]>
Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
da59e081 | 2 | Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000 |
c906108c SS |
3 | Free Software Foundation, Inc. |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "inferior.h" | |
25 | #include "gdbcmd.h" | |
26 | #include "gdbcore.h" | |
27 | #include "symfile.h" | |
28 | #include "gdb_string.h" | |
29 | #include "coff/internal.h" /* Internal format of COFF symbols in BFD */ | |
30 | ||
ed9a39eb JM |
31 | extern void _initialize_arm_tdep (void); |
32 | ||
c906108c | 33 | /* |
c5aa993b JM |
34 | The following macros are actually wrong. Neither arm nor thumb can |
35 | or should set the lsb on addr. | |
36 | The thumb addresses are mod 2, so (addr & 2) would be a good heuristic | |
37 | to use when checking for thumb (see arm_pc_is_thumb() below). | |
38 | Unfortunately, something else depends on these (incorrect) macros, so | |
39 | fixing them actually breaks gdb. I didn't have time to investigate. Z.R. | |
40 | */ | |
c906108c SS |
41 | /* Thumb function addresses are odd (bit 0 is set). Here are some |
42 | macros to test, set, or clear bit 0 of addresses. */ | |
43 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
44 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
45 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
46 | ||
ed9a39eb | 47 | /* Default register names as specified by APCS. */ |
da59e081 | 48 | static char * atpcs_register_names[] = |
ed9a39eb JM |
49 | {"a1", "a2", "a3", "a4", /* 0 1 2 3 */ |
50 | "v1", "v2", "v3", "v4", /* 4 5 6 7 */ | |
da59e081 JM |
51 | "v5", "v6", "v7", "v8", /* 8 9 10 11 */ |
52 | "IP", "SP", "LR", "PC", /* 12 13 14 15 */ | |
ed9a39eb JM |
53 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ |
54 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
da59e081 | 55 | "FPS", "PS" }; /* 24 25 */ |
ed9a39eb JM |
56 | |
57 | /* Alternate set of registers names used by GCC. */ | |
da59e081 JM |
58 | static char * additional_register_names[] = |
59 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ | |
60 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
61 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
62 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
63 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
64 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
65 | "fps", "ps" }; /* 24 25 */ | |
ed9a39eb JM |
66 | |
67 | /* This is the variable that is set with "set disassembly-flavor". | |
68 | By default use the APCS registers names. */ | |
da59e081 | 69 | char ** arm_register_names = atpcs_register_names; |
ed9a39eb JM |
70 | |
71 | /* Valid register name flavours. */ | |
96baa820 JM |
72 | static char apcs_flavor[] = "apcs"; |
73 | static char r_prefix_flavor[] = "r-prefix"; | |
da59e081 | 74 | static char * valid_flavors[] = |
ed9a39eb | 75 | { |
96baa820 JM |
76 | apcs_flavor, |
77 | r_prefix_flavor, | |
78 | NULL | |
79 | }; | |
ed9a39eb JM |
80 | |
81 | /* Disassembly flavor to use. */ | |
96baa820 JM |
82 | static char *disassembly_flavor = apcs_flavor; |
83 | ||
ed9a39eb JM |
84 | /* This is used to keep the bfd arch_info in sync with the disassembly |
85 | flavor. */ | |
86 | static void set_disassembly_flavor_sfunc(char *, int, | |
87 | struct cmd_list_element *); | |
88 | static void set_disassembly_flavor (void); | |
89 | ||
90 | static void convert_from_extended (void *ptr, void *dbl); | |
91 | ||
92 | /* Define other aspects of the stack frame. We keep the offsets of | |
93 | all saved registers, 'cause we need 'em a lot! We also keep the | |
94 | current size of the stack frame, and the offset of the frame | |
95 | pointer from the stack pointer (for frameless functions, and when | |
96 | we're still in the prologue of a function with a frame) */ | |
97 | ||
98 | struct frame_extra_info | |
99 | { | |
100 | struct frame_saved_regs fsr; | |
101 | int framesize; | |
102 | int frameoffset; | |
103 | int framereg; | |
104 | }; | |
105 | ||
106 | /* Will a function return an aggregate type in memory or in a | |
107 | register? Return 0 if an aggregate type can be returned in a | |
108 | register, 1 if it must be returned in memory. */ | |
085dd6e6 | 109 | |
c906108c | 110 | int |
ed9a39eb | 111 | arm_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 112 | { |
ed9a39eb JM |
113 | int nRc; |
114 | register enum type_code code; | |
115 | ||
116 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
117 | registers. For an aggregate type to be integer like, its size | |
118 | must be less than or equal to REGISTER_SIZE and the offset of | |
119 | each addressable subfield must be zero. Note that bit fields are | |
120 | not addressable, and all addressable subfields of unions always | |
121 | start at offset zero. | |
122 | ||
123 | This function is based on the behaviour of GCC 2.95.1. | |
124 | See: gcc/arm.c: arm_return_in_memory() for details. | |
125 | ||
126 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
127 | parameters correctly for a function returning the following | |
128 | structure: struct { float f;}; This should be returned in memory, | |
129 | not a register. Richard Earnshaw sent me a patch, but I do not | |
130 | know of any way to detect if a function like the above has been | |
131 | compiled with the correct calling convention. */ | |
132 | ||
133 | /* All aggregate types that won't fit in a register must be returned | |
134 | in memory. */ | |
135 | if (TYPE_LENGTH (type) > REGISTER_SIZE) | |
136 | { | |
137 | return 1; | |
138 | } | |
139 | ||
140 | /* The only aggregate types that can be returned in a register are | |
141 | structs and unions. Arrays must be returned in memory. */ | |
142 | code = TYPE_CODE (type); | |
143 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
144 | { | |
145 | return 1; | |
146 | } | |
147 | ||
148 | /* Assume all other aggregate types can be returned in a register. | |
149 | Run a check for structures, unions and arrays. */ | |
150 | nRc = 0; | |
151 | ||
152 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
153 | { | |
154 | int i; | |
155 | /* Need to check if this struct/union is "integer" like. For | |
156 | this to be true, its size must be less than or equal to | |
157 | REGISTER_SIZE and the offset of each addressable subfield | |
158 | must be zero. Note that bit fields are not addressable, and | |
159 | unions always start at offset zero. If any of the subfields | |
160 | is a floating point type, the struct/union cannot be an | |
161 | integer type. */ | |
162 | ||
163 | /* For each field in the object, check: | |
164 | 1) Is it FP? --> yes, nRc = 1; | |
165 | 2) Is it addressable (bitpos != 0) and | |
166 | not packed (bitsize == 0)? | |
167 | --> yes, nRc = 1 | |
168 | */ | |
169 | ||
170 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
171 | { | |
172 | enum type_code field_type_code; | |
173 | field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i)); | |
174 | ||
175 | /* Is it a floating point type field? */ | |
176 | if (field_type_code == TYPE_CODE_FLT) | |
177 | { | |
178 | nRc = 1; | |
179 | break; | |
180 | } | |
181 | ||
182 | /* If bitpos != 0, then we have to care about it. */ | |
183 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
184 | { | |
185 | /* Bitfields are not addressable. If the field bitsize is | |
186 | zero, then the field is not packed. Hence it cannot be | |
187 | a bitfield or any other packed type. */ | |
188 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
189 | { | |
190 | nRc = 1; | |
191 | break; | |
192 | } | |
193 | } | |
194 | } | |
195 | } | |
196 | ||
197 | return nRc; | |
c906108c SS |
198 | } |
199 | ||
200 | int | |
ed9a39eb | 201 | arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c | 202 | { |
c906108c SS |
203 | return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC)); |
204 | } | |
205 | ||
206 | /* Set to true if the 32-bit mode is in use. */ | |
207 | ||
208 | int arm_apcs_32 = 1; | |
209 | ||
ed9a39eb JM |
210 | /* Flag set by arm_fix_call_dummy that tells whether the target |
211 | function is a Thumb function. This flag is checked by | |
212 | arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and | |
213 | its use in valops.c) to pass the function address as an additional | |
214 | parameter. */ | |
c906108c SS |
215 | |
216 | static int target_is_thumb; | |
217 | ||
ed9a39eb JM |
218 | /* Flag set by arm_fix_call_dummy that tells whether the calling |
219 | function is a Thumb function. This flag is checked by | |
220 | arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */ | |
c906108c SS |
221 | |
222 | static int caller_is_thumb; | |
223 | ||
ed9a39eb JM |
224 | /* Determine if the program counter specified in MEMADDR is in a Thumb |
225 | function. */ | |
c906108c SS |
226 | |
227 | int | |
ed9a39eb | 228 | arm_pc_is_thumb (bfd_vma memaddr) |
c906108c | 229 | { |
c5aa993b | 230 | struct minimal_symbol *sym; |
c906108c | 231 | |
ed9a39eb | 232 | /* If bit 0 of the address is set, assume this is a Thumb address. */ |
c906108c SS |
233 | if (IS_THUMB_ADDR (memaddr)) |
234 | return 1; | |
235 | ||
ed9a39eb | 236 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
237 | sym = lookup_minimal_symbol_by_pc (memaddr); |
238 | if (sym) | |
239 | { | |
c5aa993b | 240 | return (MSYMBOL_IS_SPECIAL (sym)); |
c906108c SS |
241 | } |
242 | else | |
ed9a39eb JM |
243 | { |
244 | return 0; | |
245 | } | |
c906108c SS |
246 | } |
247 | ||
ed9a39eb JM |
248 | /* Determine if the program counter specified in MEMADDR is in a call |
249 | dummy being called from a Thumb function. */ | |
c906108c SS |
250 | |
251 | int | |
ed9a39eb | 252 | arm_pc_is_thumb_dummy (bfd_vma memaddr) |
c906108c | 253 | { |
c5aa993b | 254 | CORE_ADDR sp = read_sp (); |
c906108c | 255 | |
c5aa993b | 256 | if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 64)) |
c906108c SS |
