]>
Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
b6ba6518 | 2 | Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000, |
c3b4394c | 3 | 2001, 2002 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c | 21 | |
34e8f22d RE |
22 | #include <ctype.h> /* XXX for isupper () */ |
23 | ||
c906108c SS |
24 | #include "defs.h" |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "gdbcmd.h" | |
28 | #include "gdbcore.h" | |
29 | #include "symfile.h" | |
30 | #include "gdb_string.h" | |
e8b09175 | 31 | #include "dis-asm.h" /* For register flavors. */ |
4e052eda | 32 | #include "regcache.h" |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
34e8f22d | 35 | #include "arch-utils.h" |
a42dd537 | 36 | #include "solib-svr4.h" |
34e8f22d RE |
37 | |
38 | #include "arm-tdep.h" | |
39 | ||
082fc60d RE |
40 | #include "elf-bfd.h" |
41 | #include "coff/internal.h" | |
97e03143 | 42 | #include "elf/arm.h" |
c906108c | 43 | |
2a451106 KB |
44 | /* Each OS has a different mechanism for accessing the various |
45 | registers stored in the sigcontext structure. | |
46 | ||
47 | SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or | |
48 | function pointer) which may be used to determine the addresses | |
49 | of the various saved registers in the sigcontext structure. | |
50 | ||
51 | For the ARM target, there are three parameters to this function. | |
52 | The first is the pc value of the frame under consideration, the | |
53 | second the stack pointer of this frame, and the last is the | |
54 | register number to fetch. | |
55 | ||
56 | If the tm.h file does not define this macro, then it's assumed that | |
57 | no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to | |
58 | be 0. | |
59 | ||
60 | When it comes time to multi-arching this code, see the identically | |
61 | named machinery in ia64-tdep.c for an example of how it could be | |
62 | done. It should not be necessary to modify the code below where | |
63 | this macro is used. */ | |
64 | ||
3bb04bdd AC |
65 | #ifdef SIGCONTEXT_REGISTER_ADDRESS |
66 | #ifndef SIGCONTEXT_REGISTER_ADDRESS_P | |
67 | #define SIGCONTEXT_REGISTER_ADDRESS_P() 1 | |
68 | #endif | |
69 | #else | |
70 | #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0 | |
71 | #define SIGCONTEXT_REGISTER_ADDRESS_P() 0 | |
2a451106 KB |
72 | #endif |
73 | ||
082fc60d RE |
74 | /* Macros for setting and testing a bit in a minimal symbol that marks |
75 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
76 | is used for this purpose. This field is already being used to store | |
77 | the symbol size, so the assumption is that the symbol size cannot | |
78 | exceed 2^31. | |
79 | ||
80 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
81 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. | |
82 | MSYMBOL_SIZE Returns the size of the minimal symbol, | |
83 | i.e. the "info" field with the "special" bit | |
84 | masked out. */ | |
85 | ||
86 | #define MSYMBOL_SET_SPECIAL(msym) \ | |
87 | MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \ | |
88 | | 0x80000000) | |
89 | ||
90 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
91 | (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0) | |
92 | ||
93 | #define MSYMBOL_SIZE(msym) \ | |
94 | ((long) MSYMBOL_INFO (msym) & 0x7fffffff) | |
ed9a39eb | 95 | |
97e03143 RE |
96 | /* This table matches the indicees assigned to enum arm_abi. Keep |
97 | them in sync. */ | |
98 | ||
99 | static const char * const arm_abi_names[] = | |
100 | { | |
101 | "<unknown>", | |
102 | "ARM EABI (version 1)", | |
103 | "ARM EABI (version 2)", | |
104 | "GNU/Linux", | |
105 | "NetBSD (a.out)", | |
106 | "NetBSD (ELF)", | |
107 | "APCS", | |
108 | "FreeBSD", | |
109 | "Windows CE", | |
110 | NULL | |
111 | }; | |
112 | ||
bc90b915 FN |
113 | /* Number of different reg name sets (options). */ |
114 | static int num_flavor_options; | |
115 | ||
116 | /* We have more registers than the disassembler as gdb can print the value | |
117 | of special registers as well. | |
118 | The general register names are overwritten by whatever is being used by | |
119 | the disassembler at the moment. We also adjust the case of cpsr and fps. */ | |
120 | ||
121 | /* Initial value: Register names used in ARM's ISA documentation. */ | |
122 | static char * arm_register_name_strings[] = | |
da59e081 JM |
123 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
124 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
125 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
126 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
127 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
128 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
bc90b915 | 129 | "fps", "cpsr" }; /* 24 25 */ |
966fbf70 | 130 | static char **arm_register_names = arm_register_name_strings; |
ed9a39eb | 131 | |
bc90b915 | 132 | /* Valid register name flavors. */ |
53904c9e | 133 | static const char **valid_flavors; |
ed9a39eb | 134 | |
bc90b915 | 135 | /* Disassembly flavor to use. Default to "std" register names. */ |
53904c9e | 136 | static const char *disassembly_flavor; |
bc90b915 | 137 | static int current_option; /* Index to that option in the opcodes table. */ |
96baa820 | 138 | |
ed9a39eb JM |
139 | /* This is used to keep the bfd arch_info in sync with the disassembly |
140 | flavor. */ | |
141 | static void set_disassembly_flavor_sfunc(char *, int, | |
142 | struct cmd_list_element *); | |
143 | static void set_disassembly_flavor (void); | |
144 | ||
145 | static void convert_from_extended (void *ptr, void *dbl); | |
146 | ||
147 | /* Define other aspects of the stack frame. We keep the offsets of | |
148 | all saved registers, 'cause we need 'em a lot! We also keep the | |
149 | current size of the stack frame, and the offset of the frame | |
150 | pointer from the stack pointer (for frameless functions, and when | |
151 | we're still in the prologue of a function with a frame) */ | |
152 | ||
153 | struct frame_extra_info | |
c3b4394c RE |
154 | { |
155 | int framesize; | |
156 | int frameoffset; | |
157 | int framereg; | |
158 | }; | |
ed9a39eb | 159 | |
bc90b915 FN |
160 | /* Addresses for calling Thumb functions have the bit 0 set. |
161 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
162 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
163 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
164 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
165 | ||
39bbf761 | 166 | static int |
ed9a39eb | 167 | arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c | 168 | { |
c906108c SS |
169 | return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC)); |
170 | } | |
171 | ||
172 | /* Set to true if the 32-bit mode is in use. */ | |
173 | ||
174 | int arm_apcs_32 = 1; | |
175 | ||
ed9a39eb JM |
176 | /* Flag set by arm_fix_call_dummy that tells whether the target |
177 | function is a Thumb function. This flag is checked by | |
178 | arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and | |
179 | its use in valops.c) to pass the function address as an additional | |
180 | parameter. */ | |
c906108c SS |
181 | |
182 | static int target_is_thumb; | |
183 | ||
ed9a39eb JM |
184 | /* Flag set by arm_fix_call_dummy that tells whether the calling |
185 | function is a Thumb function. This flag is checked by | |
186 | arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */ | |
c906108c SS |
187 | |
188 | static int caller_is_thumb; | |
189 | ||
ed9a39eb JM |
190 | /* Determine if the program counter specified in MEMADDR is in a Thumb |
191 | function. */ | |
c906108c | 192 | |
34e8f22d | 193 | int |
2a451106 | 194 | arm_pc_is_thumb (CORE_ADDR memaddr) |
c906108c | 195 | { |
c5aa993b | 196 | struct minimal_symbol *sym; |
c906108c | 197 | |
ed9a39eb | 198 | /* If bit 0 of the address is set, assume this is a Thumb address. */ |
c906108c SS |
199 | if (IS_THUMB_ADDR (memaddr)) |
200 | return 1; | |
201 | ||
ed9a39eb | 202 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
203 | sym = lookup_minimal_symbol_by_pc (memaddr); |
204 | if (sym) | |
205 | { | |
c5aa993b | 206 | return (MSYMBOL_IS_SPECIAL (sym)); |
c906108c SS |
207 | } |
208 | else | |
ed9a39eb JM |
209 | { |
210 | return 0; | |
211 | } | |
c906108c SS |
212 | } |
213 | ||
ed9a39eb JM |
214 | /* Determine if the program counter specified in MEMADDR is in a call |
215 | dummy being called from a Thumb function. */ | |
c906108c | 216 | |
34e8f22d | 217 | int |
2a451106 | 218 | arm_pc_is_thumb_dummy (CORE_ADDR memaddr) |
c906108c | 219 | { |
c5aa993b | 220 | CORE_ADDR sp = read_sp (); |
c906108c | 221 | |
dfcd3bfb JM |
222 | /* FIXME: Until we switch for the new call dummy macros, this heuristic |
223 | is the best we can do. We are trying to determine if the pc is on | |
224 | the stack, which (hopefully) will only happen in a call dummy. | |
225 | We hope the current stack pointer is not so far alway from the dummy | |
226 | frame location (true if we have not pushed large data structures or | |
227 | gone too many levels deep) and that our 1024 is not enough to consider | |
228 | code regions as part of the stack (true for most practical purposes) */ | |
229 | if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024)) | |
c906108c SS |
230 | return caller_is_thumb; |
231 | else | |
232 | return 0; | |
233 | } | |
234 | ||
181c1381 | 235 | /* Remove useless bits from addresses in a running program. */ |
34e8f22d | 236 | static CORE_ADDR |
ed9a39eb | 237 | arm_addr_bits_remove (CORE_ADDR val) |
c906108c SS |
238 | { |
239 | if (arm_pc_is_thumb (val)) | |
240 | return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe)); | |
241 | else | |
242 | return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc)); | |
243 | } | |
244 | ||
181c1381 RE |
245 | /* When reading symbols, we need to zap the low bit of the address, |
246 | which may be set to 1 for Thumb functions. */ | |
34e8f22d | 247 | static CORE_ADDR |
181c1381 RE |
248 | arm_smash_text_address (CORE_ADDR val) |
249 | { | |
250 | return val & ~1; | |
251 | } | |
252 | ||
34e8f22d RE |
253 | /* Immediately after a function call, return the saved pc. Can't |
254 | always go through the frames for this because on some machines the | |
255 | new frame is not set up until the new function executes some | |
256 | instructions. */ | |
257 | ||
258 | static CORE_ADDR | |
ed9a39eb | 259 | arm_saved_pc_after_call (struct frame_info *frame) |
c906108c | 260 | { |
34e8f22d | 261 | return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM)); |
c906108c SS |
262 | } |
263 | ||
0defa245 RE |
264 | /* Determine whether the function invocation represented by FI has a |
265 | frame on the stack associated with it. If it does return zero, | |
266 | otherwise return 1. */ | |
267 | ||
148754e5 | 268 | static int |
ed9a39eb | 269 | arm_frameless_function_invocation (struct frame_info *fi) |
392a587b | 270 | { |
392a587b | 271 | CORE_ADDR func_start, after_prologue; |
96baa820 | 272 | int frameless; |
ed9a39eb | 273 | |
0defa245 RE |
274 | /* Sometimes we have functions that do a little setup (like saving the |
275 | vN registers with the stmdb instruction, but DO NOT set up a frame. | |
276 | The symbol table will report this as a prologue. However, it is | |
277 | important not to try to parse these partial frames as frames, or we | |
278 | will get really confused. | |
279 | ||
280 | So I will demand 3 instructions between the start & end of the | |
281 | prologue before I call it a real prologue, i.e. at least | |
282 | mov ip, sp, | |
283 | stmdb sp!, {} | |
284 | sub sp, ip, #4. */ | |
285 | ||
392a587b | 286 | func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET); |
7be570e7 | 287 | after_prologue = SKIP_PROLOGUE (func_start); |
ed9a39eb | 288 | |
96baa820 | 289 | /* There are some frameless functions whose first two instructions |
ed9a39eb JM |
290 | follow the standard APCS form, in which case after_prologue will |
291 | be func_start + 8. */ | |
292 | ||
96baa820 | 293 | frameless = (after_prologue < func_start + 12); |
392a587b JM |
294 | return frameless; |
295 | } | |
296 | ||
0defa245 | 297 | /* The address of the arguments in the frame. */ |
148754e5 | 298 | static CORE_ADDR |
0defa245 RE |
299 | arm_frame_args_address (struct frame_info *fi) |
300 | { | |
301 | return fi->frame; | |
302 | } | |
303 | ||
304 | /* The address of the local variables in the frame. */ | |
148754e5 | 305 | static CORE_ADDR |
0defa245 RE |
306 | arm_frame_locals_address (struct frame_info *fi) |
307 | { | |
308 | return fi->frame; | |
309 | } | |
310 | ||
311 | /* The number of arguments being passed in the frame. */ | |
148754e5 | 312 | static int |
0defa245 RE |
313 | arm_frame_num_args (struct frame_info *fi) |
314 | { | |
315 | /* We have no way of knowing. */ | |
316 | return -1; | |
317 | } | |
318 | ||
c906108c | 319 | /* A typical Thumb prologue looks like this: |
c5aa993b JM |
320 | push {r7, lr} |
321 | add sp, sp, #-28 | |
322 | add r7, sp, #12 | |
c906108c | 323 | Sometimes the latter instruction may be replaced by: |
da59e081 JM |
324 | mov r7, sp |
325 | ||
326 | or like this: | |
327 | push {r7, lr} | |
328 | mov r7, sp | |
329 | sub sp, #12 | |
330 | ||
331 | or, on tpcs, like this: | |
332 | sub sp,#16 | |
333 | push {r7, lr} | |
334 | (many instructions) | |
335 | mov r7, sp | |
336 | sub sp, #12 | |
337 | ||
338 | There is always one instruction of three classes: | |
339 | 1 - push | |
340 | 2 - setting of r7 | |
341 | 3 - adjusting of sp | |
342 | ||
343 | When we have found at least one of each class we are done with the prolog. | |
344 | Note that the "sub sp, #NN" before the push does not count. | |
ed9a39eb | 345 | */ |
c906108c SS |
346 | |
347 | static CORE_ADDR | |
c7885828 | 348 | thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end) |
c906108c SS |
349 | { |
350 | CORE_ADDR current_pc; | |
da59e081 JM |
351 | int findmask = 0; /* findmask: |
352 | bit 0 - push { rlist } | |
353 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
354 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
355 | */ | |
c906108c | 356 | |
c7885828 | 357 | for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2) |
c906108c SS |
358 | { |
359 | unsigned short insn = read_memory_unsigned_integer (current_pc, 2); | |
360 | ||
da59e081 JM |
361 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
362 | { | |
363 | findmask |= 1; /* push found */ | |
364 | } | |
365 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ | |
366 | { | |
367 | if ((findmask & 1) == 0) /* before push ? */ | |
368 | continue; | |
369 | else | |
370 | findmask |= 4; /* add/sub sp found */ | |
371 | } | |
372 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
373 | { | |
374 | findmask |= 2; /* setting of r7 found */ | |
375 | } | |
376 | else if (insn == 0x466f) /* mov r7, sp */ | |
377 | { | |
378 | findmask |= 2; /* setting of r7 found */ | |
379 | } | |
3d74b771 FF |
380 | else if (findmask == (4+2+1)) |
381 | { | |
382 | break; /* We have found one of each type of prologue instruction */ | |
383 | } | |
da59e081 JM |
384 | else |
385 | continue; /* something in the prolog that we don't care about or some | |
386 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
387 | } |
388 | ||
389 | return current_pc; | |
390 | } | |
391 | ||
34e8f22d RE |
392 | /* Advance the PC across any function entry prologue instructions to reach |
393 | some "real" code. | |
394 | ||
395 | The APCS (ARM Procedure Call Standard) defines the following | |
ed9a39eb | 396 | prologue: |
c906108c | 397 | |
c5aa993b JM |
398 | mov ip, sp |
399 | [stmfd sp!, {a1,a2,a3,a4}] | |
400 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
401 | [stfe f7, [sp, #-12]!] |
402 | [stfe f6, [sp, #-12]!] | |
403 | [stfe f5, [sp, #-12]!] | |
404 | [stfe f4, [sp, #-12]!] | |
405 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */ | |
c906108c | 406 | |
