]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
6aba47ca DJ |
3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007 | |
083ae935 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "target.h" | |
28 | #include "value.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "call-cmds.h" | |
88987551 | 33 | #include "gdb_regex.h" |
c906108c SS |
34 | #include "expression.h" |
35 | #include "language.h" | |
36 | #include "demangle.h" | |
37 | #include "inferior.h" | |
c5f0f3d0 | 38 | #include "linespec.h" |
0378c332 | 39 | #include "source.h" |
a7fdf62f | 40 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 41 | #include "objc-lang.h" |
1f8173e6 | 42 | #include "ada-lang.h" |
c906108c | 43 | |
2de7ced7 DJ |
44 | #include "hashtab.h" |
45 | ||
04ea0df1 | 46 | #include "gdb_obstack.h" |
fe898f56 | 47 | #include "block.h" |
de4f826b | 48 | #include "dictionary.h" |
c906108c SS |
49 | |
50 | #include <sys/types.h> | |
51 | #include <fcntl.h> | |
52 | #include "gdb_string.h" | |
53 | #include "gdb_stat.h" | |
54 | #include <ctype.h> | |
015a42b4 | 55 | #include "cp-abi.h" |
ea53e89f | 56 | #include "observer.h" |
94277a38 | 57 | #include "gdb_assert.h" |
3a40aaa0 | 58 | #include "solist.h" |
c906108c | 59 | |
c906108c SS |
60 | /* Prototypes for local functions */ |
61 | ||
a14ed312 | 62 | static void completion_list_add_name (char *, char *, int, char *, char *); |
c906108c | 63 | |
a14ed312 | 64 | static void rbreak_command (char *, int); |
c906108c | 65 | |
a14ed312 | 66 | static void types_info (char *, int); |
c906108c | 67 | |
a14ed312 | 68 | static void functions_info (char *, int); |
c906108c | 69 | |
a14ed312 | 70 | static void variables_info (char *, int); |
c906108c | 71 | |
a14ed312 | 72 | static void sources_info (char *, int); |
c906108c | 73 | |
d092d1a2 | 74 | static void output_source_filename (const char *, int *); |
c906108c | 75 | |
a14ed312 | 76 | static int find_line_common (struct linetable *, int, int *); |
c906108c | 77 | |
50641945 FN |
78 | /* This one is used by linespec.c */ |
79 | ||
80 | char *operator_chars (char *p, char **end); | |
81 | ||
3121eff0 | 82 | static struct symbol *lookup_symbol_aux (const char *name, |
5ad1c190 | 83 | const char *linkage_name, |
3121eff0 | 84 | const struct block *block, |
176620f1 | 85 | const domain_enum domain, |
53c5240f | 86 | enum language language, |
3121eff0 DJ |
87 | int *is_a_field_of_this, |
88 | struct symtab **symtab); | |
fba7f19c | 89 | |
e4051eeb DC |
90 | static |
91 | struct symbol *lookup_symbol_aux_local (const char *name, | |
5ad1c190 | 92 | const char *linkage_name, |
e4051eeb | 93 | const struct block *block, |
176620f1 | 94 | const domain_enum domain, |
89a9d1b1 | 95 | struct symtab **symtab); |
8155455b DC |
96 | |
97 | static | |
98 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
99 | const char *name, | |
5ad1c190 | 100 | const char *linkage_name, |
176620f1 | 101 | const domain_enum domain, |
8155455b DC |
102 | struct symtab **symtab); |
103 | ||
104 | static | |
105 | struct symbol *lookup_symbol_aux_psymtabs (int block_index, | |
106 | const char *name, | |
5ad1c190 | 107 | const char *linkage_name, |
176620f1 | 108 | const domain_enum domain, |
8155455b | 109 | struct symtab **symtab); |
fba7f19c | 110 | |
a14ed312 | 111 | static void fixup_section (struct general_symbol_info *, struct objfile *); |
c906108c | 112 | |
a14ed312 | 113 | static int file_matches (char *, char **, int); |
c906108c | 114 | |
176620f1 | 115 | static void print_symbol_info (domain_enum, |
a14ed312 | 116 | struct symtab *, struct symbol *, int, char *); |
c906108c | 117 | |
a14ed312 | 118 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 119 | |
176620f1 | 120 | static void symtab_symbol_info (char *, domain_enum, int); |
c906108c | 121 | |
a14ed312 | 122 | void _initialize_symtab (void); |
c906108c SS |
123 | |
124 | /* */ | |
125 | ||
126 | /* The single non-language-specific builtin type */ | |
127 | struct type *builtin_type_error; | |
128 | ||
129 | /* Block in which the most recently searched-for symbol was found. | |
130 | Might be better to make this a parameter to lookup_symbol and | |
131 | value_of_this. */ | |
132 | ||
133 | const struct block *block_found; | |
134 | ||
c906108c SS |
135 | /* Check for a symtab of a specific name; first in symtabs, then in |
136 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
137 | in the symtab filename will also work. */ | |
138 | ||
1b15f1fa TT |
139 | struct symtab * |
140 | lookup_symtab (const char *name) | |
c906108c | 141 | { |
52f0bd74 AC |
142 | struct symtab *s; |
143 | struct partial_symtab *ps; | |
144 | struct objfile *objfile; | |
58d370e0 | 145 | char *real_path = NULL; |
f079a2e5 | 146 | char *full_path = NULL; |
58d370e0 TT |
147 | |
148 | /* Here we are interested in canonicalizing an absolute path, not | |
149 | absolutizing a relative path. */ | |
150 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
151 | { |
152 | full_path = xfullpath (name); | |
153 | make_cleanup (xfree, full_path); | |
154 | real_path = gdb_realpath (name); | |
155 | make_cleanup (xfree, real_path); | |
156 | } | |
c906108c | 157 | |
c5aa993b | 158 | got_symtab: |
c906108c SS |
159 | |
160 | /* First, search for an exact match */ | |
161 | ||
162 | ALL_SYMTABS (objfile, s) | |
58d370e0 | 163 | { |
a7fdf62f | 164 | if (FILENAME_CMP (name, s->filename) == 0) |
58d370e0 | 165 | { |
58d370e0 TT |
166 | return s; |
167 | } | |
f079a2e5 | 168 | |
58d370e0 TT |
169 | /* If the user gave us an absolute path, try to find the file in |
170 | this symtab and use its absolute path. */ | |
f079a2e5 JB |
171 | |
172 | if (full_path != NULL) | |
173 | { | |
09bcec80 BR |
174 | const char *fp = symtab_to_fullname (s); |
175 | if (fp != NULL && FILENAME_CMP (full_path, fp) == 0) | |
176 | { | |
177 | return s; | |
178 | } | |
f079a2e5 JB |
179 | } |
180 | ||
58d370e0 TT |
181 | if (real_path != NULL) |
182 | { | |
09bcec80 BR |
183 | char *fullname = symtab_to_fullname (s); |
184 | if (fullname != NULL) | |
185 | { | |
186 | char *rp = gdb_realpath (fullname); | |
187 | make_cleanup (xfree, rp); | |
188 | if (FILENAME_CMP (real_path, rp) == 0) | |
189 | { | |
190 | return s; | |
191 | } | |
192 | } | |
58d370e0 TT |
193 | } |
194 | } | |
195 | ||
c906108c SS |
196 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
197 | ||
caadab2c | 198 | if (lbasename (name) == name) |
c906108c | 199 | ALL_SYMTABS (objfile, s) |
c5aa993b | 200 | { |
31889e00 | 201 | if (FILENAME_CMP (lbasename (s->filename), name) == 0) |
c5aa993b JM |
202 | return s; |
203 | } | |
c906108c SS |
204 | |
205 | /* Same search rules as above apply here, but now we look thru the | |
206 | psymtabs. */ | |
207 | ||
208 | ps = lookup_partial_symtab (name); | |
209 | if (!ps) | |
210 | return (NULL); | |
211 | ||
c5aa993b | 212 | if (ps->readin) |
8a3fe4f8 | 213 | error (_("Internal: readin %s pst for `%s' found when no symtab found."), |
c5aa993b | 214 | ps->filename, name); |
c906108c SS |
215 | |
216 | s = PSYMTAB_TO_SYMTAB (ps); | |
217 | ||
218 | if (s) | |
219 | return s; | |
220 | ||
221 | /* At this point, we have located the psymtab for this file, but | |
222 | the conversion to a symtab has failed. This usually happens | |
223 | when we are looking up an include file. In this case, | |
224 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
225 | been created. So, we need to run through the symtabs again in | |
226 | order to find the file. | |
227 | XXX - This is a crock, and should be fixed inside of the the | |
228 | symbol parsing routines. */ | |
229 | goto got_symtab; | |
230 | } | |
231 | ||
c906108c SS |
232 | /* Lookup the partial symbol table of a source file named NAME. |
233 | *If* there is no '/' in the name, a match after a '/' | |
234 | in the psymtab filename will also work. */ | |
235 | ||
236 | struct partial_symtab * | |
1f8cc6db | 237 | lookup_partial_symtab (const char *name) |
c906108c | 238 | { |
52f0bd74 AC |
239 | struct partial_symtab *pst; |
240 | struct objfile *objfile; | |
f079a2e5 | 241 | char *full_path = NULL; |
58d370e0 TT |
242 | char *real_path = NULL; |
243 | ||
244 | /* Here we are interested in canonicalizing an absolute path, not | |
245 | absolutizing a relative path. */ | |
246 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
247 | { |
248 | full_path = xfullpath (name); | |
249 | make_cleanup (xfree, full_path); | |
250 | real_path = gdb_realpath (name); | |
251 | make_cleanup (xfree, real_path); | |
252 | } | |
c5aa993b | 253 | |
c906108c | 254 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 255 | { |
a7fdf62f | 256 | if (FILENAME_CMP (name, pst->filename) == 0) |
c5aa993b JM |
257 | { |
258 | return (pst); | |
259 | } | |
f079a2e5 | 260 | |
58d370e0 TT |
261 | /* If the user gave us an absolute path, try to find the file in |
262 | this symtab and use its absolute path. */ | |
f079a2e5 | 263 | if (full_path != NULL) |
58d370e0 | 264 | { |
d9c8471e | 265 | psymtab_to_fullname (pst); |
58d370e0 | 266 | if (pst->fullname != NULL |
f079a2e5 | 267 | && FILENAME_CMP (full_path, pst->fullname) == 0) |
58d370e0 | 268 | { |
58d370e0 TT |
269 | return pst; |
270 | } | |
271 | } | |
c906108c | 272 | |
f079a2e5 JB |
273 | if (real_path != NULL) |
274 | { | |
275 | char *rp = NULL; | |
d9c8471e | 276 | psymtab_to_fullname (pst); |
f079a2e5 JB |
277 | if (pst->fullname != NULL) |
278 | { | |
279 | rp = gdb_realpath (pst->fullname); | |
280 | make_cleanup (xfree, rp); | |
281 | } | |
282 | if (rp != NULL && FILENAME_CMP (real_path, rp) == 0) | |
283 | { | |
284 | return pst; | |
285 | } | |
286 | } | |
287 | } | |
58d370e0 | 288 | |
c906108c SS |
289 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
290 | ||
caadab2c | 291 | if (lbasename (name) == name) |
c906108c | 292 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 293 | { |
31889e00 | 294 | if (FILENAME_CMP (lbasename (pst->filename), name) == 0) |
c5aa993b JM |
295 | return (pst); |
296 | } | |
c906108c SS |
297 | |
298 | return (NULL); | |
299 | } | |
300 | \f | |
301 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
302 | full method name, which consist of the class name (from T), the unadorned | |
303 | method name from METHOD_ID, and the signature for the specific overload, | |
304 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
305 | ||
306 | char * | |
fba45db2 | 307 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
308 | { |
309 | int mangled_name_len; | |
310 | char *mangled_name; | |
311 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
312 | struct fn_field *method = &f[signature_id]; | |
313 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
314 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
315 | char *newname = type_name_no_tag (type); | |
316 | ||
317 | /* Does the form of physname indicate that it is the full mangled name | |
318 | of a constructor (not just the args)? */ | |
319 | int is_full_physname_constructor; | |
320 | ||
321 | int is_constructor; | |
015a42b4 | 322 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
323 | /* Need a new type prefix. */ |
324 | char *const_prefix = method->is_const ? "C" : ""; | |
325 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
326 | char buf[20]; | |
327 | int len = (newname == NULL ? 0 : strlen (newname)); | |
328 | ||
43630227 PS |
329 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
330 | or an operator name. */ | |
331 | if ((physname[0] == '_' && physname[1] == 'Z') | |
332 | || is_operator_name (field_name)) | |
235d1e03 EZ |
333 | return xstrdup (physname); |
334 | ||
015a42b4 | 335 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c SS |
336 | |
337 | is_constructor = | |
6314a349 | 338 | is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0); |
c906108c SS |
339 | |
340 | if (!is_destructor) | |
c5aa993b | 341 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
342 | |
343 | if (is_destructor || is_full_physname_constructor) | |
344 | { | |
c5aa993b JM |
345 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
346 | strcpy (mangled_name, physname); | |
c906108c SS |
347 | return mangled_name; |
348 | } | |
349 | ||
350 | if (len == 0) | |
351 | { | |
352 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
353 | } | |
354 | else if (physname[0] == 't' || physname[0] == 'Q') | |
355 | { | |
356 | /* The physname for template and qualified methods already includes | |
c5aa993b | 357 | the class name. */ |
c906108c SS |
358 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
359 | newname = NULL; | |
360 | len = 0; | |
361 | } | |
362 | else | |
363 | { | |
364 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
365 | } | |
366 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 367 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 368 | |
c906108c | 369 | { |
c5aa993b | 370 | mangled_name = (char *) xmalloc (mangled_name_len); |
c906108c SS |
371 | if (is_constructor) |
372 | mangled_name[0] = '\0'; | |
373 | else | |
374 | strcpy (mangled_name, field_name); | |
375 | } | |
376 | strcat (mangled_name, buf); | |
377 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
378 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c5aa993b | 379 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
380 | if (newname != NULL) |
381 | strcat (mangled_name, newname); | |
382 | ||
383 | strcat (mangled_name, physname); | |
384 | return (mangled_name); | |
385 | } | |
12af6855 JB |
386 | |
387 | \f | |
89aad1f9 EZ |
388 | /* Initialize the language dependent portion of a symbol |
389 | depending upon the language for the symbol. */ | |
390 | void | |
391 | symbol_init_language_specific (struct general_symbol_info *gsymbol, | |
392 | enum language language) | |
393 | { | |
394 | gsymbol->language = language; | |
395 | if (gsymbol->language == language_cplus | |
5784d15e AF |
396 | || gsymbol->language == language_java |
397 | || gsymbol->language == language_objc) | |
89aad1f9 EZ |
398 | { |
399 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
400 | } | |
89aad1f9 EZ |
401 | else |
402 | { | |
403 | memset (&gsymbol->language_specific, 0, | |
404 | sizeof (gsymbol->language_specific)); | |
405 | } | |
406 | } | |
407 | ||
2de7ced7 DJ |
408 | /* Functions to initialize a symbol's mangled name. */ |
409 | ||
410 | /* Create the hash table used for demangled names. Each hash entry is | |
411 | a pair of strings; one for the mangled name and one for the demangled | |
412 | name. The entry is hashed via just the mangled name. */ | |
413 | ||
414 | static void | |
415 | create_demangled_names_hash (struct objfile *objfile) | |
416 | { | |
417 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
418 | The hash table code will round this up to the next prime number. | |
419 | Choosing a much larger table size wastes memory, and saves only about | |
420 | 1% in symbol reading. */ | |
421 | ||
aa2ee5f6 | 422 | objfile->demangled_names_hash = htab_create_alloc |
2de7ced7 | 423 | (256, htab_hash_string, (int (*) (const void *, const void *)) streq, |
aa2ee5f6 | 424 | NULL, xcalloc, xfree); |
2de7ced7 | 425 | } |
12af6855 | 426 | |
2de7ced7 | 427 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
428 | language of that symbol. If the language is set to language_auto, |
429 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
430 | then set the language appropriately. The returned name is allocated |
431 | by the demangler and should be xfree'd. */ | |
12af6855 | 432 | |
2de7ced7 DJ |
433 | static char * |
434 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
435 | const char *mangled) | |
12af6855 | 436 | { |
12af6855 JB |
437 | char *demangled = NULL; |
438 | ||
439 | if (gsymbol->language == language_unknown) | |
440 | gsymbol->language = language_auto; | |
1bae87b9 AF |
441 | |
442 | if (gsymbol->language == language_objc | |
443 | || gsymbol->language == language_auto) | |
444 | { | |
445 | demangled = | |
446 | objc_demangle (mangled, 0); | |
447 | if (demangled != NULL) | |
448 | { | |
449 | gsymbol->language = language_objc; | |
450 | return demangled; | |
451 | } | |
452 | } | |
12af6855 JB |
453 | if (gsymbol->language == language_cplus |
454 | || gsymbol->language == language_auto) | |
455 | { | |
456 | demangled = | |
2de7ced7 | 457 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 458 | if (demangled != NULL) |
2de7ced7 DJ |
459 | { |
460 | gsymbol->language = language_cplus; | |
461 | return demangled; | |
462 | } | |
12af6855 JB |
463 | } |
464 | if (gsymbol->language == language_java) | |
465 | { | |
466 | demangled = | |
2de7ced7 | 467 | cplus_demangle (mangled, |
12af6855 JB |
468 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
469 | if (demangled != NULL) | |
2de7ced7 DJ |
470 | { |
471 | gsymbol->language = language_java; | |
472 | return demangled; | |
473 | } | |
474 | } | |
475 | return NULL; | |
476 | } | |
477 | ||
980cae7a DC |
478 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
479 | on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE | |
4a146b47 | 480 | is used, and the memory comes from that objfile's objfile_obstack. |
980cae7a DC |
481 | LINKAGE_NAME is copied, so the pointer can be discarded after |
482 | calling this function. */ | |
2de7ced7 | 483 | |
d2a52b27 DC |
484 | /* We have to be careful when dealing with Java names: when we run |
485 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
486 | gets demangled as a C++ name. This is unfortunate, but there's not | |
487 | much we can do about it: but when demangling partial symbols and | |
488 | regular symbols, we'd better not reuse the wrong demangled name. | |
489 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
490 | on Java names when storing them in the hash table. */ | |
491 | ||
492 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
493 | don't mind the Java prefix so much: different languages have | |
494 | different demangling requirements, so it's only natural that we | |
495 | need to keep language data around in our demangling cache. But | |
496 | it's not good that the minimal symbol has the wrong demangled name. | |
497 | Unfortunately, I can't think of any easy solution to that | |
498 | problem. */ | |
499 | ||
500 | #define JAVA_PREFIX "##JAVA$$" | |
501 | #define JAVA_PREFIX_LEN 8 | |
502 | ||
2de7ced7 DJ |
503 | void |
504 | symbol_set_names (struct general_symbol_info *gsymbol, | |
980cae7a | 505 | const char *linkage_name, int len, struct objfile *objfile) |
2de7ced7 DJ |
506 | { |
507 | char **slot; | |
980cae7a DC |
508 | /* A 0-terminated copy of the linkage name. */ |
509 | const char *linkage_name_copy; | |
d2a52b27 DC |
510 | /* A copy of the linkage name that might have a special Java prefix |
511 | added to it, for use when looking names up in the hash table. */ | |
512 | const char *lookup_name; | |
513 | /* The length of lookup_name. */ | |
514 | int lookup_len; | |
2de7ced7 DJ |
515 | |
516 | if (objfile->demangled_names_hash == NULL) | |
517 | create_demangled_names_hash (objfile); | |
518 | ||
980cae7a DC |
519 | /* The stabs reader generally provides names that are not |
520 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
521 | can just use the given copy, unless we're in the Java case. */ |
522 | if (gsymbol->language == language_java) | |
523 | { | |
524 | char *alloc_name; | |
525 | lookup_len = len + JAVA_PREFIX_LEN; | |
526 | ||
527 | alloc_name = alloca (lookup_len + 1); | |
528 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
529 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
530 | alloc_name[lookup_len] = '\0'; | |
531 | ||
532 | lookup_name = alloc_name; | |
533 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
534 | } | |
535 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 536 | { |
980cae7a | 537 | char *alloc_name; |
d2a52b27 | 538 | lookup_len = len; |
980cae7a | 539 | |
d2a52b27 | 540 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 541 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 542 | alloc_name[lookup_len] = '\0'; |
980cae7a | 543 | |
d2a52b27 | 544 | lookup_name = alloc_name; |
980cae7a | 545 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
546 | } |
547 | else | |
980cae7a | 548 | { |