257 | return caller_is_thumb; |
258 | else | |
259 | return 0; | |
260 | } | |
261 | ||
262 | CORE_ADDR | |
ed9a39eb | 263 | arm_addr_bits_remove (CORE_ADDR val) |
c906108c SS |
264 | { |
265 | if (arm_pc_is_thumb (val)) | |
266 | return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe)); | |
267 | else | |
268 | return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc)); | |
269 | } | |
270 | ||
271 | CORE_ADDR | |
ed9a39eb | 272 | arm_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
273 | { |
274 | return ADDR_BITS_REMOVE (read_register (LR_REGNUM)); | |
275 | } | |
276 | ||
392a587b | 277 | int |
ed9a39eb | 278 | arm_frameless_function_invocation (struct frame_info *fi) |
392a587b | 279 | { |
392a587b | 280 | CORE_ADDR func_start, after_prologue; |
96baa820 | 281 | int frameless; |
ed9a39eb | 282 | |
392a587b | 283 | func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET); |
7be570e7 | 284 | after_prologue = SKIP_PROLOGUE (func_start); |
ed9a39eb | 285 | |
96baa820 | 286 | /* There are some frameless functions whose first two instructions |
ed9a39eb JM |
287 | follow the standard APCS form, in which case after_prologue will |
288 | be func_start + 8. */ | |
289 | ||
96baa820 | 290 | frameless = (after_prologue < func_start + 12); |
392a587b JM |
291 | return frameless; |
292 | } | |
293 | ||
c906108c | 294 | /* A typical Thumb prologue looks like this: |
c5aa993b JM |
295 | push {r7, lr} |
296 | add sp, sp, #-28 | |
297 | add r7, sp, #12 | |
c906108c | 298 | Sometimes the latter instruction may be replaced by: |
da59e081 JM |
299 | mov r7, sp |
300 | ||
301 | or like this: | |
302 | push {r7, lr} | |
303 | mov r7, sp | |
304 | sub sp, #12 | |
305 | ||
306 | or, on tpcs, like this: | |
307 | sub sp,#16 | |
308 | push {r7, lr} | |
309 | (many instructions) | |
310 | mov r7, sp | |
311 | sub sp, #12 | |
312 | ||
313 | There is always one instruction of three classes: | |
314 | 1 - push | |
315 | 2 - setting of r7 | |
316 | 3 - adjusting of sp | |
317 | ||
318 | When we have found at least one of each class we are done with the prolog. | |
319 | Note that the "sub sp, #NN" before the push does not count. | |
ed9a39eb | 320 | */ |
c906108c SS |
321 | |
322 | static CORE_ADDR | |
ed9a39eb | 323 | thumb_skip_prologue (CORE_ADDR pc) |
c906108c SS |
324 | { |
325 | CORE_ADDR current_pc; | |
da59e081 JM |
326 | int findmask = 0; /* findmask: |
327 | bit 0 - push { rlist } | |
328 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
329 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
330 | */ | |
c906108c | 331 | |
da59e081 | 332 | for (current_pc = pc; current_pc < pc + 40; current_pc += 2) |
c906108c SS |
333 | { |
334 | unsigned short insn = read_memory_unsigned_integer (current_pc, 2); | |
335 | ||
da59e081 JM |
336 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
337 | { | |
338 | findmask |= 1; /* push found */ | |
339 | } | |
340 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ | |
341 | { | |
342 | if ((findmask & 1) == 0) /* before push ? */ | |
343 | continue; | |
344 | else | |
345 | findmask |= 4; /* add/sub sp found */ | |
346 | } | |
347 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
348 | { | |
349 | findmask |= 2; /* setting of r7 found */ | |
350 | } | |
351 | else if (insn == 0x466f) /* mov r7, sp */ | |
352 | { | |
353 | findmask |= 2; /* setting of r7 found */ | |
354 | } | |
355 | else | |
356 | continue; /* something in the prolog that we don't care about or some | |
357 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
358 | } |
359 | ||
360 | return current_pc; | |
361 | } | |
362 | ||
ed9a39eb JM |
363 | /* The APCS (ARM Procedure Call Standard) defines the following |
364 | prologue: | |
c906108c | 365 | |
c5aa993b JM |
366 | mov ip, sp |
367 | [stmfd sp!, {a1,a2,a3,a4}] | |
368 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
369 | [stfe f7, [sp, #-12]!] |
370 | [stfe f6, [sp, #-12]!] | |
371 | [stfe f5, [sp, #-12]!] | |
372 | [stfe f4, [sp, #-12]!] | |
373 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */ | |
c906108c SS |
374 | |
375 | CORE_ADDR | |
ed9a39eb | 376 | arm_skip_prologue (CORE_ADDR pc) |
c906108c SS |
377 | { |
378 | unsigned long inst; | |
379 | CORE_ADDR skip_pc; | |
380 | CORE_ADDR func_addr, func_end; | |
381 | struct symtab_and_line sal; | |
382 | ||
96baa820 | 383 | /* See what the symbol table says. */ |
ed9a39eb | 384 | |
c5aa993b | 385 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
c906108c SS |
386 | { |
387 | sal = find_pc_line (func_addr, 0); | |
96baa820 | 388 | if ((sal.line != 0) && (sal.end < func_end)) |
c906108c SS |
389 | return sal.end; |
390 | } | |
391 | ||
392 | /* Check if this is Thumb code. */ | |
393 | if (arm_pc_is_thumb (pc)) | |
394 | return thumb_skip_prologue (pc); | |
395 | ||
396 | /* Can't find the prologue end in the symbol table, try it the hard way | |
397 | by disassembling the instructions. */ | |
398 | skip_pc = pc; | |
399 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 400 | if (inst != 0xe1a0c00d) /* mov ip, sp */ |
c906108c SS |
401 | return pc; |
402 | ||
403 | skip_pc += 4; | |
404 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 405 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
c906108c SS |
406 | { |
407 | skip_pc += 4; | |
408 | inst = read_memory_integer (skip_pc, 4); | |
409 | } | |
410 | ||
c5aa993b | 411 | if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */ |
c906108c SS |
412 | return pc; |
413 | ||
414 | skip_pc += 4; | |
415 | inst = read_memory_integer (skip_pc, 4); | |
416 | ||
417 | /* Any insns after this point may float into the code, if it makes | |
ed9a39eb JM |
418 | for better instruction scheduling, so we skip them only if we |
419 | find them, but still consdier the function to be frame-ful. */ | |
c906108c | 420 | |
ed9a39eb JM |
421 | /* We may have either one sfmfd instruction here, or several stfe |
422 | insns, depending on the version of floating point code we | |
423 | support. */ | |
c5aa993b | 424 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ |
c906108c SS |
425 | { |
426 | skip_pc += 4; | |
427 | inst = read_memory_integer (skip_pc, 4); | |
428 | } | |
429 | else | |
430 | { | |
c5aa993b JM |
431 | while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ |
432 | { | |
433 | skip_pc += 4; | |
434 | inst = read_memory_integer (skip_pc, 4); | |
435 | } | |
c906108c SS |
436 | } |
437 | ||
c5aa993b | 438 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ |
c906108c SS |
439 | skip_pc += 4; |
440 | ||
441 | return skip_pc; | |
442 | } | |
c5aa993b | 443 | /* *INDENT-OFF* */ |
c906108c SS |
444 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
445 | This function decodes a Thumb function prologue to determine: | |
446 | 1) the size of the stack frame | |
447 | 2) which registers are saved on it | |
448 | 3) the offsets of saved regs | |
449 | 4) the offset from the stack pointer to the frame pointer | |
450 | This information is stored in the "extra" fields of the frame_info. | |
451 | ||
da59e081 JM |
452 | A typical Thumb function prologue would create this stack frame |
453 | (offsets relative to FP) | |
c906108c SS |
454 | old SP -> 24 stack parameters |
455 | 20 LR | |
456 | 16 R7 | |
457 | R7 -> 0 local variables (16 bytes) | |
458 | SP -> -12 additional stack space (12 bytes) | |
459 | The frame size would thus be 36 bytes, and the frame offset would be | |
da59e081 JM |
460 | 12 bytes. The frame register is R7. |
461 | ||
462 | The comments for thumb_skip_prolog() describe the algorithm we use to detect | |
463 | the end of the prolog */ | |
c5aa993b JM |
464 | /* *INDENT-ON* */ |
465 | ||
c906108c | 466 | static void |
ed9a39eb | 467 | thumb_scan_prologue (struct frame_info *fi) |
c906108c SS |
468 | { |
469 | CORE_ADDR prologue_start; | |
470 | CORE_ADDR prologue_end; | |
471 | CORE_ADDR current_pc; | |
c5aa993b | 472 | int saved_reg[16]; /* which register has been copied to register n? */ |
da59e081 JM |
473 | int findmask = 0; /* findmask: |
474 | bit 0 - push { rlist } | |
475 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
476 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
477 | */ | |
c5aa993b | 478 | int i; |
c906108c | 479 | |
c5aa993b | 480 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) |
c906108c SS |
481 | { |
482 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
483 | ||
c5aa993b | 484 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
485 | prologue_end = fi->pc; |
486 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 487 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
488 | } |
489 | else | |
c5aa993b JM |
490 | prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */ |
491 | /* 16 pushes, an add, and "mv fp,sp" */ | |
c906108c SS |
492 | |
493 | prologue_end = min (prologue_end, fi->pc); | |
494 | ||
495 | /* Initialize the saved register map. When register H is copied to | |
496 | register L, we will put H in saved_reg[L]. */ | |
497 | for (i = 0; i < 16; i++) | |
498 | saved_reg[i] = i; | |
499 | ||
500 | /* Search the prologue looking for instructions that set up the | |
da59e081 JM |
501 | frame pointer, adjust the stack pointer, and save registers. |
502 | Do this until all basic prolog instructions are found. */ | |
c906108c SS |
503 | |
504 | fi->framesize = 0; | |
da59e081 JM |
505 | for (current_pc = prologue_start; |
506 | (current_pc < prologue_end) && ((findmask & 7) != 7); | |
507 | current_pc += 2) | |
c906108c SS |
508 | { |
509 | unsigned short insn; | |
510 | int regno; | |
511 | int offset; | |
512 | ||
513 | insn = read_memory_unsigned_integer (current_pc, 2); | |
514 | ||
c5aa993b | 515 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
c906108c | 516 | { |
da59e081 JM |
517 | int mask; |
518 | findmask |= 1; /* push found */ | |
c906108c SS |
519 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says |
