]>
Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
b6ba6518 | 2 | Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000, |
c3b4394c | 3 | 2001, 2002 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c | 21 | |
34e8f22d RE |
22 | #include <ctype.h> /* XXX for isupper () */ |
23 | ||
c906108c SS |
24 | #include "defs.h" |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "gdbcmd.h" | |
28 | #include "gdbcore.h" | |
29 | #include "symfile.h" | |
30 | #include "gdb_string.h" | |
e8b09175 | 31 | #include "dis-asm.h" /* For register flavors. */ |
4e052eda | 32 | #include "regcache.h" |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
34e8f22d | 35 | #include "arch-utils.h" |
a42dd537 | 36 | #include "solib-svr4.h" |
34e8f22d RE |
37 | |
38 | #include "arm-tdep.h" | |
39 | ||
082fc60d RE |
40 | #include "elf-bfd.h" |
41 | #include "coff/internal.h" | |
c906108c | 42 | |
2a451106 KB |
43 | /* Each OS has a different mechanism for accessing the various |
44 | registers stored in the sigcontext structure. | |
45 | ||
46 | SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or | |
47 | function pointer) which may be used to determine the addresses | |
48 | of the various saved registers in the sigcontext structure. | |
49 | ||
50 | For the ARM target, there are three parameters to this function. | |
51 | The first is the pc value of the frame under consideration, the | |
52 | second the stack pointer of this frame, and the last is the | |
53 | register number to fetch. | |
54 | ||
55 | If the tm.h file does not define this macro, then it's assumed that | |
56 | no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to | |
57 | be 0. | |
58 | ||
59 | When it comes time to multi-arching this code, see the identically | |
60 | named machinery in ia64-tdep.c for an example of how it could be | |
61 | done. It should not be necessary to modify the code below where | |
62 | this macro is used. */ | |
63 | ||
3bb04bdd AC |
64 | #ifdef SIGCONTEXT_REGISTER_ADDRESS |
65 | #ifndef SIGCONTEXT_REGISTER_ADDRESS_P | |
66 | #define SIGCONTEXT_REGISTER_ADDRESS_P() 1 | |
67 | #endif | |
68 | #else | |
69 | #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0 | |
70 | #define SIGCONTEXT_REGISTER_ADDRESS_P() 0 | |
2a451106 KB |
71 | #endif |
72 | ||
082fc60d RE |
73 | /* Macros for setting and testing a bit in a minimal symbol that marks |
74 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
75 | is used for this purpose. This field is already being used to store | |
76 | the symbol size, so the assumption is that the symbol size cannot | |
77 | exceed 2^31. | |
78 | ||
79 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
80 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. | |
81 | MSYMBOL_SIZE Returns the size of the minimal symbol, | |
82 | i.e. the "info" field with the "special" bit | |
83 | masked out. */ | |
84 | ||
85 | #define MSYMBOL_SET_SPECIAL(msym) \ | |
86 | MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \ | |
87 | | 0x80000000) | |
88 | ||
89 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
90 | (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0) | |
91 | ||
92 | #define MSYMBOL_SIZE(msym) \ | |
93 | ((long) MSYMBOL_INFO (msym) & 0x7fffffff) | |
ed9a39eb | 94 | |
bc90b915 FN |
95 | /* Number of different reg name sets (options). */ |
96 | static int num_flavor_options; | |
97 | ||
98 | /* We have more registers than the disassembler as gdb can print the value | |
99 | of special registers as well. | |
100 | The general register names are overwritten by whatever is being used by | |
101 | the disassembler at the moment. We also adjust the case of cpsr and fps. */ | |
102 | ||
103 | /* Initial value: Register names used in ARM's ISA documentation. */ | |
104 | static char * arm_register_name_strings[] = | |
da59e081 JM |
105 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
106 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
107 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
108 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
109 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
110 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
bc90b915 | 111 | "fps", "cpsr" }; /* 24 25 */ |
966fbf70 | 112 | static char **arm_register_names = arm_register_name_strings; |
ed9a39eb | 113 | |
bc90b915 | 114 | /* Valid register name flavors. */ |
53904c9e | 115 | static const char **valid_flavors; |
ed9a39eb | 116 | |
bc90b915 | 117 | /* Disassembly flavor to use. Default to "std" register names. */ |
53904c9e | 118 | static const char *disassembly_flavor; |
bc90b915 | 119 | static int current_option; /* Index to that option in the opcodes table. */ |
96baa820 | 120 | |
ed9a39eb JM |
121 | /* This is used to keep the bfd arch_info in sync with the disassembly |
122 | flavor. */ | |
123 | static void set_disassembly_flavor_sfunc(char *, int, | |
124 | struct cmd_list_element *); | |
125 | static void set_disassembly_flavor (void); | |
126 | ||