d2a52b27 DC |
549 | lookup_len = len; |
550 | lookup_name = linkage_name; | |
980cae7a DC |
551 | linkage_name_copy = linkage_name; |
552 | } | |
2de7ced7 | 553 | |
980cae7a | 554 | slot = (char **) htab_find_slot (objfile->demangled_names_hash, |
d2a52b27 | 555 | lookup_name, INSERT); |
2de7ced7 DJ |
556 | |
557 | /* If this name is not in the hash table, add it. */ | |
558 | if (*slot == NULL) | |
559 | { | |
980cae7a DC |
560 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
561 | linkage_name_copy); | |
2de7ced7 DJ |
562 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
563 | ||
564 | /* If there is a demangled name, place it right after the mangled name. | |
565 | Otherwise, just place a second zero byte after the end of the mangled | |
566 | name. */ | |
4a146b47 | 567 | *slot = obstack_alloc (&objfile->objfile_obstack, |
d2a52b27 DC |
568 | lookup_len + demangled_len + 2); |
569 | memcpy (*slot, lookup_name, lookup_len + 1); | |
980cae7a | 570 | if (demangled_name != NULL) |
2de7ced7 | 571 | { |
d2a52b27 | 572 | memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1); |
2de7ced7 DJ |
573 | xfree (demangled_name); |
574 | } | |
575 | else | |
d2a52b27 | 576 | (*slot)[lookup_len + 1] = '\0'; |
2de7ced7 DJ |
577 | } |
578 | ||
d2a52b27 DC |
579 | gsymbol->name = *slot + lookup_len - len; |
580 | if ((*slot)[lookup_len + 1] != '\0') | |
2de7ced7 | 581 | gsymbol->language_specific.cplus_specific.demangled_name |
d2a52b27 | 582 | = &(*slot)[lookup_len + 1]; |
2de7ced7 DJ |
583 | else |
584 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
585 | } | |
586 | ||
587 | /* Initialize the demangled name of GSYMBOL if possible. Any required space | |
588 | to store the name is obtained from the specified obstack. The function | |
589 | symbol_set_names, above, should be used instead where possible for more | |
590 | efficient memory usage. */ | |
591 | ||
592 | void | |
593 | symbol_init_demangled_name (struct general_symbol_info *gsymbol, | |
594 | struct obstack *obstack) | |
595 | { | |
596 | char *mangled = gsymbol->name; | |
597 | char *demangled = NULL; | |
598 | ||
599 | demangled = symbol_find_demangled_name (gsymbol, mangled); | |
600 | if (gsymbol->language == language_cplus | |
1bae87b9 AF |
601 | || gsymbol->language == language_java |
602 | || gsymbol->language == language_objc) | |
2de7ced7 DJ |
603 | { |
604 | if (demangled) | |
605 | { | |
606 | gsymbol->language_specific.cplus_specific.demangled_name | |
607 | = obsavestring (demangled, strlen (demangled), obstack); | |
608 | xfree (demangled); | |
609 | } | |
12af6855 | 610 | else |
2de7ced7 DJ |
611 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; |
612 | } | |
613 | else | |
614 | { | |
615 | /* Unknown language; just clean up quietly. */ | |
616 | if (demangled) | |
617 | xfree (demangled); | |
12af6855 | 618 | } |
12af6855 JB |
619 | } |
620 | ||
22abf04a DC |
621 | /* Return the source code name of a symbol. In languages where |
622 | demangling is necessary, this is the demangled name. */ | |
623 | ||
624 | char * | |
625 | symbol_natural_name (const struct general_symbol_info *gsymbol) | |
626 | { | |
1f8173e6 | 627 | switch (gsymbol->language) |
22abf04a | 628 | { |
1f8173e6 PH |
629 | case language_cplus: |
630 | case language_java: | |
631 | case language_objc: | |
632 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
633 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
634 | break; | |
635 | case language_ada: | |
636 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
637 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
638 | else | |
639 | return ada_decode_symbol (gsymbol); | |
640 | break; | |
641 | default: | |
642 | break; | |
22abf04a | 643 | } |
1f8173e6 | 644 | return gsymbol->name; |
22abf04a DC |
645 | } |
646 | ||
9cc0d196 EZ |
647 | /* Return the demangled name for a symbol based on the language for |
648 | that symbol. If no demangled name exists, return NULL. */ | |
649 | char * | |
650 | symbol_demangled_name (struct general_symbol_info *gsymbol) | |
651 | { | |
1f8173e6 PH |
652 | switch (gsymbol->language) |
653 | { | |
654 | case language_cplus: | |
655 | case language_java: | |
656 | case language_objc: | |
657 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
658 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
659 | break; | |
660 | case language_ada: | |
661 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
662 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
663 | else | |
664 | return ada_decode_symbol (gsymbol); | |
665 | break; | |
666 | default: | |
667 | break; | |
668 | } | |
669 | return NULL; | |
9cc0d196 | 670 | } |
fe39c653 | 671 | |
4725b721 PH |
672 | /* Return the search name of a symbol---generally the demangled or |
673 | linkage name of the symbol, depending on how it will be searched for. | |
674 | If there is no distinct demangled name, then returns the same value | |
675 | (same pointer) as SYMBOL_LINKAGE_NAME. */ | |
fc062ac6 JB |
676 | char * |
677 | symbol_search_name (const struct general_symbol_info *gsymbol) | |
678 | { | |
1f8173e6 PH |
679 | if (gsymbol->language == language_ada) |
680 | return gsymbol->name; | |
681 | else | |
682 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
683 | } |
684 | ||
fe39c653 EZ |
685 | /* Initialize the structure fields to zero values. */ |
686 | void | |
687 | init_sal (struct symtab_and_line *sal) | |
688 | { | |
689 | sal->symtab = 0; | |
690 | sal->section = 0; | |
691 | sal->line = 0; | |
692 | sal->pc = 0; | |
693 | sal->end = 0; | |
694 | } | |
c906108c SS |
695 | \f |
696 | ||
94277a38 DJ |
697 | /* Return 1 if the two sections are the same, or if they could |
698 | plausibly be copies of each other, one in an original object | |
699 | file and another in a separated debug file. */ | |
700 | ||
701 | int | |
702 | matching_bfd_sections (asection *first, asection *second) | |
703 | { | |
704 | struct objfile *obj; | |
705 | ||
706 | /* If they're the same section, then they match. */ | |
707 | if (first == second) | |
708 | return 1; | |
709 | ||
710 | /* If either is NULL, give up. */ | |
711 | if (first == NULL || second == NULL) | |
712 | return 0; | |
713 | ||
714 | /* This doesn't apply to absolute symbols. */ | |
715 | if (first->owner == NULL || second->owner == NULL) | |
716 | return 0; | |
717 | ||
718 | /* If they're in the same object file, they must be different sections. */ | |
719 | if (first->owner == second->owner) | |
720 | return 0; | |
721 | ||
722 | /* Check whether the two sections are potentially corresponding. They must | |
723 | have the same size, address, and name. We can't compare section indexes, | |
724 | which would be more reliable, because some sections may have been | |
725 | stripped. */ | |
726 | if (bfd_get_section_size (first) != bfd_get_section_size (second)) | |
727 | return 0; | |
728 | ||
818f79f6 | 729 | /* In-memory addresses may start at a different offset, relativize them. */ |
94277a38 | 730 | if (bfd_get_section_vma (first->owner, first) |
818f79f6 DJ |
731 | - bfd_get_start_address (first->owner) |
732 | != bfd_get_section_vma (second->owner, second) | |
733 | - bfd_get_start_address (second->owner)) | |
94277a38 DJ |
734 | return 0; |
735 | ||
736 | if (bfd_get_section_name (first->owner, first) == NULL | |
737 | || bfd_get_section_name (second->owner, second) == NULL | |
738 | || strcmp (bfd_get_section_name (first->owner, first), | |
739 | bfd_get_section_name (second->owner, second)) != 0) | |
740 | return 0; | |
741 | ||
742 | /* Otherwise check that they are in corresponding objfiles. */ | |
743 | ||
744 | ALL_OBJFILES (obj) | |
745 | if (obj->obfd == first->owner) | |
746 | break; | |
747 | gdb_assert (obj != NULL); | |
748 | ||
749 | if (obj->separate_debug_objfile != NULL | |
750 | && obj->separate_debug_objfile->obfd == second->owner) | |
751 | return 1; | |
752 | if (obj->separate_debug_objfile_backlink != NULL | |
753 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
754 | return 1; | |
755 | ||
756 | return 0; | |
757 | } | |
c5aa993b | 758 | |
ccefbec3 EZ |
759 | /* Find which partial symtab contains PC and SECTION. Return 0 if |
760 | none. We return the psymtab that contains a symbol whose address | |
761 | exactly matches PC, or, if we cannot find an exact match, the | |
762 | psymtab that contains a symbol whose address is closest to PC. */ | |
c906108c | 763 | struct partial_symtab * |
fba45db2 | 764 | find_pc_sect_psymtab (CORE_ADDR pc, asection *section) |
c906108c | 765 | { |
52f0bd74 AC |
766 | struct partial_symtab *pst; |
767 | struct objfile *objfile; | |
8a48e967 DJ |
768 | struct minimal_symbol *msymbol; |
769 | ||
770 | /* If we know that this is not a text address, return failure. This is | |
771 | necessary because we loop based on texthigh and textlow, which do | |
772 | not include the data ranges. */ | |
773 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
774 | if (msymbol | |
775 | && (msymbol->type == mst_data | |
776 | || msymbol->type == mst_bss | |
777 | || msymbol->type == mst_abs | |
778 | || msymbol->type == mst_file_data | |
779 | || msymbol->type == mst_file_bss)) | |
780 | return NULL; | |
c906108c SS |
781 | |
782 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 783 | { |
c5aa993b | 784 | if (pc >= pst->textlow && pc < pst->texthigh) |
c5aa993b | 785 | { |
c5aa993b | 786 | struct partial_symtab *tpst; |
ccefbec3 | 787 | struct partial_symtab *best_pst = pst; |
d1c79ecd | 788 | CORE_ADDR best_addr = pst->textlow; |
c5aa993b JM |
789 | |
790 | /* An objfile that has its functions reordered might have | |
791 | many partial symbol tables containing the PC, but | |
792 | we want the partial symbol table that contains the | |
793 | function containing the PC. */ | |
794 | if (!(objfile->flags & OBJF_REORDERED) && | |
795 | section == 0) /* can't validate section this way */ | |
796 | return (pst); | |
797 | ||
c5aa993b JM |
798 | if (msymbol == NULL) |
799 | return (pst); | |
800 | ||
ccefbec3 EZ |
801 | /* The code range of partial symtabs sometimes overlap, so, in |
802 | the loop below, we need to check all partial symtabs and | |
803 | find the one that fits better for the given PC address. We | |
804 | select the partial symtab that contains a symbol whose | |
805 | address is closest to the PC address. By closest we mean | |
806 | that find_pc_sect_symbol returns the symbol with address | |
807 | that is closest and still less than the given PC. */ | |
c5aa993b JM |
808 | for (tpst = pst; tpst != NULL; tpst = tpst->next) |
809 | { | |
c5aa993b | 810 | if (pc >= tpst->textlow && pc < tpst->texthigh) |
c5aa993b JM |
811 | { |
812 | struct partial_symbol *p; | |
d1c79ecd | 813 | CORE_ADDR this_addr; |
c906108c | 814 | |
d1c79ecd DJ |
815 | /* NOTE: This assumes that every psymbol has a |
816 | corresponding msymbol, which is not necessarily | |
817 | true; the debug info might be much richer than the | |
818 | object's symbol table. */ | |
c5aa993b JM |
819 | p = find_pc_sect_psymbol (tpst, pc, section); |
820 | if (p != NULL | |
821 | && SYMBOL_VALUE_ADDRESS (p) | |
822 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
823 | return (tpst); | |
d1c79ecd DJ |
824 | |
825 | /* Also accept the textlow value of a psymtab as a | |
826 | "symbol", to provide some support for partial | |
827 | symbol tables with line information but no debug | |
828 | symbols (e.g. those produced by an assembler). */ | |
ccefbec3 | 829 | if (p != NULL) |
d1c79ecd DJ |
830 | this_addr = SYMBOL_VALUE_ADDRESS (p); |
831 | else | |
832 | this_addr = tpst->textlow; | |
833 | ||
834 | /* Check whether it is closer than our current | |
835 | BEST_ADDR. Since this symbol address is | |
836 | necessarily lower or equal to PC, the symbol closer | |
837 | to PC is the symbol which address is the highest. | |
838 | This way we return the psymtab which contains such | |
839 | best match symbol. This can help in cases where the | |
840 | symbol information/debuginfo is not complete, like | |
841 | for instance on IRIX6 with gcc, where no debug info | |
842 | is emitted for statics. (See also the nodebug.exp | |
843 | testcase.) */ | |
844 | if (this_addr > best_addr) | |
ccefbec3 | 845 | { |
d1c79ecd DJ |
846 | best_addr = this_addr; |
847 | best_pst = tpst; | |
ccefbec3 | 848 | } |
c5aa993b JM |
849 | } |
850 | } | |
ccefbec3 | 851 | return (best_pst); |
c5aa993b JM |
852 | } |
853 | } | |
c906108c SS |
854 | return (NULL); |
855 | } | |
856 | ||
857 | /* Find which partial symtab contains PC. Return 0 if none. | |
858 | Backward compatibility, no section */ | |
859 | ||
860 | struct partial_symtab * | |
fba45db2 | 861 | find_pc_psymtab (CORE_ADDR pc) |
c906108c SS |
862 | { |
863 | return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc)); | |
864 | } | |
865 | ||
866 | /* Find which partial symbol within a psymtab matches PC and SECTION. | |
867 | Return 0 if none. Check all psymtabs if PSYMTAB is 0. */ | |
868 | ||
869 | struct partial_symbol * | |
fba45db2 KB |
870 | find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc, |
871 | asection *section) | |
c906108c SS |
872 | { |
873 | struct partial_symbol *best = NULL, *p, **pp; | |
874 | CORE_ADDR best_pc; | |
c5aa993b | 875 | |
c906108c SS |
876 | if (!psymtab) |
877 | psymtab = find_pc_sect_psymtab (pc, section); | |
878 | if (!psymtab) | |
879 | return 0; | |
880 | ||
881 | /* Cope with programs that start at address 0 */ | |
882 | best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0; | |
883 | ||
884 | /* Search the global symbols as well as the static symbols, so that | |
885 | find_pc_partial_function doesn't use a minimal symbol and thus | |
886 | cache a bad endaddr. */ | |
887 | for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset; | |
c5aa993b JM |
888 | (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset) |
889 | < psymtab->n_global_syms); | |
c906108c SS |
890 | pp++) |
891 | { | |
892 | p = *pp; | |
176620f1 | 893 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
894 | && SYMBOL_CLASS (p) == LOC_BLOCK |
895 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
896 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
897 | || (psymtab->textlow == 0 | |
898 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) | |
899 | { | |
c5aa993b | 900 | if (section) /* match on a specific section */ |
c906108c SS |
901 | { |
902 | fixup_psymbol_section (p, psymtab->objfile); | |
94277a38 | 903 | if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section)) |
c906108c SS |
904 | continue; |
905 | } | |
906 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
907 | best = p; | |
908 | } | |
909 | } | |
910 | ||
911 | for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset; | |
c5aa993b JM |
912 | (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset) |
913 | < psymtab->n_static_syms); | |
c906108c SS |
914 | pp++) |
915 | { | |
916 | p = *pp; | |
176620f1 | 917 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
918 | && SYMBOL_CLASS (p) == LOC_BLOCK |
919 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
920 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
c5aa993b | 921 | || (psymtab->textlow == 0 |
c906108c SS |
922 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) |
923 | { | |
c5aa993b | 924 | if (section) /* match on a specific section */ |
c906108c SS |
925 | { |
926 | fixup_psymbol_section (p, psymtab->objfile); | |
94277a38 | 927 | if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section)) |
c906108c SS |
928 | continue; |
929 | } | |
930 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
931 | best = p; | |
932 | } | |
933 | } | |
934 | ||
935 | return best; | |
936 | } | |
937 | ||
938 | /* Find which partial symbol within a psymtab matches PC. Return 0 if none. | |
939 | Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */ | |
940 | ||
941 | struct partial_symbol * | |
fba45db2 | 942 | find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc) |
c906108c SS |
943 | { |
944 | return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc)); | |
945 | } | |
946 | \f | |
947 | /* Debug symbols usually don't have section information. We need to dig that | |
948 | out of the minimal symbols and stash that in the debug symbol. */ | |
949 | ||
950 | static void | |
fba45db2 | 951 | fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile) |
c906108c SS |
952 | { |
953 | struct minimal_symbol *msym; | |
954 | msym = lookup_minimal_symbol (ginfo->name, NULL, objfile); | |
955 | ||
956 | if (msym) | |
7a78d0ee KB |
957 | { |
958 | ginfo->bfd_section = SYMBOL_BFD_SECTION (msym); | |
959 | ginfo->section = SYMBOL_SECTION (msym); | |
960 | } | |
19e2d14b KB |
961 | else if (objfile) |
962 | { | |
963 | /* Static, function-local variables do appear in the linker | |
964 | (minimal) symbols, but are frequently given names that won't | |
965 | be found via lookup_minimal_symbol(). E.g., it has been | |
966 | observed in frv-uclinux (ELF) executables that a static, | |
967 | function-local variable named "foo" might appear in the | |
968 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
969 | point in attempting to extend the lookup-by-name mechanism to | |
970 | handle this case due to the fact that there can be multiple | |
971 | names. | |
972 | ||
973 | So, instead, search the section table when lookup by name has | |
974 | failed. The ``addr'' and ``endaddr'' fields may have already | |
975 | been relocated. If so, the relocation offset (i.e. the | |
976 | ANOFFSET value) needs to be subtracted from these values when | |
977 | performing the comparison. We unconditionally subtract it, | |
978 | because, when no relocation has been performed, the ANOFFSET | |
979 | value will simply be zero. | |
980 | ||
981 | The address of the symbol whose section we're fixing up HAS | |
982 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
983 | the section isn't yet known and knowing the section is | |
984 | necessary in order to add the correct relocation value. In | |
985 | other words, we wouldn't even be in this function (attempting | |
986 | to compute the section) if it were already known. | |
987 | ||
988 | Note that it is possible to search the minimal symbols | |
989 | (subtracting the relocation value if necessary) to find the | |
990 | matching minimal symbol, but this is overkill and much less | |
991 | efficient. It is not necessary to find the matching minimal | |
992 | symbol, only its section. | |
993 | ||
994 | Note that this technique (of doing a section table search) | |
995 | can fail when unrelocated section addresses overlap. For | |
996 | this reason, we still attempt a lookup by name prior to doing | |
997 | a search of the section table. */ | |
998 | ||
999 | CORE_ADDR addr; | |
1000 | struct obj_section *s; | |
1001 | ||
1002 | addr = ginfo->value.address; | |
1003 | ||
1004 | ALL_OBJFILE_OSECTIONS (objfile, s) | |
1005 | { | |
1006 | int idx = s->the_bfd_section->index; | |
1007 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); | |
1008 | ||
1009 | if (s->addr - offset <= addr && addr < s->endaddr - offset) | |
1010 | { | |
1011 | ginfo->bfd_section = s->the_bfd_section; | |
1012 | ginfo->section = idx; | |
1013 | return; | |
1014 | } | |
1015 | } | |
1016 | } | |
c906108c SS |
1017 | } |
1018 | ||
1019 | struct symbol * | |
fba45db2 | 1020 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c SS |
1021 | { |
1022 | if (!sym) | |
1023 | return NULL; | |
1024 | ||
1025 | if (SYMBOL_BFD_SECTION (sym)) | |
1026 | return sym; | |
1027 | ||
1028 | fixup_section (&sym->ginfo, objfile); | |
1029 | ||
1030 | return sym; | |
1031 | } | |
1032 | ||
7a78d0ee | 1033 | struct partial_symbol * |
fba45db2 | 1034 | fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile) |
c906108c SS |
1035 | { |
1036 | if (!psym) | |
1037 | return NULL; | |
1038 | ||
1039 | if (SYMBOL_BFD_SECTION (psym)) | |
1040 | return psym; | |
1041 | ||
1042 | fixup_section (&psym->ginfo, objfile); | |
1043 | ||
1044 | return psym; | |
1045 | } | |
1046 | ||
1047 | /* Find the definition for a specified symbol name NAME | |
176620f1 | 1048 | in domain DOMAIN, visible from lexical block BLOCK. |
c906108c SS |