34e8f22d | 407 | static CORE_ADDR |
ed9a39eb | 408 | arm_skip_prologue (CORE_ADDR pc) |
c906108c SS |
409 | { |
410 | unsigned long inst; | |
411 | CORE_ADDR skip_pc; | |
412 | CORE_ADDR func_addr, func_end; | |
50f6fb4b | 413 | char *func_name; |
c906108c SS |
414 | struct symtab_and_line sal; |
415 | ||
96baa820 | 416 | /* See what the symbol table says. */ |
ed9a39eb | 417 | |
50f6fb4b | 418 | if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) |
c906108c | 419 | { |
50f6fb4b CV |
420 | struct symbol *sym; |
421 | ||
422 | /* Found a function. */ | |
423 | sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL); | |
424 | if (sym && SYMBOL_LANGUAGE (sym) != language_asm) | |
425 | { | |
426 | /* Don't use this trick for assembly source files. */ | |
427 | sal = find_pc_line (func_addr, 0); | |
428 | if ((sal.line != 0) && (sal.end < func_end)) | |
429 | return sal.end; | |
430 | } | |
c906108c SS |
431 | } |
432 | ||
433 | /* Check if this is Thumb code. */ | |
434 | if (arm_pc_is_thumb (pc)) | |
c7885828 | 435 | return thumb_skip_prologue (pc, func_end); |
c906108c SS |
436 | |
437 | /* Can't find the prologue end in the symbol table, try it the hard way | |
438 | by disassembling the instructions. */ | |
439 | skip_pc = pc; | |
440 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 441 | if (inst != 0xe1a0c00d) /* mov ip, sp */ |
c906108c SS |
442 | return pc; |
443 | ||
444 | skip_pc += 4; | |
445 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 446 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
c906108c SS |
447 | { |
448 | skip_pc += 4; | |
449 | inst = read_memory_integer (skip_pc, 4); | |
450 | } | |
451 | ||
c5aa993b | 452 | if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */ |
c906108c SS |
453 | return pc; |
454 | ||
455 | skip_pc += 4; | |
456 | inst = read_memory_integer (skip_pc, 4); | |
457 | ||
458 | /* Any insns after this point may float into the code, if it makes | |
ed9a39eb JM |
459 | for better instruction scheduling, so we skip them only if we |
460 | find them, but still consdier the function to be frame-ful. */ | |
c906108c | 461 | |
ed9a39eb JM |
462 | /* We may have either one sfmfd instruction here, or several stfe |
463 | insns, depending on the version of floating point code we | |
464 | support. */ | |
c5aa993b | 465 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ |
c906108c SS |
466 | { |
467 | skip_pc += 4; | |
468 | inst = read_memory_integer (skip_pc, 4); | |
469 | } | |
470 | else | |
471 | { | |
c5aa993b JM |
472 | while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ |
473 | { | |
474 | skip_pc += 4; | |
475 | inst = read_memory_integer (skip_pc, 4); | |
476 | } | |
c906108c SS |
477 | } |
478 | ||
c5aa993b | 479 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ |
c906108c SS |
480 | skip_pc += 4; |
481 | ||
482 | return skip_pc; | |
483 | } | |
c5aa993b | 484 | /* *INDENT-OFF* */ |
c906108c SS |
485 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
486 | This function decodes a Thumb function prologue to determine: | |
487 | 1) the size of the stack frame | |
488 | 2) which registers are saved on it | |
489 | 3) the offsets of saved regs | |
490 | 4) the offset from the stack pointer to the frame pointer | |
491 | This information is stored in the "extra" fields of the frame_info. | |
492 | ||
da59e081 JM |
493 | A typical Thumb function prologue would create this stack frame |
494 | (offsets relative to FP) | |
c906108c SS |
495 | old SP -> 24 stack parameters |
496 | 20 LR | |
497 | 16 R7 | |
498 | R7 -> 0 local variables (16 bytes) | |
499 | SP -> -12 additional stack space (12 bytes) | |
500 | The frame size would thus be 36 bytes, and the frame offset would be | |
da59e081 JM |
501 | 12 bytes. The frame register is R7. |
502 | ||
503 | The comments for thumb_skip_prolog() describe the algorithm we use to detect | |
504 | the end of the prolog */ | |
c5aa993b JM |
505 | /* *INDENT-ON* */ |
506 | ||
c906108c | 507 | static void |
ed9a39eb | 508 | thumb_scan_prologue (struct frame_info *fi) |
c906108c SS |
509 | { |
510 | CORE_ADDR prologue_start; | |
511 | CORE_ADDR prologue_end; | |
512 | CORE_ADDR current_pc; | |
c5aa993b | 513 | int saved_reg[16]; /* which register has been copied to register n? */ |
da59e081 JM |
514 | int findmask = 0; /* findmask: |
515 | bit 0 - push { rlist } | |
516 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
517 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
518 | */ | |
c5aa993b | 519 | int i; |
c906108c | 520 | |
c5aa993b | 521 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) |
c906108c SS |
522 | { |
523 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
524 | ||
c5aa993b | 525 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
526 | prologue_end = fi->pc; |
527 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 528 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
529 | } |
530 | else | |
c5aa993b JM |
531 | prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */ |
532 | /* 16 pushes, an add, and "mv fp,sp" */ | |
c906108c SS |
533 | |
534 | prologue_end = min (prologue_end, fi->pc); | |
535 | ||
536 | /* Initialize the saved register map. When register H is copied to | |
537 | register L, we will put H in saved_reg[L]. */ | |
538 | for (i = 0; i < 16; i++) | |
539 | saved_reg[i] = i; | |
540 | ||
541 | /* Search the prologue looking for instructions that set up the | |
da59e081 JM |
542 | frame pointer, adjust the stack pointer, and save registers. |
543 | Do this until all basic prolog instructions are found. */ | |
c906108c | 544 | |
c3b4394c | 545 | fi->extra_info->framesize = 0; |
da59e081 JM |
546 | for (current_pc = prologue_start; |
547 | (current_pc < prologue_end) && ((findmask & 7) != 7); | |
548 | current_pc += 2) | |
c906108c SS |
549 | { |
550 | unsigned short insn; | |
551 | int regno; | |
552 | int offset; | |
553 | ||
554 | insn = read_memory_unsigned_integer (current_pc, 2); | |
555 | ||
c5aa993b | 556 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
c906108c | 557 | { |
da59e081 JM |
558 | int mask; |
559 | findmask |= 1; /* push found */ | |
c906108c SS |
560 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says |
561 | whether to save LR (R14). */ | |
da59e081 | 562 | mask = (insn & 0xff) | ((insn & 0x100) << 6); |
c906108c SS |
563 | |
564 | /* Calculate offsets of saved R0-R7 and LR. */ | |
34e8f22d | 565 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) |
c906108c | 566 | if (mask & (1 << regno)) |
c5aa993b | 567 | { |
c3b4394c RE |
568 | fi->extra_info->framesize += 4; |
569 | fi->saved_regs[saved_reg[regno]] = | |
570 | -(fi->extra_info->framesize); | |
c906108c SS |
571 | saved_reg[regno] = regno; /* reset saved register map */ |
572 | } | |
573 | } | |
da59e081 | 574 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ |
c906108c | 575 | { |
da59e081 JM |
576 | if ((findmask & 1) == 0) /* before push ? */ |
577 | continue; | |
578 | else | |
579 | findmask |= 4; /* add/sub sp found */ | |
580 | ||
c5aa993b | 581 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
da59e081 JM |
582 | if (insn & 0x80) /* is it signed? (==subtracting) */ |
583 | { | |
c3b4394c | 584 | fi->extra_info->frameoffset += offset; |
da59e081 JM |
585 | offset = -offset; |
586 | } | |
c3b4394c | 587 | fi->extra_info->framesize -= offset; |
c906108c SS |
588 | } |
589 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
590 | { | |
da59e081 | 591 | findmask |= 2; /* setting of r7 found */ |
c3b4394c RE |
592 | fi->extra_info->framereg = THUMB_FP_REGNUM; |
593 | /* get scaled offset */ | |
594 | fi->extra_info->frameoffset = (insn & 0xff) << 2; | |
c906108c | 595 | } |
da59e081 | 596 | else if (insn == 0x466f) /* mov r7, sp */ |
c906108c | 597 | { |
da59e081 | 598 | findmask |= 2; /* setting of r7 found */ |
c3b4394c RE |
599 | fi->extra_info->framereg = THUMB_FP_REGNUM; |
600 | fi->extra_info->frameoffset = 0; | |
34e8f22d | 601 | saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM; |
c906108c SS |
602 | } |
603 | else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ | |
604 | { | |
c5aa993b | 605 | int lo_reg = insn & 7; /* dest. register (r0-r7) */ |
c906108c | 606 | int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ |
c5aa993b | 607 | saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ |
c906108c SS |
608 | } |
609 | else | |
da59e081 JM |
610 | continue; /* something in the prolog that we don't care about or some |
611 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
612 | } |
613 | } | |
614 | ||
ed9a39eb JM |
615 | /* Check if prologue for this frame's PC has already been scanned. If |
616 | it has, copy the relevant information about that prologue and | |
c906108c SS |
617 | return non-zero. Otherwise do not copy anything and return zero. |
618 | ||
619 | The information saved in the cache includes: | |
c5aa993b JM |
620 | * the frame register number; |
621 | * the size of the stack frame; | |
622 | * the offsets of saved regs (relative to the old SP); and | |
623 | * the offset from the stack pointer to the frame pointer | |
c906108c | 624 | |
ed9a39eb JM |
625 | The cache contains only one entry, since this is adequate for the |
626 | typical sequence of prologue scan requests we get. When performing | |
627 | a backtrace, GDB will usually ask to scan the same function twice | |
628 | in a row (once to get the frame chain, and once to fill in the | |
629 | extra frame information). */ | |
c906108c SS |
630 | |
631 | static struct frame_info prologue_cache; | |
632 | ||
633 | static int | |
ed9a39eb | 634 | check_prologue_cache (struct frame_info *fi) |
c906108c SS |
635 | { |
636 | int i; | |
637 | ||
638 | if (fi->pc == prologue_cache.pc) | |
639 | { | |
c3b4394c RE |
640 | fi->extra_info->framereg = prologue_cache.extra_info->framereg; |
641 | fi->extra_info->framesize = prologue_cache.extra_info->framesize; | |
642 | fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset; | |
643 | for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) | |
644 | fi->saved_regs[i] = prologue_cache.saved_regs[i]; | |
c906108c SS |
645 | return 1; |
646 | } | |
647 | else | |
648 | return 0; | |
649 | } | |
650 | ||
651 | ||
ed9a39eb | 652 | /* Copy the prologue information from fi to the prologue cache. */ |
c906108c SS |
653 | |
654 | static void | |
ed9a39eb | 655 | save_prologue_cache (struct frame_info *fi) |
c906108c SS |
656 | { |
657 | int i; | |
658 | ||
c5aa993b | 659 | prologue_cache.pc = fi->pc; |
c3b4394c RE |
660 | prologue_cache.extra_info->framereg = fi->extra_info->framereg; |
661 | prologue_cache.extra_info->framesize = fi->extra_info->framesize; | |
662 | prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset; | |
c5aa993b | 663 | |
c3b4394c RE |
664 | for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) |
665 | prologue_cache.saved_regs[i] = fi->saved_regs[i]; | |
c906108c SS |
666 | } |
667 | ||
668 | ||
ed9a39eb | 669 | /* This function decodes an ARM function prologue to determine: |
c5aa993b JM |
670 | 1) the size of the stack frame |
671 | 2) which registers are saved on it | |
672 | 3) the offsets of saved regs | |
673 | 4) the offset from the stack pointer to the frame pointer | |
c906108c SS |
674 | This information is stored in the "extra" fields of the frame_info. |
675 | ||
96baa820 JM |
676 | There are two basic forms for the ARM prologue. The fixed argument |
677 | function call will look like: | |
ed9a39eb JM |
678 | |
679 | mov ip, sp | |
680 | stmfd sp!, {fp, ip, lr, pc} | |
681 | sub fp, ip, #4 | |
682 | [sub sp, sp, #4] | |
96baa820 | 683 | |
c906108c | 684 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
685 | IP -> 4 (caller's stack) |
686 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
687 | -4 LR (return address in caller) | |
688 | -8 IP (copy of caller's SP) | |
689 | -12 FP (caller's FP) | |
690 | SP -> -28 Local variables | |
691 | ||
c906108c | 692 | The frame size would thus be 32 bytes, and the frame offset would be |
96baa820 JM |
693 | 28 bytes. The stmfd call can also save any of the vN registers it |
694 | plans to use, which increases the frame size accordingly. | |
695 | ||
696 | Note: The stored PC is 8 off of the STMFD instruction that stored it | |
697 | because the ARM Store instructions always store PC + 8 when you read | |
698 | the PC register. | |
ed9a39eb | 699 | |
96baa820 JM |
700 | A variable argument function call will look like: |
701 | ||
ed9a39eb JM |
702 | mov ip, sp |
703 | stmfd sp!, {a1, a2, a3, a4} | |
704 | stmfd sp!, {fp, ip, lr, pc} | |
705 | sub fp, ip, #20 | |
706 | ||
96baa820 | 707 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
708 | IP -> 20 (caller's stack) |
709 | 16 A4 | |
710 | 12 A3 | |
711 | 8 A2 | |
712 | 4 A1 | |
713 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
714 | -4 LR (return address in caller) | |
715 | -8 IP (copy of caller's SP) | |
716 | -12 FP (caller's FP) | |
717 | SP -> -28 Local variables | |
96baa820 JM |
718 | |
719 | The frame size would thus be 48 bytes, and the frame offset would be | |
720 | 28 bytes. | |
721 | ||
722 | There is another potential complication, which is that the optimizer | |
723 | will try to separate the store of fp in the "stmfd" instruction from | |
724 | the "sub fp, ip, #NN" instruction. Almost anything can be there, so | |
725 | we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... | |
726 | ||
727 | Also, note, the original version of the ARM toolchain claimed that there | |
728 | should be an | |
729 | ||
730 | instruction at the end of the prologue. I have never seen GCC produce | |
731 | this, and the ARM docs don't mention it. We still test for it below in | |
732 | case it happens... | |
ed9a39eb JM |
733 | |
734 | */ | |
c906108c SS |
735 | |
736 | static void | |
ed9a39eb | 737 | arm_scan_prologue (struct frame_info *fi) |
c906108c SS |
738 | { |
739 | int regno, sp_offset, fp_offset; | |
16a0f3e7 | 740 | LONGEST return_value; |
c906108c SS |
741 | CORE_ADDR prologue_start, prologue_end, current_pc; |
742 | ||
743 | /* Check if this function is already in the cache of frame information. */ | |
744 | if (check_prologue_cache (fi)) | |
745 | return; | |
746 | ||
747 | /* Assume there is no frame until proven otherwise. */ | |
34e8f22d | 748 | fi->extra_info->framereg = ARM_SP_REGNUM; |
c3b4394c RE |
749 | fi->extra_info->framesize = 0; |
750 | fi->extra_info->frameoffset = 0; | |
c906108c SS |
751 | |
752 | /* Check for Thumb prologue. */ | |
753 | if (arm_pc_is_thumb (fi->pc)) | |
754 | { | |
755 | thumb_scan_prologue (fi); | |
756 | save_prologue_cache (fi); | |
757 | return; | |
758 | } | |
759 | ||
760 | /* Find the function prologue. If we can't find the function in | |
761 | the symbol table, peek in the stack frame to find the PC. */ | |
762 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) | |
763 | { | |
2a451106 KB |
764 | /* One way to find the end of the prologue (which works well |
765 | for unoptimized code) is to do the following: | |
766 | ||
767 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
768 | ||
769 | if (sal.line == 0) | |
770 | prologue_end = fi->pc; | |
771 | else if (sal.end < prologue_end) | |
772 | prologue_end = sal.end; | |
773 | ||
774 | This mechanism is very accurate so long as the optimizer | |
775 | doesn't move any instructions from the function body into the | |
776 | prologue. If this happens, sal.end will be the last | |
777 | instruction in the first hunk of prologue code just before | |
778 | the first instruction that the scheduler has moved from | |
779 | the body to the prologue. | |
780 | ||
781 | In order to make sure that we scan all of the prologue | |
782 | instructions, we use a slightly less accurate mechanism which | |
783 | may scan more than necessary. To help compensate for this | |