127 | static void convert_from_extended (void *ptr, void *dbl); | |
128 | ||
129 | /* Define other aspects of the stack frame. We keep the offsets of | |
130 | all saved registers, 'cause we need 'em a lot! We also keep the | |
131 | current size of the stack frame, and the offset of the frame | |
132 | pointer from the stack pointer (for frameless functions, and when | |
133 | we're still in the prologue of a function with a frame) */ | |
134 | ||
135 | struct frame_extra_info | |
c3b4394c RE |
136 | { |
137 | int framesize; | |
138 | int frameoffset; | |
139 | int framereg; | |
140 | }; | |
ed9a39eb | 141 | |
bc90b915 FN |
142 | /* Addresses for calling Thumb functions have the bit 0 set. |
143 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
144 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
145 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
146 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
147 | ||
ed9a39eb JM |
148 | /* Will a function return an aggregate type in memory or in a |
149 | register? Return 0 if an aggregate type can be returned in a | |
150 | register, 1 if it must be returned in memory. */ | |
085dd6e6 | 151 | |
c906108c | 152 | int |
ed9a39eb | 153 | arm_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 154 | { |
ed9a39eb JM |
155 | int nRc; |
156 | register enum type_code code; | |
157 | ||
158 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
159 | registers. For an aggregate type to be integer like, its size | |
160 | must be less than or equal to REGISTER_SIZE and the offset of | |
161 | each addressable subfield must be zero. Note that bit fields are | |
162 | not addressable, and all addressable subfields of unions always | |
163 | start at offset zero. | |
164 | ||
165 | This function is based on the behaviour of GCC 2.95.1. | |
166 | See: gcc/arm.c: arm_return_in_memory() for details. | |
167 | ||
168 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
169 | parameters correctly for a function returning the following | |
170 | structure: struct { float f;}; This should be returned in memory, | |
171 | not a register. Richard Earnshaw sent me a patch, but I do not | |
172 | know of any way to detect if a function like the above has been | |
173 | compiled with the correct calling convention. */ | |
174 | ||
175 | /* All aggregate types that won't fit in a register must be returned | |
176 | in memory. */ | |
177 | if (TYPE_LENGTH (type) > REGISTER_SIZE) | |
178 | { | |
179 | return 1; | |
180 | } | |
181 | ||
182 | /* The only aggregate types that can be returned in a register are | |
183 | structs and unions. Arrays must be returned in memory. */ | |
184 | code = TYPE_CODE (type); | |
185 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
186 | { | |
187 | return 1; | |
188 | } | |
189 | ||
190 | /* Assume all other aggregate types can be returned in a register. | |
191 | Run a check for structures, unions and arrays. */ | |
192 | nRc = 0; | |
193 | ||
194 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
195 | { | |
196 | int i; | |
197 | /* Need to check if this struct/union is "integer" like. For | |
198 | this to be true, its size must be less than or equal to | |
199 | REGISTER_SIZE and the offset of each addressable subfield | |
200 | must be zero. Note that bit fields are not addressable, and | |
201 | unions always start at offset zero. If any of the subfields | |
202 | is a floating point type, the struct/union cannot be an | |
203 | integer type. */ | |
204 | ||
205 | /* For each field in the object, check: | |
206 | 1) Is it FP? --> yes, nRc = 1; | |
207 | 2) Is it addressable (bitpos != 0) and | |
208 | not packed (bitsize == 0)? | |
209 | --> yes, nRc = 1 | |
210 | */ | |
211 | ||
212 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
213 | { | |
214 | enum type_code field_type_code; | |
215 | field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i)); | |
216 | ||
217 | /* Is it a floating point type field? */ | |
218 | if (field_type_code == TYPE_CODE_FLT) | |
219 | { | |
220 | nRc = 1; | |
221 | break; | |
222 | } | |
223 | ||
224 | /* If bitpos != 0, then we have to care about it. */ | |
225 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
226 | { | |
227 | /* Bitfields are not addressable. If the field bitsize is | |
228 | zero, then the field is not packed. Hence it cannot be | |
229 | a bitfield or any other packed type. */ | |
230 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
231 | { | |
232 | nRc = 1; | |
233 | break; | |
234 | } | |
235 | } | |
236 | } | |
237 | } | |
238 | ||
239 | return nRc; | |
c906108c SS |
240 | } |
241 | ||
39bbf761 | 242 | static int |
ed9a39eb | 243 | arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c | 244 | { |
c906108c SS |
245 | return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC)); |
246 | } | |
247 | ||
248 | /* Set to true if the 32-bit mode is in use. */ | |
249 | ||
250 | int arm_apcs_32 = 1; | |
251 | ||
ed9a39eb JM |
252 | /* Flag set by arm_fix_call_dummy that tells whether the target |