1049 | Returns the struct symbol pointer, or zero if no symbol is found. |
1050 | If SYMTAB is non-NULL, store the symbol table in which the | |
1051 | symbol was found there, or NULL if not found. | |
1052 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if | |
1053 | NAME is a field of the current implied argument `this'. If so set | |
1054 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. | |
1055 | BLOCK_FOUND is set to the block in which NAME is found (in the case of | |
1056 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
1057 | ||
1058 | /* This function has a bunch of loops in it and it would seem to be | |
1059 | attractive to put in some QUIT's (though I'm not really sure | |
1060 | whether it can run long enough to be really important). But there | |
1061 | are a few calls for which it would appear to be bad news to quit | |
7ca9f392 AC |
1062 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
1063 | that there is C++ code below which can error(), but that probably | |
1064 | doesn't affect these calls since they are looking for a known | |
1065 | variable and thus can probably assume it will never hit the C++ | |
1066 | code). */ | |
c906108c SS |
1067 | |
1068 | struct symbol * | |
53c5240f PA |
1069 | lookup_symbol_in_language (const char *name, const struct block *block, |
1070 | const domain_enum domain, enum language lang, | |
1071 | int *is_a_field_of_this, | |
1072 | struct symtab **symtab) | |
c906108c | 1073 | { |
729051e6 DJ |
1074 | char *demangled_name = NULL; |
1075 | const char *modified_name = NULL; | |
3121eff0 | 1076 | const char *mangled_name = NULL; |
fba7f19c EZ |
1077 | int needtofreename = 0; |
1078 | struct symbol *returnval; | |
c906108c | 1079 | |
729051e6 DJ |
1080 | modified_name = name; |
1081 | ||
987504bb | 1082 | /* If we are using C++ or Java, demangle the name before doing a lookup, so |
729051e6 | 1083 | we can always binary search. */ |
53c5240f | 1084 | if (lang == language_cplus) |
729051e6 DJ |
1085 | { |
1086 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1087 | if (demangled_name) | |
1088 | { | |
1089 | mangled_name = name; | |
1090 | modified_name = demangled_name; | |
1091 | needtofreename = 1; | |
1092 | } | |
1093 | } | |
53c5240f | 1094 | else if (lang == language_java) |
987504bb JJ |
1095 | { |
1096 | demangled_name = cplus_demangle (name, | |
1097 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); | |
1098 | if (demangled_name) | |
1099 | { | |
1100 | mangled_name = name; | |
1101 | modified_name = demangled_name; | |
1102 | needtofreename = 1; | |
1103 | } | |
1104 | } | |
729051e6 | 1105 | |
63872f9d JG |
1106 | if (case_sensitivity == case_sensitive_off) |
1107 | { | |
1108 | char *copy; | |
1109 | int len, i; | |
1110 | ||
1111 | len = strlen (name); | |
1112 | copy = (char *) alloca (len + 1); | |
1113 | for (i= 0; i < len; i++) | |
1114 | copy[i] = tolower (name[i]); | |
1115 | copy[len] = 0; | |
fba7f19c | 1116 | modified_name = copy; |
63872f9d | 1117 | } |
fba7f19c | 1118 | |
3121eff0 | 1119 | returnval = lookup_symbol_aux (modified_name, mangled_name, block, |
53c5240f PA |
1120 | domain, lang, |
1121 | is_a_field_of_this, symtab); | |
fba7f19c | 1122 | if (needtofreename) |
729051e6 | 1123 | xfree (demangled_name); |
fba7f19c | 1124 | |
cb1df416 DJ |
1125 | /* Override the returned symtab with the symbol's specific one. */ |
1126 | if (returnval != NULL && symtab != NULL) | |
1127 | *symtab = SYMBOL_SYMTAB (returnval); | |
1128 | ||
fba7f19c EZ |
1129 | return returnval; |
1130 | } | |
1131 | ||
53c5240f PA |
1132 | /* Behave like lookup_symbol_in_language, but performed with the |
1133 | current language. */ | |
1134 | ||
1135 | struct symbol * | |
1136 | lookup_symbol (const char *name, const struct block *block, | |
1137 | domain_enum domain, int *is_a_field_of_this, | |
1138 | struct symtab **symtab) | |
1139 | { | |
1140 | return lookup_symbol_in_language (name, block, domain, | |
1141 | current_language->la_language, | |
1142 | is_a_field_of_this, symtab); | |
1143 | } | |
1144 | ||
1145 | /* Behave like lookup_symbol except that NAME is the natural name | |
5ad1c190 DC |
1146 | of the symbol that we're looking for and, if LINKAGE_NAME is |
1147 | non-NULL, ensure that the symbol's linkage name matches as | |
1148 | well. */ | |
1149 | ||
fba7f19c | 1150 | static struct symbol * |
5ad1c190 | 1151 | lookup_symbol_aux (const char *name, const char *linkage_name, |
176620f1 | 1152 | const struct block *block, const domain_enum domain, |
53c5240f | 1153 | enum language language, |
3121eff0 | 1154 | int *is_a_field_of_this, struct symtab **symtab) |
fba7f19c | 1155 | { |
8155455b | 1156 | struct symbol *sym; |
53c5240f | 1157 | const struct language_defn *langdef; |
406bc4de | 1158 | |
9a146a11 EZ |
1159 | /* Make sure we do something sensible with is_a_field_of_this, since |
1160 | the callers that set this parameter to some non-null value will | |
1161 | certainly use it later and expect it to be either 0 or 1. | |
1162 | If we don't set it, the contents of is_a_field_of_this are | |
1163 | undefined. */ | |
1164 | if (is_a_field_of_this != NULL) | |
1165 | *is_a_field_of_this = 0; | |
1166 | ||
e4051eeb DC |
1167 | /* Search specified block and its superiors. Don't search |
1168 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1169 | |
5ad1c190 | 1170 | sym = lookup_symbol_aux_local (name, linkage_name, block, domain, |
89a9d1b1 | 1171 | symtab); |
8155455b DC |
1172 | if (sym != NULL) |
1173 | return sym; | |
c906108c | 1174 | |
53c5240f PA |
1175 | /* If requested to do so by the caller and if appropriate for LANGUAGE, |
1176 | check to see if NAME is a field of `this'. */ | |
1177 | ||
1178 | langdef = language_def (language); | |
5f9a71c3 | 1179 | |
53c5240f | 1180 | if (langdef->la_value_of_this != NULL |
5f9a71c3 | 1181 | && is_a_field_of_this != NULL) |
c906108c | 1182 | { |
53c5240f | 1183 | struct value *v = langdef->la_value_of_this (0); |
c5aa993b | 1184 | |
c906108c SS |
1185 | if (v && check_field (v, name)) |
1186 | { | |
1187 | *is_a_field_of_this = 1; | |
1188 | if (symtab != NULL) | |
1189 | *symtab = NULL; | |
1190 | return NULL; | |
1191 | } | |
1192 | } | |
1193 | ||
53c5240f | 1194 | /* Now do whatever is appropriate for LANGUAGE to look |
5f9a71c3 | 1195 | up static and global variables. */ |
c906108c | 1196 | |
53c5240f PA |
1197 | sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, |
1198 | block, domain, symtab); | |
8155455b DC |
1199 | if (sym != NULL) |
1200 | return sym; | |
c906108c | 1201 | |
8155455b DC |
1202 | /* Now search all static file-level symbols. Not strictly correct, |
1203 | but more useful than an error. Do the symtabs first, then check | |
1204 | the psymtabs. If a psymtab indicates the existence of the | |
1205 | desired name as a file-level static, then do psymtab-to-symtab | |
c906108c SS |
1206 | conversion on the fly and return the found symbol. */ |
1207 | ||
5ad1c190 | 1208 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, |
176620f1 | 1209 | domain, symtab); |
8155455b DC |
1210 | if (sym != NULL) |
1211 | return sym; | |
1212 | ||
5ad1c190 | 1213 | sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, |
176620f1 | 1214 | domain, symtab); |
8155455b DC |
1215 | if (sym != NULL) |
1216 | return sym; | |
c906108c | 1217 | |
c906108c SS |
1218 | if (symtab != NULL) |
1219 | *symtab = NULL; | |
8155455b | 1220 | return NULL; |
c906108c | 1221 | } |
8155455b | 1222 | |
e4051eeb | 1223 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1224 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1225 | |
1226 | static struct symbol * | |
5ad1c190 | 1227 | lookup_symbol_aux_local (const char *name, const char *linkage_name, |
8155455b | 1228 | const struct block *block, |
176620f1 | 1229 | const domain_enum domain, |
89a9d1b1 | 1230 | struct symtab **symtab) |
8155455b DC |
1231 | { |
1232 | struct symbol *sym; | |
89a9d1b1 DC |
1233 | const struct block *static_block = block_static_block (block); |
1234 | ||
e4051eeb DC |
1235 | /* Check if either no block is specified or it's a global block. */ |
1236 | ||
89a9d1b1 DC |
1237 | if (static_block == NULL) |
1238 | return NULL; | |
e4051eeb | 1239 | |
89a9d1b1 | 1240 | while (block != static_block) |
f61e8913 | 1241 | { |
5ad1c190 | 1242 | sym = lookup_symbol_aux_block (name, linkage_name, block, domain, |
f61e8913 DC |
1243 | symtab); |
1244 | if (sym != NULL) | |
1245 | return sym; | |
1246 | block = BLOCK_SUPERBLOCK (block); | |
1247 | } | |
1248 | ||
89a9d1b1 | 1249 | /* We've reached the static block without finding a result. */ |
e4051eeb | 1250 | |
f61e8913 DC |
1251 | return NULL; |
1252 | } | |
1253 | ||
3a40aaa0 UW |
1254 | /* Look up OBJFILE to BLOCK. */ |
1255 | ||
1256 | static struct objfile * | |
1257 | lookup_objfile_from_block (const struct block *block) | |
1258 | { | |
1259 | struct objfile *obj; | |
1260 | struct symtab *s; | |
1261 | ||
1262 | if (block == NULL) | |
1263 | return NULL; | |
1264 | ||
1265 | block = block_global_block (block); | |
1266 | /* Go through SYMTABS. */ | |
1267 | ALL_SYMTABS (obj, s) | |
1268 | if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)) | |
1269 | return obj; | |
1270 | ||
1271 | return NULL; | |
1272 | } | |
1273 | ||
f61e8913 DC |
1274 | /* Look up a symbol in a block; if found, locate its symtab, fixup the |
1275 | symbol, and set block_found appropriately. */ | |
1276 | ||
5f9a71c3 | 1277 | struct symbol * |
5ad1c190 | 1278 | lookup_symbol_aux_block (const char *name, const char *linkage_name, |
f61e8913 | 1279 | const struct block *block, |
176620f1 | 1280 | const domain_enum domain, |
f61e8913 DC |
1281 | struct symtab **symtab) |
1282 | { | |
1283 | struct symbol *sym; | |
8155455b DC |
1284 | struct objfile *objfile = NULL; |
1285 | struct blockvector *bv; | |
1286 | struct block *b; | |
1287 | struct symtab *s = NULL; | |
f61e8913 | 1288 | |
5ad1c190 | 1289 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
f61e8913 | 1290 | if (sym) |
8155455b | 1291 | { |
f61e8913 DC |
1292 | block_found = block; |
1293 | if (symtab != NULL) | |
8155455b | 1294 | { |
f61e8913 DC |
1295 | /* Search the list of symtabs for one which contains the |
1296 | address of the start of this block. */ | |
11309657 | 1297 | ALL_PRIMARY_SYMTABS (objfile, s) |
8155455b | 1298 | { |
f61e8913 DC |
1299 | bv = BLOCKVECTOR (s); |
1300 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1301 | if (BLOCK_START (b) <= BLOCK_START (block) | |
1302 | && BLOCK_END (b) > BLOCK_START (block)) | |
1303 | goto found; | |
8155455b | 1304 | } |
f61e8913 DC |
1305 | found: |
1306 | *symtab = s; | |
8155455b | 1307 | } |
f61e8913 DC |
1308 | |
1309 | return fixup_symbol_section (sym, objfile); | |
8155455b DC |
1310 | } |
1311 | ||
1312 | return NULL; | |
1313 | } | |
1314 | ||
3a40aaa0 UW |
1315 | /* Check all global symbols in OBJFILE in symtabs and |
1316 | psymtabs. */ | |
1317 | ||
1318 | struct symbol * | |
1319 | lookup_global_symbol_from_objfile (const struct objfile *objfile, | |
1320 | const char *name, | |
1321 | const char *linkage_name, | |
1322 | const domain_enum domain, | |
1323 | struct symtab **symtab) | |
1324 | { | |
1325 | struct symbol *sym; | |
1326 | struct blockvector *bv; | |
1327 | const struct block *block; | |
1328 | struct symtab *s; | |
1329 | struct partial_symtab *ps; | |
1330 | ||
1331 | /* Go through symtabs. */ | |
1332 | ALL_OBJFILE_SYMTABS (objfile, s) | |
1333 | { | |
1334 | bv = BLOCKVECTOR (s); | |
1335 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1336 | sym = lookup_block_symbol (block, name, linkage_name, domain); | |
1337 | if (sym) | |
1338 | { | |
1339 | block_found = block; | |
1340 | if (symtab != NULL) | |
1341 | *symtab = s; | |
1342 | return fixup_symbol_section (sym, (struct objfile *)objfile); | |
1343 | } | |
1344 | } | |
1345 | ||
1346 | /* Now go through psymtabs. */ | |
1347 | ALL_OBJFILE_PSYMTABS (objfile, ps) | |
1348 | { | |
1349 | if (!ps->readin | |
1350 | && lookup_partial_symbol (ps, name, linkage_name, | |
1351 | 1, domain)) | |
1352 | { | |
1353 | s = PSYMTAB_TO_SYMTAB (ps); | |
1354 | bv = BLOCKVECTOR (s); | |
1355 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1356 | sym = lookup_block_symbol (block, name, linkage_name, domain); | |
1357 | if (symtab != NULL) | |
1358 | *symtab = s; | |
1359 | return fixup_symbol_section (sym, (struct objfile *)objfile); | |
1360 | } | |
1361 | } | |
1362 | ||
1363 | return NULL; | |
1364 | } | |
1365 | ||
8155455b DC |
1366 | /* Check to see if the symbol is defined in one of the symtabs. |
1367 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
1368 | depending on whether or not we want to search global symbols or | |
1369 | static symbols. */ | |
1370 | ||
1371 | static struct symbol * | |
1372 | lookup_symbol_aux_symtabs (int block_index, | |
5ad1c190 | 1373 | const char *name, const char *linkage_name, |
176620f1 | 1374 | const domain_enum domain, |
8155455b DC |
1375 | struct symtab **symtab) |
1376 | { | |
1377 | struct symbol *sym; | |
1378 | struct objfile *objfile; | |
1379 | struct blockvector *bv; | |
1380 | const struct block *block; | |
1381 | struct symtab *s; | |
1382 | ||
11309657 | 1383 | ALL_PRIMARY_SYMTABS (objfile, s) |
8155455b DC |
1384 | { |
1385 | bv = BLOCKVECTOR (s); | |
1386 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1387 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1388 | if (sym) |
1389 | { | |
1390 | block_found = block; | |
1391 | if (symtab != NULL) | |
1392 | *symtab = s; | |
1393 | return fixup_symbol_section (sym, objfile); | |
1394 | } | |
1395 | } | |
1396 | ||
1397 | return NULL; | |
1398 | } | |
1399 | ||
1400 | /* Check to see if the symbol is defined in one of the partial | |
1401 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or | |
1402 | STATIC_BLOCK, depending on whether or not we want to search global | |
1403 | symbols or static symbols. */ | |
1404 | ||
1405 | static struct symbol * | |
1406 | lookup_symbol_aux_psymtabs (int block_index, const char *name, | |
5ad1c190 | 1407 | const char *linkage_name, |
176620f1 | 1408 | const domain_enum domain, |
8155455b DC |
1409 | struct symtab **symtab) |
1410 | { | |
1411 | struct symbol *sym; | |
1412 | struct objfile *objfile; | |
1413 | struct blockvector *bv; | |
1414 | const struct block *block; | |
1415 | struct partial_symtab *ps; | |
1416 | struct symtab *s; | |
1417 | const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0); | |
1418 | ||
1419 | ALL_PSYMTABS (objfile, ps) | |
1420 | { | |
1421 | if (!ps->readin | |
5ad1c190 | 1422 | && lookup_partial_symbol (ps, name, linkage_name, |
176620f1 | 1423 | psymtab_index, domain)) |
8155455b DC |
1424 | { |
1425 | s = PSYMTAB_TO_SYMTAB (ps); | |
1426 | bv = BLOCKVECTOR (s); | |
1427 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1428 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1429 | if (!sym) |
1430 | { | |
1431 | /* This shouldn't be necessary, but as a last resort try | |
1432 | looking in the statics even though the psymtab claimed | |
1433 | the symbol was global, or vice-versa. It's possible | |
1434 | that the psymtab gets it wrong in some cases. */ | |
1435 | ||
1436 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1437 | If that happens, isn't it likely to be a GDB error, in | |
1438 | which case we should fix the GDB error rather than | |
1439 | silently dealing with it here? So I'd vote for | |
1440 | removing the check for the symbol in the other | |
1441 | block. */ | |
1442 | block = BLOCKVECTOR_BLOCK (bv, | |
1443 | block_index == GLOBAL_BLOCK ? | |
1444 | STATIC_BLOCK : GLOBAL_BLOCK); | |
5ad1c190 | 1445 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b | 1446 | if (!sym) |
8a3fe4f8 | 1447 | error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."), |
8155455b DC |
1448 | block_index == GLOBAL_BLOCK ? "global" : "static", |
1449 | name, ps->filename, name, name); | |
1450 | } | |
1451 | if (symtab != NULL) | |
1452 | *symtab = s; | |
1453 | return fixup_symbol_section (sym, objfile); | |
1454 | } | |
1455 | } | |
1456 | ||
1457 | return NULL; | |
1458 | } | |
1459 | ||
5f9a71c3 DC |
1460 | /* A default version of lookup_symbol_nonlocal for use by languages |
1461 | that can't think of anything better to do. This implements the C | |
1462 | lookup rules. */ | |
1463 | ||
1464 | struct symbol * | |
1465 | basic_lookup_symbol_nonlocal (const char *name, | |
1466 | const char *linkage_name, | |
1467 | const struct block *block, | |
1468 | const domain_enum domain, | |
1469 | struct symtab **symtab) | |
1470 | { | |
1471 | struct symbol *sym; | |
1472 | ||
1473 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1474 | this (or what turned into this) was part of lookup_symbol_aux; | |
1475 | I'm much less worried about these questions now, since these | |
1476 | decisions have turned out well, but I leave these comments here | |
1477 | for posterity. */ | |
1478 | ||
1479 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1480 | not it would be appropriate to search the current global block | |
1481 | here as well. (That's what this code used to do before the | |
1482 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1483 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1484 | next. On the other hand, if decode_line_1 is passed an argument | |
1485 | like filename:var, then the user presumably wants 'var' to be | |
1486 | searched for in filename. On the third hand, there shouldn't be | |
1487 | multiple global variables all of which are named 'var', and it's | |
1488 | not like decode_line_1 has ever restricted its search to only | |
1489 | global variables in a single filename. All in all, only | |
1490 | searching the static block here seems best: it's correct and it's | |
1491 | cleanest. */ | |
1492 | ||
1493 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1494 | issue here: if you usually search for global symbols in the | |
1495 | current file, then it would be slightly better to search the | |
1496 | current global block before searching all the symtabs. But there | |
1497 | are other factors that have a much greater effect on performance | |
1498 | than that one, so I don't think we should worry about that for | |
1499 | now. */ | |
1500 | ||
1501 | sym = lookup_symbol_static (name, linkage_name, block, domain, symtab); | |
1502 | if (sym != NULL) | |
1503 | return sym; | |
1504 | ||
3a40aaa0 | 1505 | return lookup_symbol_global (name, linkage_name, block, domain, symtab); |
5f9a71c3 DC |
1506 | } |
1507 | ||
1508 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1509 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1510 | ||
1511 | struct symbol * | |
1512 | lookup_symbol_static (const char *name, | |
1513 | const char *linkage_name, | |
1514 | const struct block *block, | |
1515 | const domain_enum domain, | |
1516 | struct symtab **symtab) | |
1517 | { | |
1518 | const struct block *static_block = block_static_block (block); | |
1519 | ||
1520 | if (static_block != NULL) | |
1521 | return lookup_symbol_aux_block (name, linkage_name, static_block, | |
1522 | domain, symtab); | |
1523 | else | |
1524 | return NULL; | |
1525 | } | |
1526 | ||
1527 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1528 | necessary). */ | |
1529 | ||
1530 | struct symbol * | |
1531 | lookup_symbol_global (const char *name, | |
1532 | const char *linkage_name, | |
3a40aaa0 | 1533 | const struct block *block, |
5f9a71c3 DC |
1534 | const domain_enum domain, |
1535 | struct symtab **symtab) | |
1536 | { | |
3a40aaa0 UW |
1537 | struct symbol *sym = NULL; |
1538 | struct objfile *objfile = NULL; | |
1539 | ||
1540 | /* Call library-specific lookup procedure. */ | |
1541 | objfile = lookup_objfile_from_block (block); | |
1542 | if (objfile != NULL) | |
1543 | sym = solib_global_lookup (objfile, name, linkage_name, domain, symtab); | |
1544 | if (sym != NULL) | |
1545 | return sym; | |
5f9a71c3 DC |
1546 | |
1547 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, | |
1548 | domain, symtab); | |
1549 | if (sym != NULL) | |
1550 | return sym; | |
1551 | ||
1552 | return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, | |
1553 | domain, symtab); | |
