]>
Commit | Line | Data |
---|---|---|
a7aad9aa | 1 | /* Target-dependent code for the HP PA-RISC architecture. |
cda5a58a | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
0fb0cc75 | 4 | 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 |
a7aad9aa | 5 | Free Software Foundation, Inc. |
c906108c SS |
6 | |
7 | Contributed by the Center for Software Science at the | |
8 | University of Utah ([email protected]). | |
9 | ||
c5aa993b | 10 | This file is part of GDB. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is free software; you can redistribute it and/or modify |
13 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 14 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 15 | (at your option) any later version. |
c906108c | 16 | |
c5aa993b JM |
17 | This program is distributed in the hope that it will be useful, |
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 | GNU General Public License for more details. | |
c906108c | 21 | |
c5aa993b | 22 | You should have received a copy of the GNU General Public License |
a9762ec7 | 23 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
24 | |
25 | #include "defs.h" | |
c906108c SS |
26 | #include "bfd.h" |
27 | #include "inferior.h" | |
4e052eda | 28 | #include "regcache.h" |
e5d66720 | 29 | #include "completer.h" |
59623e27 | 30 | #include "osabi.h" |
a7ff40e7 | 31 | #include "gdb_assert.h" |
343af405 | 32 | #include "arch-utils.h" |
c906108c SS |
33 | /* For argument passing to the inferior */ |
34 | #include "symtab.h" | |
fde2cceb | 35 | #include "dis-asm.h" |
26d08f08 AC |
36 | #include "trad-frame.h" |
37 | #include "frame-unwind.h" | |
38 | #include "frame-base.h" | |
c906108c | 39 | |
c906108c SS |
40 | #include "gdbcore.h" |
41 | #include "gdbcmd.h" | |
e6bb342a | 42 | #include "gdbtypes.h" |
c906108c | 43 | #include "objfiles.h" |
3ff7cf9e | 44 | #include "hppa-tdep.h" |
c906108c | 45 | |
369aa520 RC |
46 | static int hppa_debug = 0; |
47 | ||
60383d10 | 48 | /* Some local constants. */ |
3ff7cf9e JB |
49 | static const int hppa32_num_regs = 128; |
50 | static const int hppa64_num_regs = 96; | |
51 | ||
7c46b9fb RC |
52 | /* hppa-specific object data -- unwind and solib info. |
53 | TODO/maybe: think about splitting this into two parts; the unwind data is | |
54 | common to all hppa targets, but is only used in this file; we can register | |
55 | that separately and make this static. The solib data is probably hpux- | |
56 | specific, so we can create a separate extern objfile_data that is registered | |
57 | by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ | |
58 | const struct objfile_data *hppa_objfile_priv_data = NULL; | |
59 | ||
e2ac8128 JB |
60 | /* Get at various relevent fields of an instruction word. */ |
61 | #define MASK_5 0x1f | |
62 | #define MASK_11 0x7ff | |
63 | #define MASK_14 0x3fff | |
64 | #define MASK_21 0x1fffff | |
65 | ||
e2ac8128 JB |
66 | /* Sizes (in bytes) of the native unwind entries. */ |
67 | #define UNWIND_ENTRY_SIZE 16 | |
68 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
69 | ||
c906108c SS |
70 | /* Routines to extract various sized constants out of hppa |
71 | instructions. */ | |
72 | ||
73 | /* This assumes that no garbage lies outside of the lower bits of | |
74 | value. */ | |
75 | ||
63807e1d | 76 | static int |
abc485a1 | 77 | hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 78 | { |
c5aa993b | 79 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
80 | } |
81 | ||
82 | /* For many immediate values the sign bit is the low bit! */ | |
83 | ||
63807e1d | 84 | static int |
abc485a1 | 85 | hppa_low_hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 86 | { |
c5aa993b | 87 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
88 | } |
89 | ||
e2ac8128 JB |
90 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
91 | (MSB = 0). */ | |
92 | ||
abc485a1 RC |
93 | int |
94 | hppa_get_field (unsigned word, int from, int to) | |
e2ac8128 JB |
95 | { |
96 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
97 | } | |
98 | ||
c906108c SS |
99 | /* extract the immediate field from a ld{bhw}s instruction */ |
100 | ||
abc485a1 RC |
101 | int |
102 | hppa_extract_5_load (unsigned word) | |
c906108c | 103 | { |
abc485a1 | 104 | return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); |
c906108c SS |
105 | } |
106 | ||
c906108c SS |
107 | /* extract the immediate field from a break instruction */ |
108 | ||
abc485a1 RC |
109 | unsigned |
110 | hppa_extract_5r_store (unsigned word) | |
c906108c SS |
111 | { |
112 | return (word & MASK_5); | |
113 | } | |
114 | ||
115 | /* extract the immediate field from a {sr}sm instruction */ | |
116 | ||
abc485a1 RC |
117 | unsigned |
118 | hppa_extract_5R_store (unsigned word) | |
c906108c SS |
119 | { |
120 | return (word >> 16 & MASK_5); | |
121 | } | |
122 | ||
c906108c SS |
123 | /* extract a 14 bit immediate field */ |
124 | ||
abc485a1 RC |
125 | int |
126 | hppa_extract_14 (unsigned word) | |
c906108c | 127 | { |
abc485a1 | 128 | return hppa_low_hppa_sign_extend (word & MASK_14, 14); |
c906108c SS |
129 | } |
130 | ||
c906108c SS |
131 | /* extract a 21 bit constant */ |
132 | ||
abc485a1 RC |
133 | int |
134 | hppa_extract_21 (unsigned word) | |
c906108c SS |
135 | { |
136 | int val; | |
137 | ||
138 | word &= MASK_21; | |
139 | word <<= 11; | |
abc485a1 | 140 | val = hppa_get_field (word, 20, 20); |
c906108c | 141 | val <<= 11; |
abc485a1 | 142 | val |= hppa_get_field (word, 9, 19); |
c906108c | 143 | val <<= 2; |
abc485a1 | 144 | val |= hppa_get_field (word, 5, 6); |
c906108c | 145 | val <<= 5; |
abc485a1 | 146 | val |= hppa_get_field (word, 0, 4); |
c906108c | 147 | val <<= 2; |
abc485a1 RC |
148 | val |= hppa_get_field (word, 7, 8); |
149 | return hppa_sign_extend (val, 21) << 11; | |
c906108c SS |
150 | } |
151 | ||
c906108c SS |
152 | /* extract a 17 bit constant from branch instructions, returning the |
153 | 19 bit signed value. */ | |
154 | ||
abc485a1 RC |
155 | int |
156 | hppa_extract_17 (unsigned word) | |
c906108c | 157 | { |
abc485a1 RC |
158 | return hppa_sign_extend (hppa_get_field (word, 19, 28) | |
159 | hppa_get_field (word, 29, 29) << 10 | | |
160 | hppa_get_field (word, 11, 15) << 11 | | |
c906108c SS |
161 | (word & 0x1) << 16, 17) << 2; |
162 | } | |
3388d7ff RC |
163 | |
164 | CORE_ADDR | |
165 | hppa_symbol_address(const char *sym) | |
166 | { | |
167 | struct minimal_symbol *minsym; | |
168 | ||
169 | minsym = lookup_minimal_symbol (sym, NULL, NULL); | |
170 | if (minsym) | |
171 | return SYMBOL_VALUE_ADDRESS (minsym); | |
172 | else | |
173 | return (CORE_ADDR)-1; | |
174 | } | |
77d18ded RC |
175 | |
176 | struct hppa_objfile_private * | |
177 | hppa_init_objfile_priv_data (struct objfile *objfile) | |
178 | { | |
179 | struct hppa_objfile_private *priv; | |
180 | ||
181 | priv = (struct hppa_objfile_private *) | |
182 | obstack_alloc (&objfile->objfile_obstack, | |
183 | sizeof (struct hppa_objfile_private)); | |
184 | set_objfile_data (objfile, hppa_objfile_priv_data, priv); | |
185 | memset (priv, 0, sizeof (*priv)); | |
186 | ||
187 | return priv; | |
188 | } | |
c906108c SS |
189 | \f |
190 | ||
191 | /* Compare the start address for two unwind entries returning 1 if | |
192 | the first address is larger than the second, -1 if the second is | |
193 | larger than the first, and zero if they are equal. */ | |
194 | ||
195 | static int | |
fba45db2 | 196 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
197 | { |
198 | const struct unwind_table_entry *a = arg1; | |
199 | const struct unwind_table_entry *b = arg2; | |
200 | ||
201 | if (a->region_start > b->region_start) | |
202 | return 1; | |
203 | else if (a->region_start < b->region_start) | |
204 | return -1; | |
205 | else | |
206 | return 0; | |
207 | } | |
208 | ||
53a5351d | 209 | static void |
fdd72f95 | 210 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
53a5351d | 211 | { |
fdd72f95 | 212 | if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d | 213 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
fdd72f95 RC |
214 | { |
215 | bfd_vma value = section->vma - section->filepos; | |
216 | CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; | |
217 | ||
218 | if (value < *low_text_segment_address) | |
219 | *low_text_segment_address = value; | |
220 | } | |
53a5351d JM |
221 | } |
222 | ||
c906108c | 223 | static void |
fba45db2 KB |
224 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
225 | asection *section, unsigned int entries, unsigned int size, | |
226 | CORE_ADDR text_offset) | |
c906108c SS |
227 | { |
228 | /* We will read the unwind entries into temporary memory, then | |
229 | fill in the actual unwind table. */ | |
fdd72f95 | 230 | |
c906108c SS |
231 | if (size > 0) |
232 | { | |
5db8bbe5 | 233 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c SS |
234 | unsigned long tmp; |
235 | unsigned i; | |
236 | char *buf = alloca (size); | |
fdd72f95 | 237 | CORE_ADDR low_text_segment_address; |
c906108c | 238 | |
fdd72f95 | 239 | /* For ELF targets, then unwinds are supposed to |
c2c6d25f JM |
240 | be segment relative offsets instead of absolute addresses. |
241 | ||
242 | Note that when loading a shared library (text_offset != 0) the | |
243 | unwinds are already relative to the text_offset that will be | |
244 | passed in. */ | |
5db8bbe5 | 245 | if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0) |
53a5351d | 246 | { |
fdd72f95 RC |
247 | low_text_segment_address = -1; |
248 | ||
53a5351d | 249 | bfd_map_over_sections (objfile->obfd, |
fdd72f95 RC |
250 | record_text_segment_lowaddr, |
251 | &low_text_segment_address); | |
53a5351d | 252 | |
fdd72f95 | 253 | text_offset = low_text_segment_address; |
53a5351d | 254 | } |
5db8bbe5 | 255 | else if (gdbarch_tdep (gdbarch)->solib_get_text_base) |
acf86d54 | 256 | { |
5db8bbe5 | 257 | text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile); |
acf86d54 | 258 | } |
53a5351d | 259 | |
c906108c SS |
260 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
261 | ||
262 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 263 | endian issues. */ |
c906108c SS |
264 | for (i = 0; i < entries; i++) |
265 | { | |
266 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 267 | (bfd_byte *) buf); |
c906108c SS |
268 | table[i].region_start += text_offset; |
269 | buf += 4; | |
c5aa993b | 270 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
271 | table[i].region_end += text_offset; |
272 | buf += 4; | |
c5aa993b | 273 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
274 | buf += 4; |
275 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
276 | table[i].Millicode = (tmp >> 30) & 0x1; | |
277 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
278 | table[i].Region_description = (tmp >> 27) & 0x3; | |
6fcecea0 | 279 | table[i].reserved = (tmp >> 26) & 0x1; |
c906108c SS |
280 | table[i].Entry_SR = (tmp >> 25) & 0x1; |
281 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
282 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
283 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
284 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
285 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
286 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
287 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
288 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
6fcecea0 | 289 | table[i].sr4export = (tmp >> 9) & 0x1; |
c906108c SS |
290 | table[i].cxx_info = (tmp >> 8) & 0x1; |
291 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
292 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
6fcecea0 | 293 | table[i].reserved1 = (tmp >> 5) & 0x1; |
c906108c SS |
294 | table[i].Save_SP = (tmp >> 4) & 0x1; |
295 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
296 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
6fcecea0 | 297 | table[i].save_r19 = (tmp >> 1) & 0x1; |
c906108c | 298 | table[i].Cleanup_defined = tmp & 0x1; |
c5aa993b | 299 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
300 | buf += 4; |
301 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
302 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
303 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
6fcecea0 RC |
304 | table[i].alloca_frame = (tmp >> 28) & 0x1; |
305 | table[i].reserved2 = (tmp >> 27) & 0x1; | |
c906108c SS |
306 | table[i].Total_frame_size = tmp & 0x7ffffff; |
307 | ||
c5aa993b | 308 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
309 | table[i].stub_unwind.stub_type = 0; |
310 | table[i].stub_unwind.padding = 0; | |
311 | } | |
312 | } | |
313 | } | |
314 | ||
315 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
316 | the object file. This info is used mainly by find_unwind_entry() to find | |
317 | out the stack frame size and frame pointer used by procedures. We put | |
318 | everything on the psymbol obstack in the objfile so that it automatically | |
319 | gets freed when the objfile is destroyed. */ | |
320 | ||
321 | static void | |
fba45db2 | 322 | read_unwind_info (struct objfile *objfile) |
c906108c | 323 | { |
d4f3574e SS |
324 | asection *unwind_sec, *stub_unwind_sec; |
325 | unsigned unwind_size, stub_unwind_size, total_size; | |
326 | unsigned index, unwind_entries; | |
c906108c SS |
327 | unsigned stub_entries, total_entries; |
328 | CORE_ADDR text_offset; | |
7c46b9fb RC |
329 | struct hppa_unwind_info *ui; |
330 | struct hppa_objfile_private *obj_private; | |
c906108c SS |
331 | |
332 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
7c46b9fb RC |
333 | ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
334 | sizeof (struct hppa_unwind_info)); | |
c906108c SS |
335 | |
336 | ui->table = NULL; | |
337 | ui->cache = NULL; | |
338 | ui->last = -1; | |
339 | ||
d4f3574e SS |
340 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
341 | sections in a single executable. So we just iterate over every | |
342 | section in the BFD looking for unwinder sections intead of trying | |
343 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 344 | |
d4f3574e SS |
345 | First determine the total size of the unwind tables so that we |
346 | can allocate memory in a nice big hunk. */ | |
347 | total_entries = 0; | |
348 | for (unwind_sec = objfile->obfd->sections; | |
349 | unwind_sec; | |
350 | unwind_sec = unwind_sec->next) | |
c906108c | 351 | { |
d4f3574e SS |
352 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
353 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
354 | { | |
355 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
356 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 357 | |
d4f3574e SS |
358 | total_entries += unwind_entries; |
359 | } | |
c906108c SS |
360 | } |
361 | ||
d4f3574e | 362 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
043f5962 | 363 | use stub unwinds at the current time. */ |
d4f3574e SS |
364 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
365 | ||
c906108c SS |
366 | if (stub_unwind_sec) |
367 | { | |
368 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
369 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
370 | } | |
371 | else | |
372 | { | |
373 | stub_unwind_size = 0; | |
374 | stub_entries = 0; | |
375 | } | |
376 | ||
377 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 378 | total_entries += stub_entries; |
c906108c SS |
379 | total_size = total_entries * sizeof (struct unwind_table_entry); |
380 | ||
381 | /* Allocate memory for the unwind table. */ | |
382 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 383 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 384 | ui->last = total_entries - 1; |
c906108c | 385 | |
d4f3574e SS |
386 | /* Now read in each unwind section and internalize the standard unwind |
387 | entries. */ | |
c906108c | 388 | index = 0; |
d4f3574e SS |
389 | for (unwind_sec = objfile->obfd->sections; |
390 | unwind_sec; | |
391 | unwind_sec = unwind_sec->next) | |
392 | { | |
393 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
394 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
395 | { | |
396 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
397 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
398 | ||