520 | whether to save LR (R14). */ | |
da59e081 | 521 | mask = (insn & 0xff) | ((insn & 0x100) << 6); |
c906108c SS |
522 | |
523 | /* Calculate offsets of saved R0-R7 and LR. */ | |
524 | for (regno = LR_REGNUM; regno >= 0; regno--) | |
525 | if (mask & (1 << regno)) | |
c5aa993b | 526 | { |
c906108c SS |
527 | fi->framesize += 4; |
528 | fi->fsr.regs[saved_reg[regno]] = -(fi->framesize); | |
529 | saved_reg[regno] = regno; /* reset saved register map */ | |
530 | } | |
531 | } | |
da59e081 | 532 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ |
c906108c | 533 | { |
da59e081 JM |
534 | if ((findmask & 1) == 0) /* before push ? */ |
535 | continue; | |
536 | else | |
537 | findmask |= 4; /* add/sub sp found */ | |
538 | ||
c5aa993b | 539 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
da59e081 JM |
540 | if (insn & 0x80) /* is it signed? (==subtracting) */ |
541 | { | |
542 | fi->frameoffset += offset; | |
543 | offset = -offset; | |
544 | } | |
c906108c SS |
545 | fi->framesize -= offset; |
546 | } | |
547 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
548 | { | |
da59e081 | 549 | findmask |= 2; /* setting of r7 found */ |
c906108c | 550 | fi->framereg = THUMB_FP_REGNUM; |
c5aa993b | 551 | fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */ |
c906108c | 552 | } |
da59e081 | 553 | else if (insn == 0x466f) /* mov r7, sp */ |
c906108c | 554 | { |
da59e081 | 555 | findmask |= 2; /* setting of r7 found */ |
c906108c SS |
556 | fi->framereg = THUMB_FP_REGNUM; |
557 | fi->frameoffset = 0; | |
558 | saved_reg[THUMB_FP_REGNUM] = SP_REGNUM; | |
559 | } | |
560 | else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ | |
561 | { | |
c5aa993b | 562 | int lo_reg = insn & 7; /* dest. register (r0-r7) */ |
c906108c | 563 | int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ |
c5aa993b | 564 | saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ |
c906108c SS |
565 | } |
566 | else | |
da59e081 JM |
567 | continue; /* something in the prolog that we don't care about or some |
568 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
569 | } |
570 | } | |
571 | ||
ed9a39eb JM |
572 | /* Check if prologue for this frame's PC has already been scanned. If |
573 | it has, copy the relevant information about that prologue and | |
c906108c SS |
574 | return non-zero. Otherwise do not copy anything and return zero. |
575 | ||
576 | The information saved in the cache includes: | |
c5aa993b JM |
577 | * the frame register number; |
578 | * the size of the stack frame; | |
579 | * the offsets of saved regs (relative to the old SP); and | |
580 | * the offset from the stack pointer to the frame pointer | |
c906108c | 581 | |
ed9a39eb JM |
582 | The cache contains only one entry, since this is adequate for the |
583 | typical sequence of prologue scan requests we get. When performing | |
584 | a backtrace, GDB will usually ask to scan the same function twice | |
585 | in a row (once to get the frame chain, and once to fill in the | |
586 | extra frame information). */ | |
c906108c SS |
587 | |
588 | static struct frame_info prologue_cache; | |
589 | ||
590 | static int | |
ed9a39eb | 591 | check_prologue_cache (struct frame_info *fi) |
c906108c SS |
592 | { |
593 | int i; | |
594 | ||
595 | if (fi->pc == prologue_cache.pc) | |
596 | { | |
597 | fi->framereg = prologue_cache.framereg; | |
598 | fi->framesize = prologue_cache.framesize; | |
599 | fi->frameoffset = prologue_cache.frameoffset; | |
600 | for (i = 0; i <= NUM_REGS; i++) | |
601 | fi->fsr.regs[i] = prologue_cache.fsr.regs[i]; | |
602 | return 1; | |
603 | } | |
604 | else | |
605 | return 0; | |
606 | } | |
607 | ||
608 | ||
ed9a39eb | 609 | /* Copy the prologue information from fi to the prologue cache. */ |
c906108c SS |
610 | |
611 | static void | |
ed9a39eb | 612 | save_prologue_cache (struct frame_info *fi) |
c906108c SS |
613 | { |
614 | int i; | |
615 | ||
c5aa993b JM |
616 | prologue_cache.pc = fi->pc; |
617 | prologue_cache.framereg = fi->framereg; | |
618 | prologue_cache.framesize = fi->framesize; | |
c906108c | 619 | prologue_cache.frameoffset = fi->frameoffset; |
c5aa993b | 620 | |
c906108c SS |
621 | for (i = 0; i <= NUM_REGS; i++) |
622 | prologue_cache.fsr.regs[i] = fi->fsr.regs[i]; | |
623 | } | |
624 | ||
625 | ||
ed9a39eb | 626 | /* This function decodes an ARM function prologue to determine: |
c5aa993b JM |
627 | 1) the size of the stack frame |
628 | 2) which registers are saved on it | |
629 | 3) the offsets of saved regs | |
630 | 4) the offset from the stack pointer to the frame pointer | |
c906108c SS |
631 | This information is stored in the "extra" fields of the frame_info. |
632 | ||
96baa820 JM |
633 | There are two basic forms for the ARM prologue. The fixed argument |
634 | function call will look like: | |
ed9a39eb JM |
635 | |
636 | mov ip, sp | |
637 | stmfd sp!, {fp, ip, lr, pc} | |
638 | sub fp, ip, #4 | |
639 | [sub sp, sp, #4] | |
96baa820 | 640 | |
c906108c | 641 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
642 | IP -> 4 (caller's stack) |
643 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
644 | -4 LR (return address in caller) | |
645 | -8 IP (copy of caller's SP) | |
646 | -12 FP (caller's FP) | |
647 | SP -> -28 Local variables | |
648 | ||
c906108c | 649 | The frame size would thus be 32 bytes, and the frame offset would be |
96baa820 JM |
650 | 28 bytes. The stmfd call can also save any of the vN registers it |
651 | plans to use, which increases the frame size accordingly. | |
652 | ||
653 | Note: The stored PC is 8 off of the STMFD instruction that stored it | |
654 | because the ARM Store instructions always store PC + 8 when you read | |
655 | the PC register. | |
ed9a39eb | 656 | |
96baa820 JM |
657 | A variable argument function call will look like: |
658 | ||
ed9a39eb JM |
659 | mov ip, sp |
660 | stmfd sp!, {a1, a2, a3, a4} | |
661 | stmfd sp!, {fp, ip, lr, pc} | |
662 | sub fp, ip, #20 | |
663 | ||
96baa820 | 664 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
665 | IP -> 20 (caller's stack) |
666 | 16 A4 | |
667 | 12 A3 | |
668 | 8 A2 | |
669 | 4 A1 | |
670 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
671 | -4 LR (return address in caller) | |
672 | -8 IP (copy of caller's SP) | |
673 | -12 FP (caller's FP) | |
674 | SP -> -28 Local variables | |
96baa820 JM |
675 | |
676 | The frame size would thus be 48 bytes, and the frame offset would be | |
677 | 28 bytes. | |
678 | ||
679 | There is another potential complication, which is that the optimizer | |
680 | will try to separate the store of fp in the "stmfd" instruction from | |
681 | the "sub fp, ip, #NN" instruction. Almost anything can be there, so | |
682 | we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... | |
683 | ||
684 | Also, note, the original version of the ARM toolchain claimed that there | |
685 | should be an | |
686 | ||
687 | instruction at the end of the prologue. I have never seen GCC produce | |
688 | this, and the ARM docs don't mention it. We still test for it below in | |
689 | case it happens... | |
ed9a39eb JM |
690 | |
691 | */ | |
c906108c SS |
692 | |
693 | static void | |
ed9a39eb | 694 | arm_scan_prologue (struct frame_info *fi) |
c906108c SS |
695 | { |
696 | int regno, sp_offset, fp_offset; | |
697 | CORE_ADDR prologue_start, prologue_end, current_pc; | |
698 | ||
699 | /* Check if this function is already in the cache of frame information. */ | |
700 | if (check_prologue_cache (fi)) | |
701 | return; | |
702 | ||
703 | /* Assume there is no frame until proven otherwise. */ | |
c5aa993b JM |
704 | fi->framereg = SP_REGNUM; |
705 | fi->framesize = 0; | |
c906108c SS |
706 | fi->frameoffset = 0; |
707 | ||
708 | /* Check for Thumb prologue. */ | |
709 | if (arm_pc_is_thumb (fi->pc)) | |
710 | { | |
711 | thumb_scan_prologue (fi); | |
712 | save_prologue_cache (fi); | |
713 | return; | |
714 | } | |
715 | ||
716 | /* Find the function prologue. If we can't find the function in | |
717 | the symbol table, peek in the stack frame to find the PC. */ | |
718 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) | |
719 | { | |
720 | /* Assume the prologue is everything between the first instruction | |
721 | in the function and the first source line. */ | |
722 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
723 | ||
c5aa993b | 724 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
725 | prologue_end = fi->pc; |
726 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 727 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
728 | } |
729 | else | |
730 | { | |
731 | /* Get address of the stmfd in the prologue of the callee; the saved | |
96baa820 | 732 | PC is the address of the stmfd + 8. */ |
ed9a39eb | 733 | prologue_start = ADDR_BITS_REMOVE (read_memory_integer (fi->frame, 4)) |
96baa820 | 734 | - 8; |
ed9a39eb JM |
735 | prologue_end = prologue_start + 64; /* This is all the insn's |
736 | that could be in the prologue, | |
737 | plus room for 5 insn's inserted | |
738 | by the scheduler. */ | |
c906108c SS |
739 | } |
740 | ||
741 | /* Now search the prologue looking for instructions that set up the | |
96baa820 | 742 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 743 | |
96baa820 JM |
744 | Be careful, however, and if it doesn't look like a prologue, |
745 | don't try to scan it. If, for instance, a frameless function | |
746 | begins with stmfd sp!, then we will tell ourselves there is | |
747 | a frame, which will confuse stack traceback, as well ad"finish" | |
748 | and other operations that rely on a knowledge of the stack | |
749 | traceback. | |
750 | ||
751 | In the APCS, the prologue should start with "mov ip, sp" so | |
752 | if we don't see this as the first insn, we will stop. */ | |
c906108c SS |
753 | |
754 | sp_offset = fp_offset = 0; | |
c906108c | 755 | |
ed9a39eb JM |