1554 | } | |
1555 | ||
3d4e8fd2 DC |
1556 | /* Look, in partial_symtab PST, for symbol whose natural name is NAME. |
1557 | If LINKAGE_NAME is non-NULL, check in addition that the symbol's | |
1558 | linkage name matches it. Check the global symbols if GLOBAL, the | |
1559 | static symbols if not */ | |
c906108c | 1560 | |
b6429628 | 1561 | struct partial_symbol * |
3d4e8fd2 DC |
1562 | lookup_partial_symbol (struct partial_symtab *pst, const char *name, |
1563 | const char *linkage_name, int global, | |
176620f1 | 1564 | domain_enum domain) |
c906108c | 1565 | { |
357e46e7 | 1566 | struct partial_symbol *temp; |
c906108c | 1567 | struct partial_symbol **start, **psym; |
38d49aff | 1568 | struct partial_symbol **top, **real_top, **bottom, **center; |
c906108c SS |
1569 | int length = (global ? pst->n_global_syms : pst->n_static_syms); |
1570 | int do_linear_search = 1; | |
357e46e7 | 1571 | |
c906108c SS |
1572 | if (length == 0) |
1573 | { | |
1574 | return (NULL); | |
1575 | } | |
c906108c SS |
1576 | start = (global ? |
1577 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
c5aa993b | 1578 | pst->objfile->static_psymbols.list + pst->statics_offset); |
357e46e7 | 1579 | |
c5aa993b | 1580 | if (global) /* This means we can use a binary search. */ |
c906108c SS |
1581 | { |
1582 | do_linear_search = 0; | |
1583 | ||
1584 | /* Binary search. This search is guaranteed to end with center | |
0fe19209 DC |
1585 | pointing at the earliest partial symbol whose name might be |
1586 | correct. At that point *all* partial symbols with an | |
1587 | appropriate name will be checked against the correct | |
176620f1 | 1588 | domain. */ |
c906108c SS |
1589 | |
1590 | bottom = start; | |
1591 | top = start + length - 1; | |
38d49aff | 1592 | real_top = top; |
c906108c SS |
1593 | while (top > bottom) |
1594 | { | |
1595 | center = bottom + (top - bottom) / 2; | |
1596 | if (!(center < top)) | |
e2e0b3e5 | 1597 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
c906108c | 1598 | if (!do_linear_search |
357e46e7 | 1599 | && (SYMBOL_LANGUAGE (*center) == language_java)) |
c906108c SS |
1600 | { |
1601 | do_linear_search = 1; | |
1602 | } | |
4725b721 | 1603 | if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0) |
c906108c SS |
1604 | { |
1605 | top = center; | |
1606 | } | |
1607 | else | |
1608 | { | |
1609 | bottom = center + 1; | |
1610 | } | |
1611 | } | |
1612 | if (!(top == bottom)) | |
e2e0b3e5 | 1613 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
357e46e7 | 1614 | |
3d4e8fd2 DC |
1615 | while (top <= real_top |
1616 | && (linkage_name != NULL | |
1617 | ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0 | |
4725b721 | 1618 | : SYMBOL_MATCHES_SEARCH_NAME (*top,name))) |
c906108c | 1619 | { |
176620f1 | 1620 | if (SYMBOL_DOMAIN (*top) == domain) |
c906108c | 1621 | { |
357e46e7 | 1622 | return (*top); |
c906108c | 1623 | } |
c5aa993b | 1624 | top++; |
c906108c SS |
1625 | } |
1626 | } | |
1627 | ||
1628 | /* Can't use a binary search or else we found during the binary search that | |
1629 | we should also do a linear search. */ | |
1630 | ||
1631 | if (do_linear_search) | |
357e46e7 | 1632 | { |
c906108c SS |
1633 | for (psym = start; psym < start + length; psym++) |
1634 | { | |
176620f1 | 1635 | if (domain == SYMBOL_DOMAIN (*psym)) |
c906108c | 1636 | { |
3d4e8fd2 DC |
1637 | if (linkage_name != NULL |
1638 | ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0 | |
4725b721 | 1639 | : SYMBOL_MATCHES_SEARCH_NAME (*psym, name)) |
c906108c SS |
1640 | { |
1641 | return (*psym); | |
1642 | } | |
1643 | } | |
1644 | } | |
1645 | } | |
1646 | ||
1647 | return (NULL); | |
1648 | } | |
1649 | ||
176620f1 | 1650 | /* Look up a type named NAME in the struct_domain. The type returned |
b368761e DC |
1651 | must not be opaque -- i.e., must have at least one field |
1652 | defined. */ | |
c906108c | 1653 | |
b368761e DC |
1654 | struct type * |
1655 | lookup_transparent_type (const char *name) | |
1656 | { | |
1657 | return current_language->la_lookup_transparent_type (name); | |
1658 | } | |
c906108c | 1659 | |
b368761e DC |
1660 | /* The standard implementation of lookup_transparent_type. This code |
1661 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1662 | up types were just left out. In particular it's assumed here that | |
1663 | types are available in struct_domain and only at file-static or | |
1664 | global blocks. */ | |
c906108c SS |
1665 | |
1666 | struct type * | |
b368761e | 1667 | basic_lookup_transparent_type (const char *name) |
c906108c | 1668 | { |
52f0bd74 AC |
1669 | struct symbol *sym; |
1670 | struct symtab *s = NULL; | |
1671 | struct partial_symtab *ps; | |
c906108c | 1672 | struct blockvector *bv; |
52f0bd74 AC |
1673 | struct objfile *objfile; |
1674 | struct block *block; | |
c906108c SS |
1675 | |
1676 | /* Now search all the global symbols. Do the symtab's first, then | |
1677 | check the psymtab's. If a psymtab indicates the existence | |
1678 | of the desired name as a global, then do psymtab-to-symtab | |
1679 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1680 | |
11309657 | 1681 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1682 | { |
1683 | bv = BLOCKVECTOR (s); | |
1684 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1685 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1686 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1687 | { | |
1688 | return SYMBOL_TYPE (sym); | |
1689 | } | |
1690 | } | |
c906108c SS |
1691 | |
1692 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1693 | { |
3d4e8fd2 | 1694 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, |
176620f1 | 1695 | 1, STRUCT_DOMAIN)) |
c5aa993b JM |
1696 | { |
1697 | s = PSYMTAB_TO_SYMTAB (ps); | |
1698 | bv = BLOCKVECTOR (s); | |
1699 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1700 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1701 | if (!sym) |
1702 | { | |
1703 | /* This shouldn't be necessary, but as a last resort | |
1704 | * try looking in the statics even though the psymtab | |
1705 | * claimed the symbol was global. It's possible that | |
1706 | * the psymtab gets it wrong in some cases. | |
1707 | */ | |
1708 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1709 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1710 | if (!sym) |
8a3fe4f8 | 1711 | error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1712 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1713 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1714 | name, ps->filename, name, name); |
1715 | } | |
1716 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1717 | return SYMBOL_TYPE (sym); | |
1718 | } | |
1719 | } | |
c906108c SS |
1720 | |
1721 | /* Now search the static file-level symbols. | |
1722 | Not strictly correct, but more useful than an error. | |
1723 | Do the symtab's first, then | |
1724 | check the psymtab's. If a psymtab indicates the existence | |
1725 | of the desired name as a file-level static, then do psymtab-to-symtab | |
1726 | conversion on the fly and return the found symbol. | |
1727 | */ | |
1728 | ||
11309657 | 1729 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1730 | { |
1731 | bv = BLOCKVECTOR (s); | |
1732 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1733 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1734 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1735 | { | |
1736 | return SYMBOL_TYPE (sym); | |
1737 | } | |
1738 | } | |
c906108c SS |
1739 | |
1740 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1741 | { |
176620f1 | 1742 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN)) |
c5aa993b JM |
1743 | { |
1744 | s = PSYMTAB_TO_SYMTAB (ps); | |
1745 | bv = BLOCKVECTOR (s); | |
1746 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1747 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1748 | if (!sym) |
1749 | { | |
1750 | /* This shouldn't be necessary, but as a last resort | |
1751 | * try looking in the globals even though the psymtab | |
1752 | * claimed the symbol was static. It's possible that | |
1753 | * the psymtab gets it wrong in some cases. | |
1754 | */ | |
1755 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1756 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1757 | if (!sym) |
8a3fe4f8 | 1758 | error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1759 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1760 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1761 | name, ps->filename, name, name); |
1762 | } | |
1763 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1764 | return SYMBOL_TYPE (sym); | |
1765 | } | |
1766 | } | |
c906108c SS |
1767 | return (struct type *) 0; |
1768 | } | |
1769 | ||
1770 | ||
1771 | /* Find the psymtab containing main(). */ | |
1772 | /* FIXME: What about languages without main() or specially linked | |
1773 | executables that have no main() ? */ | |
1774 | ||
1775 | struct partial_symtab * | |
fba45db2 | 1776 | find_main_psymtab (void) |
c906108c | 1777 | { |
52f0bd74 AC |
1778 | struct partial_symtab *pst; |
1779 | struct objfile *objfile; | |
c906108c SS |
1780 | |
1781 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 1782 | { |
176620f1 | 1783 | if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN)) |
c5aa993b JM |
1784 | { |
1785 | return (pst); | |
1786 | } | |
1787 | } | |
c906108c SS |
1788 | return (NULL); |
1789 | } | |
1790 | ||
176620f1 | 1791 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1792 | |
1793 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1794 | to find a match during the binary search of the non-encoded names, but | |
1795 | for now we don't worry about the slight inefficiency of looking for | |
1796 | a match we'll never find, since it will go pretty quick. Once the | |
1797 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 AF |
1798 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
1799 | symbol (language_cplus or language_objc set) has both the encoded and | |
1800 | non-encoded names tested for a match. | |
3121eff0 | 1801 | |
5ad1c190 | 1802 | If LINKAGE_NAME is non-NULL, verify that any symbol we find has this |
3121eff0 DJ |
1803 | particular mangled name. |
1804 | */ | |
c906108c SS |
1805 | |
1806 | struct symbol * | |
aa1ee363 | 1807 | lookup_block_symbol (const struct block *block, const char *name, |
5ad1c190 | 1808 | const char *linkage_name, |
176620f1 | 1809 | const domain_enum domain) |
c906108c | 1810 | { |
de4f826b DC |
1811 | struct dict_iterator iter; |
1812 | struct symbol *sym; | |
c906108c | 1813 | |
de4f826b | 1814 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1815 | { |
de4f826b DC |
1816 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); |
1817 | sym != NULL; | |
1818 | sym = dict_iter_name_next (name, &iter)) | |
261397f8 | 1819 | { |
de4f826b DC |
1820 | if (SYMBOL_DOMAIN (sym) == domain |
1821 | && (linkage_name != NULL | |
1822 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
261397f8 DJ |
1823 | return sym; |
1824 | } | |
1825 | return NULL; | |
1826 | } | |
526e70c0 | 1827 | else |
c906108c | 1828 | { |
526e70c0 DC |
1829 | /* Note that parameter symbols do not always show up last in the |
1830 | list; this loop makes sure to take anything else other than | |
1831 | parameter symbols first; it only uses parameter symbols as a | |
1832 | last resort. Note that this only takes up extra computation | |
1833 | time on a match. */ | |
de4f826b DC |
1834 | |
1835 | struct symbol *sym_found = NULL; | |
1836 | ||
1837 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); | |
1838 | sym != NULL; | |
1839 | sym = dict_iter_name_next (name, &iter)) | |
c906108c | 1840 | { |
176620f1 | 1841 | if (SYMBOL_DOMAIN (sym) == domain |
de4f826b DC |
1842 | && (linkage_name != NULL |
1843 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
c906108c | 1844 | { |
c906108c SS |
1845 | sym_found = sym; |
1846 | if (SYMBOL_CLASS (sym) != LOC_ARG && | |
1847 | SYMBOL_CLASS (sym) != LOC_LOCAL_ARG && | |
1848 | SYMBOL_CLASS (sym) != LOC_REF_ARG && | |
1849 | SYMBOL_CLASS (sym) != LOC_REGPARM && | |
1850 | SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR && | |
4c2df51b DJ |
1851 | SYMBOL_CLASS (sym) != LOC_BASEREG_ARG && |
1852 | SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG) | |
c906108c SS |
1853 | { |
1854 | break; | |
1855 | } | |
1856 | } | |
c906108c | 1857 | } |
de4f826b | 1858 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 1859 | } |
c906108c SS |
1860 | } |
1861 | ||
c906108c SS |
1862 | /* Find the symtab associated with PC and SECTION. Look through the |
1863 | psymtabs and read in another symtab if necessary. */ | |
1864 | ||
1865 | struct symtab * | |
fba45db2 | 1866 | find_pc_sect_symtab (CORE_ADDR pc, asection *section) |
c906108c | 1867 | { |
52f0bd74 | 1868 | struct block *b; |
c906108c | 1869 | struct blockvector *bv; |
52f0bd74 AC |
1870 | struct symtab *s = NULL; |
1871 | struct symtab *best_s = NULL; | |
1872 | struct partial_symtab *ps; | |
1873 | struct objfile *objfile; | |
c906108c | 1874 | CORE_ADDR distance = 0; |
8a48e967 DJ |
1875 | struct minimal_symbol *msymbol; |
1876 | ||
1877 | /* If we know that this is not a text address, return failure. This is | |
1878 | necessary because we loop based on the block's high and low code | |
1879 | addresses, which do not include the data ranges, and because | |
1880 | we call find_pc_sect_psymtab which has a similar restriction based | |
1881 | on the partial_symtab's texthigh and textlow. */ | |
1882 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
1883 | if (msymbol | |
1884 | && (msymbol->type == mst_data | |
1885 | || msymbol->type == mst_bss | |
1886 | || msymbol->type == mst_abs | |
1887 | || msymbol->type == mst_file_data | |
1888 | || msymbol->type == mst_file_bss)) | |
1889 | return NULL; | |
c906108c SS |
1890 | |
1891 | /* Search all symtabs for the one whose file contains our address, and which | |
1892 | is the smallest of all the ones containing the address. This is designed | |
1893 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
1894 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
1895 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
1896 | ||
1897 | This happens for native ecoff format, where code from included files | |
1898 | gets its own symtab. The symtab for the included file should have | |
1899 | been read in already via the dependency mechanism. | |
1900 | It might be swifter to create several symtabs with the same name | |
1901 | like xcoff does (I'm not sure). | |
1902 | ||
1903 | It also happens for objfiles that have their functions reordered. | |
1904 | For these, the symtab we are looking for is not necessarily read in. */ | |
1905 | ||
11309657 | 1906 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1907 | { |
1908 | bv = BLOCKVECTOR (s); | |
1909 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 1910 | |
c5aa993b | 1911 | if (BLOCK_START (b) <= pc |
c5aa993b | 1912 | && BLOCK_END (b) > pc |
c5aa993b JM |
1913 | && (distance == 0 |
1914 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
1915 | { | |
1916 | /* For an objfile that has its functions reordered, | |
1917 | find_pc_psymtab will find the proper partial symbol table | |
1918 | and we simply return its corresponding symtab. */ | |
1919 | /* In order to better support objfiles that contain both | |
1920 | stabs and coff debugging info, we continue on if a psymtab | |
1921 | can't be found. */ | |
1922 | if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs) | |
1923 | { | |
1924 | ps = find_pc_sect_psymtab (pc, section); | |
1925 | if (ps) | |
1926 | return PSYMTAB_TO_SYMTAB (ps); | |
1927 | } | |
1928 | if (section != 0) | |
1929 | { | |
de4f826b | 1930 | struct dict_iterator iter; |
261397f8 | 1931 | struct symbol *sym = NULL; |
c906108c | 1932 | |
de4f826b | 1933 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 1934 | { |
261397f8 | 1935 | fixup_symbol_section (sym, objfile); |
94277a38 | 1936 | if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section)) |
c5aa993b JM |
1937 | break; |
1938 | } | |
de4f826b | 1939 | if (sym == NULL) |
c5aa993b JM |
1940 | continue; /* no symbol in this symtab matches section */ |
1941 | } | |
1942 | distance = BLOCK_END (b) - BLOCK_START (b); | |
1943 | best_s = s; | |
1944 | } | |
1945 | } | |
c906108c SS |
1946 | |
1947 | if (best_s != NULL) | |
c5aa993b | 1948 | return (best_s); |
c906108c SS |
1949 | |
1950 | s = NULL; | |
1951 | ps = find_pc_sect_psymtab (pc, section); | |
1952 | if (ps) | |
1953 | { | |
1954 | if (ps->readin) | |
1955 | /* Might want to error() here (in case symtab is corrupt and | |
1956 | will cause a core dump), but maybe we can successfully | |
1957 | continue, so let's not. */ | |
8a3fe4f8 AC |
1958 | warning (_("\ |
1959 | (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"), | |
d730266b | 1960 | paddr_nz (pc)); |
c906108c SS |
1961 | s = PSYMTAB_TO_SYMTAB (ps); |
1962 | } | |
1963 | return (s); | |
1964 | } | |
1965 | ||
1966 | /* Find the symtab associated with PC. Look through the psymtabs and | |
1967 | read in another symtab if necessary. Backward compatibility, no section */ | |
1968 | ||
1969 | struct symtab * | |
fba45db2 | 1970 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
1971 | { |
1972 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
1973 | } | |
c906108c | 1974 | \f |
c5aa993b | 1975 | |
7e73cedf | 1976 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
1977 | Return a structure containing a symtab pointer, a line number, |
1978 | and a pc range for the entire source line. | |
1979 | The value's .pc field is NOT the specified pc. | |
1980 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
1981 | use the line that ends there. Otherwise, in that case, the line | |
1982 | that begins there is used. */ | |
1983 | ||
1984 | /* The big complication here is that a line may start in one file, and end just | |
1985 | before the start of another file. This usually occurs when you #include | |
1986 | code in the middle of a subroutine. To properly find the end of a line's PC | |
1987 | range, we must search all symtabs associated with this compilation unit, and | |
1988 | find the one whose first PC is closer than that of the next line in this | |
1989 | symtab. */ | |
1990 | ||
1991 | /* If it's worth the effort, we could be using a binary search. */ | |
1992 | ||
1993 | struct symtab_and_line | |
198beae2 | 1994 | find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent) |
c906108c SS |
1995 | { |
1996 | struct symtab *s; | |
52f0bd74 AC |
1997 | struct linetable *l; |
1998 | int len; | |
1999 | int i; | |
2000 | struct linetable_entry *item; | |
c906108c SS |
2001 | struct symtab_and_line val; |
2002 | struct blockvector *bv; | |
2003 | struct minimal_symbol *msymbol; | |
2004 | struct minimal_symbol *mfunsym; | |
2005 | ||
2006 | /* Info on best line seen so far, and where it starts, and its file. */ | |
2007 | ||
2008 | struct linetable_entry *best = NULL; | |
2009 | CORE_ADDR best_end = 0; | |
2010 | struct symtab *best_symtab = 0; | |
2011 | ||
2012 | /* Store here the first line number | |
2013 | of a file which contains the line at the smallest pc after PC. | |
2014 | If we don't find a line whose range contains PC, | |
2015 | we will use a line one less than this, | |
2016 | with a range from the start of that file to the first line's pc. */ | |
2017 | struct linetable_entry *alt = NULL; | |
2018 | struct symtab *alt_symtab = 0; | |
2019 | ||
2020 | /* Info on best line seen in this file. */ | |
2021 | ||
2022 | struct linetable_entry *prev; | |
2023 | ||
2024 | /* If this pc is not from the current frame, | |
2025 | it is the address of the end of a call instruction. | |
2026 | Quite likely that is the start of the following statement. | |
2027 | But what we want is the statement containing the instruction. | |
2028 | Fudge the pc to make sure we get that. */ | |
2029 | ||
fe39c653 | 2030 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 2031 | |
b77b1eb7 JB |
2032 | /* It's tempting to assume that, if we can't find debugging info for |
2033 | any function enclosing PC, that we shouldn't search for line | |