399 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
400 | unwind_entries, unwind_size, text_offset); | |
401 | index += unwind_entries; | |
402 | } | |
403 | } | |
404 | ||
405 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
406 | if (stub_unwind_size > 0) |
407 | { | |
408 | unsigned int i; | |
409 | char *buf = alloca (stub_unwind_size); | |
410 | ||
411 | /* Read in the stub unwind entries. */ | |
412 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
413 | 0, stub_unwind_size); | |
414 | ||
415 | /* Now convert them into regular unwind entries. */ | |
416 | for (i = 0; i < stub_entries; i++, index++) | |
417 | { | |
418 | /* Clear out the next unwind entry. */ | |
419 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
420 | ||
421 | /* Convert offset & size into region_start and region_end. | |
422 | Stuff away the stub type into "reserved" fields. */ | |
423 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
424 | (bfd_byte *) buf); | |
425 | ui->table[index].region_start += text_offset; | |
426 | buf += 4; | |
427 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 428 | (bfd_byte *) buf); |
c906108c SS |
429 | buf += 2; |
430 | ui->table[index].region_end | |
c5aa993b JM |
431 | = ui->table[index].region_start + 4 * |
432 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
433 | buf += 2; |
434 | } | |
435 | ||
436 | } | |
437 | ||
438 | /* Unwind table needs to be kept sorted. */ | |
439 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
440 | compare_unwind_entries); | |
441 | ||
442 | /* Keep a pointer to the unwind information. */ | |
7c46b9fb RC |
443 | obj_private = (struct hppa_objfile_private *) |
444 | objfile_data (objfile, hppa_objfile_priv_data); | |
445 | if (obj_private == NULL) | |
77d18ded RC |
446 | obj_private = hppa_init_objfile_priv_data (objfile); |
447 | ||
c906108c SS |
448 | obj_private->unwind_info = ui; |
449 | } | |
450 | ||
451 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
452 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
453 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
454 | search of the unwind tables, we depend upon them to be sorted. */ | |
455 | ||
456 | struct unwind_table_entry * | |
fba45db2 | 457 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
458 | { |
459 | int first, middle, last; | |
460 | struct objfile *objfile; | |
7c46b9fb | 461 | struct hppa_objfile_private *priv; |
c906108c | 462 | |
369aa520 | 463 | if (hppa_debug) |
5af949e3 UW |
464 | fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ", |
465 | hex_string (pc)); | |
369aa520 | 466 | |
c906108c SS |
467 | /* A function at address 0? Not in HP-UX! */ |
468 | if (pc == (CORE_ADDR) 0) | |
369aa520 RC |
469 | { |
470 | if (hppa_debug) | |
471 | fprintf_unfiltered (gdb_stdlog, "NULL }\n"); | |
472 | return NULL; | |
473 | } | |
c906108c SS |
474 | |
475 | ALL_OBJFILES (objfile) | |
c5aa993b | 476 | { |
7c46b9fb | 477 | struct hppa_unwind_info *ui; |
c5aa993b | 478 | ui = NULL; |
7c46b9fb RC |
479 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
480 | if (priv) | |
481 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; | |
c906108c | 482 | |
c5aa993b JM |
483 | if (!ui) |
484 | { | |
485 | read_unwind_info (objfile); | |
7c46b9fb RC |
486 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
487 | if (priv == NULL) | |
8a3fe4f8 | 488 | error (_("Internal error reading unwind information.")); |
7c46b9fb | 489 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
c5aa993b | 490 | } |
c906108c | 491 | |
c5aa993b | 492 | /* First, check the cache */ |
c906108c | 493 | |
c5aa993b JM |
494 | if (ui->cache |
495 | && pc >= ui->cache->region_start | |
496 | && pc <= ui->cache->region_end) | |
369aa520 RC |
497 | { |
498 | if (hppa_debug) | |
5af949e3 UW |
499 | fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n", |
500 | hex_string ((uintptr_t) ui->cache)); | |
369aa520 RC |
501 | return ui->cache; |
502 | } | |
c906108c | 503 | |
c5aa993b | 504 | /* Not in the cache, do a binary search */ |
c906108c | 505 | |
c5aa993b JM |
506 | first = 0; |
507 | last = ui->last; | |
c906108c | 508 | |
c5aa993b JM |
509 | while (first <= last) |
510 | { | |
511 | middle = (first + last) / 2; | |
512 | if (pc >= ui->table[middle].region_start | |
513 | && pc <= ui->table[middle].region_end) | |
514 | { | |
515 | ui->cache = &ui->table[middle]; | |
369aa520 | 516 | if (hppa_debug) |
5af949e3 UW |
517 | fprintf_unfiltered (gdb_stdlog, "%s }\n", |
518 | hex_string ((uintptr_t) ui->cache)); | |
c5aa993b JM |
519 | return &ui->table[middle]; |
520 | } | |
c906108c | 521 | |
c5aa993b JM |
522 | if (pc < ui->table[middle].region_start) |
523 | last = middle - 1; | |
524 | else | |
525 | first = middle + 1; | |
526 | } | |
527 | } /* ALL_OBJFILES() */ | |
369aa520 RC |
528 | |
529 | if (hppa_debug) | |
530 | fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); | |
531 | ||
c906108c SS |
532 | return NULL; |
533 | } | |
534 | ||
1fb24930 RC |
535 | /* The epilogue is defined here as the area either on the `bv' instruction |
536 | itself or an instruction which destroys the function's stack frame. | |
537 | ||
538 | We do not assume that the epilogue is at the end of a function as we can | |
539 | also have return sequences in the middle of a function. */ | |
540 | static int | |
541 | hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
542 | { | |
e17a4113 | 543 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1fb24930 RC |
544 | unsigned long status; |
545 | unsigned int inst; | |
546 | char buf[4]; | |
547 | int off; | |
548 | ||
8defab1a | 549 | status = target_read_memory (pc, buf, 4); |
1fb24930 RC |
550 | if (status != 0) |
551 | return 0; | |
552 | ||
e17a4113 | 553 | inst = extract_unsigned_integer (buf, 4, byte_order); |
1fb24930 RC |
554 | |
555 | /* The most common way to perform a stack adjustment ldo X(sp),sp | |
556 | We are destroying a stack frame if the offset is negative. */ | |
557 | if ((inst & 0xffffc000) == 0x37de0000 | |
558 | && hppa_extract_14 (inst) < 0) | |
559 | return 1; | |
560 | ||
561 | /* ldw,mb D(sp),X or ldd,mb D(sp),X */ | |
562 | if (((inst & 0x0fc010e0) == 0x0fc010e0 | |
563 | || (inst & 0x0fc010e0) == 0x0fc010e0) | |
564 | && hppa_extract_14 (inst) < 0) | |
565 | return 1; | |
566 | ||
567 | /* bv %r0(%rp) or bv,n %r0(%rp) */ | |
568 | if (inst == 0xe840c000 || inst == 0xe840c002) | |
569 | return 1; | |
570 | ||
571 | return 0; | |
572 | } | |
573 | ||
85f4f2d8 | 574 | static const unsigned char * |
67d57894 | 575 | hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len) |
aaab4dba | 576 | { |
56132691 | 577 | static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; |
aaab4dba AC |
578 | (*len) = sizeof (breakpoint); |
579 | return breakpoint; | |
580 | } | |
581 | ||
e23457df AC |
582 | /* Return the name of a register. */ |
583 | ||
4a302917 | 584 | static const char * |
d93859e2 | 585 | hppa32_register_name (struct gdbarch *gdbarch, int i) |
e23457df AC |
586 | { |
587 | static char *names[] = { | |
588 | "flags", "r1", "rp", "r3", | |
589 | "r4", "r5", "r6", "r7", | |
590 | "r8", "r9", "r10", "r11", | |
591 | "r12", "r13", "r14", "r15", | |
592 | "r16", "r17", "r18", "r19", | |
593 | "r20", "r21", "r22", "r23", | |
594 | "r24", "r25", "r26", "dp", | |
595 | "ret0", "ret1", "sp", "r31", | |
596 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
597 | "pcsqt", "eiem", "iir", "isr", | |
598 | "ior", "ipsw", "goto", "sr4", | |
599 | "sr0", "sr1", "sr2", "sr3", | |
600 | "sr5", "sr6", "sr7", "cr0", | |
601 | "cr8", "cr9", "ccr", "cr12", | |
602 | "cr13", "cr24", "cr25", "cr26", | |
603 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
604 | "fpsr", "fpe1", "fpe2", "fpe3", | |
605 | "fpe4", "fpe5", "fpe6", "fpe7", | |
606 | "fr4", "fr4R", "fr5", "fr5R", | |
607 | "fr6", "fr6R", "fr7", "fr7R", | |
608 | "fr8", "fr8R", "fr9", "fr9R", | |
609 | "fr10", "fr10R", "fr11", "fr11R", | |
610 | "fr12", "fr12R", "fr13", "fr13R", | |
611 | "fr14", "fr14R", "fr15", "fr15R", | |
612 | "fr16", "fr16R", "fr17", "fr17R", | |
613 | "fr18", "fr18R", "fr19", "fr19R", | |
614 | "fr20", "fr20R", "fr21", "fr21R", | |
615 | "fr22", "fr22R", "fr23", "fr23R", | |
616 | "fr24", "fr24R", "fr25", "fr25R", | |
617 | "fr26", "fr26R", "fr27", "fr27R", | |
618 | "fr28", "fr28R", "fr29", "fr29R", | |
619 | "fr30", "fr30R", "fr31", "fr31R" | |
620 | }; | |
621 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
622 | return NULL; | |
623 | else | |
624 | return names[i]; | |
625 | } | |
626 | ||
4a302917 | 627 | static const char * |
d93859e2 | 628 | hppa64_register_name (struct gdbarch *gdbarch, int i) |
e23457df AC |
629 | { |
630 | static char *names[] = { | |
631 | "flags", "r1", "rp", "r3", | |
632 | "r4", "r5", "r6", "r7", | |
633 | "r8", "r9", "r10", "r11", | |
634 | "r12", "r13", "r14", "r15", | |
635 | "r16", "r17", "r18", "r19", | |
636 | "r20", "r21", "r22", "r23", | |
637 | "r24", "r25", "r26", "dp", | |
638 | "ret0", "ret1", "sp", "r31", | |
639 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
640 | "pcsqt", "eiem", "iir", "isr", | |
641 | "ior", "ipsw", "goto", "sr4", | |
642 | "sr0", "sr1", "sr2", "sr3", | |
643 | "sr5", "sr6", "sr7", "cr0", | |
644 | "cr8", "cr9", "ccr", "cr12", | |
645 | "cr13", "cr24", "cr25", "cr26", | |
646 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
647 | "fpsr", "fpe1", "fpe2", "fpe3", | |
648 | "fr4", "fr5", "fr6", "fr7", | |
649 | "fr8", "fr9", "fr10", "fr11", | |
650 | "fr12", "fr13", "fr14", "fr15", | |
651 | "fr16", "fr17", "fr18", "fr19", | |
652 | "fr20", "fr21", "fr22", "fr23", | |
653 | "fr24", "fr25", "fr26", "fr27", | |
654 | "fr28", "fr29", "fr30", "fr31" | |
655 | }; | |
656 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
657 | return NULL; | |
658 | else | |
659 | return names[i]; | |
660 | } | |
661 | ||
85c83e99 | 662 | /* Map dwarf DBX register numbers to GDB register numbers. */ |
1ef7fcb5 | 663 | static int |
d3f73121 | 664 | hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
1ef7fcb5 | 665 | { |
85c83e99 | 666 | /* The general registers and the sar are the same in both sets. */ |
1ef7fcb5 RC |
667 | if (reg <= 32) |
668 | return reg; | |
669 | ||
670 | /* fr4-fr31 are mapped from 72 in steps of 2. */ | |
85c83e99 | 671 | if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1)) |
1ef7fcb5 RC |
672 | return HPPA64_FP4_REGNUM + (reg - 72) / 2; |
673 | ||
85c83e99 | 674 | warning (_("Unmapped DWARF DBX Register #%d encountered."), reg); |
1ef7fcb5 RC |
675 | return -1; |
676 | } | |
677 | ||
79508e1e AC |
678 | /* This function pushes a stack frame with arguments as part of the |
679 | inferior function calling mechanism. | |
680 | ||
681 | This is the version of the function for the 32-bit PA machines, in | |
682 | which later arguments appear at lower addresses. (The stack always | |
683 | grows towards higher addresses.) | |
684 | ||
685 | We simply allocate the appropriate amount of stack space and put | |
686 | arguments into their proper slots. */ | |
687 | ||
4a302917 | 688 | static CORE_ADDR |
7d9b040b | 689 | hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
79508e1e AC |
690 | struct regcache *regcache, CORE_ADDR bp_addr, |
691 | int nargs, struct value **args, CORE_ADDR sp, | |
692 | int struct_return, CORE_ADDR struct_addr) | |
693 | { | |
e17a4113 UW |
694 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
695 | ||
79508e1e AC |
696 | /* Stack base address at which any pass-by-reference parameters are |
697 | stored. */ | |
698 | CORE_ADDR struct_end = 0; | |
699 | /* Stack base address at which the first parameter is stored. */ | |
700 | CORE_ADDR param_end = 0; | |
701 | ||
702 | /* The inner most end of the stack after all the parameters have | |
703 | been pushed. */ | |
704 | CORE_ADDR new_sp = 0; | |
705 | ||
706 | /* Two passes. First pass computes the location of everything, | |
707 | second pass writes the bytes out. */ | |
708 | int write_pass; | |
d49771ef RC |
709 | |
710 | /* Global pointer (r19) of the function we are trying to call. */ | |
711 | CORE_ADDR gp; | |
712 | ||
713 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
714 | ||
79508e1e AC |
715 | for (write_pass = 0; write_pass < 2; write_pass++) |
716 | { | |
1797a8f6 | 717 | CORE_ADDR struct_ptr = 0; |
2a6228ef RC |
718 | /* The first parameter goes into sp-36, each stack slot is 4-bytes. |
719 | struct_ptr is adjusted for each argument below, so the first | |
720 | argument will end up at sp-36. */ | |
721 | CORE_ADDR param_ptr = 32; | |
79508e1e | 722 | int i; |
2a6228ef RC |
723 | int small_struct = 0; |
724 | ||
79508e1e AC |
725 | for (i = 0; i < nargs; i++) |
726 | { | |
727 | struct value *arg = args[i]; | |
4991999e | 728 | struct type *type = check_typedef (value_type (arg)); |
79508e1e AC |
729 | /* The corresponding parameter that is pushed onto the |
730 | stack, and [possibly] passed in a register. */ | |
731 | char param_val[8]; | |
732 | int param_len; | |
733 | memset (param_val, 0, sizeof param_val); | |
734 | if (TYPE_LENGTH (type) > 8) | |
735 | { | |
736 | /* Large parameter, pass by reference. Store the value | |
737 | in "struct" area and then pass its address. */ | |
738 | param_len = 4; | |
1797a8f6 | 739 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
79508e1e | 740 | if (write_pass) |
0fd88904 | 741 | write_memory (struct_end - struct_ptr, value_contents (arg), |
79508e1e | 742 | TYPE_LENGTH (type)); |
e17a4113 UW |
743 | store_unsigned_integer (param_val, 4, byte_order, |
744 | struct_end - struct_ptr); | |
79508e1e AC |
745 | } |
746 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
747 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
748 | { | |
749 | /* Integer value store, right aligned. "unpack_long" | |
750 | takes care of any sign-extension problems. */ | |
751 | param_len = align_up (TYPE_LENGTH (type), 4); | |
e17a4113 | 752 | store_unsigned_integer (param_val, param_len, byte_order, |
79508e1e | 753 | unpack_long (type, |
0fd88904 | 754 | value_contents (arg))); |
79508e1e | 755 | } |
2a6228ef RC |
756 | else if (TYPE_CODE (type) == TYPE_CODE_FLT) |
757 | { | |
758 | /* Floating point value store, right aligned. */ | |
759 | param_len = align_up (TYPE_LENGTH (type), 4); | |
0fd88904 | 760 | memcpy (param_val, value_contents (arg), param_len); |
2a6228ef | 761 | } |
79508e1e AC |
762 | else |
763 | { | |
79508e1e | 764 | param_len = align_up (TYPE_LENGTH (type), 4); |
2a6228ef RC |
765 | |
766 | /* Small struct value are stored right-aligned. */ | |
79508e1e | 767 | memcpy (param_val + param_len - TYPE_LENGTH (type), |
0fd88904 | 768 | value_contents (arg), TYPE_LENGTH (type)); |
2a6228ef RC |
769 | |
770 | /* Structures of size 5, 6 and 7 bytes are special in that | |
771 | the higher-ordered word is stored in the lower-ordered | |
772 | argument, and even though it is a 8-byte quantity the | |
773 | registers need not be 8-byte aligned. */ | |
1b07b470 | 774 | if (param_len > 4 && param_len < 8) |
2a6228ef | 775 | small_struct = 1; |
79508e1e | 776 | } |
2a6228ef | 777 | |
1797a8f6 | 778 | param_ptr += param_len; |
2a6228ef RC |
779 | if (param_len == 8 && !small_struct) |
780 | param_ptr = align_up (param_ptr, 8); | |
781 | ||
782 | /* First 4 non-FP arguments are passed in gr26-gr23. | |
783 | First 4 32-bit FP arguments are passed in fr4L-fr7L. | |
784 | First 2 64-bit FP arguments are passed in fr5 and fr7. | |
785 | ||
786 | The rest go on the stack, starting at sp-36, towards lower | |
787 | addresses. 8-byte arguments must be aligned to a 8-byte | |
788 | stack boundary. */ | |
79508e1e AC |
789 | if (write_pass) |
790 | { | |
1797a8f6 | 791 | write_memory (param_end - param_ptr, param_val, param_len); |
2a6228ef RC |
792 | |
793 | /* There are some cases when we don't know the type | |
794 | expected by the callee (e.g. for variadic functions), so | |
795 | pass the parameters in both general and fp regs. */ | |
796 | if (param_ptr <= 48) | |
79508e1e | 797 | { |
2a6228ef RC |
798 | int grreg = 26 - (param_ptr - 36) / 4; |
799 | int fpLreg = 72 + (param_ptr - 36) / 4 * 2; | |
800 | int fpreg = 74 + (param_ptr - 32) / 8 * 4; | |
801 | ||
802 | regcache_cooked_write (regcache, grreg, param_val); | |