784 | lack of accuracy, the prologue scanning loop below contains | |
785 | several clauses which'll cause the loop to terminate early if | |
786 | an implausible prologue instruction is encountered. | |
787 | ||
788 | The expression | |
789 | ||
790 | prologue_start + 64 | |
791 | ||
792 | is a suitable endpoint since it accounts for the largest | |
793 | possible prologue plus up to five instructions inserted by | |
794 | the scheduler. */ | |
795 | ||
796 | if (prologue_end > prologue_start + 64) | |
797 | { | |
798 | prologue_end = prologue_start + 64; /* See above. */ | |
799 | } | |
c906108c SS |
800 | } |
801 | else | |
802 | { | |
803 | /* Get address of the stmfd in the prologue of the callee; the saved | |
96baa820 | 804 | PC is the address of the stmfd + 8. */ |
16a0f3e7 EZ |
805 | if (!safe_read_memory_integer (fi->frame, 4, &return_value)) |
806 | return; | |
807 | else | |
808 | { | |
809 | prologue_start = ADDR_BITS_REMOVE (return_value) - 8; | |
810 | prologue_end = prologue_start + 64; /* See above. */ | |
811 | } | |
c906108c SS |
812 | } |
813 | ||
814 | /* Now search the prologue looking for instructions that set up the | |
96baa820 | 815 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 816 | |
96baa820 JM |
817 | Be careful, however, and if it doesn't look like a prologue, |
818 | don't try to scan it. If, for instance, a frameless function | |
819 | begins with stmfd sp!, then we will tell ourselves there is | |
820 | a frame, which will confuse stack traceback, as well ad"finish" | |
821 | and other operations that rely on a knowledge of the stack | |
822 | traceback. | |
823 | ||
824 | In the APCS, the prologue should start with "mov ip, sp" so | |
d4473757 KB |
825 | if we don't see this as the first insn, we will stop. [Note: |
826 | This doesn't seem to be true any longer, so it's now an optional | |
827 | part of the prologue. - Kevin Buettner, 2001-11-20] */ | |
c906108c SS |
828 | |
829 | sp_offset = fp_offset = 0; | |
c906108c | 830 | |
ed9a39eb JM |
831 | if (read_memory_unsigned_integer (prologue_start, 4) |
832 | == 0xe1a0c00d) /* mov ip, sp */ | |
d4473757 KB |
833 | current_pc = prologue_start + 4; |
834 | else | |
835 | current_pc = prologue_start; | |
836 | ||
837 | for (; current_pc < prologue_end; current_pc += 4) | |
96baa820 | 838 | { |
d4473757 KB |
839 | unsigned int insn = read_memory_unsigned_integer (current_pc, 4); |
840 | ||
841 | if ((insn & 0xffff0000) == 0xe92d0000) | |
842 | /* stmfd sp!, {..., fp, ip, lr, pc} | |
843 | or | |
844 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 845 | { |
d4473757 | 846 | int mask = insn & 0xffff; |
ed9a39eb | 847 | |
d4473757 | 848 | /* Calculate offsets of saved registers. */ |
34e8f22d | 849 | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
d4473757 KB |
850 | if (mask & (1 << regno)) |
851 | { | |
852 | sp_offset -= 4; | |
c3b4394c | 853 | fi->saved_regs[regno] = sp_offset; |
d4473757 KB |
854 | } |
855 | } | |
856 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ | |
857 | { | |
858 | unsigned imm = insn & 0xff; /* immediate value */ | |
859 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
860 | imm = (imm >> rot) | (imm << (32 - rot)); | |
861 | fp_offset = -imm; | |
34e8f22d | 862 | fi->extra_info->framereg = ARM_FP_REGNUM; |
d4473757 KB |
863 | } |
864 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
865 | { | |
866 | unsigned imm = insn & 0xff; /* immediate value */ | |
867 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
868 | imm = (imm >> rot) | (imm << (32 - rot)); | |
869 | sp_offset -= imm; | |
870 | } | |
871 | else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ | |
872 | { | |
873 | sp_offset -= 12; | |
34e8f22d | 874 | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
c3b4394c | 875 | fi->saved_regs[regno] = sp_offset; |
d4473757 KB |
876 | } |
877 | else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */ | |
878 | { | |
879 | int n_saved_fp_regs; | |
880 | unsigned int fp_start_reg, fp_bound_reg; | |
881 | ||
882 | if ((insn & 0x800) == 0x800) /* N0 is set */ | |
96baa820 | 883 | { |
d4473757 KB |
884 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
885 | n_saved_fp_regs = 3; | |
886 | else | |
887 | n_saved_fp_regs = 1; | |
96baa820 | 888 | } |
d4473757 | 889 | else |
96baa820 | 890 | { |
d4473757 KB |
891 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
892 | n_saved_fp_regs = 2; | |
893 | else | |
894 | n_saved_fp_regs = 4; | |
96baa820 | 895 | } |
d4473757 | 896 | |
34e8f22d | 897 | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
d4473757 KB |
898 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
899 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 JM |
900 | { |
901 | sp_offset -= 12; | |
c3b4394c | 902 | fi->saved_regs[fp_start_reg++] = sp_offset; |
96baa820 | 903 | } |
c906108c | 904 | } |
d4473757 KB |
905 | else if ((insn & 0xf0000000) != 0xe0000000) |
906 | break; /* Condition not true, exit early */ | |
907 | else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */ | |
908 | break; /* Don't scan past a block load */ | |
909 | else | |
910 | /* The optimizer might shove anything into the prologue, | |
911 | so we just skip what we don't recognize. */ | |
912 | continue; | |
c906108c SS |
913 | } |
914 | ||
915 | /* The frame size is just the negative of the offset (from the original SP) | |
916 | of the last thing thing we pushed on the stack. The frame offset is | |
917 | [new FP] - [new SP]. */ | |
c3b4394c | 918 | fi->extra_info->framesize = -sp_offset; |
34e8f22d | 919 | if (fi->extra_info->framereg == ARM_FP_REGNUM) |
c3b4394c | 920 | fi->extra_info->frameoffset = fp_offset - sp_offset; |
d4473757 | 921 | else |
c3b4394c | 922 | fi->extra_info->frameoffset = 0; |
ed9a39eb | 923 | |
c906108c SS |
924 | save_prologue_cache (fi); |
925 | } | |
926 | ||
ed9a39eb JM |
927 | /* Find REGNUM on the stack. Otherwise, it's in an active register. |
928 | One thing we might want to do here is to check REGNUM against the | |
929 | clobber mask, and somehow flag it as invalid if it isn't saved on | |
930 | the stack somewhere. This would provide a graceful failure mode | |
931 | when trying to get the value of caller-saves registers for an inner | |
932 | frame. */ | |
c906108c SS |
933 | |
934 | static CORE_ADDR | |
ed9a39eb | 935 | arm_find_callers_reg (struct frame_info *fi, int regnum) |
c906108c SS |
936 | { |
937 | for (; fi; fi = fi->next) | |
c5aa993b JM |
938 | |
939 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
c906108c SS |
940 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
941 | return generic_read_register_dummy (fi->pc, fi->frame, regnum); | |
942 | else | |
943 | #endif | |
c3b4394c RE |
944 | if (fi->saved_regs[regnum] != 0) |
945 | return read_memory_integer (fi->saved_regs[regnum], | |
c5aa993b | 946 | REGISTER_RAW_SIZE (regnum)); |
c906108c SS |
947 | return read_register (regnum); |
948 | } | |
148754e5 RE |
949 | /* Function: frame_chain Given a GDB frame, determine the address of |
950 | the calling function's frame. This will be used to create a new | |
951 | GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC | |
952 | will be called for the new frame. For ARM, we save the frame size | |
953 | when we initialize the frame_info. */ | |
c5aa993b | 954 | |
148754e5 | 955 | static CORE_ADDR |
ed9a39eb | 956 | arm_frame_chain (struct frame_info *fi) |
c906108c | 957 | { |
c5aa993b | 958 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
959 | CORE_ADDR fn_start, callers_pc, fp; |
960 | ||
961 | /* is this a dummy frame? */ | |
962 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
c5aa993b | 963 | return fi->frame; /* dummy frame same as caller's frame */ |
c906108c SS |
964 | |
965 | /* is caller-of-this a dummy frame? */ | |
c5aa993b | 966 | callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ |
34e8f22d | 967 | fp = arm_find_callers_reg (fi, ARM_FP_REGNUM); |
c5aa993b JM |
968 | if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) |
969 | return fp; /* dummy frame's frame may bear no relation to ours */ | |
c906108c SS |
970 | |
971 | if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) | |
972 | if (fn_start == entry_point_address ()) | |
c5aa993b | 973 | return 0; /* in _start fn, don't chain further */ |
c906108c SS |
974 | #endif |
975 | CORE_ADDR caller_pc, fn_start; | |
c3b4394c | 976 | int framereg = fi->extra_info->framereg; |
c906108c SS |
977 | |
978 | if (fi->pc < LOWEST_PC) | |
979 | return 0; | |
980 | ||
981 | /* If the caller is the startup code, we're at the end of the chain. */ | |
982 | caller_pc = FRAME_SAVED_PC (fi); | |
983 | if (find_pc_partial_function (caller_pc, 0, &fn_start, 0)) | |
984 | if (fn_start == entry_point_address ()) | |
985 | return 0; | |
986 | ||
987 | /* If the caller is Thumb and the caller is ARM, or vice versa, | |
988 | the frame register of the caller is different from ours. | |
989 | So we must scan the prologue of the caller to determine its | |
990 | frame register number. */ | |
c3b4394c RE |
991 | /* XXX Fixme, we should try to do this without creating a temporary |
992 | caller_fi. */ | |
c906108c SS |
993 | if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc)) |
994 | { | |
c3b4394c RE |
995 | struct frame_info caller_fi; |
996 | struct cleanup *old_chain; | |
997 | ||
998 | /* Create a temporary frame suitable for scanning the caller's | |
999 | prologue. (Ugh.) */ | |
c5aa993b | 1000 | memset (&caller_fi, 0, sizeof (caller_fi)); |
c3b4394c RE |
1001 | caller_fi.extra_info = (struct frame_extra_info *) |
1002 | xcalloc (1, sizeof (struct frame_extra_info)); | |
1003 | old_chain = make_cleanup (xfree, caller_fi.extra_info); | |
1004 | caller_fi.saved_regs = (CORE_ADDR *) | |
1005 | xcalloc (1, SIZEOF_FRAME_SAVED_REGS); | |
1006 | make_cleanup (xfree, caller_fi.saved_regs); | |
1007 | ||
1008 | /* Now, scan the prologue and obtain the frame register. */ | |
c906108c | 1009 | caller_fi.pc = caller_pc; |
c5aa993b | 1010 | arm_scan_prologue (&caller_fi); |
c3b4394c RE |
1011 | framereg = caller_fi.extra_info->framereg; |
1012 | ||
1013 | /* Deallocate the storage associated with the temporary frame | |
1014 | created above. */ | |
1015 | do_cleanups (old_chain); | |
c906108c SS |
1016 | } |
1017 | ||
1018 | /* If the caller used a frame register, return its value. | |
1019 | Otherwise, return the caller's stack pointer. */ | |
34e8f22d | 1020 | if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM) |
c906108c SS |
1021 | return arm_find_callers_reg (fi, framereg); |
1022 | else | |
c3b4394c | 1023 | return fi->frame + fi->extra_info->framesize; |
c906108c SS |
1024 | } |
1025 | ||
ed9a39eb JM |
1026 | /* This function actually figures out the frame address for a given pc |
1027 | and sp. This is tricky because we sometimes don't use an explicit | |
1028 | frame pointer, and the previous stack pointer isn't necessarily | |
1029 | recorded on the stack. The only reliable way to get this info is | |
1030 | to examine the prologue. FROMLEAF is a little confusing, it means | |
1031 | this is the next frame up the chain AFTER a frameless function. If | |
1032 | this is true, then the frame value for this frame is still in the | |
1033 | fp register. */ | |
c906108c | 1034 | |
148754e5 | 1035 | static void |
ed9a39eb | 1036 | arm_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c SS |
1037 | { |
1038 | int reg; | |
f079148d | 1039 | CORE_ADDR sp; |
c906108c | 1040 | |
c3b4394c RE |
1041 | if (fi->saved_regs == NULL) |
1042 | frame_saved_regs_zalloc (fi); | |
1043 | ||
1044 | fi->extra_info = (struct frame_extra_info *) | |
1045 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
1046 | ||
1047 | fi->extra_info->framesize = 0; | |
1048 | fi->extra_info->frameoffset = 0; | |
1049 | fi->extra_info->framereg = 0; | |
1050 | ||
c906108c SS |
1051 | if (fi->next) |
1052 | fi->pc = FRAME_SAVED_PC (fi->next); | |
1053 | ||
c3b4394c | 1054 | memset (fi->saved_regs, '\000', sizeof fi->saved_regs); |
c906108c | 1055 | |
c5aa993b | 1056 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1057 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1058 | { | |
1059 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
c5aa993b | 1060 | by assuming it's always FP. */ |
34e8f22d RE |
1061 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, |
1062 | ARM_SP_REGNUM); | |
c3b4394c RE |
1063 | fi->extra_info->framesize = 0; |
1064 | fi->extra_info->frameoffset = 0; | |
c906108c SS |
1065 | return; |
1066 | } | |
c5aa993b | 1067 | else |
c906108c | 1068 | #endif |
2a451106 | 1069 | |
f079148d KB |
1070 | /* Compute stack pointer for this frame. We use this value for both the |
1071 | sigtramp and call dummy cases. */ | |
1072 | if (!fi->next) | |
1073 | sp = read_sp(); | |
1074 | else | |
c3b4394c RE |
1075 | sp = (fi->next->frame - fi->next->extra_info->frameoffset |
1076 | + fi->next->extra_info->framesize); | |
f079148d | 1077 | |
2a451106 KB |
1078 | /* Determine whether or not we're in a sigtramp frame. |
1079 | Unfortunately, it isn't sufficient to test | |
1080 | fi->signal_handler_caller because this value is sometimes set | |
1081 | after invoking INIT_EXTRA_FRAME_INFO. So we test *both* | |
1082 | fi->signal_handler_caller and IN_SIGTRAMP to determine if we need | |
1083 | to use the sigcontext addresses for the saved registers. | |
1084 | ||
1085 | Note: If an ARM IN_SIGTRAMP method ever needs to compare against | |
1086 | the name of the function, the code below will have to be changed | |
1087 | to first fetch the name of the function and then pass this name | |
f079148d | 1088 | to IN_SIGTRAMP. */ |
2a451106 | 1089 | |
3bb04bdd | 1090 | if (SIGCONTEXT_REGISTER_ADDRESS_P () |
dd96c05b | 1091 | && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0))) |
2a451106 | 1092 | { |
2a451106 | 1093 | for (reg = 0; reg < NUM_REGS; reg++) |
c3b4394c | 1094 | fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg); |
2a451106 KB |
1095 | |
1096 | /* FIXME: What about thumb mode? */ | |
34e8f22d | 1097 | fi->extra_info->framereg = ARM_SP_REGNUM; |
c3b4394c RE |
1098 | fi->frame = |
1099 | read_memory_integer (fi->saved_regs[fi->extra_info->framereg], | |
1100 | REGISTER_RAW_SIZE (fi->extra_info->framereg)); | |
1101 | fi->extra_info->framesize = 0; | |
1102 | fi->extra_info->frameoffset = 0; | |
2a451106 KB |
1103 | |
1104 | } | |
f079148d KB |
1105 | else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame)) |
1106 | { | |
1107 | CORE_ADDR rp; | |
1108 | CORE_ADDR callers_sp; | |
1109 | ||
1110 | /* Set rp point at the high end of the saved registers. */ | |
1111 | rp = fi->frame - REGISTER_SIZE; | |
1112 | ||
1113 | /* Fill in addresses of saved registers. */ | |
34e8f22d RE |
1114 | fi->saved_regs[ARM_PS_REGNUM] = rp; |
1115 | rp -= REGISTER_RAW_SIZE (ARM_PS_REGNUM); | |
1116 | for (reg = ARM_PC_REGNUM; reg >= 0; reg--) | |
f079148d | 1117 | { |
c3b4394c | 1118 | fi->saved_regs[reg] = rp; |
f079148d KB |
1119 | rp -= REGISTER_RAW_SIZE (reg); |
1120 | } | |
1121 | ||
34e8f22d RE |
1122 | callers_sp = read_memory_integer (fi->saved_regs[ARM_SP_REGNUM], |
1123 | REGISTER_RAW_SIZE (ARM_SP_REGNUM)); | |
1124 | fi->extra_info->framereg = ARM_FP_REGNUM; | |
c3b4394c RE |
1125 | fi->extra_info->framesize = callers_sp - sp; |
1126 | fi->extra_info->frameoffset = fi->frame - sp; | |
f079148d | 1127 | } |
2a451106 | 1128 | else |
c906108c SS |
1129 | { |
1130 | arm_scan_prologue (fi); | |
1131 | ||
104c1213 JM |
1132 | if (!fi->next) |
1133 | /* this is the innermost frame? */ | |
c3b4394c | 1134 | fi->frame = read_register (fi->extra_info->framereg); |
34e8f22d | 1135 | else if (fi->extra_info->framereg == ARM_FP_REGNUM |
c3b4394c | 1136 | || fi->extra_info->framereg == THUMB_FP_REGNUM) |
ed9a39eb JM |
1137 | { |
1138 | /* not the innermost frame */ | |
1139 | /* If we have an FP, the callee saved it. */ | |