2034 | number info, either. However, GAS can emit line number info for | |
2035 | assembly files --- very helpful when debugging hand-written | |
2036 | assembly code. In such a case, we'd have no debug info for the | |
2037 | function, but we would have line info. */ | |
648f4f79 | 2038 | |
c906108c SS |
2039 | if (notcurrent) |
2040 | pc -= 1; | |
2041 | ||
c5aa993b | 2042 | /* elz: added this because this function returned the wrong |
c906108c SS |
2043 | information if the pc belongs to a stub (import/export) |
2044 | to call a shlib function. This stub would be anywhere between | |
2045 | two functions in the target, and the line info was erroneously | |
2046 | taken to be the one of the line before the pc. | |
c5aa993b | 2047 | */ |
c906108c | 2048 | /* RT: Further explanation: |
c5aa993b | 2049 | |
c906108c SS |
2050 | * We have stubs (trampolines) inserted between procedures. |
2051 | * | |
2052 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
2053 | * exists in the main image. | |
2054 | * | |
2055 | * In the minimal symbol table, we have a bunch of symbols | |
2056 | * sorted by start address. The stubs are marked as "trampoline", | |
2057 | * the others appear as text. E.g.: | |
2058 | * | |
2059 | * Minimal symbol table for main image | |
2060 | * main: code for main (text symbol) | |
2061 | * shr1: stub (trampoline symbol) | |
2062 | * foo: code for foo (text symbol) | |
2063 | * ... | |
2064 | * Minimal symbol table for "shr1" image: | |
2065 | * ... | |
2066 | * shr1: code for shr1 (text symbol) | |
2067 | * ... | |
2068 | * | |
2069 | * So the code below is trying to detect if we are in the stub | |
2070 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
2071 | * and if found, do the symbolization from the real-code address | |
2072 | * rather than the stub address. | |
2073 | * | |
2074 | * Assumptions being made about the minimal symbol table: | |
2075 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
2076 | * if we're really in the trampoline. If we're beyond it (say | |
2077 | * we're in "foo" in the above example), it'll have a closer | |
2078 | * symbol (the "foo" text symbol for example) and will not | |
2079 | * return the trampoline. | |
2080 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
2081 | * corresponding to the trampoline, and whose address will | |
2082 | * be different than the trampoline address. I put in a sanity | |
2083 | * check for the address being the same, to avoid an | |
2084 | * infinite recursion. | |
2085 | */ | |
c5aa993b JM |
2086 | msymbol = lookup_minimal_symbol_by_pc (pc); |
2087 | if (msymbol != NULL) | |
c906108c | 2088 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 2089 | { |
2335f48e | 2090 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 2091 | NULL); |
c5aa993b JM |
2092 | if (mfunsym == NULL) |
2093 | /* I eliminated this warning since it is coming out | |
2094 | * in the following situation: | |
2095 | * gdb shmain // test program with shared libraries | |
2096 | * (gdb) break shr1 // function in shared lib | |
2097 | * Warning: In stub for ... | |
2098 | * In the above situation, the shared lib is not loaded yet, | |
2099 | * so of course we can't find the real func/line info, | |
2100 | * but the "break" still works, and the warning is annoying. | |
2101 | * So I commented out the warning. RT */ | |
2335f48e | 2102 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
2103 | /* fall through */ |
2104 | else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol)) | |
2105 | /* Avoid infinite recursion */ | |
2106 | /* See above comment about why warning is commented out */ | |
2335f48e | 2107 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
2108 | /* fall through */ |
2109 | else | |
2110 | return find_pc_line (SYMBOL_VALUE (mfunsym), 0); | |
2111 | } | |
c906108c SS |
2112 | |
2113 | ||
2114 | s = find_pc_sect_symtab (pc, section); | |
2115 | if (!s) | |
2116 | { | |
2117 | /* if no symbol information, return previous pc */ | |
2118 | if (notcurrent) | |
2119 | pc++; | |
2120 | val.pc = pc; | |
2121 | return val; | |
2122 | } | |
2123 | ||
2124 | bv = BLOCKVECTOR (s); | |
2125 | ||
2126 | /* Look at all the symtabs that share this blockvector. | |
2127 | They all have the same apriori range, that we found was right; | |
2128 | but they have different line tables. */ | |
2129 | ||
2130 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
2131 | { | |
2132 | /* Find the best line in this symtab. */ | |
2133 | l = LINETABLE (s); | |
2134 | if (!l) | |
c5aa993b | 2135 | continue; |
c906108c SS |
2136 | len = l->nitems; |
2137 | if (len <= 0) | |
2138 | { | |
2139 | /* I think len can be zero if the symtab lacks line numbers | |
2140 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2141 | I'm not sure which, and maybe it depends on the symbol | |
2142 | reader). */ | |
2143 | continue; | |
2144 | } | |
2145 | ||
2146 | prev = NULL; | |
2147 | item = l->item; /* Get first line info */ | |
2148 | ||
2149 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2150 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2151 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2152 | { | |
2153 | alt = item; | |
2154 | alt_symtab = s; | |
2155 | } | |
2156 | ||
2157 | for (i = 0; i < len; i++, item++) | |
2158 | { | |
2159 | /* Leave prev pointing to the linetable entry for the last line | |
2160 | that started at or before PC. */ | |
2161 | if (item->pc > pc) | |
2162 | break; | |
2163 | ||
2164 | prev = item; | |
2165 | } | |
2166 | ||
2167 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2168 | item points at the next line. If we ran off the end of the linetable |
2169 | (pc >= start of the last line), then prev == item. If pc < start of | |
2170 | the first line, prev will not be set. */ | |
c906108c SS |
2171 | |
2172 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2173 | If so, record this file, and its best line, as best so far. Don't |
2174 | save prev if it represents the end of a function (i.e. line number | |
2175 | 0) instead of a real line. */ | |
c906108c | 2176 | |
083ae935 | 2177 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2178 | { |
2179 | best = prev; | |
2180 | best_symtab = s; | |
25d53da1 KB |
2181 | |
2182 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2183 | if (best_end <= best->pc) | |
2184 | best_end = 0; | |
c906108c | 2185 | } |
25d53da1 KB |
2186 | |
2187 | /* If another line (denoted by ITEM) is in the linetable and its | |
2188 | PC is after BEST's PC, but before the current BEST_END, then | |
2189 | use ITEM's PC as the new best_end. */ | |
2190 | if (best && i < len && item->pc > best->pc | |
2191 | && (best_end == 0 || best_end > item->pc)) | |
2192 | best_end = item->pc; | |
c906108c SS |
2193 | } |
2194 | ||
2195 | if (!best_symtab) | |
2196 | { | |
e86e87f7 DJ |
2197 | /* If we didn't find any line number info, just return zeros. |
2198 | We used to return alt->line - 1 here, but that could be | |
2199 | anywhere; if we don't have line number info for this PC, | |
2200 | don't make some up. */ | |
2201 | val.pc = pc; | |
c906108c | 2202 | } |
e8717518 FF |
2203 | else if (best->line == 0) |
2204 | { | |
2205 | /* If our best fit is in a range of PC's for which no line | |
2206 | number info is available (line number is zero) then we didn't | |
2207 | find any valid line information. */ | |
2208 | val.pc = pc; | |
2209 | } | |
c906108c SS |
2210 | else |
2211 | { | |
2212 | val.symtab = best_symtab; | |
2213 | val.line = best->line; | |
2214 | val.pc = best->pc; | |
2215 | if (best_end && (!alt || best_end < alt->pc)) | |
2216 | val.end = best_end; | |
2217 | else if (alt) | |
2218 | val.end = alt->pc; | |
2219 | else | |
2220 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2221 | } | |
2222 | val.section = section; | |
2223 | return val; | |
2224 | } | |
2225 | ||
2226 | /* Backward compatibility (no section) */ | |
2227 | ||
2228 | struct symtab_and_line | |
fba45db2 | 2229 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2230 | { |
c5aa993b | 2231 | asection *section; |
c906108c SS |
2232 | |
2233 | section = find_pc_overlay (pc); | |
2234 | if (pc_in_unmapped_range (pc, section)) | |
2235 | pc = overlay_mapped_address (pc, section); | |
2236 | return find_pc_sect_line (pc, section, notcurrent); | |
2237 | } | |
c906108c | 2238 | \f |
c906108c SS |
2239 | /* Find line number LINE in any symtab whose name is the same as |
2240 | SYMTAB. | |
2241 | ||
2242 | If found, return the symtab that contains the linetable in which it was | |
2243 | found, set *INDEX to the index in the linetable of the best entry | |
2244 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2245 | exact match. | |
2246 | ||
2247 | If not found, return NULL. */ | |
2248 | ||
50641945 | 2249 | struct symtab * |
fba45db2 | 2250 | find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match) |
c906108c SS |
2251 | { |
2252 | int exact; | |
2253 | ||
2254 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2255 | so far seen. */ | |
2256 | ||
2257 | int best_index; | |
2258 | struct linetable *best_linetable; | |
2259 | struct symtab *best_symtab; | |
2260 | ||
2261 | /* First try looking it up in the given symtab. */ | |
2262 | best_linetable = LINETABLE (symtab); | |
2263 | best_symtab = symtab; | |
2264 | best_index = find_line_common (best_linetable, line, &exact); | |
2265 | if (best_index < 0 || !exact) | |
2266 | { | |
2267 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2268 | another symtab with the same name. In the case of xcoff, |
2269 | multiple csects for one source file (produced by IBM's FORTRAN | |
2270 | compiler) produce multiple symtabs (this is unavoidable | |
2271 | assuming csects can be at arbitrary places in memory and that | |
2272 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2273 | |
2274 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2275 | or 0 if none has been seen so far. |
2276 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2277 | int best; |
2278 | ||
2279 | struct objfile *objfile; | |
2280 | struct symtab *s; | |
2281 | ||
2282 | if (best_index >= 0) | |
2283 | best = best_linetable->item[best_index].line; | |
2284 | else | |
2285 | best = 0; | |
2286 | ||
2287 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
2288 | { |
2289 | struct linetable *l; | |
2290 | int ind; | |
c906108c | 2291 | |
6314a349 | 2292 | if (strcmp (symtab->filename, s->filename) != 0) |
c5aa993b JM |
2293 | continue; |
2294 | l = LINETABLE (s); | |
2295 | ind = find_line_common (l, line, &exact); | |
2296 | if (ind >= 0) | |
2297 | { | |
2298 | if (exact) | |
2299 | { | |
2300 | best_index = ind; | |
2301 | best_linetable = l; | |
2302 | best_symtab = s; | |
2303 | goto done; | |
2304 | } | |
2305 | if (best == 0 || l->item[ind].line < best) | |
2306 | { | |
2307 | best = l->item[ind].line; | |
2308 | best_index = ind; | |
2309 | best_linetable = l; | |
2310 | best_symtab = s; | |
2311 | } | |
2312 | } | |
2313 | } | |
c906108c | 2314 | } |
c5aa993b | 2315 | done: |
c906108c SS |
2316 | if (best_index < 0) |
2317 | return NULL; | |
2318 | ||
2319 | if (index) | |
2320 | *index = best_index; | |
2321 | if (exact_match) | |
2322 | *exact_match = exact; | |
2323 | ||
2324 | return best_symtab; | |
2325 | } | |
2326 | \f | |
2327 | /* Set the PC value for a given source file and line number and return true. | |
2328 | Returns zero for invalid line number (and sets the PC to 0). | |
2329 | The source file is specified with a struct symtab. */ | |
2330 | ||
2331 | int | |
fba45db2 | 2332 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2333 | { |
2334 | struct linetable *l; | |
2335 | int ind; | |
2336 | ||
2337 | *pc = 0; | |
2338 | if (symtab == 0) | |
2339 | return 0; | |
2340 | ||
2341 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2342 | if (symtab != NULL) | |
2343 | { | |
2344 | l = LINETABLE (symtab); | |
2345 | *pc = l->item[ind].pc; | |
2346 | return 1; | |
2347 | } | |
2348 | else | |
2349 | return 0; | |
2350 | } | |
2351 | ||
2352 | /* Find the range of pc values in a line. | |
2353 | Store the starting pc of the line into *STARTPTR | |
2354 | and the ending pc (start of next line) into *ENDPTR. | |
2355 | Returns 1 to indicate success. | |
2356 | Returns 0 if could not find the specified line. */ | |
2357 | ||
2358 | int | |
fba45db2 KB |
2359 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2360 | CORE_ADDR *endptr) | |
c906108c SS |
2361 | { |
2362 | CORE_ADDR startaddr; | |
2363 | struct symtab_and_line found_sal; | |
2364 | ||
2365 | startaddr = sal.pc; | |
c5aa993b | 2366 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2367 | return 0; |
2368 | ||
2369 | /* This whole function is based on address. For example, if line 10 has | |
2370 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2371 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2372 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2373 | This also insures that we never give a range like "starts at 0x134 | |
2374 | and ends at 0x12c". */ | |
2375 | ||
2376 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2377 | if (found_sal.line != sal.line) | |
2378 | { | |
2379 | /* The specified line (sal) has zero bytes. */ | |
2380 | *startptr = found_sal.pc; | |
2381 | *endptr = found_sal.pc; | |
2382 | } | |
2383 | else | |
2384 | { | |
2385 | *startptr = found_sal.pc; | |
2386 | *endptr = found_sal.end; | |
2387 | } | |
2388 | return 1; | |
2389 | } | |
2390 | ||
2391 | /* Given a line table and a line number, return the index into the line | |
2392 | table for the pc of the nearest line whose number is >= the specified one. | |
2393 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2394 | ||
2395 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2396 | ||
2397 | static int | |
aa1ee363 | 2398 | find_line_common (struct linetable *l, int lineno, |
fba45db2 | 2399 | int *exact_match) |
c906108c | 2400 | { |
52f0bd74 AC |
2401 | int i; |
2402 | int len; | |
c906108c SS |
2403 | |
2404 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2405 | or 0 if none has been seen so far. | |
2406 | BEST_INDEX identifies the item for it. */ | |
2407 | ||
2408 | int best_index = -1; | |
2409 | int best = 0; | |
2410 | ||
2411 | if (lineno <= 0) | |
2412 | return -1; | |
2413 | if (l == 0) | |
2414 | return -1; | |
2415 | ||
2416 | len = l->nitems; | |
2417 | for (i = 0; i < len; i++) | |
2418 | { | |
aa1ee363 | 2419 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2420 | |
2421 | if (item->line == lineno) | |
2422 | { | |
2423 | /* Return the first (lowest address) entry which matches. */ | |
2424 | *exact_match = 1; | |
2425 | return i; | |
2426 | } | |
2427 | ||
2428 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2429 | { | |
2430 | best = item->line; | |
2431 | best_index = i; | |
2432 | } | |
2433 | } | |
2434 | ||
2435 | /* If we got here, we didn't get an exact match. */ | |
2436 | ||
2437 | *exact_match = 0; | |
2438 | return best_index; | |
2439 | } | |
2440 | ||
2441 | int | |
fba45db2 | 2442 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2443 | { |
2444 | struct symtab_and_line sal; | |
2445 | sal = find_pc_line (pc, 0); | |
2446 | *startptr = sal.pc; | |
2447 | *endptr = sal.end; | |
2448 | return sal.symtab != 0; | |
2449 | } | |
2450 | ||
2451 | /* Given a function symbol SYM, find the symtab and line for the start | |
2452 | of the function. | |
2453 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2454 | of real code inside the function. */ | |
2455 | ||
50641945 | 2456 | struct symtab_and_line |
fba45db2 | 2457 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c SS |
2458 | { |
2459 | CORE_ADDR pc; | |
2460 | struct symtab_and_line sal; | |
2461 | ||
2462 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2463 | fixup_symbol_section (sym, NULL); | |
2464 | if (funfirstline) | |
c5aa993b | 2465 | { /* skip "first line" of function (which is actually its prologue) */ |
c906108c SS |
2466 | asection *section = SYMBOL_BFD_SECTION (sym); |
2467 | /* If function is in an unmapped overlay, use its unmapped LMA | |
a433963d UW |
2468 | address, so that gdbarch_skip_prologue has something unique to work |
2469 | on */ | |
c906108c SS |
2470 | if (section_is_overlay (section) && |
2471 | !section_is_mapped (section)) | |
2472 | pc = overlay_unmapped_address (pc, section); | |
2473 | ||
cbf3b44a | 2474 | pc += gdbarch_deprecated_function_start_offset (current_gdbarch); |
a433963d | 2475 | pc = gdbarch_skip_prologue (current_gdbarch, pc); |
c906108c SS |
2476 | |
2477 | /* For overlays, map pc back into its mapped VMA range */ | |
2478 | pc = overlay_mapped_address (pc, section); | |
2479 | } | |
2480 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2481 | ||
a433963d | 2482 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next |
c906108c SS |
2483 | line is still part of the same function. */ |
2484 | if (sal.pc != pc | |
2485 | && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end | |
2486 | && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
2487 | { | |
2488 | /* First pc of next line */ | |
2489 | pc = sal.end; | |
2490 | /* Recalculate the line number (might not be N+1). */ | |
2491 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2492 | } | |
2493 | sal.pc = pc; | |
c906108c SS |
2494 | |
2495 | return sal; | |
2496 | } | |
50641945 | 2497 | |
c906108c SS |
2498 | /* If P is of the form "operator[ \t]+..." where `...' is |
2499 | some legitimate operator text, return a pointer to the | |
2500 | beginning of the substring of the operator text. | |
2501 | Otherwise, return "". */ | |
2502 | char * | |
fba45db2 | 2503 | operator_chars (char *p, char **end) |
c906108c SS |
2504 | { |
2505 | *end = ""; | |
2506 | if (strncmp (p, "operator", 8)) | |
2507 | return *end; | |
2508 | p += 8; | |
2509 | ||
2510 | /* Don't get faked out by `operator' being part of a longer | |
2511 | identifier. */ | |
c5aa993b | 2512 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2513 | return *end; |
2514 | ||
2515 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2516 | while (*p == ' ' || *p == '\t') | |
2517 | p++; | |
2518 | ||
2519 | /* Recognize 'operator TYPENAME'. */ | |
2520 | ||
c5aa993b | 2521 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2522 | { |
aa1ee363 | 2523 | char *q = p + 1; |
c5aa993b | 2524 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2525 | q++; |
2526 | *end = q; | |
2527 | return p; | |
2528 | } | |
2529 | ||
53e8ad3d MS |
2530 | while (*p) |
2531 | switch (*p) | |
2532 | { | |
2533 | case '\\': /* regexp quoting */ | |
2534 | if (p[1] == '*') | |
2535 | { | |
2536 | if (p[2] == '=') /* 'operator\*=' */ | |
2537 | *end = p + 3; | |
2538 | else /* 'operator\*' */ | |
2539 | *end = p + 2; | |
2540 | return p; | |
2541 | } | |
2542 | else if (p[1] == '[') | |
2543 | { | |
2544 | if (p[2] == ']') | |
8a3fe4f8 | 2545 | error (_("mismatched quoting on brackets, try 'operator\\[\\]'")); |
53e8ad3d MS |
2546 | else if (p[2] == '\\' && p[3] == ']') |
2547 | { | |
2548 | *end = p + 4; /* 'operator\[\]' */ | |
2549 | return p; | |
2550 | } | |
2551 | else | |
8a3fe4f8 | 2552 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d MS |
2553 | } |
2554 | else | |
2555 | { | |
2556 | /* Gratuitous qoute: skip it and move on. */ | |
2557 | p++; | |
2558 | continue; | |
2559 | } | |
2560 | break; | |
2561 | case '!': | |
2562 | case '=': | |
2563 | case '*': | |
2564 | case '/': | |
2565 | case '%': | |
2566 | case '^': | |
2567 | if (p[1] == '=') | |
2568 | *end = p + 2; | |
2569 | else | |
2570 | *end = p + 1; | |
2571 | return p; | |
2572 | case '<': | |
2573 | case '>': | |
2574 | case '+': | |
2575 | case '-': | |
2576 | case '&': | |
2577 | case '|': | |
2578 | if (p[0] == '-' && p[1] == '>') | |
2579 | { | |
2580 | /* Struct pointer member operator 'operator->'. */ | |
2581 | if (p[2] == '*') | |
2582 | { | |
2583 | *end = p + 3; /* 'operator->*' */ | |
2584 | return p; | |
2585 | } | |
2586 | else if (p[2] == '\\') | |
2587 | { | |
2588 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
2589 | return p; | |
2590 | } | |
2591 | else | |
2592 | { | |
2593 | *end = p + 2; /* 'operator->' */ | |
2594 | return p; | |
