the | |
850 | psymtab that contains a symbol whose address is closest to PC. */ | |
c906108c | 851 | struct partial_symtab * |
714835d5 | 852 | find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 853 | { |
52f0bd74 | 854 | struct objfile *objfile; |
8a48e967 DJ |
855 | struct minimal_symbol *msymbol; |
856 | ||
857 | /* If we know that this is not a text address, return failure. This is | |
858 | necessary because we loop based on texthigh and textlow, which do | |
859 | not include the data ranges. */ | |
860 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
861 | if (msymbol | |
712f90be TT |
862 | && (MSYMBOL_TYPE (msymbol) == mst_data |
863 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
864 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
865 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
866 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 867 | return NULL; |
c906108c | 868 | |
ff013f42 JK |
869 | /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity |
870 | than the later used TEXTLOW/TEXTHIGH one. */ | |
871 | ||
872 | ALL_OBJFILES (objfile) | |
873 | if (objfile->psymtabs_addrmap != NULL) | |
c5aa993b | 874 | { |
ff013f42 JK |
875 | struct partial_symtab *pst; |
876 | ||
877 | pst = addrmap_find (objfile->psymtabs_addrmap, pc); | |
878 | if (pst != NULL) | |
c5aa993b | 879 | { |
907fc202 | 880 | /* FIXME: addrmaps currently do not handle overlayed sections, |
9af17804 | 881 | so fall back to the non-addrmap case if we're debugging |
907fc202 UW |
882 | overlays and the addrmap returned the wrong section. */ |
883 | if (overlay_debugging && msymbol && section) | |
884 | { | |
885 | struct partial_symbol *p; | |
886 | /* NOTE: This assumes that every psymbol has a | |
887 | corresponding msymbol, which is not necessarily | |
888 | true; the debug info might be much richer than the | |
889 | object's symbol table. */ | |
890 | p = find_pc_sect_psymbol (pst, pc, section); | |
891 | if (!p | |
892 | || SYMBOL_VALUE_ADDRESS (p) | |
893 | != SYMBOL_VALUE_ADDRESS (msymbol)) | |
894 | continue; | |
895 | } | |
896 | ||
ff013f42 JK |
897 | /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as |
898 | PSYMTABS_ADDRMAP we used has already the best 1-byte | |
899 | granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into | |
900 | a worse chosen section due to the TEXTLOW/TEXTHIGH ranges | |
901 | overlap. */ | |
902 | ||
903 | return pst; | |
c5aa993b | 904 | } |
c5aa993b | 905 | } |
ff013f42 JK |
906 | |
907 | /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs | |
908 | which still have no corresponding full SYMTABs read. But it is not | |
909 | present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB | |
910 | so far. */ | |
911 | ||
912 | ALL_OBJFILES (objfile) | |
913 | { | |
914 | struct partial_symtab *pst; | |
915 | ||
916 | /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of | |
917 | its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying | |
918 | debug info type in single OBJFILE. */ | |
919 | ||
920 | ALL_OBJFILE_PSYMTABS (objfile, pst) | |
921 | if (pc >= pst->textlow && pc < pst->texthigh) | |
922 | { | |
923 | struct partial_symtab *best_pst; | |
924 | ||
925 | best_pst = find_pc_sect_psymtab_closer (pc, section, pst, | |
926 | msymbol); | |
927 | if (best_pst != NULL) | |
928 | return best_pst; | |
929 | } | |
930 | } | |
931 | ||
932 | return NULL; | |
c906108c SS |
933 | } |
934 | ||
9af17804 | 935 | /* Find which partial symtab contains PC. Return 0 if none. |
c906108c SS |
936 | Backward compatibility, no section */ |
937 | ||
938 | struct partial_symtab * | |
fba45db2 | 939 | find_pc_psymtab (CORE_ADDR pc) |
c906108c SS |
940 | { |
941 | return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc)); | |
942 | } | |
943 | ||
9af17804 | 944 | /* Find which partial symbol within a psymtab matches PC and SECTION. |
c906108c SS |
945 | Return 0 if none. Check all psymtabs if PSYMTAB is 0. */ |
946 | ||
947 | struct partial_symbol * | |
fba45db2 | 948 | find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc, |
714835d5 | 949 | struct obj_section *section) |
c906108c SS |
950 | { |
951 | struct partial_symbol *best = NULL, *p, **pp; | |
952 | CORE_ADDR best_pc; | |
c5aa993b | 953 | |
c906108c SS |
954 | if (!psymtab) |
955 | psymtab = find_pc_sect_psymtab (pc, section); | |
956 | if (!psymtab) | |
957 | return 0; | |
958 | ||
959 | /* Cope with programs that start at address 0 */ | |
960 | best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0; | |
961 | ||
962 | /* Search the global symbols as well as the static symbols, so that | |
963 | find_pc_partial_function doesn't use a minimal symbol and thus | |
964 | cache a bad endaddr. */ | |
965 | for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset; | |
c5aa993b JM |
966 | (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset) |
967 | < psymtab->n_global_syms); | |
c906108c SS |
968 | pp++) |
969 | { | |
970 | p = *pp; | |
176620f1 | 971 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
972 | && SYMBOL_CLASS (p) == LOC_BLOCK |
973 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
974 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
975 | || (psymtab->textlow == 0 | |
976 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) | |
977 | { | |
c5aa993b | 978 | if (section) /* match on a specific section */ |
c906108c SS |
979 | { |
980 | fixup_psymbol_section (p, psymtab->objfile); | |
714835d5 | 981 | if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section)) |
c906108c SS |
982 | continue; |
983 | } | |
984 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
985 | best = p; | |
986 | } | |
987 | } | |
988 | ||
989 | for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset; | |
c5aa993b JM |
990 | (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset) |
991 | < psymtab->n_static_syms); | |
c906108c SS |
992 | pp++) |
993 | { | |
994 | p = *pp; | |
176620f1 | 995 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
996 | && SYMBOL_CLASS (p) == LOC_BLOCK |
997 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
998 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
c5aa993b | 999 | || (psymtab->textlow == 0 |
c906108c SS |
1000 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) |
1001 | { | |
c5aa993b | 1002 | if (section) /* match on a specific section */ |
c906108c SS |
1003 | { |
1004 | fixup_psymbol_section (p, psymtab->objfile); | |
714835d5 | 1005 | if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section)) |
c906108c SS |
1006 | continue; |
1007 | } | |
1008 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
1009 | best = p; | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | return best; | |
1014 | } | |
1015 | ||
9af17804 | 1016 | /* Find which partial symbol within a psymtab matches PC. Return 0 if none. |
c906108c SS |
1017 | Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */ |
1018 | ||
1019 | struct partial_symbol * | |
fba45db2 | 1020 | find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc) |
c906108c SS |
1021 | { |
1022 | return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc)); | |
1023 | } | |
1024 | \f | |
1025 | /* Debug symbols usually don't have section information. We need to dig that | |
1026 | out of the minimal symbols and stash that in the debug symbol. */ | |
1027 | ||
1028 | static void | |
907fc202 UW |
1029 | fixup_section (struct general_symbol_info *ginfo, |
1030 | CORE_ADDR addr, struct objfile *objfile) | |
c906108c SS |
1031 | { |
1032 | struct minimal_symbol *msym; | |
c906108c | 1033 | |
bccdca4a UW |
1034 | /* First, check whether a minimal symbol with the same name exists |
1035 | and points to the same address. The address check is required | |
1036 | e.g. on PowerPC64, where the minimal symbol for a function will | |
1037 | point to the function descriptor, while the debug symbol will | |
1038 | point to the actual function code. */ | |
907fc202 UW |
1039 | msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); |
1040 | if (msym) | |
7a78d0ee | 1041 | { |
714835d5 | 1042 | ginfo->obj_section = SYMBOL_OBJ_SECTION (msym); |
7a78d0ee KB |
1043 | ginfo->section = SYMBOL_SECTION (msym); |
1044 | } | |
907fc202 | 1045 | else |
19e2d14b KB |
1046 | { |
1047 | /* Static, function-local variables do appear in the linker | |
1048 | (minimal) symbols, but are frequently given names that won't | |
1049 | be found via lookup_minimal_symbol(). E.g., it has been | |
1050 | observed in frv-uclinux (ELF) executables that a static, | |
1051 | function-local variable named "foo" might appear in the | |
1052 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
1053 | point in attempting to extend the lookup-by-name mechanism to | |
1054 | handle this case due to the fact that there can be multiple | |
1055 | names. | |
9af17804 | 1056 | |
19e2d14b KB |
1057 | So, instead, search the section table when lookup by name has |
1058 | failed. The ``addr'' and ``endaddr'' fields may have already | |
1059 | been relocated. If so, the relocation offset (i.e. the | |
1060 | ANOFFSET value) needs to be subtracted from these values when | |
1061 | performing the comparison. We unconditionally subtract it, | |
1062 | because, when no relocation has been performed, the ANOFFSET | |
1063 | value will simply be zero. | |
9af17804 | 1064 | |
19e2d14b KB |
1065 | The address of the symbol whose section we're fixing up HAS |
1066 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
1067 | the section isn't yet known and knowing the section is | |
1068 | necessary in order to add the correct relocation value. In | |
1069 | other words, we wouldn't even be in this function (attempting | |
1070 | to compute the section) if it were already known. | |
1071 | ||
1072 | Note that it is possible to search the minimal symbols | |
1073 | (subtracting the relocation value if necessary) to find the | |
1074 | matching minimal symbol, but this is overkill and much less | |
1075 | efficient. It is not necessary to find the matching minimal | |
9af17804 DE |
1076 | symbol, only its section. |
1077 | ||
19e2d14b KB |
1078 | Note that this technique (of doing a section table search) |
1079 | can fail when unrelocated section addresses overlap. For | |
1080 | this reason, we still attempt a lookup by name prior to doing | |
1081 | a search of the section table. */ | |
9af17804 | 1082 | |
19e2d14b | 1083 | struct obj_section *s; |
19e2d14b KB |
1084 | ALL_OBJFILE_OSECTIONS (objfile, s) |
1085 | { | |
1086 | int idx = s->the_bfd_section->index; | |
1087 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); | |
1088 | ||
f1f6aadf PA |
1089 | if (obj_section_addr (s) - offset <= addr |
1090 | && addr < obj_section_endaddr (s) - offset) | |
19e2d14b | 1091 | { |
714835d5 | 1092 | ginfo->obj_section = s; |
19e2d14b KB |
1093 | ginfo->section = idx; |
1094 | return; | |
1095 | } | |
1096 | } | |
1097 | } | |
c906108c SS |
1098 | } |
1099 | ||
1100 | struct symbol * | |
fba45db2 | 1101 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c | 1102 | { |
907fc202 UW |
1103 | CORE_ADDR addr; |
1104 | ||
c906108c SS |
1105 | if (!sym) |
1106 | return NULL; | |
1107 | ||
714835d5 | 1108 | if (SYMBOL_OBJ_SECTION (sym)) |
c906108c SS |
1109 | return sym; |
1110 | ||
907fc202 UW |
1111 | /* We either have an OBJFILE, or we can get at it from the sym's |
1112 | symtab. Anything else is a bug. */ | |
1113 | gdb_assert (objfile || SYMBOL_SYMTAB (sym)); | |
1114 | ||
1115 | if (objfile == NULL) | |
1116 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
1117 | ||
1118 | /* We should have an objfile by now. */ | |
1119 | gdb_assert (objfile); | |
1120 | ||
1121 | switch (SYMBOL_CLASS (sym)) | |
1122 | { | |
1123 | case LOC_STATIC: | |
1124 | case LOC_LABEL: | |
907fc202 UW |
1125 | addr = SYMBOL_VALUE_ADDRESS (sym); |
1126 | break; | |
1127 | case LOC_BLOCK: | |
1128 | addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1129 | break; | |
1130 | ||
1131 | default: | |
1132 | /* Nothing else will be listed in the minsyms -- no use looking | |
1133 | it up. */ | |
1134 | return sym; | |
1135 | } | |
1136 | ||
1137 | fixup_section (&sym->ginfo, addr, objfile); | |
c906108c SS |
1138 | |
1139 | return sym; | |
1140 | } | |
1141 | ||
7a78d0ee | 1142 | struct partial_symbol * |
fba45db2 | 1143 | fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile) |
c906108c | 1144 | { |
907fc202 UW |
1145 | CORE_ADDR addr; |
1146 | ||
c906108c SS |
1147 | if (!psym) |
1148 | return NULL; | |
1149 | ||
714835d5 | 1150 | if (SYMBOL_OBJ_SECTION (psym)) |
c906108c SS |
1151 | return psym; |
1152 | ||
907fc202 UW |
1153 | gdb_assert (objfile); |
1154 | ||
1155 | switch (SYMBOL_CLASS (psym)) | |
1156 | { | |
1157 | case LOC_STATIC: | |
1158 | case LOC_LABEL: | |
907fc202 UW |
1159 | case LOC_BLOCK: |
1160 | addr = SYMBOL_VALUE_ADDRESS (psym); | |
1161 | break; | |
1162 | default: | |
1163 | /* Nothing else will be listed in the minsyms -- no use looking | |
1164 | it up. */ | |
1165 | return psym; | |
1166 | } | |
1167 | ||
1168 | fixup_section (&psym->ginfo, addr, objfile); | |
c906108c SS |
1169 | |
1170 | return psym; | |
1171 | } | |
1172 | ||
1173 | /* Find the definition for a specified symbol name NAME | |
176620f1 | 1174 | in domain DOMAIN, visible from lexical block BLOCK. |
c906108c | 1175 | Returns the struct symbol pointer, or zero if no symbol is found. |
c906108c SS |
1176 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if |
1177 | NAME is a field of the current implied argument `this'. If so set | |
9af17804 | 1178 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. |
c906108c SS |
1179 | BLOCK_FOUND is set to the block in which NAME is found (in the case of |
1180 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
1181 | ||
1182 | /* This function has a bunch of loops in it and it would seem to be | |
1183 | attractive to put in some QUIT's (though I'm not really sure | |
1184 | whether it can run long enough to be really important). But there | |
1185 | are a few calls for which it would appear to be bad news to quit | |
7ca9f392 AC |
1186 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
1187 | that there is C++ code below which can error(), but that probably | |
1188 | doesn't affect these calls since they are looking for a known | |
1189 | variable and thus can probably assume it will never hit the C++ | |
1190 | code). */ | |
c906108c SS |
1191 | |
1192 | struct symbol * | |
53c5240f PA |
1193 | lookup_symbol_in_language (const char *name, const struct block *block, |
1194 | const domain_enum domain, enum language lang, | |
2570f2b7 | 1195 | int *is_a_field_of_this) |
c906108c | 1196 | { |
729051e6 DJ |
1197 | char *demangled_name = NULL; |
1198 | const char *modified_name = NULL; | |
3121eff0 | 1199 | const char *mangled_name = NULL; |
fba7f19c EZ |
1200 | int needtofreename = 0; |
1201 | struct symbol *returnval; | |
c906108c | 1202 | |
729051e6 DJ |
1203 | modified_name = name; |
1204 | ||
987504bb | 1205 | /* If we are using C++ or Java, demangle the name before doing a lookup, so |
729051e6 | 1206 | we can always binary search. */ |
53c5240f | 1207 | if (lang == language_cplus) |
729051e6 DJ |
1208 | { |
1209 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1210 | if (demangled_name) | |
1211 | { | |
1212 | mangled_name = name; | |
1213 | modified_name = demangled_name; | |
1214 | needtofreename = 1; | |
1215 | } | |
1216 | } | |
53c5240f | 1217 | else if (lang == language_java) |
987504bb | 1218 | { |
9af17804 | 1219 | demangled_name = cplus_demangle (name, |
987504bb JJ |
1220 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); |
1221 | if (demangled_name) | |
1222 | { | |
1223 | mangled_name = name; | |
1224 | modified_name = demangled_name; | |
1225 | needtofreename = 1; | |
1226 | } | |
1227 | } | |
729051e6 | 1228 | |
63872f9d JG |
1229 | if (case_sensitivity == case_sensitive_off) |
1230 | { | |
1231 | char *copy; | |
1232 | int len, i; | |
1233 | ||
1234 | len = strlen (name); | |
1235 | copy = (char *) alloca (len + 1); | |
1236 | for (i= 0; i < len; i++) | |
1237 | copy[i] = tolower (name[i]); | |
1238 | copy[len] = 0; | |
fba7f19c | 1239 | modified_name = copy; |
63872f9d | 1240 | } |
fba7f19c | 1241 | |
3121eff0 | 1242 | returnval = lookup_symbol_aux (modified_name, mangled_name, block, |
21b556f4 | 1243 | domain, lang, is_a_field_of_this); |
fba7f19c | 1244 | if (needtofreename) |
729051e6 | 1245 | xfree (demangled_name); |
fba7f19c | 1246 | |
9af17804 | 1247 | return returnval; |
fba7f19c EZ |
1248 | } |
1249 | ||
53c5240f PA |
1250 | /* Behave like lookup_symbol_in_language, but performed with the |
1251 | current language. */ | |
1252 | ||
1253 | struct symbol * | |
1254 | lookup_symbol (const char *name, const struct block *block, | |
2570f2b7 | 1255 | domain_enum domain, int *is_a_field_of_this) |
53c5240f PA |
1256 | { |
1257 | return lookup_symbol_in_language (name, block, domain, | |
1258 | current_language->la_language, | |
2570f2b7 | 1259 | is_a_field_of_this); |
53c5240f PA |
1260 | } |
1261 | ||
1262 | /* Behave like lookup_symbol except that NAME is the natural name | |
5ad1c190 DC |
1263 | of the symbol that we're looking for and, if LINKAGE_NAME is |
1264 | non-NULL, ensure that the symbol's linkage name matches as | |
1265 | well. */ | |
1266 | ||
fba7f19c | 1267 | static struct symbol * |
5ad1c190 | 1268 | lookup_symbol_aux (const char *name, const char *linkage_name, |
176620f1 | 1269 | const struct block *block, const domain_enum domain, |
21b556f4 | 1270 | enum language language, int *is_a_field_of_this) |
fba7f19c | 1271 | { |
8155455b | 1272 | struct symbol *sym; |
53c5240f | 1273 | const struct language_defn *langdef; |
406bc4de | 1274 | |
9a146a11 EZ |
1275 | /* Make sure we do something sensible with is_a_field_of_this, since |
1276 | the callers that set this parameter to some non-null value will | |
1277 | certainly use it later and expect it to be either 0 or 1. | |
1278 | If we don't set it, the contents of is_a_field_of_this are | |
1279 | undefined. */ | |
1280 | if (is_a_field_of_this != NULL) | |
1281 | *is_a_field_of_this = 0; | |
1282 | ||
e4051eeb DC |
1283 | /* Search specified block and its superiors. Don't search |
1284 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1285 | |
21b556f4 | 1286 | sym = lookup_symbol_aux_local (name, linkage_name, block, domain); |
8155455b DC |
1287 | if (sym != NULL) |
1288 | return sym; | |