803 | regcache_cooked_write (regcache, fpLreg, param_val); | |
804 | ||
79508e1e | 805 | if (param_len > 4) |
2a6228ef RC |
806 | { |
807 | regcache_cooked_write (regcache, grreg + 1, | |
808 | param_val + 4); | |
809 | ||
810 | regcache_cooked_write (regcache, fpreg, param_val); | |
811 | regcache_cooked_write (regcache, fpreg + 1, | |
812 | param_val + 4); | |
813 | } | |
79508e1e AC |
814 | } |
815 | } | |
816 | } | |
817 | ||
818 | /* Update the various stack pointers. */ | |
819 | if (!write_pass) | |
820 | { | |
2a6228ef | 821 | struct_end = sp + align_up (struct_ptr, 64); |
79508e1e AC |
822 | /* PARAM_PTR already accounts for all the arguments passed |
823 | by the user. However, the ABI mandates minimum stack | |
824 | space allocations for outgoing arguments. The ABI also | |
825 | mandates minimum stack alignments which we must | |
826 | preserve. */ | |
2a6228ef | 827 | param_end = struct_end + align_up (param_ptr, 64); |
79508e1e AC |
828 | } |
829 | } | |
830 | ||
831 | /* If a structure has to be returned, set up register 28 to hold its | |
832 | address */ | |
833 | if (struct_return) | |
9c9acae0 | 834 | regcache_cooked_write_unsigned (regcache, 28, struct_addr); |
79508e1e | 835 | |
e38c262f | 836 | gp = tdep->find_global_pointer (gdbarch, function); |
d49771ef RC |
837 | |
838 | if (gp != 0) | |
9c9acae0 | 839 | regcache_cooked_write_unsigned (regcache, 19, gp); |
d49771ef | 840 | |
79508e1e | 841 | /* Set the return address. */ |
77d18ded RC |
842 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
843 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
79508e1e | 844 | |
c4557624 | 845 | /* Update the Stack Pointer. */ |
34f75cc1 | 846 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); |
c4557624 | 847 | |
2a6228ef | 848 | return param_end; |
79508e1e AC |
849 | } |
850 | ||
38ca4e0c MK |
851 | /* The 64-bit PA-RISC calling conventions are documented in "64-Bit |
852 | Runtime Architecture for PA-RISC 2.0", which is distributed as part | |
853 | as of the HP-UX Software Transition Kit (STK). This implementation | |
854 | is based on version 3.3, dated October 6, 1997. */ | |
2f690297 | 855 | |
38ca4e0c | 856 | /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ |
2f690297 | 857 | |
38ca4e0c MK |
858 | static int |
859 | hppa64_integral_or_pointer_p (const struct type *type) | |
860 | { | |
861 | switch (TYPE_CODE (type)) | |
862 | { | |
863 | case TYPE_CODE_INT: | |
864 | case TYPE_CODE_BOOL: | |
865 | case TYPE_CODE_CHAR: | |
866 | case TYPE_CODE_ENUM: | |
867 | case TYPE_CODE_RANGE: | |
868 | { | |
869 | int len = TYPE_LENGTH (type); | |
870 | return (len == 1 || len == 2 || len == 4 || len == 8); | |
871 | } | |
872 | case TYPE_CODE_PTR: | |
873 | case TYPE_CODE_REF: | |
874 | return (TYPE_LENGTH (type) == 8); | |
875 | default: | |
876 | break; | |
877 | } | |
878 | ||
879 | return 0; | |
880 | } | |
881 | ||
882 | /* Check whether TYPE is a "Floating Scalar Type". */ | |
883 | ||
884 | static int | |
885 | hppa64_floating_p (const struct type *type) | |
886 | { | |
887 | switch (TYPE_CODE (type)) | |
888 | { | |
889 | case TYPE_CODE_FLT: | |
890 | { | |
891 | int len = TYPE_LENGTH (type); | |
892 | return (len == 4 || len == 8 || len == 16); | |
893 | } | |
894 | default: | |
895 | break; | |
896 | } | |
897 | ||
898 | return 0; | |
899 | } | |
2f690297 | 900 | |
1218e655 RC |
901 | /* If CODE points to a function entry address, try to look up the corresponding |
902 | function descriptor and return its address instead. If CODE is not a | |
903 | function entry address, then just return it unchanged. */ | |
904 | static CORE_ADDR | |
e17a4113 | 905 | hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code) |
1218e655 | 906 | { |
e17a4113 | 907 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1218e655 RC |
908 | struct obj_section *sec, *opd; |
909 | ||
910 | sec = find_pc_section (code); | |
911 | ||
912 | if (!sec) | |
913 | return code; | |
914 | ||
915 | /* If CODE is in a data section, assume it's already a fptr. */ | |
916 | if (!(sec->the_bfd_section->flags & SEC_CODE)) | |
917 | return code; | |
918 | ||
919 | ALL_OBJFILE_OSECTIONS (sec->objfile, opd) | |
920 | { | |
921 | if (strcmp (opd->the_bfd_section->name, ".opd") == 0) | |
aded6f54 | 922 | break; |
1218e655 RC |
923 | } |
924 | ||
925 | if (opd < sec->objfile->sections_end) | |
926 | { | |
927 | CORE_ADDR addr; | |
928 | ||
aded6f54 PA |
929 | for (addr = obj_section_addr (opd); |
930 | addr < obj_section_endaddr (opd); | |
931 | addr += 2 * 8) | |
932 | { | |
1218e655 RC |
933 | ULONGEST opdaddr; |
934 | char tmp[8]; | |
935 | ||
936 | if (target_read_memory (addr, tmp, sizeof (tmp))) | |
937 | break; | |
e17a4113 | 938 | opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order); |
1218e655 | 939 | |
aded6f54 | 940 | if (opdaddr == code) |
1218e655 RC |
941 | return addr - 16; |
942 | } | |
943 | } | |
944 | ||
945 | return code; | |
946 | } | |
947 | ||
4a302917 | 948 | static CORE_ADDR |
7d9b040b | 949 | hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
2f690297 AC |
950 | struct regcache *regcache, CORE_ADDR bp_addr, |
951 | int nargs, struct value **args, CORE_ADDR sp, | |
952 | int struct_return, CORE_ADDR struct_addr) | |
953 | { | |
38ca4e0c | 954 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 955 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
38ca4e0c MK |
956 | int i, offset = 0; |
957 | CORE_ADDR gp; | |
2f690297 | 958 | |
38ca4e0c MK |
959 | /* "The outgoing parameter area [...] must be aligned at a 16-byte |
960 | boundary." */ | |
961 | sp = align_up (sp, 16); | |
2f690297 | 962 | |
38ca4e0c MK |
963 | for (i = 0; i < nargs; i++) |
964 | { | |
965 | struct value *arg = args[i]; | |
966 | struct type *type = value_type (arg); | |
967 | int len = TYPE_LENGTH (type); | |
0fd88904 | 968 | const bfd_byte *valbuf; |
1218e655 | 969 | bfd_byte fptrbuf[8]; |
38ca4e0c | 970 | int regnum; |
2f690297 | 971 | |
38ca4e0c MK |
972 | /* "Each parameter begins on a 64-bit (8-byte) boundary." */ |
973 | offset = align_up (offset, 8); | |
77d18ded | 974 | |
38ca4e0c | 975 | if (hppa64_integral_or_pointer_p (type)) |
2f690297 | 976 | { |
38ca4e0c MK |
977 | /* "Integral scalar parameters smaller than 64 bits are |
978 | padded on the left (i.e., the value is in the | |
979 | least-significant bits of the 64-bit storage unit, and | |
980 | the high-order bits are undefined)." Therefore we can | |
981 | safely sign-extend them. */ | |
982 | if (len < 8) | |
449e1137 | 983 | { |
df4df182 | 984 | arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg); |
38ca4e0c MK |
985 | len = 8; |
986 | } | |
987 | } | |
988 | else if (hppa64_floating_p (type)) | |
989 | { | |
990 | if (len > 8) | |
991 | { | |
992 | /* "Quad-precision (128-bit) floating-point scalar | |
993 | parameters are aligned on a 16-byte boundary." */ | |
994 | offset = align_up (offset, 16); | |
995 | ||
996 | /* "Double-extended- and quad-precision floating-point | |
997 | parameters within the first 64 bytes of the parameter | |
998 | list are always passed in general registers." */ | |
449e1137 AC |
999 | } |
1000 | else | |
1001 | { | |
38ca4e0c | 1002 | if (len == 4) |
449e1137 | 1003 | { |
38ca4e0c MK |
1004 | /* "Single-precision (32-bit) floating-point scalar |
1005 | parameters are padded on the left with 32 bits of | |
1006 | garbage (i.e., the floating-point value is in the | |
1007 | least-significant 32 bits of a 64-bit storage | |
1008 | unit)." */ | |
1009 | offset += 4; | |
449e1137 | 1010 | } |
38ca4e0c MK |
1011 | |
1012 | /* "Single- and double-precision floating-point | |
1013 | parameters in this area are passed according to the | |
1014 | available formal parameter information in a function | |
1015 | prototype. [...] If no prototype is in scope, | |
1016 | floating-point parameters must be passed both in the | |
1017 | corresponding general registers and in the | |
1018 | corresponding floating-point registers." */ | |
1019 | regnum = HPPA64_FP4_REGNUM + offset / 8; | |
1020 | ||
1021 | if (regnum < HPPA64_FP4_REGNUM + 8) | |
449e1137 | 1022 | { |
38ca4e0c MK |
1023 | /* "Single-precision floating-point parameters, when |
1024 | passed in floating-point registers, are passed in | |
1025 | the right halves of the floating point registers; | |
1026 | the left halves are unused." */ | |
1027 | regcache_cooked_write_part (regcache, regnum, offset % 8, | |
0fd88904 | 1028 | len, value_contents (arg)); |
449e1137 AC |
1029 | } |
1030 | } | |
2f690297 | 1031 | } |
38ca4e0c | 1032 | else |
2f690297 | 1033 | { |
38ca4e0c MK |
1034 | if (len > 8) |
1035 | { | |
1036 | /* "Aggregates larger than 8 bytes are aligned on a | |
1037 | 16-byte boundary, possibly leaving an unused argument | |
1038 | slot, which is filled with garbage. If necessary, | |
1039 | they are padded on the right (with garbage), to a | |
1040 | multiple of 8 bytes." */ | |
1041 | offset = align_up (offset, 16); | |
1042 | } | |
1043 | } | |
1044 | ||
1218e655 RC |
1045 | /* If we are passing a function pointer, make sure we pass a function |
1046 | descriptor instead of the function entry address. */ | |
1047 | if (TYPE_CODE (type) == TYPE_CODE_PTR | |
1048 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
1049 | { | |
1050 | ULONGEST codeptr, fptr; | |
1051 | ||
1052 | codeptr = unpack_long (type, value_contents (arg)); | |
e17a4113 UW |
1053 | fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr); |
1054 | store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order, | |
1055 | fptr); | |
1218e655 RC |
1056 | valbuf = fptrbuf; |
1057 | } | |
1058 | else | |
1059 | { | |
1060 | valbuf = value_contents (arg); | |
1061 | } | |
1062 | ||
38ca4e0c | 1063 | /* Always store the argument in memory. */ |
1218e655 | 1064 | write_memory (sp + offset, valbuf, len); |
38ca4e0c | 1065 | |
38ca4e0c MK |
1066 | regnum = HPPA_ARG0_REGNUM - offset / 8; |
1067 | while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) | |
1068 | { | |
1069 | regcache_cooked_write_part (regcache, regnum, | |
1070 | offset % 8, min (len, 8), valbuf); | |
1071 | offset += min (len, 8); | |
1072 | valbuf += min (len, 8); | |
1073 | len -= min (len, 8); | |
1074 | regnum--; | |
2f690297 | 1075 | } |
38ca4e0c MK |
1076 | |
1077 | offset += len; | |
2f690297 AC |
1078 | } |
1079 | ||
38ca4e0c MK |
1080 | /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ |
1081 | regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); | |
1082 | ||
1083 | /* Allocate the outgoing parameter area. Make sure the outgoing | |
1084 | parameter area is multiple of 16 bytes in length. */ | |
1085 | sp += max (align_up (offset, 16), 64); | |
1086 | ||
1087 | /* Allocate 32-bytes of scratch space. The documentation doesn't | |
1088 | mention this, but it seems to be needed. */ | |
1089 | sp += 32; | |
1090 | ||
1091 | /* Allocate the frame marker area. */ | |
1092 | sp += 16; | |
1093 | ||
1094 | /* If a structure has to be returned, set up GR 28 (%ret0) to hold | |
1095 | its address. */ | |
2f690297 | 1096 | if (struct_return) |
38ca4e0c | 1097 | regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); |
2f690297 | 1098 | |
38ca4e0c | 1099 | /* Set up GR27 (%dp) to hold the global pointer (gp). */ |
e38c262f | 1100 | gp = tdep->find_global_pointer (gdbarch, function); |
77d18ded | 1101 | if (gp != 0) |
38ca4e0c | 1102 | regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); |
77d18ded | 1103 | |
38ca4e0c | 1104 | /* Set up GR2 (%rp) to hold the return pointer (rp). */ |
77d18ded RC |
1105 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
1106 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
2f690297 | 1107 | |
38ca4e0c MK |
1108 | /* Set up GR30 to hold the stack pointer (sp). */ |
1109 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); | |
c4557624 | 1110 | |
38ca4e0c | 1111 | return sp; |
2f690297 | 1112 | } |
38ca4e0c | 1113 | \f |
2f690297 | 1114 | |
08a27113 MK |
1115 | /* Handle 32/64-bit struct return conventions. */ |
1116 | ||
1117 | static enum return_value_convention | |
c055b101 | 1118 | hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type, |
08a27113 | 1119 | struct type *type, struct regcache *regcache, |
e127f0db | 1120 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1121 | { |
1122 | if (TYPE_LENGTH (type) <= 2 * 4) | |
1123 | { | |
1124 | /* The value always lives in the right hand end of the register | |
1125 | (or register pair)? */ | |
1126 | int b; | |
1127 | int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; | |
1128 | int part = TYPE_LENGTH (type) % 4; | |
1129 | /* The left hand register contains only part of the value, | |
1130 | transfer that first so that the rest can be xfered as entire | |
1131 | 4-byte registers. */ | |
1132 | if (part > 0) | |
1133 | { | |
1134 | if (readbuf != NULL) | |
1135 | regcache_cooked_read_part (regcache, reg, 4 - part, | |
1136 | part, readbuf); | |
1137 | if (writebuf != NULL) | |
1138 | regcache_cooked_write_part (regcache, reg, 4 - part, | |
1139 | part, writebuf); | |
1140 | reg++; | |
1141 | } | |
1142 | /* Now transfer the remaining register values. */ | |
1143 | for (b = part; b < TYPE_LENGTH (type); b += 4) | |
1144 | { | |
1145 | if (readbuf != NULL) | |
e127f0db | 1146 | regcache_cooked_read (regcache, reg, readbuf + b); |
08a27113 | 1147 | if (writebuf != NULL) |
e127f0db | 1148 | regcache_cooked_write (regcache, reg, writebuf + b); |
08a27113 MK |
1149 | reg++; |
1150 | } | |
1151 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1152 | } | |
1153 | else | |
1154 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1155 | } | |
1156 | ||
1157 | static enum return_value_convention | |
c055b101 | 1158 | hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type, |
08a27113 | 1159 | struct type *type, struct regcache *regcache, |
e127f0db | 1160 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1161 | { |
1162 | int len = TYPE_LENGTH (type); | |
1163 | int regnum, offset; | |
1164 | ||
1165 | if (len > 16) | |
1166 | { | |
1167 | /* All return values larget than 128 bits must be aggregate | |
1168 | return values. */ | |
9738b034 MK |
1169 | gdb_assert (!hppa64_integral_or_pointer_p (type)); |
1170 | gdb_assert (!hppa64_floating_p (type)); | |
08a27113 MK |
1171 | |
1172 | /* "Aggregate return values larger than 128 bits are returned in | |
1173 | a buffer allocated by the caller. The address of the buffer | |
1174 | must be passed in GR 28." */ | |
1175 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1176 | } | |
1177 | ||
1178 | if (hppa64_integral_or_pointer_p (type)) | |
1179 | { | |
1180 | /* "Integral return values are returned in GR 28. Values | |
1181 | smaller than 64 bits are padded on the left (with garbage)." */ | |
1182 | regnum = HPPA_RET0_REGNUM; | |
1183 | offset = 8 - len; | |
1184 | } | |
1185 | else if (hppa64_floating_p (type)) | |
1186 | { | |
1187 | if (len > 8) | |
1188 | { | |
1189 | /* "Double-extended- and quad-precision floating-point | |
1190 | values are returned in GRs 28 and 29. The sign, | |
1191 | exponent, and most-significant bits of the mantissa are | |
1192 | returned in GR 28; the least-significant bits of the | |
1193 | mantissa are passed in GR 29. For double-extended | |
1194 | precision values, GR 29 is padded on the right with 48 | |
1195 | bits of garbage." */ | |
1196 | regnum = HPPA_RET0_REGNUM; | |
1197 | offset = 0; | |
1198 | } | |
1199 | else | |
1200 | { | |
1201 | /* "Single-precision and double-precision floating-point | |
1202 | return values are returned in FR 4R (single precision) or | |
1203 | FR 4 (double-precision)." */ | |
1204 | regnum = HPPA64_FP4_REGNUM; | |
1205 | offset = 8 - len; | |
1206 | } | |
1207 | } | |
1208 | else | |
1209 | { | |
1210 | /* "Aggregate return values up to 64 bits in size are returned | |
1211 | in GR 28. Aggregates smaller than 64 bits are left aligned | |
1212 | in the register; the pad bits on the right are undefined." | |
1213 | ||
1214 | "Aggregate return values between 65 and 128 bits are returned | |
1215 | in GRs 28 and 29. The first 64 bits are placed in GR 28, and | |
1216 | the remaining bits are placed, left aligned, in GR 29. The | |