2595 | } | |
2596 | } | |
2597 | if (p[1] == '=' || p[1] == p[0]) | |
2598 | *end = p + 2; | |
2599 | else | |
2600 | *end = p + 1; | |
2601 | return p; | |
2602 | case '~': | |
2603 | case ',': | |
c5aa993b | 2604 | *end = p + 1; |
53e8ad3d MS |
2605 | return p; |
2606 | case '(': | |
2607 | if (p[1] != ')') | |
8a3fe4f8 | 2608 | error (_("`operator ()' must be specified without whitespace in `()'")); |
c5aa993b | 2609 | *end = p + 2; |
53e8ad3d MS |
2610 | return p; |
2611 | case '?': | |
2612 | if (p[1] != ':') | |
8a3fe4f8 | 2613 | error (_("`operator ?:' must be specified without whitespace in `?:'")); |
53e8ad3d MS |
2614 | *end = p + 2; |
2615 | return p; | |
2616 | case '[': | |
2617 | if (p[1] != ']') | |
8a3fe4f8 | 2618 | error (_("`operator []' must be specified without whitespace in `[]'")); |
53e8ad3d MS |
2619 | *end = p + 2; |
2620 | return p; | |
2621 | default: | |
8a3fe4f8 | 2622 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
2623 | break; |
2624 | } | |
2625 | ||
c906108c SS |
2626 | *end = ""; |
2627 | return *end; | |
2628 | } | |
c906108c | 2629 | \f |
c5aa993b | 2630 | |
c94fdfd0 EZ |
2631 | /* If FILE is not already in the table of files, return zero; |
2632 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
2633 | is non-zero. If *FIRST is non-zero, forget the old table | |
2634 | contents. */ | |
2635 | static int | |
2636 | filename_seen (const char *file, int add, int *first) | |
c906108c | 2637 | { |
c94fdfd0 EZ |
2638 | /* Table of files seen so far. */ |
2639 | static const char **tab = NULL; | |
c906108c SS |
2640 | /* Allocated size of tab in elements. |
2641 | Start with one 256-byte block (when using GNU malloc.c). | |
2642 | 24 is the malloc overhead when range checking is in effect. */ | |
2643 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
2644 | /* Current size of tab in elements. */ | |
2645 | static int tab_cur_size; | |
c94fdfd0 | 2646 | const char **p; |
c906108c SS |
2647 | |
2648 | if (*first) | |
2649 | { | |
2650 | if (tab == NULL) | |
c94fdfd0 | 2651 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
2652 | tab_cur_size = 0; |
2653 | } | |
2654 | ||
c94fdfd0 | 2655 | /* Is FILE in tab? */ |
c906108c | 2656 | for (p = tab; p < tab + tab_cur_size; p++) |
c94fdfd0 EZ |
2657 | if (strcmp (*p, file) == 0) |
2658 | return 1; | |
2659 | ||
2660 | /* No; maybe add it to tab. */ | |
2661 | if (add) | |
c906108c | 2662 | { |
c94fdfd0 EZ |
2663 | if (tab_cur_size == tab_alloc_size) |
2664 | { | |
2665 | tab_alloc_size *= 2; | |
2666 | tab = (const char **) xrealloc ((char *) tab, | |
2667 | tab_alloc_size * sizeof (*tab)); | |
2668 | } | |
2669 | tab[tab_cur_size++] = file; | |
c906108c | 2670 | } |
c906108c | 2671 | |
c94fdfd0 EZ |
2672 | return 0; |
2673 | } | |
2674 | ||
2675 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
2676 | NAME is the name to print and *FIRST is nonzero if this is the first | |
2677 | name printed. Set *FIRST to zero. */ | |
2678 | static void | |
d092d1a2 | 2679 | output_source_filename (const char *name, int *first) |
c94fdfd0 EZ |
2680 | { |
2681 | /* Since a single source file can result in several partial symbol | |
2682 | tables, we need to avoid printing it more than once. Note: if | |
2683 | some of the psymtabs are read in and some are not, it gets | |
2684 | printed both under "Source files for which symbols have been | |
2685 | read" and "Source files for which symbols will be read in on | |
2686 | demand". I consider this a reasonable way to deal with the | |
2687 | situation. I'm not sure whether this can also happen for | |
2688 | symtabs; it doesn't hurt to check. */ | |
2689 | ||
2690 | /* Was NAME already seen? */ | |
2691 | if (filename_seen (name, 1, first)) | |
2692 | { | |
2693 | /* Yes; don't print it again. */ | |
2694 | return; | |
2695 | } | |
2696 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
2697 | if (*first) |
2698 | { | |
2699 | *first = 0; | |
2700 | } | |
2701 | else | |
2702 | { | |
2703 | printf_filtered (", "); | |
2704 | } | |
2705 | ||
2706 | wrap_here (""); | |
2707 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 2708 | } |
c906108c SS |
2709 | |
2710 | static void | |
fba45db2 | 2711 | sources_info (char *ignore, int from_tty) |
c906108c | 2712 | { |
52f0bd74 AC |
2713 | struct symtab *s; |
2714 | struct partial_symtab *ps; | |
2715 | struct objfile *objfile; | |
c906108c | 2716 | int first; |
c5aa993b | 2717 | |
c906108c SS |
2718 | if (!have_full_symbols () && !have_partial_symbols ()) |
2719 | { | |
8a3fe4f8 | 2720 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 2721 | } |
c5aa993b | 2722 | |
c906108c SS |
2723 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
2724 | ||
2725 | first = 1; | |
2726 | ALL_SYMTABS (objfile, s) | |
c5aa993b | 2727 | { |
d092d1a2 DJ |
2728 | const char *fullname = symtab_to_fullname (s); |
2729 | output_source_filename (fullname ? fullname : s->filename, &first); | |
c5aa993b | 2730 | } |
c906108c | 2731 | printf_filtered ("\n\n"); |
c5aa993b | 2732 | |
c906108c SS |
2733 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
2734 | ||
2735 | first = 1; | |
2736 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2737 | { |
2738 | if (!ps->readin) | |
2739 | { | |
d092d1a2 DJ |
2740 | const char *fullname = psymtab_to_fullname (ps); |
2741 | output_source_filename (fullname ? fullname : ps->filename, &first); | |
c5aa993b JM |
2742 | } |
2743 | } | |
c906108c SS |
2744 | printf_filtered ("\n"); |
2745 | } | |
2746 | ||
2747 | static int | |
fd118b61 | 2748 | file_matches (char *file, char *files[], int nfiles) |
c906108c SS |
2749 | { |
2750 | int i; | |
2751 | ||
2752 | if (file != NULL && nfiles != 0) | |
2753 | { | |
2754 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 2755 | { |
31889e00 | 2756 | if (strcmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
2757 | return 1; |
2758 | } | |
c906108c SS |
2759 | } |
2760 | else if (nfiles == 0) | |
2761 | return 1; | |
2762 | return 0; | |
2763 | } | |
2764 | ||
2765 | /* Free any memory associated with a search. */ | |
2766 | void | |
fba45db2 | 2767 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
2768 | { |
2769 | struct symbol_search *p; | |
2770 | struct symbol_search *next; | |
2771 | ||
2772 | for (p = symbols; p != NULL; p = next) | |
2773 | { | |
2774 | next = p->next; | |
b8c9b27d | 2775 | xfree (p); |
c906108c SS |
2776 | } |
2777 | } | |
2778 | ||
5bd98722 AC |
2779 | static void |
2780 | do_free_search_symbols_cleanup (void *symbols) | |
2781 | { | |
2782 | free_search_symbols (symbols); | |
2783 | } | |
2784 | ||
2785 | struct cleanup * | |
2786 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
2787 | { | |
2788 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
2789 | } | |
2790 | ||
434d2d4f DJ |
2791 | /* Helper function for sort_search_symbols and qsort. Can only |
2792 | sort symbols, not minimal symbols. */ | |
2793 | static int | |
2794 | compare_search_syms (const void *sa, const void *sb) | |
2795 | { | |
2796 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
2797 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
2798 | ||
de5ad195 DC |
2799 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
2800 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
2801 | } |
2802 | ||
2803 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
2804 | prevtail where it is, but update its next pointer to point to | |
2805 | the first of the sorted symbols. */ | |
2806 | static struct symbol_search * | |
2807 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
2808 | { | |
2809 | struct symbol_search **symbols, *symp, *old_next; | |
2810 | int i; | |
2811 | ||
2812 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
2813 | * nfound); | |
2814 | symp = prevtail->next; | |
2815 | for (i = 0; i < nfound; i++) | |
2816 | { | |
2817 | symbols[i] = symp; | |
2818 | symp = symp->next; | |
2819 | } | |
2820 | /* Generally NULL. */ | |
2821 | old_next = symp; | |
2822 | ||
2823 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
2824 | compare_search_syms); | |
2825 | ||
2826 | symp = prevtail; | |
2827 | for (i = 0; i < nfound; i++) | |
2828 | { | |
2829 | symp->next = symbols[i]; | |
2830 | symp = symp->next; | |
2831 | } | |
2832 | symp->next = old_next; | |
2833 | ||
8ed32cc0 | 2834 | xfree (symbols); |
434d2d4f DJ |
2835 | return symp; |
2836 | } | |
5bd98722 | 2837 | |
c906108c SS |
2838 | /* Search the symbol table for matches to the regular expression REGEXP, |
2839 | returning the results in *MATCHES. | |
2840 | ||
2841 | Only symbols of KIND are searched: | |
176620f1 EZ |
2842 | FUNCTIONS_DOMAIN - search all functions |
2843 | TYPES_DOMAIN - search all type names | |
2844 | METHODS_DOMAIN - search all methods NOT IMPLEMENTED | |
2845 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, | |
c5aa993b | 2846 | and constants (enums) |
c906108c SS |
2847 | |
2848 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
2849 | |
2850 | The results are sorted locally; each symtab's global and static blocks are | |
2851 | separately alphabetized. | |
c5aa993b | 2852 | */ |
c906108c | 2853 | void |
176620f1 | 2854 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
fd118b61 | 2855 | struct symbol_search **matches) |
c906108c | 2856 | { |
52f0bd74 AC |
2857 | struct symtab *s; |
2858 | struct partial_symtab *ps; | |
2859 | struct blockvector *bv; | |
52f0bd74 AC |
2860 | struct block *b; |
2861 | int i = 0; | |
de4f826b | 2862 | struct dict_iterator iter; |
52f0bd74 | 2863 | struct symbol *sym; |
c906108c SS |
2864 | struct partial_symbol **psym; |
2865 | struct objfile *objfile; | |
2866 | struct minimal_symbol *msymbol; | |
2867 | char *val; | |
2868 | int found_misc = 0; | |
2869 | static enum minimal_symbol_type types[] | |
c5aa993b JM |
2870 | = |
2871 | {mst_data, mst_text, mst_abs, mst_unknown}; | |
c906108c | 2872 | static enum minimal_symbol_type types2[] |
c5aa993b JM |
2873 | = |
2874 | {mst_bss, mst_file_text, mst_abs, mst_unknown}; | |
c906108c | 2875 | static enum minimal_symbol_type types3[] |
c5aa993b JM |
2876 | = |
2877 | {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; | |
c906108c | 2878 | static enum minimal_symbol_type types4[] |
c5aa993b JM |
2879 | = |
2880 | {mst_file_bss, mst_text, mst_abs, mst_unknown}; | |
c906108c SS |
2881 | enum minimal_symbol_type ourtype; |
2882 | enum minimal_symbol_type ourtype2; | |
2883 | enum minimal_symbol_type ourtype3; | |
2884 | enum minimal_symbol_type ourtype4; | |
2885 | struct symbol_search *sr; | |
2886 | struct symbol_search *psr; | |
2887 | struct symbol_search *tail; | |
2888 | struct cleanup *old_chain = NULL; | |
2889 | ||
176620f1 | 2890 | if (kind < VARIABLES_DOMAIN) |
8a3fe4f8 | 2891 | error (_("must search on specific domain")); |
c906108c | 2892 | |
176620f1 EZ |
2893 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
2894 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; | |
2895 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; | |
2896 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; | |
c906108c SS |
2897 | |
2898 | sr = *matches = NULL; | |
2899 | tail = NULL; | |
2900 | ||
2901 | if (regexp != NULL) | |
2902 | { | |
2903 | /* Make sure spacing is right for C++ operators. | |
2904 | This is just a courtesy to make the matching less sensitive | |
2905 | to how many spaces the user leaves between 'operator' | |
2906 | and <TYPENAME> or <OPERATOR>. */ | |
2907 | char *opend; | |
2908 | char *opname = operator_chars (regexp, &opend); | |
2909 | if (*opname) | |
c5aa993b JM |
2910 | { |
2911 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ | |
2912 | if (isalpha (*opname) || *opname == '_' || *opname == '$') | |
2913 | { | |
2914 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
2915 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
2916 | fix = 1; | |
2917 | } | |
2918 | else | |
2919 | { | |
2920 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
2921 | if (opname[-1] == ' ') | |
2922 | fix = 0; | |
2923 | } | |
2924 | /* If wrong number of spaces, fix it. */ | |
2925 | if (fix >= 0) | |
2926 | { | |
045f55a6 | 2927 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
c5aa993b JM |
2928 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
2929 | regexp = tmp; | |
2930 | } | |
2931 | } | |
2932 | ||
c906108c | 2933 | if (0 != (val = re_comp (regexp))) |
8a3fe4f8 | 2934 | error (_("Invalid regexp (%s): %s"), val, regexp); |
c906108c SS |
2935 | } |
2936 | ||
2937 | /* Search through the partial symtabs *first* for all symbols | |
2938 | matching the regexp. That way we don't have to reproduce all of | |
2939 | the machinery below. */ | |
2940 | ||
2941 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2942 | { |
2943 | struct partial_symbol **bound, **gbound, **sbound; | |
2944 | int keep_going = 1; | |
2945 | ||
2946 | if (ps->readin) | |
2947 | continue; | |
2948 | ||
2949 | gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms; | |
2950 | sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms; | |
2951 | bound = gbound; | |
2952 | ||
2953 | /* Go through all of the symbols stored in a partial | |
2954 | symtab in one loop. */ | |
2955 | psym = objfile->global_psymbols.list + ps->globals_offset; | |
2956 | while (keep_going) | |
2957 | { | |
2958 | if (psym >= bound) | |
2959 | { | |
2960 | if (bound == gbound && ps->n_static_syms != 0) | |
2961 | { | |
2962 | psym = objfile->static_psymbols.list + ps->statics_offset; | |
2963 | bound = sbound; | |
2964 | } | |
2965 | else | |
2966 | keep_going = 0; | |
2967 | continue; | |
2968 | } | |
2969 | else | |
2970 | { | |
2971 | QUIT; | |
2972 | ||
2973 | /* If it would match (logic taken from loop below) | |
cb1df416 DJ |
2974 | load the file and go on to the next one. We check the |
2975 | filename here, but that's a bit bogus: we don't know | |
2976 | what file it really comes from until we have full | |
2977 | symtabs. The symbol might be in a header file included by | |
2978 | this psymtab. This only affects Insight. */ | |
c5aa993b | 2979 | if (file_matches (ps->filename, files, nfiles) |
25120b0d DC |
2980 | && ((regexp == NULL |
2981 | || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0) | |
176620f1 | 2982 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF |
c5aa993b | 2983 | && SYMBOL_CLASS (*psym) != LOC_BLOCK) |
176620f1 EZ |
2984 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK) |
2985 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF) | |
2986 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)))) | |
c5aa993b JM |
2987 | { |
2988 | PSYMTAB_TO_SYMTAB (ps); | |
2989 | keep_going = 0; | |
2990 | } | |
2991 | } | |
2992 | psym++; | |
2993 | } | |
2994 | } | |
c906108c SS |
2995 | |
2996 | /* Here, we search through the minimal symbol tables for functions | |
2997 | and variables that match, and force their symbols to be read. | |
2998 | This is in particular necessary for demangled variable names, | |
2999 | which are no longer put into the partial symbol tables. | |
3000 | The symbol will then be found during the scan of symtabs below. | |
3001 | ||
3002 | For functions, find_pc_symtab should succeed if we have debug info | |
3003 | for the function, for variables we have to call lookup_symbol | |
3004 | to determine if the variable has debug info. | |
3005 | If the lookup fails, set found_misc so that we will rescan to print | |
3006 | any matching symbols without debug info. | |
c5aa993b | 3007 | */ |
c906108c | 3008 | |
176620f1 | 3009 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
3010 | { |
3011 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3012 | { |
3013 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3014 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3015 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3016 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3017 | { | |
25120b0d DC |
3018 | if (regexp == NULL |
3019 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3020 | { |
3021 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
3022 | { | |
b1262a02 DC |
3023 | /* FIXME: carlton/2003-02-04: Given that the |
3024 | semantics of lookup_symbol keeps on changing | |
3025 | slightly, it would be a nice idea if we had a | |
3026 | function lookup_symbol_minsym that found the | |
3027 | symbol associated to a given minimal symbol (if | |
3028 | any). */ | |
176620f1 | 3029 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 3030 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 3031 | (struct block *) NULL, |
176620f1 | 3032 | VAR_DOMAIN, |
53c5240f PA |
3033 | 0, (struct symtab **) NULL) |
3034 | == NULL) | |
b1262a02 | 3035 | found_misc = 1; |
c5aa993b JM |
3036 | } |
3037 | } | |
3038 | } | |
3039 | } | |
c906108c SS |
3040 | } |
3041 | ||
11309657 | 3042 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3043 | { |
3044 | bv = BLOCKVECTOR (s); | |
c5aa993b JM |
3045 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3046 | { | |
434d2d4f DJ |
3047 | struct symbol_search *prevtail = tail; |
3048 | int nfound = 0; | |
c5aa993b | 3049 | b = BLOCKVECTOR_BLOCK (bv, i); |
de4f826b | 3050 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3051 | { |
cb1df416 | 3052 | struct symtab *real_symtab = SYMBOL_SYMTAB (sym); |
c5aa993b | 3053 | QUIT; |
cb1df416 DJ |
3054 | |
3055 | if (file_matches (real_symtab->filename, files, nfiles) | |
25120b0d DC |
3056 | && ((regexp == NULL |
3057 | || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0) | |
176620f1 | 3058 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF |
c5aa993b JM |
3059 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
3060 | && SYMBOL_CLASS (sym) != LOC_CONST) | |
176620f1 EZ |
3061 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK) |
3062 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3063 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)))) | |
c5aa993b JM |
3064 | { |
3065 | /* match */ | |
3066 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3067 | psr->block = i; | |
cb1df416 | 3068 | psr->symtab = real_symtab; |
c5aa993b JM |
3069 | psr->symbol = sym; |
3070 | psr->msymbol = NULL; | |
3071 | psr->next = NULL; | |
3072 | if (tail == NULL) | |
434d2d4f | 3073 | sr = psr; |
c5aa993b JM |
3074 | else |
3075 | tail->next = psr; | |
3076 | tail = psr; | |
434d2d4f DJ |
3077 | nfound ++; |
3078 | } | |
3079 | } | |
3080 | if (nfound > 0) | |
3081 | { | |
3082 | if (prevtail == NULL) | |
3083 | { | |
3084 | struct symbol_search dummy; | |
3085 | ||
3086 | dummy.next = sr; | |
3087 | tail = sort_search_symbols (&dummy, nfound); | |
3088 | sr = dummy.next; | |
3089 | ||
3090 | old_chain = make_cleanup_free_search_symbols (sr); | |
c5aa993b | 3091 | } |
434d2d4f DJ |
3092 | else |
3093 | tail = sort_search_symbols (prevtail, nfound); | |
c5aa993b JM |
3094 | } |
3095 | } | |
c5aa993b | 3096 | } |
c906108c SS |
3097 | |
3098 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3099 | no debug symbols, then print directly from the msymbol_vector. */ | |
3100 | ||
176620f1 | 3101 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
3102 | { |
3103 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3104 | { |
3105 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3106 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3107 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3108 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3109 | { | |
25120b0d DC |
3110 | if (regexp == NULL |
3111 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3112 | { |
3113 | /* Functions: Look up by address. */ | |
176620f1 | 3114 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3115 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3116 | { | |
3117 | /* Variables/Absolutes: Look up by name */ | |
2335f48e | 3118 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
176620f1 | 3119 | (struct block *) NULL, VAR_DOMAIN, |
c5aa993b JM |
3120 | 0, (struct symtab **) NULL) == NULL) |
3121 | { | |
3122 | /* match */ | |
3123 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3124 | psr->block = i; | |
3125 | psr->msymbol = msymbol; | |
3126 | psr->symtab = NULL; | |
3127 | psr->symbol = NULL; | |
3128 | psr->next = NULL; | |