c906108c | 1289 | |
53c5240f PA |
1290 | /* If requested to do so by the caller and if appropriate for LANGUAGE, |
1291 | check to see if NAME is a field of `this'. */ | |
1292 | ||
1293 | langdef = language_def (language); | |
5f9a71c3 | 1294 | |
2b2d9e11 VP |
1295 | if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL |
1296 | && block != NULL) | |
c906108c | 1297 | { |
2b2d9e11 VP |
1298 | struct symbol *sym = NULL; |
1299 | /* 'this' is only defined in the function's block, so find the | |
1300 | enclosing function block. */ | |
9af17804 | 1301 | for (; block && !BLOCK_FUNCTION (block); |
2b2d9e11 VP |
1302 | block = BLOCK_SUPERBLOCK (block)); |
1303 | ||
1304 | if (block && !dict_empty (BLOCK_DICT (block))) | |
1305 | sym = lookup_block_symbol (block, langdef->la_name_of_this, | |
1306 | NULL, VAR_DOMAIN); | |
1307 | if (sym) | |
c906108c | 1308 | { |
2b2d9e11 | 1309 | struct type *t = sym->type; |
9af17804 | 1310 | |
2b2d9e11 VP |
1311 | /* I'm not really sure that type of this can ever |
1312 | be typedefed; just be safe. */ | |
1313 | CHECK_TYPEDEF (t); | |
1314 | if (TYPE_CODE (t) == TYPE_CODE_PTR | |
1315 | || TYPE_CODE (t) == TYPE_CODE_REF) | |
1316 | t = TYPE_TARGET_TYPE (t); | |
9af17804 | 1317 | |
2b2d9e11 VP |
1318 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1319 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
9af17804 | 1320 | error (_("Internal error: `%s' is not an aggregate"), |
2b2d9e11 | 1321 | langdef->la_name_of_this); |
9af17804 | 1322 | |
2b2d9e11 VP |
1323 | if (check_field (t, name)) |
1324 | { | |
1325 | *is_a_field_of_this = 1; | |
2b2d9e11 VP |
1326 | return NULL; |
1327 | } | |
c906108c SS |
1328 | } |
1329 | } | |
1330 | ||
53c5240f | 1331 | /* Now do whatever is appropriate for LANGUAGE to look |
5f9a71c3 | 1332 | up static and global variables. */ |
c906108c | 1333 | |
21b556f4 | 1334 | sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain); |
8155455b DC |
1335 | if (sym != NULL) |
1336 | return sym; | |
c906108c | 1337 | |
8155455b DC |
1338 | /* Now search all static file-level symbols. Not strictly correct, |
1339 | but more useful than an error. Do the symtabs first, then check | |
1340 | the psymtabs. If a psymtab indicates the existence of the | |
1341 | desired name as a file-level static, then do psymtab-to-symtab | |
c906108c SS |
1342 | conversion on the fly and return the found symbol. */ |
1343 | ||
21b556f4 | 1344 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain); |
8155455b DC |
1345 | if (sym != NULL) |
1346 | return sym; | |
9af17804 | 1347 | |
21b556f4 | 1348 | sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain); |
8155455b DC |
1349 | if (sym != NULL) |
1350 | return sym; | |
c906108c | 1351 | |
8155455b | 1352 | return NULL; |
c906108c | 1353 | } |
8155455b | 1354 | |
e4051eeb | 1355 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1356 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1357 | |
1358 | static struct symbol * | |
5ad1c190 | 1359 | lookup_symbol_aux_local (const char *name, const char *linkage_name, |
8155455b | 1360 | const struct block *block, |
21b556f4 | 1361 | const domain_enum domain) |
8155455b DC |
1362 | { |
1363 | struct symbol *sym; | |
89a9d1b1 DC |
1364 | const struct block *static_block = block_static_block (block); |
1365 | ||
e4051eeb DC |
1366 | /* Check if either no block is specified or it's a global block. */ |
1367 | ||
89a9d1b1 DC |
1368 | if (static_block == NULL) |
1369 | return NULL; | |
e4051eeb | 1370 | |
89a9d1b1 | 1371 | while (block != static_block) |
f61e8913 | 1372 | { |
21b556f4 | 1373 | sym = lookup_symbol_aux_block (name, linkage_name, block, domain); |
f61e8913 DC |
1374 | if (sym != NULL) |
1375 | return sym; | |
1376 | block = BLOCK_SUPERBLOCK (block); | |
1377 | } | |
1378 | ||
89a9d1b1 | 1379 | /* We've reached the static block without finding a result. */ |
e4051eeb | 1380 | |
f61e8913 DC |
1381 | return NULL; |
1382 | } | |
1383 | ||
3a40aaa0 UW |
1384 | /* Look up OBJFILE to BLOCK. */ |
1385 | ||
1386 | static struct objfile * | |
1387 | lookup_objfile_from_block (const struct block *block) | |
1388 | { | |
1389 | struct objfile *obj; | |
1390 | struct symtab *s; | |
1391 | ||
1392 | if (block == NULL) | |
1393 | return NULL; | |
1394 | ||
1395 | block = block_global_block (block); | |
1396 | /* Go through SYMTABS. */ | |
1397 | ALL_SYMTABS (obj, s) | |
1398 | if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)) | |
1399 | return obj; | |
1400 | ||
1401 | return NULL; | |
1402 | } | |
1403 | ||
6c9353d3 PA |
1404 | /* Look up a symbol in a block; if found, fixup the symbol, and set |
1405 | block_found appropriately. */ | |
f61e8913 | 1406 | |
5f9a71c3 | 1407 | struct symbol * |
5ad1c190 | 1408 | lookup_symbol_aux_block (const char *name, const char *linkage_name, |
f61e8913 | 1409 | const struct block *block, |
21b556f4 | 1410 | const domain_enum domain) |
f61e8913 DC |
1411 | { |
1412 | struct symbol *sym; | |
f61e8913 | 1413 | |
5ad1c190 | 1414 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
f61e8913 | 1415 | if (sym) |
8155455b | 1416 | { |
f61e8913 | 1417 | block_found = block; |
21b556f4 | 1418 | return fixup_symbol_section (sym, NULL); |
8155455b DC |
1419 | } |
1420 | ||
1421 | return NULL; | |
1422 | } | |
1423 | ||
3a40aaa0 UW |
1424 | /* Check all global symbols in OBJFILE in symtabs and |
1425 | psymtabs. */ | |
1426 | ||
1427 | struct symbol * | |
1428 | lookup_global_symbol_from_objfile (const struct objfile *objfile, | |
1429 | const char *name, | |
1430 | const char *linkage_name, | |
21b556f4 | 1431 | const domain_enum domain) |
3a40aaa0 UW |
1432 | { |
1433 | struct symbol *sym; | |
1434 | struct blockvector *bv; | |
1435 | const struct block *block; | |
1436 | struct symtab *s; | |
1437 | struct partial_symtab *ps; | |
1438 | ||
1439 | /* Go through symtabs. */ | |
1440 | ALL_OBJFILE_SYMTABS (objfile, s) | |
1441 | { | |
1442 | bv = BLOCKVECTOR (s); | |
1443 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1444 | sym = lookup_block_symbol (block, name, linkage_name, domain); | |
1445 | if (sym) | |
1446 | { | |
1447 | block_found = block; | |
3a40aaa0 UW |
1448 | return fixup_symbol_section (sym, (struct objfile *)objfile); |
1449 | } | |
1450 | } | |
1451 | ||
1452 | /* Now go through psymtabs. */ | |
1453 | ALL_OBJFILE_PSYMTABS (objfile, ps) | |
1454 | { | |
1455 | if (!ps->readin | |
1456 | && lookup_partial_symbol (ps, name, linkage_name, | |
1457 | 1, domain)) | |
1458 | { | |
1459 | s = PSYMTAB_TO_SYMTAB (ps); | |
1460 | bv = BLOCKVECTOR (s); | |
1461 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1462 | sym = lookup_block_symbol (block, name, linkage_name, domain); | |
3a40aaa0 UW |
1463 | return fixup_symbol_section (sym, (struct objfile *)objfile); |
1464 | } | |
1465 | } | |
1466 | ||
56e3f43c DJ |
1467 | if (objfile->separate_debug_objfile) |
1468 | return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile, | |
21b556f4 | 1469 | name, linkage_name, domain); |
56e3f43c | 1470 | |
3a40aaa0 UW |
1471 | return NULL; |
1472 | } | |
1473 | ||
8155455b DC |
1474 | /* Check to see if the symbol is defined in one of the symtabs. |
1475 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
1476 | depending on whether or not we want to search global symbols or | |
1477 | static symbols. */ | |
1478 | ||
1479 | static struct symbol * | |
1480 | lookup_symbol_aux_symtabs (int block_index, | |
5ad1c190 | 1481 | const char *name, const char *linkage_name, |
21b556f4 | 1482 | const domain_enum domain) |
8155455b DC |
1483 | { |
1484 | struct symbol *sym; | |
1485 | struct objfile *objfile; | |
1486 | struct blockvector *bv; | |
1487 | const struct block *block; | |
1488 | struct symtab *s; | |
1489 | ||
11309657 | 1490 | ALL_PRIMARY_SYMTABS (objfile, s) |
8155455b DC |
1491 | { |
1492 | bv = BLOCKVECTOR (s); | |
1493 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1494 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1495 | if (sym) |
1496 | { | |
1497 | block_found = block; | |
8155455b DC |
1498 | return fixup_symbol_section (sym, objfile); |
1499 | } | |
1500 | } | |
1501 | ||
1502 | return NULL; | |
1503 | } | |
1504 | ||
1505 | /* Check to see if the symbol is defined in one of the partial | |
1506 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or | |
1507 | STATIC_BLOCK, depending on whether or not we want to search global | |
1508 | symbols or static symbols. */ | |
1509 | ||
1510 | static struct symbol * | |
1511 | lookup_symbol_aux_psymtabs (int block_index, const char *name, | |
5ad1c190 | 1512 | const char *linkage_name, |
21b556f4 | 1513 | const domain_enum domain) |
8155455b DC |
1514 | { |
1515 | struct symbol *sym; | |
1516 | struct objfile *objfile; | |
1517 | struct blockvector *bv; | |
1518 | const struct block *block; | |
1519 | struct partial_symtab *ps; | |
1520 | struct symtab *s; | |
1521 | const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0); | |
1522 | ||
1523 | ALL_PSYMTABS (objfile, ps) | |
1524 | { | |
1525 | if (!ps->readin | |
5ad1c190 | 1526 | && lookup_partial_symbol (ps, name, linkage_name, |
176620f1 | 1527 | psymtab_index, domain)) |
8155455b DC |
1528 | { |
1529 | s = PSYMTAB_TO_SYMTAB (ps); | |
1530 | bv = BLOCKVECTOR (s); | |
1531 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1532 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1533 | if (!sym) |
1534 | { | |
1535 | /* This shouldn't be necessary, but as a last resort try | |
1536 | looking in the statics even though the psymtab claimed | |
1537 | the symbol was global, or vice-versa. It's possible | |
1538 | that the psymtab gets it wrong in some cases. */ | |
1539 | ||
1540 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1541 | If that happens, isn't it likely to be a GDB error, in | |
1542 | which case we should fix the GDB error rather than | |
1543 | silently dealing with it here? So I'd vote for | |
1544 | removing the check for the symbol in the other | |
1545 | block. */ | |
1546 | block = BLOCKVECTOR_BLOCK (bv, | |
1547 | block_index == GLOBAL_BLOCK ? | |
1548 | STATIC_BLOCK : GLOBAL_BLOCK); | |
5ad1c190 | 1549 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b | 1550 | if (!sym) |
8a3fe4f8 | 1551 | error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."), |
8155455b DC |
1552 | block_index == GLOBAL_BLOCK ? "global" : "static", |
1553 | name, ps->filename, name, name); | |
1554 | } | |
8155455b DC |
1555 | return fixup_symbol_section (sym, objfile); |
1556 | } | |
1557 | } | |
1558 | ||
1559 | return NULL; | |
1560 | } | |
1561 | ||
5f9a71c3 DC |
1562 | /* A default version of lookup_symbol_nonlocal for use by languages |
1563 | that can't think of anything better to do. This implements the C | |
1564 | lookup rules. */ | |
1565 | ||
1566 | struct symbol * | |
1567 | basic_lookup_symbol_nonlocal (const char *name, | |
1568 | const char *linkage_name, | |
1569 | const struct block *block, | |
21b556f4 | 1570 | const domain_enum domain) |
5f9a71c3 DC |
1571 | { |
1572 | struct symbol *sym; | |
1573 | ||
1574 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1575 | this (or what turned into this) was part of lookup_symbol_aux; | |
1576 | I'm much less worried about these questions now, since these | |
1577 | decisions have turned out well, but I leave these comments here | |
1578 | for posterity. */ | |
1579 | ||
1580 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1581 | not it would be appropriate to search the current global block | |
1582 | here as well. (That's what this code used to do before the | |
1583 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1584 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1585 | next. On the other hand, if decode_line_1 is passed an argument | |
1586 | like filename:var, then the user presumably wants 'var' to be | |
1587 | searched for in filename. On the third hand, there shouldn't be | |
1588 | multiple global variables all of which are named 'var', and it's | |
1589 | not like decode_line_1 has ever restricted its search to only | |
1590 | global variables in a single filename. All in all, only | |
1591 | searching the static block here seems best: it's correct and it's | |
1592 | cleanest. */ | |
1593 | ||
1594 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1595 | issue here: if you usually search for global symbols in the | |
1596 | current file, then it would be slightly better to search the | |
1597 | current global block before searching all the symtabs. But there | |
1598 | are other factors that have a much greater effect on performance | |
1599 | than that one, so I don't think we should worry about that for | |
1600 | now. */ | |
1601 | ||
21b556f4 | 1602 | sym = lookup_symbol_static (name, linkage_name, block, domain); |
5f9a71c3 DC |
1603 | if (sym != NULL) |
1604 | return sym; | |
1605 | ||
21b556f4 | 1606 | return lookup_symbol_global (name, linkage_name, block, domain); |
5f9a71c3 DC |
1607 | } |
1608 | ||
1609 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1610 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1611 | ||
1612 | struct symbol * | |
1613 | lookup_symbol_static (const char *name, | |
1614 | const char *linkage_name, | |
1615 | const struct block *block, | |
21b556f4 | 1616 | const domain_enum domain) |
5f9a71c3 DC |
1617 | { |
1618 | const struct block *static_block = block_static_block (block); | |
1619 | ||
1620 | if (static_block != NULL) | |
21b556f4 | 1621 | return lookup_symbol_aux_block (name, linkage_name, static_block, domain); |
5f9a71c3 DC |
1622 | else |
1623 | return NULL; | |
1624 | } | |
1625 | ||
1626 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1627 | necessary). */ | |
1628 | ||
1629 | struct symbol * | |
1630 | lookup_symbol_global (const char *name, | |
1631 | const char *linkage_name, | |
3a40aaa0 | 1632 | const struct block *block, |
21b556f4 | 1633 | const domain_enum domain) |
5f9a71c3 | 1634 | { |
3a40aaa0 UW |
1635 | struct symbol *sym = NULL; |
1636 | struct objfile *objfile = NULL; | |
1637 | ||
1638 | /* Call library-specific lookup procedure. */ | |
1639 | objfile = lookup_objfile_from_block (block); | |
1640 | if (objfile != NULL) | |
21b556f4 | 1641 | sym = solib_global_lookup (objfile, name, linkage_name, domain); |
3a40aaa0 UW |
1642 | if (sym != NULL) |
1643 | return sym; | |
5f9a71c3 | 1644 | |
21b556f4 | 1645 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain); |
5f9a71c3 DC |
1646 | if (sym != NULL) |
1647 | return sym; | |
1648 | ||
21b556f4 | 1649 | return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain); |
5f9a71c3 DC |
1650 | } |
1651 | ||
5eeb2539 | 1652 | int |
9af17804 | 1653 | symbol_matches_domain (enum language symbol_language, |
5eeb2539 AR |
1654 | domain_enum symbol_domain, |
1655 | domain_enum domain) | |
1656 | { | |
9af17804 | 1657 | /* For C++ "struct foo { ... }" also defines a typedef for "foo". |
5eeb2539 AR |
1658 | A Java class declaration also defines a typedef for the class. |
1659 | Similarly, any Ada type declaration implicitly defines a typedef. */ | |
1660 | if (symbol_language == language_cplus | |
1661 | || symbol_language == language_java | |
1662 | || symbol_language == language_ada) | |
1663 | { | |
1664 | if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) | |
1665 | && symbol_domain == STRUCT_DOMAIN) | |
1666 | return 1; | |
1667 | } | |
1668 | /* For all other languages, strict match is required. */ | |
1669 | return (symbol_domain == domain); | |
1670 | } | |
1671 | ||
3d4e8fd2 DC |
1672 | /* Look, in partial_symtab PST, for symbol whose natural name is NAME. |
1673 | If LINKAGE_NAME is non-NULL, check in addition that the symbol's | |
1674 | linkage name matches it. Check the global symbols if GLOBAL, the | |
1675 | static symbols if not */ | |
c906108c | 1676 | |
b6429628 | 1677 | struct partial_symbol * |
3d4e8fd2 DC |
1678 | lookup_partial_symbol (struct partial_symtab *pst, const char *name, |
1679 | const char *linkage_name, int global, | |
176620f1 | 1680 | domain_enum domain) |
c906108c | 1681 | { |
357e46e7 | 1682 | struct partial_symbol *temp; |
c906108c | 1683 | struct partial_symbol **start, **psym; |
38d49aff | 1684 | struct partial_symbol **top, **real_top, **bottom, **center; |
c906108c SS |
1685 | int length = (global ? pst->n_global_syms : pst->n_static_syms); |
1686 | int do_linear_search = 1; | |
9af17804 | 1687 | |
c906108c SS |
1688 | if (length == 0) |
1689 | { | |
1690 | return (NULL); | |
1691 | } | |
c906108c SS |
1692 | start = (global ? |
1693 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
c5aa993b | 1694 | pst->objfile->static_psymbols.list + pst->statics_offset); |
9af17804 | 1695 | |
c5aa993b | 1696 | if (global) /* This means we can use a binary search. */ |
c906108c SS |
1697 | { |
1698 | do_linear_search = 0; | |
1699 | ||
1700 | /* Binary search. This search is guaranteed to end with center | |
0fe19209 DC |
1701 | pointing at the earliest partial symbol whose name might be |
1702 | correct. At that point *all* partial symbols with an | |
1703 | appropriate name will be checked against the correct | |
176620f1 | 1704 | domain. */ |
c906108c SS |
1705 | |
1706 | bottom = start; | |
1707 | top = start + length - 1; | |
38d49aff | 1708 | real_top = top; |
c906108c SS |
1709 | while (top > bottom) |
1710 | { | |
1711 | center = bottom + (top - bottom) / 2; | |
1712 | if (!(center < top)) | |
e2e0b3e5 | 1713 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
c906108c | 1714 | if (!do_linear_search |
357e46e7 | 1715 | && (SYMBOL_LANGUAGE (*center) == language_java)) |
c906108c SS |
1716 | { |
1717 | do_linear_search = 1; | |
1718 | } | |
4725b721 | 1719 | if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0) |
c906108c SS |
1720 | { |
1721 | top = center; | |
1722 | } | |
1723 | else | |
1724 | { | |
1725 | bottom = center + 1; | |
1726 | } | |
1727 | } | |
1728 | if (!(top == bottom)) | |
e2e0b3e5 | 1729 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
357e46e7 | 1730 | |
3d4e8fd2 DC |
1731 | while (top <= real_top |
1732 | && (linkage_name != NULL | |
1733 | ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0 | |
4725b721 | 1734 | : SYMBOL_MATCHES_SEARCH_NAME (*top,name))) |
c906108c | 1735 | { |
5eeb2539 AR |
1736 | if (symbol_matches_domain (SYMBOL_LANGUAGE (*top), |
1737 | SYMBOL_DOMAIN (*top), domain)) | |
1738 | return (*top); | |
c5aa993b | 1739 | top++; |
c906108c SS |
1740 | } |
1741 | } | |
1742 | ||