1217 | pad bits on the right of GR 29 (if any) are undefined." */ | |
1218 | regnum = HPPA_RET0_REGNUM; | |
1219 | offset = 0; | |
1220 | } | |
1221 | ||
1222 | if (readbuf) | |
1223 | { | |
08a27113 MK |
1224 | while (len > 0) |
1225 | { | |
1226 | regcache_cooked_read_part (regcache, regnum, offset, | |
e127f0db MK |
1227 | min (len, 8), readbuf); |
1228 | readbuf += min (len, 8); | |
08a27113 MK |
1229 | len -= min (len, 8); |
1230 | regnum++; | |
1231 | } | |
1232 | } | |
1233 | ||
1234 | if (writebuf) | |
1235 | { | |
08a27113 MK |
1236 | while (len > 0) |
1237 | { | |
1238 | regcache_cooked_write_part (regcache, regnum, offset, | |
e127f0db MK |
1239 | min (len, 8), writebuf); |
1240 | writebuf += min (len, 8); | |
08a27113 MK |
1241 | len -= min (len, 8); |
1242 | regnum++; | |
1243 | } | |
1244 | } | |
1245 | ||
1246 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1247 | } | |
1248 | \f | |
1249 | ||
d49771ef | 1250 | static CORE_ADDR |
a7aad9aa | 1251 | hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
d49771ef RC |
1252 | struct target_ops *targ) |
1253 | { | |
1254 | if (addr & 2) | |
1255 | { | |
0dfff4cb | 1256 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
a7aad9aa | 1257 | CORE_ADDR plabel = addr & ~3; |
0dfff4cb | 1258 | return read_memory_typed_address (plabel, func_ptr_type); |
d49771ef RC |
1259 | } |
1260 | ||
1261 | return addr; | |
1262 | } | |
1263 | ||
1797a8f6 AC |
1264 | static CORE_ADDR |
1265 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1266 | { | |
1267 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ | |
1268 | and not _bit_)! */ | |
1269 | return align_up (addr, 64); | |
1270 | } | |
1271 | ||
2f690297 AC |
1272 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
1273 | ||
1274 | static CORE_ADDR | |
1797a8f6 | 1275 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
2f690297 AC |
1276 | { |
1277 | /* Just always 16-byte align. */ | |
1278 | return align_up (addr, 16); | |
1279 | } | |
1280 | ||
cc72850f | 1281 | CORE_ADDR |
61a1198a | 1282 | hppa_read_pc (struct regcache *regcache) |
c906108c | 1283 | { |
cc72850f | 1284 | ULONGEST ipsw; |
61a1198a | 1285 | ULONGEST pc; |
c906108c | 1286 | |
61a1198a UW |
1287 | regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw); |
1288 | regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc); | |
fe46cd3a RC |
1289 | |
1290 | /* If the current instruction is nullified, then we are effectively | |
1291 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
1292 | there. This is needed when single stepping; if the nullified |
1293 | instruction is on a different line, we don't want GDB to think | |
1294 | we've stepped onto that line. */ | |
fe46cd3a RC |
1295 | if (ipsw & 0x00200000) |
1296 | pc -= 4; | |
1297 | ||
cc72850f | 1298 | return pc & ~0x3; |
c906108c SS |
1299 | } |
1300 | ||
cc72850f | 1301 | void |
61a1198a | 1302 | hppa_write_pc (struct regcache *regcache, CORE_ADDR pc) |
c906108c | 1303 | { |
61a1198a UW |
1304 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc); |
1305 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4); | |
c906108c SS |
1306 | } |
1307 | ||
1308 | /* return the alignment of a type in bytes. Structures have the maximum | |
1309 | alignment required by their fields. */ | |
1310 | ||
1311 | static int | |
fba45db2 | 1312 | hppa_alignof (struct type *type) |
c906108c SS |
1313 | { |
1314 | int max_align, align, i; | |
1315 | CHECK_TYPEDEF (type); | |
1316 | switch (TYPE_CODE (type)) | |
1317 | { | |
1318 | case TYPE_CODE_PTR: | |
1319 | case TYPE_CODE_INT: | |
1320 | case TYPE_CODE_FLT: | |
1321 | return TYPE_LENGTH (type); | |
1322 | case TYPE_CODE_ARRAY: | |
262452ec | 1323 | return hppa_alignof (TYPE_INDEX_TYPE (type)); |
c906108c SS |
1324 | case TYPE_CODE_STRUCT: |
1325 | case TYPE_CODE_UNION: | |
1326 | max_align = 1; | |
1327 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
1328 | { | |
1329 | /* Bit fields have no real alignment. */ | |
1330 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 1331 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
1332 | { |
1333 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
1334 | max_align = max (max_align, align); | |
1335 | } | |
1336 | } | |
1337 | return max_align; | |
1338 | default: | |
1339 | return 4; | |
1340 | } | |
1341 | } | |
1342 | ||
c906108c SS |
1343 | /* For the given instruction (INST), return any adjustment it makes |
1344 | to the stack pointer or zero for no adjustment. | |
1345 | ||
1346 | This only handles instructions commonly found in prologues. */ | |
1347 | ||
1348 | static int | |
fba45db2 | 1349 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
1350 | { |
1351 | /* This must persist across calls. */ | |
1352 | static int save_high21; | |
1353 | ||
1354 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1355 | if ((inst & 0xffffc000) == 0x37de0000) | |
abc485a1 | 1356 | return hppa_extract_14 (inst); |
c906108c SS |
1357 | |
1358 | /* stwm X,D(sp) */ | |
1359 | if ((inst & 0xffe00000) == 0x6fc00000) | |
abc485a1 | 1360 | return hppa_extract_14 (inst); |
c906108c | 1361 | |
104c1213 JM |
1362 | /* std,ma X,D(sp) */ |
1363 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 1364 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 1365 | |
e22b26cb | 1366 | /* addil high21,%r30; ldo low11,(%r1),%r30) |
c906108c | 1367 | save high bits in save_high21 for later use. */ |
e22b26cb | 1368 | if ((inst & 0xffe00000) == 0x2bc00000) |
c906108c | 1369 | { |
abc485a1 | 1370 | save_high21 = hppa_extract_21 (inst); |
c906108c SS |
1371 | return 0; |
1372 | } | |
1373 | ||
1374 | if ((inst & 0xffff0000) == 0x343e0000) | |
abc485a1 | 1375 | return save_high21 + hppa_extract_14 (inst); |
c906108c SS |
1376 | |
1377 | /* fstws as used by the HP compilers. */ | |
1378 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
abc485a1 | 1379 | return hppa_extract_5_load (inst); |
c906108c SS |
1380 | |
1381 | /* No adjustment. */ | |
1382 | return 0; | |
1383 | } | |
1384 | ||
1385 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1386 | ||
1387 | static int | |
fba45db2 | 1388 | is_branch (unsigned long inst) |
c906108c SS |
1389 | { |
1390 | switch (inst >> 26) | |
1391 | { | |
1392 | case 0x20: | |
1393 | case 0x21: | |
1394 | case 0x22: | |
1395 | case 0x23: | |
7be570e7 | 1396 | case 0x27: |
c906108c SS |
1397 | case 0x28: |
1398 | case 0x29: | |
1399 | case 0x2a: | |
1400 | case 0x2b: | |
7be570e7 | 1401 | case 0x2f: |
c906108c SS |
1402 | case 0x30: |
1403 | case 0x31: | |
1404 | case 0x32: | |
1405 | case 0x33: | |
1406 | case 0x38: | |
1407 | case 0x39: | |
1408 | case 0x3a: | |
7be570e7 | 1409 | case 0x3b: |
c906108c SS |
1410 | return 1; |
1411 | ||
1412 | default: | |
1413 | return 0; | |
1414 | } | |
1415 | } | |
1416 | ||
1417 | /* Return the register number for a GR which is saved by INST or | |
1418 | zero it INST does not save a GR. */ | |
1419 | ||
1420 | static int | |
fba45db2 | 1421 | inst_saves_gr (unsigned long inst) |
c906108c SS |
1422 | { |
1423 | /* Does it look like a stw? */ | |
7be570e7 JM |
1424 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
1425 | || (inst >> 26) == 0x1f | |
1426 | || ((inst >> 26) == 0x1f | |
1427 | && ((inst >> 6) == 0xa))) | |
abc485a1 | 1428 | return hppa_extract_5R_store (inst); |
7be570e7 JM |
1429 | |
1430 | /* Does it look like a std? */ | |
1431 | if ((inst >> 26) == 0x1c | |
1432 | || ((inst >> 26) == 0x03 | |
1433 | && ((inst >> 6) & 0xf) == 0xb)) | |
abc485a1 | 1434 | return hppa_extract_5R_store (inst); |
c906108c SS |
1435 | |
1436 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
1437 | if ((inst >> 26) == 0x1b) | |
abc485a1 | 1438 | return hppa_extract_5R_store (inst); |
c906108c SS |
1439 | |
1440 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
1441 | too. */ | |
7be570e7 JM |
1442 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
1443 | || ((inst >> 26) == 0x3 | |
1444 | && (((inst >> 6) & 0xf) == 0x8 | |
1445 | || (inst >> 6) & 0xf) == 0x9)) | |
abc485a1 | 1446 | return hppa_extract_5R_store (inst); |
c5aa993b | 1447 | |
c906108c SS |
1448 | return 0; |
1449 | } | |
1450 | ||
1451 | /* Return the register number for a FR which is saved by INST or | |
1452 | zero it INST does not save a FR. | |
1453 | ||
1454 | Note we only care about full 64bit register stores (that's the only | |
1455 | kind of stores the prologue will use). | |
1456 | ||
1457 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
1458 | ||
1459 | static int | |
fba45db2 | 1460 | inst_saves_fr (unsigned long inst) |
c906108c | 1461 | { |
7be570e7 | 1462 | /* is this an FSTD ? */ |
c906108c | 1463 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
abc485a1 | 1464 | return hppa_extract_5r_store (inst); |
7be570e7 | 1465 | if ((inst & 0xfc000002) == 0x70000002) |
abc485a1 | 1466 | return hppa_extract_5R_store (inst); |
7be570e7 | 1467 | /* is this an FSTW ? */ |
c906108c | 1468 | if ((inst & 0xfc00df80) == 0x24001200) |
abc485a1 | 1469 | return hppa_extract_5r_store (inst); |
7be570e7 | 1470 | if ((inst & 0xfc000002) == 0x7c000000) |
abc485a1 | 1471 | return hppa_extract_5R_store (inst); |
c906108c SS |
1472 | return 0; |
1473 | } | |
1474 | ||
1475 | /* Advance PC across any function entry prologue instructions | |
1476 | to reach some "real" code. | |
1477 | ||
1478 | Use information in the unwind table to determine what exactly should | |
1479 | be in the prologue. */ | |
1480 | ||
1481 | ||
a71f8c30 | 1482 | static CORE_ADDR |
be8626e0 MD |
1483 | skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc, |
1484 | int stop_before_branch) | |
c906108c | 1485 | { |
e17a4113 | 1486 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
c906108c SS |
1487 | char buf[4]; |
1488 | CORE_ADDR orig_pc = pc; | |
1489 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
1490 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
1491 | struct unwind_table_entry *u; | |
a71f8c30 | 1492 | int final_iteration; |
c906108c SS |
1493 | |
1494 | restart_gr = 0; | |
1495 | restart_fr = 0; | |
1496 | ||
1497 | restart: | |
1498 | u = find_unwind_entry (pc); | |
1499 | if (!u) | |
1500 | return pc; | |
1501 | ||
c5aa993b | 1502 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
1503 | if ((pc & ~0x3) != u->region_start) |
1504 | return pc; | |
1505 | ||
1506 | /* This is how much of a frame adjustment we need to account for. */ | |
1507 | stack_remaining = u->Total_frame_size << 3; | |
1508 | ||
1509 | /* Magic register saves we want to know about. */ | |
1510 | save_rp = u->Save_RP; | |
1511 | save_sp = u->Save_SP; | |
1512 | ||
1513 | /* An indication that args may be stored into the stack. Unfortunately | |
1514 | the HPUX compilers tend to set this in cases where no args were | |
1515 | stored too!. */ | |
1516 | args_stored = 1; | |
1517 | ||
1518 | /* Turn the Entry_GR field into a bitmask. */ | |
1519 | save_gr = 0; | |
1520 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1521 | { | |
1522 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1523 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
c906108c SS |
1524 | continue; |
1525 | ||
1526 | save_gr |= (1 << i); | |
1527 | } | |
1528 | save_gr &= ~restart_gr; | |
1529 | ||
1530 | /* Turn the Entry_FR field into a bitmask too. */ | |
1531 | save_fr = 0; | |
1532 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1533 | save_fr |= (1 << i); | |
1534 | save_fr &= ~restart_fr; | |
1535 | ||
a71f8c30 RC |
1536 | final_iteration = 0; |
1537 | ||
c906108c SS |
1538 | /* Loop until we find everything of interest or hit a branch. |
1539 | ||
1540 | For unoptimized GCC code and for any HP CC code this will never ever | |
1541 | examine any user instructions. | |
1542 | ||
1543 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1544 | its prologue and make prologue instructions available for delay slot | |
1545 | filling. The end result is user code gets mixed in with the prologue | |
1546 | and a prologue instruction may be in the delay slot of the first branch | |
1547 | or call. | |
1548 | ||
1549 | Some unexpected things are expected with debugging optimized code, so | |
1550 | we allow this routine to walk past user instructions in optimized | |
1551 | GCC code. */ | |
1552 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
1553 | || args_stored) | |
1554 | { | |
1555 | unsigned int reg_num; | |
1556 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
1557 | unsigned long old_save_rp, old_save_sp, next_inst; | |
1558 | ||
1559 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 1560 | (only for HPC). */ |
c906108c SS |
1561 | old_save_gr = save_gr; |
1562 | old_save_fr = save_fr; | |
1563 | old_save_rp = save_rp; | |
1564 | old_save_sp = save_sp; | |
1565 | old_stack_remaining = stack_remaining; | |
1566 | ||
8defab1a | 1567 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1568 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c5aa993b | 1569 | |
c906108c SS |
1570 | /* Yow! */ |
1571 | if (status != 0) | |
1572 | return pc; | |
1573 | ||
1574 | /* Note the interesting effects of this instruction. */ | |
1575 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1576 | ||
7be570e7 JM |
1577 | /* There are limited ways to store the return pointer into the |
1578 | stack. */ | |
c4c79048 | 1579 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1) |
c906108c SS |
1580 | save_rp = 0; |
1581 | ||
104c1213 | 1582 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 1583 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
1584 | if ((inst & 0xffffc000) == 0x6fc10000 |
1585 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
1586 | save_sp = 0; |
1587 | ||
6426a772 JM |
1588 | /* Are we loading some register with an offset from the argument |
1589 | pointer? */ | |
1590 | if ((inst & 0xffe00000) == 0x37a00000 | |
1591 | || (inst & 0xffffffe0) == 0x081d0240) | |
1592 | { | |
1593 | pc += 4; | |
1594 | continue; | |
1595 | } | |
1596 | ||
c906108c SS |
1597 | /* Account for general and floating-point register saves. */ |
1598 | reg_num = inst_saves_gr (inst); | |
1599 | save_gr &= ~(1 << reg_num); | |
1600 | ||
1601 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1602 | Unfortunately args_stored only tells us that some arguments |
1603 | where stored into the stack. Not how many or what kind! | |
c906108c | 1604 | |
c5aa993b JM |
1605 | This is a kludge as on the HP compiler sets this bit and it |
1606 | never does prologue scheduling. So once we see one, skip past | |
1607 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 1608 | |
c5aa993b JM |
1609 | FIXME. Can still die if we have a mix of GR and FR argument |
1610 | stores! */ | |
be8626e0 | 1611 | if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1612 | && reg_num <= 26) |
c906108c | 1613 | { |
be8626e0 | 1614 | while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1615 | && reg_num <= 26) |
c906108c SS |
1616 | { |
1617 | pc += 4; | |
8defab1a | 1618 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1619 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1620 | if (status != 0) |
1621 | return pc; | |
1622 | reg_num = inst_saves_gr (inst); | |
1623 | } | |
1624 | args_stored = 0; | |
1625 | continue; | |
1626 | } | |
1627 | ||
1628 | reg_num = inst_saves_fr (inst); | |
1629 | save_fr &= ~(1 << reg_num); | |
1630 | ||
8defab1a | 1631 | status = target_read_memory (pc + 4, buf, 4); |
e17a4113 | 1632 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
c5aa993b | 1633 | |
c906108c SS |
1634 | /* Yow! */ |
1635 | if (status != 0) | |
1636 | return pc; | |
1637 | ||
1638 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 1639 | save. */ |
c906108c SS |
1640 | if ((inst & 0xfc000000) == 0x34000000 |
1641 | && inst_saves_fr (next_inst) >= 4 | |
819844ad | 1642 | && inst_saves_fr (next_inst) |
be8626e0 | 1643 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1644 | { |
1645 | /* So we drop into the code below in a reasonable state. */ | |
1646 | reg_num = inst_saves_fr (next_inst); | |
1647 | pc -= 4; | |
1648 | } | |
1649 | ||
1650 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1651 | This is a kludge as on the HP compiler sets this bit and it |