c3b4394c | 1140 | if (fi->next->saved_regs[fi->extra_info->framereg] != 0) |
ed9a39eb | 1141 | fi->frame = |
c3b4394c RE |
1142 | read_memory_integer (fi->next |
1143 | ->saved_regs[fi->extra_info->framereg], 4); | |
ed9a39eb JM |
1144 | else if (fromleaf) |
1145 | /* If we were called by a frameless fn. then our frame is | |
1146 | still in the frame pointer register on the board... */ | |
1147 | fi->frame = read_fp (); | |
1148 | } | |
c906108c | 1149 | |
ed9a39eb JM |
1150 | /* Calculate actual addresses of saved registers using offsets |
1151 | determined by arm_scan_prologue. */ | |
c906108c | 1152 | for (reg = 0; reg < NUM_REGS; reg++) |
c3b4394c RE |
1153 | if (fi->saved_regs[reg] != 0) |
1154 | fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize | |
1155 | - fi->extra_info->frameoffset); | |
c906108c SS |
1156 | } |
1157 | } | |
1158 | ||
1159 | ||
34e8f22d | 1160 | /* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM |
ed9a39eb JM |
1161 | is saved in the stack anywhere, otherwise we get it from the |
1162 | registers. | |
c906108c SS |
1163 | |
1164 | The old definition of this function was a macro: | |
c5aa993b | 1165 | #define FRAME_SAVED_PC(FRAME) \ |
ed9a39eb | 1166 | ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */ |
c906108c | 1167 | |
148754e5 | 1168 | static CORE_ADDR |
ed9a39eb | 1169 | arm_frame_saved_pc (struct frame_info *fi) |
c906108c | 1170 | { |
c5aa993b | 1171 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c | 1172 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
34e8f22d | 1173 | return generic_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM); |
c906108c SS |
1174 | else |
1175 | #endif | |
c3b4394c RE |
1176 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset, |
1177 | fi->frame)) | |
f079148d | 1178 | { |
34e8f22d RE |
1179 | return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM], |
1180 | REGISTER_RAW_SIZE (ARM_PC_REGNUM)); | |
f079148d KB |
1181 | } |
1182 | else | |
c906108c | 1183 | { |
34e8f22d | 1184 | CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM); |
c906108c SS |
1185 | return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; |
1186 | } | |
1187 | } | |
1188 | ||
c906108c SS |
1189 | /* Return the frame address. On ARM, it is R11; on Thumb it is R7. |
1190 | Examine the Program Status Register to decide which state we're in. */ | |
1191 | ||
148754e5 RE |
1192 | static CORE_ADDR |
1193 | arm_read_fp (void) | |
c906108c | 1194 | { |
34e8f22d | 1195 | if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */ |
c906108c SS |
1196 | return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */ |
1197 | else | |
34e8f22d | 1198 | return read_register (ARM_FP_REGNUM); /* R11 if ARM */ |
c906108c SS |
1199 | } |
1200 | ||
148754e5 RE |
1201 | /* Store into a struct frame_saved_regs the addresses of the saved |
1202 | registers of frame described by FRAME_INFO. This includes special | |
1203 | registers such as PC and FP saved in special ways in the stack | |
1204 | frame. SP is even more special: the address we return for it IS | |
1205 | the sp for the next frame. */ | |
c906108c | 1206 | |
148754e5 | 1207 | static void |
c3b4394c | 1208 | arm_frame_init_saved_regs (struct frame_info *fip) |
c906108c | 1209 | { |
c3b4394c RE |
1210 | |
1211 | if (fip->saved_regs) | |
1212 | return; | |
1213 | ||
1214 | arm_init_extra_frame_info (0, fip); | |
c906108c SS |
1215 | } |
1216 | ||
148754e5 RE |
1217 | /* Push an empty stack frame, to record the current PC, etc. */ |
1218 | ||
1219 | static void | |
ed9a39eb | 1220 | arm_push_dummy_frame (void) |
c906108c | 1221 | { |
34e8f22d | 1222 | CORE_ADDR old_sp = read_register (ARM_SP_REGNUM); |
c906108c SS |
1223 | CORE_ADDR sp = old_sp; |
1224 | CORE_ADDR fp, prologue_start; | |
1225 | int regnum; | |
1226 | ||
1227 | /* Push the two dummy prologue instructions in reverse order, | |
1228 | so that they'll be in the correct low-to-high order in memory. */ | |
1229 | /* sub fp, ip, #4 */ | |
1230 | sp = push_word (sp, 0xe24cb004); | |
1231 | /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */ | |
1232 | prologue_start = sp = push_word (sp, 0xe92ddfff); | |
1233 | ||
ed9a39eb JM |
1234 | /* Push a pointer to the dummy prologue + 12, because when stm |
1235 | instruction stores the PC, it stores the address of the stm | |
c906108c SS |
1236 | instruction itself plus 12. */ |
1237 | fp = sp = push_word (sp, prologue_start + 12); | |
c5aa993b | 1238 | |
f079148d | 1239 | /* Push the processor status. */ |
34e8f22d | 1240 | sp = push_word (sp, read_register (ARM_PS_REGNUM)); |
f079148d KB |
1241 | |
1242 | /* Push all 16 registers starting with r15. */ | |
34e8f22d | 1243 | for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--) |
c906108c | 1244 | sp = push_word (sp, read_register (regnum)); |
c5aa993b | 1245 | |
f079148d | 1246 | /* Update fp (for both Thumb and ARM) and sp. */ |
34e8f22d | 1247 | write_register (ARM_FP_REGNUM, fp); |
c906108c | 1248 | write_register (THUMB_FP_REGNUM, fp); |
34e8f22d | 1249 | write_register (ARM_SP_REGNUM, sp); |
c906108c SS |
1250 | } |
1251 | ||
6eb69eab RE |
1252 | /* CALL_DUMMY_WORDS: |
1253 | This sequence of words is the instructions | |
1254 | ||
1255 | mov lr,pc | |
1256 | mov pc,r4 | |
1257 | illegal | |
1258 | ||
1259 | Note this is 12 bytes. */ | |
1260 | ||
34e8f22d | 1261 | static LONGEST arm_call_dummy_words[] = |
6eb69eab RE |
1262 | { |
1263 | 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe | |
1264 | }; | |
1265 | ||
3fb4b924 RE |
1266 | /* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy |
1267 | breakpoint to the proper address in the call dummy, so that | |
1268 | `finish' after a stop in a call dummy works. | |
1269 | ||
d7b486e7 RE |
1270 | FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an |
1271 | optimal solution, but the call to arm_fix_call_dummy is immediately | |
1272 | followed by a call to run_stack_dummy, which is the only function | |
1273 | where call_dummy_breakpoint_offset is actually used. */ | |
3fb4b924 RE |
1274 | |
1275 | ||
1276 | static void | |
1277 | arm_set_call_dummy_breakpoint_offset (void) | |
1278 | { | |
1279 | if (caller_is_thumb) | |
1280 | set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4); | |
1281 | else | |
1282 | set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8); | |
1283 | } | |
1284 | ||
c906108c | 1285 | /* Fix up the call dummy, based on whether the processor is currently |
ed9a39eb JM |
1286 | in Thumb or ARM mode, and whether the target function is Thumb or |
1287 | ARM. There are three different situations requiring three | |
c906108c SS |
1288 | different dummies: |
1289 | ||
1290 | * ARM calling ARM: uses the call dummy in tm-arm.h, which has already | |
c5aa993b | 1291 | been copied into the dummy parameter to this function. |
c906108c | 1292 | * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the |
c5aa993b | 1293 | "mov pc,r4" instruction patched to be a "bx r4" instead. |
c906108c | 1294 | * Thumb calling anything: uses the Thumb dummy defined below, which |
c5aa993b | 1295 | works for calling both ARM and Thumb functions. |
c906108c | 1296 | |
ed9a39eb JM |
1297 | All three call dummies expect to receive the target function |
1298 | address in R4, with the low bit set if it's a Thumb function. */ | |
c906108c | 1299 | |
34e8f22d | 1300 | static void |
ed9a39eb | 1301 | arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 1302 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
1303 | { |
1304 | static short thumb_dummy[4] = | |
1305 | { | |
c5aa993b JM |
1306 | 0xf000, 0xf801, /* bl label */ |
1307 | 0xdf18, /* swi 24 */ | |
1308 | 0x4720, /* label: bx r4 */ | |
c906108c SS |
1309 | }; |
1310 | static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */ | |
1311 | ||
1312 | /* Set flag indicating whether the current PC is in a Thumb function. */ | |
c5aa993b | 1313 | caller_is_thumb = arm_pc_is_thumb (read_pc ()); |
3fb4b924 | 1314 | arm_set_call_dummy_breakpoint_offset (); |
c906108c | 1315 | |
ed9a39eb JM |
1316 | /* If the target function is Thumb, set the low bit of the function |
1317 | address. And if the CPU is currently in ARM mode, patch the | |
1318 | second instruction of call dummy to use a BX instruction to | |
1319 | switch to Thumb mode. */ | |
c906108c SS |
1320 | target_is_thumb = arm_pc_is_thumb (fun); |
1321 | if (target_is_thumb) | |
1322 | { | |
1323 | fun |= 1; | |
1324 | if (!caller_is_thumb) | |
1325 | store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4); | |
1326 | } | |
1327 | ||
1328 | /* If the CPU is currently in Thumb mode, use the Thumb call dummy | |
1329 | instead of the ARM one that's already been copied. This will | |
1330 | work for both Thumb and ARM target functions. */ | |
1331 | if (caller_is_thumb) | |
1332 | { | |
1333 | int i; | |
1334 | char *p = dummy; | |
1335 | int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]); | |
1336 | ||
1337 | for (i = 0; i < len; i++) | |
1338 | { | |
1339 | store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]); | |
1340 | p += sizeof (thumb_dummy[0]); | |
1341 | } | |
1342 | } | |
1343 | ||
ed9a39eb JM |
1344 | /* Put the target address in r4; the call dummy will copy this to |
1345 | the PC. */ | |
c906108c SS |
1346 | write_register (4, fun); |
1347 | } | |
1348 | ||
ed9a39eb JM |
1349 | /* Note: ScottB |
1350 | ||
1351 | This function does not support passing parameters using the FPA | |
1352 | variant of the APCS. It passes any floating point arguments in the | |
1353 | general registers and/or on the stack. */ | |
c906108c | 1354 | |
39bbf761 | 1355 | static CORE_ADDR |
ea7c478f | 1356 | arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
ed9a39eb | 1357 | int struct_return, CORE_ADDR struct_addr) |
c906108c | 1358 | { |
ed9a39eb JM |
1359 | char *fp; |
1360 | int argnum, argreg, nstack_size; | |
1361 | ||
1362 | /* Walk through the list of args and determine how large a temporary | |
1363 | stack is required. Need to take care here as structs may be | |
1364 | passed on the stack, and we have to to push them. */ | |
1365 | nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */ | |
1366 | if (struct_return) /* The struct address goes in A1. */ | |
1367 | nstack_size += REGISTER_SIZE; | |
1368 | ||
1369 | /* Walk through the arguments and add their size to nstack_size. */ | |
1370 | for (argnum = 0; argnum < nargs; argnum++) | |
c5aa993b | 1371 | { |
c906108c | 1372 | int len; |
ed9a39eb JM |
1373 | struct type *arg_type; |
1374 | ||
1375 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1376 | len = TYPE_LENGTH (arg_type); | |
c906108c | 1377 | |
6b230f1b | 1378 | nstack_size += len; |
ed9a39eb | 1379 | } |
c906108c | 1380 | |
ed9a39eb JM |
1381 | /* Allocate room on the stack, and initialize our stack frame |
1382 | pointer. */ | |
1383 | fp = NULL; | |
1384 | if (nstack_size > 0) | |
1385 | { | |
1386 | sp -= nstack_size; | |
1387 | fp = (char *) sp; | |
1388 | } | |
1389 | ||
1390 | /* Initialize the integer argument register pointer. */ | |
34e8f22d | 1391 | argreg = ARM_A1_REGNUM; |
c906108c | 1392 | |
ed9a39eb JM |
1393 | /* The struct_return pointer occupies the first parameter passing |
1394 | register. */ | |
c906108c | 1395 | if (struct_return) |
c5aa993b | 1396 | write_register (argreg++, struct_addr); |
c906108c | 1397 | |
ed9a39eb JM |
1398 | /* Process arguments from left to right. Store as many as allowed |
1399 | in the parameter passing registers (A1-A4), and save the rest on | |
1400 | the temporary stack. */ | |
c5aa993b | 1401 | for (argnum = 0; argnum < nargs; argnum++) |
c906108c | 1402 | { |
ed9a39eb | 1403 | int len; |
c5aa993b | 1404 | char *val; |
c5aa993b | 1405 | CORE_ADDR regval; |
ed9a39eb JM |
1406 | enum type_code typecode; |
1407 | struct type *arg_type, *target_type; | |
1408 | ||
1409 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1410 | target_type = TYPE_TARGET_TYPE (arg_type); | |
1411 | len = TYPE_LENGTH (arg_type); | |
1412 | typecode = TYPE_CODE (arg_type); | |
1413 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
1414 | ||
da59e081 JM |
1415 | #if 1 |
1416 | /* I don't know why this code was disable. The only logical use | |
1417 | for a function pointer is to call that function, so setting | |
1418 | the mode bit is perfectly fine. FN */ | |
ed9a39eb | 1419 | /* If the argument is a pointer to a function, and it is a Thumb |
c906108c | 1420 | function, set the low bit of the pointer. */ |
ed9a39eb JM |
1421 | if (TYPE_CODE_PTR == typecode |
1422 | && NULL != target_type | |
1423 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
c906108c | 1424 | { |
ed9a39eb | 1425 | CORE_ADDR regval = extract_address (val, len); |
c906108c SS |
1426 | if (arm_pc_is_thumb (regval)) |
1427 | store_address (val, len, MAKE_THUMB_ADDR (regval)); | |
1428 | } | |
c906108c | 1429 | #endif |
ed9a39eb JM |
1430 | /* Copy the argument to general registers or the stack in |
1431 | register-sized pieces. Large arguments are split between | |
1432 | registers and stack. */ | |
1433 | while (len > 0) | |
c906108c | 1434 | { |
ed9a39eb JM |
1435 | int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; |
1436 | ||
1437 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
c906108c | 1438 | { |
ed9a39eb JM |
1439 | /* It's an argument being passed in a general register. */ |
1440 | regval = extract_address (val, partial_len); | |
1441 | write_register (argreg++, regval); | |
c906108c | 1442 | } |
ed9a39eb JM |
1443 | else |
1444 | { | |
1445 | /* Push the arguments onto the stack. */ | |
1446 | write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE); | |
1447 | fp += REGISTER_SIZE; | |
1448 | } | |
1449 | ||
1450 | len -= partial_len; | |
1451 | val += partial_len; | |
c906108c SS |
1452 | } |
1453 | } | |
c906108c SS |
1454 | |
1455 | /* Return adjusted stack pointer. */ | |
1456 | return sp; | |
1457 | } | |
1458 | ||
f079148d KB |
1459 | /* Pop the current frame. So long as the frame info has been initialized |
1460 | properly (see arm_init_extra_frame_info), this code works for dummy frames | |
1461 | as well as regular frames. I.e, there's no need to have a special case | |
1462 | for dummy frames. */ | |
148754e5 | 1463 | static void |
ed9a39eb | 1464 | arm_pop_frame (void) |
c906108c | 1465 | { |
c906108c | 1466 | int regnum; |
8b93c638 | 1467 | struct frame_info *frame = get_current_frame (); |
c3b4394c RE |
1468 | CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset |
1469 | + frame->extra_info->framesize); | |
c906108c | 1470 | |
f079148d | 1471 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
c3b4394c | 1472 | if (frame->saved_regs[regnum] != 0) |
f079148d | 1473 | write_register (regnum, |
c3b4394c | 1474 | read_memory_integer (frame->saved_regs[regnum], |
f079148d | 1475 | REGISTER_RAW_SIZE (regnum))); |
8b93c638 | 1476 | |
34e8f22d RE |
1477 | write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame)); |
1478 | write_register (ARM_SP_REGNUM, old_SP); | |
c906108c SS |
1479 | |
1480 | flush_cached_frames (); | |
1481 | } | |
1482 | ||
1483 | static void | |
ed9a39eb | 1484 | print_fpu_flags (int flags) |
c906108c | 1485 | { |
c5aa993b JM |
1486 | if (flags & (1 << 0)) |
1487 | fputs ("IVO ", stdout); | |
1488 | if (flags & (1 << 1)) | |
1489 | fputs ("DVZ ", stdout); | |
1490 | if (flags & (1 << 2)) | |
1491 | fputs ("OFL ", stdout); | |
1492 | if (flags & (1 << 3)) | |
1493 | fputs ("UFL ", stdout); | |
1494 | if (flags & (1 << 4)) | |
1495 | fputs ("INX ", stdout); | |
1496 | putchar ('\n'); | |
c906108c SS |
1497 | } |
1498 | ||
5e74b15c RE |
1499 | /* Print interesting information about the floating point processor |
1500 | (if present) or emulator. */ | |
34e8f22d | 1501 | static void |
5e74b15c | 1502 | arm_print_float_info (void) |
c906108c | 1503 | { |