253 | function is a Thumb function. This flag is checked by | |
254 | arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and | |
255 | its use in valops.c) to pass the function address as an additional | |
256 | parameter. */ | |
c906108c SS |
257 | |
258 | static int target_is_thumb; | |
259 | ||
ed9a39eb JM |
260 | /* Flag set by arm_fix_call_dummy that tells whether the calling |
261 | function is a Thumb function. This flag is checked by | |
262 | arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */ | |
c906108c SS |
263 | |
264 | static int caller_is_thumb; | |
265 | ||
ed9a39eb JM |
266 | /* Determine if the program counter specified in MEMADDR is in a Thumb |
267 | function. */ | |
c906108c | 268 | |
34e8f22d | 269 | int |
2a451106 | 270 | arm_pc_is_thumb (CORE_ADDR memaddr) |
c906108c | 271 | { |
c5aa993b | 272 | struct minimal_symbol *sym; |
c906108c | 273 | |
ed9a39eb | 274 | /* If bit 0 of the address is set, assume this is a Thumb address. */ |
c906108c SS |
275 | if (IS_THUMB_ADDR (memaddr)) |
276 | return 1; | |
277 | ||
ed9a39eb | 278 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
279 | sym = lookup_minimal_symbol_by_pc (memaddr); |
280 | if (sym) | |
281 | { | |
c5aa993b | 282 | return (MSYMBOL_IS_SPECIAL (sym)); |
c906108c SS |
283 | } |
284 | else | |
ed9a39eb JM |
285 | { |
286 | return 0; | |
287 | } | |
c906108c SS |
288 | } |
289 | ||
ed9a39eb JM |
290 | /* Determine if the program counter specified in MEMADDR is in a call |
291 | dummy being called from a Thumb function. */ | |
c906108c | 292 | |
34e8f22d | 293 | int |
2a451106 | 294 | arm_pc_is_thumb_dummy (CORE_ADDR memaddr) |
c906108c | 295 | { |
c5aa993b | 296 | CORE_ADDR sp = read_sp (); |
c906108c | 297 | |
dfcd3bfb JM |
298 | /* FIXME: Until we switch for the new call dummy macros, this heuristic |
299 | is the best we can do. We are trying to determine if the pc is on | |
300 | the stack, which (hopefully) will only happen in a call dummy. | |
301 | We hope the current stack pointer is not so far alway from the dummy | |
302 | frame location (true if we have not pushed large data structures or | |
303 | gone too many levels deep) and that our 1024 is not enough to consider | |
304 | code regions as part of the stack (true for most practical purposes) */ | |
305 | if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024)) | |
c906108c SS |
306 | return caller_is_thumb; |
307 | else | |
308 | return 0; | |
309 | } | |
310 | ||
181c1381 | 311 | /* Remove useless bits from addresses in a running program. */ |
34e8f22d | 312 | static CORE_ADDR |
ed9a39eb | 313 | arm_addr_bits_remove (CORE_ADDR val) |
c906108c SS |
314 | { |
315 | if (arm_pc_is_thumb (val)) | |
316 | return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe)); | |
317 | else | |
318 | return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc)); | |
319 | } | |
320 | ||
181c1381 RE |
321 | /* When reading symbols, we need to zap the low bit of the address, |
322 | which may be set to 1 for Thumb functions. */ | |
34e8f22d | 323 | static CORE_ADDR |
181c1381 RE |
324 | arm_smash_text_address (CORE_ADDR val) |
325 | { | |
326 | return val & ~1; | |
327 | } | |
328 | ||
34e8f22d RE |
329 | /* Immediately after a function call, return the saved pc. Can't |
330 | always go through the frames for this because on some machines the | |
331 | new frame is not set up until the new function executes some | |
332 | instructions. */ | |
333 | ||
334 | static CORE_ADDR | |
ed9a39eb | 335 | arm_saved_pc_after_call (struct frame_info *frame) |
c906108c | 336 | { |
34e8f22d | 337 | return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM)); |
c906108c SS |
338 | } |
339 | ||
0defa245 RE |
340 | /* Determine whether the function invocation represented by FI has a |
341 | frame on the stack associated with it. If it does return zero, | |
342 | otherwise return 1. */ | |
343 | ||
148754e5 | 344 | static int |
ed9a39eb | 345 | arm_frameless_function_invocation (struct frame_info *fi) |
392a587b | 346 | { |
392a587b | 347 | CORE_ADDR func_start, after_prologue; |
96baa820 | 348 | int frameless; |
ed9a39eb | 349 | |
0defa245 RE |
350 | /* Sometimes we have functions that do a little setup (like saving the |
351 | vN registers with the stmdb instruction, but DO NOT set up a frame. | |
352 | The symbol table will report this as a prologue. However, it is | |
353 | important not to try to parse these partial frames as frames, or we | |
354 | will get really confused. | |
355 | ||
356 | So I will demand 3 instructions between the start & end of the | |
357 | prologue before I call it a real prologue, i.e. at least | |
358 | mov ip, sp, | |
359 | stmdb sp!, {} | |
360 | sub sp, ip, #4. */ | |
361 | ||
392a587b | 362 | func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET); |
7be570e7 | 363 | after_prologue = SKIP_PROLOGUE (func_start); |
ed9a39eb | 364 | |
96baa820 | 365 | /* There are some frameless functions whose first two instructions |