1652 | never does prologue scheduling. So once we see one, skip past | |
1653 | all of them. */ | |
819844ad | 1654 | if (reg_num >= 4 |
be8626e0 | 1655 | && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c | 1656 | { |
819844ad UW |
1657 | while (reg_num >= 4 |
1658 | && reg_num | |
be8626e0 | 1659 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1660 | { |
1661 | pc += 8; | |
8defab1a | 1662 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1663 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1664 | if (status != 0) |
1665 | return pc; | |
1666 | if ((inst & 0xfc000000) != 0x34000000) | |
1667 | break; | |
8defab1a | 1668 | status = target_read_memory (pc + 4, buf, 4); |
e17a4113 | 1669 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1670 | if (status != 0) |
1671 | return pc; | |
1672 | reg_num = inst_saves_fr (next_inst); | |
1673 | } | |
1674 | args_stored = 0; | |
1675 | continue; | |
1676 | } | |
1677 | ||
1678 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 1679 | instruction is in the delay slot of the first call/branch. */ |
a71f8c30 | 1680 | if (is_branch (inst) && stop_before_branch) |
c906108c SS |
1681 | break; |
1682 | ||
1683 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
1684 | arguments were stored into the stack (boo hiss). This could |
1685 | cause this code to then skip a bunch of user insns (up to the | |
1686 | first branch). | |
1687 | ||
1688 | To combat this we try to identify when args_stored was bogusly | |
1689 | set and clear it. We only do this when args_stored is nonzero, | |
1690 | all other resources are accounted for, and nothing changed on | |
1691 | this pass. */ | |
c906108c | 1692 | if (args_stored |
c5aa993b | 1693 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
1694 | && old_save_gr == save_gr && old_save_fr == save_fr |
1695 | && old_save_rp == save_rp && old_save_sp == save_sp | |
1696 | && old_stack_remaining == stack_remaining) | |
1697 | break; | |
c5aa993b | 1698 | |
c906108c SS |
1699 | /* Bump the PC. */ |
1700 | pc += 4; | |
a71f8c30 RC |
1701 | |
1702 | /* !stop_before_branch, so also look at the insn in the delay slot | |
1703 | of the branch. */ | |
1704 | if (final_iteration) | |
1705 | break; | |
1706 | if (is_branch (inst)) | |
1707 | final_iteration = 1; | |
c906108c SS |
1708 | } |
1709 | ||
1710 | /* We've got a tenative location for the end of the prologue. However | |
1711 | because of limitations in the unwind descriptor mechanism we may | |
1712 | have went too far into user code looking for the save of a register | |
1713 | that does not exist. So, if there registers we expected to be saved | |
1714 | but never were, mask them out and restart. | |
1715 | ||
1716 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 1717 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
1718 | { |
1719 | pc = orig_pc; | |
1720 | restart_gr = save_gr; | |
1721 | restart_fr = save_fr; | |
1722 | goto restart; | |
1723 | } | |
1724 | ||
1725 | return pc; | |
1726 | } | |
1727 | ||
1728 | ||
7be570e7 JM |
1729 | /* Return the address of the PC after the last prologue instruction if |
1730 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
1731 | |
1732 | static CORE_ADDR | |
fba45db2 | 1733 | after_prologue (CORE_ADDR pc) |
c906108c SS |
1734 | { |
1735 | struct symtab_and_line sal; | |
1736 | CORE_ADDR func_addr, func_end; | |
1737 | struct symbol *f; | |
1738 | ||
7be570e7 JM |
1739 | /* If we can not find the symbol in the partial symbol table, then |
1740 | there is no hope we can determine the function's start address | |
1741 | with this code. */ | |
c906108c | 1742 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 1743 | return 0; |
c906108c | 1744 | |
7be570e7 | 1745 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
1746 | sal = find_pc_line (func_addr, 0); |
1747 | ||
7be570e7 JM |
1748 | /* There are only two cases to consider. First, the end of the source line |
1749 | is within the function bounds. In that case we return the end of the | |
1750 | source line. Second is the end of the source line extends beyond the | |
1751 | bounds of the current function. We need to use the slow code to | |
1752 | examine instructions in that case. | |
c906108c | 1753 | |
7be570e7 JM |
1754 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
1755 | the wrong thing to do. In fact, it should be entirely possible for this | |
1756 | function to always return zero since the slow instruction scanning code | |
1757 | is supposed to *always* work. If it does not, then it is a bug. */ | |
1758 | if (sal.end < func_end) | |
1759 | return sal.end; | |
c5aa993b | 1760 | else |
7be570e7 | 1761 | return 0; |
c906108c SS |
1762 | } |
1763 | ||
1764 | /* To skip prologues, I use this predicate. Returns either PC itself | |
1765 | if the code at PC does not look like a function prologue; otherwise | |
a71f8c30 RC |
1766 | returns an address that (if we're lucky) follows the prologue. |
1767 | ||
1768 | hppa_skip_prologue is called by gdb to place a breakpoint in a function. | |
1769 | It doesn't necessarily skips all the insns in the prologue. In fact | |
1770 | we might not want to skip all the insns because a prologue insn may | |
1771 | appear in the delay slot of the first branch, and we don't want to | |
1772 | skip over the branch in that case. */ | |
c906108c | 1773 | |
8d153463 | 1774 | static CORE_ADDR |
6093d2eb | 1775 | hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1776 | { |
c5aa993b JM |
1777 | unsigned long inst; |
1778 | int offset; | |
1779 | CORE_ADDR post_prologue_pc; | |
1780 | char buf[4]; | |
c906108c | 1781 | |
c5aa993b JM |
1782 | /* See if we can determine the end of the prologue via the symbol table. |
1783 | If so, then return either PC, or the PC after the prologue, whichever | |
1784 | is greater. */ | |
c906108c | 1785 | |
c5aa993b | 1786 | post_prologue_pc = after_prologue (pc); |
c906108c | 1787 | |
7be570e7 JM |
1788 | /* If after_prologue returned a useful address, then use it. Else |
1789 | fall back on the instruction skipping code. | |
1790 | ||
1791 | Some folks have claimed this causes problems because the breakpoint | |
1792 | may be the first instruction of the prologue. If that happens, then | |
1793 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
1794 | if (post_prologue_pc != 0) |
1795 | return max (pc, post_prologue_pc); | |
c5aa993b | 1796 | else |
be8626e0 | 1797 | return (skip_prologue_hard_way (gdbarch, pc, 1)); |
c906108c SS |
1798 | } |
1799 | ||
29d375ac | 1800 | /* Return an unwind entry that falls within the frame's code block. */ |
227e86ad | 1801 | |
29d375ac | 1802 | static struct unwind_table_entry * |
227e86ad | 1803 | hppa_find_unwind_entry_in_block (struct frame_info *this_frame) |
29d375ac | 1804 | { |
227e86ad | 1805 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
93d42b30 DJ |
1806 | |
1807 | /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the | |
ad1193e7 | 1808 | result of get_frame_address_in_block implies a problem. |
93d42b30 | 1809 | The bits should have been removed earlier, before the return |
c7ce8faa | 1810 | value of gdbarch_unwind_pc. That might be happening already; |
93d42b30 DJ |
1811 | if it isn't, it should be fixed. Then this call can be |
1812 | removed. */ | |
227e86ad | 1813 | pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc); |
29d375ac RC |
1814 | return find_unwind_entry (pc); |
1815 | } | |
1816 | ||
26d08f08 AC |
1817 | struct hppa_frame_cache |
1818 | { | |
1819 | CORE_ADDR base; | |
1820 | struct trad_frame_saved_reg *saved_regs; | |
1821 | }; | |
1822 | ||
1823 | static struct hppa_frame_cache * | |
227e86ad | 1824 | hppa_frame_cache (struct frame_info *this_frame, void **this_cache) |
26d08f08 | 1825 | { |
227e86ad | 1826 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
e17a4113 UW |
1827 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1828 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
26d08f08 AC |
1829 | struct hppa_frame_cache *cache; |
1830 | long saved_gr_mask; | |
1831 | long saved_fr_mask; | |
1832 | CORE_ADDR this_sp; | |
1833 | long frame_size; | |
1834 | struct unwind_table_entry *u; | |
9f7194c3 | 1835 | CORE_ADDR prologue_end; |
50b2f48a | 1836 | int fp_in_r1 = 0; |
26d08f08 AC |
1837 | int i; |
1838 | ||
369aa520 RC |
1839 | if (hppa_debug) |
1840 | fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", | |
227e86ad | 1841 | frame_relative_level(this_frame)); |
369aa520 | 1842 | |
26d08f08 | 1843 | if ((*this_cache) != NULL) |
369aa520 RC |
1844 | { |
1845 | if (hppa_debug) | |
5af949e3 UW |
1846 | fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }", |
1847 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); | |
369aa520 RC |
1848 | return (*this_cache); |
1849 | } | |
26d08f08 AC |
1850 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
1851 | (*this_cache) = cache; | |
227e86ad | 1852 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
26d08f08 AC |
1853 | |
1854 | /* Yow! */ | |
227e86ad | 1855 | u = hppa_find_unwind_entry_in_block (this_frame); |
26d08f08 | 1856 | if (!u) |
369aa520 RC |
1857 | { |
1858 | if (hppa_debug) | |
1859 | fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); | |
1860 | return (*this_cache); | |
1861 | } | |
26d08f08 AC |
1862 | |
1863 | /* Turn the Entry_GR field into a bitmask. */ | |
1864 | saved_gr_mask = 0; | |
1865 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1866 | { | |
1867 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1868 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
26d08f08 AC |
1869 | continue; |
1870 | ||
1871 | saved_gr_mask |= (1 << i); | |
1872 | } | |
1873 | ||
1874 | /* Turn the Entry_FR field into a bitmask too. */ | |
1875 | saved_fr_mask = 0; | |
1876 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1877 | saved_fr_mask |= (1 << i); | |
1878 | ||
1879 | /* Loop until we find everything of interest or hit a branch. | |
1880 | ||
1881 | For unoptimized GCC code and for any HP CC code this will never ever | |
1882 | examine any user instructions. | |
1883 | ||
1884 | For optimized GCC code we're faced with problems. GCC will schedule | |
1885 | its prologue and make prologue instructions available for delay slot | |
1886 | filling. The end result is user code gets mixed in with the prologue | |
1887 | and a prologue instruction may be in the delay slot of the first branch | |
1888 | or call. | |
1889 | ||
1890 | Some unexpected things are expected with debugging optimized code, so | |
1891 | we allow this routine to walk past user instructions in optimized | |
1892 | GCC code. */ | |
1893 | { | |
1894 | int final_iteration = 0; | |
46acf081 | 1895 | CORE_ADDR pc, start_pc, end_pc; |
26d08f08 AC |
1896 | int looking_for_sp = u->Save_SP; |
1897 | int looking_for_rp = u->Save_RP; | |
1898 | int fp_loc = -1; | |
9f7194c3 | 1899 | |
a71f8c30 | 1900 | /* We have to use skip_prologue_hard_way instead of just |
9f7194c3 RC |
1901 | skip_prologue_using_sal, in case we stepped into a function without |
1902 | symbol information. hppa_skip_prologue also bounds the returned | |
1903 | pc by the passed in pc, so it will not return a pc in the next | |
a71f8c30 RC |
1904 | function. |
1905 | ||
1906 | We used to call hppa_skip_prologue to find the end of the prologue, | |
1907 | but if some non-prologue instructions get scheduled into the prologue, | |
1908 | and the program is compiled with debug information, the "easy" way | |
1909 | in hppa_skip_prologue will return a prologue end that is too early | |
1910 | for us to notice any potential frame adjustments. */ | |
d5c27f81 | 1911 | |
ef02daa9 DJ |
1912 | /* We used to use get_frame_func to locate the beginning of the |
1913 | function to pass to skip_prologue. However, when objects are | |
1914 | compiled without debug symbols, get_frame_func can return the wrong | |
46acf081 RC |
1915 | function (or 0). We can do better than that by using unwind records. |
1916 | This only works if the Region_description of the unwind record | |
1917 | indicates that it includes the entry point of the function. | |
1918 | HP compilers sometimes generate unwind records for regions that | |
1919 | do not include the entry or exit point of a function. GNU tools | |
1920 | do not do this. */ | |
1921 | ||
1922 | if ((u->Region_description & 0x2) == 0) | |
1923 | start_pc = u->region_start; | |
1924 | else | |
227e86ad | 1925 | start_pc = get_frame_func (this_frame); |
d5c27f81 | 1926 | |
be8626e0 | 1927 | prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0); |
227e86ad | 1928 | end_pc = get_frame_pc (this_frame); |
9f7194c3 RC |
1929 | |
1930 | if (prologue_end != 0 && end_pc > prologue_end) | |
1931 | end_pc = prologue_end; | |
1932 | ||
26d08f08 | 1933 | frame_size = 0; |
9f7194c3 | 1934 | |
46acf081 | 1935 | for (pc = start_pc; |
26d08f08 AC |
1936 | ((saved_gr_mask || saved_fr_mask |
1937 | || looking_for_sp || looking_for_rp | |
1938 | || frame_size < (u->Total_frame_size << 3)) | |
9f7194c3 | 1939 | && pc < end_pc); |
26d08f08 AC |
1940 | pc += 4) |
1941 | { | |
1942 | int reg; | |
1943 | char buf4[4]; | |
4a302917 RC |
1944 | long inst; |
1945 | ||
227e86ad | 1946 | if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4)) |
4a302917 | 1947 | { |
5af949e3 UW |
1948 | error (_("Cannot read instruction at %s."), |
1949 | paddress (gdbarch, pc)); | |
4a302917 RC |
1950 | return (*this_cache); |
1951 | } | |
1952 | ||
e17a4113 | 1953 | inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order); |
9f7194c3 | 1954 | |
26d08f08 AC |
1955 | /* Note the interesting effects of this instruction. */ |
1956 | frame_size += prologue_inst_adjust_sp (inst); | |
1957 | ||
1958 | /* There are limited ways to store the return pointer into the | |
1959 | stack. */ | |
1960 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
1961 | { | |
1962 | looking_for_rp = 0; | |
34f75cc1 | 1963 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; |
26d08f08 | 1964 | } |
dfaf8edb MK |
1965 | else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ |
1966 | { | |
1967 | looking_for_rp = 0; | |
1968 | cache->saved_regs[HPPA_RP_REGNUM].addr = -24; | |
1969 | } | |
c4c79048 RC |
1970 | else if (inst == 0x0fc212c1 |
1971 | || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
26d08f08 AC |
1972 | { |
1973 | looking_for_rp = 0; | |
34f75cc1 | 1974 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; |
26d08f08 AC |
1975 | } |
1976 | ||
1977 | /* Check to see if we saved SP into the stack. This also | |
1978 | happens to indicate the location of the saved frame | |
1979 | pointer. */ | |
1980 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
1981 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
1982 | { | |
1983 | looking_for_sp = 0; | |
eded0a31 | 1984 | cache->saved_regs[HPPA_FP_REGNUM].addr = 0; |
26d08f08 | 1985 | } |
50b2f48a RC |
1986 | else if (inst == 0x08030241) /* copy %r3, %r1 */ |
1987 | { | |
1988 | fp_in_r1 = 1; | |
1989 | } | |
26d08f08 AC |
1990 | |
1991 | /* Account for general and floating-point register saves. */ | |
1992 | reg = inst_saves_gr (inst); | |
1993 | if (reg >= 3 && reg <= 18 | |
eded0a31 | 1994 | && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
26d08f08 AC |
1995 | { |
1996 | saved_gr_mask &= ~(1 << reg); | |
abc485a1 | 1997 | if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) |
26d08f08 AC |
1998 | /* stwm with a positive displacement is a _post_ |
1999 | _modify_. */ | |
2000 | cache->saved_regs[reg].addr = 0; | |
2001 | else if ((inst & 0xfc00000c) == 0x70000008) | |
2002 | /* A std has explicit post_modify forms. */ | |
2003 | cache->saved_regs[reg].addr = 0; | |
2004 | else | |
2005 | { | |
2006 | CORE_ADDR offset; | |
2007 | ||
2008 | if ((inst >> 26) == 0x1c) | |
2009 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); | |
2010 | else if ((inst >> 26) == 0x03) | |
abc485a1 | 2011 | offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); |
26d08f08 | 2012 | else |
abc485a1 | 2013 | offset = hppa_extract_14 (inst); |
26d08f08 AC |
2014 | |
2015 | /* Handle code with and without frame pointers. */ | |
2016 | if (u->Save_SP) | |