34e8f22d | 1504 | register unsigned long status = read_register (ARM_FPS_REGNUM); |
c5aa993b JM |
1505 | int type; |
1506 | ||
1507 | type = (status >> 24) & 127; | |
1508 | printf ("%s FPU type %d\n", | |
ed9a39eb | 1509 | (status & (1 << 31)) ? "Hardware" : "Software", |
c5aa993b JM |
1510 | type); |
1511 | fputs ("mask: ", stdout); | |
1512 | print_fpu_flags (status >> 16); | |
1513 | fputs ("flags: ", stdout); | |
1514 | print_fpu_flags (status); | |
c906108c SS |
1515 | } |
1516 | ||
34e8f22d RE |
1517 | /* Return the GDB type object for the "standard" data type of data in |
1518 | register N. */ | |
1519 | ||
1520 | static struct type * | |
032758dc AC |
1521 | arm_register_type (int regnum) |
1522 | { | |
34e8f22d | 1523 | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
032758dc | 1524 | { |
d7449b42 | 1525 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
032758dc AC |
1526 | return builtin_type_arm_ext_big; |
1527 | else | |
1528 | return builtin_type_arm_ext_littlebyte_bigword; | |
1529 | } | |
1530 | else | |
1531 | return builtin_type_int32; | |
1532 | } | |
1533 | ||
34e8f22d RE |
1534 | /* Index within `registers' of the first byte of the space for |
1535 | register N. */ | |
1536 | ||
1537 | static int | |
1538 | arm_register_byte (int regnum) | |
1539 | { | |
1540 | if (regnum < ARM_F0_REGNUM) | |
1541 | return regnum * INT_REGISTER_RAW_SIZE; | |
1542 | else if (regnum < ARM_PS_REGNUM) | |
1543 | return (NUM_GREGS * INT_REGISTER_RAW_SIZE | |
1544 | + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE); | |
1545 | else | |
1546 | return (NUM_GREGS * INT_REGISTER_RAW_SIZE | |
1547 | + NUM_FREGS * FP_REGISTER_RAW_SIZE | |
1548 | + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE); | |
1549 | } | |
1550 | ||
1551 | /* Number of bytes of storage in the actual machine representation for | |
1552 | register N. All registers are 4 bytes, except fp0 - fp7, which are | |
1553 | 12 bytes in length. */ | |
1554 | ||
1555 | static int | |
1556 | arm_register_raw_size (int regnum) | |
1557 | { | |
1558 | if (regnum < ARM_F0_REGNUM) | |
1559 | return INT_REGISTER_RAW_SIZE; | |
1560 | else if (regnum < ARM_FPS_REGNUM) | |
1561 | return FP_REGISTER_RAW_SIZE; | |
1562 | else | |
1563 | return STATUS_REGISTER_SIZE; | |
1564 | } | |
1565 | ||
1566 | /* Number of bytes of storage in a program's representation | |
1567 | for register N. */ | |
1568 | static int | |
1569 | arm_register_virtual_size (int regnum) | |
1570 | { | |
1571 | if (regnum < ARM_F0_REGNUM) | |
1572 | return INT_REGISTER_VIRTUAL_SIZE; | |
1573 | else if (regnum < ARM_FPS_REGNUM) | |
1574 | return FP_REGISTER_VIRTUAL_SIZE; | |
1575 | else | |
1576 | return STATUS_REGISTER_SIZE; | |
1577 | } | |
1578 | ||
1579 | ||
a37b3cc0 AC |
1580 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
1581 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
1582 | It is thought that this is is the floating-point register format on | |
1583 | little-endian systems. */ | |
c906108c | 1584 | |
ed9a39eb JM |
1585 | static void |
1586 | convert_from_extended (void *ptr, void *dbl) | |
c906108c | 1587 | { |
a37b3cc0 | 1588 | DOUBLEST d; |
d7449b42 | 1589 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
1590 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); |
1591 | else | |
1592 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1593 | ptr, &d); | |
1594 | floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl); | |
c906108c SS |
1595 | } |
1596 | ||
34e8f22d | 1597 | static void |
ed9a39eb | 1598 | convert_to_extended (void *dbl, void *ptr) |
c906108c | 1599 | { |
a37b3cc0 AC |
1600 | DOUBLEST d; |
1601 | floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d); | |
d7449b42 | 1602 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
1603 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); |
1604 | else | |
1605 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1606 | &d, dbl); | |
c906108c | 1607 | } |
ed9a39eb | 1608 | |
c906108c | 1609 | static int |
ed9a39eb | 1610 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
1611 | { |
1612 | if (cond == INST_AL || cond == INST_NV) | |
1613 | return 1; | |
1614 | ||
1615 | switch (cond) | |
1616 | { | |
1617 | case INST_EQ: | |
1618 | return ((status_reg & FLAG_Z) != 0); | |
1619 | case INST_NE: | |
1620 | return ((status_reg & FLAG_Z) == 0); | |
1621 | case INST_CS: | |
1622 | return ((status_reg & FLAG_C) != 0); | |
1623 | case INST_CC: | |
1624 | return ((status_reg & FLAG_C) == 0); | |
1625 | case INST_MI: | |
1626 | return ((status_reg & FLAG_N) != 0); | |
1627 | case INST_PL: | |
1628 | return ((status_reg & FLAG_N) == 0); | |
1629 | case INST_VS: | |
1630 | return ((status_reg & FLAG_V) != 0); | |
1631 | case INST_VC: | |
1632 | return ((status_reg & FLAG_V) == 0); | |
1633 | case INST_HI: | |
1634 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
1635 | case INST_LS: | |
1636 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
1637 | case INST_GE: | |
1638 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
1639 | case INST_LT: | |
1640 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
1641 | case INST_GT: | |
1642 | return (((status_reg & FLAG_Z) == 0) && | |
ed9a39eb | 1643 | (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1644 | case INST_LE: |
1645 | return (((status_reg & FLAG_Z) != 0) || | |
ed9a39eb | 1646 | (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1647 | } |
1648 | return 1; | |
1649 | } | |
1650 | ||
9512d7fd | 1651 | /* Support routines for single stepping. Calculate the next PC value. */ |
c906108c SS |
1652 | #define submask(x) ((1L << ((x) + 1)) - 1) |
1653 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
1654 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
1655 | #define sbits(obj,st,fn) \ | |
1656 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
1657 | #define BranchDest(addr,instr) \ | |
1658 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
1659 | #define ARM_PC_32 1 | |
1660 | ||
1661 | static unsigned long | |
ed9a39eb JM |
1662 | shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val, |
1663 | unsigned long status_reg) | |
c906108c SS |
1664 | { |
1665 | unsigned long res, shift; | |
1666 | int rm = bits (inst, 0, 3); | |
1667 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
1668 | |
1669 | if (bit (inst, 4)) | |
c906108c SS |
1670 | { |
1671 | int rs = bits (inst, 8, 11); | |
1672 | shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; | |
1673 | } | |
1674 | else | |
1675 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
1676 | |
1677 | res = (rm == 15 | |
c906108c | 1678 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
c5aa993b | 1679 | + (bit (inst, 4) ? 12 : 8)) |
c906108c SS |
1680 | : read_register (rm)); |
1681 | ||
1682 | switch (shifttype) | |
1683 | { | |
c5aa993b | 1684 | case 0: /* LSL */ |
c906108c SS |
1685 | res = shift >= 32 ? 0 : res << shift; |
1686 | break; | |
c5aa993b JM |
1687 | |
1688 | case 1: /* LSR */ | |
c906108c SS |
1689 | res = shift >= 32 ? 0 : res >> shift; |
1690 | break; | |
1691 | ||
c5aa993b JM |
1692 | case 2: /* ASR */ |
1693 | if (shift >= 32) | |
1694 | shift = 31; | |
c906108c SS |
1695 | res = ((res & 0x80000000L) |
1696 | ? ~((~res) >> shift) : res >> shift); | |
1697 | break; | |
1698 | ||
c5aa993b | 1699 | case 3: /* ROR/RRX */ |
c906108c SS |
1700 | shift &= 31; |
1701 | if (shift == 0) | |
1702 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
1703 | else | |
c5aa993b | 1704 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
1705 | break; |
1706 | } | |
1707 | ||
1708 | return res & 0xffffffff; | |
1709 | } | |
1710 | ||
c906108c SS |
1711 | /* Return number of 1-bits in VAL. */ |
1712 | ||
1713 | static int | |
ed9a39eb | 1714 | bitcount (unsigned long val) |
c906108c SS |
1715 | { |
1716 | int nbits; | |
1717 | for (nbits = 0; val != 0; nbits++) | |
c5aa993b | 1718 | val &= val - 1; /* delete rightmost 1-bit in val */ |
c906108c SS |
1719 | return nbits; |
1720 | } | |
1721 | ||
34e8f22d | 1722 | CORE_ADDR |
ed9a39eb | 1723 | thumb_get_next_pc (CORE_ADDR pc) |
c906108c | 1724 | { |
c5aa993b | 1725 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
c906108c | 1726 | unsigned short inst1 = read_memory_integer (pc, 2); |
c5aa993b | 1727 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ |
c906108c SS |
1728 | unsigned long offset; |
1729 | ||
1730 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
1731 | { | |
1732 | CORE_ADDR sp; | |
1733 | ||
1734 | /* Fetch the saved PC from the stack. It's stored above | |
1735 | all of the other registers. */ | |
1736 | offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE; | |
34e8f22d | 1737 | sp = read_register (ARM_SP_REGNUM); |
c906108c SS |
1738 | nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4); |
1739 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1740 | if (nextpc == pc) | |
1741 | error ("Infinite loop detected"); | |
1742 | } | |
1743 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
1744 | { | |
34e8f22d | 1745 | unsigned long status = read_register (ARM_PS_REGNUM); |
c5aa993b | 1746 | unsigned long cond = bits (inst1, 8, 11); |
c906108c SS |
1747 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ |
1748 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); | |
1749 | } | |
1750 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
1751 | { | |
1752 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
1753 | } | |
1754 | else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */ | |
1755 | { | |
1756 | unsigned short inst2 = read_memory_integer (pc + 2, 2); | |
c5aa993b | 1757 | offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); |
c906108c SS |
1758 | nextpc = pc_val + offset; |
1759 | } | |
1760 | ||
1761 | return nextpc; | |
1762 | } | |
1763 | ||
34e8f22d | 1764 | CORE_ADDR |
ed9a39eb | 1765 | arm_get_next_pc (CORE_ADDR pc) |
c906108c SS |
1766 | { |
1767 | unsigned long pc_val; | |
1768 | unsigned long this_instr; | |
1769 | unsigned long status; | |
1770 | CORE_ADDR nextpc; | |
1771 | ||
1772 | if (arm_pc_is_thumb (pc)) | |
1773 | return thumb_get_next_pc (pc); | |
1774 | ||
1775 | pc_val = (unsigned long) pc; | |
1776 | this_instr = read_memory_integer (pc, 4); | |
34e8f22d | 1777 | status = read_register (ARM_PS_REGNUM); |
c5aa993b | 1778 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c SS |
1779 | |
1780 | if (condition_true (bits (this_instr, 28, 31), status)) | |
1781 | { | |
1782 | switch (bits (this_instr, 24, 27)) | |
1783 | { | |
c5aa993b JM |
1784 | case 0x0: |
1785 | case 0x1: /* data processing */ | |
1786 | case 0x2: | |
1787 | case 0x3: | |
c906108c SS |
1788 | { |
1789 | unsigned long operand1, operand2, result = 0; | |
1790 | unsigned long rn; | |
1791 | int c; | |
c5aa993b | 1792 | |
c906108c SS |
1793 | if (bits (this_instr, 12, 15) != 15) |
1794 | break; | |
1795 | ||
1796 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 1797 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
c906108c SS |
1798 | error ("Illegal update to pc in instruction"); |
1799 | ||
1800 | /* Multiply into PC */ | |
1801 | c = (status & FLAG_C) ? 1 : 0; | |
1802 | rn = bits (this_instr, 16, 19); | |
1803 | operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); | |
c5aa993b | 1804 | |
c906108c SS |
1805 | if (bit (this_instr, 25)) |
1806 | { | |
1807 | unsigned long immval = bits (this_instr, 0, 7); | |
1808 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
1809 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
1810 | & 0xffffffff; | |
c906108c | 1811 | } |
c5aa993b | 1812 | else /* operand 2 is a shifted register */ |
c906108c | 1813 | operand2 = shifted_reg_val (this_instr, c, pc_val, status); |
c5aa993b | 1814 | |
c906108c SS |
1815 | switch (bits (this_instr, 21, 24)) |
1816 | { | |
c5aa993b | 1817 | case 0x0: /*and */ |
c906108c SS |
1818 | result = operand1 & operand2; |
1819 | break; | |
1820 | ||
c5aa993b | 1821 | case 0x1: /*eor */ |
c906108c SS |
1822 | result = operand1 ^ operand2; |
1823 | break; | |
1824 | ||
c5aa993b | 1825 | case 0x2: /*sub */ |
c906108c SS |
1826 | result = operand1 - operand2; |
1827 | break; | |
1828 | ||
c5aa993b | 1829 | case 0x3: /*rsb */ |
c906108c SS |
1830 | result = operand2 - operand1; |
1831 | break; | |
1832 | ||
c5aa993b | 1833 | case 0x4: /*add */ |
c906108c SS |
1834 | result = operand1 + operand2; |
1835 | break; | |
1836 | ||
c5aa993b | 1837 | case 0x5: /*adc */ |
c906108c SS |
1838 | result = operand1 + operand2 + c; |
1839 | break; | |
1840 | ||
c5aa993b | 1841 | case 0x6: /*sbc */ |
c906108c SS |
1842 | result = operand1 - operand2 + c; |
1843 | break; | |
1844 | ||
c5aa993b | 1845 | case 0x7: /*rsc */ |
c906108c SS |
1846 | result = operand2 - operand1 + c; |
1847 | break; | |
1848 | ||
c5aa993b JM |
1849 | case 0x8: |
1850 | case 0x9: | |
1851 | case 0xa: | |
1852 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
1853 | result = (unsigned long) nextpc; |
1854 | break; | |
1855 | ||
c5aa993b | 1856 | case 0xc: /*orr */ |
c906108c SS |
1857 | result = operand1 | operand2; |
1858 | break; | |
1859 | ||
c5aa993b | 1860 | case 0xd: /*mov */ |
c906108c SS |
1861 | /* Always step into a function. */ |
1862 | result = operand2; | |
c5aa993b | 1863 | break; |
c906108c | 1864 | |
c5aa993b | 1865 | case 0xe: /*bic */ |
c906108c SS |
1866 | result = operand1 & ~operand2; |
1867 | break; | |
1868 | ||
c5aa993b | 1869 | case 0xf: /*mvn */ |
c906108c SS |
1870 | result = ~operand2; |
1871 | break; | |
1872 | } | |
1873 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1874 | ||
1875 | if (nextpc == pc) | |
1876 | error ("Infinite loop detected"); | |
1877 | break; | |
1878 | } | |
c5aa993b JM |
1879 | |
1880 | case 0x4: | |
1881 | case 0x5: /* data transfer */ | |
1882 | case 0x6: | |
1883 | case 0x7: | |
c906108c SS |
1884 | if (bit (this_instr, 20)) |
1885 | { | |
1886 | /* load */ | |
1887 | if (bits (this_instr, 12, 15) == 15) | |
1888 | { | |
1889 | /* rd == pc */ | |
c5aa993b | 1890 | unsigned long rn; |
c906108c | 1891 | unsigned long base; |
c5aa993b | 1892 | |
c906108c SS |
1893 | if (bit (this_instr, 22)) |
1894 | error ("Illegal update to pc in instruction"); | |
1895 | ||
1896 | /* byte write to PC */ | |
1897 | rn = bits (this_instr, 16, 19); | |
1898 | base = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1899 | if (bit (this_instr, 24)) | |
1900 | { | |
1901 | /* pre-indexed */ | |
1902 | int c = (status & FLAG_C) ? 1 : 0; | |
1903 | unsigned long offset = | |
c5aa993b | 1904 | (bit (this_instr, 25) |
ed9a39eb | 1905 | ? shifted_reg_val (this_instr, c, pc_val, status) |
c5aa993b | 1906 | : bits (this_instr, 0, 11)); |
c906108c SS |
1907 | |
1908 | if (bit (this_instr, 23)) | |
1909 | base += offset; | |
1910 | else | |
1911 | base -= offset; | |
1912 | } | |
c5aa993b | 1913 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
c906108c | 1914 | 4); |
c5aa993b | 1915 | |
c906108c SS |
1916 | nextpc = ADDR_BITS_REMOVE (nextpc); |
1917 | ||
1918 | if (nextpc == pc) | |
1919 | error ("Infinite loop detected"); | |
1920 | } | |
1921 | } | |
1922 | break; | |
c5aa993b JM |
1923 | |
1924 | case 0x8: | |
1925 | case 0x9: /* block transfer */ | |
c906108c SS |
1926 | if (bit (this_instr, 20)) |
1927 | { | |
1928 | /* LDM */ | |
1929 | if (bit (this_instr, 15)) | |
1930 | { | |
1931 | /* loading pc */ | |
1932 | int offset = 0; | |
1933 | ||
1934 | if (bit (this_instr, 23)) | |
1935 | { | |
1936 | /* up */ | |
1937 | unsigned long reglist = bits (this_instr, 0, 14); | |
1938 | offset = bitcount (reglist) * 4; | |
c5aa993b | 1939 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
1940 | offset += 4; |
1941 | } | |
1942 | else if (bit (this_instr, 24)) | |
1943 | offset = -4; | |
c5aa993b | 1944 | |
c906108c | 1945 | { |
c5aa993b JM |
1946 | unsigned long rn_val = |
1947 | read_register (bits (this_instr, 16, 19)); | |
c906108c SS |