ed9a39eb JM |
366 | follow the standard APCS form, in which case after_prologue will |
367 | be func_start + 8. */ | |
368 | ||
96baa820 | 369 | frameless = (after_prologue < func_start + 12); |
392a587b JM |
370 | return frameless; |
371 | } | |
372 | ||
0defa245 | 373 | /* The address of the arguments in the frame. */ |
148754e5 | 374 | static CORE_ADDR |
0defa245 RE |
375 | arm_frame_args_address (struct frame_info *fi) |
376 | { | |
377 | return fi->frame; | |
378 | } | |
379 | ||
380 | /* The address of the local variables in the frame. */ | |
148754e5 | 381 | static CORE_ADDR |
0defa245 RE |
382 | arm_frame_locals_address (struct frame_info *fi) |
383 | { | |
384 | return fi->frame; | |
385 | } | |
386 | ||
387 | /* The number of arguments being passed in the frame. */ | |
148754e5 | 388 | static int |
0defa245 RE |
389 | arm_frame_num_args (struct frame_info *fi) |
390 | { | |
391 | /* We have no way of knowing. */ | |
392 | return -1; | |
393 | } | |
394 | ||
c906108c | 395 | /* A typical Thumb prologue looks like this: |
c5aa993b JM |
396 | push {r7, lr} |
397 | add sp, sp, #-28 | |
398 | add r7, sp, #12 | |
c906108c | 399 | Sometimes the latter instruction may be replaced by: |
da59e081 JM |
400 | mov r7, sp |
401 | ||
402 | or like this: | |
403 | push {r7, lr} | |
404 | mov r7, sp | |
405 | sub sp, #12 | |
406 | ||
407 | or, on tpcs, like this: | |
408 | sub sp,#16 | |
409 | push {r7, lr} | |
410 | (many instructions) | |
411 | mov r7, sp | |
412 | sub sp, #12 | |
413 | ||
414 | There is always one instruction of three classes: | |
415 | 1 - push | |
416 | 2 - setting of r7 | |
417 | 3 - adjusting of sp | |
418 | ||
419 | When we have found at least one of each class we are done with the prolog. | |
420 | Note that the "sub sp, #NN" before the push does not count. | |
ed9a39eb | 421 | */ |
c906108c SS |
422 | |
423 | static CORE_ADDR | |
c7885828 | 424 | thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end) |
c906108c SS |
425 | { |
426 | CORE_ADDR current_pc; | |
da59e081 JM |
427 | int findmask = 0; /* findmask: |
428 | bit 0 - push { rlist } | |
429 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
430 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
431 | */ | |
c906108c | 432 | |
c7885828 | 433 | for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2) |
c906108c SS |
434 | { |
435 | unsigned short insn = read_memory_unsigned_integer (current_pc, 2); | |
436 | ||
da59e081 JM |
437 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
438 | { | |
439 | findmask |= 1; /* push found */ | |
440 | } | |
441 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ | |
442 | { | |
443 | if ((findmask & 1) == 0) /* before push ? */ | |
444 | continue; | |
445 | else | |
446 | findmask |= 4; /* add/sub sp found */ | |
447 | } | |
448 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
449 | { | |
450 | findmask |= 2; /* setting of r7 found */ | |
451 | } | |
452 | else if (insn == 0x466f) /* mov r7, sp */ | |
453 | { | |
454 | findmask |= 2; /* setting of r7 found */ | |
455 | } | |
3d74b771 FF |
456 | else if (findmask == (4+2+1)) |
457 | { | |
458 | break; /* We have found one of each type of prologue instruction */ | |
459 | } | |
da59e081 JM |
460 | else |
461 | continue; /* something in the prolog that we don't care about or some | |
462 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
463 | } |
464 | ||
465 | return current_pc; | |
466 | } | |
467 | ||
34e8f22d RE |
468 | /* Advance the PC across any function entry prologue instructions to reach |
469 | some "real" code. | |
470 | ||
471 | The APCS (ARM Procedure Call Standard) defines the following | |
ed9a39eb | 472 | prologue: |
c906108c | 473 | |
c5aa993b JM |
474 | mov ip, sp |
475 | [stmfd sp!, {a1,a2,a3,a4}] | |
476 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
477 | [stfe f7, [sp, #-12]!] |
478 | [stfe f6, [sp, #-12]!] | |
479 | [stfe f5, [sp, #-12]!] | |
480 | [stfe f4, [sp, #-12]!] | |
481 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */ | |
c906108c | 482 | |
34e8f22d | 483 | static CORE_ADDR |
ed9a39eb | 484 | arm_skip_prologue (CORE_ADDR pc) |
c906108c SS |
485 | { |
486 | unsigned long inst; | |
487 | CORE_ADDR skip_pc; | |
488 | CORE_ADDR func_addr, func_end; | |
50f6fb4b | 489 | char *func_name; |
c906108c SS |
490 | struct symtab_and_line sal; |
491 | ||
96baa820 | 492 | /* See what the symbol table says. */ |
ed9a39eb | 493 | |
50f6fb4b | 494 | if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) |
c906108c | 495 | { |
50f6fb4b CV |
496 | struct symbol *sym; |
497 | ||
498 | /* Found a function. */ | |
499 | sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL); | |
500 | if (sym && SYMBOL_LANGUAGE (sym) != language_asm) | |
501 | { | |
502 | /* Don't use this trick for assembly source files. */ | |
503 | sal = find_pc_line (func_addr, 0); | |
504 | if ((sal.line != 0) && (sal.end < func_end)) | |
505 | return sal.end; | |
506 | } | |
c906108c SS |
507 | } |
508 | ||