1743 | /* Can't use a binary search or else we found during the binary search that | |
1744 | we should also do a linear search. */ | |
1745 | ||
1746 | if (do_linear_search) | |
9af17804 | 1747 | { |
c906108c SS |
1748 | for (psym = start; psym < start + length; psym++) |
1749 | { | |
9af17804 | 1750 | if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym), |
5eeb2539 | 1751 | SYMBOL_DOMAIN (*psym), domain)) |
c906108c | 1752 | { |
3d4e8fd2 DC |
1753 | if (linkage_name != NULL |
1754 | ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0 | |
4725b721 | 1755 | : SYMBOL_MATCHES_SEARCH_NAME (*psym, name)) |
c906108c SS |
1756 | { |
1757 | return (*psym); | |
1758 | } | |
1759 | } | |
1760 | } | |
1761 | } | |
1762 | ||
1763 | return (NULL); | |
1764 | } | |
1765 | ||
176620f1 | 1766 | /* Look up a type named NAME in the struct_domain. The type returned |
b368761e DC |
1767 | must not be opaque -- i.e., must have at least one field |
1768 | defined. */ | |
c906108c | 1769 | |
b368761e DC |
1770 | struct type * |
1771 | lookup_transparent_type (const char *name) | |
1772 | { | |
1773 | return current_language->la_lookup_transparent_type (name); | |
1774 | } | |
c906108c | 1775 | |
b368761e DC |
1776 | /* The standard implementation of lookup_transparent_type. This code |
1777 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1778 | up types were just left out. In particular it's assumed here that | |
1779 | types are available in struct_domain and only at file-static or | |
1780 | global blocks. */ | |
c906108c SS |
1781 | |
1782 | struct type * | |
b368761e | 1783 | basic_lookup_transparent_type (const char *name) |
c906108c | 1784 | { |
52f0bd74 AC |
1785 | struct symbol *sym; |
1786 | struct symtab *s = NULL; | |
1787 | struct partial_symtab *ps; | |
c906108c | 1788 | struct blockvector *bv; |
52f0bd74 AC |
1789 | struct objfile *objfile; |
1790 | struct block *block; | |
c906108c SS |
1791 | |
1792 | /* Now search all the global symbols. Do the symtab's first, then | |
1793 | check the psymtab's. If a psymtab indicates the existence | |
1794 | of the desired name as a global, then do psymtab-to-symtab | |
1795 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1796 | |
11309657 | 1797 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1798 | { |
1799 | bv = BLOCKVECTOR (s); | |
1800 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1801 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1802 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1803 | { | |
1804 | return SYMBOL_TYPE (sym); | |
1805 | } | |
1806 | } | |
c906108c SS |
1807 | |
1808 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1809 | { |
3d4e8fd2 | 1810 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, |
176620f1 | 1811 | 1, STRUCT_DOMAIN)) |
c5aa993b JM |
1812 | { |
1813 | s = PSYMTAB_TO_SYMTAB (ps); | |
1814 | bv = BLOCKVECTOR (s); | |
1815 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1816 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1817 | if (!sym) |
1818 | { | |
1819 | /* This shouldn't be necessary, but as a last resort | |
1820 | * try looking in the statics even though the psymtab | |
1821 | * claimed the symbol was global. It's possible that | |
1822 | * the psymtab gets it wrong in some cases. | |
1823 | */ | |
1824 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1825 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1826 | if (!sym) |
8a3fe4f8 | 1827 | error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1828 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1829 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1830 | name, ps->filename, name, name); |
1831 | } | |
1832 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1833 | return SYMBOL_TYPE (sym); | |
1834 | } | |
1835 | } | |
c906108c SS |
1836 | |
1837 | /* Now search the static file-level symbols. | |
1838 | Not strictly correct, but more useful than an error. | |
1839 | Do the symtab's first, then | |
1840 | check the psymtab's. If a psymtab indicates the existence | |
1841 | of the desired name as a file-level static, then do psymtab-to-symtab | |
1842 | conversion on the fly and return the found symbol. | |
1843 | */ | |
1844 | ||
11309657 | 1845 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1846 | { |
1847 | bv = BLOCKVECTOR (s); | |
1848 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1849 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1850 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1851 | { | |
1852 | return SYMBOL_TYPE (sym); | |
1853 | } | |
1854 | } | |
c906108c SS |
1855 | |
1856 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1857 | { |
176620f1 | 1858 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN)) |
c5aa993b JM |
1859 | { |
1860 | s = PSYMTAB_TO_SYMTAB (ps); | |
1861 | bv = BLOCKVECTOR (s); | |
1862 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1863 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1864 | if (!sym) |
1865 | { | |
1866 | /* This shouldn't be necessary, but as a last resort | |
1867 | * try looking in the globals even though the psymtab | |
1868 | * claimed the symbol was static. It's possible that | |
1869 | * the psymtab gets it wrong in some cases. | |
1870 | */ | |
1871 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1872 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1873 | if (!sym) |
8a3fe4f8 | 1874 | error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1875 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1876 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1877 | name, ps->filename, name, name); |
1878 | } | |
1879 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1880 | return SYMBOL_TYPE (sym); | |
1881 | } | |
1882 | } | |
c906108c SS |
1883 | return (struct type *) 0; |
1884 | } | |
1885 | ||
1886 | ||
1887 | /* Find the psymtab containing main(). */ | |
1888 | /* FIXME: What about languages without main() or specially linked | |
1889 | executables that have no main() ? */ | |
1890 | ||
1891 | struct partial_symtab * | |
fba45db2 | 1892 | find_main_psymtab (void) |
c906108c | 1893 | { |
52f0bd74 AC |
1894 | struct partial_symtab *pst; |
1895 | struct objfile *objfile; | |
c906108c SS |
1896 | |
1897 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 1898 | { |
176620f1 | 1899 | if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN)) |
c5aa993b JM |
1900 | { |
1901 | return (pst); | |
1902 | } | |
1903 | } | |
c906108c SS |
1904 | return (NULL); |
1905 | } | |
1906 | ||
176620f1 | 1907 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1908 | |
1909 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1910 | to find a match during the binary search of the non-encoded names, but | |
1911 | for now we don't worry about the slight inefficiency of looking for | |
1912 | a match we'll never find, since it will go pretty quick. Once the | |
1913 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 | 1914 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
9af17804 | 1915 | symbol (language_cplus or language_objc set) has both the encoded and |
1bae87b9 | 1916 | non-encoded names tested for a match. |
3121eff0 | 1917 | |
5ad1c190 | 1918 | If LINKAGE_NAME is non-NULL, verify that any symbol we find has this |
3121eff0 DJ |
1919 | particular mangled name. |
1920 | */ | |
c906108c SS |
1921 | |
1922 | struct symbol * | |
aa1ee363 | 1923 | lookup_block_symbol (const struct block *block, const char *name, |
5ad1c190 | 1924 | const char *linkage_name, |
176620f1 | 1925 | const domain_enum domain) |
c906108c | 1926 | { |
de4f826b DC |
1927 | struct dict_iterator iter; |
1928 | struct symbol *sym; | |
c906108c | 1929 | |
de4f826b | 1930 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1931 | { |
de4f826b DC |
1932 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); |
1933 | sym != NULL; | |
1934 | sym = dict_iter_name_next (name, &iter)) | |
261397f8 | 1935 | { |
5eeb2539 AR |
1936 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
1937 | SYMBOL_DOMAIN (sym), domain) | |
de4f826b DC |
1938 | && (linkage_name != NULL |
1939 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
261397f8 DJ |
1940 | return sym; |
1941 | } | |
1942 | return NULL; | |
1943 | } | |
526e70c0 | 1944 | else |
c906108c | 1945 | { |
526e70c0 DC |
1946 | /* Note that parameter symbols do not always show up last in the |
1947 | list; this loop makes sure to take anything else other than | |
1948 | parameter symbols first; it only uses parameter symbols as a | |
1949 | last resort. Note that this only takes up extra computation | |
1950 | time on a match. */ | |
de4f826b DC |
1951 | |
1952 | struct symbol *sym_found = NULL; | |
1953 | ||
1954 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); | |
1955 | sym != NULL; | |
1956 | sym = dict_iter_name_next (name, &iter)) | |
c906108c | 1957 | { |
5eeb2539 AR |
1958 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
1959 | SYMBOL_DOMAIN (sym), domain) | |
de4f826b DC |
1960 | && (linkage_name != NULL |
1961 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
c906108c | 1962 | { |
c906108c | 1963 | sym_found = sym; |
2a2d4dc3 | 1964 | if (!SYMBOL_IS_ARGUMENT (sym)) |
c906108c SS |
1965 | { |
1966 | break; | |
1967 | } | |
1968 | } | |
c906108c | 1969 | } |
de4f826b | 1970 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 1971 | } |
c906108c SS |
1972 | } |
1973 | ||
c906108c SS |
1974 | /* Find the symtab associated with PC and SECTION. Look through the |
1975 | psymtabs and read in another symtab if necessary. */ | |
1976 | ||
1977 | struct symtab * | |
714835d5 | 1978 | find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 1979 | { |
52f0bd74 | 1980 | struct block *b; |
c906108c | 1981 | struct blockvector *bv; |
52f0bd74 AC |
1982 | struct symtab *s = NULL; |
1983 | struct symtab *best_s = NULL; | |
1984 | struct partial_symtab *ps; | |
1985 | struct objfile *objfile; | |
c906108c | 1986 | CORE_ADDR distance = 0; |
8a48e967 DJ |
1987 | struct minimal_symbol *msymbol; |
1988 | ||
1989 | /* If we know that this is not a text address, return failure. This is | |
1990 | necessary because we loop based on the block's high and low code | |
1991 | addresses, which do not include the data ranges, and because | |
1992 | we call find_pc_sect_psymtab which has a similar restriction based | |
1993 | on the partial_symtab's texthigh and textlow. */ | |
1994 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
1995 | if (msymbol | |
712f90be TT |
1996 | && (MSYMBOL_TYPE (msymbol) == mst_data |
1997 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
1998 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
1999 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
2000 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 2001 | return NULL; |
c906108c SS |
2002 | |
2003 | /* Search all symtabs for the one whose file contains our address, and which | |
2004 | is the smallest of all the ones containing the address. This is designed | |
2005 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
2006 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
2007 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
2008 | ||
2009 | This happens for native ecoff format, where code from included files | |
2010 | gets its own symtab. The symtab for the included file should have | |
2011 | been read in already via the dependency mechanism. | |
2012 | It might be swifter to create several symtabs with the same name | |
2013 | like xcoff does (I'm not sure). | |
2014 | ||
2015 | It also happens for objfiles that have their functions reordered. | |
2016 | For these, the symtab we are looking for is not necessarily read in. */ | |
2017 | ||
11309657 | 2018 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
2019 | { |
2020 | bv = BLOCKVECTOR (s); | |
2021 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 2022 | |
c5aa993b | 2023 | if (BLOCK_START (b) <= pc |
c5aa993b | 2024 | && BLOCK_END (b) > pc |
c5aa993b JM |
2025 | && (distance == 0 |
2026 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
2027 | { | |
2028 | /* For an objfile that has its functions reordered, | |
2029 | find_pc_psymtab will find the proper partial symbol table | |
2030 | and we simply return its corresponding symtab. */ | |
2031 | /* In order to better support objfiles that contain both | |
2032 | stabs and coff debugging info, we continue on if a psymtab | |
2033 | can't be found. */ | |
2034 | if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs) | |
2035 | { | |
2036 | ps = find_pc_sect_psymtab (pc, section); | |
2037 | if (ps) | |
2038 | return PSYMTAB_TO_SYMTAB (ps); | |
2039 | } | |
2040 | if (section != 0) | |
2041 | { | |
de4f826b | 2042 | struct dict_iterator iter; |
261397f8 | 2043 | struct symbol *sym = NULL; |
c906108c | 2044 | |
de4f826b | 2045 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 2046 | { |
261397f8 | 2047 | fixup_symbol_section (sym, objfile); |
714835d5 | 2048 | if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section)) |
c5aa993b JM |
2049 | break; |
2050 | } | |
de4f826b | 2051 | if (sym == NULL) |
c5aa993b JM |
2052 | continue; /* no symbol in this symtab matches section */ |
2053 | } | |
2054 | distance = BLOCK_END (b) - BLOCK_START (b); | |
2055 | best_s = s; | |
2056 | } | |
2057 | } | |
c906108c SS |
2058 | |
2059 | if (best_s != NULL) | |
c5aa993b | 2060 | return (best_s); |
c906108c SS |
2061 | |
2062 | s = NULL; | |
2063 | ps = find_pc_sect_psymtab (pc, section); | |
2064 | if (ps) | |
2065 | { | |
2066 | if (ps->readin) | |
2067 | /* Might want to error() here (in case symtab is corrupt and | |
2068 | will cause a core dump), but maybe we can successfully | |
2069 | continue, so let's not. */ | |
8a3fe4f8 AC |
2070 | warning (_("\ |
2071 | (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"), | |
d730266b | 2072 | paddr_nz (pc)); |
c906108c SS |
2073 | s = PSYMTAB_TO_SYMTAB (ps); |
2074 | } | |
2075 | return (s); | |
2076 | } | |
2077 | ||
2078 | /* Find the symtab associated with PC. Look through the psymtabs and | |
2079 | read in another symtab if necessary. Backward compatibility, no section */ | |
2080 | ||
2081 | struct symtab * | |
fba45db2 | 2082 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
2083 | { |
2084 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
2085 | } | |
c906108c | 2086 | \f |
c5aa993b | 2087 | |
7e73cedf | 2088 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
2089 | Return a structure containing a symtab pointer, a line number, |
2090 | and a pc range for the entire source line. | |
2091 | The value's .pc field is NOT the specified pc. | |
2092 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
2093 | use the line that ends there. Otherwise, in that case, the line | |
2094 | that begins there is used. */ | |
2095 | ||
2096 | /* The big complication here is that a line may start in one file, and end just | |
2097 | before the start of another file. This usually occurs when you #include | |
2098 | code in the middle of a subroutine. To properly find the end of a line's PC | |
2099 | range, we must search all symtabs associated with this compilation unit, and | |
2100 | find the one whose first PC is closer than that of the next line in this | |
2101 | symtab. */ | |
2102 | ||
2103 | /* If it's worth the effort, we could be using a binary search. */ | |
2104 | ||
2105 | struct symtab_and_line | |
714835d5 | 2106 | find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) |
c906108c SS |
2107 | { |
2108 | struct symtab *s; | |
52f0bd74 AC |
2109 | struct linetable *l; |
2110 | int len; | |
2111 | int i; | |
2112 | struct linetable_entry *item; | |
c906108c SS |
2113 | struct symtab_and_line val; |
2114 | struct blockvector *bv; | |
2115 | struct minimal_symbol *msymbol; | |
2116 | struct minimal_symbol *mfunsym; | |
2117 | ||
2118 | /* Info on best line seen so far, and where it starts, and its file. */ | |
2119 | ||
2120 | struct linetable_entry *best = NULL; | |
2121 | CORE_ADDR best_end = 0; | |
2122 | struct symtab *best_symtab = 0; | |
2123 | ||
2124 | /* Store here the first line number | |
2125 | of a file which contains the line at the smallest pc after PC. | |
2126 | If we don't find a line whose range contains PC, | |
2127 | we will use a line one less than this, | |
2128 | with a range from the start of that file to the first line's pc. */ | |
2129 | struct linetable_entry *alt = NULL; | |
2130 | struct symtab *alt_symtab = 0; | |
2131 | ||
2132 | /* Info on best line seen in this file. */ | |
2133 | ||
2134 | struct linetable_entry *prev; | |
2135 | ||
2136 | /* If this pc is not from the current frame, | |
2137 | it is the address of the end of a call instruction. | |
2138 | Quite likely that is the start of the following statement. | |
2139 | But what we want is the statement containing the instruction. | |
2140 | Fudge the pc to make sure we get that. */ | |
2141 | ||
fe39c653 | 2142 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 2143 | |
b77b1eb7 JB |
2144 | /* It's tempting to assume that, if we can't find debugging info for |
2145 | any function enclosing PC, that we shouldn't search for line | |
2146 | number info, either. However, GAS can emit line number info for | |
2147 | assembly files --- very helpful when debugging hand-written | |
2148 | assembly code. In such a case, we'd have no debug info for the | |
2149 | function, but we would have line info. */ | |
648f4f79 | 2150 | |
c906108c SS |
2151 | if (notcurrent) |
2152 | pc -= 1; | |
2153 | ||
c5aa993b | 2154 | /* elz: added this because this function returned the wrong |
c906108c SS |
2155 | information if the pc belongs to a stub (import/export) |
2156 | to call a shlib function. This stub would be anywhere between | |
9af17804 DE |
2157 | two functions in the target, and the line info was erroneously |
2158 | taken to be the one of the line before the pc. | |
c5aa993b | 2159 | */ |
c906108c | 2160 | /* RT: Further explanation: |
c5aa993b | 2161 | |
c906108c SS |
2162 | * We have stubs (trampolines) inserted between procedures. |
2163 | * | |
2164 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
2165 | * exists in the main image. | |
2166 | * | |
2167 | * In the minimal symbol table, we have a bunch of symbols | |
2168 | * sorted by start address. The stubs are marked as "trampoline", | |
2169 | * the others appear as text. E.g.: | |
2170 | * | |
9af17804 | 2171 | * Minimal symbol table for main image |