1948 | nextpc = |
1949 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 1950 | + offset), |
c906108c SS |
1951 | 4); |
1952 | } | |
1953 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1954 | if (nextpc == pc) | |
1955 | error ("Infinite loop detected"); | |
1956 | } | |
1957 | } | |
1958 | break; | |
c5aa993b JM |
1959 | |
1960 | case 0xb: /* branch & link */ | |
1961 | case 0xa: /* branch */ | |
c906108c SS |
1962 | { |
1963 | nextpc = BranchDest (pc, this_instr); | |
1964 | ||
1965 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1966 | if (nextpc == pc) | |
1967 | error ("Infinite loop detected"); | |
1968 | break; | |
1969 | } | |
c5aa993b JM |
1970 | |
1971 | case 0xc: | |
1972 | case 0xd: | |
1973 | case 0xe: /* coproc ops */ | |
1974 | case 0xf: /* SWI */ | |
c906108c SS |
1975 | break; |
1976 | ||
1977 | default: | |
97e03143 | 1978 | fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n"); |
c906108c SS |
1979 | return (pc); |
1980 | } | |
1981 | } | |
1982 | ||
1983 | return nextpc; | |
1984 | } | |
1985 | ||
9512d7fd FN |
1986 | /* single_step() is called just before we want to resume the inferior, |
1987 | if we want to single-step it but there is no hardware or kernel | |
1988 | single-step support. We find the target of the coming instruction | |
1989 | and breakpoint it. | |
1990 | ||
1991 | single_step is also called just after the inferior stops. If we had | |
1992 | set up a simulated single-step, we undo our damage. */ | |
1993 | ||
34e8f22d RE |
1994 | static void |
1995 | arm_software_single_step (enum target_signal sig, int insert_bpt) | |
9512d7fd FN |
1996 | { |
1997 | static int next_pc; /* State between setting and unsetting. */ | |
1998 | static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */ | |
1999 | ||
2000 | if (insert_bpt) | |
2001 | { | |
34e8f22d | 2002 | next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM)); |
80fcf3f0 | 2003 | target_insert_breakpoint (next_pc, break_mem); |
9512d7fd FN |
2004 | } |
2005 | else | |
80fcf3f0 | 2006 | target_remove_breakpoint (next_pc, break_mem); |
9512d7fd | 2007 | } |
9512d7fd | 2008 | |
c906108c SS |
2009 | #include "bfd-in2.h" |
2010 | #include "libcoff.h" | |
2011 | ||
2012 | static int | |
ed9a39eb | 2013 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
2014 | { |
2015 | if (arm_pc_is_thumb (memaddr)) | |
2016 | { | |
c5aa993b JM |
2017 | static asymbol *asym; |
2018 | static combined_entry_type ce; | |
2019 | static struct coff_symbol_struct csym; | |
2020 | static struct _bfd fake_bfd; | |
2021 | static bfd_target fake_target; | |
c906108c SS |
2022 | |
2023 | if (csym.native == NULL) | |
2024 | { | |
2025 | /* Create a fake symbol vector containing a Thumb symbol. This is | |
2026 | solely so that the code in print_insn_little_arm() and | |
2027 | print_insn_big_arm() in opcodes/arm-dis.c will detect the presence | |
2028 | of a Thumb symbol and switch to decoding Thumb instructions. */ | |
c5aa993b JM |
2029 | |
2030 | fake_target.flavour = bfd_target_coff_flavour; | |
2031 | fake_bfd.xvec = &fake_target; | |
c906108c | 2032 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; |
c5aa993b JM |
2033 | csym.native = &ce; |
2034 | csym.symbol.the_bfd = &fake_bfd; | |
2035 | csym.symbol.name = "fake"; | |
2036 | asym = (asymbol *) & csym; | |
c906108c | 2037 | } |
c5aa993b | 2038 | |
c906108c | 2039 | memaddr = UNMAKE_THUMB_ADDR (memaddr); |
c5aa993b | 2040 | info->symbols = &asym; |
c906108c SS |
2041 | } |
2042 | else | |
2043 | info->symbols = NULL; | |
c5aa993b | 2044 | |
d7449b42 | 2045 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
2046 | return print_insn_big_arm (memaddr, info); |
2047 | else | |
2048 | return print_insn_little_arm (memaddr, info); | |
2049 | } | |
2050 | ||
66e810cd RE |
2051 | /* The following define instruction sequences that will cause ARM |
2052 | cpu's to take an undefined instruction trap. These are used to | |
2053 | signal a breakpoint to GDB. | |
2054 | ||
2055 | The newer ARMv4T cpu's are capable of operating in ARM or Thumb | |
2056 | modes. A different instruction is required for each mode. The ARM | |
2057 | cpu's can also be big or little endian. Thus four different | |
2058 | instructions are needed to support all cases. | |
2059 | ||
2060 | Note: ARMv4 defines several new instructions that will take the | |
2061 | undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does | |
2062 | not in fact add the new instructions. The new undefined | |
2063 | instructions in ARMv4 are all instructions that had no defined | |
2064 | behaviour in earlier chips. There is no guarantee that they will | |
2065 | raise an exception, but may be treated as NOP's. In practice, it | |
2066 | may only safe to rely on instructions matching: | |
2067 | ||
2068 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | |
2069 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | |
2070 | C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x | |
2071 | ||
2072 | Even this may only true if the condition predicate is true. The | |
2073 | following use a condition predicate of ALWAYS so it is always TRUE. | |
2074 | ||
2075 | There are other ways of forcing a breakpoint. GNU/Linux, RISC iX, | |
2076 | and NetBSD all use a software interrupt rather than an undefined | |
2077 | instruction to force a trap. This can be handled by by the | |
2078 | abi-specific code during establishment of the gdbarch vector. */ | |
2079 | ||
2080 | ||
d7b486e7 RE |
2081 | /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to |
2082 | override these definitions. */ | |
66e810cd RE |
2083 | #ifndef ARM_LE_BREAKPOINT |
2084 | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} | |
2085 | #endif | |
2086 | #ifndef ARM_BE_BREAKPOINT | |
2087 | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | |
2088 | #endif | |
2089 | #ifndef THUMB_LE_BREAKPOINT | |
2090 | #define THUMB_LE_BREAKPOINT {0xfe,0xdf} | |
2091 | #endif | |
2092 | #ifndef THUMB_BE_BREAKPOINT | |
2093 | #define THUMB_BE_BREAKPOINT {0xdf,0xfe} | |
2094 | #endif | |
2095 | ||
2096 | static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; | |
2097 | static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; | |
2098 | static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; | |
2099 | static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; | |
2100 | ||
34e8f22d RE |
2101 | /* Determine the type and size of breakpoint to insert at PCPTR. Uses |
2102 | the program counter value to determine whether a 16-bit or 32-bit | |
ed9a39eb JM |
2103 | breakpoint should be used. It returns a pointer to a string of |
2104 | bytes that encode a breakpoint instruction, stores the length of | |
2105 | the string to *lenptr, and adjusts the program counter (if | |
2106 | necessary) to point to the actual memory location where the | |
c906108c SS |
2107 | breakpoint should be inserted. */ |
2108 | ||
34e8f22d RE |
2109 | /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting |
2110 | breakpoints and storing their handles instread of what was in | |
2111 | memory. It is nice that this is the same size as a handle - | |
2112 | otherwise remote-rdp will have to change. */ | |
2113 | ||
c906108c | 2114 | unsigned char * |
ed9a39eb | 2115 | arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
c906108c | 2116 | { |
66e810cd RE |
2117 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2118 | ||
c906108c SS |
2119 | if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr)) |
2120 | { | |
66e810cd RE |
2121 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); |
2122 | *lenptr = tdep->thumb_breakpoint_size; | |
2123 | return tdep->thumb_breakpoint; | |
c906108c SS |
2124 | } |
2125 | else | |
2126 | { | |
66e810cd RE |
2127 | *lenptr = tdep->arm_breakpoint_size; |
2128 | return tdep->arm_breakpoint; | |
c906108c SS |
2129 | } |
2130 | } | |
ed9a39eb JM |
2131 | |
2132 | /* Extract from an array REGBUF containing the (raw) register state a | |
2133 | function return value of type TYPE, and copy that, in virtual | |
2134 | format, into VALBUF. */ | |
2135 | ||
34e8f22d | 2136 | static void |
ed9a39eb JM |
2137 | arm_extract_return_value (struct type *type, |
2138 | char regbuf[REGISTER_BYTES], | |
2139 | char *valbuf) | |
2140 | { | |
2141 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
08216dd7 RE |
2142 | { |
2143 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2144 | ||
2145 | switch (tdep->fp_model) | |
2146 | { | |
2147 | case ARM_FLOAT_FPA: | |
2148 | convert_from_extended (®buf[REGISTER_BYTE (ARM_F0_REGNUM)], | |
2149 | valbuf); | |
2150 | break; | |
2151 | ||
2152 | case ARM_FLOAT_SOFT: | |
2153 | case ARM_FLOAT_SOFT_VFP: | |
2154 | memcpy (valbuf, ®buf[REGISTER_BYTE (ARM_A1_REGNUM)], | |
2155 | TYPE_LENGTH (type)); | |
2156 | break; | |
2157 | ||
2158 | default: | |
2159 | internal_error | |
2160 | (__FILE__, __LINE__, | |
2161 | "arm_extract_return_value: Floating point model not supported"); | |
2162 | break; | |
2163 | } | |
2164 | } | |
ed9a39eb | 2165 | else |
34e8f22d RE |
2166 | memcpy (valbuf, ®buf[REGISTER_BYTE (ARM_A1_REGNUM)], |
2167 | TYPE_LENGTH (type)); | |
2168 | } | |
2169 | ||
67255d04 RE |
2170 | /* Extract from an array REGBUF containing the (raw) register state |
2171 | the address in which a function should return its structure value. */ | |
2172 | ||
2173 | static CORE_ADDR | |
2174 | arm_extract_struct_value_address (char *regbuf) | |
2175 | { | |
2176 | return extract_address (regbuf, REGISTER_RAW_SIZE(ARM_A1_REGNUM)); | |
2177 | } | |
2178 | ||
2179 | /* Will a function return an aggregate type in memory or in a | |
2180 | register? Return 0 if an aggregate type can be returned in a | |
2181 | register, 1 if it must be returned in memory. */ | |
2182 | ||
2183 | static int | |
2184 | arm_use_struct_convention (int gcc_p, struct type *type) | |
2185 | { | |
2186 | int nRc; | |
2187 | register enum type_code code; | |
2188 | ||
2189 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
2190 | registers. For an aggregate type to be integer like, its size | |
2191 | must be less than or equal to REGISTER_SIZE and the offset of | |
2192 | each addressable subfield must be zero. Note that bit fields are | |
2193 | not addressable, and all addressable subfields of unions always | |
2194 | start at offset zero. | |
2195 | ||
2196 | This function is based on the behaviour of GCC 2.95.1. | |
2197 | See: gcc/arm.c: arm_return_in_memory() for details. | |
2198 | ||
2199 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
2200 | parameters correctly for a function returning the following | |
2201 | structure: struct { float f;}; This should be returned in memory, | |
2202 | not a register. Richard Earnshaw sent me a patch, but I do not | |
2203 | know of any way to detect if a function like the above has been | |
2204 | compiled with the correct calling convention. */ | |
2205 | ||
2206 | /* All aggregate types that won't fit in a register must be returned | |
2207 | in memory. */ | |
2208 | if (TYPE_LENGTH (type) > REGISTER_SIZE) | |
2209 | { | |
2210 | return 1; | |
2211 | } | |
2212 | ||
2213 | /* The only aggregate types that can be returned in a register are | |
2214 | structs and unions. Arrays must be returned in memory. */ | |
2215 | code = TYPE_CODE (type); | |
2216 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
2217 | { | |
2218 | return 1; | |
2219 | } | |
2220 | ||
2221 | /* Assume all other aggregate types can be returned in a register. | |
2222 | Run a check for structures, unions and arrays. */ | |
2223 | nRc = 0; | |
2224 | ||
2225 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
2226 | { | |
2227 | int i; | |
2228 | /* Need to check if this struct/union is "integer" like. For | |
2229 | this to be true, its size must be less than or equal to | |
2230 | REGISTER_SIZE and the offset of each addressable subfield | |
2231 | must be zero. Note that bit fields are not addressable, and | |
2232 | unions always start at offset zero. If any of the subfields | |
2233 | is a floating point type, the struct/union cannot be an | |
2234 | integer type. */ | |
2235 | ||
2236 | /* For each field in the object, check: | |
2237 | 1) Is it FP? --> yes, nRc = 1; | |
2238 | 2) Is it addressable (bitpos != 0) and | |
2239 | not packed (bitsize == 0)? | |
2240 | --> yes, nRc = 1 | |
2241 | */ | |
2242 | ||
2243 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2244 | { | |
2245 | enum type_code field_type_code; | |
2246 | field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i)); | |
2247 | ||
2248 | /* Is it a floating point type field? */ | |
2249 | if (field_type_code == TYPE_CODE_FLT) | |
2250 | { | |
2251 | nRc = 1; | |
2252 | break; | |
2253 | } | |
2254 | ||
2255 | /* If bitpos != 0, then we have to care about it. */ | |
2256 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
2257 | { | |
2258 | /* Bitfields are not addressable. If the field bitsize is | |
2259 | zero, then the field is not packed. Hence it cannot be | |
2260 | a bitfield or any other packed type. */ | |
2261 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
2262 | { | |
2263 | nRc = 1; | |
2264 | break; | |
2265 | } | |
2266 | } | |
2267 | } | |
2268 | } | |
2269 | ||
2270 | return nRc; | |
2271 | } | |
2272 | ||
34e8f22d RE |
2273 | /* Write into appropriate registers a function return value of type |
2274 | TYPE, given in virtual format. */ | |
2275 | ||
2276 | static void | |
2277 | arm_store_return_value (struct type *type, char *valbuf) | |
2278 | { | |
2279 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
2280 | { | |
08216dd7 | 2281 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
34e8f22d RE |
2282 | char buf[MAX_REGISTER_RAW_SIZE]; |
2283 | ||
08216dd7 RE |
2284 | switch (tdep->fp_model) |
2285 | { | |
2286 | case ARM_FLOAT_FPA: | |
2287 | ||
2288 | convert_to_extended (valbuf, buf); | |
2289 | write_register_bytes (REGISTER_BYTE (ARM_F0_REGNUM), buf, | |
2290 | MAX_REGISTER_RAW_SIZE); | |
2291 | break; | |
2292 | ||
2293 | case ARM_FLOAT_SOFT: | |
2294 | case ARM_FLOAT_SOFT_VFP: | |
2295 | write_register_bytes (ARM_A1_REGNUM, valbuf, TYPE_LENGTH (type)); | |
2296 | break; | |
2297 | ||
2298 | default: | |
2299 | internal_error | |
2300 | (__FILE__, __LINE__, | |
2301 | "arm_store_return_value: Floating point model not supported"); | |
2302 | break; | |
2303 | } | |
34e8f22d RE |
2304 | } |
2305 | else | |
08216dd7 | 2306 | write_register_bytes (ARM_A1_REGNUM, valbuf, TYPE_LENGTH (type)); |
34e8f22d RE |
2307 | } |
2308 | ||
2309 | /* Store the address of the place in which to copy the structure the | |
2310 | subroutine will return. This is called from call_function. */ | |
2311 | ||
2312 | static void | |
2313 | arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2314 | { | |
2315 | write_register (ARM_A1_REGNUM, addr); | |
ed9a39eb JM |
2316 | } |
2317 | ||
9df628e0 RE |
2318 | static int |
2319 | arm_get_longjmp_target (CORE_ADDR *pc) | |
2320 | { | |
2321 | CORE_ADDR jb_addr; | |
2322 | char buf[INT_REGISTER_RAW_SIZE]; | |
2323 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2324 | ||
2325 | jb_addr = read_register (ARM_A1_REGNUM); | |
2326 | ||
2327 | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | |
2328 | INT_REGISTER_RAW_SIZE)) | |
2329 | return 0; | |
2330 | ||
2331 | *pc = extract_address (buf, INT_REGISTER_RAW_SIZE); | |
2332 | return 1; | |
2333 | } | |
2334 | ||
ed9a39eb | 2335 | /* Return non-zero if the PC is inside a thumb call thunk. */ |
c906108c SS |
2336 | |
2337 | int | |
ed9a39eb | 2338 | arm_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
2339 | { |
2340 | CORE_ADDR start_addr; | |
2341 | ||
ed9a39eb JM |
2342 | /* Find the starting address of the function containing the PC. If |
2343 | the caller didn't give us a name, look it up at the same time. */ | |
c906108c SS |