509 | /* Check if this is Thumb code. */ | |
510 | if (arm_pc_is_thumb (pc)) | |
c7885828 | 511 | return thumb_skip_prologue (pc, func_end); |
c906108c SS |
512 | |
513 | /* Can't find the prologue end in the symbol table, try it the hard way | |
514 | by disassembling the instructions. */ | |
515 | skip_pc = pc; | |
516 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 517 | if (inst != 0xe1a0c00d) /* mov ip, sp */ |
c906108c SS |
518 | return pc; |
519 | ||
520 | skip_pc += 4; | |
521 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 522 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
c906108c SS |
523 | { |
524 | skip_pc += 4; | |
525 | inst = read_memory_integer (skip_pc, 4); | |
526 | } | |
527 | ||
c5aa993b | 528 | if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */ |
c906108c SS |
529 | return pc; |
530 | ||
531 | skip_pc += 4; | |
532 | inst = read_memory_integer (skip_pc, 4); | |
533 | ||
534 | /* Any insns after this point may float into the code, if it makes | |
ed9a39eb JM |
535 | for better instruction scheduling, so we skip them only if we |
536 | find them, but still consdier the function to be frame-ful. */ | |
c906108c | 537 | |
ed9a39eb JM |
538 | /* We may have either one sfmfd instruction here, or several stfe |
539 | insns, depending on the version of floating point code we | |
540 | support. */ | |
c5aa993b | 541 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ |
c906108c SS |
542 | { |
543 | skip_pc += 4; | |
544 | inst = read_memory_integer (skip_pc, 4); | |
545 | } | |
546 | else | |
547 | { | |
c5aa993b JM |
548 | while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ |
549 | { | |
550 | skip_pc += 4; | |
551 | inst = read_memory_integer (skip_pc, 4); | |
552 | } | |
c906108c SS |
553 | } |
554 | ||
c5aa993b | 555 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ |
c906108c SS |
556 | skip_pc += 4; |
557 | ||
558 | return skip_pc; | |
559 | } | |
c5aa993b | 560 | /* *INDENT-OFF* */ |
c906108c SS |
561 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
562 | This function decodes a Thumb function prologue to determine: | |
563 | 1) the size of the stack frame | |
564 | 2) which registers are saved on it | |
565 | 3) the offsets of saved regs | |
566 | 4) the offset from the stack pointer to the frame pointer | |
567 | This information is stored in the "extra" fields of the frame_info. | |
568 | ||
da59e081 JM |
569 | A typical Thumb function prologue would create this stack frame |
570 | (offsets relative to FP) | |
c906108c SS |
571 | old SP -> 24 stack parameters |
572 | 20 LR | |
573 | 16 R7 | |
574 | R7 -> 0 local variables (16 bytes) | |
575 | SP -> -12 additional stack space (12 bytes) | |
576 | The frame size would thus be 36 bytes, and the frame offset would be | |
da59e081 JM |
577 | 12 bytes. The frame register is R7. |
578 | ||
579 | The comments for thumb_skip_prolog() describe the algorithm we use to detect | |
580 | the end of the prolog */ | |
c5aa993b JM |
581 | /* *INDENT-ON* */ |
582 | ||
c906108c | 583 | static void |
ed9a39eb | 584 | thumb_scan_prologue (struct frame_info *fi) |
c906108c SS |
585 | { |
586 | CORE_ADDR prologue_start; | |
587 | CORE_ADDR prologue_end; | |
588 | CORE_ADDR current_pc; | |
c5aa993b | 589 | int saved_reg[16]; /* which register has been copied to register n? */ |
da59e081 JM |
590 | int findmask = 0; /* findmask: |
591 | bit 0 - push { rlist } | |
592 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
593 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
594 | */ | |
c5aa993b | 595 | int i; |
c906108c | 596 | |
c5aa993b | 597 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) |
c906108c SS |
598 | { |
599 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
600 | ||
c5aa993b | 601 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
602 | prologue_end = fi->pc; |
603 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 604 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
605 | } |
606 | else | |
c5aa993b JM |
607 | prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */ |
608 | /* 16 pushes, an add, and "mv fp,sp" */ | |
c906108c SS |
609 | |
610 | prologue_end = min (prologue_end, fi->pc); | |
611 | ||
612 | /* Initialize the saved register map. When register H is copied to | |
613 | register L, we will put H in saved_reg[L]. */ | |
614 | for (i = 0; i < 16; i++) | |
615 | saved_reg[i] = i; | |
616 | ||
617 | /* Search the prologue looking for instructions that set up the | |
da59e081 JM |
618 | frame pointer, adjust the stack pointer, and save registers. |
619 | Do this until all basic prolog instructions are found. */ | |
c906108c | 620 | |
c3b4394c | 621 | fi->extra_info->framesize = 0; |
da59e081 JM |
622 | for (current_pc = prologue_start; |
623 | (current_pc < prologue_end) && ((findmask & 7) != 7); | |
624 | current_pc += 2) | |
c906108c SS |
625 | { |
626 | unsigned short insn; | |
627 | int regno; | |
628 | int offset; | |
629 | ||
630 | insn = read_memory_unsigned_integer (current_pc, 2); | |