c906108c SS |
2172 | * main: code for main (text symbol) |
2173 | * shr1: stub (trampoline symbol) | |
2174 | * foo: code for foo (text symbol) | |
2175 | * ... | |
2176 | * Minimal symbol table for "shr1" image: | |
2177 | * ... | |
2178 | * shr1: code for shr1 (text symbol) | |
2179 | * ... | |
2180 | * | |
2181 | * So the code below is trying to detect if we are in the stub | |
2182 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
2183 | * and if found, do the symbolization from the real-code address | |
2184 | * rather than the stub address. | |
2185 | * | |
2186 | * Assumptions being made about the minimal symbol table: | |
2187 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
2188 | * if we're really in the trampoline. If we're beyond it (say | |
9af17804 | 2189 | * we're in "foo" in the above example), it'll have a closer |
c906108c SS |
2190 | * symbol (the "foo" text symbol for example) and will not |
2191 | * return the trampoline. | |
2192 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
2193 | * corresponding to the trampoline, and whose address will | |
2194 | * be different than the trampoline address. I put in a sanity | |
2195 | * check for the address being the same, to avoid an | |
2196 | * infinite recursion. | |
2197 | */ | |
c5aa993b JM |
2198 | msymbol = lookup_minimal_symbol_by_pc (pc); |
2199 | if (msymbol != NULL) | |
c906108c | 2200 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 2201 | { |
2335f48e | 2202 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 2203 | NULL); |
c5aa993b JM |
2204 | if (mfunsym == NULL) |
2205 | /* I eliminated this warning since it is coming out | |
2206 | * in the following situation: | |
2207 | * gdb shmain // test program with shared libraries | |
2208 | * (gdb) break shr1 // function in shared lib | |
2209 | * Warning: In stub for ... | |
9af17804 | 2210 | * In the above situation, the shared lib is not loaded yet, |
c5aa993b JM |
2211 | * so of course we can't find the real func/line info, |
2212 | * but the "break" still works, and the warning is annoying. | |
2213 | * So I commented out the warning. RT */ | |
2335f48e | 2214 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b | 2215 | /* fall through */ |
82cf6c60 | 2216 | else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol)) |
c5aa993b JM |
2217 | /* Avoid infinite recursion */ |
2218 | /* See above comment about why warning is commented out */ | |
2335f48e | 2219 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
2220 | /* fall through */ |
2221 | else | |
82cf6c60 | 2222 | return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0); |
c5aa993b | 2223 | } |
c906108c SS |
2224 | |
2225 | ||
2226 | s = find_pc_sect_symtab (pc, section); | |
2227 | if (!s) | |
2228 | { | |
2229 | /* if no symbol information, return previous pc */ | |
2230 | if (notcurrent) | |
2231 | pc++; | |
2232 | val.pc = pc; | |
2233 | return val; | |
2234 | } | |
2235 | ||
2236 | bv = BLOCKVECTOR (s); | |
2237 | ||
2238 | /* Look at all the symtabs that share this blockvector. | |
2239 | They all have the same apriori range, that we found was right; | |
2240 | but they have different line tables. */ | |
2241 | ||
2242 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
2243 | { | |
2244 | /* Find the best line in this symtab. */ | |
2245 | l = LINETABLE (s); | |
2246 | if (!l) | |
c5aa993b | 2247 | continue; |
c906108c SS |
2248 | len = l->nitems; |
2249 | if (len <= 0) | |
2250 | { | |
2251 | /* I think len can be zero if the symtab lacks line numbers | |
2252 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2253 | I'm not sure which, and maybe it depends on the symbol | |
2254 | reader). */ | |
2255 | continue; | |
2256 | } | |
2257 | ||
2258 | prev = NULL; | |
2259 | item = l->item; /* Get first line info */ | |
2260 | ||
2261 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2262 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2263 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2264 | { | |
2265 | alt = item; | |
2266 | alt_symtab = s; | |
2267 | } | |
2268 | ||
2269 | for (i = 0; i < len; i++, item++) | |
2270 | { | |
2271 | /* Leave prev pointing to the linetable entry for the last line | |
2272 | that started at or before PC. */ | |
2273 | if (item->pc > pc) | |
2274 | break; | |
2275 | ||
2276 | prev = item; | |
2277 | } | |
2278 | ||
2279 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2280 | item points at the next line. If we ran off the end of the linetable |
2281 | (pc >= start of the last line), then prev == item. If pc < start of | |
2282 | the first line, prev will not be set. */ | |
c906108c SS |
2283 | |
2284 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2285 | If so, record this file, and its best line, as best so far. Don't |
2286 | save prev if it represents the end of a function (i.e. line number | |
2287 | 0) instead of a real line. */ | |
c906108c | 2288 | |
083ae935 | 2289 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2290 | { |
2291 | best = prev; | |
2292 | best_symtab = s; | |
25d53da1 KB |
2293 | |
2294 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2295 | if (best_end <= best->pc) | |
2296 | best_end = 0; | |
c906108c | 2297 | } |
25d53da1 KB |
2298 | |
2299 | /* If another line (denoted by ITEM) is in the linetable and its | |
2300 | PC is after BEST's PC, but before the current BEST_END, then | |
2301 | use ITEM's PC as the new best_end. */ | |
2302 | if (best && i < len && item->pc > best->pc | |
2303 | && (best_end == 0 || best_end > item->pc)) | |
2304 | best_end = item->pc; | |
c906108c SS |
2305 | } |
2306 | ||
2307 | if (!best_symtab) | |
2308 | { | |
e86e87f7 DJ |
2309 | /* If we didn't find any line number info, just return zeros. |
2310 | We used to return alt->line - 1 here, but that could be | |
2311 | anywhere; if we don't have line number info for this PC, | |
2312 | don't make some up. */ | |
2313 | val.pc = pc; | |
c906108c | 2314 | } |
e8717518 FF |
2315 | else if (best->line == 0) |
2316 | { | |
2317 | /* If our best fit is in a range of PC's for which no line | |
2318 | number info is available (line number is zero) then we didn't | |
2319 | find any valid line information. */ | |
2320 | val.pc = pc; | |
2321 | } | |
c906108c SS |
2322 | else |
2323 | { | |
2324 | val.symtab = best_symtab; | |
2325 | val.line = best->line; | |
2326 | val.pc = best->pc; | |
2327 | if (best_end && (!alt || best_end < alt->pc)) | |
2328 | val.end = best_end; | |
2329 | else if (alt) | |
2330 | val.end = alt->pc; | |
2331 | else | |
2332 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2333 | } | |
2334 | val.section = section; | |
2335 | return val; | |
2336 | } | |
2337 | ||
2338 | /* Backward compatibility (no section) */ | |
2339 | ||
2340 | struct symtab_and_line | |
fba45db2 | 2341 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2342 | { |
714835d5 | 2343 | struct obj_section *section; |
c906108c SS |
2344 | |
2345 | section = find_pc_overlay (pc); | |
2346 | if (pc_in_unmapped_range (pc, section)) | |
2347 | pc = overlay_mapped_address (pc, section); | |
2348 | return find_pc_sect_line (pc, section, notcurrent); | |
2349 | } | |
c906108c | 2350 | \f |
c906108c SS |
2351 | /* Find line number LINE in any symtab whose name is the same as |
2352 | SYMTAB. | |
2353 | ||
2354 | If found, return the symtab that contains the linetable in which it was | |
2355 | found, set *INDEX to the index in the linetable of the best entry | |
2356 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2357 | exact match. | |
2358 | ||
2359 | If not found, return NULL. */ | |
2360 | ||
50641945 | 2361 | struct symtab * |
fba45db2 | 2362 | find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match) |
c906108c | 2363 | { |
6f43c46f | 2364 | int exact = 0; /* Initialized here to avoid a compiler warning. */ |
c906108c SS |
2365 | |
2366 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2367 | so far seen. */ | |
2368 | ||
2369 | int best_index; | |
2370 | struct linetable *best_linetable; | |
2371 | struct symtab *best_symtab; | |
2372 | ||
2373 | /* First try looking it up in the given symtab. */ | |
2374 | best_linetable = LINETABLE (symtab); | |
2375 | best_symtab = symtab; | |
2376 | best_index = find_line_common (best_linetable, line, &exact); | |
2377 | if (best_index < 0 || !exact) | |
2378 | { | |
2379 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2380 | another symtab with the same name. In the case of xcoff, |
2381 | multiple csects for one source file (produced by IBM's FORTRAN | |
2382 | compiler) produce multiple symtabs (this is unavoidable | |
2383 | assuming csects can be at arbitrary places in memory and that | |
2384 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2385 | |
2386 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2387 | or 0 if none has been seen so far. |
2388 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2389 | int best; |
2390 | ||
2391 | struct objfile *objfile; | |
2392 | struct symtab *s; | |
51432cca | 2393 | struct partial_symtab *p; |
c906108c SS |
2394 | |
2395 | if (best_index >= 0) | |
2396 | best = best_linetable->item[best_index].line; | |
2397 | else | |
2398 | best = 0; | |
2399 | ||
51432cca CES |
2400 | ALL_PSYMTABS (objfile, p) |
2401 | { | |
2402 | if (strcmp (symtab->filename, p->filename) != 0) | |
2403 | continue; | |
2404 | PSYMTAB_TO_SYMTAB (p); | |
2405 | } | |
2406 | ||
c906108c | 2407 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
2408 | { |
2409 | struct linetable *l; | |
2410 | int ind; | |
c906108c | 2411 | |
6314a349 | 2412 | if (strcmp (symtab->filename, s->filename) != 0) |
c5aa993b JM |
2413 | continue; |
2414 | l = LINETABLE (s); | |
2415 | ind = find_line_common (l, line, &exact); | |
2416 | if (ind >= 0) | |
2417 | { | |
2418 | if (exact) | |
2419 | { | |
2420 | best_index = ind; | |
2421 | best_linetable = l; | |
2422 | best_symtab = s; | |
2423 | goto done; | |
2424 | } | |
2425 | if (best == 0 || l->item[ind].line < best) | |
2426 | { | |
2427 | best = l->item[ind].line; | |
2428 | best_index = ind; | |
2429 | best_linetable = l; | |
2430 | best_symtab = s; | |
2431 | } | |
2432 | } | |
2433 | } | |
c906108c | 2434 | } |
c5aa993b | 2435 | done: |
c906108c SS |
2436 | if (best_index < 0) |
2437 | return NULL; | |
2438 | ||
2439 | if (index) | |
2440 | *index = best_index; | |
2441 | if (exact_match) | |
2442 | *exact_match = exact; | |
2443 | ||
2444 | return best_symtab; | |
2445 | } | |
2446 | \f | |
2447 | /* Set the PC value for a given source file and line number and return true. | |
2448 | Returns zero for invalid line number (and sets the PC to 0). | |
2449 | The source file is specified with a struct symtab. */ | |
2450 | ||
2451 | int | |
fba45db2 | 2452 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2453 | { |
2454 | struct linetable *l; | |
2455 | int ind; | |
2456 | ||
2457 | *pc = 0; | |
2458 | if (symtab == 0) | |
2459 | return 0; | |
2460 | ||
2461 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2462 | if (symtab != NULL) | |
2463 | { | |
2464 | l = LINETABLE (symtab); | |
2465 | *pc = l->item[ind].pc; | |
2466 | return 1; | |
2467 | } | |
2468 | else | |
2469 | return 0; | |
2470 | } | |
2471 | ||
2472 | /* Find the range of pc values in a line. | |
2473 | Store the starting pc of the line into *STARTPTR | |
2474 | and the ending pc (start of next line) into *ENDPTR. | |
2475 | Returns 1 to indicate success. | |
2476 | Returns 0 if could not find the specified line. */ | |
2477 | ||
2478 | int | |
fba45db2 KB |
2479 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2480 | CORE_ADDR *endptr) | |
c906108c SS |
2481 | { |
2482 | CORE_ADDR startaddr; | |
2483 | struct symtab_and_line found_sal; | |
2484 | ||
2485 | startaddr = sal.pc; | |
c5aa993b | 2486 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2487 | return 0; |
2488 | ||
2489 | /* This whole function is based on address. For example, if line 10 has | |
2490 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2491 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2492 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2493 | This also insures that we never give a range like "starts at 0x134 | |
2494 | and ends at 0x12c". */ | |
2495 | ||
2496 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2497 | if (found_sal.line != sal.line) | |
2498 | { | |
2499 | /* The specified line (sal) has zero bytes. */ | |
2500 | *startptr = found_sal.pc; | |
2501 | *endptr = found_sal.pc; | |
2502 | } | |
2503 | else | |
2504 | { | |
2505 | *startptr = found_sal.pc; | |
2506 | *endptr = found_sal.end; | |
2507 | } | |
2508 | return 1; | |
2509 | } | |
2510 | ||
2511 | /* Given a line table and a line number, return the index into the line | |
2512 | table for the pc of the nearest line whose number is >= the specified one. | |
2513 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2514 | ||
2515 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2516 | ||
2517 | static int | |
aa1ee363 | 2518 | find_line_common (struct linetable *l, int lineno, |
fba45db2 | 2519 | int *exact_match) |
c906108c | 2520 | { |
52f0bd74 AC |
2521 | int i; |
2522 | int len; | |
c906108c SS |
2523 | |
2524 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2525 | or 0 if none has been seen so far. | |
2526 | BEST_INDEX identifies the item for it. */ | |
2527 | ||
2528 | int best_index = -1; | |
2529 | int best = 0; | |
2530 | ||
b7589f7d DJ |
2531 | *exact_match = 0; |
2532 | ||
c906108c SS |
2533 | if (lineno <= 0) |
2534 | return -1; | |
2535 | if (l == 0) | |
2536 | return -1; | |
2537 | ||
2538 | len = l->nitems; | |
2539 | for (i = 0; i < len; i++) | |
2540 | { | |
aa1ee363 | 2541 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2542 | |
2543 | if (item->line == lineno) | |
2544 | { | |
2545 | /* Return the first (lowest address) entry which matches. */ | |
2546 | *exact_match = 1; | |
2547 | return i; | |
2548 | } | |
2549 | ||
2550 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2551 | { | |
2552 | best = item->line; | |
2553 | best_index = i; | |
2554 | } | |
2555 | } | |
2556 | ||
2557 | /* If we got here, we didn't get an exact match. */ | |
c906108c SS |
2558 | return best_index; |
2559 | } | |
2560 | ||
2561 | int | |
fba45db2 | 2562 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2563 | { |
2564 | struct symtab_and_line sal; | |
2565 | sal = find_pc_line (pc, 0); | |
2566 | *startptr = sal.pc; | |
2567 | *endptr = sal.end; | |
2568 | return sal.symtab != 0; | |
2569 | } | |
2570 | ||
bccdca4a UW |
2571 | /* Given a function start address PC and SECTION, find the first |
2572 | address after the function prologue. */ | |
2573 | CORE_ADDR | |
2574 | find_function_start_pc (struct gdbarch *gdbarch, | |
714835d5 | 2575 | CORE_ADDR pc, struct obj_section *section) |
bccdca4a UW |
2576 | { |
2577 | /* If the function is in an unmapped overlay, use its unmapped LMA address, | |
2578 | so that gdbarch_skip_prologue has something unique to work on. */ | |
2579 | if (section_is_overlay (section) && !section_is_mapped (section)) | |
2580 | pc = overlay_unmapped_address (pc, section); | |
2581 | ||
2582 | pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
2583 | pc = gdbarch_skip_prologue (gdbarch, pc); | |
2584 | ||
2585 | /* For overlays, map pc back into its mapped VMA range. */ | |
2586 | pc = overlay_mapped_address (pc, section); | |
2587 | ||
2588 | return pc; | |
2589 | } | |
2590 | ||
c906108c SS |
2591 | /* Given a function symbol SYM, find the symtab and line for the start |
2592 | of the function. | |
2593 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2594 | of real code inside the function. */ | |
2595 | ||
50641945 | 2596 | struct symtab_and_line |
fba45db2 | 2597 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c | 2598 | { |
bccdca4a UW |
2599 | struct block *block = SYMBOL_BLOCK_VALUE (sym); |
2600 | struct objfile *objfile = lookup_objfile_from_block (block); | |
2601 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
2602 | ||
c906108c SS |
2603 | CORE_ADDR pc; |
2604 | struct symtab_and_line sal; | |
2605 | ||
bccdca4a UW |
2606 | pc = BLOCK_START (block); |
2607 | fixup_symbol_section (sym, objfile); | |
c906108c | 2608 | if (funfirstline) |
bccdca4a UW |
2609 | { |
2610 | /* Skip "first line" of function (which is actually its prologue). */ | |
714835d5 | 2611 | pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym)); |
c906108c | 2612 | } |
714835d5 | 2613 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); |
c906108c | 2614 | |
a433963d | 2615 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next |
c906108c SS |
2616 | line is still part of the same function. */ |
2617 | if (sal.pc != pc | |
bccdca4a UW |
2618 | && BLOCK_START (block) <= sal.end |
2619 | && sal.end < BLOCK_END (block)) | |
c906108c SS |
2620 | { |
2621 | /* First pc of next line */ | |
2622 | pc = sal.end; | |
2623 | /* Recalculate the line number (might not be N+1). */ | |
714835d5 | 2624 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); |
c906108c | 2625 | } |
4309257c PM |
2626 | |
2627 | /* On targets with executable formats that don't have a concept of | |
2628 | constructors (ELF with .init has, PE doesn't), gcc emits a call | |
2629 | to `__main' in `main' between the prologue and before user | |
2630 | code. */ | |
2631 | if (funfirstline | |
2632 | && gdbarch_skip_main_prologue_p (current_gdbarch) | |
2633 | && SYMBOL_LINKAGE_NAME (sym) | |
2634 | && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0) | |
2635 | { | |
2636 | pc = gdbarch_skip_main_prologue (current_gdbarch, pc); | |
2637 | /* Recalculate the line number (might not be N+1). */ | |
714835d5 | 2638 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); |
4309257c PM |
2639 | } |
2640 | ||
c906108c | 2641 | sal.pc = pc; |
c906108c SS |
2642 | |
2643 | return sal; | |
2644 | } | |
50641945 | 2645 | |
c906108c SS |
2646 | /* If P is of the form "operator[ \t]+..." where `...' is |
2647 | some legitimate operator text, return a pointer to the | |
2648 | beginning of the substring of the operator text. | |
2649 | Otherwise, return "". */ | |
2650 | char * | |
fba45db2 | 2651 | operator_chars (char *p, char **end) |
c906108c SS |
2652 | { |
2653 | *end = ""; | |
2654 | if (strncmp (p, "operator", 8)) | |
2655 | return *end; | |
2656 | p += 8; | |
2657 | ||
2658 | /* Don't get faked out by `operator' being part of a longer | |