756 | if (read_memory_unsigned_integer (prologue_start, 4) |
757 | == 0xe1a0c00d) /* mov ip, sp */ | |
96baa820 | 758 | { |
ed9a39eb | 759 | for (current_pc = prologue_start + 4; current_pc < prologue_end; |
96baa820 | 760 | current_pc += 4) |
c906108c | 761 | { |
96baa820 | 762 | unsigned int insn = read_memory_unsigned_integer (current_pc, 4); |
ed9a39eb | 763 | |
96baa820 JM |
764 | if ((insn & 0xffff0000) == 0xe92d0000) |
765 | /* stmfd sp!, {..., fp, ip, lr, pc} | |
766 | or | |
767 | stmfd sp!, {a1, a2, a3, a4} */ | |
768 | { | |
769 | int mask = insn & 0xffff; | |
ed9a39eb | 770 | |
96baa820 JM |
771 | /* Calculate offsets of saved registers. */ |
772 | for (regno = PC_REGNUM; regno >= 0; regno--) | |
773 | if (mask & (1 << regno)) | |
774 | { | |
775 | sp_offset -= 4; | |
776 | fi->fsr.regs[regno] = sp_offset; | |
777 | } | |
778 | } | |
ed9a39eb | 779 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
96baa820 | 780 | { |
ed9a39eb JM |
781 | unsigned imm = insn & 0xff; /* immediate value */ |
782 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
783 | imm = (imm >> rot) | (imm << (32 - rot)); | |
96baa820 JM |
784 | fp_offset = -imm; |
785 | fi->framereg = FP_REGNUM; | |
786 | } | |
ed9a39eb | 787 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ |
96baa820 | 788 | { |
ed9a39eb JM |
789 | unsigned imm = insn & 0xff; /* immediate value */ |
790 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
791 | imm = (imm >> rot) | (imm << (32 - rot)); | |
96baa820 JM |
792 | sp_offset -= imm; |
793 | } | |
ed9a39eb | 794 | else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ |
96baa820 JM |
795 | { |
796 | sp_offset -= 12; | |
797 | regno = F0_REGNUM + ((insn >> 12) & 0x07); | |
798 | fi->fsr.regs[regno] = sp_offset; | |
799 | } | |
ed9a39eb | 800 | else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */ |
96baa820 | 801 | { |
ed9a39eb | 802 | int n_saved_fp_regs; |
96baa820 | 803 | unsigned int fp_start_reg, fp_bound_reg; |
ed9a39eb JM |
804 | |
805 | if ((insn & 0x800) == 0x800) /* N0 is set */ | |
806 | { | |
807 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ | |
96baa820 JM |
808 | n_saved_fp_regs = 3; |
809 | else | |
810 | n_saved_fp_regs = 1; | |
811 | } | |
812 | else | |
ed9a39eb JM |
813 | { |
814 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ | |
96baa820 JM |
815 | n_saved_fp_regs = 2; |
816 | else | |
817 | n_saved_fp_regs = 4; | |
818 | } | |
ed9a39eb | 819 | |
96baa820 JM |
820 | fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7); |
821 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; | |
822 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
823 | { | |
824 | sp_offset -= 12; | |
825 | fi->fsr.regs[fp_start_reg++] = sp_offset; | |
826 | } | |
827 | } | |
828 | else | |
ed9a39eb JM |
829 | /* The optimizer might shove anything into the prologue, |
830 | so we just skip what we don't recognize. */ | |
831 | continue; | |
c906108c | 832 | } |
c906108c SS |
833 | } |
834 | ||
835 | /* The frame size is just the negative of the offset (from the original SP) | |
836 | of the last thing thing we pushed on the stack. The frame offset is | |
837 | [new FP] - [new SP]. */ | |
838 | fi->framesize = -sp_offset; | |
839 | fi->frameoffset = fp_offset - sp_offset; | |
ed9a39eb | 840 | |
c906108c SS |
841 | save_prologue_cache (fi); |
842 | } | |
843 | ||
ed9a39eb JM |
844 | /* Find REGNUM on the stack. Otherwise, it's in an active register. |
845 | One thing we might want to do here is to check REGNUM against the | |
846 | clobber mask, and somehow flag it as invalid if it isn't saved on | |
847 | the stack somewhere. This would provide a graceful failure mode | |
848 | when trying to get the value of caller-saves registers for an inner | |
849 | frame. */ | |
c906108c SS |
850 | |
851 | static CORE_ADDR | |
ed9a39eb | 852 | arm_find_callers_reg (struct frame_info *fi, int regnum) |
c906108c SS |
853 | { |
854 | for (; fi; fi = fi->next) | |
c5aa993b JM |
855 | |
856 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
c906108c SS |
857 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
858 | return generic_read_register_dummy (fi->pc, fi->frame, regnum); | |
859 | else | |
860 | #endif | |
c5aa993b JM |
861 | if (fi->fsr.regs[regnum] != 0) |
862 | return read_memory_integer (fi->fsr.regs[regnum], | |
863 | REGISTER_RAW_SIZE (regnum)); | |
c906108c SS |
864 | return read_register (regnum); |
865 | } | |
c5aa993b | 866 | /* *INDENT-OFF* */ |
c906108c SS |
867 | /* Function: frame_chain |
868 | Given a GDB frame, determine the address of the calling function's frame. | |
869 | This will be used to create a new GDB frame struct, and then | |
870 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
871 | For ARM, we save the frame size when we initialize the frame_info. | |
872 | ||
873 | The original definition of this function was a macro in tm-arm.h: | |
874 | { In the case of the ARM, the frame's nominal address is the FP value, | |
875 | and 12 bytes before comes the saved previous FP value as a 4-byte word. } | |
876 | ||
877 | #define FRAME_CHAIN(thisframe) \ | |
878 | ((thisframe)->pc >= LOWEST_PC ? \ | |
879 | read_memory_integer ((thisframe)->frame - 12, 4) :\ | |
880 | 0) | |
881 | */ | |
c5aa993b JM |
882 | /* *INDENT-ON* */ |
883 | ||
c906108c | 884 | CORE_ADDR |
ed9a39eb | 885 | arm_frame_chain (struct frame_info *fi) |
c906108c | 886 | { |
c5aa993b | 887 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
888 | CORE_ADDR fn_start, callers_pc, fp; |
889 | ||
890 | /* is this a dummy frame? */ | |
891 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
c5aa993b | 892 | return fi->frame; /* dummy frame same as caller's frame */ |
c906108c SS |
893 | |
894 | /* is caller-of-this a dummy frame? */ | |
c5aa993b | 895 | callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ |
c906108c | 896 | fp = arm_find_callers_reg (fi, FP_REGNUM); |
c5aa993b JM |
897 | if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) |
898 | return fp; /* dummy frame's frame may bear no relation to ours */ | |
c906108c SS |
899 | |
900 | if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) | |
901 | if (fn_start == entry_point_address ()) | |
c5aa993b | 902 | return 0; /* in _start fn, don't chain further */ |
c906108c SS |
903 | #endif |
904 | CORE_ADDR caller_pc, fn_start; | |
905 | struct frame_info caller_fi; | |
906 | int framereg = fi->framereg; | |
907 | ||
908 | if (fi->pc < LOWEST_PC) | |
909 | return 0; | |
910 | ||
911 | /* If the caller is the startup code, we're at the end of the chain. */ | |
912 | caller_pc = FRAME_SAVED_PC (fi); | |
913 | if (find_pc_partial_function (caller_pc, 0, &fn_start, 0)) | |
914 | if (fn_start == entry_point_address ()) | |
915 | return 0; | |
916 | ||
917 | /* If the caller is Thumb and the caller is ARM, or vice versa, | |
918 | the frame register of the caller is different from ours. | |
919 | So we must scan the prologue of the caller to determine its | |
920 | frame register number. */ | |
921 | if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc)) | |
922 | { | |
c5aa993b | 923 | memset (&caller_fi, 0, sizeof (caller_fi)); |
c906108c | 924 | caller_fi.pc = caller_pc; |
c5aa993b | 925 | arm_scan_prologue (&caller_fi); |
c906108c SS |
926 | framereg = caller_fi.framereg; |
927 | } | |
928 | ||
929 | /* If the caller used a frame register, return its value. | |
930 | Otherwise, return the caller's stack pointer. */ | |
931 | if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM) | |
932 | return arm_find_callers_reg (fi, framereg); | |
933 | else | |
934 | return fi->frame + fi->framesize; | |
935 | } | |
936 | ||
ed9a39eb JM |
937 | /* This function actually figures out the frame address for a given pc |
938 | and sp. This is tricky because we sometimes don't use an explicit | |
939 | frame pointer, and the previous stack pointer isn't necessarily | |
940 | recorded on the stack. The only reliable way to get this info is | |
941 | to examine the prologue. FROMLEAF is a little confusing, it means | |
942 | this is the next frame up the chain AFTER a frameless function. If | |
943 | this is true, then the frame value for this frame is still in the | |
944 | fp register. */ | |
c906108c SS |
945 | |
946 | void | |
ed9a39eb | 947 | arm_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c SS |
948 | { |
949 | int reg; | |
950 | ||
951 | if (fi->next) | |
952 | fi->pc = FRAME_SAVED_PC (fi->next); | |
953 | ||
954 | memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); | |
955 | ||
c5aa993b | 956 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
957 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
958 | { | |
959 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
c5aa993b JM |
960 | by assuming it's always FP. */ |
961 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); | |
962 | fi->framesize = 0; | |
c906108c SS |
963 | fi->frameoffset = 0; |
964 | return; | |
965 | } | |
c5aa993b | 966 | else |
c906108c SS |
967 | #endif |
968 | { | |
969 | arm_scan_prologue (fi); | |
970 | ||
104c1213 JM |
971 | if (!fi->next) |
972 | /* this is the innermost frame? */ | |
c906108c | 973 | fi->frame = read_register (fi->framereg); |
ed9a39eb JM |
974 | else if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM) |
975 | { | |
976 | /* not the innermost frame */ | |
977 | /* If we have an FP, the callee saved it. */ | |
978 | if (fi->next->fsr.regs[fi->framereg] != 0) | |
979 | fi->frame = | |
980 | read_memory_integer (fi->next->fsr.regs[fi->framereg], 4); | |
981 | else if (fromleaf) | |
982 | /* If we were called by a frameless fn. then our frame is | |
983 | still in the frame pointer register on the board... */ | |
984 | fi->frame = read_fp (); | |
985 | } | |
c906108c | 986 | |
ed9a39eb JM |
987 | /* Calculate actual addresses of saved registers using offsets |
988 | determined by arm_scan_prologue. */ | |