2344 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) |
2345 | return 0; | |
2346 | ||
2347 | return strncmp (name, "_call_via_r", 11) == 0; | |
2348 | } | |
2349 | ||
ed9a39eb JM |
2350 | /* If PC is in a Thumb call or return stub, return the address of the |
2351 | target PC, which is in a register. The thunk functions are called | |
2352 | _called_via_xx, where x is the register name. The possible names | |
2353 | are r0-r9, sl, fp, ip, sp, and lr. */ | |
c906108c SS |
2354 | |
2355 | CORE_ADDR | |
ed9a39eb | 2356 | arm_skip_stub (CORE_ADDR pc) |
c906108c | 2357 | { |
c5aa993b | 2358 | char *name; |
c906108c SS |
2359 | CORE_ADDR start_addr; |
2360 | ||
2361 | /* Find the starting address and name of the function containing the PC. */ | |
2362 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
2363 | return 0; | |
2364 | ||
2365 | /* Call thunks always start with "_call_via_". */ | |
2366 | if (strncmp (name, "_call_via_", 10) == 0) | |
2367 | { | |
ed9a39eb JM |
2368 | /* Use the name suffix to determine which register contains the |
2369 | target PC. */ | |
c5aa993b JM |
2370 | static char *table[15] = |
2371 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
2372 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
2373 | }; | |
c906108c SS |
2374 | int regno; |
2375 | ||
2376 | for (regno = 0; regno <= 14; regno++) | |
2377 | if (strcmp (&name[10], table[regno]) == 0) | |
2378 | return read_register (regno); | |
2379 | } | |
ed9a39eb | 2380 | |
c5aa993b | 2381 | return 0; /* not a stub */ |
c906108c SS |
2382 | } |
2383 | ||
bc90b915 FN |
2384 | /* If the user changes the register disassembly flavor used for info register |
2385 | and other commands, we have to also switch the flavor used in opcodes | |
2386 | for disassembly output. | |
2387 | This function is run in the set disassembly_flavor command, and does that. */ | |
2388 | ||
2389 | static void | |
2390 | set_disassembly_flavor_sfunc (char *args, int from_tty, | |
2391 | struct cmd_list_element *c) | |
2392 | { | |
2393 | set_disassembly_flavor (); | |
2394 | } | |
2395 | \f | |
966fbf70 | 2396 | /* Return the ARM register name corresponding to register I. */ |
34e8f22d RE |
2397 | static char * |
2398 | arm_register_name (int i) | |
966fbf70 RE |
2399 | { |
2400 | return arm_register_names[i]; | |
2401 | } | |
2402 | ||
bc90b915 FN |
2403 | static void |
2404 | set_disassembly_flavor (void) | |
2405 | { | |
2406 | const char *setname, *setdesc, **regnames; | |
2407 | int numregs, j; | |
2408 | ||
2409 | /* Find the flavor that the user wants in the opcodes table. */ | |
2410 | int current = 0; | |
2411 | numregs = get_arm_regnames (current, &setname, &setdesc, ®names); | |
2412 | while ((disassembly_flavor != setname) | |
2413 | && (current < num_flavor_options)) | |
2414 | get_arm_regnames (++current, &setname, &setdesc, ®names); | |
2415 | current_option = current; | |
2416 | ||
2417 | /* Fill our copy. */ | |
2418 | for (j = 0; j < numregs; j++) | |
2419 | arm_register_names[j] = (char *) regnames[j]; | |
2420 | ||
2421 | /* Adjust case. */ | |
34e8f22d | 2422 | if (isupper (*regnames[ARM_PC_REGNUM])) |
bc90b915 | 2423 | { |
34e8f22d RE |
2424 | arm_register_names[ARM_FPS_REGNUM] = "FPS"; |
2425 | arm_register_names[ARM_PS_REGNUM] = "CPSR"; | |
bc90b915 FN |
2426 | } |
2427 | else | |
2428 | { | |
34e8f22d RE |
2429 | arm_register_names[ARM_FPS_REGNUM] = "fps"; |
2430 | arm_register_names[ARM_PS_REGNUM] = "cpsr"; | |
bc90b915 FN |
2431 | } |
2432 | ||
2433 | /* Synchronize the disassembler. */ | |
2434 | set_arm_regname_option (current); | |
2435 | } | |
2436 | ||
2437 | /* arm_othernames implements the "othernames" command. This is kind | |
2438 | of hacky, and I prefer the set-show disassembly-flavor which is | |
2439 | also used for the x86 gdb. I will keep this around, however, in | |
2440 | case anyone is actually using it. */ | |
2441 | ||
2442 | static void | |
2443 | arm_othernames (char *names, int n) | |
2444 | { | |
2445 | /* Circle through the various flavors. */ | |
2446 | current_option = (current_option + 1) % num_flavor_options; | |
2447 | ||
2448 | disassembly_flavor = valid_flavors[current_option]; | |
2449 | set_disassembly_flavor (); | |
2450 | } | |
2451 | ||
a42dd537 KB |
2452 | /* Fetch, and possibly build, an appropriate link_map_offsets structure |
2453 | for ARM linux targets using the struct offsets defined in <link.h>. | |
2454 | Note, however, that link.h is not actually referred to in this file. | |
2455 | Instead, the relevant structs offsets were obtained from examining | |
2456 | link.h. (We can't refer to link.h from this file because the host | |
2457 | system won't necessarily have it, or if it does, the structs which | |
2458 | it defines will refer to the host system, not the target.) */ | |
2459 | ||
2460 | struct link_map_offsets * | |
2461 | arm_linux_svr4_fetch_link_map_offsets (void) | |
2462 | { | |
2463 | static struct link_map_offsets lmo; | |
2464 | static struct link_map_offsets *lmp = 0; | |
2465 | ||
2466 | if (lmp == 0) | |
2467 | { | |
2468 | lmp = &lmo; | |
2469 | ||
2470 | lmo.r_debug_size = 8; /* Actual size is 20, but this is all we | |
2471 | need. */ | |
2472 | ||
2473 | lmo.r_map_offset = 4; | |
2474 | lmo.r_map_size = 4; | |
2475 | ||
2476 | lmo.link_map_size = 20; /* Actual size is 552, but this is all we | |
2477 | need. */ | |
2478 | ||
2479 | lmo.l_addr_offset = 0; | |
2480 | lmo.l_addr_size = 4; | |
2481 | ||
2482 | lmo.l_name_offset = 4; | |
2483 | lmo.l_name_size = 4; | |
2484 | ||
2485 | lmo.l_next_offset = 12; | |
2486 | lmo.l_next_size = 4; | |
2487 | ||
2488 | lmo.l_prev_offset = 16; | |
2489 | lmo.l_prev_size = 4; | |
2490 | } | |
2491 | ||
2492 | return lmp; | |
2493 | } | |
2494 | ||
082fc60d RE |
2495 | /* Test whether the coff symbol specific value corresponds to a Thumb |
2496 | function. */ | |
2497 | ||
2498 | static int | |
2499 | coff_sym_is_thumb (int val) | |
2500 | { | |
2501 | return (val == C_THUMBEXT || | |
2502 | val == C_THUMBSTAT || | |
2503 | val == C_THUMBEXTFUNC || | |
2504 | val == C_THUMBSTATFUNC || | |
2505 | val == C_THUMBLABEL); | |
2506 | } | |
2507 | ||
2508 | /* arm_coff_make_msymbol_special() | |
2509 | arm_elf_make_msymbol_special() | |
2510 | ||
2511 | These functions test whether the COFF or ELF symbol corresponds to | |
2512 | an address in thumb code, and set a "special" bit in a minimal | |
2513 | symbol to indicate that it does. */ | |
2514 | ||
34e8f22d | 2515 | static void |
082fc60d RE |
2516 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
2517 | { | |
2518 | /* Thumb symbols are of type STT_LOPROC, (synonymous with | |
2519 | STT_ARM_TFUNC). */ | |
2520 | if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info) | |
2521 | == STT_LOPROC) | |
2522 | MSYMBOL_SET_SPECIAL (msym); | |
2523 | } | |
2524 | ||
34e8f22d | 2525 | static void |
082fc60d RE |
2526 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
2527 | { | |
2528 | if (coff_sym_is_thumb (val)) | |
2529 | MSYMBOL_SET_SPECIAL (msym); | |
2530 | } | |
2531 | ||
97e03143 RE |
2532 | \f |
2533 | static void | |
2534 | process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj) | |
2535 | { | |
2536 | enum arm_abi *os_ident_ptr = obj; | |
2537 | const char *name; | |
2538 | unsigned int sectsize; | |
2539 | ||
2540 | name = bfd_get_section_name (abfd, sect); | |
2541 | sectsize = bfd_section_size (abfd, sect); | |
2542 | ||
2543 | if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0) | |
2544 | { | |
2545 | unsigned int name_length, data_length, note_type; | |
2546 | char *note; | |
2547 | ||
2548 | /* If the section is larger than this, it's probably not what we are | |
2549 | looking for. */ | |
2550 | if (sectsize > 128) | |
2551 | sectsize = 128; | |
2552 | ||
2553 | note = alloca (sectsize); | |
2554 | ||
2555 | bfd_get_section_contents (abfd, sect, note, | |
2556 | (file_ptr) 0, (bfd_size_type) sectsize); | |
2557 | ||
2558 | name_length = bfd_h_get_32 (abfd, note); | |
2559 | data_length = bfd_h_get_32 (abfd, note + 4); | |
2560 | note_type = bfd_h_get_32 (abfd, note + 8); | |
2561 | ||
2562 | if (name_length == 4 && data_length == 16 && note_type == 1 | |
2563 | && strcmp (note + 12, "GNU") == 0) | |
2564 | { | |
2565 | int os_number = bfd_h_get_32 (abfd, note + 16); | |
2566 | ||
d7afb4c9 | 2567 | /* The case numbers are from abi-tags in glibc. */ |
97e03143 RE |
2568 | switch (os_number) |
2569 | { | |
2570 | case 0 : | |
2571 | *os_ident_ptr = ARM_ABI_LINUX; | |
2572 | break; | |
2573 | ||
2574 | case 1 : | |
2575 | internal_error | |
2576 | (__FILE__, __LINE__, | |
2577 | "process_note_abi_sections: Hurd objects not supported"); | |
2578 | break; | |
2579 | ||
2580 | case 2 : | |
2581 | internal_error | |
2582 | (__FILE__, __LINE__, | |
2583 | "process_note_abi_sections: Solaris objects not supported"); | |
2584 | break; | |
2585 | ||
2586 | default : | |
2587 | internal_error | |
2588 | (__FILE__, __LINE__, | |
2589 | "process_note_abi_sections: unknown OS number %d", | |
2590 | os_number); | |
2591 | break; | |
2592 | } | |
2593 | } | |
2594 | } | |
2595 | /* NetBSD uses a similar trick. */ | |
2596 | else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0) | |
2597 | { | |
2598 | unsigned int name_length, desc_length, note_type; | |
2599 | char *note; | |
2600 | ||
2601 | /* If the section is larger than this, it's probably not what we are | |
2602 | looking for. */ | |
2603 | if (sectsize > 128) | |
2604 | sectsize = 128; | |
2605 | ||
2606 | note = alloca (sectsize); | |
2607 | ||
2608 | bfd_get_section_contents (abfd, sect, note, | |
2609 | (file_ptr) 0, (bfd_size_type) sectsize); | |
2610 | ||
2611 | name_length = bfd_h_get_32 (abfd, note); | |
2612 | desc_length = bfd_h_get_32 (abfd, note + 4); | |
2613 | note_type = bfd_h_get_32 (abfd, note + 8); | |
2614 | ||
2615 | if (name_length == 7 && desc_length == 4 && note_type == 1 | |
2616 | && strcmp (note + 12, "NetBSD") == 0) | |
2617 | /* XXX Should we check the version here? | |
2618 | Probably not necessary yet. */ | |
2619 | *os_ident_ptr = ARM_ABI_NETBSD_ELF; | |
2620 | } | |
2621 | } | |
2622 | ||
2623 | /* Return one of the ELFOSABI_ constants for BFDs representing ELF | |
2624 | executables. If it's not an ELF executable or if the OS/ABI couldn't | |
d7afb4c9 | 2625 | be determined, simply return -1. */ |
97e03143 RE |
2626 | |
2627 | static int | |
2628 | get_elfosabi (bfd *abfd) | |
2629 | { | |
2630 | int elfosabi; | |
2631 | enum arm_abi arm_abi = ARM_ABI_UNKNOWN; | |
2632 | ||
2633 | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; | |
2634 | ||
2635 | /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate | |
2636 | that we're on a SYSV system. However, GNU/Linux uses a note section | |
2637 | to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we | |
2638 | have to check the note sections too. | |
2639 | ||
2640 | GNU/ARM tools set the EI_OSABI field to ELFOSABI_ARM, so handle that | |
d7afb4c9 | 2641 | as well. */ |
97e03143 RE |
2642 | if (elfosabi == 0 || elfosabi == ELFOSABI_ARM) |
2643 | { | |
2644 | bfd_map_over_sections (abfd, | |
2645 | process_note_abi_tag_sections, | |
2646 | &arm_abi); | |
2647 | } | |
2648 | ||
2649 | if (arm_abi != ARM_ABI_UNKNOWN) | |
2650 | return arm_abi; | |
2651 | ||
2652 | switch (elfosabi) | |
2653 | { | |
2654 | case ELFOSABI_NONE: | |
2655 | /* Existing ARM Tools don't set this field, so look at the EI_FLAGS | |
2656 | field for more information. */ | |
2657 | ||
2658 | switch (EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags)) | |
2659 | { | |
2660 | case EF_ARM_EABI_VER1: | |
2661 | return ARM_ABI_EABI_V1; | |
2662 | ||
2663 | case EF_ARM_EABI_VER2: | |
2664 | return ARM_ABI_EABI_V2; | |
2665 | ||
2666 | case EF_ARM_EABI_UNKNOWN: | |
2667 | /* Assume GNU tools. */ | |
2668 | return ARM_ABI_APCS; | |
2669 | ||
2670 | default: | |
2671 | internal_error (__FILE__, __LINE__, | |
2672 | "get_elfosabi: Unknown ARM EABI version 0x%lx", | |
2673 | EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags)); | |
2674 | ||
2675 | } | |
2676 | break; | |
2677 | ||
2678 | case ELFOSABI_NETBSD: | |
2679 | return ARM_ABI_NETBSD_ELF; | |
2680 | ||
2681 | case ELFOSABI_FREEBSD: | |
2682 | return ARM_ABI_FREEBSD; | |
2683 | ||
2684 | case ELFOSABI_LINUX: | |
2685 | return ARM_ABI_LINUX; | |
2686 | ||
2687 | case ELFOSABI_ARM: | |
2688 | /* Assume GNU tools with the old APCS abi. */ | |
2689 | return ARM_ABI_APCS; | |
2690 | ||
2691 | default: | |
2692 | } | |
2693 | ||
2694 | return ARM_ABI_UNKNOWN; | |
2695 | } | |
2696 | ||
2697 | struct arm_abi_handler | |
2698 | { | |
2699 | struct arm_abi_handler *next; | |
2700 | enum arm_abi abi; | |
2701 | void (*init_abi)(struct gdbarch_info, struct gdbarch *); | |
2702 | }; | |
2703 | ||
2704 | struct arm_abi_handler *arm_abi_handler_list = NULL; | |
2705 | ||
2706 | void | |
2707 | arm_gdbarch_register_os_abi (enum arm_abi abi, | |
2708 | void (*init_abi)(struct gdbarch_info, | |
2709 | struct gdbarch *)) | |
2710 | { | |
2711 | struct arm_abi_handler **handler_p; | |
2712 | ||
2713 | for (handler_p = &arm_abi_handler_list; *handler_p != NULL; | |
2714 | handler_p = &(*handler_p)->next) | |
2715 | { | |
2716 | if ((*handler_p)->abi == abi) | |
2717 | { | |
2718 | internal_error | |
2719 | (__FILE__, __LINE__, | |
2720 | "arm_gdbarch_register_os_abi: A handler for this ABI variant (%d)" | |
2721 | " has already been registered", (int)abi); | |
2722 | /* If user wants to continue, override previous definition. */ | |
2723 | (*handler_p)->init_abi = init_abi; | |
2724 | return; | |
2725 | } | |
2726 | } | |
2727 | ||
2728 | (*handler_p) | |
2729 | = (struct arm_abi_handler *) xmalloc (sizeof (struct arm_abi_handler)); | |
2730 | (*handler_p)->next = NULL; | |
2731 | (*handler_p)->abi = abi; | |
2732 | (*handler_p)->init_abi = init_abi; | |
2733 | } | |
2734 | ||
2735 | /* Initialize the current architecture based on INFO. If possible, re-use an | |
2736 | architecture from ARCHES, which is a list of architectures already created | |
2737 | during this debugging session. | |
2738 | ||
2739 | Called e.g. at program startup, when reading a core file, and when reading | |
d7afb4c9 | 2740 | a binary file. */ |
97e03143 | 2741 | |
39bbf761 RE |
2742 | static struct gdbarch * |
2743 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2744 | { | |
97e03143 | 2745 | struct gdbarch_tdep *tdep; |
39bbf761 | 2746 | struct gdbarch *gdbarch; |
97e03143 RE |
2747 | enum arm_abi arm_abi = ARM_ABI_UNKNOWN; |
2748 | struct arm_abi_handler *abi_handler; | |
39bbf761 | 2749 | |
97e03143 | 2750 | /* Try to deterimine the ABI of the object we are loading. */ |
39bbf761 | 2751 | |
97e03143 RE |
2752 | if (info.abfd != NULL) |
2753 | { | |
2754 | switch (bfd_get_flavour (info.abfd)) | |
2755 | { | |
2756 | case bfd_target_elf_flavour: | |
2757 | arm_abi = get_elfosabi (info.abfd); | |
2758 | break; | |
2759 | ||
2760 | case bfd_target_aout_flavour: | |
2761 | if (strcmp (bfd_get_target(info.abfd), "a.out-arm-netbsd") == 0) | |
2762 | arm_abi = ARM_ABI_NETBSD_AOUT; | |
2763 | else | |
2764 | /* Assume it's an old APCS-style ABI. */ | |
2765 | arm_abi = ARM_ABI_APCS; | |
2766 | break; | |
2767 | ||
2768 | case bfd_target_coff_flavour: | |
2769 | /* Assume it's an old APCS-style ABI. */ | |
2770 | /* XXX WinCE? */ | |
2771 | arm_abi = ARM_ABI_APCS; | |
2772 | break; | |
2773 | ||
2774 | default: | |
2775 | /* Not sure what to do here, leave the ABI as unknown. */ | |
2776 | break; | |
2777 | } | |
2778 | } | |
2779 | ||
d7afb4c9 | 2780 | /* Find a candidate among extant architectures. */ |
97e03143 RE |
2781 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
2782 | arches != NULL; | |
2783 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2784 | { | |
2785 | /* Make sure the ABI selection matches. */ | |
2786 | tdep = gdbarch_tdep (arches->gdbarch); | |