2659 | identifier. */ | |
c5aa993b | 2660 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2661 | return *end; |
2662 | ||
2663 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2664 | while (*p == ' ' || *p == '\t') | |
2665 | p++; | |
2666 | ||
2667 | /* Recognize 'operator TYPENAME'. */ | |
2668 | ||
c5aa993b | 2669 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2670 | { |
aa1ee363 | 2671 | char *q = p + 1; |
c5aa993b | 2672 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2673 | q++; |
2674 | *end = q; | |
2675 | return p; | |
2676 | } | |
2677 | ||
53e8ad3d MS |
2678 | while (*p) |
2679 | switch (*p) | |
2680 | { | |
2681 | case '\\': /* regexp quoting */ | |
2682 | if (p[1] == '*') | |
2683 | { | |
2684 | if (p[2] == '=') /* 'operator\*=' */ | |
2685 | *end = p + 3; | |
2686 | else /* 'operator\*' */ | |
2687 | *end = p + 2; | |
2688 | return p; | |
2689 | } | |
2690 | else if (p[1] == '[') | |
2691 | { | |
2692 | if (p[2] == ']') | |
8a3fe4f8 | 2693 | error (_("mismatched quoting on brackets, try 'operator\\[\\]'")); |
53e8ad3d MS |
2694 | else if (p[2] == '\\' && p[3] == ']') |
2695 | { | |
2696 | *end = p + 4; /* 'operator\[\]' */ | |
2697 | return p; | |
2698 | } | |
2699 | else | |
8a3fe4f8 | 2700 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d | 2701 | } |
9af17804 | 2702 | else |
53e8ad3d MS |
2703 | { |
2704 | /* Gratuitous qoute: skip it and move on. */ | |
2705 | p++; | |
2706 | continue; | |
2707 | } | |
2708 | break; | |
2709 | case '!': | |
2710 | case '=': | |
2711 | case '*': | |
2712 | case '/': | |
2713 | case '%': | |
2714 | case '^': | |
2715 | if (p[1] == '=') | |
2716 | *end = p + 2; | |
2717 | else | |
2718 | *end = p + 1; | |
2719 | return p; | |
2720 | case '<': | |
2721 | case '>': | |
2722 | case '+': | |
2723 | case '-': | |
2724 | case '&': | |
2725 | case '|': | |
2726 | if (p[0] == '-' && p[1] == '>') | |
2727 | { | |
2728 | /* Struct pointer member operator 'operator->'. */ | |
2729 | if (p[2] == '*') | |
2730 | { | |
2731 | *end = p + 3; /* 'operator->*' */ | |
2732 | return p; | |
2733 | } | |
2734 | else if (p[2] == '\\') | |
2735 | { | |
2736 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
2737 | return p; | |
2738 | } | |
2739 | else | |
2740 | { | |
2741 | *end = p + 2; /* 'operator->' */ | |
2742 | return p; | |
2743 | } | |
2744 | } | |
2745 | if (p[1] == '=' || p[1] == p[0]) | |
2746 | *end = p + 2; | |
2747 | else | |
2748 | *end = p + 1; | |
2749 | return p; | |
2750 | case '~': | |
2751 | case ',': | |
c5aa993b | 2752 | *end = p + 1; |
53e8ad3d MS |
2753 | return p; |
2754 | case '(': | |
2755 | if (p[1] != ')') | |
8a3fe4f8 | 2756 | error (_("`operator ()' must be specified without whitespace in `()'")); |
c5aa993b | 2757 | *end = p + 2; |
53e8ad3d MS |
2758 | return p; |
2759 | case '?': | |
2760 | if (p[1] != ':') | |
8a3fe4f8 | 2761 | error (_("`operator ?:' must be specified without whitespace in `?:'")); |
53e8ad3d MS |
2762 | *end = p + 2; |
2763 | return p; | |
2764 | case '[': | |
2765 | if (p[1] != ']') | |
8a3fe4f8 | 2766 | error (_("`operator []' must be specified without whitespace in `[]'")); |
53e8ad3d MS |
2767 | *end = p + 2; |
2768 | return p; | |
2769 | default: | |
8a3fe4f8 | 2770 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
2771 | break; |
2772 | } | |
2773 | ||
c906108c SS |
2774 | *end = ""; |
2775 | return *end; | |
2776 | } | |
c906108c | 2777 | \f |
c5aa993b | 2778 | |
c94fdfd0 EZ |
2779 | /* If FILE is not already in the table of files, return zero; |
2780 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
2781 | is non-zero. If *FIRST is non-zero, forget the old table | |
2782 | contents. */ | |
2783 | static int | |
2784 | filename_seen (const char *file, int add, int *first) | |
c906108c | 2785 | { |
c94fdfd0 EZ |
2786 | /* Table of files seen so far. */ |
2787 | static const char **tab = NULL; | |
c906108c SS |
2788 | /* Allocated size of tab in elements. |
2789 | Start with one 256-byte block (when using GNU malloc.c). | |
2790 | 24 is the malloc overhead when range checking is in effect. */ | |
2791 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
2792 | /* Current size of tab in elements. */ | |
2793 | static int tab_cur_size; | |
c94fdfd0 | 2794 | const char **p; |
c906108c SS |
2795 | |
2796 | if (*first) | |
2797 | { | |
2798 | if (tab == NULL) | |
c94fdfd0 | 2799 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
2800 | tab_cur_size = 0; |
2801 | } | |
2802 | ||
c94fdfd0 | 2803 | /* Is FILE in tab? */ |
c906108c | 2804 | for (p = tab; p < tab + tab_cur_size; p++) |
c94fdfd0 EZ |
2805 | if (strcmp (*p, file) == 0) |
2806 | return 1; | |
2807 | ||
2808 | /* No; maybe add it to tab. */ | |
2809 | if (add) | |
c906108c | 2810 | { |
c94fdfd0 EZ |
2811 | if (tab_cur_size == tab_alloc_size) |
2812 | { | |
2813 | tab_alloc_size *= 2; | |
2814 | tab = (const char **) xrealloc ((char *) tab, | |
2815 | tab_alloc_size * sizeof (*tab)); | |
2816 | } | |
2817 | tab[tab_cur_size++] = file; | |
c906108c | 2818 | } |
c906108c | 2819 | |
c94fdfd0 EZ |
2820 | return 0; |
2821 | } | |
2822 | ||
2823 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
2824 | NAME is the name to print and *FIRST is nonzero if this is the first | |
2825 | name printed. Set *FIRST to zero. */ | |
2826 | static void | |
d092d1a2 | 2827 | output_source_filename (const char *name, int *first) |
c94fdfd0 EZ |
2828 | { |
2829 | /* Since a single source file can result in several partial symbol | |
2830 | tables, we need to avoid printing it more than once. Note: if | |
2831 | some of the psymtabs are read in and some are not, it gets | |
2832 | printed both under "Source files for which symbols have been | |
2833 | read" and "Source files for which symbols will be read in on | |
2834 | demand". I consider this a reasonable way to deal with the | |
2835 | situation. I'm not sure whether this can also happen for | |
2836 | symtabs; it doesn't hurt to check. */ | |
2837 | ||
2838 | /* Was NAME already seen? */ | |
2839 | if (filename_seen (name, 1, first)) | |
2840 | { | |
2841 | /* Yes; don't print it again. */ | |
2842 | return; | |
2843 | } | |
2844 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
2845 | if (*first) |
2846 | { | |
2847 | *first = 0; | |
2848 | } | |
2849 | else | |
2850 | { | |
2851 | printf_filtered (", "); | |
2852 | } | |
2853 | ||
2854 | wrap_here (""); | |
2855 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 2856 | } |
c906108c SS |
2857 | |
2858 | static void | |
fba45db2 | 2859 | sources_info (char *ignore, int from_tty) |
c906108c | 2860 | { |
52f0bd74 AC |
2861 | struct symtab *s; |
2862 | struct partial_symtab *ps; | |
2863 | struct objfile *objfile; | |
c906108c | 2864 | int first; |
c5aa993b | 2865 | |
c906108c SS |
2866 | if (!have_full_symbols () && !have_partial_symbols ()) |
2867 | { | |
8a3fe4f8 | 2868 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 2869 | } |
c5aa993b | 2870 | |
c906108c SS |
2871 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
2872 | ||
2873 | first = 1; | |
2874 | ALL_SYMTABS (objfile, s) | |
c5aa993b | 2875 | { |
d092d1a2 DJ |
2876 | const char *fullname = symtab_to_fullname (s); |
2877 | output_source_filename (fullname ? fullname : s->filename, &first); | |
c5aa993b | 2878 | } |
c906108c | 2879 | printf_filtered ("\n\n"); |
c5aa993b | 2880 | |
c906108c SS |
2881 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
2882 | ||
2883 | first = 1; | |
2884 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2885 | { |
2886 | if (!ps->readin) | |
2887 | { | |
d092d1a2 DJ |
2888 | const char *fullname = psymtab_to_fullname (ps); |
2889 | output_source_filename (fullname ? fullname : ps->filename, &first); | |
c5aa993b JM |
2890 | } |
2891 | } | |
c906108c SS |
2892 | printf_filtered ("\n"); |
2893 | } | |
2894 | ||
2895 | static int | |
fd118b61 | 2896 | file_matches (char *file, char *files[], int nfiles) |
c906108c SS |
2897 | { |
2898 | int i; | |
2899 | ||
2900 | if (file != NULL && nfiles != 0) | |
2901 | { | |
2902 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 2903 | { |
31889e00 | 2904 | if (strcmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
2905 | return 1; |
2906 | } | |
c906108c SS |
2907 | } |
2908 | else if (nfiles == 0) | |
2909 | return 1; | |
2910 | return 0; | |
2911 | } | |
2912 | ||
2913 | /* Free any memory associated with a search. */ | |
2914 | void | |
fba45db2 | 2915 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
2916 | { |
2917 | struct symbol_search *p; | |
2918 | struct symbol_search *next; | |
2919 | ||
2920 | for (p = symbols; p != NULL; p = next) | |
2921 | { | |
2922 | next = p->next; | |
b8c9b27d | 2923 | xfree (p); |
c906108c SS |
2924 | } |
2925 | } | |
2926 | ||
5bd98722 AC |
2927 | static void |
2928 | do_free_search_symbols_cleanup (void *symbols) | |
2929 | { | |
2930 | free_search_symbols (symbols); | |
2931 | } | |
2932 | ||
2933 | struct cleanup * | |
2934 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
2935 | { | |
2936 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
2937 | } | |
2938 | ||
434d2d4f DJ |
2939 | /* Helper function for sort_search_symbols and qsort. Can only |
2940 | sort symbols, not minimal symbols. */ | |
2941 | static int | |
2942 | compare_search_syms (const void *sa, const void *sb) | |
2943 | { | |
2944 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
2945 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
2946 | ||
de5ad195 DC |
2947 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
2948 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
2949 | } |
2950 | ||
2951 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
2952 | prevtail where it is, but update its next pointer to point to | |
2953 | the first of the sorted symbols. */ | |
2954 | static struct symbol_search * | |
2955 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
2956 | { | |
2957 | struct symbol_search **symbols, *symp, *old_next; | |
2958 | int i; | |
2959 | ||
2960 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
2961 | * nfound); | |
2962 | symp = prevtail->next; | |
2963 | for (i = 0; i < nfound; i++) | |
2964 | { | |
2965 | symbols[i] = symp; | |
2966 | symp = symp->next; | |
2967 | } | |
2968 | /* Generally NULL. */ | |
2969 | old_next = symp; | |
2970 | ||
2971 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
2972 | compare_search_syms); | |
2973 | ||
2974 | symp = prevtail; | |
2975 | for (i = 0; i < nfound; i++) | |
2976 | { | |
2977 | symp->next = symbols[i]; | |
2978 | symp = symp->next; | |
2979 | } | |
2980 | symp->next = old_next; | |
2981 | ||
8ed32cc0 | 2982 | xfree (symbols); |
434d2d4f DJ |
2983 | return symp; |
2984 | } | |
5bd98722 | 2985 | |
c906108c SS |
2986 | /* Search the symbol table for matches to the regular expression REGEXP, |
2987 | returning the results in *MATCHES. | |
2988 | ||
2989 | Only symbols of KIND are searched: | |
176620f1 EZ |
2990 | FUNCTIONS_DOMAIN - search all functions |
2991 | TYPES_DOMAIN - search all type names | |
176620f1 | 2992 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, |
c5aa993b | 2993 | and constants (enums) |
c906108c SS |
2994 | |
2995 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
2996 | |
2997 | The results are sorted locally; each symtab's global and static blocks are | |
2998 | separately alphabetized. | |
c5aa993b | 2999 | */ |
c906108c | 3000 | void |
176620f1 | 3001 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
fd118b61 | 3002 | struct symbol_search **matches) |
c906108c | 3003 | { |
52f0bd74 AC |
3004 | struct symtab *s; |
3005 | struct partial_symtab *ps; | |
3006 | struct blockvector *bv; | |
52f0bd74 AC |
3007 | struct block *b; |
3008 | int i = 0; | |
de4f826b | 3009 | struct dict_iterator iter; |
52f0bd74 | 3010 | struct symbol *sym; |
c906108c SS |
3011 | struct partial_symbol **psym; |
3012 | struct objfile *objfile; | |
3013 | struct minimal_symbol *msymbol; | |
3014 | char *val; | |
3015 | int found_misc = 0; | |
3016 | static enum minimal_symbol_type types[] | |
c5aa993b JM |
3017 | = |
3018 | {mst_data, mst_text, mst_abs, mst_unknown}; | |
c906108c | 3019 | static enum minimal_symbol_type types2[] |
c5aa993b JM |
3020 | = |
3021 | {mst_bss, mst_file_text, mst_abs, mst_unknown}; | |
c906108c | 3022 | static enum minimal_symbol_type types3[] |
c5aa993b JM |
3023 | = |
3024 | {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; | |
c906108c | 3025 | static enum minimal_symbol_type types4[] |
c5aa993b JM |
3026 | = |
3027 | {mst_file_bss, mst_text, mst_abs, mst_unknown}; | |
c906108c SS |
3028 | enum minimal_symbol_type ourtype; |
3029 | enum minimal_symbol_type ourtype2; | |
3030 | enum minimal_symbol_type ourtype3; | |
3031 | enum minimal_symbol_type ourtype4; | |
3032 | struct symbol_search *sr; | |
3033 | struct symbol_search *psr; | |
3034 | struct symbol_search *tail; | |
3035 | struct cleanup *old_chain = NULL; | |
3036 | ||
176620f1 | 3037 | if (kind < VARIABLES_DOMAIN) |
8a3fe4f8 | 3038 | error (_("must search on specific domain")); |
c906108c | 3039 | |
176620f1 EZ |
3040 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
3041 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; | |
3042 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; | |
3043 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; | |
c906108c SS |
3044 | |
3045 | sr = *matches = NULL; | |
3046 | tail = NULL; | |
3047 | ||
3048 | if (regexp != NULL) | |
3049 | { | |
3050 | /* Make sure spacing is right for C++ operators. | |
3051 | This is just a courtesy to make the matching less sensitive | |
3052 | to how many spaces the user leaves between 'operator' | |
3053 | and <TYPENAME> or <OPERATOR>. */ | |
3054 | char *opend; | |
3055 | char *opname = operator_chars (regexp, &opend); | |
3056 | if (*opname) | |
c5aa993b JM |
3057 | { |
3058 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ | |
3059 | if (isalpha (*opname) || *opname == '_' || *opname == '$') | |
3060 | { | |
3061 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
3062 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
3063 | fix = 1; | |
3064 | } | |
3065 | else | |
3066 | { | |
3067 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
3068 | if (opname[-1] == ' ') | |
3069 | fix = 0; | |
3070 | } | |
3071 | /* If wrong number of spaces, fix it. */ | |
3072 | if (fix >= 0) | |
3073 | { | |
045f55a6 | 3074 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
c5aa993b JM |
3075 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
3076 | regexp = tmp; | |
3077 | } | |
3078 | } | |
3079 | ||
c906108c | 3080 | if (0 != (val = re_comp (regexp))) |
8a3fe4f8 | 3081 | error (_("Invalid regexp (%s): %s"), val, regexp); |
c906108c SS |
3082 | } |
3083 | ||
3084 | /* Search through the partial symtabs *first* for all symbols | |
3085 | matching the regexp. That way we don't have to reproduce all of | |
3086 | the machinery below. */ | |
3087 | ||
3088 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3089 | { |
3090 | struct partial_symbol **bound, **gbound, **sbound; | |
3091 | int keep_going = 1; | |
3092 | ||
3093 | if (ps->readin) | |
3094 | continue; | |
3095 | ||
3096 | gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms; | |
3097 | sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms; | |
3098 | bound = gbound; | |
3099 | ||
3100 | /* Go through all of the symbols stored in a partial | |
3101 | symtab in one loop. */ | |
3102 | psym = objfile->global_psymbols.list + ps->globals_offset; | |
3103 | while (keep_going) | |
3104 | { | |
3105 | if (psym >= bound) | |
3106 | { | |
3107 | if (bound == gbound && ps->n_static_syms != 0) | |
3108 | { | |
3109 | psym = objfile->static_psymbols.list + ps->statics_offset; | |
3110 | bound = sbound; | |
3111 | } | |
3112 | else | |
3113 | keep_going = 0; | |
3114 | continue; | |
3115 | } | |
3116 | else | |
3117 | { | |
3118 | QUIT; | |
3119 | ||
3120 | /* If it would match (logic taken from loop below) | |
cb1df416 DJ |
3121 | load the file and go on to the next one. We check the |
3122 | filename here, but that's a bit bogus: we don't know | |
3123 | what file it really comes from until we have full | |
3124 | symtabs. The symbol might be in a header file included by | |
3125 | this psymtab. This only affects Insight. */ | |
c5aa993b | 3126 | if (file_matches (ps->filename, files, nfiles) |
25120b0d DC |
3127 | && ((regexp == NULL |
3128 | || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0) | |
176620f1 | 3129 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF |
c5aa993b | 3130 | && SYMBOL_CLASS (*psym) != LOC_BLOCK) |
176620f1 | 3131 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK) |
bd2e94ce | 3132 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)))) |
c5aa993b JM |
3133 | { |
3134 | PSYMTAB_TO_SYMTAB (ps); | |
3135 | keep_going = 0; | |
3136 | } | |
3137 | } | |
3138 | psym++; | |
3139 | } | |
3140 | } | |
c906108c SS |
3141 | |
3142 | /* Here, we search through the minimal symbol tables for functions | |
3143 | and variables that match, and force their symbols to be read. | |
3144 | This is in particular necessary for demangled variable names, | |
3145 | which are no longer put into the partial symbol tables. | |
3146 | The symbol will then be found during the scan of symtabs below. | |
3147 | ||
3148 | For functions, find_pc_symtab should succeed if we have debug info | |
3149 | for the function, for variables we have to call lookup_symbol | |
3150 | to determine if the variable has debug info. | |
3151 | If the lookup fails, set found_misc so that we will rescan to print | |
3152 | any matching symbols without debug info. | |
c5aa993b | 3153 | */ |
c906108c | 3154 | |
176620f1 | 3155 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
3156 | { |
3157 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3158 | { |
3159 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3160 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3161 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3162 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3163 | { | |
25120b0d DC |
3164 | if (regexp == NULL |
3165 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3166 | { |
3167 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
3168 | { | |
b1262a02 DC |
3169 | /* FIXME: carlton/2003-02-04: Given that the |
3170 | semantics of lookup_symbol keeps on changing | |
3171 | slightly, it would be a nice idea if we had a | |