631 | ||
c5aa993b | 632 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
c906108c | 633 | { |
da59e081 JM |
634 | int mask; |
635 | findmask |= 1; /* push found */ | |
c906108c SS |
636 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says |
637 | whether to save LR (R14). */ | |
da59e081 | 638 | mask = (insn & 0xff) | ((insn & 0x100) << 6); |
c906108c SS |
639 | |
640 | /* Calculate offsets of saved R0-R7 and LR. */ | |
34e8f22d | 641 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) |
c906108c | 642 | if (mask & (1 << regno)) |
c5aa993b | 643 | { |
c3b4394c RE |
644 | fi->extra_info->framesize += 4; |
645 | fi->saved_regs[saved_reg[regno]] = | |
646 | -(fi->extra_info->framesize); | |
c906108c SS |
647 | saved_reg[regno] = regno; /* reset saved register map */ |
648 | } | |
649 | } | |
da59e081 | 650 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ |
c906108c | 651 | { |
da59e081 JM |
652 | if ((findmask & 1) == 0) /* before push ? */ |
653 | continue; | |
654 | else | |
655 | findmask |= 4; /* add/sub sp found */ | |
656 | ||
c5aa993b | 657 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
da59e081 JM |
658 | if (insn & 0x80) /* is it signed? (==subtracting) */ |
659 | { | |
c3b4394c | 660 | fi->extra_info->frameoffset += offset; |
da59e081 JM |
661 | offset = -offset; |
662 | } | |
c3b4394c | 663 | fi->extra_info->framesize -= offset; |
c906108c SS |
664 | } |
665 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
666 | { | |
da59e081 | 667 | findmask |= 2; /* setting of r7 found */ |
c3b4394c RE |
668 | fi->extra_info->framereg = THUMB_FP_REGNUM; |
669 | /* get scaled offset */ | |
670 | fi->extra_info->frameoffset = (insn & 0xff) << 2; | |
c906108c | 671 | } |
da59e081 | 672 | else if (insn == 0x466f) /* mov r7, sp */ |
c906108c | 673 | { |
da59e081 | 674 | findmask |= 2; /* setting of r7 found */ |
c3b4394c RE |
675 | fi->extra_info->framereg = THUMB_FP_REGNUM; |
676 | fi->extra_info->frameoffset = 0; | |
34e8f22d | 677 | saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM; |
c906108c SS |
678 | } |
679 | else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ | |
680 | { | |
c5aa993b | 681 | int lo_reg = insn & 7; /* dest. register (r0-r7) */ |
c906108c | 682 | int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ |
c5aa993b | 683 | saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ |
c906108c SS |
684 | } |
685 | else | |
da59e081 JM |
686 | continue; /* something in the prolog that we don't care about or some |
687 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
688 | } |
689 | } | |
690 | ||
ed9a39eb JM |
691 | /* Check if prologue for this frame's PC has already been scanned. If |
692 | it has, copy the relevant information about that prologue and | |
c906108c SS |
693 | return non-zero. Otherwise do not copy anything and return zero. |
694 | ||
695 | The information saved in the cache includes: | |
c5aa993b JM |
696 | * the frame register number; |
697 | * the size of the stack frame; | |
698 | * the offsets of saved regs (relative to the old SP); and | |
699 | * the offset from the stack pointer to the frame pointer | |
c906108c | 700 | |
ed9a39eb JM |
701 | The cache contains only one entry, since this is adequate for the |
702 | typical sequence of prologue scan requests we get. When performing | |
703 | a backtrace, GDB will usually ask to scan the same function twice | |
704 | in a row (once to get the frame chain, and once to fill in the | |
705 | extra frame information). */ | |
c906108c SS |
706 | |
707 | static struct frame_info prologue_cache; | |
708 | ||
709 | static int | |
ed9a39eb | 710 | check_prologue_cache (struct frame_info *fi) |
c906108c SS |
711 | { |
712 | int i; | |
713 | ||
714 | if (fi->pc == prologue_cache.pc) | |
715 | { | |
c3b4394c RE |
716 | fi->extra_info->framereg = prologue_cache.extra_info->framereg; |
717 | fi->extra_info->framesize = prologue_cache.extra_info->framesize; | |
718 | fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset; | |
719 | for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) | |
720 | fi->saved_regs[i] = prologue_cache.saved_regs[i]; | |
c906108c SS |
721 | return 1; |
722 | } | |
723 | else | |
724 | return 0; | |
725 | } | |
726 | ||
727 | ||
ed9a39eb | 728 | /* Copy the prologue information from fi to the prologue cache. */ |
c906108c SS |
729 | |
730 | static void | |
ed9a39eb | 731 | save_prologue_cache (struct frame_info *fi) |
c906108c SS |
732 | { |
733 | int i; | |
734 | ||
c5aa993b | 735 | prologue_cache.pc = fi->pc; |
c3b4394c RE |
736 | prologue_cache.extra_info->framereg = fi->extra_info->framereg; |
737 | prologue_cache.extra_info->framesize = fi->extra_info->framesize; | |
738 | prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset; | |
c5aa993b | 739 | |
c3b4394c RE |
740 | for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) |
741 | prologue_cache.saved_regs[i] = fi->saved_regs[i]; | |
c906108c SS |
742 | } |
743 | ||