2017 | cache->saved_regs[reg].addr = offset; | |
2018 | else | |
2019 | cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset; | |
2020 | } | |
2021 | } | |
2022 | ||
2023 | /* GCC handles callee saved FP regs a little differently. | |
2024 | ||
2025 | It emits an instruction to put the value of the start of | |
2026 | the FP store area into %r1. It then uses fstds,ma with a | |
2027 | basereg of %r1 for the stores. | |
2028 | ||
2029 | HP CC emits them at the current stack pointer modifying the | |
2030 | stack pointer as it stores each register. */ | |
2031 | ||
2032 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2033 | if ((inst & 0xffffc000) == 0x34610000 | |
2034 | || (inst & 0xffffc000) == 0x37c10000) | |
abc485a1 | 2035 | fp_loc = hppa_extract_14 (inst); |
26d08f08 AC |
2036 | |
2037 | reg = inst_saves_fr (inst); | |
2038 | if (reg >= 12 && reg <= 21) | |
2039 | { | |
2040 | /* Note +4 braindamage below is necessary because the FP | |
2041 | status registers are internally 8 registers rather than | |
2042 | the expected 4 registers. */ | |
2043 | saved_fr_mask &= ~(1 << reg); | |
2044 | if (fp_loc == -1) | |
2045 | { | |
2046 | /* 1st HP CC FP register store. After this | |
2047 | instruction we've set enough state that the GCC and | |
2048 | HPCC code are both handled in the same manner. */ | |
34f75cc1 | 2049 | cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0; |
26d08f08 AC |
2050 | fp_loc = 8; |
2051 | } | |
2052 | else | |
2053 | { | |
eded0a31 | 2054 | cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; |
26d08f08 AC |
2055 | fp_loc += 8; |
2056 | } | |
2057 | } | |
2058 | ||
2059 | /* Quit if we hit any kind of branch the previous iteration. */ | |
2060 | if (final_iteration) | |
2061 | break; | |
2062 | /* We want to look precisely one instruction beyond the branch | |
2063 | if we have not found everything yet. */ | |
2064 | if (is_branch (inst)) | |
2065 | final_iteration = 1; | |
2066 | } | |
2067 | } | |
2068 | ||
2069 | { | |
2070 | /* The frame base always represents the value of %sp at entry to | |
2071 | the current function (and is thus equivalent to the "saved" | |
2072 | stack pointer. */ | |
227e86ad JB |
2073 | CORE_ADDR this_sp = get_frame_register_unsigned (this_frame, |
2074 | HPPA_SP_REGNUM); | |
ed70ba00 | 2075 | CORE_ADDR fp; |
9f7194c3 RC |
2076 | |
2077 | if (hppa_debug) | |
5af949e3 UW |
2078 | fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, " |
2079 | "prologue_end=%s) ", | |
2080 | paddress (gdbarch, this_sp), | |
2081 | paddress (gdbarch, get_frame_pc (this_frame)), | |
2082 | paddress (gdbarch, prologue_end)); | |
9f7194c3 | 2083 | |
ed70ba00 RC |
2084 | /* Check to see if a frame pointer is available, and use it for |
2085 | frame unwinding if it is. | |
2086 | ||
2087 | There are some situations where we need to rely on the frame | |
2088 | pointer to do stack unwinding. For example, if a function calls | |
2089 | alloca (), the stack pointer can get adjusted inside the body of | |
2090 | the function. In this case, the ABI requires that the compiler | |
2091 | maintain a frame pointer for the function. | |
2092 | ||
2093 | The unwind record has a flag (alloca_frame) that indicates that | |
2094 | a function has a variable frame; unfortunately, gcc/binutils | |
2095 | does not set this flag. Instead, whenever a frame pointer is used | |
2096 | and saved on the stack, the Save_SP flag is set. We use this to | |
2097 | decide whether to use the frame pointer for unwinding. | |
2098 | ||
ed70ba00 RC |
2099 | TODO: For the HP compiler, maybe we should use the alloca_frame flag |
2100 | instead of Save_SP. */ | |
2101 | ||
227e86ad | 2102 | fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM); |
46acf081 | 2103 | |
6fcecea0 | 2104 | if (u->alloca_frame) |
46acf081 | 2105 | fp -= u->Total_frame_size << 3; |
ed70ba00 | 2106 | |
227e86ad | 2107 | if (get_frame_pc (this_frame) >= prologue_end |
6fcecea0 | 2108 | && (u->Save_SP || u->alloca_frame) && fp != 0) |
ed70ba00 RC |
2109 | { |
2110 | cache->base = fp; | |
2111 | ||
2112 | if (hppa_debug) | |
5af949e3 UW |
2113 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]", |
2114 | paddress (gdbarch, cache->base)); | |
ed70ba00 | 2115 | } |
1658da49 RC |
2116 | else if (u->Save_SP |
2117 | && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) | |
9f7194c3 | 2118 | { |
9f7194c3 RC |
2119 | /* Both we're expecting the SP to be saved and the SP has been |
2120 | saved. The entry SP value is saved at this frame's SP | |
2121 | address. */ | |
e17a4113 | 2122 | cache->base = read_memory_integer (this_sp, word_size, byte_order); |
9f7194c3 RC |
2123 | |
2124 | if (hppa_debug) | |
5af949e3 UW |
2125 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]", |
2126 | paddress (gdbarch, cache->base)); | |
9f7194c3 | 2127 | } |
26d08f08 | 2128 | else |
9f7194c3 | 2129 | { |
1658da49 RC |
2130 | /* The prologue has been slowly allocating stack space. Adjust |
2131 | the SP back. */ | |
2132 | cache->base = this_sp - frame_size; | |
9f7194c3 | 2133 | if (hppa_debug) |
5af949e3 UW |
2134 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]", |
2135 | paddress (gdbarch, cache->base)); | |
9f7194c3 RC |
2136 | |
2137 | } | |
eded0a31 | 2138 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
26d08f08 AC |
2139 | } |
2140 | ||
412275d5 AC |
2141 | /* The PC is found in the "return register", "Millicode" uses "r31" |
2142 | as the return register while normal code uses "rp". */ | |
26d08f08 | 2143 | if (u->Millicode) |
9f7194c3 | 2144 | { |
5859efe5 | 2145 | if (trad_frame_addr_p (cache->saved_regs, 31)) |
9ed5ba24 RC |
2146 | { |
2147 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; | |
2148 | if (hppa_debug) | |
2149 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } "); | |
2150 | } | |
9f7194c3 RC |
2151 | else |
2152 | { | |
227e86ad | 2153 | ULONGEST r31 = get_frame_register_unsigned (this_frame, 31); |
34f75cc1 | 2154 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31); |
9ed5ba24 RC |
2155 | if (hppa_debug) |
2156 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } "); | |
9f7194c3 RC |
2157 | } |
2158 | } | |
26d08f08 | 2159 | else |
9f7194c3 | 2160 | { |
34f75cc1 | 2161 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) |
9ed5ba24 RC |
2162 | { |
2163 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = | |
2164 | cache->saved_regs[HPPA_RP_REGNUM]; | |
2165 | if (hppa_debug) | |
2166 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } "); | |
2167 | } | |
9f7194c3 RC |
2168 | else |
2169 | { | |
227e86ad JB |
2170 | ULONGEST rp = get_frame_register_unsigned (this_frame, |
2171 | HPPA_RP_REGNUM); | |
34f75cc1 | 2172 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
9ed5ba24 RC |
2173 | if (hppa_debug) |
2174 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } "); | |
9f7194c3 RC |
2175 | } |
2176 | } | |
26d08f08 | 2177 | |
50b2f48a RC |
2178 | /* If Save_SP is set, then we expect the frame pointer to be saved in the |
2179 | frame. However, there is a one-insn window where we haven't saved it | |
2180 | yet, but we've already clobbered it. Detect this case and fix it up. | |
2181 | ||
2182 | The prologue sequence for frame-pointer functions is: | |
2183 | 0: stw %rp, -20(%sp) | |
2184 | 4: copy %r3, %r1 | |
2185 | 8: copy %sp, %r3 | |
2186 | c: stw,ma %r1, XX(%sp) | |
2187 | ||
2188 | So if we are at offset c, the r3 value that we want is not yet saved | |
2189 | on the stack, but it's been overwritten. The prologue analyzer will | |
2190 | set fp_in_r1 when it sees the copy insn so we know to get the value | |
2191 | from r1 instead. */ | |
2192 | if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM) | |
2193 | && fp_in_r1) | |
2194 | { | |
227e86ad | 2195 | ULONGEST r1 = get_frame_register_unsigned (this_frame, 1); |
50b2f48a RC |
2196 | trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1); |
2197 | } | |
1658da49 | 2198 | |
26d08f08 AC |
2199 | { |
2200 | /* Convert all the offsets into addresses. */ | |
2201 | int reg; | |
65c5db89 | 2202 | for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++) |
26d08f08 AC |
2203 | { |
2204 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
2205 | cache->saved_regs[reg].addr += cache->base; | |
2206 | } | |
2207 | } | |
2208 | ||
f77a2124 | 2209 | { |
f77a2124 RC |
2210 | struct gdbarch_tdep *tdep; |
2211 | ||
f77a2124 RC |
2212 | tdep = gdbarch_tdep (gdbarch); |
2213 | ||
2214 | if (tdep->unwind_adjust_stub) | |
227e86ad | 2215 | tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs); |
f77a2124 RC |
2216 | } |
2217 | ||
369aa520 | 2218 | if (hppa_debug) |
5af949e3 UW |
2219 | fprintf_unfiltered (gdb_stdlog, "base=%s }", |
2220 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); | |
26d08f08 AC |
2221 | return (*this_cache); |
2222 | } | |
2223 | ||
2224 | static void | |
227e86ad JB |
2225 | hppa_frame_this_id (struct frame_info *this_frame, void **this_cache, |
2226 | struct frame_id *this_id) | |
26d08f08 | 2227 | { |
d5c27f81 | 2228 | struct hppa_frame_cache *info; |
227e86ad | 2229 | CORE_ADDR pc = get_frame_pc (this_frame); |
d5c27f81 RC |
2230 | struct unwind_table_entry *u; |
2231 | ||
227e86ad JB |
2232 | info = hppa_frame_cache (this_frame, this_cache); |
2233 | u = hppa_find_unwind_entry_in_block (this_frame); | |
d5c27f81 RC |
2234 | |
2235 | (*this_id) = frame_id_build (info->base, u->region_start); | |
26d08f08 AC |
2236 | } |
2237 | ||
227e86ad JB |
2238 | static struct value * |
2239 | hppa_frame_prev_register (struct frame_info *this_frame, | |
2240 | void **this_cache, int regnum) | |
26d08f08 | 2241 | { |
227e86ad JB |
2242 | struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache); |
2243 | ||
2244 | return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum); | |
2245 | } | |
2246 | ||
2247 | static int | |
2248 | hppa_frame_unwind_sniffer (const struct frame_unwind *self, | |
2249 | struct frame_info *this_frame, void **this_cache) | |
2250 | { | |
2251 | if (hppa_find_unwind_entry_in_block (this_frame)) | |
2252 | return 1; | |
2253 | ||
2254 | return 0; | |
0da28f8a RC |
2255 | } |
2256 | ||
2257 | static const struct frame_unwind hppa_frame_unwind = | |
2258 | { | |
2259 | NORMAL_FRAME, | |
2260 | hppa_frame_this_id, | |
227e86ad JB |
2261 | hppa_frame_prev_register, |
2262 | NULL, | |
2263 | hppa_frame_unwind_sniffer | |
0da28f8a RC |
2264 | }; |
2265 | ||
0da28f8a RC |
2266 | /* This is a generic fallback frame unwinder that kicks in if we fail all |
2267 | the other ones. Normally we would expect the stub and regular unwinder | |
2268 | to work, but in some cases we might hit a function that just doesn't | |
2269 | have any unwind information available. In this case we try to do | |
2270 | unwinding solely based on code reading. This is obviously going to be | |
2271 | slow, so only use this as a last resort. Currently this will only | |
2272 | identify the stack and pc for the frame. */ | |
2273 | ||
2274 | static struct hppa_frame_cache * | |
227e86ad | 2275 | hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache) |
0da28f8a | 2276 | { |
e17a4113 UW |
2277 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
2278 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
0da28f8a | 2279 | struct hppa_frame_cache *cache; |
4ba6a975 MK |
2280 | unsigned int frame_size = 0; |
2281 | int found_rp = 0; | |
2282 | CORE_ADDR start_pc; | |
0da28f8a | 2283 | |
d5c27f81 | 2284 | if (hppa_debug) |
4ba6a975 MK |
2285 | fprintf_unfiltered (gdb_stdlog, |
2286 | "{ hppa_fallback_frame_cache (frame=%d) -> ", | |
227e86ad | 2287 | frame_relative_level (this_frame)); |
d5c27f81 | 2288 | |
0da28f8a RC |
2289 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
2290 | (*this_cache) = cache; | |
227e86ad | 2291 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
0da28f8a | 2292 | |
227e86ad | 2293 | start_pc = get_frame_func (this_frame); |
4ba6a975 | 2294 | if (start_pc) |
0da28f8a | 2295 | { |
227e86ad | 2296 | CORE_ADDR cur_pc = get_frame_pc (this_frame); |
4ba6a975 | 2297 | CORE_ADDR pc; |
0da28f8a | 2298 | |
4ba6a975 MK |
2299 | for (pc = start_pc; pc < cur_pc; pc += 4) |
2300 | { | |
2301 | unsigned int insn; | |
0da28f8a | 2302 | |
e17a4113 | 2303 | insn = read_memory_unsigned_integer (pc, 4, byte_order); |
4ba6a975 | 2304 | frame_size += prologue_inst_adjust_sp (insn); |
6d1be3f1 | 2305 | |
4ba6a975 MK |
2306 | /* There are limited ways to store the return pointer into the |
2307 | stack. */ | |
2308 | if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
2309 | { | |
2310 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; | |
2311 | found_rp = 1; | |
2312 | } | |
c4c79048 RC |
2313 | else if (insn == 0x0fc212c1 |
2314 | || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
4ba6a975 MK |
2315 | { |
2316 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; | |
2317 | found_rp = 1; | |
2318 | } | |
2319 | } | |
412275d5 | 2320 | } |
0da28f8a | 2321 | |
d5c27f81 | 2322 | if (hppa_debug) |
4ba6a975 MK |
2323 | fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n", |
2324 | frame_size, found_rp); | |
d5c27f81 | 2325 | |
227e86ad | 2326 | cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
4ba6a975 | 2327 | cache->base -= frame_size; |
6d1be3f1 | 2328 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
0da28f8a RC |
2329 | |
2330 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) | |
2331 | { | |
2332 | cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base; | |
4ba6a975 MK |
2333 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = |
2334 | cache->saved_regs[HPPA_RP_REGNUM]; | |
0da28f8a | 2335 | } |
412275d5 AC |
2336 | else |
2337 | { | |
4ba6a975 | 2338 | ULONGEST rp; |
227e86ad | 2339 | rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM); |
0da28f8a | 2340 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
412275d5 | 2341 | } |
0da28f8a RC |
2342 | |
2343 | return cache; | |
26d08f08 AC |
2344 | } |
2345 | ||
0da28f8a | 2346 | static void |
227e86ad | 2347 | hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache, |
0da28f8a RC |
2348 | struct frame_id *this_id) |
2349 | { | |
2350 | struct hppa_frame_cache *info = | |
227e86ad JB |
2351 | hppa_fallback_frame_cache (this_frame, this_cache); |
2352 | ||
2353 | (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); | |
0da28f8a RC |
2354 | } |
2355 | ||
227e86ad JB |
2356 | static struct value * |
2357 | hppa_fallback_frame_prev_register (struct frame_info *this_frame, | |
2358 | void **this_cache, int regnum) | |
0da28f8a RC |
2359 | { |
2360 | struct hppa_frame_cache *info = | |
227e86ad JB |
2361 | hppa_fallback_frame_cache (this_frame, this_cache); |
2362 | ||
2363 | return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum); | |
0da28f8a RC |
2364 | } |
2365 | ||
2366 | static const struct frame_unwind hppa_fallback_frame_unwind = | |
26d08f08 AC |
2367 | { |
2368 | NORMAL_FRAME, | |
0da28f8a | 2369 | hppa_fallback_frame_this_id, |
227e86ad JB |
2370 | hppa_fallback_frame_prev_register, |
2371 | NULL, | |
2372 | default_frame_sniffer | |
26d08f08 AC |
2373 | }; |
2374 | ||
7f07c5b6 RC |
2375 | /* Stub frames, used for all kinds of call stubs. */ |
2376 | struct hppa_stub_unwind_cache | |
2377 | { | |
2378 | CORE_ADDR base; | |
2379 | struct trad_frame_saved_reg *saved_regs; | |
2380 | }; | |
2381 | ||
2382 | static struct hppa_stub_unwind_cache * | |
227e86ad | 2383 | hppa_stub_frame_unwind_cache (struct frame_info *this_frame, |
7f07c5b6 RC |
2384 | void **this_cache) |
2385 | { | |
227e86ad | 2386 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
7f07c5b6 | 2387 | struct hppa_stub_unwind_cache *info; |
22b0923d | 2388 | struct unwind_table_entry *u; |
7f07c5b6 RC |
2389 | |
2390 | if (*this_cache) | |
2391 | return *this_cache; | |
2392 | ||
2393 | info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); | |
2394 | *this_cache = info; | |
227e86ad | 2395 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
7f07c5b6 | 2396 | |
227e86ad | 2397 | info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
7f07c5b6 | 2398 | |
090ccbb7 | 2399 | if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM) |
22b0923d RC |
2400 | { |