3172 | function lookup_symbol_minsym that found the | |
3173 | symbol associated to a given minimal symbol (if | |
3174 | any). */ | |
176620f1 | 3175 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 3176 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 3177 | (struct block *) NULL, |
2570f2b7 | 3178 | VAR_DOMAIN, 0) |
53c5240f | 3179 | == NULL) |
b1262a02 | 3180 | found_misc = 1; |
c5aa993b JM |
3181 | } |
3182 | } | |
3183 | } | |
3184 | } | |
c906108c SS |
3185 | } |
3186 | ||
11309657 | 3187 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3188 | { |
3189 | bv = BLOCKVECTOR (s); | |
c5aa993b JM |
3190 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3191 | { | |
434d2d4f DJ |
3192 | struct symbol_search *prevtail = tail; |
3193 | int nfound = 0; | |
c5aa993b | 3194 | b = BLOCKVECTOR_BLOCK (bv, i); |
de4f826b | 3195 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3196 | { |
cb1df416 | 3197 | struct symtab *real_symtab = SYMBOL_SYMTAB (sym); |
c5aa993b | 3198 | QUIT; |
cb1df416 DJ |
3199 | |
3200 | if (file_matches (real_symtab->filename, files, nfiles) | |
25120b0d DC |
3201 | && ((regexp == NULL |
3202 | || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0) | |
176620f1 | 3203 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF |
c5aa993b JM |
3204 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
3205 | && SYMBOL_CLASS (sym) != LOC_CONST) | |
176620f1 | 3206 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK) |
bd2e94ce | 3207 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) |
c5aa993b JM |
3208 | { |
3209 | /* match */ | |
3210 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3211 | psr->block = i; | |
cb1df416 | 3212 | psr->symtab = real_symtab; |
c5aa993b JM |
3213 | psr->symbol = sym; |
3214 | psr->msymbol = NULL; | |
3215 | psr->next = NULL; | |
3216 | if (tail == NULL) | |
434d2d4f | 3217 | sr = psr; |
c5aa993b JM |
3218 | else |
3219 | tail->next = psr; | |
3220 | tail = psr; | |
434d2d4f DJ |
3221 | nfound ++; |
3222 | } | |
3223 | } | |
3224 | if (nfound > 0) | |
3225 | { | |
3226 | if (prevtail == NULL) | |
3227 | { | |
3228 | struct symbol_search dummy; | |
3229 | ||
3230 | dummy.next = sr; | |
3231 | tail = sort_search_symbols (&dummy, nfound); | |
3232 | sr = dummy.next; | |
3233 | ||
3234 | old_chain = make_cleanup_free_search_symbols (sr); | |
c5aa993b | 3235 | } |
434d2d4f DJ |
3236 | else |
3237 | tail = sort_search_symbols (prevtail, nfound); | |
c5aa993b JM |
3238 | } |
3239 | } | |
c5aa993b | 3240 | } |
c906108c SS |
3241 | |
3242 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3243 | no debug symbols, then print directly from the msymbol_vector. */ | |
3244 | ||
176620f1 | 3245 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
3246 | { |
3247 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3248 | { |
3249 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3250 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3251 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3252 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3253 | { | |
25120b0d DC |
3254 | if (regexp == NULL |
3255 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3256 | { |
3257 | /* Functions: Look up by address. */ | |
176620f1 | 3258 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3259 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3260 | { | |
3261 | /* Variables/Absolutes: Look up by name */ | |
2335f48e | 3262 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
2570f2b7 UW |
3263 | (struct block *) NULL, VAR_DOMAIN, 0) |
3264 | == NULL) | |
c5aa993b JM |
3265 | { |
3266 | /* match */ | |
3267 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3268 | psr->block = i; | |
3269 | psr->msymbol = msymbol; | |
3270 | psr->symtab = NULL; | |
3271 | psr->symbol = NULL; | |
3272 | psr->next = NULL; | |
3273 | if (tail == NULL) | |
3274 | { | |
3275 | sr = psr; | |
5bd98722 | 3276 | old_chain = make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3277 | } |
3278 | else | |
3279 | tail->next = psr; | |
3280 | tail = psr; | |
3281 | } | |
3282 | } | |
3283 | } | |
3284 | } | |
3285 | } | |
c906108c SS |
3286 | } |
3287 | ||
3288 | *matches = sr; | |
3289 | if (sr != NULL) | |
3290 | discard_cleanups (old_chain); | |
3291 | } | |
3292 | ||
3293 | /* Helper function for symtab_symbol_info, this function uses | |
3294 | the data returned from search_symbols() to print information | |
3295 | regarding the match to gdb_stdout. | |
c5aa993b | 3296 | */ |
c906108c | 3297 | static void |
176620f1 | 3298 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
fba45db2 | 3299 | int block, char *last) |
c906108c SS |
3300 | { |
3301 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3302 | { | |
3303 | fputs_filtered ("\nFile ", gdb_stdout); | |
3304 | fputs_filtered (s->filename, gdb_stdout); | |
3305 | fputs_filtered (":\n", gdb_stdout); | |
3306 | } | |
3307 | ||
176620f1 | 3308 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3309 | printf_filtered ("static "); |
c5aa993b | 3310 | |
c906108c | 3311 | /* Typedef that is not a C++ class */ |
176620f1 EZ |
3312 | if (kind == TYPES_DOMAIN |
3313 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3314 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c906108c | 3315 | /* variable, func, or typedef-that-is-c++-class */ |
176620f1 EZ |
3316 | else if (kind < TYPES_DOMAIN || |
3317 | (kind == TYPES_DOMAIN && | |
3318 | SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3319 | { |
3320 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3321 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3322 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3323 | gdb_stdout, 0); |
c906108c SS |
3324 | |
3325 | printf_filtered (";\n"); | |
3326 | } | |
c906108c SS |
3327 | } |
3328 | ||
3329 | /* This help function for symtab_symbol_info() prints information | |
3330 | for non-debugging symbols to gdb_stdout. | |
c5aa993b | 3331 | */ |
c906108c | 3332 | static void |
fba45db2 | 3333 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3334 | { |
3ac4495a MS |
3335 | char *tmp; |
3336 | ||
17a912b6 | 3337 | if (gdbarch_addr_bit (current_gdbarch) <= 32) |
bb599908 PH |
3338 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3339 | & (CORE_ADDR) 0xffffffff, | |
3340 | 8); | |
3ac4495a | 3341 | else |
bb599908 PH |
3342 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3343 | 16); | |
3ac4495a | 3344 | printf_filtered ("%s %s\n", |
de5ad195 | 3345 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3346 | } |
3347 | ||
3348 | /* This is the guts of the commands "info functions", "info types", and | |
3349 | "info variables". It calls search_symbols to find all matches and then | |
3350 | print_[m]symbol_info to print out some useful information about the | |
3351 | matches. | |
c5aa993b | 3352 | */ |
c906108c | 3353 | static void |
176620f1 | 3354 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
c906108c SS |
3355 | { |
3356 | static char *classnames[] | |
c5aa993b JM |
3357 | = |
3358 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3359 | struct symbol_search *symbols; |
3360 | struct symbol_search *p; | |
3361 | struct cleanup *old_chain; | |
3362 | char *last_filename = NULL; | |
3363 | int first = 1; | |
3364 | ||
3365 | /* must make sure that if we're interrupted, symbols gets freed */ | |
3366 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); | |
5bd98722 | 3367 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3368 | |
3369 | printf_filtered (regexp | |
c5aa993b JM |
3370 | ? "All %ss matching regular expression \"%s\":\n" |
3371 | : "All defined %ss:\n", | |
176620f1 | 3372 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
c906108c SS |
3373 | |
3374 | for (p = symbols; p != NULL; p = p->next) | |
3375 | { | |
3376 | QUIT; | |
3377 | ||
3378 | if (p->msymbol != NULL) | |
c5aa993b JM |
3379 | { |
3380 | if (first) | |
3381 | { | |
3382 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3383 | first = 0; | |
3384 | } | |
3385 | print_msymbol_info (p->msymbol); | |
3386 | } | |
c906108c | 3387 | else |
c5aa993b JM |
3388 | { |
3389 | print_symbol_info (kind, | |
3390 | p->symtab, | |
3391 | p->symbol, | |
3392 | p->block, | |
3393 | last_filename); | |
3394 | last_filename = p->symtab->filename; | |
3395 | } | |
c906108c SS |
3396 | } |
3397 | ||
3398 | do_cleanups (old_chain); | |
3399 | } | |
3400 | ||
3401 | static void | |
fba45db2 | 3402 | variables_info (char *regexp, int from_tty) |
c906108c | 3403 | { |
176620f1 | 3404 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3405 | } |
3406 | ||
3407 | static void | |
fba45db2 | 3408 | functions_info (char *regexp, int from_tty) |
c906108c | 3409 | { |
176620f1 | 3410 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3411 | } |
3412 | ||
357e46e7 | 3413 | |
c906108c | 3414 | static void |
fba45db2 | 3415 | types_info (char *regexp, int from_tty) |
c906108c | 3416 | { |
176620f1 | 3417 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3418 | } |
3419 | ||
c906108c | 3420 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3421 | |
8b93c638 | 3422 | void |
fba45db2 | 3423 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3424 | { |
3425 | rbreak_command (regexp, from_tty); | |
3426 | } | |
8926118c | 3427 | |
c906108c | 3428 | static void |
fba45db2 | 3429 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3430 | { |
3431 | struct symbol_search *ss; | |
3432 | struct symbol_search *p; | |
3433 | struct cleanup *old_chain; | |
3434 | ||
176620f1 | 3435 | search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss); |
5bd98722 | 3436 | old_chain = make_cleanup_free_search_symbols (ss); |
c906108c SS |
3437 | |
3438 | for (p = ss; p != NULL; p = p->next) | |
3439 | { | |
3440 | if (p->msymbol == NULL) | |
c5aa993b | 3441 | { |
2335f48e DC |
3442 | char *string = alloca (strlen (p->symtab->filename) |
3443 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3444 | + 4); | |
c5aa993b JM |
3445 | strcpy (string, p->symtab->filename); |
3446 | strcat (string, ":'"); | |
2335f48e | 3447 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3448 | strcat (string, "'"); |
3449 | break_command (string, from_tty); | |
176620f1 | 3450 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3451 | p->symtab, |
3452 | p->symbol, | |
3453 | p->block, | |
3454 | p->symtab->filename); | |
3455 | } | |
c906108c | 3456 | else |
c5aa993b | 3457 | { |
6214f497 DJ |
3458 | char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) |
3459 | + 3); | |
3460 | strcpy (string, "'"); | |
3461 | strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol)); | |
3462 | strcat (string, "'"); | |
3463 | ||
3464 | break_command (string, from_tty); | |
c5aa993b | 3465 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3466 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3467 | } |
c906108c SS |
3468 | } |
3469 | ||
3470 | do_cleanups (old_chain); | |
3471 | } | |
c906108c | 3472 | \f |
c5aa993b | 3473 | |
c906108c SS |
3474 | /* Helper routine for make_symbol_completion_list. */ |
3475 | ||
3476 | static int return_val_size; | |
3477 | static int return_val_index; | |
3478 | static char **return_val; | |
3479 | ||
3480 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3481 | completion_list_add_name \ |
2335f48e | 3482 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3483 | |
3484 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
3485 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
3486 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
3487 | |
3488 | static void | |
fba45db2 KB |
3489 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3490 | char *text, char *word) | |
c906108c SS |
3491 | { |
3492 | int newsize; | |
3493 | int i; | |
3494 | ||
3495 | /* clip symbols that cannot match */ | |
3496 | ||
3497 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
3498 | { | |
3499 | return; | |
3500 | } | |
3501 | ||
c906108c SS |
3502 | /* We have a match for a completion, so add SYMNAME to the current list |
3503 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
3504 | ||
3505 | { | |
3506 | char *new; | |
3507 | if (word == sym_text) | |
3508 | { | |
3509 | new = xmalloc (strlen (symname) + 5); | |
3510 | strcpy (new, symname); | |
3511 | } | |
3512 | else if (word > sym_text) | |
3513 | { | |
3514 | /* Return some portion of symname. */ | |
3515 | new = xmalloc (strlen (symname) + 5); | |
3516 | strcpy (new, symname + (word - sym_text)); | |
3517 | } | |
3518 | else | |
3519 | { | |
3520 | /* Return some of SYM_TEXT plus symname. */ | |
3521 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3522 | strncpy (new, word, sym_text - word); | |
3523 | new[sym_text - word] = '\0'; | |
3524 | strcat (new, symname); | |
3525 | } | |
3526 | ||
c906108c SS |
3527 | if (return_val_index + 3 > return_val_size) |
3528 | { | |
3529 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3530 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3531 | } | |
3532 | return_val[return_val_index++] = new; | |
3533 | return_val[return_val_index] = NULL; | |
3534 | } | |
3535 | } | |
3536 | ||
69636828 AF |
3537 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3538 | again and feed all the selectors into the mill. */ | |
3539 | ||
3540 | static void | |
3541 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, | |
3542 | int sym_text_len, char *text, char *word) | |
3543 | { | |
3544 | static char *tmp = NULL; | |
3545 | static unsigned int tmplen = 0; | |
9af17804 | 3546 | |
69636828 AF |
3547 | char *method, *category, *selector; |
3548 | char *tmp2 = NULL; | |
9af17804 | 3549 | |
69636828 AF |
3550 | method = SYMBOL_NATURAL_NAME (msymbol); |
3551 | ||
3552 | /* Is it a method? */ | |
3553 | if ((method[0] != '-') && (method[0] != '+')) | |
3554 | return; | |
3555 | ||
3556 | if (sym_text[0] == '[') | |
3557 | /* Complete on shortened method method. */ | |
3558 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
9af17804 | 3559 | |
69636828 AF |
3560 | while ((strlen (method) + 1) >= tmplen) |
3561 | { | |
3562 | if (tmplen == 0) | |
3563 | tmplen = 1024; | |
3564 | else | |
3565 | tmplen *= 2; | |
3566 | tmp = xrealloc (tmp, tmplen); | |
3567 | } | |
3568 | selector = strchr (method, ' '); | |
3569 | if (selector != NULL) | |
3570 | selector++; | |
9af17804 | 3571 | |
69636828 | 3572 | category = strchr (method, '('); |
9af17804 | 3573 | |
69636828 AF |
3574 | if ((category != NULL) && (selector != NULL)) |
3575 | { | |
3576 | memcpy (tmp, method, (category - method)); | |
3577 | tmp[category - method] = ' '; | |
3578 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
3579 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3580 | if (sym_text[0] == '[') | |
3581 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
3582 | } | |
9af17804 | 3583 | |
69636828 AF |
3584 | if (selector != NULL) |
3585 | { | |
3586 | /* Complete on selector only. */ | |
3587 | strcpy (tmp, selector); | |
3588 | tmp2 = strchr (tmp, ']'); | |
3589 | if (tmp2 != NULL) | |
3590 | *tmp2 = '\0'; | |
9af17804 | 3591 | |
69636828 AF |
3592 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
3593 | } | |
3594 | } | |
3595 | ||
3596 | /* Break the non-quoted text based on the characters which are in | |
3597 | symbols. FIXME: This should probably be language-specific. */ | |
3598 | ||
3599 | static char * | |
3600 | language_search_unquoted_string (char *text, char *p) | |
3601 | { | |
3602 | for (; p > text; --p) | |
3603 | { | |
3604 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3605 | continue; | |
3606 | else | |
3607 | { | |
3608 | if ((current_language->la_language == language_objc)) | |
3609 | { | |
3610 | if (p[-1] == ':') /* might be part of a method name */ | |
3611 | continue; | |
3612 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
3613 | p -= 2; /* beginning of a method name */ | |
3614 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') | |
3615 | { /* might be part of a method name */ | |
3616 | char *t = p; | |
3617 | ||
3618 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
3619 | that we are in the middle of a method name. However, | |
3620 | finding "-[" or "+[" should be pretty un-ambiguous. | |
3621 | Unfortunately we have to find it now to decide. */ | |
3622 | ||
3623 | while (t > text) | |
3624 | if (isalnum (t[-1]) || t[-1] == '_' || | |
3625 | t[-1] == ' ' || t[-1] == ':' || | |
3626 | t[-1] == '(' || t[-1] == ')') | |
3627 | --t; | |
3628 | else | |
3629 | break; | |
3630 | ||
3631 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
3632 | p = t - 2; /* method name detected */ | |
3633 | /* else we leave with p unchanged */ | |
3634 | } | |
3635 | } | |
3636 | break; | |
3637 | } | |
3638 | } | |
3639 | return p; | |
3640 | } | |
3641 | ||
9a044a89 TT |
3642 | /* Type of the user_data argument passed to add_macro_name. The |
3643 | contents are simply whatever is needed by | |
3644 | completion_list_add_name. */ | |
3645 | struct add_macro_name_data | |
3646 | { | |
3647 | char *sym_text; | |
3648 | int sym_text_len; | |
3649 | char *text; | |
3650 | char *word; | |
3651 | }; | |
3652 | ||
3653 | /* A callback used with macro_for_each and macro_for_each_in_scope. | |
3654 | This adds a macro's name to the current completion list. */ | |
3655 | static void | |
3656 | add_macro_name (const char *name, const struct macro_definition *ignore, | |
3657 | void *user_data) | |
3658 | { | |
3659 | struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data; | |
3660 | completion_list_add_name ((char *) name, | |
3661 | datum->sym_text, datum->sym_text_len, | |
3662 | datum->text, datum->word); | |
3663 | } | |
3664 | ||
c906108c | 3665 | char ** |
41d27058 | 3666 | default_make_symbol_completion_list (char *text, char *word) |
c906108c | 3667 | { |
41d27058 JB |
3668 | /* Problem: All of the symbols have to be copied because readline |
3669 | frees them. I'm not going to worry about this; hopefully there | |
3670 | won't be that many. */ | |
3671 | ||
de4f826b DC |
3672 | struct symbol *sym; |
3673 | struct symtab *s; | |
3674 | struct partial_symtab *ps; | |
3675 | struct minimal_symbol *msymbol; | |
3676 | struct objfile *objfile; | |
3677 | struct block *b, *surrounding_static_block = 0; | |
3678 | struct dict_iterator iter; | |
3679 | int j; | |
c906108c SS |
3680 | struct partial_symbol **psym; |
3681 | /* The symbol we are completing on. Points in same buffer as text. */ | |