744 | ||
ed9a39eb | 745 | /* This function decodes an ARM function prologue to determine: |
c5aa993b JM |
746 | 1) the size of the stack frame |
747 | 2) which registers are saved on it | |
748 | 3) the offsets of saved regs | |
749 | 4) the offset from the stack pointer to the frame pointer | |
c906108c SS |
750 | This information is stored in the "extra" fields of the frame_info. |
751 | ||
96baa820 JM |
752 | There are two basic forms for the ARM prologue. The fixed argument |
753 | function call will look like: | |
ed9a39eb JM |
754 | |
755 | mov ip, sp | |
756 | stmfd sp!, {fp, ip, lr, pc} | |
757 | sub fp, ip, #4 | |
758 | [sub sp, sp, #4] | |
96baa820 | 759 | |
c906108c | 760 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
761 | IP -> 4 (caller's stack) |
762 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
763 | -4 LR (return address in caller) | |
764 | -8 IP (copy of caller's SP) | |
765 | -12 FP (caller's FP) | |
766 | SP -> -28 Local variables | |
767 | ||
c906108c | 768 | The frame size would thus be 32 bytes, and the frame offset would be |
96baa820 JM |
769 | 28 bytes. The stmfd call can also save any of the vN registers it |
770 | plans to use, which increases the frame size accordingly. | |
771 | ||
772 | Note: The stored PC is 8 off of the STMFD instruction that stored it | |
773 | because the ARM Store instructions always store PC + 8 when you read | |
774 | the PC register. | |
ed9a39eb | 775 | |
96baa820 JM |
776 | A variable argument function call will look like: |
777 | ||
ed9a39eb JM |
778 | mov ip, sp |
779 | stmfd sp!, {a1, a2, a3, a4} | |
780 | stmfd sp!, {fp, ip, lr, pc} | |
781 | sub fp, ip, #20 | |
782 | ||
96baa820 | 783 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
784 | IP -> 20 (caller's stack) |
785 | 16 A4 | |
786 | 12 A3 | |
787 | 8 A2 | |
788 | 4 A1 | |
789 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
790 | -4 LR (return address in caller) | |
791 | -8 IP (copy of caller's SP) | |
792 | -12 FP (caller's FP) | |
793 | SP -> -28 Local variables | |
96baa820 JM |
794 | |
795 | The frame size would thus be 48 bytes, and the frame offset would be | |
796 | 28 bytes. | |
797 | ||
798 | There is another potential complication, which is that the optimizer | |
799 | will try to separate the store of fp in the "stmfd" instruction from | |
800 | the "sub fp, ip, #NN" instruction. Almost anything can be there, so | |
801 | we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... | |
802 | ||
803 | Also, note, the original version of the ARM toolchain claimed that there | |
804 | should be an | |
805 | ||
806 | instruction at the end of the prologue. I have never seen GCC produce | |
807 | this, and the ARM docs don't mention it. We still test for it below in | |
808 | case it happens... | |
ed9a39eb JM |
809 | |
810 | */ | |
c906108c SS |
811 | |
812 | static void | |
ed9a39eb | 813 | arm_scan_prologue (struct frame_info *fi) |
c906108c SS |
814 | { |
815 | int regno, sp_offset, fp_offset; | |
16a0f3e7 | 816 | LONGEST return_value; |
c906108c SS |
817 | CORE_ADDR prologue_start, prologue_end, current_pc; |
818 | ||
819 | /* Check if this function is already in the cache of frame information. */ | |
820 | if (check_prologue_cache (fi)) | |
821 | return; | |
822 | ||
823 | /* Assume there is no frame until proven otherwise. */ | |
34e8f22d | 824 | fi->extra_info->framereg = ARM_SP_REGNUM; |
c3b4394c RE |
825 | fi->extra_info->framesize = 0; |
826 | fi->extra_info->frameoffset = 0; | |
c906108c SS |
827 | |
828 | /* Check for Thumb prologue. */ | |
829 | if (arm_pc_is_thumb (fi->pc)) | |
830 | { | |
831 | thumb_scan_prologue (fi); | |
832 | save_prologue_cache (fi); | |
833 | return; | |
834 | } | |
835 | ||
836 | /* Find the function prologue. If we can't find the function in | |
837 | the symbol table, peek in the stack frame to find the PC. */ | |
838 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) | |
839 | { | |
2a451106 KB |
840 | /* One way to find the end of the prologue (which works well |
841 | for unoptimized code) is to do the following: | |
842 | ||
843 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
844 | ||
845 | if (sal.line == 0) | |
846 | prologue_end = fi->pc; | |
847 | else if (sal.end < prologue_end) | |
848 | prologue_end = sal.end; | |
849 | ||
850 | This mechanism is very accurate so long as the optimizer | |
851 | doesn't move any instructions from the function body into the | |
852 | prologue. If this happens, sal.end will be the last | |
853 | instruction in the first hunk of prologue code just before | |
854 | the first instruction that the scheduler has moved from | |
855 | the body to the prologue. | |
856 | ||
857 | In order to make sure that we scan all of the prologue | |
858 | instructions, we use a slightly less accurate mechanism which | |
859 | may scan more than necessary. To help compensate for this | |
860 | lack of accuracy, the prologue scanning loop below contains | |