2401 | /* HPUX uses export stubs in function calls; the export stub clobbers | |
2402 | the return value of the caller, and, later restores it from the | |
2403 | stack. */ | |
227e86ad | 2404 | u = find_unwind_entry (get_frame_pc (this_frame)); |
22b0923d RC |
2405 | |
2406 | if (u && u->stub_unwind.stub_type == EXPORT) | |
2407 | { | |
2408 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24; | |
2409 | ||
2410 | return info; | |
2411 | } | |
2412 | } | |
2413 | ||
2414 | /* By default we assume that stubs do not change the rp. */ | |
2415 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM; | |
2416 | ||
7f07c5b6 RC |
2417 | return info; |
2418 | } | |
2419 | ||
2420 | static void | |
227e86ad | 2421 | hppa_stub_frame_this_id (struct frame_info *this_frame, |
7f07c5b6 RC |
2422 | void **this_prologue_cache, |
2423 | struct frame_id *this_id) | |
2424 | { | |
2425 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2426 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 RC |
2427 | |
2428 | if (info) | |
227e86ad | 2429 | *this_id = frame_id_build (info->base, get_frame_func (this_frame)); |
7f07c5b6 RC |
2430 | } |
2431 | ||
227e86ad JB |
2432 | static struct value * |
2433 | hppa_stub_frame_prev_register (struct frame_info *this_frame, | |
2434 | void **this_prologue_cache, int regnum) | |
7f07c5b6 RC |
2435 | { |
2436 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2437 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 | 2438 | |
227e86ad | 2439 | if (info == NULL) |
8a3fe4f8 | 2440 | error (_("Requesting registers from null frame.")); |
7f07c5b6 | 2441 | |
227e86ad JB |
2442 | return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum); |
2443 | } | |
7f07c5b6 | 2444 | |
227e86ad JB |
2445 | static int |
2446 | hppa_stub_unwind_sniffer (const struct frame_unwind *self, | |
2447 | struct frame_info *this_frame, | |
2448 | void **this_cache) | |
7f07c5b6 | 2449 | { |
227e86ad JB |
2450 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
2451 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
84674fe1 | 2452 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7f07c5b6 | 2453 | |
6d1be3f1 | 2454 | if (pc == 0 |
84674fe1 | 2455 | || (tdep->in_solib_call_trampoline != NULL |
e17a4113 | 2456 | && tdep->in_solib_call_trampoline (gdbarch, pc, NULL)) |
464963c9 | 2457 | || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL)) |
227e86ad JB |
2458 | return 1; |
2459 | return 0; | |
7f07c5b6 RC |
2460 | } |
2461 | ||
227e86ad JB |
2462 | static const struct frame_unwind hppa_stub_frame_unwind = { |
2463 | NORMAL_FRAME, | |
2464 | hppa_stub_frame_this_id, | |
2465 | hppa_stub_frame_prev_register, | |
2466 | NULL, | |
2467 | hppa_stub_unwind_sniffer | |
2468 | }; | |
2469 | ||
26d08f08 | 2470 | static struct frame_id |
227e86ad | 2471 | hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
26d08f08 | 2472 | { |
227e86ad JB |
2473 | return frame_id_build (get_frame_register_unsigned (this_frame, |
2474 | HPPA_SP_REGNUM), | |
2475 | get_frame_pc (this_frame)); | |
26d08f08 AC |
2476 | } |
2477 | ||
cc72850f | 2478 | CORE_ADDR |
26d08f08 AC |
2479 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
2480 | { | |
fe46cd3a RC |
2481 | ULONGEST ipsw; |
2482 | CORE_ADDR pc; | |
2483 | ||
cc72850f MK |
2484 | ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); |
2485 | pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); | |
fe46cd3a RC |
2486 | |
2487 | /* If the current instruction is nullified, then we are effectively | |
2488 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
2489 | there. This is needed when single stepping; if the nullified |
2490 | instruction is on a different line, we don't want GDB to think | |
2491 | we've stepped onto that line. */ | |
fe46cd3a RC |
2492 | if (ipsw & 0x00200000) |
2493 | pc -= 4; | |
2494 | ||
cc72850f | 2495 | return pc & ~0x3; |
26d08f08 AC |
2496 | } |
2497 | ||
ff644745 JB |
2498 | /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE. |
2499 | Return NULL if no such symbol was found. */ | |
2500 | ||
2501 | struct minimal_symbol * | |
2502 | hppa_lookup_stub_minimal_symbol (const char *name, | |
2503 | enum unwind_stub_types stub_type) | |
2504 | { | |
2505 | struct objfile *objfile; | |
2506 | struct minimal_symbol *msym; | |
2507 | ||
2508 | ALL_MSYMBOLS (objfile, msym) | |
2509 | { | |
2510 | if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0) | |
2511 | { | |
2512 | struct unwind_table_entry *u; | |
2513 | ||
2514 | u = find_unwind_entry (SYMBOL_VALUE (msym)); | |
2515 | if (u != NULL && u->stub_unwind.stub_type == stub_type) | |
2516 | return msym; | |
2517 | } | |
2518 | } | |
2519 | ||
2520 | return NULL; | |
2521 | } | |
2522 | ||
c906108c | 2523 | static void |
fba45db2 | 2524 | unwind_command (char *exp, int from_tty) |
c906108c SS |
2525 | { |
2526 | CORE_ADDR address; | |
2527 | struct unwind_table_entry *u; | |
2528 | ||
2529 | /* If we have an expression, evaluate it and use it as the address. */ | |
2530 | ||
2531 | if (exp != 0 && *exp != 0) | |
2532 | address = parse_and_eval_address (exp); | |
2533 | else | |
2534 | return; | |
2535 | ||
2536 | u = find_unwind_entry (address); | |
2537 | ||
2538 | if (!u) | |
2539 | { | |
2540 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
2541 | return; | |
2542 | } | |
2543 | ||
99d64d77 | 2544 | printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u); |
c906108c | 2545 | |
5af949e3 | 2546 | printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start)); |
d5c27f81 | 2547 | gdb_flush (gdb_stdout); |
c906108c | 2548 | |
5af949e3 | 2549 | printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end)); |
d5c27f81 | 2550 | gdb_flush (gdb_stdout); |
c906108c | 2551 | |
c906108c | 2552 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
2553 | |
2554 | printf_unfiltered ("\n\tflags ="); | |
2555 | pif (Cannot_unwind); | |
2556 | pif (Millicode); | |
2557 | pif (Millicode_save_sr0); | |
2558 | pif (Entry_SR); | |
2559 | pif (Args_stored); | |
2560 | pif (Variable_Frame); | |
2561 | pif (Separate_Package_Body); | |
2562 | pif (Frame_Extension_Millicode); | |
2563 | pif (Stack_Overflow_Check); | |
2564 | pif (Two_Instruction_SP_Increment); | |
6fcecea0 RC |
2565 | pif (sr4export); |
2566 | pif (cxx_info); | |
2567 | pif (cxx_try_catch); | |
2568 | pif (sched_entry_seq); | |
c906108c SS |
2569 | pif (Save_SP); |
2570 | pif (Save_RP); | |
2571 | pif (Save_MRP_in_frame); | |
6fcecea0 | 2572 | pif (save_r19); |
c906108c SS |
2573 | pif (Cleanup_defined); |
2574 | pif (MPE_XL_interrupt_marker); | |
2575 | pif (HP_UX_interrupt_marker); | |
2576 | pif (Large_frame); | |
6fcecea0 | 2577 | pif (alloca_frame); |
c906108c SS |
2578 | |
2579 | putchar_unfiltered ('\n'); | |
2580 | ||
c906108c | 2581 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
2582 | |
2583 | pin (Region_description); | |
2584 | pin (Entry_FR); | |
2585 | pin (Entry_GR); | |
2586 | pin (Total_frame_size); | |
57dac9e1 RC |
2587 | |
2588 | if (u->stub_unwind.stub_type) | |
2589 | { | |
2590 | printf_unfiltered ("\tstub type = "); | |
2591 | switch (u->stub_unwind.stub_type) | |
2592 | { | |
2593 | case LONG_BRANCH: | |
2594 | printf_unfiltered ("long branch\n"); | |
2595 | break; | |
2596 | case PARAMETER_RELOCATION: | |
2597 | printf_unfiltered ("parameter relocation\n"); | |
2598 | break; | |
2599 | case EXPORT: | |
2600 | printf_unfiltered ("export\n"); | |
2601 | break; | |
2602 | case IMPORT: | |
2603 | printf_unfiltered ("import\n"); | |
2604 | break; | |
2605 | case IMPORT_SHLIB: | |
2606 | printf_unfiltered ("import shlib\n"); | |
2607 | break; | |
2608 | default: | |
2609 | printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type); | |
2610 | } | |
2611 | } | |
c906108c | 2612 | } |
c906108c | 2613 | |
38ca4e0c MK |
2614 | /* Return the GDB type object for the "standard" data type of data in |
2615 | register REGNUM. */ | |
d709c020 | 2616 | |
eded0a31 | 2617 | static struct type * |
38ca4e0c | 2618 | hppa32_register_type (struct gdbarch *gdbarch, int regnum) |
d709c020 | 2619 | { |
38ca4e0c | 2620 | if (regnum < HPPA_FP4_REGNUM) |
df4df182 | 2621 | return builtin_type (gdbarch)->builtin_uint32; |
d709c020 | 2622 | else |
27067745 | 2623 | return builtin_type (gdbarch)->builtin_float; |
d709c020 JB |
2624 | } |
2625 | ||
eded0a31 | 2626 | static struct type * |
38ca4e0c | 2627 | hppa64_register_type (struct gdbarch *gdbarch, int regnum) |
3ff7cf9e | 2628 | { |
38ca4e0c | 2629 | if (regnum < HPPA64_FP4_REGNUM) |
df4df182 | 2630 | return builtin_type (gdbarch)->builtin_uint64; |
3ff7cf9e | 2631 | else |
27067745 | 2632 | return builtin_type (gdbarch)->builtin_double; |
3ff7cf9e JB |
2633 | } |
2634 | ||
38ca4e0c MK |
2635 | /* Return non-zero if REGNUM is not a register available to the user |
2636 | through ptrace/ttrace. */ | |
d709c020 | 2637 | |
8d153463 | 2638 | static int |
64a3914f | 2639 | hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
d709c020 JB |
2640 | { |
2641 | return (regnum == 0 | |
34f75cc1 RC |
2642 | || regnum == HPPA_PCSQ_HEAD_REGNUM |
2643 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2644 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); | |
38ca4e0c | 2645 | } |
d709c020 | 2646 | |
d037d088 | 2647 | static int |
64a3914f | 2648 | hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2649 | { |
2650 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2651 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2652 | return 0; | |
2653 | else | |
64a3914f | 2654 | return hppa32_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2655 | } |
2656 | ||
38ca4e0c | 2657 | static int |
64a3914f | 2658 | hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
38ca4e0c MK |
2659 | { |
2660 | return (regnum == 0 | |
2661 | || regnum == HPPA_PCSQ_HEAD_REGNUM | |
2662 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2663 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); | |
d709c020 JB |
2664 | } |
2665 | ||
d037d088 | 2666 | static int |
64a3914f | 2667 | hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2668 | { |
2669 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2670 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2671 | return 0; | |
2672 | else | |
64a3914f | 2673 | return hppa64_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2674 | } |
2675 | ||
8d153463 | 2676 | static CORE_ADDR |
24568a2c | 2677 | hppa_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR addr) |
d709c020 JB |
2678 | { |
2679 | /* The low two bits of the PC on the PA contain the privilege level. | |
2680 | Some genius implementing a (non-GCC) compiler apparently decided | |
2681 | this means that "addresses" in a text section therefore include a | |
2682 | privilege level, and thus symbol tables should contain these bits. | |
2683 | This seems like a bonehead thing to do--anyway, it seems to work | |
2684 | for our purposes to just ignore those bits. */ | |
2685 | ||
2686 | return (addr &= ~0x3); | |
2687 | } | |
2688 | ||
e127f0db MK |
2689 | /* Get the ARGIth function argument for the current function. */ |
2690 | ||
4a302917 | 2691 | static CORE_ADDR |
143985b7 AF |
2692 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, |
2693 | struct type *type) | |
2694 | { | |
e127f0db | 2695 | return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi); |
143985b7 AF |
2696 | } |
2697 | ||
0f8d9d59 RC |
2698 | static void |
2699 | hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
e127f0db | 2700 | int regnum, gdb_byte *buf) |
0f8d9d59 | 2701 | { |
e17a4113 | 2702 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
0f8d9d59 RC |
2703 | ULONGEST tmp; |
2704 | ||
2705 | regcache_raw_read_unsigned (regcache, regnum, &tmp); | |
34f75cc1 | 2706 | if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) |
0f8d9d59 | 2707 | tmp &= ~0x3; |
e17a4113 | 2708 | store_unsigned_integer (buf, sizeof tmp, byte_order, tmp); |
0f8d9d59 RC |
2709 | } |
2710 | ||
d49771ef | 2711 | static CORE_ADDR |
e38c262f | 2712 | hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function) |
d49771ef RC |
2713 | { |
2714 | return 0; | |
2715 | } | |
2716 | ||
227e86ad JB |
2717 | struct value * |
2718 | hppa_frame_prev_register_helper (struct frame_info *this_frame, | |
0da28f8a | 2719 | struct trad_frame_saved_reg saved_regs[], |
227e86ad | 2720 | int regnum) |
0da28f8a | 2721 | { |
227e86ad | 2722 | struct gdbarch *arch = get_frame_arch (this_frame); |
e17a4113 | 2723 | enum bfd_endian byte_order = gdbarch_byte_order (arch); |
8f4e467c | 2724 | |
8693c419 MK |
2725 | if (regnum == HPPA_PCOQ_TAIL_REGNUM) |
2726 | { | |
227e86ad JB |
2727 | int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); |
2728 | CORE_ADDR pc; | |
2729 | struct value *pcoq_val = | |
2730 | trad_frame_get_prev_register (this_frame, saved_regs, | |
2731 | HPPA_PCOQ_HEAD_REGNUM); | |
8693c419 | 2732 | |
e17a4113 UW |
2733 | pc = extract_unsigned_integer (value_contents_all (pcoq_val), |
2734 | size, byte_order); | |
227e86ad | 2735 | return frame_unwind_got_constant (this_frame, regnum, pc + 4); |
8693c419 | 2736 | } |
0da28f8a | 2737 | |
cc72850f MK |
2738 | /* Make sure the "flags" register is zero in all unwound frames. |
2739 | The "flags" registers is a HP-UX specific wart, and only the code | |
2740 | in hppa-hpux-tdep.c depends on it. However, it is easier to deal | |
2741 | with it here. This shouldn't affect other systems since those | |
2742 | should provide zero for the "flags" register anyway. */ | |
2743 | if (regnum == HPPA_FLAGS_REGNUM) | |
227e86ad | 2744 | return frame_unwind_got_constant (this_frame, regnum, 0); |
cc72850f | 2745 | |
227e86ad | 2746 | return trad_frame_get_prev_register (this_frame, saved_regs, regnum); |
0da28f8a | 2747 | } |
8693c419 | 2748 | \f |
0da28f8a | 2749 | |
34f55018 MK |
2750 | /* An instruction to match. */ |
2751 | struct insn_pattern | |
2752 | { | |
2753 | unsigned int data; /* See if it matches this.... */ | |
2754 | unsigned int mask; /* ... with this mask. */ | |
2755 | }; | |
2756 | ||
2757 | /* See bfd/elf32-hppa.c */ | |
2758 | static struct insn_pattern hppa_long_branch_stub[] = { | |
2759 | /* ldil LR'xxx,%r1 */ | |
2760 | { 0x20200000, 0xffe00000 }, | |
2761 | /* be,n RR'xxx(%sr4,%r1) */ | |
2762 | { 0xe0202002, 0xffe02002 }, | |
2763 | { 0, 0 } | |
2764 | }; | |
2765 | ||
2766 | static struct insn_pattern hppa_long_branch_pic_stub[] = { | |
2767 | /* b,l .+8, %r1 */ | |
2768 | { 0xe8200000, 0xffe00000 }, | |
2769 | /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */ | |
2770 | { 0x28200000, 0xffe00000 }, | |
2771 | /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */ | |
2772 | { 0xe0202002, 0xffe02002 }, | |
2773 | { 0, 0 } | |
2774 | }; | |
2775 | ||
2776 | static struct insn_pattern hppa_import_stub[] = { | |
2777 | /* addil LR'xxx, %dp */ | |
2778 | { 0x2b600000, 0xffe00000 }, | |
2779 | /* ldw RR'xxx(%r1), %r21 */ | |
2780 | { 0x48350000, 0xffffb000 }, | |
2781 | /* bv %r0(%r21) */ | |
2782 | { 0xeaa0c000, 0xffffffff }, | |
2783 | /* ldw RR'xxx+4(%r1), %r19 */ | |
2784 | { 0x48330000, 0xffffb000 }, | |
2785 | { 0, 0 } | |
2786 | }; | |
2787 | ||
2788 | static struct insn_pattern hppa_import_pic_stub[] = { | |
2789 | /* addil LR'xxx,%r19 */ | |
2790 | { 0x2a600000, 0xffe00000 }, | |
2791 | /* ldw RR'xxx(%r1),%r21 */ | |
2792 | { 0x48350000, 0xffffb000 }, | |
2793 | /* bv %r0(%r21) */ | |
2794 | { 0xeaa0c000, 0xffffffff }, | |
2795 | /* ldw RR'xxx+4(%r1),%r19 */ | |
2796 | { 0x48330000, 0xffffb000 }, | |
2797 | { 0, 0 }, | |
2798 | }; | |
2799 | ||
2800 | static struct insn_pattern hppa_plt_stub[] = { | |
2801 | /* b,l 1b, %r20 - 1b is 3 insns before here */ | |
2802 | { 0xea9f1fdd, 0xffffffff }, | |
2803 | /* depi 0,31,2,%r20 */ | |
2804 | { 0xd6801c1e, 0xffffffff }, | |
2805 | { 0, 0 } | |
2806 | }; | |
2807 | ||
2808 | static struct insn_pattern hppa_sigtramp[] = { | |
2809 | /* ldi 0, %r25 or ldi 1, %r25 */ | |
2810 | { 0x34190000, 0xfffffffd }, | |
2811 | /* ldi __NR_rt_sigreturn, %r20 */ | |
2812 | { 0x3414015a, 0xffffffff }, | |
2813 | /* be,l 0x100(%sr2, %r0), %sr0, %r31 */ | |
2814 | { 0xe4008200, 0xffffffff }, | |
2815 | /* nop */ | |
2816 | { 0x08000240, 0xffffffff }, | |
2817 | { 0, 0 } | |