3682 | char *sym_text; | |
3683 | /* Length of sym_text. */ | |
3684 | int sym_text_len; | |
3685 | ||
41d27058 | 3686 | /* Now look for the symbol we are supposed to complete on. */ |
c906108c SS |
3687 | { |
3688 | char *p; | |
3689 | char quote_found; | |
3690 | char *quote_pos = NULL; | |
3691 | ||
3692 | /* First see if this is a quoted string. */ | |
3693 | quote_found = '\0'; | |
3694 | for (p = text; *p != '\0'; ++p) | |
3695 | { | |
3696 | if (quote_found != '\0') | |
3697 | { | |
3698 | if (*p == quote_found) | |
3699 | /* Found close quote. */ | |
3700 | quote_found = '\0'; | |
3701 | else if (*p == '\\' && p[1] == quote_found) | |
3702 | /* A backslash followed by the quote character | |
c5aa993b | 3703 | doesn't end the string. */ |
c906108c SS |
3704 | ++p; |
3705 | } | |
3706 | else if (*p == '\'' || *p == '"') | |
3707 | { | |
3708 | quote_found = *p; | |
3709 | quote_pos = p; | |
3710 | } | |
3711 | } | |
3712 | if (quote_found == '\'') | |
3713 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3714 | sym_text = quote_pos + 1; | |
3715 | else if (quote_found == '"') | |
3716 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 3717 | to complete it any other way. */ |
c94fdfd0 EZ |
3718 | { |
3719 | return_val = (char **) xmalloc (sizeof (char *)); | |
3720 | return_val[0] = NULL; | |
3721 | return return_val; | |
3722 | } | |
c906108c SS |
3723 | else |
3724 | { | |
3725 | /* It is not a quoted string. Break it based on the characters | |
3726 | which are in symbols. */ | |
3727 | while (p > text) | |
3728 | { | |
3729 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3730 | --p; | |
3731 | else | |
3732 | break; | |
3733 | } | |
3734 | sym_text = p; | |
3735 | } | |
3736 | } | |
3737 | ||
3738 | sym_text_len = strlen (sym_text); | |
3739 | ||
3740 | return_val_size = 100; | |
3741 | return_val_index = 0; | |
3742 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3743 | return_val[0] = NULL; | |
3744 | ||
3745 | /* Look through the partial symtabs for all symbols which begin | |
3746 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
3747 | ||
3748 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3749 | { |
3750 | /* If the psymtab's been read in we'll get it when we search | |
3751 | through the blockvector. */ | |
3752 | if (ps->readin) | |
3753 | continue; | |
3754 | ||
3755 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
3756 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
3757 | + ps->n_global_syms); | |
3758 | psym++) | |
3759 | { | |
3760 | /* If interrupted, then quit. */ | |
3761 | QUIT; | |
3762 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3763 | } | |
3764 | ||
3765 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
3766 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
3767 | + ps->n_static_syms); | |
3768 | psym++) | |
3769 | { | |
3770 | QUIT; | |
3771 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3772 | } | |
3773 | } | |
c906108c SS |
3774 | |
3775 | /* At this point scan through the misc symbol vectors and add each | |
3776 | symbol you find to the list. Eventually we want to ignore | |
3777 | anything that isn't a text symbol (everything else will be | |
3778 | handled by the psymtab code above). */ | |
3779 | ||
3780 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3781 | { |
3782 | QUIT; | |
3783 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
9af17804 | 3784 | |
69636828 | 3785 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); |
c5aa993b | 3786 | } |
c906108c SS |
3787 | |
3788 | /* Search upwards from currently selected frame (so that we can | |
3789 | complete on local vars. */ | |
3790 | ||
ae767bfb | 3791 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) |
c906108c SS |
3792 | { |
3793 | if (!BLOCK_SUPERBLOCK (b)) | |
3794 | { | |
c5aa993b | 3795 | surrounding_static_block = b; /* For elmin of dups */ |
c906108c | 3796 | } |
c5aa993b | 3797 | |
c906108c | 3798 | /* Also catch fields of types defined in this places which match our |
c5aa993b | 3799 | text string. Only complete on types visible from current context. */ |
c906108c | 3800 | |
de4f826b | 3801 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c906108c | 3802 | { |
69636828 | 3803 | QUIT; |
c906108c SS |
3804 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3805 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3806 | { | |
3807 | struct type *t = SYMBOL_TYPE (sym); | |
3808 | enum type_code c = TYPE_CODE (t); | |
3809 | ||
3810 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
3811 | { | |
3812 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
3813 | { | |
3814 | if (TYPE_FIELD_NAME (t, j)) | |
3815 | { | |
3816 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
c5aa993b | 3817 | sym_text, sym_text_len, text, word); |
c906108c SS |
3818 | } |
3819 | } | |
3820 | } | |
3821 | } | |
3822 | } | |
3823 | } | |
3824 | ||
3825 | /* Go through the symtabs and check the externs and statics for | |
3826 | symbols which match. */ | |
3827 | ||
11309657 | 3828 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3829 | { |
3830 | QUIT; | |
3831 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3832 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3833 | { |
c5aa993b JM |
3834 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3835 | } | |
3836 | } | |
c906108c | 3837 | |
11309657 | 3838 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3839 | { |
3840 | QUIT; | |
3841 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
3842 | /* Don't do this block twice. */ | |
3843 | if (b == surrounding_static_block) | |
3844 | continue; | |
de4f826b | 3845 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3846 | { |
c5aa993b JM |
3847 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3848 | } | |
3849 | } | |
c906108c | 3850 | |
9a044a89 TT |
3851 | if (current_language->la_macro_expansion == macro_expansion_c) |
3852 | { | |
3853 | struct macro_scope *scope; | |
3854 | struct add_macro_name_data datum; | |
3855 | ||
3856 | datum.sym_text = sym_text; | |
3857 | datum.sym_text_len = sym_text_len; | |
3858 | datum.text = text; | |
3859 | datum.word = word; | |
3860 | ||
3861 | /* Add any macros visible in the default scope. Note that this | |
3862 | may yield the occasional wrong result, because an expression | |
3863 | might be evaluated in a scope other than the default. For | |
3864 | example, if the user types "break file:line if <TAB>", the | |
3865 | resulting expression will be evaluated at "file:line" -- but | |
3866 | at there does not seem to be a way to detect this at | |
3867 | completion time. */ | |
3868 | scope = default_macro_scope (); | |
3869 | if (scope) | |
3870 | { | |
3871 | macro_for_each_in_scope (scope->file, scope->line, | |
3872 | add_macro_name, &datum); | |
3873 | xfree (scope); | |
3874 | } | |
3875 | ||
3876 | /* User-defined macros are always visible. */ | |
3877 | macro_for_each (macro_user_macros, add_macro_name, &datum); | |
3878 | } | |
3879 | ||
c906108c SS |
3880 | return (return_val); |
3881 | } | |
3882 | ||
41d27058 JB |
3883 | /* Return a NULL terminated array of all symbols (regardless of class) |
3884 | which begin by matching TEXT. If the answer is no symbols, then | |
3885 | the return value is an array which contains only a NULL pointer. */ | |
3886 | ||
3887 | char ** | |
3888 | make_symbol_completion_list (char *text, char *word) | |
3889 | { | |
3890 | return current_language->la_make_symbol_completion_list (text, word); | |
3891 | } | |
3892 | ||
d8906c6f TJB |
3893 | /* Like make_symbol_completion_list, but suitable for use as a |
3894 | completion function. */ | |
3895 | ||
3896 | char ** | |
3897 | make_symbol_completion_list_fn (struct cmd_list_element *ignore, | |
3898 | char *text, char *word) | |
3899 | { | |
3900 | return make_symbol_completion_list (text, word); | |
3901 | } | |
3902 | ||
c94fdfd0 EZ |
3903 | /* Like make_symbol_completion_list, but returns a list of symbols |
3904 | defined in a source file FILE. */ | |
3905 | ||
3906 | char ** | |
3907 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
3908 | { | |
52f0bd74 AC |
3909 | struct symbol *sym; |
3910 | struct symtab *s; | |
3911 | struct block *b; | |
de4f826b | 3912 | struct dict_iterator iter; |
c94fdfd0 EZ |
3913 | /* The symbol we are completing on. Points in same buffer as text. */ |
3914 | char *sym_text; | |
3915 | /* Length of sym_text. */ | |
3916 | int sym_text_len; | |
3917 | ||
3918 | /* Now look for the symbol we are supposed to complete on. | |
3919 | FIXME: This should be language-specific. */ | |
3920 | { | |
3921 | char *p; | |
3922 | char quote_found; | |
3923 | char *quote_pos = NULL; | |
3924 | ||
3925 | /* First see if this is a quoted string. */ | |
3926 | quote_found = '\0'; | |
3927 | for (p = text; *p != '\0'; ++p) | |
3928 | { | |
3929 | if (quote_found != '\0') | |
3930 | { | |
3931 | if (*p == quote_found) | |
3932 | /* Found close quote. */ | |
3933 | quote_found = '\0'; | |
3934 | else if (*p == '\\' && p[1] == quote_found) | |
3935 | /* A backslash followed by the quote character | |
3936 | doesn't end the string. */ | |
3937 | ++p; | |
3938 | } | |
3939 | else if (*p == '\'' || *p == '"') | |
3940 | { | |
3941 | quote_found = *p; | |
3942 | quote_pos = p; | |
3943 | } | |
3944 | } | |
3945 | if (quote_found == '\'') | |
3946 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3947 | sym_text = quote_pos + 1; | |
3948 | else if (quote_found == '"') | |
3949 | /* A double-quoted string is never a symbol, nor does it make sense | |
3950 | to complete it any other way. */ | |
3951 | { | |
3952 | return_val = (char **) xmalloc (sizeof (char *)); | |
3953 | return_val[0] = NULL; | |
3954 | return return_val; | |
3955 | } | |
3956 | else | |
3957 | { | |
69636828 AF |
3958 | /* Not a quoted string. */ |
3959 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
3960 | } |
3961 | } | |
3962 | ||
3963 | sym_text_len = strlen (sym_text); | |
3964 | ||
3965 | return_val_size = 10; | |
3966 | return_val_index = 0; | |
3967 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3968 | return_val[0] = NULL; | |
3969 | ||
3970 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
3971 | in). */ | |
3972 | s = lookup_symtab (srcfile); | |
3973 | if (s == NULL) | |
3974 | { | |
3975 | /* Maybe they typed the file with leading directories, while the | |
3976 | symbol tables record only its basename. */ | |
31889e00 | 3977 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
3978 | |
3979 | if (tail > srcfile) | |
3980 | s = lookup_symtab (tail); | |
3981 | } | |
3982 | ||
3983 | /* If we have no symtab for that file, return an empty list. */ | |
3984 | if (s == NULL) | |
3985 | return (return_val); | |
3986 | ||
3987 | /* Go through this symtab and check the externs and statics for | |
3988 | symbols which match. */ | |
3989 | ||
3990 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3991 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3992 | { |
c94fdfd0 EZ |
3993 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3994 | } | |
3995 | ||
3996 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 3997 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3998 | { |
c94fdfd0 EZ |
3999 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4000 | } | |
4001 | ||
4002 | return (return_val); | |
4003 | } | |
4004 | ||
4005 | /* A helper function for make_source_files_completion_list. It adds | |
4006 | another file name to a list of possible completions, growing the | |
4007 | list as necessary. */ | |
4008 | ||
4009 | static void | |
4010 | add_filename_to_list (const char *fname, char *text, char *word, | |
4011 | char ***list, int *list_used, int *list_alloced) | |
4012 | { | |
4013 | char *new; | |
4014 | size_t fnlen = strlen (fname); | |
4015 | ||
4016 | if (*list_used + 1 >= *list_alloced) | |
4017 | { | |
4018 | *list_alloced *= 2; | |
4019 | *list = (char **) xrealloc ((char *) *list, | |
4020 | *list_alloced * sizeof (char *)); | |
4021 | } | |
4022 | ||
4023 | if (word == text) | |
4024 | { | |
4025 | /* Return exactly fname. */ | |
4026 | new = xmalloc (fnlen + 5); | |
4027 | strcpy (new, fname); | |
4028 | } | |
4029 | else if (word > text) | |
4030 | { | |
4031 | /* Return some portion of fname. */ | |
4032 | new = xmalloc (fnlen + 5); | |
4033 | strcpy (new, fname + (word - text)); | |
4034 | } | |
4035 | else | |
4036 | { | |
4037 | /* Return some of TEXT plus fname. */ | |
4038 | new = xmalloc (fnlen + (text - word) + 5); | |
4039 | strncpy (new, word, text - word); | |
4040 | new[text - word] = '\0'; | |
4041 | strcat (new, fname); | |
4042 | } | |
4043 | (*list)[*list_used] = new; | |
4044 | (*list)[++*list_used] = NULL; | |
4045 | } | |
4046 | ||
4047 | static int | |
4048 | not_interesting_fname (const char *fname) | |
4049 | { | |
4050 | static const char *illegal_aliens[] = { | |
4051 | "_globals_", /* inserted by coff_symtab_read */ | |
4052 | NULL | |
4053 | }; | |
4054 | int i; | |
4055 | ||
4056 | for (i = 0; illegal_aliens[i]; i++) | |
4057 | { | |
4058 | if (strcmp (fname, illegal_aliens[i]) == 0) | |
4059 | return 1; | |
4060 | } | |
4061 | return 0; | |
4062 | } | |
4063 | ||
4064 | /* Return a NULL terminated array of all source files whose names | |
4065 | begin with matching TEXT. The file names are looked up in the | |
4066 | symbol tables of this program. If the answer is no matchess, then | |
4067 | the return value is an array which contains only a NULL pointer. */ | |
4068 | ||
4069 | char ** | |
4070 | make_source_files_completion_list (char *text, char *word) | |
4071 | { | |
52f0bd74 AC |
4072 | struct symtab *s; |
4073 | struct partial_symtab *ps; | |
4074 | struct objfile *objfile; | |
c94fdfd0 EZ |
4075 | int first = 1; |
4076 | int list_alloced = 1; | |
4077 | int list_used = 0; | |
4078 | size_t text_len = strlen (text); | |
4079 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 4080 | const char *base_name; |
c94fdfd0 EZ |
4081 | |
4082 | list[0] = NULL; | |
4083 | ||
4084 | if (!have_full_symbols () && !have_partial_symbols ()) | |
4085 | return list; | |
4086 | ||
4087 | ALL_SYMTABS (objfile, s) | |
4088 | { | |
4089 | if (not_interesting_fname (s->filename)) | |
4090 | continue; | |
4091 | if (!filename_seen (s->filename, 1, &first) | |
4092 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4093 | && strncasecmp (s->filename, text, text_len) == 0 | |
4094 | #else | |
4095 | && strncmp (s->filename, text, text_len) == 0 | |
4096 | #endif | |
4097 | ) | |
4098 | { | |
4099 | /* This file matches for a completion; add it to the current | |
4100 | list of matches. */ | |
4101 | add_filename_to_list (s->filename, text, word, | |
4102 | &list, &list_used, &list_alloced); | |
4103 | } | |
4104 | else | |
4105 | { | |
4106 | /* NOTE: We allow the user to type a base name when the | |
4107 | debug info records leading directories, but not the other | |
4108 | way around. This is what subroutines of breakpoint | |
4109 | command do when they parse file names. */ | |
31889e00 | 4110 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
4111 | if (base_name != s->filename |
4112 | && !filename_seen (base_name, 1, &first) | |
4113 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4114 | && strncasecmp (base_name, text, text_len) == 0 | |
4115 | #else | |
4116 | && strncmp (base_name, text, text_len) == 0 | |
4117 | #endif | |
4118 | ) | |
4119 | add_filename_to_list (base_name, text, word, | |
4120 | &list, &list_used, &list_alloced); | |
4121 | } | |
4122 | } | |
4123 | ||
4124 | ALL_PSYMTABS (objfile, ps) | |
4125 | { | |
4126 | if (not_interesting_fname (ps->filename)) | |
4127 | continue; | |
4128 | if (!ps->readin) | |
4129 | { | |
4130 | if (!filename_seen (ps->filename, 1, &first) | |
4131 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4132 | && strncasecmp (ps->filename, text, text_len) == 0 | |
4133 | #else | |
4134 | && strncmp (ps->filename, text, text_len) == 0 | |
4135 | #endif | |
4136 | ) | |
4137 | { | |
4138 | /* This file matches for a completion; add it to the | |
4139 | current list of matches. */ | |
4140 | add_filename_to_list (ps->filename, text, word, | |
4141 | &list, &list_used, &list_alloced); | |
4142 | ||
4143 | } | |
4144 | else | |
4145 | { | |
31889e00 | 4146 | base_name = lbasename (ps->filename); |
c94fdfd0 EZ |
4147 | if (base_name != ps->filename |
4148 | && !filename_seen (base_name, 1, &first) | |
4149 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4150 | && strncasecmp (base_name, text, text_len) == 0 | |
4151 | #else | |
4152 | && strncmp (base_name, text, text_len) == 0 | |
4153 | #endif | |
4154 | ) | |
4155 | add_filename_to_list (base_name, text, word, | |
4156 | &list, &list_used, &list_alloced); | |
4157 | } | |
4158 | } | |
4159 | } | |
4160 | ||
4161 | return list; | |
4162 | } | |
4163 | ||
c906108c SS |
4164 | /* Determine if PC is in the prologue of a function. The prologue is the area |
4165 | between the first instruction of a function, and the first executable line. | |
4166 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
4167 | ||
4168 | If non-zero, func_start is where we think the prologue starts, possibly | |
4169 | by previous examination of symbol table information. | |
4170 | */ | |
4171 | ||
4172 | int | |
fba45db2 | 4173 | in_prologue (CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
4174 | { |
4175 | struct symtab_and_line sal; | |
4176 | CORE_ADDR func_addr, func_end; | |
4177 | ||
54cf9c03 EZ |
4178 | /* We have several sources of information we can consult to figure |
4179 | this out. | |
4180 | - Compilers usually emit line number info that marks the prologue | |
4181 | as its own "source line". So the ending address of that "line" | |
4182 | is the end of the prologue. If available, this is the most | |
4183 | reliable method. | |
4184 | - The minimal symbols and partial symbols, which can usually tell | |
4185 | us the starting and ending addresses of a function. | |
4186 | - If we know the function's start address, we can call the | |
a433963d | 4187 | architecture-defined gdbarch_skip_prologue function to analyze the |
54cf9c03 EZ |
4188 | instruction stream and guess where the prologue ends. |
4189 | - Our `func_start' argument; if non-zero, this is the caller's | |
4190 | best guess as to the function's entry point. At the time of | |
4191 | this writing, handle_inferior_event doesn't get this right, so | |