c906108c SS |
989 | for (reg = 0; reg < NUM_REGS; reg++) |
990 | if (fi->fsr.regs[reg] != 0) | |
991 | fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset; | |
992 | } | |
993 | } | |
994 | ||
995 | ||
ed9a39eb JM |
996 | /* Find the caller of this frame. We do this by seeing if LR_REGNUM |
997 | is saved in the stack anywhere, otherwise we get it from the | |
998 | registers. | |
c906108c SS |
999 | |
1000 | The old definition of this function was a macro: | |
c5aa993b | 1001 | #define FRAME_SAVED_PC(FRAME) \ |
ed9a39eb | 1002 | ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */ |
c906108c SS |
1003 | |
1004 | CORE_ADDR | |
ed9a39eb | 1005 | arm_frame_saved_pc (struct frame_info *fi) |
c906108c | 1006 | { |
c5aa993b | 1007 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1008 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1009 | return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
1010 | else | |
1011 | #endif | |
1012 | { | |
1013 | CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM); | |
1014 | return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; | |
1015 | } | |
1016 | } | |
1017 | ||
c906108c SS |
1018 | /* Return the frame address. On ARM, it is R11; on Thumb it is R7. |
1019 | Examine the Program Status Register to decide which state we're in. */ | |
1020 | ||
1021 | CORE_ADDR | |
ed9a39eb | 1022 | arm_target_read_fp (void) |
c906108c SS |
1023 | { |
1024 | if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */ | |
1025 | return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */ | |
1026 | else | |
c5aa993b | 1027 | return read_register (FP_REGNUM); /* R11 if ARM */ |
c906108c SS |
1028 | } |
1029 | ||
ed9a39eb | 1030 | /* Calculate the frame offsets of the saved registers (ARM version). */ |
c906108c | 1031 | |
c906108c | 1032 | void |
ed9a39eb JM |
1033 | arm_frame_find_saved_regs (struct frame_info *fi, |
1034 | struct frame_saved_regs *regaddr) | |
c906108c SS |
1035 | { |
1036 | memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs)); | |
1037 | } | |
1038 | ||
c906108c | 1039 | void |
ed9a39eb | 1040 | arm_push_dummy_frame (void) |
c906108c SS |
1041 | { |
1042 | CORE_ADDR old_sp = read_register (SP_REGNUM); | |
1043 | CORE_ADDR sp = old_sp; | |
1044 | CORE_ADDR fp, prologue_start; | |
1045 | int regnum; | |
1046 | ||
1047 | /* Push the two dummy prologue instructions in reverse order, | |
1048 | so that they'll be in the correct low-to-high order in memory. */ | |
1049 | /* sub fp, ip, #4 */ | |
1050 | sp = push_word (sp, 0xe24cb004); | |
1051 | /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */ | |
1052 | prologue_start = sp = push_word (sp, 0xe92ddfff); | |
1053 | ||
ed9a39eb JM |
1054 | /* Push a pointer to the dummy prologue + 12, because when stm |
1055 | instruction stores the PC, it stores the address of the stm | |
c906108c SS |
1056 | instruction itself plus 12. */ |
1057 | fp = sp = push_word (sp, prologue_start + 12); | |
c5aa993b | 1058 | sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */ |
c906108c SS |
1059 | sp = push_word (sp, old_sp); |
1060 | sp = push_word (sp, read_register (FP_REGNUM)); | |
c5aa993b JM |
1061 | |
1062 | for (regnum = 10; regnum >= 0; regnum--) | |
c906108c | 1063 | sp = push_word (sp, read_register (regnum)); |
c5aa993b | 1064 | |
c906108c SS |
1065 | write_register (FP_REGNUM, fp); |
1066 | write_register (THUMB_FP_REGNUM, fp); | |
1067 | write_register (SP_REGNUM, sp); | |
1068 | } | |
1069 | ||
1070 | /* Fix up the call dummy, based on whether the processor is currently | |
ed9a39eb JM |
1071 | in Thumb or ARM mode, and whether the target function is Thumb or |
1072 | ARM. There are three different situations requiring three | |
c906108c SS |
1073 | different dummies: |
1074 | ||
1075 | * ARM calling ARM: uses the call dummy in tm-arm.h, which has already | |
c5aa993b | 1076 | been copied into the dummy parameter to this function. |
c906108c | 1077 | * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the |
c5aa993b | 1078 | "mov pc,r4" instruction patched to be a "bx r4" instead. |
c906108c | 1079 | * Thumb calling anything: uses the Thumb dummy defined below, which |
c5aa993b | 1080 | works for calling both ARM and Thumb functions. |
c906108c | 1081 | |
ed9a39eb JM |
1082 | All three call dummies expect to receive the target function |
1083 | address in R4, with the low bit set if it's a Thumb function. */ | |
c906108c SS |
1084 | |
1085 | void | |
ed9a39eb JM |
1086 | arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
1087 | value_ptr *args, struct type *type, int gcc_p) | |
c906108c SS |
1088 | { |
1089 | static short thumb_dummy[4] = | |
1090 | { | |
c5aa993b JM |
1091 | 0xf000, 0xf801, /* bl label */ |
1092 | 0xdf18, /* swi 24 */ | |
1093 | 0x4720, /* label: bx r4 */ | |
c906108c SS |
1094 | }; |
1095 | static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */ | |
1096 | ||
1097 | /* Set flag indicating whether the current PC is in a Thumb function. */ | |
c5aa993b | 1098 | caller_is_thumb = arm_pc_is_thumb (read_pc ()); |
c906108c | 1099 | |
ed9a39eb JM |
1100 | /* If the target function is Thumb, set the low bit of the function |
1101 | address. And if the CPU is currently in ARM mode, patch the | |
1102 | second instruction of call dummy to use a BX instruction to | |
1103 | switch to Thumb mode. */ | |
c906108c SS |
1104 | target_is_thumb = arm_pc_is_thumb (fun); |
1105 | if (target_is_thumb) | |
1106 | { | |
1107 | fun |= 1; | |
1108 | if (!caller_is_thumb) | |
1109 | store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4); | |
1110 | } | |
1111 | ||
1112 | /* If the CPU is currently in Thumb mode, use the Thumb call dummy | |
1113 | instead of the ARM one that's already been copied. This will | |
1114 | work for both Thumb and ARM target functions. */ | |
1115 | if (caller_is_thumb) | |
1116 | { | |
1117 | int i; | |
1118 | char *p = dummy; | |
1119 | int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]); | |
1120 | ||
1121 | for (i = 0; i < len; i++) | |
1122 | { | |
1123 | store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]); | |
1124 | p += sizeof (thumb_dummy[0]); | |
1125 | } | |
1126 | } | |
1127 | ||
ed9a39eb JM |
1128 | /* Put the target address in r4; the call dummy will copy this to |
1129 | the PC. */ | |
c906108c SS |
1130 | write_register (4, fun); |
1131 | } | |
1132 | ||
c906108c | 1133 | /* Return the offset in the call dummy of the instruction that needs |
ed9a39eb JM |
1134 | to have a breakpoint placed on it. This is the offset of the 'swi |
1135 | 24' instruction, which is no longer actually used, but simply acts | |
c906108c SS |
1136 | as a place-holder now. |
1137 | ||
ed9a39eb | 1138 | This implements the CALL_DUMMY_BREAK_OFFSET macro. */ |
c906108c SS |
1139 | |
1140 | int | |
ed9a39eb | 1141 | arm_call_dummy_breakpoint_offset (void) |
c906108c SS |
1142 | { |
1143 | if (caller_is_thumb) | |
1144 | return 4; | |
1145 | else | |
1146 | return 8; | |
1147 | } | |
1148 | ||
ed9a39eb JM |
1149 | /* Note: ScottB |
1150 | ||
1151 | This function does not support passing parameters using the FPA | |
1152 | variant of the APCS. It passes any floating point arguments in the | |
1153 | general registers and/or on the stack. */ | |
c906108c SS |
1154 | |
1155 | CORE_ADDR | |
ed9a39eb JM |
1156 | arm_push_arguments (int nargs, value_ptr * args, CORE_ADDR sp, |
1157 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 1158 | { |
ed9a39eb JM |
1159 | char *fp; |
1160 | int argnum, argreg, nstack_size; | |
1161 | ||
1162 | /* Walk through the list of args and determine how large a temporary | |
1163 | stack is required. Need to take care here as structs may be | |
1164 | passed on the stack, and we have to to push them. */ | |
1165 | nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */ | |
1166 | if (struct_return) /* The struct address goes in A1. */ | |
1167 | nstack_size += REGISTER_SIZE; | |
1168 | ||
1169 | /* Walk through the arguments and add their size to nstack_size. */ | |
1170 | for (argnum = 0; argnum < nargs; argnum++) | |
c5aa993b | 1171 | { |
c906108c | 1172 | int len; |
ed9a39eb JM |
1173 | struct type *arg_type; |
1174 | ||
1175 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1176 | len = TYPE_LENGTH (arg_type); | |
c906108c | 1177 | |
ed9a39eb JM |
1178 | /* ANSI C code passes float arguments as integers, K&R code |
1179 | passes float arguments as doubles. Correct for this here. */ | |
1180 | if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len) | |
1181 | nstack_size += FP_REGISTER_VIRTUAL_SIZE; | |
1182 | else | |
1183 | nstack_size += len; | |
1184 | } | |
c906108c | 1185 | |
ed9a39eb JM |
1186 | /* Allocate room on the stack, and initialize our stack frame |
1187 | pointer. */ | |
1188 | fp = NULL; | |
1189 | if (nstack_size > 0) | |
1190 | { | |
1191 | sp -= nstack_size; | |
1192 | fp = (char *) sp; | |
1193 | } | |
1194 | ||
1195 | /* Initialize the integer argument register pointer. */ | |
c906108c | 1196 | argreg = A1_REGNUM; |
c906108c | 1197 | |
ed9a39eb JM |
1198 | /* The struct_return pointer occupies the first parameter passing |
1199 | register. */ | |
c906108c | 1200 | if (struct_return) |
c5aa993b | 1201 | write_register (argreg++, struct_addr); |
c906108c | 1202 | |
ed9a39eb JM |
1203 | /* Process arguments from left to right. Store as many as allowed |
1204 | in the parameter passing registers (A1-A4), and save the rest on | |
1205 | the temporary stack. */ | |
c5aa993b | 1206 | for (argnum = 0; argnum < nargs; argnum++) |
c906108c | 1207 | { |
ed9a39eb | 1208 | int len; |
c5aa993b | 1209 | char *val; |
ed9a39eb | 1210 | double dbl_arg; |
c5aa993b | 1211 | CORE_ADDR regval; |
ed9a39eb JM |
1212 | enum type_code typecode; |
1213 | struct type *arg_type, *target_type; | |
1214 | ||
1215 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1216 | target_type = TYPE_TARGET_TYPE (arg_type); | |