3129 | if (tail == NULL) | |
3130 | { | |
3131 | sr = psr; | |
5bd98722 | 3132 | old_chain = make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3133 | } |
3134 | else | |
3135 | tail->next = psr; | |
3136 | tail = psr; | |
3137 | } | |
3138 | } | |
3139 | } | |
3140 | } | |
3141 | } | |
c906108c SS |
3142 | } |
3143 | ||
3144 | *matches = sr; | |
3145 | if (sr != NULL) | |
3146 | discard_cleanups (old_chain); | |
3147 | } | |
3148 | ||
3149 | /* Helper function for symtab_symbol_info, this function uses | |
3150 | the data returned from search_symbols() to print information | |
3151 | regarding the match to gdb_stdout. | |
c5aa993b | 3152 | */ |
c906108c | 3153 | static void |
176620f1 | 3154 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
fba45db2 | 3155 | int block, char *last) |
c906108c SS |
3156 | { |
3157 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3158 | { | |
3159 | fputs_filtered ("\nFile ", gdb_stdout); | |
3160 | fputs_filtered (s->filename, gdb_stdout); | |
3161 | fputs_filtered (":\n", gdb_stdout); | |
3162 | } | |
3163 | ||
176620f1 | 3164 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3165 | printf_filtered ("static "); |
c5aa993b | 3166 | |
c906108c | 3167 | /* Typedef that is not a C++ class */ |
176620f1 EZ |
3168 | if (kind == TYPES_DOMAIN |
3169 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3170 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c906108c | 3171 | /* variable, func, or typedef-that-is-c++-class */ |
176620f1 EZ |
3172 | else if (kind < TYPES_DOMAIN || |
3173 | (kind == TYPES_DOMAIN && | |
3174 | SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3175 | { |
3176 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3177 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3178 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3179 | gdb_stdout, 0); |
c906108c SS |
3180 | |
3181 | printf_filtered (";\n"); | |
3182 | } | |
c906108c SS |
3183 | } |
3184 | ||
3185 | /* This help function for symtab_symbol_info() prints information | |
3186 | for non-debugging symbols to gdb_stdout. | |
c5aa993b | 3187 | */ |
c906108c | 3188 | static void |
fba45db2 | 3189 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3190 | { |
3ac4495a MS |
3191 | char *tmp; |
3192 | ||
17a912b6 | 3193 | if (gdbarch_addr_bit (current_gdbarch) <= 32) |
bb599908 PH |
3194 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3195 | & (CORE_ADDR) 0xffffffff, | |
3196 | 8); | |
3ac4495a | 3197 | else |
bb599908 PH |
3198 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3199 | 16); | |
3ac4495a | 3200 | printf_filtered ("%s %s\n", |
de5ad195 | 3201 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3202 | } |
3203 | ||
3204 | /* This is the guts of the commands "info functions", "info types", and | |
3205 | "info variables". It calls search_symbols to find all matches and then | |
3206 | print_[m]symbol_info to print out some useful information about the | |
3207 | matches. | |
c5aa993b | 3208 | */ |
c906108c | 3209 | static void |
176620f1 | 3210 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
c906108c SS |
3211 | { |
3212 | static char *classnames[] | |
c5aa993b JM |
3213 | = |
3214 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3215 | struct symbol_search *symbols; |
3216 | struct symbol_search *p; | |
3217 | struct cleanup *old_chain; | |
3218 | char *last_filename = NULL; | |
3219 | int first = 1; | |
3220 | ||
3221 | /* must make sure that if we're interrupted, symbols gets freed */ | |
3222 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); | |
5bd98722 | 3223 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3224 | |
3225 | printf_filtered (regexp | |
c5aa993b JM |
3226 | ? "All %ss matching regular expression \"%s\":\n" |
3227 | : "All defined %ss:\n", | |
176620f1 | 3228 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
c906108c SS |
3229 | |
3230 | for (p = symbols; p != NULL; p = p->next) | |
3231 | { | |
3232 | QUIT; | |
3233 | ||
3234 | if (p->msymbol != NULL) | |
c5aa993b JM |
3235 | { |
3236 | if (first) | |
3237 | { | |
3238 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3239 | first = 0; | |
3240 | } | |
3241 | print_msymbol_info (p->msymbol); | |
3242 | } | |
c906108c | 3243 | else |
c5aa993b JM |
3244 | { |
3245 | print_symbol_info (kind, | |
3246 | p->symtab, | |
3247 | p->symbol, | |
3248 | p->block, | |
3249 | last_filename); | |
3250 | last_filename = p->symtab->filename; | |
3251 | } | |
c906108c SS |
3252 | } |
3253 | ||
3254 | do_cleanups (old_chain); | |
3255 | } | |
3256 | ||
3257 | static void | |
fba45db2 | 3258 | variables_info (char *regexp, int from_tty) |
c906108c | 3259 | { |
176620f1 | 3260 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3261 | } |
3262 | ||
3263 | static void | |
fba45db2 | 3264 | functions_info (char *regexp, int from_tty) |
c906108c | 3265 | { |
176620f1 | 3266 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3267 | } |
3268 | ||
357e46e7 | 3269 | |
c906108c | 3270 | static void |
fba45db2 | 3271 | types_info (char *regexp, int from_tty) |
c906108c | 3272 | { |
176620f1 | 3273 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3274 | } |
3275 | ||
c906108c | 3276 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3277 | |
8b93c638 | 3278 | void |
fba45db2 | 3279 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3280 | { |
3281 | rbreak_command (regexp, from_tty); | |
3282 | } | |
8926118c | 3283 | |
c906108c | 3284 | static void |
fba45db2 | 3285 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3286 | { |
3287 | struct symbol_search *ss; | |
3288 | struct symbol_search *p; | |
3289 | struct cleanup *old_chain; | |
3290 | ||
176620f1 | 3291 | search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss); |
5bd98722 | 3292 | old_chain = make_cleanup_free_search_symbols (ss); |
c906108c SS |
3293 | |
3294 | for (p = ss; p != NULL; p = p->next) | |
3295 | { | |
3296 | if (p->msymbol == NULL) | |
c5aa993b | 3297 | { |
2335f48e DC |
3298 | char *string = alloca (strlen (p->symtab->filename) |
3299 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3300 | + 4); | |
c5aa993b JM |
3301 | strcpy (string, p->symtab->filename); |
3302 | strcat (string, ":'"); | |
2335f48e | 3303 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3304 | strcat (string, "'"); |
3305 | break_command (string, from_tty); | |
176620f1 | 3306 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3307 | p->symtab, |
3308 | p->symbol, | |
3309 | p->block, | |
3310 | p->symtab->filename); | |
3311 | } | |
c906108c | 3312 | else |
c5aa993b | 3313 | { |
2335f48e | 3314 | break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty); |
c5aa993b | 3315 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3316 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3317 | } |
c906108c SS |
3318 | } |
3319 | ||
3320 | do_cleanups (old_chain); | |
3321 | } | |
c906108c | 3322 | \f |
c5aa993b | 3323 | |
c906108c SS |
3324 | /* Helper routine for make_symbol_completion_list. */ |
3325 | ||
3326 | static int return_val_size; | |
3327 | static int return_val_index; | |
3328 | static char **return_val; | |
3329 | ||
3330 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3331 | completion_list_add_name \ |
2335f48e | 3332 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3333 | |
3334 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
3335 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
3336 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
3337 | |
3338 | static void | |
fba45db2 KB |
3339 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3340 | char *text, char *word) | |
c906108c SS |
3341 | { |
3342 | int newsize; | |
3343 | int i; | |
3344 | ||
3345 | /* clip symbols that cannot match */ | |
3346 | ||
3347 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
3348 | { | |
3349 | return; | |
3350 | } | |
3351 | ||
c906108c SS |
3352 | /* We have a match for a completion, so add SYMNAME to the current list |
3353 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
3354 | ||
3355 | { | |
3356 | char *new; | |
3357 | if (word == sym_text) | |
3358 | { | |
3359 | new = xmalloc (strlen (symname) + 5); | |
3360 | strcpy (new, symname); | |
3361 | } | |
3362 | else if (word > sym_text) | |
3363 | { | |
3364 | /* Return some portion of symname. */ | |
3365 | new = xmalloc (strlen (symname) + 5); | |
3366 | strcpy (new, symname + (word - sym_text)); | |
3367 | } | |
3368 | else | |
3369 | { | |
3370 | /* Return some of SYM_TEXT plus symname. */ | |
3371 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3372 | strncpy (new, word, sym_text - word); | |
3373 | new[sym_text - word] = '\0'; | |
3374 | strcat (new, symname); | |
3375 | } | |
3376 | ||
c906108c SS |
3377 | if (return_val_index + 3 > return_val_size) |
3378 | { | |
3379 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3380 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3381 | } | |
3382 | return_val[return_val_index++] = new; | |
3383 | return_val[return_val_index] = NULL; | |
3384 | } | |
3385 | } | |
3386 | ||
69636828 AF |
3387 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3388 | again and feed all the selectors into the mill. */ | |
3389 | ||
3390 | static void | |
3391 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, | |
3392 | int sym_text_len, char *text, char *word) | |
3393 | { | |
3394 | static char *tmp = NULL; | |
3395 | static unsigned int tmplen = 0; | |
3396 | ||
3397 | char *method, *category, *selector; | |
3398 | char *tmp2 = NULL; | |
3399 | ||
3400 | method = SYMBOL_NATURAL_NAME (msymbol); | |
3401 | ||
3402 | /* Is it a method? */ | |
3403 | if ((method[0] != '-') && (method[0] != '+')) | |
3404 | return; | |
3405 | ||
3406 | if (sym_text[0] == '[') | |
3407 | /* Complete on shortened method method. */ | |
3408 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
3409 | ||
3410 | while ((strlen (method) + 1) >= tmplen) | |
3411 | { | |
3412 | if (tmplen == 0) | |
3413 | tmplen = 1024; | |
3414 | else | |
3415 | tmplen *= 2; | |
3416 | tmp = xrealloc (tmp, tmplen); | |
3417 | } | |
3418 | selector = strchr (method, ' '); | |
3419 | if (selector != NULL) | |
3420 | selector++; | |
3421 | ||
3422 | category = strchr (method, '('); | |
3423 | ||
3424 | if ((category != NULL) && (selector != NULL)) | |
3425 | { | |
3426 | memcpy (tmp, method, (category - method)); | |
3427 | tmp[category - method] = ' '; | |
3428 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
3429 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3430 | if (sym_text[0] == '[') | |
3431 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
3432 | } | |
3433 | ||
3434 | if (selector != NULL) | |
3435 | { | |
3436 | /* Complete on selector only. */ | |
3437 | strcpy (tmp, selector); | |
3438 | tmp2 = strchr (tmp, ']'); | |
3439 | if (tmp2 != NULL) | |
3440 | *tmp2 = '\0'; | |
3441 | ||
3442 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3443 | } | |
3444 | } | |
3445 | ||
3446 | /* Break the non-quoted text based on the characters which are in | |
3447 | symbols. FIXME: This should probably be language-specific. */ | |
3448 | ||
3449 | static char * | |
3450 | language_search_unquoted_string (char *text, char *p) | |
3451 | { | |
3452 | for (; p > text; --p) | |
3453 | { | |
3454 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3455 | continue; | |
3456 | else | |
3457 | { | |
3458 | if ((current_language->la_language == language_objc)) | |
3459 | { | |
3460 | if (p[-1] == ':') /* might be part of a method name */ | |
3461 | continue; | |
3462 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
3463 | p -= 2; /* beginning of a method name */ | |
3464 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') | |
3465 | { /* might be part of a method name */ | |
3466 | char *t = p; | |
3467 | ||
3468 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
3469 | that we are in the middle of a method name. However, | |
3470 | finding "-[" or "+[" should be pretty un-ambiguous. | |
3471 | Unfortunately we have to find it now to decide. */ | |
3472 | ||
3473 | while (t > text) | |
3474 | if (isalnum (t[-1]) || t[-1] == '_' || | |
3475 | t[-1] == ' ' || t[-1] == ':' || | |
3476 | t[-1] == '(' || t[-1] == ')') | |
3477 | --t; | |
3478 | else | |
3479 | break; | |
3480 | ||
3481 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
3482 | p = t - 2; /* method name detected */ | |
3483 | /* else we leave with p unchanged */ | |
3484 | } | |
3485 | } | |
3486 | break; | |
3487 | } | |
3488 | } | |
3489 | return p; | |
3490 | } | |
3491 | ||
3492 | ||
c94fdfd0 EZ |
3493 | /* Return a NULL terminated array of all symbols (regardless of class) |
3494 | which begin by matching TEXT. If the answer is no symbols, then | |
3495 | the return value is an array which contains only a NULL pointer. | |
c906108c SS |
3496 | |
3497 | Problem: All of the symbols have to be copied because readline frees them. | |
3498 | I'm not going to worry about this; hopefully there won't be that many. */ | |
3499 | ||
3500 | char ** | |
fba45db2 | 3501 | make_symbol_completion_list (char *text, char *word) |
c906108c | 3502 | { |
de4f826b DC |
3503 | struct symbol *sym; |
3504 | struct symtab *s; | |
3505 | struct partial_symtab *ps; | |
3506 | struct minimal_symbol *msymbol; | |
3507 | struct objfile *objfile; | |
3508 | struct block *b, *surrounding_static_block = 0; | |
3509 | struct dict_iterator iter; | |
3510 | int j; | |
c906108c SS |
3511 | struct partial_symbol **psym; |
3512 | /* The symbol we are completing on. Points in same buffer as text. */ | |
3513 | char *sym_text; | |
3514 | /* Length of sym_text. */ | |
3515 | int sym_text_len; | |
3516 | ||
3517 | /* Now look for the symbol we are supposed to complete on. | |
3518 | FIXME: This should be language-specific. */ | |
3519 | { | |
3520 | char *p; | |
3521 | char quote_found; | |
3522 | char *quote_pos = NULL; | |
3523 | ||
3524 | /* First see if this is a quoted string. */ | |
3525 | quote_found = '\0'; | |
3526 | for (p = text; *p != '\0'; ++p) | |
3527 | { | |
3528 | if (quote_found != '\0') | |
3529 | { | |
3530 | if (*p == quote_found) | |
3531 | /* Found close quote. */ | |
3532 | quote_found = '\0'; | |
3533 | else if (*p == '\\' && p[1] == quote_found) | |
3534 | /* A backslash followed by the quote character | |
c5aa993b | 3535 | doesn't end the string. */ |
c906108c SS |
3536 | ++p; |
3537 | } | |
3538 | else if (*p == '\'' || *p == '"') | |
3539 | { | |
3540 | quote_found = *p; | |
3541 | quote_pos = p; | |
3542 | } | |
3543 | } | |
3544 | if (quote_found == '\'') | |
3545 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3546 | sym_text = quote_pos + 1; | |
3547 | else if (quote_found == '"') | |
3548 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 3549 | to complete it any other way. */ |
c94fdfd0 EZ |
3550 | { |
3551 | return_val = (char **) xmalloc (sizeof (char *)); | |
3552 | return_val[0] = NULL; | |
3553 | return return_val; | |
3554 | } | |
c906108c SS |
3555 | else |
3556 | { | |
3557 | /* It is not a quoted string. Break it based on the characters | |
3558 | which are in symbols. */ | |
3559 | while (p > text) | |
3560 | { | |
3561 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3562 | --p; | |
3563 | else | |
3564 | break; | |
3565 | } | |
3566 | sym_text = p; | |
3567 | } | |
3568 | } | |
3569 | ||
3570 | sym_text_len = strlen (sym_text); | |
3571 | ||
3572 | return_val_size = 100; | |
3573 | return_val_index = 0; | |
3574 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3575 | return_val[0] = NULL; | |
3576 | ||
3577 | /* Look through the partial symtabs for all symbols which begin | |
3578 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
3579 | ||
3580 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3581 | { |
3582 | /* If the psymtab's been read in we'll get it when we search | |
3583 | through the blockvector. */ | |
3584 | if (ps->readin) | |
3585 | continue; | |
3586 | ||
3587 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
3588 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
3589 | + ps->n_global_syms); | |
3590 | psym++) | |
3591 | { | |
3592 | /* If interrupted, then quit. */ | |
3593 | QUIT; | |
3594 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3595 | } | |
3596 | ||
3597 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
3598 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
3599 | + ps->n_static_syms); | |
3600 | psym++) | |
3601 | { | |
3602 | QUIT; | |
3603 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3604 | } | |
3605 | } | |
c906108c SS |
3606 | |
3607 | /* At this point scan through the misc symbol vectors and add each | |
3608 | symbol you find to the list. Eventually we want to ignore | |
3609 | anything that isn't a text symbol (everything else will be | |
3610 | handled by the psymtab code above). */ | |
3611 | ||
3612 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3613 | { |
3614 | QUIT; | |
3615 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
69636828 AF |
3616 | |
3617 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); | |
c5aa993b | 3618 | } |
c906108c SS |
3619 | |
3620 | /* Search upwards from currently selected frame (so that we can | |
3621 | complete on local vars. */ | |
3622 | ||
ae767bfb | 3623 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) |
c906108c SS |
3624 | { |
3625 | if (!BLOCK_SUPERBLOCK (b)) | |
3626 | { | |
c5aa993b | 3627 | surrounding_static_block = b; /* For elmin of dups */ |
c906108c | 3628 | } |
c5aa993b | 3629 | |
c906108c | 3630 | /* Also catch fields of types defined in this places which match our |
c5aa993b | 3631 | text string. Only complete on types visible from current context. */ |
c906108c | 3632 | |
de4f826b | 3633 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c906108c | 3634 | { |
69636828 | 3635 | QUIT; |
c906108c SS |
3636 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3637 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3638 | { | |
3639 | struct type *t = SYMBOL_TYPE (sym); | |
3640 | enum type_code c = TYPE_CODE (t); | |
3641 | ||
3642 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
3643 | { | |
3644 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
3645 | { | |
3646 | if (TYPE_FIELD_NAME (t, j)) | |
3647 | { | |
3648 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
c5aa993b | 3649 | sym_text, sym_text_len, text, word); |
c906108c SS |
3650 | } |
3651 | } | |
3652 | } | |
3653 | } | |
3654 | } | |
3655 | } | |
3656 | ||
3657 | /* Go through the symtabs and check the externs and statics for | |
3658 | symbols which match. */ | |
3659 | ||
11309657 | 3660 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3661 | { |
3662 | QUIT; | |
3663 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3664 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3665 | { |
c5aa993b JM |
3666 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3667 | } | |
3668 | } | |
c906108c | 3669 | |
11309657 | 3670 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3671 | { |
3672 | QUIT; | |
3673 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
3674 | /* Don't do this block twice. */ | |
3675 | if (b == surrounding_static_block) | |
3676 | continue; | |
de4f826b | 3677 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3678 | { |
c5aa993b JM |
3679 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3680 | } | |
3681 | } | |
c906108c SS |
3682 | |
3683 | return (return_val); | |
3684 | } | |
3685 | ||
c94fdfd0 EZ |
3686 | /* Like make_symbol_completion_list, but returns a list of symbols |
3687 | defined in a source file FILE. */ | |
3688 | ||
3689 | char ** | |
3690 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
3691 | { | |
52f0bd74 AC |
3692 | struct symbol *sym; |
3693 | struct symtab *s; | |
3694 | struct block *b; | |
de4f826b | 3695 | struct dict_iterator iter; |
c94fdfd0 EZ |
3696 | /* The symbol we are completing on. Points in same buffer as text. */ |
3697 | char *sym_text; | |
3698 | /* Length of sym_text. */ | |
3699 | int sym_text_len; | |
3700 | ||
3701 | /* Now look for the symbol we are supposed to complete on. | |
3702 | FIXME: This should be language-specific. */ | |