4192 | it should be our last resort. */ | |
4193 | ||
4194 | /* Consult the partial symbol table, to find which function | |
4195 | the PC is in. */ | |
4196 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
4197 | { | |
4198 | CORE_ADDR prologue_end; | |
c906108c | 4199 | |
54cf9c03 EZ |
4200 | /* We don't even have minsym information, so fall back to using |
4201 | func_start, if given. */ | |
4202 | if (! func_start) | |
4203 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 4204 | |
a433963d | 4205 | prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start); |
c906108c | 4206 | |
54cf9c03 EZ |
4207 | return func_start <= pc && pc < prologue_end; |
4208 | } | |
c906108c | 4209 | |
54cf9c03 EZ |
4210 | /* If we have line number information for the function, that's |
4211 | usually pretty reliable. */ | |
4212 | sal = find_pc_line (func_addr, 0); | |
c906108c | 4213 | |
54cf9c03 EZ |
4214 | /* Now sal describes the source line at the function's entry point, |
4215 | which (by convention) is the prologue. The end of that "line", | |
4216 | sal.end, is the end of the prologue. | |
4217 | ||
4218 | Note that, for functions whose source code is all on a single | |
4219 | line, the line number information doesn't always end up this way. | |
4220 | So we must verify that our purported end-of-prologue address is | |
4221 | *within* the function, not at its start or end. */ | |
4222 | if (sal.line == 0 | |
4223 | || sal.end <= func_addr | |
4224 | || func_end <= sal.end) | |
4225 | { | |
4226 | /* We don't have any good line number info, so use the minsym | |
4227 | information, together with the architecture-specific prologue | |
4228 | scanning code. */ | |
a433963d UW |
4229 | CORE_ADDR prologue_end = gdbarch_skip_prologue |
4230 | (current_gdbarch, func_addr); | |
c906108c | 4231 | |
54cf9c03 EZ |
4232 | return func_addr <= pc && pc < prologue_end; |
4233 | } | |
c906108c | 4234 | |
54cf9c03 EZ |
4235 | /* We have line number info, and it looks good. */ |
4236 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4237 | } |
4238 | ||
634aa483 AC |
4239 | /* Given PC at the function's start address, attempt to find the |
4240 | prologue end using SAL information. Return zero if the skip fails. | |
4241 | ||
4242 | A non-optimized prologue traditionally has one SAL for the function | |
4243 | and a second for the function body. A single line function has | |
4244 | them both pointing at the same line. | |
4245 | ||
4246 | An optimized prologue is similar but the prologue may contain | |
4247 | instructions (SALs) from the instruction body. Need to skip those | |
4248 | while not getting into the function body. | |
4249 | ||
4250 | The functions end point and an increasing SAL line are used as | |
4251 | indicators of the prologue's endpoint. | |
4252 | ||
4253 | This code is based on the function refine_prologue_limit (versions | |
4254 | found in both ia64 and ppc). */ | |
4255 | ||
4256 | CORE_ADDR | |
4257 | skip_prologue_using_sal (CORE_ADDR func_addr) | |
4258 | { | |
4259 | struct symtab_and_line prologue_sal; | |
4260 | CORE_ADDR start_pc; | |
4261 | CORE_ADDR end_pc; | |
d54be744 | 4262 | struct block *bl; |
634aa483 AC |
4263 | |
4264 | /* Get an initial range for the function. */ | |
4265 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
cbf3b44a | 4266 | start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch); |
634aa483 AC |
4267 | |
4268 | prologue_sal = find_pc_line (start_pc, 0); | |
4269 | if (prologue_sal.line != 0) | |
4270 | { | |
d54be744 DJ |
4271 | /* For langauges other than assembly, treat two consecutive line |
4272 | entries at the same address as a zero-instruction prologue. | |
4273 | The GNU assembler emits separate line notes for each instruction | |
4274 | in a multi-instruction macro, but compilers generally will not | |
4275 | do this. */ | |
4276 | if (prologue_sal.symtab->language != language_asm) | |
4277 | { | |
4278 | struct linetable *linetable = LINETABLE (prologue_sal.symtab); | |
4279 | int exact; | |
4280 | int idx = 0; | |
4281 | ||
4282 | /* Skip any earlier lines, and any end-of-sequence marker | |
4283 | from a previous function. */ | |
4284 | while (linetable->item[idx].pc != prologue_sal.pc | |
4285 | || linetable->item[idx].line == 0) | |
4286 | idx++; | |
4287 | ||
4288 | if (idx+1 < linetable->nitems | |
4289 | && linetable->item[idx+1].line != 0 | |
4290 | && linetable->item[idx+1].pc == start_pc) | |
4291 | return start_pc; | |
4292 | } | |
4293 | ||
576c2025 FF |
4294 | /* If there is only one sal that covers the entire function, |
4295 | then it is probably a single line function, like | |
4296 | "foo(){}". */ | |
91934273 | 4297 | if (prologue_sal.end >= end_pc) |
4e463ff5 | 4298 | return 0; |
d54be744 | 4299 | |
634aa483 AC |
4300 | while (prologue_sal.end < end_pc) |
4301 | { | |
4302 | struct symtab_and_line sal; | |
4303 | ||
4304 | sal = find_pc_line (prologue_sal.end, 0); | |
4305 | if (sal.line == 0) | |
4306 | break; | |
4307 | /* Assume that a consecutive SAL for the same (or larger) | |
4308 | line mark the prologue -> body transition. */ | |
4309 | if (sal.line >= prologue_sal.line) | |
4310 | break; | |
4311 | /* The case in which compiler's optimizer/scheduler has | |
4312 | moved instructions into the prologue. We look ahead in | |
4313 | the function looking for address ranges whose | |
4314 | corresponding line number is less the first one that we | |
4315 | found for the function. This is more conservative then | |
4316 | refine_prologue_limit which scans a large number of SALs | |
4317 | looking for any in the prologue */ | |
4318 | prologue_sal = sal; | |
4319 | } | |
4320 | } | |
d54be744 DJ |
4321 | |
4322 | if (prologue_sal.end < end_pc) | |
4323 | /* Return the end of this line, or zero if we could not find a | |
4324 | line. */ | |
4325 | return prologue_sal.end; | |
4326 | else | |
4327 | /* Don't return END_PC, which is past the end of the function. */ | |
4328 | return prologue_sal.pc; | |
634aa483 | 4329 | } |
c906108c | 4330 | \f |
50641945 FN |
4331 | struct symtabs_and_lines |
4332 | decode_line_spec (char *string, int funfirstline) | |
4333 | { | |
4334 | struct symtabs_and_lines sals; | |
0378c332 | 4335 | struct symtab_and_line cursal; |
9af17804 | 4336 | |
50641945 | 4337 | if (string == 0) |
8a3fe4f8 | 4338 | error (_("Empty line specification.")); |
9af17804 | 4339 | |
0378c332 | 4340 | /* We use whatever is set as the current source line. We do not try |
9af17804 | 4341 | and get a default or it will recursively call us! */ |
0378c332 | 4342 | cursal = get_current_source_symtab_and_line (); |
9af17804 | 4343 | |
50641945 | 4344 | sals = decode_line_1 (&string, funfirstline, |
0378c332 | 4345 | cursal.symtab, cursal.line, |
bffe1ece | 4346 | (char ***) NULL, NULL); |
0378c332 | 4347 | |
50641945 | 4348 | if (*string) |
8a3fe4f8 | 4349 | error (_("Junk at end of line specification: %s"), string); |
50641945 FN |
4350 | return sals; |
4351 | } | |
c5aa993b | 4352 | |
51cc5b07 AC |
4353 | /* Track MAIN */ |
4354 | static char *name_of_main; | |
4355 | ||
4356 | void | |
4357 | set_main_name (const char *name) | |
4358 | { | |
4359 | if (name_of_main != NULL) | |
4360 | { | |
4361 | xfree (name_of_main); | |
4362 | name_of_main = NULL; | |
4363 | } | |
4364 | if (name != NULL) | |
4365 | { | |
4366 | name_of_main = xstrdup (name); | |
4367 | } | |
4368 | } | |
4369 | ||
ea53e89f JB |
4370 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4371 | accordingly. */ | |
4372 | ||
4373 | static void | |
4374 | find_main_name (void) | |
4375 | { | |
cd6c7346 | 4376 | const char *new_main_name; |
ea53e89f JB |
4377 | |
4378 | /* Try to see if the main procedure is in Ada. */ | |
4379 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
4380 | be to add a new method in the language vector, and call this | |
4381 | method for each language until one of them returns a non-empty | |
4382 | name. This would allow us to remove this hard-coded call to | |
4383 | an Ada function. It is not clear that this is a better approach | |
4384 | at this point, because all methods need to be written in a way | |
4385 | such that false positives never be returned. For instance, it is | |
4386 | important that a method does not return a wrong name for the main | |
4387 | procedure if the main procedure is actually written in a different | |
4388 | language. It is easy to guaranty this with Ada, since we use a | |
4389 | special symbol generated only when the main in Ada to find the name | |
4390 | of the main procedure. It is difficult however to see how this can | |
4391 | be guarantied for languages such as C, for instance. This suggests | |
4392 | that order of call for these methods becomes important, which means | |
4393 | a more complicated approach. */ | |
4394 | new_main_name = ada_main_name (); | |
4395 | if (new_main_name != NULL) | |
9af17804 | 4396 | { |
ea53e89f JB |
4397 | set_main_name (new_main_name); |
4398 | return; | |
4399 | } | |
4400 | ||
cd6c7346 PM |
4401 | new_main_name = pascal_main_name (); |
4402 | if (new_main_name != NULL) | |
9af17804 | 4403 | { |
cd6c7346 PM |
4404 | set_main_name (new_main_name); |
4405 | return; | |
4406 | } | |
4407 | ||
ea53e89f JB |
4408 | /* The languages above didn't identify the name of the main procedure. |
4409 | Fallback to "main". */ | |
4410 | set_main_name ("main"); | |
4411 | } | |
4412 | ||
51cc5b07 AC |
4413 | char * |
4414 | main_name (void) | |
4415 | { | |
ea53e89f JB |
4416 | if (name_of_main == NULL) |
4417 | find_main_name (); | |
4418 | ||
4419 | return name_of_main; | |
51cc5b07 AC |
4420 | } |
4421 | ||
ea53e89f JB |
4422 | /* Handle ``executable_changed'' events for the symtab module. */ |
4423 | ||
4424 | static void | |
781b42b0 | 4425 | symtab_observer_executable_changed (void) |
ea53e89f JB |
4426 | { |
4427 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
4428 | set_main_name (NULL); | |
4429 | } | |
51cc5b07 | 4430 | |
ed0616c6 VP |
4431 | /* Helper to expand_line_sal below. Appends new sal to SAL, |
4432 | initializing it from SYMTAB, LINENO and PC. */ | |
4433 | static void | |
4434 | append_expanded_sal (struct symtabs_and_lines *sal, | |
4435 | struct symtab *symtab, | |
4436 | int lineno, CORE_ADDR pc) | |
4437 | { | |
4438 | CORE_ADDR func_addr, func_end; | |
9af17804 DE |
4439 | |
4440 | sal->sals = xrealloc (sal->sals, | |
4441 | sizeof (sal->sals[0]) | |
ed0616c6 VP |
4442 | * (sal->nelts + 1)); |
4443 | init_sal (sal->sals + sal->nelts); | |
4444 | sal->sals[sal->nelts].symtab = symtab; | |
4445 | sal->sals[sal->nelts].section = NULL; | |
4446 | sal->sals[sal->nelts].end = 0; | |
9af17804 | 4447 | sal->sals[sal->nelts].line = lineno; |
ed0616c6 | 4448 | sal->sals[sal->nelts].pc = pc; |
9af17804 | 4449 | ++sal->nelts; |
ed0616c6 VP |
4450 | } |
4451 | ||
4452 | /* Compute a set of all sals in | |
4453 | the entire program that correspond to same file | |
4454 | and line as SAL and return those. If there | |
4455 | are several sals that belong to the same block, | |
4456 | only one sal for the block is included in results. */ | |
9af17804 | 4457 | |
ed0616c6 VP |
4458 | struct symtabs_and_lines |
4459 | expand_line_sal (struct symtab_and_line sal) | |
4460 | { | |
4461 | struct symtabs_and_lines ret, this_line; | |
4462 | int i, j; | |
4463 | struct objfile *objfile; | |
4464 | struct partial_symtab *psymtab; | |
4465 | struct symtab *symtab; | |
4466 | int lineno; | |
4467 | int deleted = 0; | |
4468 | struct block **blocks = NULL; | |
4469 | int *filter; | |
4470 | ||
4471 | ret.nelts = 0; | |
4472 | ret.sals = NULL; | |
4473 | ||
4474 | if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0) | |
4475 | { | |
4476 | ret.sals = xmalloc (sizeof (struct symtab_and_line)); | |
4477 | ret.sals[0] = sal; | |
4478 | ret.nelts = 1; | |
4479 | return ret; | |
4480 | } | |
4481 | else | |
4482 | { | |
4483 | struct linetable_entry *best_item = 0; | |
4484 | struct symtab *best_symtab = 0; | |
4485 | int exact = 0; | |
4486 | ||
4487 | lineno = sal.line; | |
4488 | ||
9af17804 DE |
4489 | /* We need to find all symtabs for a file which name |
4490 | is described by sal. We cannot just directly | |
ed0616c6 | 4491 | iterate over symtabs, since a symtab might not be |
9af17804 | 4492 | yet created. We also cannot iterate over psymtabs, |
ed0616c6 VP |
4493 | calling PSYMTAB_TO_SYMTAB and working on that symtab, |
4494 | since PSYMTAB_TO_SYMTAB will return NULL for psymtab | |
9af17804 | 4495 | corresponding to an included file. Therefore, we do |
ed0616c6 VP |
4496 | first pass over psymtabs, reading in those with |
4497 | the right name. Then, we iterate over symtabs, knowing | |
4498 | that all symtabs we're interested in are loaded. */ | |
4499 | ||
4500 | ALL_PSYMTABS (objfile, psymtab) | |
4501 | { | |
4502 | if (strcmp (sal.symtab->filename, | |
4503 | psymtab->filename) == 0) | |
4504 | PSYMTAB_TO_SYMTAB (psymtab); | |
4505 | } | |
4506 | ||
9af17804 | 4507 | /* For each symtab, we add all pcs to ret.sals. I'm actually |
ed0616c6 | 4508 | not sure what to do if we have exact match in one symtab, |
9af17804 DE |
4509 | and non-exact match on another symtab. */ |
4510 | ||
ed0616c6 VP |
4511 | ALL_SYMTABS (objfile, symtab) |
4512 | { | |
4513 | if (strcmp (sal.symtab->filename, | |
4514 | symtab->filename) == 0) | |
4515 | { | |
4516 | struct linetable *l; | |
4517 | int len; | |
4518 | l = LINETABLE (symtab); | |
4519 | if (!l) | |
4520 | continue; | |
4521 | len = l->nitems; | |
4522 | ||
4523 | for (j = 0; j < len; j++) | |
4524 | { | |
4525 | struct linetable_entry *item = &(l->item[j]); | |
4526 | ||
4527 | if (item->line == lineno) | |
4528 | { | |
4529 | exact = 1; | |
4530 | append_expanded_sal (&ret, symtab, lineno, item->pc); | |
9af17804 | 4531 | } |
ed0616c6 VP |
4532 | else if (!exact && item->line > lineno |
4533 | && (best_item == NULL || item->line < best_item->line)) | |
ed0616c6 VP |
4534 | { |
4535 | best_item = item; | |
4536 | best_symtab = symtab; | |
4537 | } | |
4538 | } | |
4539 | } | |
4540 | } | |
4541 | if (!exact && best_item) | |
4542 | append_expanded_sal (&ret, best_symtab, lineno, best_item->pc); | |
4543 | } | |
4544 | ||
4545 | /* For optimized code, compiler can scatter one source line accross | |
4546 | disjoint ranges of PC values, even when no duplicate functions | |
4547 | or inline functions are involved. For example, 'for (;;)' inside | |
4548 | non-template non-inline non-ctor-or-dtor function can result | |
4549 | in two PC ranges. In this case, we don't want to set breakpoint | |
4550 | on first PC of each range. To filter such cases, we use containing | |
4551 | blocks -- for each PC found above we see if there are other PCs | |
9af17804 | 4552 | that are in the same block. If yes, the other PCs are filtered out. */ |
ed0616c6 | 4553 | |
db009c8a JB |
4554 | filter = alloca (ret.nelts * sizeof (int)); |
4555 | blocks = alloca (ret.nelts * sizeof (struct block *)); | |
ed0616c6 VP |
4556 | for (i = 0; i < ret.nelts; ++i) |
4557 | { | |
4558 | filter[i] = 1; | |
4559 | blocks[i] = block_for_pc (ret.sals[i].pc); | |
4560 | } | |
4561 | ||
4562 | for (i = 0; i < ret.nelts; ++i) | |
4563 | if (blocks[i] != NULL) | |
4564 | for (j = i+1; j < ret.nelts; ++j) | |
4565 | if (blocks[j] == blocks[i]) | |
4566 | { | |
4567 | filter[j] = 0; | |
4568 | ++deleted; | |
4569 | break; | |
4570 | } | |
9af17804 | 4571 | |
ed0616c6 | 4572 | { |
9af17804 | 4573 | struct symtab_and_line *final = |
ed0616c6 | 4574 | xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted)); |
9af17804 | 4575 | |
ed0616c6 VP |
4576 | for (i = 0, j = 0; i < ret.nelts; ++i) |
4577 | if (filter[i]) | |
4578 | final[j++] = ret.sals[i]; | |
9af17804 | 4579 | |
ed0616c6 VP |
4580 | ret.nelts -= deleted; |
4581 | xfree (ret.sals); | |
4582 | ret.sals = final; | |
4583 | } | |
4584 | ||
4585 | return ret; | |
4586 | } | |
4587 | ||
4588 | ||
c906108c | 4589 | void |
fba45db2 | 4590 | _initialize_symtab (void) |
c906108c | 4591 | { |
1bedd215 AC |
4592 | add_info ("variables", variables_info, _("\ |
4593 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 4594 | if (dbx_commands) |
1bedd215 AC |
4595 | add_com ("whereis", class_info, variables_info, _("\ |
4596 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4597 | |
4598 | add_info ("functions", functions_info, | |
1bedd215 | 4599 | _("All function names, or those matching REGEXP.")); |
c906108c SS |
4600 | |
4601 | /* FIXME: This command has at least the following problems: | |
4602 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4603 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4604 | typedef struct foo *FOO |
4605 | type_print prints "FOO" when we want to make it (in this situation) | |
4606 | print "struct foo *". | |
c906108c SS |
4607 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4608 | there is much disagreement "info types" can be fixed). */ | |
4609 | add_info ("types", types_info, | |
1bedd215 | 4610 | _("All type names, or those matching REGEXP.")); |
c906108c | 4611 | |
c906108c | 4612 | add_info ("sources", sources_info, |
1bedd215 | 4613 | _("Source files in the program.")); |
c906108c SS |
4614 | |
4615 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 4616 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
4617 | |
4618 | if (xdb_commands) | |
4619 | { | |
1bedd215 AC |
4620 | add_com ("lf", class_info, sources_info, |
4621 | _("Source files in the program")); | |
4622 | add_com ("lg", class_info, variables_info, _("\ | |
4623 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4624 | } |
4625 | ||
717d2f5a JB |
4626 | add_setshow_enum_cmd ("multiple-symbols", no_class, |
4627 | multiple_symbols_modes, &multiple_symbols_mode, | |
4628 | _("\ | |
4629 | Set the debugger behavior when more than one symbol are possible matches\n\ | |
4630 | in an expression."), _("\ | |
4631 | Show how the debugger handles ambiguities in expressions."), _("\ | |
4632 | Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), | |
4633 | NULL, NULL, &setlist, &showlist); | |
4634 | ||
c906108c SS |
4635 | /* Initialize the one built-in type that isn't language dependent... */ |
4636 | builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0, | |
4637 | "<unknown type>", (struct objfile *) NULL); | |
ea53e89f JB |
4638 | |
4639 | observer_attach_executable_changed (symtab_observer_executable_changed); | |
c906108c | 4640 | } |