1217 | len = TYPE_LENGTH (arg_type); | |
1218 | typecode = TYPE_CODE (arg_type); | |
1219 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
1220 | ||
1221 | /* ANSI C code passes float arguments as integers, K&R code | |
1222 | passes float arguments as doubles. The .stabs record for | |
1223 | for ANSI prototype floating point arguments records the | |
1224 | type as FP_INTEGER, while a K&R style (no prototype) | |
1225 | .stabs records the type as FP_FLOAT. In this latter case | |
1226 | the compiler converts the float arguments to double before | |
1227 | calling the function. */ | |
1228 | if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len) | |
1229 | { | |
1230 | float f = *(float *) val; | |
1231 | dbl_arg = f; | |
1232 | val = (char *) &dbl_arg; | |
1233 | len = sizeof (double); | |
1234 | } | |
da59e081 JM |
1235 | #if 1 |
1236 | /* I don't know why this code was disable. The only logical use | |
1237 | for a function pointer is to call that function, so setting | |
1238 | the mode bit is perfectly fine. FN */ | |
ed9a39eb | 1239 | /* If the argument is a pointer to a function, and it is a Thumb |
c906108c | 1240 | function, set the low bit of the pointer. */ |
ed9a39eb JM |
1241 | if (TYPE_CODE_PTR == typecode |
1242 | && NULL != target_type | |
1243 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
c906108c | 1244 | { |
ed9a39eb | 1245 | CORE_ADDR regval = extract_address (val, len); |
c906108c SS |
1246 | if (arm_pc_is_thumb (regval)) |
1247 | store_address (val, len, MAKE_THUMB_ADDR (regval)); | |
1248 | } | |
c906108c | 1249 | #endif |
ed9a39eb JM |
1250 | /* Copy the argument to general registers or the stack in |
1251 | register-sized pieces. Large arguments are split between | |
1252 | registers and stack. */ | |
1253 | while (len > 0) | |
c906108c | 1254 | { |
ed9a39eb JM |
1255 | int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; |
1256 | ||
1257 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
c906108c | 1258 | { |
ed9a39eb JM |
1259 | /* It's an argument being passed in a general register. */ |
1260 | regval = extract_address (val, partial_len); | |
1261 | write_register (argreg++, regval); | |
c906108c | 1262 | } |
ed9a39eb JM |
1263 | else |
1264 | { | |
1265 | /* Push the arguments onto the stack. */ | |
1266 | write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE); | |
1267 | fp += REGISTER_SIZE; | |
1268 | } | |
1269 | ||
1270 | len -= partial_len; | |
1271 | val += partial_len; | |
c906108c SS |
1272 | } |
1273 | } | |
c906108c SS |
1274 | |
1275 | /* Return adjusted stack pointer. */ | |
1276 | return sp; | |
1277 | } | |
1278 | ||
1279 | void | |
ed9a39eb | 1280 | arm_pop_frame (void) |
c906108c | 1281 | { |
c5aa993b | 1282 | struct frame_info *frame = get_current_frame (); |
c906108c | 1283 | int regnum; |
7a292a7a | 1284 | CORE_ADDR old_SP; |
c906108c | 1285 | |
7a292a7a | 1286 | old_SP = read_register (frame->framereg); |
c906108c SS |
1287 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
1288 | if (frame->fsr.regs[regnum] != 0) | |
c5aa993b | 1289 | write_register (regnum, |
c906108c SS |
1290 | read_memory_integer (frame->fsr.regs[regnum], 4)); |
1291 | ||
1292 | write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); | |
7a292a7a | 1293 | write_register (SP_REGNUM, old_SP); |
c906108c SS |
1294 | |
1295 | flush_cached_frames (); | |
1296 | } | |
1297 | ||
1298 | static void | |
ed9a39eb | 1299 | print_fpu_flags (int flags) |
c906108c | 1300 | { |
c5aa993b JM |
1301 | if (flags & (1 << 0)) |
1302 | fputs ("IVO ", stdout); | |
1303 | if (flags & (1 << 1)) | |
1304 | fputs ("DVZ ", stdout); | |
1305 | if (flags & (1 << 2)) | |
1306 | fputs ("OFL ", stdout); | |
1307 | if (flags & (1 << 3)) | |
1308 | fputs ("UFL ", stdout); | |
1309 | if (flags & (1 << 4)) | |
1310 | fputs ("INX ", stdout); | |
1311 | putchar ('\n'); | |
c906108c SS |
1312 | } |
1313 | ||
1314 | void | |
ed9a39eb | 1315 | arm_float_info (void) |
c906108c | 1316 | { |
c5aa993b JM |
1317 | register unsigned long status = read_register (FPS_REGNUM); |
1318 | int type; | |
1319 | ||
1320 | type = (status >> 24) & 127; | |
1321 | printf ("%s FPU type %d\n", | |
ed9a39eb | 1322 | (status & (1 << 31)) ? "Hardware" : "Software", |
c5aa993b JM |
1323 | type); |
1324 | fputs ("mask: ", stdout); | |
1325 | print_fpu_flags (status >> 16); | |
1326 | fputs ("flags: ", stdout); | |
1327 | print_fpu_flags (status); | |
c906108c SS |
1328 | } |
1329 | ||
96baa820 JM |
1330 | /* If the disassembly mode is APCS, we have to also switch the |
1331 | bfd mach_type. This function is run in the set disassembly_flavor | |
1332 | command, and does that. */ | |
1333 | ||
c906108c | 1334 | static void |
ed9a39eb JM |
1335 | set_disassembly_flavor_sfunc (char *args, int from_tty, |
1336 | struct cmd_list_element *c) | |
c906108c | 1337 | { |
96baa820 | 1338 | set_disassembly_flavor (); |
96baa820 | 1339 | } |
085dd6e6 | 1340 | |
96baa820 | 1341 | static void |
ed9a39eb | 1342 | set_disassembly_flavor (void) |
96baa820 JM |
1343 | { |
1344 | if (disassembly_flavor == apcs_flavor) | |
c5aa993b | 1345 | { |
da59e081 JM |
1346 | parse_arm_disassembler_option ("reg-names-atpcs"); |
1347 | arm_register_names = atpcs_register_names; | |
96baa820 JM |
1348 | } |
1349 | else if (disassembly_flavor == r_prefix_flavor) | |
1350 | { | |
da59e081 | 1351 | parse_arm_disassembler_option ("reg-names-std"); |
ed9a39eb JM |
1352 | arm_register_names = additional_register_names; |
1353 | } | |
96baa820 JM |
1354 | } |
1355 | ||
ed9a39eb JM |
1356 | /* arm_othernames implements the "othernames" command. This is kind |
1357 | of hacky, and I prefer the set-show disassembly-flavor which is | |
1358 | also used for the x86 gdb. I will keep this around, however, in | |
1359 | case anyone is actually using it. */ | |
96baa820 JM |
1360 | |
1361 | static void | |
ed9a39eb | 1362 | arm_othernames (char *names, int n) |
96baa820 JM |
1363 | { |
1364 | if (disassembly_flavor == r_prefix_flavor) | |
1365 | { | |
1366 | disassembly_flavor = apcs_flavor; | |
1367 | set_disassembly_flavor (); | |
c5aa993b JM |
1368 | } |
1369 | else | |
1370 | { | |
96baa820 JM |
1371 | disassembly_flavor = r_prefix_flavor; |
1372 | set_disassembly_flavor (); | |
c5aa993b | 1373 | } |
c906108c SS |
1374 | } |
1375 | ||
ed9a39eb JM |
1376 | #if 0 |
1377 | /* FIXME: The generated assembler works but sucks. Instead of using | |
1378 | r0, r1 it pushes them on the stack, then loads them into r3, r4 and | |
1379 | uses those registers. I must be missing something. ScottB */ | |
c906108c | 1380 | |
c5aa993b | 1381 | void |
ed9a39eb JM |
1382 | convert_from_extended (void *ptr, void *dbl) |
1383 | { | |
1384 | __asm__ (" | |
1385 | ldfe f0,[%0] | |
1386 | stfd f0,[%1] " | |
1387 | : /* no output */ | |
1388 | : "r" (ptr), "r" (dbl)); | |
1389 | } | |
1390 | ||
1391 | void | |
1392 | convert_to_extended (void *dbl, void *ptr) | |
1393 | { | |
1394 | __asm__ (" | |
1395 | ldfd f0,[%0] | |
1396 | stfe f0,[%1] " | |
1397 | : /* no output */ | |
1398 | : "r" (dbl), "r" (ptr)); | |
1399 | } | |
1400 | #else | |
1401 | static void | |
1402 | convert_from_extended (void *ptr, void *dbl) | |
c906108c | 1403 | { |
104c1213 | 1404 | *(double *) dbl = *(double *) ptr; |
c906108c SS |
1405 | } |
1406 | ||
c5aa993b | 1407 | void |
ed9a39eb | 1408 | convert_to_extended (void *dbl, void *ptr) |
c906108c | 1409 | { |
104c1213 | 1410 | *(double *) ptr = *(double *) dbl; |
c906108c | 1411 | } |
ed9a39eb JM |
1412 | #endif |
1413 | ||
1414 | /* Nonzero if register N requires conversion from raw format to | |
1415 | virtual format. */ | |
1416 | ||
1417 | int | |
1418 | arm_register_convertible (unsigned int regnum) | |
1419 | { | |
1420 | return ((regnum - F0_REGNUM) < 8); | |
1421 | } | |
1422 | ||
1423 | /* Convert data from raw format for register REGNUM in buffer FROM to | |
1424 | virtual format with type TYPE in buffer TO. */ | |
1425 | ||
1426 | void | |
1427 | arm_register_convert_to_virtual (unsigned int regnum, struct type *type, | |
1428 | void *from, void *to) | |
1429 | { | |
1430 | double val; | |
1431 | ||
1432 | convert_from_extended (from, &val); | |
1433 | store_floating (to, TYPE_LENGTH (type), val); | |
1434 | } | |
1435 | ||
1436 | /* Convert data from virtual format with type TYPE in buffer FROM to | |
1437 | raw format for register REGNUM in buffer TO. */ | |
1438 | ||
1439 | void | |
1440 | arm_register_convert_to_raw (unsigned int regnum, struct type *type, | |
1441 | void *from, void *to) | |
1442 | { | |
1443 | double val = extract_floating (from, TYPE_LENGTH (type)); | |
1444 | ||
1445 | convert_to_extended (&val, to); | |
1446 | } | |
c906108c SS |
1447 | |
1448 | static int | |
ed9a39eb | 1449 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
1450 | { |
1451 | if (cond == INST_AL || cond == INST_NV) | |
1452 | return 1; | |
1453 | ||
1454 | switch (cond) | |
1455 | { | |
1456 | case INST_EQ: | |
1457 | return ((status_reg & FLAG_Z) != 0); | |
1458 | case INST_NE: | |
1459 | return ((status_reg & FLAG_Z) == 0); | |
1460 | case INST_CS: | |
1461 | return ((status_reg & FLAG_C) != 0); | |
1462 | case INST_CC: | |
1463 | return ((status_reg & FLAG_C) == 0); | |
1464 | case INST_MI: | |
1465 | return ((status_reg & FLAG_N) != 0); | |
1466 | case INST_PL: | |
1467 | return ((status_reg & FLAG_N) == 0); | |
1468 | case INST_VS: | |
1469 | return ((status_reg & FLAG_V) != 0); | |
1470 | case INST_VC: | |
1471 | return ((status_reg & FLAG_V) == 0); | |
1472 | case INST_HI: | |
1473 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
1474 | case INST_LS: | |
1475 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
1476 | case INST_GE: | |
1477 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
1478 | case INST_LT: | |
1479 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