2787 | if (tdep && tdep->arm_abi == arm_abi) | |
2788 | return arches->gdbarch; | |
2789 | } | |
2790 | ||
2791 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
2792 | gdbarch = gdbarch_alloc (&info, tdep); | |
2793 | ||
2794 | tdep->arm_abi = arm_abi; | |
2795 | if (arm_abi < ARM_ABI_INVALID) | |
2796 | tdep->abi_name = arm_abi_names[arm_abi]; | |
2797 | else | |
2798 | { | |
2799 | internal_error (__FILE__, __LINE__, "Invalid setting of arm_abi %d", | |
2800 | (int) arm_abi); | |
2801 | tdep->abi_name = "<invalid>"; | |
2802 | } | |
39bbf761 | 2803 | |
08216dd7 RE |
2804 | /* This is the way it has always defaulted. */ |
2805 | tdep->fp_model = ARM_FLOAT_FPA; | |
2806 | ||
2807 | /* Breakpoints. */ | |
67255d04 RE |
2808 | switch (info.byte_order) |
2809 | { | |
2810 | case BFD_ENDIAN_BIG: | |
66e810cd RE |
2811 | tdep->arm_breakpoint = arm_default_arm_be_breakpoint; |
2812 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); | |
2813 | tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; | |
2814 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); | |
2815 | ||
67255d04 RE |
2816 | break; |
2817 | ||
2818 | case BFD_ENDIAN_LITTLE: | |
66e810cd RE |
2819 | tdep->arm_breakpoint = arm_default_arm_le_breakpoint; |
2820 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); | |
2821 | tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; | |
2822 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); | |
2823 | ||
67255d04 RE |
2824 | break; |
2825 | ||
2826 | default: | |
2827 | internal_error (__FILE__, __LINE__, | |
2828 | "arm_gdbarch_init: bad byte order for float format"); | |
2829 | } | |
2830 | ||
d7b486e7 RE |
2831 | /* On ARM targets char defaults to unsigned. */ |
2832 | set_gdbarch_char_signed (gdbarch, 0); | |
2833 | ||
9df628e0 | 2834 | /* This should be low enough for everything. */ |
97e03143 | 2835 | tdep->lowest_pc = 0x20; |
9df628e0 | 2836 | tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
97e03143 | 2837 | |
39bbf761 RE |
2838 | set_gdbarch_use_generic_dummy_frames (gdbarch, 0); |
2839 | ||
2840 | /* Call dummy code. */ | |
2841 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | |
2842 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
3fb4b924 RE |
2843 | /* We have to give this a value now, even though we will re-set it |
2844 | during each call to arm_fix_call_dummy. */ | |
2845 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8); | |
39bbf761 RE |
2846 | set_gdbarch_call_dummy_p (gdbarch, 1); |
2847 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
2848 | ||
34e8f22d RE |
2849 | set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words); |
2850 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (arm_call_dummy_words)); | |
2851 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
d7b486e7 | 2852 | set_gdbarch_call_dummy_length (gdbarch, 0); |
34e8f22d RE |
2853 | |
2854 | set_gdbarch_fix_call_dummy (gdbarch, arm_fix_call_dummy); | |
2855 | ||
39bbf761 RE |
2856 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack); |
2857 | ||
2858 | set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); | |
2859 | set_gdbarch_push_arguments (gdbarch, arm_push_arguments); | |
d7afb4c9 RE |
2860 | set_gdbarch_coerce_float_to_double (gdbarch, |
2861 | standard_coerce_float_to_double); | |
39bbf761 | 2862 | |
148754e5 | 2863 | /* Frame handling. */ |
39bbf761 | 2864 | set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid); |
148754e5 RE |
2865 | set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info); |
2866 | set_gdbarch_read_fp (gdbarch, arm_read_fp); | |
2867 | set_gdbarch_frame_chain (gdbarch, arm_frame_chain); | |
2868 | set_gdbarch_frameless_function_invocation | |
2869 | (gdbarch, arm_frameless_function_invocation); | |
2870 | set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc); | |
2871 | set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address); | |
2872 | set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address); | |
2873 | set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args); | |
2874 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
2875 | set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs); | |
2876 | set_gdbarch_push_dummy_frame (gdbarch, arm_push_dummy_frame); | |
2877 | set_gdbarch_pop_frame (gdbarch, arm_pop_frame); | |
2878 | ||
34e8f22d RE |
2879 | /* Address manipulation. */ |
2880 | set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address); | |
2881 | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); | |
2882 | ||
2883 | /* Offset from address of function to start of its code. */ | |
2884 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2885 | ||
2886 | /* Advance PC across function entry code. */ | |
2887 | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | |
2888 | ||
2889 | /* Get the PC when a frame might not be available. */ | |
2890 | set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call); | |
2891 | ||
2892 | /* The stack grows downward. */ | |
2893 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2894 | ||
2895 | /* Breakpoint manipulation. */ | |
2896 | set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc); | |
2897 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2898 | ||
2899 | /* Information about registers, etc. */ | |
2900 | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | |
2901 | set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */ | |
2902 | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); | |
2903 | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | |
2904 | set_gdbarch_register_byte (gdbarch, arm_register_byte); | |
2905 | set_gdbarch_register_bytes (gdbarch, | |
2906 | (NUM_GREGS * INT_REGISTER_RAW_SIZE | |
2907 | + NUM_FREGS * FP_REGISTER_RAW_SIZE | |
2908 | + NUM_SREGS * STATUS_REGISTER_SIZE)); | |
2909 | set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS); | |
2910 | set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size); | |
2911 | set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size); | |
2912 | set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE); | |
2913 | set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE); | |
2914 | set_gdbarch_register_virtual_type (gdbarch, arm_register_type); | |
2915 | ||
2916 | /* Integer registers are 4 bytes. */ | |
2917 | set_gdbarch_register_size (gdbarch, 4); | |
2918 | set_gdbarch_register_name (gdbarch, arm_register_name); | |
2919 | ||
2920 | /* Returning results. */ | |
2921 | set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value); | |
2922 | set_gdbarch_store_return_value (gdbarch, arm_store_return_value); | |
2923 | set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return); | |
67255d04 RE |
2924 | set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention); |
2925 | set_gdbarch_extract_struct_value_address (gdbarch, | |
2926 | arm_extract_struct_value_address); | |
34e8f22d RE |
2927 | |
2928 | /* Single stepping. */ | |
2929 | /* XXX For an RDI target we should ask the target if it can single-step. */ | |
2930 | set_gdbarch_software_single_step (gdbarch, arm_software_single_step); | |
2931 | ||
2932 | /* Minsymbol frobbing. */ | |
2933 | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | |
2934 | set_gdbarch_coff_make_msymbol_special (gdbarch, | |
2935 | arm_coff_make_msymbol_special); | |
2936 | ||
97e03143 RE |
2937 | /* Hook in the ABI-specific overrides, if they have been registered. */ |
2938 | if (arm_abi == ARM_ABI_UNKNOWN) | |
2939 | { | |
08216dd7 RE |
2940 | /* Don't complain about not knowing the ABI variant if we don't |
2941 | have an inferior. */ | |
2942 | if (info.abfd) | |
2943 | fprintf_filtered | |
2944 | (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. " | |
2945 | "Attempting to continue with the default ARM settings"); | |
97e03143 RE |
2946 | } |
2947 | else | |
2948 | { | |
2949 | for (abi_handler = arm_abi_handler_list; abi_handler != NULL; | |
2950 | abi_handler = abi_handler->next) | |
2951 | if (abi_handler->abi == arm_abi) | |
2952 | break; | |
2953 | ||
2954 | if (abi_handler) | |
2955 | abi_handler->init_abi (info, gdbarch); | |
2956 | else | |
2957 | { | |
2958 | /* We assume that if GDB_MULTI_ARCH is less than | |
2959 | GDB_MULTI_ARCH_TM that an ABI variant can be supported by | |
2960 | overriding definitions in this file. */ | |
2961 | if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) | |
2962 | fprintf_filtered | |
2963 | (gdb_stderr, | |
2964 | "A handler for the ABI variant \"%s\" is not built into this " | |
2965 | "configuration of GDB. " | |
2966 | "Attempting to continue with the default ARM settings", | |
2967 | arm_abi_names[arm_abi]); | |
2968 | } | |
2969 | } | |
2970 | ||
2971 | /* Now we have tuned the configuration, set a few final things, | |
2972 | based on what the OS ABI has told us. */ | |
2973 | ||
9df628e0 RE |
2974 | if (tdep->jb_pc >= 0) |
2975 | set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); | |
2976 | ||
08216dd7 RE |
2977 | /* Floating point sizes and format. */ |
2978 | switch (info.byte_order) | |
2979 | { | |
2980 | case BFD_ENDIAN_BIG: | |
2981 | set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big); | |
2982 | set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big); | |
2983 | set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big); | |
2984 | ||
2985 | break; | |
2986 | ||
2987 | case BFD_ENDIAN_LITTLE: | |
2988 | set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); | |
2989 | if (tdep->fp_model == ARM_FLOAT_VFP | |
2990 | || tdep->fp_model == ARM_FLOAT_SOFT_VFP) | |
2991 | { | |
2992 | set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little); | |
2993 | set_gdbarch_long_double_format (gdbarch, | |
2994 | &floatformat_ieee_double_little); | |
2995 | } | |
2996 | else | |
2997 | { | |
2998 | set_gdbarch_double_format | |
2999 | (gdbarch, &floatformat_ieee_double_littlebyte_bigword); | |
3000 | set_gdbarch_long_double_format | |
3001 | (gdbarch, &floatformat_ieee_double_littlebyte_bigword); | |
3002 | } | |
3003 | break; | |
3004 | ||
3005 | default: | |
3006 | internal_error (__FILE__, __LINE__, | |
3007 | "arm_gdbarch_init: bad byte order for float format"); | |
3008 | } | |
3009 | ||
97e03143 | 3010 | /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still |
34e8f22d RE |
3011 | references the old architecture vector, not the one we are |
3012 | building here. */ | |
3013 | if (prologue_cache.saved_regs != NULL) | |
3014 | xfree (prologue_cache.saved_regs); | |
3015 | ||
3016 | prologue_cache.saved_regs = (CORE_ADDR *) | |
3017 | xcalloc (1, (sizeof (CORE_ADDR) | |
97e03143 | 3018 | * (gdbarch_num_regs (gdbarch) + NUM_PSEUDO_REGS))); |
39bbf761 RE |
3019 | |
3020 | return gdbarch; | |
3021 | } | |
3022 | ||
97e03143 RE |
3023 | static void |
3024 | arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
3025 | { | |
3026 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3027 | ||
3028 | if (tdep == NULL) | |
3029 | return; | |
3030 | ||
3031 | if (tdep->abi_name != NULL) | |
3032 | fprintf_unfiltered (file, "arm_dump_tdep: ABI = %s\n", tdep->abi_name); | |
3033 | else | |
3034 | internal_error (__FILE__, __LINE__, | |
3035 | "arm_dump_tdep: illegal setting of tdep->arm_abi (%d)", | |
3036 | (int) tdep->arm_abi); | |
3037 | ||
3038 | fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx", | |
3039 | (unsigned long) tdep->lowest_pc); | |
3040 | } | |
3041 | ||
3042 | static void | |
3043 | arm_init_abi_eabi_v1 (struct gdbarch_info info, | |
3044 | struct gdbarch *gdbarch) | |
3045 | { | |
3046 | /* Place-holder. */ | |
3047 | } | |
3048 | ||
3049 | static void | |
3050 | arm_init_abi_eabi_v2 (struct gdbarch_info info, | |
3051 | struct gdbarch *gdbarch) | |
3052 | { | |
3053 | /* Place-holder. */ | |
3054 | } | |
3055 | ||
3056 | static void | |
3057 | arm_init_abi_apcs (struct gdbarch_info info, | |
3058 | struct gdbarch *gdbarch) | |
3059 | { | |
3060 | /* Place-holder. */ | |
3061 | } | |
3062 | ||
c906108c | 3063 | void |
ed9a39eb | 3064 | _initialize_arm_tdep (void) |
c906108c | 3065 | { |
bc90b915 FN |
3066 | struct ui_file *stb; |
3067 | long length; | |
96baa820 | 3068 | struct cmd_list_element *new_cmd; |
53904c9e AC |
3069 | const char *setname; |
3070 | const char *setdesc; | |
3071 | const char **regnames; | |
bc90b915 FN |
3072 | int numregs, i, j; |
3073 | static char *helptext; | |
085dd6e6 | 3074 | |
39bbf761 | 3075 | if (GDB_MULTI_ARCH) |
97e03143 RE |
3076 | gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); |
3077 | ||
3078 | /* Register some ABI variants for embedded systems. */ | |
3079 | arm_gdbarch_register_os_abi (ARM_ABI_EABI_V1, arm_init_abi_eabi_v1); | |
3080 | arm_gdbarch_register_os_abi (ARM_ABI_EABI_V2, arm_init_abi_eabi_v2); | |
3081 | arm_gdbarch_register_os_abi (ARM_ABI_APCS, arm_init_abi_apcs); | |
39bbf761 | 3082 | |
c906108c | 3083 | tm_print_insn = gdb_print_insn_arm; |
ed9a39eb | 3084 | |
bc90b915 FN |
3085 | /* Get the number of possible sets of register names defined in opcodes. */ |
3086 | num_flavor_options = get_arm_regname_num_options (); | |
3087 | ||
085dd6e6 | 3088 | /* Sync the opcode insn printer with our register viewer: */ |
bc90b915 | 3089 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 3090 | |
bc90b915 FN |
3091 | /* Begin creating the help text. */ |
3092 | stb = mem_fileopen (); | |
3093 | fprintf_unfiltered (stb, "Set the disassembly flavor.\n\ | |
3094 | The valid values are:\n"); | |
ed9a39eb | 3095 | |
bc90b915 FN |
3096 | /* Initialize the array that will be passed to add_set_enum_cmd(). */ |
3097 | valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *)); | |
3098 | for (i = 0; i < num_flavor_options; i++) | |
3099 | { | |
3100 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
53904c9e | 3101 | valid_flavors[i] = setname; |
bc90b915 FN |
3102 | fprintf_unfiltered (stb, "%s - %s\n", setname, |
3103 | setdesc); | |
3104 | /* Copy the default names (if found) and synchronize disassembler. */ | |
3105 | if (!strcmp (setname, "std")) | |
3106 | { | |
53904c9e | 3107 | disassembly_flavor = setname; |
bc90b915 FN |
3108 | current_option = i; |
3109 | for (j = 0; j < numregs; j++) | |
3110 | arm_register_names[j] = (char *) regnames[j]; | |
3111 | set_arm_regname_option (i); | |
3112 | } | |
3113 | } | |
3114 | /* Mark the end of valid options. */ | |
3115 | valid_flavors[num_flavor_options] = NULL; | |
c906108c | 3116 | |
bc90b915 FN |
3117 | /* Finish the creation of the help text. */ |
3118 | fprintf_unfiltered (stb, "The default is \"std\"."); | |
3119 | helptext = ui_file_xstrdup (stb, &length); | |
3120 | ui_file_delete (stb); | |
ed9a39eb | 3121 | |
bc90b915 | 3122 | /* Add the disassembly-flavor command */ |
96baa820 | 3123 | new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, |
ed9a39eb | 3124 | valid_flavors, |
1ed2a135 | 3125 | &disassembly_flavor, |
bc90b915 | 3126 | helptext, |
ed9a39eb | 3127 | &setlist); |
9f60d481 | 3128 | set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc); |
ed9a39eb JM |
3129 | add_show_from_set (new_cmd, &showlist); |
3130 | ||
c906108c SS |
3131 | /* ??? Maybe this should be a boolean. */ |
3132 | add_show_from_set (add_set_cmd ("apcs32", no_class, | |
ed9a39eb | 3133 | var_zinteger, (char *) &arm_apcs_32, |
96baa820 | 3134 | "Set usage of ARM 32-bit mode.\n", &setlist), |
ed9a39eb | 3135 | &showlist); |
c906108c | 3136 | |
bc90b915 FN |
3137 | /* Add the deprecated "othernames" command */ |
3138 | ||
3139 | add_com ("othernames", class_obscure, arm_othernames, | |
3140 | "Switch to the next set of register names."); | |
c3b4394c RE |
3141 | |
3142 | /* Fill in the prologue_cache fields. */ | |
34e8f22d | 3143 | prologue_cache.saved_regs = NULL; |
c3b4394c RE |
3144 | prologue_cache.extra_info = (struct frame_extra_info *) |
3145 | xcalloc (1, sizeof (struct frame_extra_info)); | |
c906108c | 3146 | } |