2818 | }; | |
2819 | ||
2820 | /* Maximum number of instructions on the patterns above. */ | |
2821 | #define HPPA_MAX_INSN_PATTERN_LEN 4 | |
2822 | ||
2823 | /* Return non-zero if the instructions at PC match the series | |
2824 | described in PATTERN, or zero otherwise. PATTERN is an array of | |
2825 | 'struct insn_pattern' objects, terminated by an entry whose mask is | |
2826 | zero. | |
2827 | ||
2828 | When the match is successful, fill INSN[i] with what PATTERN[i] | |
2829 | matched. */ | |
2830 | ||
2831 | static int | |
e17a4113 UW |
2832 | hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc, |
2833 | struct insn_pattern *pattern, unsigned int *insn) | |
34f55018 | 2834 | { |
e17a4113 | 2835 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
34f55018 MK |
2836 | CORE_ADDR npc = pc; |
2837 | int i; | |
2838 | ||
2839 | for (i = 0; pattern[i].mask; i++) | |
2840 | { | |
2841 | gdb_byte buf[HPPA_INSN_SIZE]; | |
2842 | ||
8defab1a | 2843 | target_read_memory (npc, buf, HPPA_INSN_SIZE); |
e17a4113 | 2844 | insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); |
34f55018 MK |
2845 | if ((insn[i] & pattern[i].mask) == pattern[i].data) |
2846 | npc += 4; | |
2847 | else | |
2848 | return 0; | |
2849 | } | |
2850 | ||
2851 | return 1; | |
2852 | } | |
2853 | ||
2854 | /* This relaxed version of the insstruction matcher allows us to match | |
2855 | from somewhere inside the pattern, by looking backwards in the | |
2856 | instruction scheme. */ | |
2857 | ||
2858 | static int | |
e17a4113 UW |
2859 | hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc, |
2860 | struct insn_pattern *pattern, unsigned int *insn) | |
34f55018 MK |
2861 | { |
2862 | int offset, len = 0; | |
2863 | ||
2864 | while (pattern[len].mask) | |
2865 | len++; | |
2866 | ||
2867 | for (offset = 0; offset < len; offset++) | |
e17a4113 UW |
2868 | if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE, |
2869 | pattern, insn)) | |
34f55018 MK |
2870 | return 1; |
2871 | ||
2872 | return 0; | |
2873 | } | |
2874 | ||
2875 | static int | |
2876 | hppa_in_dyncall (CORE_ADDR pc) | |
2877 | { | |
2878 | struct unwind_table_entry *u; | |
2879 | ||
2880 | u = find_unwind_entry (hppa_symbol_address ("$$dyncall")); | |
2881 | if (!u) | |
2882 | return 0; | |
2883 | ||
2884 | return (pc >= u->region_start && pc <= u->region_end); | |
2885 | } | |
2886 | ||
2887 | int | |
e17a4113 UW |
2888 | hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, |
2889 | CORE_ADDR pc, char *name) | |
34f55018 MK |
2890 | { |
2891 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; | |
2892 | struct unwind_table_entry *u; | |
2893 | ||
2894 | if (in_plt_section (pc, name) || hppa_in_dyncall (pc)) | |
2895 | return 1; | |
2896 | ||
2897 | /* The GNU toolchain produces linker stubs without unwind | |
2898 | information. Since the pattern matching for linker stubs can be | |
2899 | quite slow, so bail out if we do have an unwind entry. */ | |
2900 | ||
2901 | u = find_unwind_entry (pc); | |
806e23c0 | 2902 | if (u != NULL) |
34f55018 MK |
2903 | return 0; |
2904 | ||
e17a4113 UW |
2905 | return |
2906 | (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn) | |
2907 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn) | |
2908 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn) | |
2909 | || hppa_match_insns_relaxed (gdbarch, pc, | |
2910 | hppa_long_branch_pic_stub, insn)); | |
34f55018 MK |
2911 | } |
2912 | ||
2913 | /* This code skips several kind of "trampolines" used on PA-RISC | |
2914 | systems: $$dyncall, import stubs and PLT stubs. */ | |
2915 | ||
2916 | CORE_ADDR | |
52f729a7 | 2917 | hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
34f55018 | 2918 | { |
0dfff4cb UW |
2919 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2920 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; | |
2921 | ||
34f55018 MK |
2922 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; |
2923 | int dp_rel; | |
2924 | ||
2925 | /* $$dyncall handles both PLABELs and direct addresses. */ | |
2926 | if (hppa_in_dyncall (pc)) | |
2927 | { | |
52f729a7 | 2928 | pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22); |
34f55018 MK |
2929 | |
2930 | /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */ | |
2931 | if (pc & 0x2) | |
0dfff4cb | 2932 | pc = read_memory_typed_address (pc & ~0x3, func_ptr_type); |
34f55018 MK |
2933 | |
2934 | return pc; | |
2935 | } | |
2936 | ||
e17a4113 UW |
2937 | dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn); |
2938 | if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn)) | |
34f55018 MK |
2939 | { |
2940 | /* Extract the target address from the addil/ldw sequence. */ | |
2941 | pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]); | |
2942 | ||
2943 | if (dp_rel) | |
52f729a7 | 2944 | pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM); |
34f55018 | 2945 | else |
52f729a7 | 2946 | pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19); |
34f55018 MK |
2947 | |
2948 | /* fallthrough */ | |
2949 | } | |
2950 | ||
2951 | if (in_plt_section (pc, NULL)) | |
2952 | { | |
0dfff4cb | 2953 | pc = read_memory_typed_address (pc, func_ptr_type); |
34f55018 MK |
2954 | |
2955 | /* If the PLT slot has not yet been resolved, the target will be | |
2956 | the PLT stub. */ | |
2957 | if (in_plt_section (pc, NULL)) | |
2958 | { | |
2959 | /* Sanity check: are we pointing to the PLT stub? */ | |
e17a4113 | 2960 | if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn)) |
34f55018 | 2961 | { |
5af949e3 UW |
2962 | warning (_("Cannot resolve PLT stub at %s."), |
2963 | paddress (gdbarch, pc)); | |
34f55018 MK |
2964 | return 0; |
2965 | } | |
2966 | ||
2967 | /* This should point to the fixup routine. */ | |
0dfff4cb | 2968 | pc = read_memory_typed_address (pc + 8, func_ptr_type); |
34f55018 MK |
2969 | } |
2970 | } | |
2971 | ||
2972 | return pc; | |
2973 | } | |
2974 | \f | |
2975 | ||
8e8b2dba MC |
2976 | /* Here is a table of C type sizes on hppa with various compiles |
2977 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
2978 | and these compilers: | |
2979 | ||
2980 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
2981 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
2982 | /opt/aCC/bin/aCC B3910B A.03.45 | |
2983 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
2984 | ||
2985 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
2986 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2987 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2988 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2989 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2990 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2991 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2992 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2993 | ||
2994 | Each line is: | |
2995 | ||
2996 | compiler and options | |
2997 | char, short, int, long, long long | |
2998 | float, double, long double | |
2999 | char *, void (*)() | |
3000 | ||
3001 | So all these compilers use either ILP32 or LP64 model. | |
3002 | TODO: gcc has more options so it needs more investigation. | |
3003 | ||
a2379359 MC |
3004 | For floating point types, see: |
3005 | ||
3006 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
3007 | HP-UX floating-point guide, hpux 11.00 | |
3008 | ||
8e8b2dba MC |
3009 | -- chastain 2003-12-18 */ |
3010 | ||
e6e68f1f JB |
3011 | static struct gdbarch * |
3012 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3013 | { | |
3ff7cf9e | 3014 | struct gdbarch_tdep *tdep; |
e6e68f1f | 3015 | struct gdbarch *gdbarch; |
59623e27 JB |
3016 | |
3017 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 3018 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 3019 | { |
4be87837 DJ |
3020 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
3021 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
3022 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 3023 | } |
e6e68f1f JB |
3024 | |
3025 | /* find a candidate among the list of pre-declared architectures. */ | |
3026 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3027 | if (arches != NULL) | |
3028 | return (arches->gdbarch); | |
3029 | ||
3030 | /* If none found, then allocate and initialize one. */ | |
fdd72f95 | 3031 | tdep = XZALLOC (struct gdbarch_tdep); |
3ff7cf9e JB |
3032 | gdbarch = gdbarch_alloc (&info, tdep); |
3033 | ||
3034 | /* Determine from the bfd_arch_info structure if we are dealing with | |
3035 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
3036 | then default to a 32bit machine. */ | |
3037 | if (info.bfd_arch_info != NULL) | |
3038 | tdep->bytes_per_address = | |
3039 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
3040 | else | |
3041 | tdep->bytes_per_address = 4; | |
3042 | ||
d49771ef RC |
3043 | tdep->find_global_pointer = hppa_find_global_pointer; |
3044 | ||
3ff7cf9e JB |
3045 | /* Some parts of the gdbarch vector depend on whether we are running |
3046 | on a 32 bits or 64 bits target. */ | |
3047 | switch (tdep->bytes_per_address) | |
3048 | { | |
3049 | case 4: | |
3050 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
3051 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
eded0a31 | 3052 | set_gdbarch_register_type (gdbarch, hppa32_register_type); |
38ca4e0c MK |
3053 | set_gdbarch_cannot_store_register (gdbarch, |
3054 | hppa32_cannot_store_register); | |
3055 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3056 | hppa32_cannot_fetch_register); |
3ff7cf9e JB |
3057 | break; |
3058 | case 8: | |
3059 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
3060 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
eded0a31 | 3061 | set_gdbarch_register_type (gdbarch, hppa64_register_type); |
1ef7fcb5 | 3062 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum); |
38ca4e0c MK |
3063 | set_gdbarch_cannot_store_register (gdbarch, |
3064 | hppa64_cannot_store_register); | |
3065 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3066 | hppa64_cannot_fetch_register); |
3ff7cf9e JB |
3067 | break; |
3068 | default: | |
e2e0b3e5 | 3069 | internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"), |
3ff7cf9e JB |
3070 | tdep->bytes_per_address); |
3071 | } | |
3072 | ||
3ff7cf9e | 3073 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
3ff7cf9e | 3074 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 3075 | |
8e8b2dba MC |
3076 | /* The following gdbarch vector elements are the same in both ILP32 |
3077 | and LP64, but might show differences some day. */ | |
3078 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3079 | set_gdbarch_long_double_bit (gdbarch, 128); | |
8da61cc4 | 3080 | set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); |
8e8b2dba | 3081 | |
3ff7cf9e JB |
3082 | /* The following gdbarch vector elements do not depend on the address |
3083 | size, or in any other gdbarch element previously set. */ | |
60383d10 | 3084 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
1fb24930 RC |
3085 | set_gdbarch_in_function_epilogue_p (gdbarch, |
3086 | hppa_in_function_epilogue_p); | |
a2a84a72 | 3087 | set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
eded0a31 AC |
3088 | set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
3089 | set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); | |
b6fbdd1d | 3090 | set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address); |
60383d10 JB |
3091 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
3092 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
cc72850f MK |
3093 | set_gdbarch_read_pc (gdbarch, hppa_read_pc); |
3094 | set_gdbarch_write_pc (gdbarch, hppa_write_pc); | |
60383d10 | 3095 | |
143985b7 AF |
3096 | /* Helper for function argument information. */ |
3097 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
3098 | ||
36482093 AC |
3099 | set_gdbarch_print_insn (gdbarch, print_insn_hppa); |
3100 | ||
3a3bc038 AC |
3101 | /* When a hardware watchpoint triggers, we'll move the inferior past |
3102 | it by removing all eventpoints; stepping past the instruction | |
3103 | that caused the trigger; reinserting eventpoints; and checking | |
3104 | whether any watched location changed. */ | |
3105 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
3106 | ||
5979bc46 | 3107 | /* Inferior function call methods. */ |
fca7aa43 | 3108 | switch (tdep->bytes_per_address) |
5979bc46 | 3109 | { |
fca7aa43 AC |
3110 | case 4: |
3111 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); | |
3112 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); | |
d49771ef RC |
3113 | set_gdbarch_convert_from_func_ptr_addr |
3114 | (gdbarch, hppa32_convert_from_func_ptr_addr); | |
fca7aa43 AC |
3115 | break; |
3116 | case 8: | |
782eae8b AC |
3117 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
3118 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); | |
fca7aa43 | 3119 | break; |
782eae8b | 3120 | default: |
e2e0b3e5 | 3121 | internal_error (__FILE__, __LINE__, _("bad switch")); |
fad850b2 AC |
3122 | } |
3123 | ||
3124 | /* Struct return methods. */ | |
fca7aa43 | 3125 | switch (tdep->bytes_per_address) |
fad850b2 | 3126 | { |
fca7aa43 AC |
3127 | case 4: |
3128 | set_gdbarch_return_value (gdbarch, hppa32_return_value); | |
3129 | break; | |
3130 | case 8: | |
782eae8b | 3131 | set_gdbarch_return_value (gdbarch, hppa64_return_value); |
f5f907e2 | 3132 | break; |
fca7aa43 | 3133 | default: |
e2e0b3e5 | 3134 | internal_error (__FILE__, __LINE__, _("bad switch")); |
e963316f | 3135 | } |
7f07c5b6 | 3136 | |
85f4f2d8 | 3137 | set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc); |
7f07c5b6 | 3138 | set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
85f4f2d8 | 3139 | |
5979bc46 | 3140 | /* Frame unwind methods. */ |
227e86ad | 3141 | set_gdbarch_dummy_id (gdbarch, hppa_dummy_id); |
782eae8b | 3142 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); |
7f07c5b6 | 3143 | |
50306a9d RC |
3144 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3145 | gdbarch_init_osabi (info, gdbarch); | |
3146 | ||
7f07c5b6 | 3147 | /* Hook in the default unwinders. */ |
227e86ad JB |
3148 | frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind); |
3149 | frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind); | |
3150 | frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind); | |
5979bc46 | 3151 | |
e6e68f1f JB |
3152 | return gdbarch; |
3153 | } | |
3154 | ||
3155 | static void | |
464963c9 | 3156 | hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
e6e68f1f | 3157 | { |
464963c9 | 3158 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
fdd72f95 RC |
3159 | |
3160 | fprintf_unfiltered (file, "bytes_per_address = %d\n", | |
3161 | tdep->bytes_per_address); | |
3162 | fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); | |
e6e68f1f JB |
3163 | } |
3164 | ||
72753510 PA |
3165 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
3166 | extern initialize_file_ftype _initialize_hppa_tdep; | |
3167 | ||
4facf7e8 JB |
3168 | void |
3169 | _initialize_hppa_tdep (void) | |
3170 | { | |
3171 | struct cmd_list_element *c; | |
4facf7e8 | 3172 | |
e6e68f1f | 3173 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 | 3174 | |
7c46b9fb RC |
3175 | hppa_objfile_priv_data = register_objfile_data (); |
3176 | ||
4facf7e8 | 3177 | add_cmd ("unwind", class_maintenance, unwind_command, |
1a966eab | 3178 | _("Print unwind table entry at given address."), |
4facf7e8 JB |
3179 | &maintenanceprintlist); |
3180 | ||
369aa520 | 3181 | /* Debug this files internals. */ |
7915a72c AC |
3182 | add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\ |
3183 | Set whether hppa target specific debugging information should be displayed."), | |
3184 | _("\ | |
3185 | Show whether hppa target specific debugging information is displayed."), _("\ | |
4a302917 RC |
3186 | This flag controls whether hppa target specific debugging information is\n\ |
3187 | displayed. This information is particularly useful for debugging frame\n\ | |
7915a72c | 3188 | unwinding problems."), |
2c5b56ce | 3189 | NULL, |
7915a72c | 3190 | NULL, /* FIXME: i18n: hppa debug flag is %s. */ |
2c5b56ce | 3191 | &setdebuglist, &showdebuglist); |
4facf7e8 | 3192 | } |