1480 | case INST_GT: | |
1481 | return (((status_reg & FLAG_Z) == 0) && | |
ed9a39eb | 1482 | (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1483 | case INST_LE: |
1484 | return (((status_reg & FLAG_Z) != 0) || | |
ed9a39eb | 1485 | (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1486 | } |
1487 | return 1; | |
1488 | } | |
1489 | ||
1490 | #define submask(x) ((1L << ((x) + 1)) - 1) | |
1491 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
1492 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
1493 | #define sbits(obj,st,fn) \ | |
1494 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
1495 | #define BranchDest(addr,instr) \ | |
1496 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
1497 | #define ARM_PC_32 1 | |
1498 | ||
1499 | static unsigned long | |
ed9a39eb JM |
1500 | shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val, |
1501 | unsigned long status_reg) | |
c906108c SS |
1502 | { |
1503 | unsigned long res, shift; | |
1504 | int rm = bits (inst, 0, 3); | |
1505 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
1506 | |
1507 | if (bit (inst, 4)) | |
c906108c SS |
1508 | { |
1509 | int rs = bits (inst, 8, 11); | |
1510 | shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; | |
1511 | } | |
1512 | else | |
1513 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
1514 | |
1515 | res = (rm == 15 | |
c906108c | 1516 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
c5aa993b | 1517 | + (bit (inst, 4) ? 12 : 8)) |
c906108c SS |
1518 | : read_register (rm)); |
1519 | ||
1520 | switch (shifttype) | |
1521 | { | |
c5aa993b | 1522 | case 0: /* LSL */ |
c906108c SS |
1523 | res = shift >= 32 ? 0 : res << shift; |
1524 | break; | |
c5aa993b JM |
1525 | |
1526 | case 1: /* LSR */ | |
c906108c SS |
1527 | res = shift >= 32 ? 0 : res >> shift; |
1528 | break; | |
1529 | ||
c5aa993b JM |
1530 | case 2: /* ASR */ |
1531 | if (shift >= 32) | |
1532 | shift = 31; | |
c906108c SS |
1533 | res = ((res & 0x80000000L) |
1534 | ? ~((~res) >> shift) : res >> shift); | |
1535 | break; | |
1536 | ||
c5aa993b | 1537 | case 3: /* ROR/RRX */ |
c906108c SS |
1538 | shift &= 31; |
1539 | if (shift == 0) | |
1540 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
1541 | else | |
c5aa993b | 1542 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
1543 | break; |
1544 | } | |
1545 | ||
1546 | return res & 0xffffffff; | |
1547 | } | |
1548 | ||
c906108c SS |
1549 | /* Return number of 1-bits in VAL. */ |
1550 | ||
1551 | static int | |
ed9a39eb | 1552 | bitcount (unsigned long val) |
c906108c SS |
1553 | { |
1554 | int nbits; | |
1555 | for (nbits = 0; val != 0; nbits++) | |
c5aa993b | 1556 | val &= val - 1; /* delete rightmost 1-bit in val */ |
c906108c SS |
1557 | return nbits; |
1558 | } | |
1559 | ||
c906108c | 1560 | static CORE_ADDR |
ed9a39eb | 1561 | thumb_get_next_pc (CORE_ADDR pc) |
c906108c | 1562 | { |
c5aa993b | 1563 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
c906108c | 1564 | unsigned short inst1 = read_memory_integer (pc, 2); |
c5aa993b | 1565 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ |
c906108c SS |
1566 | unsigned long offset; |
1567 | ||
1568 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
1569 | { | |
1570 | CORE_ADDR sp; | |
1571 | ||
1572 | /* Fetch the saved PC from the stack. It's stored above | |
1573 | all of the other registers. */ | |
1574 | offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE; | |
1575 | sp = read_register (SP_REGNUM); | |
1576 | nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4); | |
1577 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1578 | if (nextpc == pc) | |
1579 | error ("Infinite loop detected"); | |
1580 | } | |
1581 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
1582 | { | |
1583 | unsigned long status = read_register (PS_REGNUM); | |
c5aa993b | 1584 | unsigned long cond = bits (inst1, 8, 11); |
c906108c SS |
1585 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ |
1586 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); | |
1587 | } | |
1588 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
1589 | { | |
1590 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
1591 | } | |
1592 | else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */ | |
1593 | { | |
1594 | unsigned short inst2 = read_memory_integer (pc + 2, 2); | |
c5aa993b | 1595 | offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); |
c906108c SS |
1596 | nextpc = pc_val + offset; |
1597 | } | |
1598 | ||
1599 | return nextpc; | |
1600 | } | |
1601 | ||
c906108c | 1602 | CORE_ADDR |
ed9a39eb | 1603 | arm_get_next_pc (CORE_ADDR pc) |
c906108c SS |
1604 | { |
1605 | unsigned long pc_val; | |
1606 | unsigned long this_instr; | |
1607 | unsigned long status; | |
1608 | CORE_ADDR nextpc; | |
1609 | ||
1610 | if (arm_pc_is_thumb (pc)) | |
1611 | return thumb_get_next_pc (pc); | |
1612 | ||
1613 | pc_val = (unsigned long) pc; | |
1614 | this_instr = read_memory_integer (pc, 4); | |
1615 | status = read_register (PS_REGNUM); | |
c5aa993b | 1616 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c SS |
1617 | |
1618 | if (condition_true (bits (this_instr, 28, 31), status)) | |
1619 | { | |
1620 | switch (bits (this_instr, 24, 27)) | |
1621 | { | |
c5aa993b JM |
1622 | case 0x0: |
1623 | case 0x1: /* data processing */ | |
1624 | case 0x2: | |
1625 | case 0x3: | |
c906108c SS |
1626 | { |
1627 | unsigned long operand1, operand2, result = 0; | |
1628 | unsigned long rn; | |
1629 | int c; | |
c5aa993b | 1630 | |
c906108c SS |
1631 | if (bits (this_instr, 12, 15) != 15) |
1632 | break; | |
1633 | ||
1634 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 1635 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
c906108c SS |
1636 | error ("Illegal update to pc in instruction"); |
1637 | ||
1638 | /* Multiply into PC */ | |
1639 | c = (status & FLAG_C) ? 1 : 0; | |
1640 | rn = bits (this_instr, 16, 19); | |
1641 | operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); | |
c5aa993b | 1642 | |
c906108c SS |
1643 | if (bit (this_instr, 25)) |
1644 | { | |
1645 | unsigned long immval = bits (this_instr, 0, 7); | |
1646 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
1647 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
1648 | & 0xffffffff; | |
c906108c | 1649 | } |
c5aa993b | 1650 | else /* operand 2 is a shifted register */ |
c906108c | 1651 | operand2 = shifted_reg_val (this_instr, c, pc_val, status); |
c5aa993b | 1652 | |
c906108c SS |
1653 | switch (bits (this_instr, 21, 24)) |
1654 | { | |
c5aa993b | 1655 | case 0x0: /*and */ |
c906108c SS |
1656 | result = operand1 & operand2; |
1657 | break; | |
1658 | ||
c5aa993b | 1659 | case 0x1: /*eor */ |
c906108c SS |
1660 | result = operand1 ^ operand2; |
1661 | break; | |
1662 | ||
c5aa993b | 1663 | case 0x2: /*sub */ |
c906108c SS |
1664 | result = operand1 - operand2; |
1665 | break; | |
1666 | ||
c5aa993b | 1667 | case 0x3: /*rsb */ |
c906108c SS |
1668 | result = operand2 - operand1; |
1669 | break; | |
1670 | ||
c5aa993b | 1671 | case 0x4: /*add */ |
c906108c SS |
1672 | result = operand1 + operand2; |
1673 | break; | |
1674 | ||
c5aa993b | 1675 | case 0x5: /*adc */ |
c906108c SS |
1676 | result = operand1 + operand2 + c; |
1677 | break; | |
1678 | ||
c5aa993b | 1679 | case 0x6: /*sbc */ |
c906108c SS |
1680 | result = operand1 - operand2 + c; |
1681 | break; | |
1682 | ||
c5aa993b | 1683 | case 0x7: /*rsc */ |
c906108c SS |
1684 | result = operand2 - operand1 + c; |
1685 | break; | |
1686 | ||
c5aa993b JM |
1687 | case 0x8: |
1688 | case 0x9: | |
1689 | case 0xa: | |
1690 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
1691 | result = (unsigned long) nextpc; |
1692 | break; | |
1693 | ||
c5aa993b | 1694 | case 0xc: /*orr */ |
c906108c SS |
1695 | result = operand1 | operand2; |
1696 | break; | |
1697 | ||
c5aa993b | 1698 | case 0xd: /*mov */ |
c906108c SS |
1699 | /* Always step into a function. */ |
1700 | result = operand2; | |
c5aa993b | 1701 | break; |
c906108c | 1702 | |
c5aa993b | 1703 | case 0xe: /*bic */ |
c906108c SS |
1704 | result = operand1 & ~operand2; |
1705 | break; | |
1706 | ||
c5aa993b | 1707 | case 0xf: /*mvn */ |
c906108c SS |
1708 | result = ~operand2; |
1709 | break; | |
1710 | } | |
1711 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1712 | ||
1713 | if (nextpc == pc) | |
1714 | error ("Infinite loop detected"); | |
1715 | break; | |
1716 | } | |
c5aa993b JM |
1717 | |
1718 | case 0x4: | |
1719 | case 0x5: /* data transfer */ | |
1720 | case 0x6: | |
1721 | case 0x7: | |
c906108c SS |
1722 | if (bit (this_instr, 20)) |
1723 | { | |
1724 | /* load */ | |
1725 | if (bits (this_instr, 12, 15) == 15) | |
1726 | { | |
1727 | /* rd == pc */ | |
c5aa993b | 1728 | unsigned long rn; |
c906108c | 1729 | unsigned long base; |
c5aa993b | 1730 | |
c906108c SS |
1731 | if (bit (this_instr, 22)) |
1732 | error ("Illegal update to pc in instruction"); | |
1733 | ||
1734 | /* byte write to PC */ | |
1735 | rn = bits (this_instr, 16, 19); | |
1736 | base = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1737 | if (bit (this_instr, 24)) | |
1738 | { | |
1739 | /* pre-indexed */ | |
1740 | int c = (status & FLAG_C) ? 1 : 0; | |
1741 | unsigned long offset = | |
c5aa993b | 1742 | (bit (this_instr, 25) |
ed9a39eb | 1743 | ? shifted_reg_val (this_instr, c, pc_val, status) |
c5aa993b | 1744 | : bits (this_instr, 0, 11)); |
c906108c SS |
1745 | |
1746 | if (bit (this_instr, 23)) | |
1747 | base += offset; | |
1748 | else | |
1749 | base -= offset; | |
1750 | } | |
c5aa993b | 1751 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
c906108c | 1752 | 4); |
c5aa993b | 1753 | |
c906108c SS |
1754 | nextpc = ADDR_BITS_REMOVE (nextpc); |
1755 | ||
1756 | if (nextpc == pc) | |
1757 | error ("Infinite loop detected"); | |
1758 | } | |
1759 | } | |
1760 | break; | |
c5aa993b JM |