3703 | { | |
3704 | char *p; | |
3705 | char quote_found; | |
3706 | char *quote_pos = NULL; | |
3707 | ||
3708 | /* First see if this is a quoted string. */ | |
3709 | quote_found = '\0'; | |
3710 | for (p = text; *p != '\0'; ++p) | |
3711 | { | |
3712 | if (quote_found != '\0') | |
3713 | { | |
3714 | if (*p == quote_found) | |
3715 | /* Found close quote. */ | |
3716 | quote_found = '\0'; | |
3717 | else if (*p == '\\' && p[1] == quote_found) | |
3718 | /* A backslash followed by the quote character | |
3719 | doesn't end the string. */ | |
3720 | ++p; | |
3721 | } | |
3722 | else if (*p == '\'' || *p == '"') | |
3723 | { | |
3724 | quote_found = *p; | |
3725 | quote_pos = p; | |
3726 | } | |
3727 | } | |
3728 | if (quote_found == '\'') | |
3729 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3730 | sym_text = quote_pos + 1; | |
3731 | else if (quote_found == '"') | |
3732 | /* A double-quoted string is never a symbol, nor does it make sense | |
3733 | to complete it any other way. */ | |
3734 | { | |
3735 | return_val = (char **) xmalloc (sizeof (char *)); | |
3736 | return_val[0] = NULL; | |
3737 | return return_val; | |
3738 | } | |
3739 | else | |
3740 | { | |
69636828 AF |
3741 | /* Not a quoted string. */ |
3742 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
3743 | } |
3744 | } | |
3745 | ||
3746 | sym_text_len = strlen (sym_text); | |
3747 | ||
3748 | return_val_size = 10; | |
3749 | return_val_index = 0; | |
3750 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3751 | return_val[0] = NULL; | |
3752 | ||
3753 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
3754 | in). */ | |
3755 | s = lookup_symtab (srcfile); | |
3756 | if (s == NULL) | |
3757 | { | |
3758 | /* Maybe they typed the file with leading directories, while the | |
3759 | symbol tables record only its basename. */ | |
31889e00 | 3760 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
3761 | |
3762 | if (tail > srcfile) | |
3763 | s = lookup_symtab (tail); | |
3764 | } | |
3765 | ||
3766 | /* If we have no symtab for that file, return an empty list. */ | |
3767 | if (s == NULL) | |
3768 | return (return_val); | |
3769 | ||
3770 | /* Go through this symtab and check the externs and statics for | |
3771 | symbols which match. */ | |
3772 | ||
3773 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3774 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3775 | { |
c94fdfd0 EZ |
3776 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3777 | } | |
3778 | ||
3779 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 3780 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3781 | { |
c94fdfd0 EZ |
3782 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3783 | } | |
3784 | ||
3785 | return (return_val); | |
3786 | } | |
3787 | ||
3788 | /* A helper function for make_source_files_completion_list. It adds | |
3789 | another file name to a list of possible completions, growing the | |
3790 | list as necessary. */ | |
3791 | ||
3792 | static void | |
3793 | add_filename_to_list (const char *fname, char *text, char *word, | |
3794 | char ***list, int *list_used, int *list_alloced) | |
3795 | { | |
3796 | char *new; | |
3797 | size_t fnlen = strlen (fname); | |
3798 | ||
3799 | if (*list_used + 1 >= *list_alloced) | |
3800 | { | |
3801 | *list_alloced *= 2; | |
3802 | *list = (char **) xrealloc ((char *) *list, | |
3803 | *list_alloced * sizeof (char *)); | |
3804 | } | |
3805 | ||
3806 | if (word == text) | |
3807 | { | |
3808 | /* Return exactly fname. */ | |
3809 | new = xmalloc (fnlen + 5); | |
3810 | strcpy (new, fname); | |
3811 | } | |
3812 | else if (word > text) | |
3813 | { | |
3814 | /* Return some portion of fname. */ | |
3815 | new = xmalloc (fnlen + 5); | |
3816 | strcpy (new, fname + (word - text)); | |
3817 | } | |
3818 | else | |
3819 | { | |
3820 | /* Return some of TEXT plus fname. */ | |
3821 | new = xmalloc (fnlen + (text - word) + 5); | |
3822 | strncpy (new, word, text - word); | |
3823 | new[text - word] = '\0'; | |
3824 | strcat (new, fname); | |
3825 | } | |
3826 | (*list)[*list_used] = new; | |
3827 | (*list)[++*list_used] = NULL; | |
3828 | } | |
3829 | ||
3830 | static int | |
3831 | not_interesting_fname (const char *fname) | |
3832 | { | |
3833 | static const char *illegal_aliens[] = { | |
3834 | "_globals_", /* inserted by coff_symtab_read */ | |
3835 | NULL | |
3836 | }; | |
3837 | int i; | |
3838 | ||
3839 | for (i = 0; illegal_aliens[i]; i++) | |
3840 | { | |
3841 | if (strcmp (fname, illegal_aliens[i]) == 0) | |
3842 | return 1; | |
3843 | } | |
3844 | return 0; | |
3845 | } | |
3846 | ||
3847 | /* Return a NULL terminated array of all source files whose names | |
3848 | begin with matching TEXT. The file names are looked up in the | |
3849 | symbol tables of this program. If the answer is no matchess, then | |
3850 | the return value is an array which contains only a NULL pointer. */ | |
3851 | ||
3852 | char ** | |
3853 | make_source_files_completion_list (char *text, char *word) | |
3854 | { | |
52f0bd74 AC |
3855 | struct symtab *s; |
3856 | struct partial_symtab *ps; | |
3857 | struct objfile *objfile; | |
c94fdfd0 EZ |
3858 | int first = 1; |
3859 | int list_alloced = 1; | |
3860 | int list_used = 0; | |
3861 | size_t text_len = strlen (text); | |
3862 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 3863 | const char *base_name; |
c94fdfd0 EZ |
3864 | |
3865 | list[0] = NULL; | |
3866 | ||
3867 | if (!have_full_symbols () && !have_partial_symbols ()) | |
3868 | return list; | |
3869 | ||
3870 | ALL_SYMTABS (objfile, s) | |
3871 | { | |
3872 | if (not_interesting_fname (s->filename)) | |
3873 | continue; | |
3874 | if (!filename_seen (s->filename, 1, &first) | |
3875 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3876 | && strncasecmp (s->filename, text, text_len) == 0 | |
3877 | #else | |
3878 | && strncmp (s->filename, text, text_len) == 0 | |
3879 | #endif | |
3880 | ) | |
3881 | { | |
3882 | /* This file matches for a completion; add it to the current | |
3883 | list of matches. */ | |
3884 | add_filename_to_list (s->filename, text, word, | |
3885 | &list, &list_used, &list_alloced); | |
3886 | } | |
3887 | else | |
3888 | { | |
3889 | /* NOTE: We allow the user to type a base name when the | |
3890 | debug info records leading directories, but not the other | |
3891 | way around. This is what subroutines of breakpoint | |
3892 | command do when they parse file names. */ | |
31889e00 | 3893 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
3894 | if (base_name != s->filename |
3895 | && !filename_seen (base_name, 1, &first) | |
3896 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3897 | && strncasecmp (base_name, text, text_len) == 0 | |
3898 | #else | |
3899 | && strncmp (base_name, text, text_len) == 0 | |
3900 | #endif | |
3901 | ) | |
3902 | add_filename_to_list (base_name, text, word, | |
3903 | &list, &list_used, &list_alloced); | |
3904 | } | |
3905 | } | |
3906 | ||
3907 | ALL_PSYMTABS (objfile, ps) | |
3908 | { | |
3909 | if (not_interesting_fname (ps->filename)) | |
3910 | continue; | |
3911 | if (!ps->readin) | |
3912 | { | |
3913 | if (!filename_seen (ps->filename, 1, &first) | |
3914 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3915 | && strncasecmp (ps->filename, text, text_len) == 0 | |
3916 | #else | |
3917 | && strncmp (ps->filename, text, text_len) == 0 | |
3918 | #endif | |
3919 | ) | |
3920 | { | |
3921 | /* This file matches for a completion; add it to the | |
3922 | current list of matches. */ | |
3923 | add_filename_to_list (ps->filename, text, word, | |
3924 | &list, &list_used, &list_alloced); | |
3925 | ||
3926 | } | |
3927 | else | |
3928 | { | |
31889e00 | 3929 | base_name = lbasename (ps->filename); |
c94fdfd0 EZ |
3930 | if (base_name != ps->filename |
3931 | && !filename_seen (base_name, 1, &first) | |
3932 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3933 | && strncasecmp (base_name, text, text_len) == 0 | |
3934 | #else | |
3935 | && strncmp (base_name, text, text_len) == 0 | |
3936 | #endif | |
3937 | ) | |
3938 | add_filename_to_list (base_name, text, word, | |
3939 | &list, &list_used, &list_alloced); | |
3940 | } | |
3941 | } | |
3942 | } | |
3943 | ||
3944 | return list; | |
3945 | } | |
3946 | ||
c906108c SS |
3947 | /* Determine if PC is in the prologue of a function. The prologue is the area |
3948 | between the first instruction of a function, and the first executable line. | |
3949 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
3950 | ||
3951 | If non-zero, func_start is where we think the prologue starts, possibly | |
3952 | by previous examination of symbol table information. | |
3953 | */ | |
3954 | ||
3955 | int | |
fba45db2 | 3956 | in_prologue (CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
3957 | { |
3958 | struct symtab_and_line sal; | |
3959 | CORE_ADDR func_addr, func_end; | |
3960 | ||
54cf9c03 EZ |
3961 | /* We have several sources of information we can consult to figure |
3962 | this out. | |
3963 | - Compilers usually emit line number info that marks the prologue | |
3964 | as its own "source line". So the ending address of that "line" | |
3965 | is the end of the prologue. If available, this is the most | |
3966 | reliable method. | |
3967 | - The minimal symbols and partial symbols, which can usually tell | |
3968 | us the starting and ending addresses of a function. | |
3969 | - If we know the function's start address, we can call the | |
a433963d | 3970 | architecture-defined gdbarch_skip_prologue function to analyze the |
54cf9c03 EZ |
3971 | instruction stream and guess where the prologue ends. |
3972 | - Our `func_start' argument; if non-zero, this is the caller's | |
3973 | best guess as to the function's entry point. At the time of | |
3974 | this writing, handle_inferior_event doesn't get this right, so | |
3975 | it should be our last resort. */ | |
3976 | ||
3977 | /* Consult the partial symbol table, to find which function | |
3978 | the PC is in. */ | |
3979 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
3980 | { | |
3981 | CORE_ADDR prologue_end; | |
c906108c | 3982 | |
54cf9c03 EZ |
3983 | /* We don't even have minsym information, so fall back to using |
3984 | func_start, if given. */ | |
3985 | if (! func_start) | |
3986 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 3987 | |
a433963d | 3988 | prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start); |
c906108c | 3989 | |
54cf9c03 EZ |
3990 | return func_start <= pc && pc < prologue_end; |
3991 | } | |
c906108c | 3992 | |
54cf9c03 EZ |
3993 | /* If we have line number information for the function, that's |
3994 | usually pretty reliable. */ | |
3995 | sal = find_pc_line (func_addr, 0); | |
c906108c | 3996 | |
54cf9c03 EZ |
3997 | /* Now sal describes the source line at the function's entry point, |
3998 | which (by convention) is the prologue. The end of that "line", | |
3999 | sal.end, is the end of the prologue. | |
4000 | ||
4001 | Note that, for functions whose source code is all on a single | |
4002 | line, the line number information doesn't always end up this way. | |
4003 | So we must verify that our purported end-of-prologue address is | |
4004 | *within* the function, not at its start or end. */ | |
4005 | if (sal.line == 0 | |
4006 | || sal.end <= func_addr | |
4007 | || func_end <= sal.end) | |
4008 | { | |
4009 | /* We don't have any good line number info, so use the minsym | |
4010 | information, together with the architecture-specific prologue | |
4011 | scanning code. */ | |
a433963d UW |
4012 | CORE_ADDR prologue_end = gdbarch_skip_prologue |
4013 | (current_gdbarch, func_addr); | |
c906108c | 4014 | |
54cf9c03 EZ |
4015 | return func_addr <= pc && pc < prologue_end; |
4016 | } | |
c906108c | 4017 | |
54cf9c03 EZ |
4018 | /* We have line number info, and it looks good. */ |
4019 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4020 | } |
4021 | ||
634aa483 AC |
4022 | /* Given PC at the function's start address, attempt to find the |
4023 | prologue end using SAL information. Return zero if the skip fails. | |
4024 | ||
4025 | A non-optimized prologue traditionally has one SAL for the function | |
4026 | and a second for the function body. A single line function has | |
4027 | them both pointing at the same line. | |
4028 | ||
4029 | An optimized prologue is similar but the prologue may contain | |
4030 | instructions (SALs) from the instruction body. Need to skip those | |
4031 | while not getting into the function body. | |
4032 | ||
4033 | The functions end point and an increasing SAL line are used as | |
4034 | indicators of the prologue's endpoint. | |
4035 | ||
4036 | This code is based on the function refine_prologue_limit (versions | |
4037 | found in both ia64 and ppc). */ | |
4038 | ||
4039 | CORE_ADDR | |
4040 | skip_prologue_using_sal (CORE_ADDR func_addr) | |
4041 | { | |
4042 | struct symtab_and_line prologue_sal; | |
4043 | CORE_ADDR start_pc; | |
4044 | CORE_ADDR end_pc; | |
4045 | ||
4046 | /* Get an initial range for the function. */ | |
4047 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
cbf3b44a | 4048 | start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch); |
634aa483 AC |
4049 | |
4050 | prologue_sal = find_pc_line (start_pc, 0); | |
4051 | if (prologue_sal.line != 0) | |
4052 | { | |
576c2025 FF |
4053 | /* If there is only one sal that covers the entire function, |
4054 | then it is probably a single line function, like | |
4055 | "foo(){}". */ | |
91934273 | 4056 | if (prologue_sal.end >= end_pc) |
4e463ff5 | 4057 | return 0; |
634aa483 AC |
4058 | while (prologue_sal.end < end_pc) |
4059 | { | |
4060 | struct symtab_and_line sal; | |
4061 | ||
4062 | sal = find_pc_line (prologue_sal.end, 0); | |
4063 | if (sal.line == 0) | |
4064 | break; | |
4065 | /* Assume that a consecutive SAL for the same (or larger) | |
4066 | line mark the prologue -> body transition. */ | |
4067 | if (sal.line >= prologue_sal.line) | |
4068 | break; | |
4069 | /* The case in which compiler's optimizer/scheduler has | |
4070 | moved instructions into the prologue. We look ahead in | |
4071 | the function looking for address ranges whose | |
4072 | corresponding line number is less the first one that we | |
4073 | found for the function. This is more conservative then | |
4074 | refine_prologue_limit which scans a large number of SALs | |
4075 | looking for any in the prologue */ | |
4076 | prologue_sal = sal; | |
4077 | } | |
4078 | } | |
4079 | return prologue_sal.end; | |
4080 | } | |
c906108c | 4081 | \f |
50641945 FN |
4082 | struct symtabs_and_lines |
4083 | decode_line_spec (char *string, int funfirstline) | |
4084 | { | |
4085 | struct symtabs_and_lines sals; | |
0378c332 FN |
4086 | struct symtab_and_line cursal; |
4087 | ||
50641945 | 4088 | if (string == 0) |
8a3fe4f8 | 4089 | error (_("Empty line specification.")); |
0378c332 FN |
4090 | |
4091 | /* We use whatever is set as the current source line. We do not try | |
4092 | and get a default or it will recursively call us! */ | |
4093 | cursal = get_current_source_symtab_and_line (); | |
4094 | ||
50641945 | 4095 | sals = decode_line_1 (&string, funfirstline, |
0378c332 | 4096 | cursal.symtab, cursal.line, |
bffe1ece | 4097 | (char ***) NULL, NULL); |
0378c332 | 4098 | |
50641945 | 4099 | if (*string) |
8a3fe4f8 | 4100 | error (_("Junk at end of line specification: %s"), string); |
50641945 FN |
4101 | return sals; |
4102 | } | |
c5aa993b | 4103 | |
51cc5b07 AC |
4104 | /* Track MAIN */ |
4105 | static char *name_of_main; | |
4106 | ||
4107 | void | |
4108 | set_main_name (const char *name) | |
4109 | { | |
4110 | if (name_of_main != NULL) | |
4111 | { | |
4112 | xfree (name_of_main); | |
4113 | name_of_main = NULL; | |
4114 | } | |
4115 | if (name != NULL) | |
4116 | { | |
4117 | name_of_main = xstrdup (name); | |
4118 | } | |
4119 | } | |
4120 | ||
ea53e89f JB |
4121 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4122 | accordingly. */ | |
4123 | ||
4124 | static void | |
4125 | find_main_name (void) | |
4126 | { | |
4127 | char *new_main_name; | |
4128 | ||
4129 | /* Try to see if the main procedure is in Ada. */ | |
4130 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
4131 | be to add a new method in the language vector, and call this | |
4132 | method for each language until one of them returns a non-empty | |
4133 | name. This would allow us to remove this hard-coded call to | |
4134 | an Ada function. It is not clear that this is a better approach | |
4135 | at this point, because all methods need to be written in a way | |
4136 | such that false positives never be returned. For instance, it is | |
4137 | important that a method does not return a wrong name for the main | |
4138 | procedure if the main procedure is actually written in a different | |
4139 | language. It is easy to guaranty this with Ada, since we use a | |
4140 | special symbol generated only when the main in Ada to find the name | |
4141 | of the main procedure. It is difficult however to see how this can | |
4142 | be guarantied for languages such as C, for instance. This suggests | |
4143 | that order of call for these methods becomes important, which means | |
4144 | a more complicated approach. */ | |
4145 | new_main_name = ada_main_name (); | |
4146 | if (new_main_name != NULL) | |
4147 | { | |
4148 | set_main_name (new_main_name); | |
4149 | return; | |
4150 | } | |
4151 | ||
4152 | /* The languages above didn't identify the name of the main procedure. | |
4153 | Fallback to "main". */ | |
4154 | set_main_name ("main"); | |
4155 | } | |
4156 | ||
51cc5b07 AC |
4157 | char * |
4158 | main_name (void) | |
4159 | { | |
ea53e89f JB |
4160 | if (name_of_main == NULL) |
4161 | find_main_name (); | |
4162 | ||
4163 | return name_of_main; | |
51cc5b07 AC |
4164 | } |
4165 | ||
ea53e89f JB |
4166 | /* Handle ``executable_changed'' events for the symtab module. */ |
4167 | ||
4168 | static void | |
4169 | symtab_observer_executable_changed (void *unused) | |
4170 | { | |
4171 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
4172 | set_main_name (NULL); | |
4173 | } | |
51cc5b07 | 4174 | |
c906108c | 4175 | void |
fba45db2 | 4176 | _initialize_symtab (void) |
c906108c | 4177 | { |
1bedd215 AC |
4178 | add_info ("variables", variables_info, _("\ |
4179 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 4180 | if (dbx_commands) |
1bedd215 AC |
4181 | add_com ("whereis", class_info, variables_info, _("\ |
4182 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4183 | |
4184 | add_info ("functions", functions_info, | |
1bedd215 | 4185 | _("All function names, or those matching REGEXP.")); |
c906108c | 4186 | |
357e46e7 | 4187 | |
c906108c SS |
4188 | /* FIXME: This command has at least the following problems: |
4189 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4190 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4191 | typedef struct foo *FOO |
4192 | type_print prints "FOO" when we want to make it (in this situation) | |
4193 | print "struct foo *". | |
c906108c SS |
4194 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4195 | there is much disagreement "info types" can be fixed). */ | |
4196 | add_info ("types", types_info, | |
1bedd215 | 4197 | _("All type names, or those matching REGEXP.")); |
c906108c | 4198 | |
c906108c | 4199 | add_info ("sources", sources_info, |
1bedd215 | 4200 | _("Source files in the program.")); |
c906108c SS |
4201 | |
4202 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 4203 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
4204 | |
4205 | if (xdb_commands) | |
4206 | { | |
1bedd215 AC |
4207 | add_com ("lf", class_info, sources_info, |
4208 | _("Source files in the program")); | |
4209 | add_com ("lg", class_info, variables_info, _("\ | |
4210 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4211 | } |
4212 | ||
4213 | /* Initialize the one built-in type that isn't language dependent... */ | |
4214 | builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0, | |
4215 | "<unknown type>", (struct objfile *) NULL); | |
ea53e89f JB |
4216 | |
4217 | observer_attach_executable_changed (symtab_observer_executable_changed); | |
c906108c | 4218 | } |