1761 | |
1762 | case 0x8: | |
1763 | case 0x9: /* block transfer */ | |
c906108c SS |
1764 | if (bit (this_instr, 20)) |
1765 | { | |
1766 | /* LDM */ | |
1767 | if (bit (this_instr, 15)) | |
1768 | { | |
1769 | /* loading pc */ | |
1770 | int offset = 0; | |
1771 | ||
1772 | if (bit (this_instr, 23)) | |
1773 | { | |
1774 | /* up */ | |
1775 | unsigned long reglist = bits (this_instr, 0, 14); | |
1776 | offset = bitcount (reglist) * 4; | |
c5aa993b | 1777 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
1778 | offset += 4; |
1779 | } | |
1780 | else if (bit (this_instr, 24)) | |
1781 | offset = -4; | |
c5aa993b | 1782 | |
c906108c | 1783 | { |
c5aa993b JM |
1784 | unsigned long rn_val = |
1785 | read_register (bits (this_instr, 16, 19)); | |
c906108c SS |
1786 | nextpc = |
1787 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 1788 | + offset), |
c906108c SS |
1789 | 4); |
1790 | } | |
1791 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1792 | if (nextpc == pc) | |
1793 | error ("Infinite loop detected"); | |
1794 | } | |
1795 | } | |
1796 | break; | |
c5aa993b JM |
1797 | |
1798 | case 0xb: /* branch & link */ | |
1799 | case 0xa: /* branch */ | |
c906108c SS |
1800 | { |
1801 | nextpc = BranchDest (pc, this_instr); | |
1802 | ||
1803 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1804 | if (nextpc == pc) | |
1805 | error ("Infinite loop detected"); | |
1806 | break; | |
1807 | } | |
c5aa993b JM |
1808 | |
1809 | case 0xc: | |
1810 | case 0xd: | |
1811 | case 0xe: /* coproc ops */ | |
1812 | case 0xf: /* SWI */ | |
c906108c SS |
1813 | break; |
1814 | ||
1815 | default: | |
1816 | fprintf (stderr, "Bad bit-field extraction\n"); | |
1817 | return (pc); | |
1818 | } | |
1819 | } | |
1820 | ||
1821 | return nextpc; | |
1822 | } | |
1823 | ||
1824 | #include "bfd-in2.h" | |
1825 | #include "libcoff.h" | |
1826 | ||
1827 | static int | |
ed9a39eb | 1828 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
1829 | { |
1830 | if (arm_pc_is_thumb (memaddr)) | |
1831 | { | |
c5aa993b JM |
1832 | static asymbol *asym; |
1833 | static combined_entry_type ce; | |
1834 | static struct coff_symbol_struct csym; | |
1835 | static struct _bfd fake_bfd; | |
1836 | static bfd_target fake_target; | |
c906108c SS |
1837 | |
1838 | if (csym.native == NULL) | |
1839 | { | |
1840 | /* Create a fake symbol vector containing a Thumb symbol. This is | |
1841 | solely so that the code in print_insn_little_arm() and | |
1842 | print_insn_big_arm() in opcodes/arm-dis.c will detect the presence | |
1843 | of a Thumb symbol and switch to decoding Thumb instructions. */ | |
c5aa993b JM |
1844 | |
1845 | fake_target.flavour = bfd_target_coff_flavour; | |
1846 | fake_bfd.xvec = &fake_target; | |
c906108c | 1847 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; |
c5aa993b JM |
1848 | csym.native = &ce; |
1849 | csym.symbol.the_bfd = &fake_bfd; | |
1850 | csym.symbol.name = "fake"; | |
1851 | asym = (asymbol *) & csym; | |
c906108c | 1852 | } |
c5aa993b | 1853 | |
c906108c | 1854 | memaddr = UNMAKE_THUMB_ADDR (memaddr); |
c5aa993b | 1855 | info->symbols = &asym; |
c906108c SS |
1856 | } |
1857 | else | |
1858 | info->symbols = NULL; | |
c5aa993b | 1859 | |
c906108c SS |
1860 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
1861 | return print_insn_big_arm (memaddr, info); | |
1862 | else | |
1863 | return print_insn_little_arm (memaddr, info); | |
1864 | } | |
1865 | ||
ed9a39eb JM |
1866 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the |
1867 | program counter value to determine whether a 16-bit or 32-bit | |
1868 | breakpoint should be used. It returns a pointer to a string of | |
1869 | bytes that encode a breakpoint instruction, stores the length of | |
1870 | the string to *lenptr, and adjusts the program counter (if | |
1871 | necessary) to point to the actual memory location where the | |
c906108c SS |
1872 | breakpoint should be inserted. */ |
1873 | ||
1874 | unsigned char * | |
ed9a39eb | 1875 | arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
c906108c SS |
1876 | { |
1877 | if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr)) | |
1878 | { | |
1879 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b JM |
1880 | { |
1881 | static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT; | |
1882 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
1883 | *lenptr = sizeof (thumb_breakpoint); | |
1884 | return thumb_breakpoint; | |
1885 | } | |
c906108c | 1886 | else |
c5aa993b JM |
1887 | { |
1888 | static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT; | |
1889 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
1890 | *lenptr = sizeof (thumb_breakpoint); | |
1891 | return thumb_breakpoint; | |
1892 | } | |
c906108c SS |
1893 | } |
1894 | else | |
1895 | { | |
1896 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b JM |
1897 | { |
1898 | static char arm_breakpoint[] = ARM_BE_BREAKPOINT; | |
1899 | *lenptr = sizeof (arm_breakpoint); | |
1900 | return arm_breakpoint; | |
1901 | } | |
c906108c | 1902 | else |
c5aa993b JM |
1903 | { |
1904 | static char arm_breakpoint[] = ARM_LE_BREAKPOINT; | |
1905 | *lenptr = sizeof (arm_breakpoint); | |
1906 | return arm_breakpoint; | |
1907 | } | |
c906108c SS |
1908 | } |
1909 | } | |
ed9a39eb JM |
1910 | |
1911 | /* Extract from an array REGBUF containing the (raw) register state a | |
1912 | function return value of type TYPE, and copy that, in virtual | |
1913 | format, into VALBUF. */ | |
1914 | ||
1915 | void | |
1916 | arm_extract_return_value (struct type *type, | |
1917 | char regbuf[REGISTER_BYTES], | |
1918 | char *valbuf) | |
1919 | { | |
1920 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
1921 | convert_from_extended (®buf[REGISTER_BYTE (F0_REGNUM)], valbuf); | |
1922 | else | |
1923 | memcpy (valbuf, ®buf[REGISTER_BYTE (A1_REGNUM)], TYPE_LENGTH (type)); | |
1924 | } | |
1925 | ||
1926 | /* Return non-zero if the PC is inside a thumb call thunk. */ | |
c906108c SS |
1927 | |
1928 | int | |
ed9a39eb | 1929 | arm_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
1930 | { |
1931 | CORE_ADDR start_addr; | |
1932 | ||
ed9a39eb JM |
1933 | /* Find the starting address of the function containing the PC. If |
1934 | the caller didn't give us a name, look it up at the same time. */ | |
c906108c SS |
1935 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) |
1936 | return 0; | |
1937 | ||
1938 | return strncmp (name, "_call_via_r", 11) == 0; | |
1939 | } | |
1940 | ||
ed9a39eb JM |
1941 | /* If PC is in a Thumb call or return stub, return the address of the |
1942 | target PC, which is in a register. The thunk functions are called | |
1943 | _called_via_xx, where x is the register name. The possible names | |
1944 | are r0-r9, sl, fp, ip, sp, and lr. */ | |
c906108c SS |
1945 | |
1946 | CORE_ADDR | |
ed9a39eb | 1947 | arm_skip_stub (CORE_ADDR pc) |
c906108c | 1948 | { |
c5aa993b | 1949 | char *name; |
c906108c SS |
1950 | CORE_ADDR start_addr; |
1951 | ||
1952 | /* Find the starting address and name of the function containing the PC. */ | |
1953 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
1954 | return 0; | |
1955 | ||
1956 | /* Call thunks always start with "_call_via_". */ | |
1957 | if (strncmp (name, "_call_via_", 10) == 0) | |
1958 | { | |
ed9a39eb JM |
1959 | /* Use the name suffix to determine which register contains the |
1960 | target PC. */ | |
c5aa993b JM |
1961 | static char *table[15] = |
1962 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
1963 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
1964 | }; | |
c906108c SS |
1965 | int regno; |
1966 | ||
1967 | for (regno = 0; regno <= 14; regno++) | |
1968 | if (strcmp (&name[10], table[regno]) == 0) | |
1969 | return read_register (regno); | |
1970 | } | |
ed9a39eb | 1971 | |
c5aa993b | 1972 | return 0; /* not a stub */ |
c906108c SS |
1973 | } |
1974 | ||
c906108c | 1975 | void |
ed9a39eb | 1976 | _initialize_arm_tdep (void) |
c906108c | 1977 | { |
96baa820 | 1978 | struct cmd_list_element *new_cmd; |
085dd6e6 | 1979 | |
c906108c | 1980 | tm_print_insn = gdb_print_insn_arm; |
ed9a39eb | 1981 | |
085dd6e6 | 1982 | /* Sync the opcode insn printer with our register viewer: */ |
da59e081 | 1983 | parse_arm_disassembler_option ("reg-names-atpcs"); |
c5aa993b | 1984 | |
96baa820 | 1985 | /* Add the deprecated "othernames" command */ |
ed9a39eb | 1986 | |
c906108c SS |
1987 | add_com ("othernames", class_obscure, arm_othernames, |
1988 | "Switch to the other set of register names."); | |
1989 | ||
96baa820 | 1990 | /* Add the disassembly-flavor command */ |
ed9a39eb | 1991 | |
96baa820 | 1992 | new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, |
ed9a39eb JM |
1993 | valid_flavors, |
1994 | (char *) &disassembly_flavor, | |
1995 | "Set the disassembly flavor, \ | |
96baa820 JM |
1996 | the valid values are \"apcs\" and \"r-prefix\", \ |
1997 | and the default value is \"apcs\".", | |
ed9a39eb | 1998 | &setlist); |
96baa820 | 1999 | new_cmd->function.sfunc = set_disassembly_flavor_sfunc; |
ed9a39eb JM |
2000 | add_show_from_set (new_cmd, &showlist); |
2001 | ||
c906108c SS |
2002 | /* ??? Maybe this should be a boolean. */ |
2003 | add_show_from_set (add_set_cmd ("apcs32", no_class, | |
ed9a39eb | 2004 | var_zinteger, (char *) &arm_apcs_32, |
96baa820 | 2005 | "Set usage of ARM 32-bit mode.\n", &setlist), |
ed9a39eb | 2006 | &showlist); |
c906108c SS |
2007 | |
2008 | } | |
2009 | ||
ed9a39eb JM |
2010 | /* Test whether the coff symbol specific value corresponds to a Thumb |
2011 | function. */ | |
2012 | ||
c906108c | 2013 | int |
c5aa993b | 2014 | coff_sym_is_thumb (int val) |
c906108c | 2015 | { |
c5aa993b JM |
2016 | return (val == C_THUMBEXT || |
2017 | val == C_THUMBSTAT || | |
2018 | val == C_THUMBEXTFUNC || | |
2019 | val == C_THUMBSTATFUNC || | |
2020 | val == C_THUMBLABEL); | |
c906108c | 2021 | } |