861 | several clauses which'll cause the loop to terminate early if | |
862 | an implausible prologue instruction is encountered. | |
863 | ||
864 | The expression | |
865 | ||
866 | prologue_start + 64 | |
867 | ||
868 | is a suitable endpoint since it accounts for the largest | |
869 | possible prologue plus up to five instructions inserted by | |
870 | the scheduler. */ | |
871 | ||
872 | if (prologue_end > prologue_start + 64) | |
873 | { | |
874 | prologue_end = prologue_start + 64; /* See above. */ | |
875 | } | |
c906108c SS |
876 | } |
877 | else | |
878 | { | |
879 | /* Get address of the stmfd in the prologue of the callee; the saved | |
96baa820 | 880 | PC is the address of the stmfd + 8. */ |
16a0f3e7 EZ |
881 | if (!safe_read_memory_integer (fi->frame, 4, &return_value)) |
882 | return; | |
883 | else | |
884 | { | |
885 | prologue_start = ADDR_BITS_REMOVE (return_value) - 8; | |
886 | prologue_end = prologue_start + 64; /* See above. */ | |
887 | } | |
c906108c SS |
888 | } |
889 | ||
890 | /* Now search the prologue looking for instructions that set up the | |
96baa820 | 891 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 892 | |
96baa820 JM |
893 | Be careful, however, and if it doesn't look like a prologue, |
894 | don't try to scan it. If, for instance, a frameless function | |
895 | begins with stmfd sp!, then we will tell ourselves there is | |
896 | a frame, which will confuse stack traceback, as well ad"finish" | |
897 | and other operations that rely on a knowledge of the stack | |
898 | traceback. | |
899 | ||
900 | In the APCS, the prologue should start with "mov ip, sp" so | |
d4473757 KB |
901 | if we don't see this as the first insn, we will stop. [Note: |
902 | This doesn't seem to be true any longer, so it's now an optional | |
903 | part of the prologue. - Kevin Buettner, 2001-11-20] */ | |
c906108c SS |
904 | |
905 | sp_offset = fp_offset = 0; | |
c906108c | 906 | |
ed9a39eb JM |
907 | if (read_memory_unsigned_integer (prologue_start, 4) |
908 | == 0xe1a0c00d) /* mov ip, sp */ | |
d4473757 KB |
909 | current_pc = prologue_start + 4; |
910 | else | |
911 | current_pc = prologue_start; | |
912 | ||
913 | for (; current_pc < prologue_end; current_pc += 4) | |
96baa820 | 914 | { |
d4473757 KB |
915 | unsigned int insn = read_memory_unsigned_integer (current_pc, 4); |
916 | ||
917 | if ((insn & 0xffff0000) == 0xe92d0000) | |
918 | /* stmfd sp!, {..., fp, ip, lr, pc} | |
919 | or | |
920 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 921 | { |
d4473757 | 922 | int mask = insn & 0xffff; |
ed9a39eb | 923 | |
d4473757 | 924 | /* Calculate offsets of saved registers. */ |
34e8f22d | 925 | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
d4473757 KB |
926 | if (mask & (1 << regno)) |
927 | { | |
928 | sp_offset -= 4; | |
c3b4394c | 929 | fi->saved_regs[regno] = sp_offset; |
d4473757 KB |
930 | } |
931 | } | |
932 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ | |
933 | { | |
934 | unsigned imm = insn & 0xff; /* immediate value */ | |
935 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
936 | imm = (imm >> rot) | (imm << (32 - rot)); | |
937 | fp_offset = -imm; | |
34e8f22d | 938 | fi->extra_info->framereg = ARM_FP_REGNUM; |
d4473757 KB |
939 | } |
940 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
941 | { | |
942 | unsigned imm = insn & 0xff; /* immediate value */ | |
943 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
944 | imm = (imm >> rot) | (imm << (32 - rot)); | |
945 | sp_offset -= imm; | |
946 | } | |
947 | else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ | |
948 | { | |
949 | sp_offset -= 12; | |
34e8f22d | 950 | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
c3b4394c | 951 | fi->saved_regs[regno] = sp_offset; |
d4473757 KB |
952 | } |
953 | else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */ | |
954 | { | |
955 | int n_saved_fp_regs; | |
956 | unsigned int fp_start_reg, fp_bound_reg; | |
957 | ||
958 | if ((insn & 0x800) == 0x800) /* N0 is set */ | |
96baa820 | 959 | { |
d4473757 KB |
960 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
961 | n_saved_fp_regs = 3; | |
962 | else | |
963 | n_saved_fp_regs = 1; | |
96baa820 | 964 | } |
d4473757 | 965 | else |
96baa820 | 966 | { |
d4473757 KB |
967 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
968 | n_saved_fp_regs = 2; | |
969 | else | |
970 | n_saved_fp_regs = 4; | |
96baa820 | 971 | } |
d4473757 | 972 | |
34e8f22d | 973 | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
d4473757 KB |
974 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
975 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 JM |
976 | { |
977 | sp_offset -= 12; | |
c3b4394c | 978 | fi->saved_regs[fp_start_reg++] = sp_offset; |
96baa820 | 979 | } |
c906108c | 980 | } |
d4473757 KB |
981 | else if ((insn & 0xf0000000) != 0xe0000000) |
982 | break; /* Condition not true, exit early */ | |
983 | else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */ | |
984 | break; /* Don't scan past a block load */ | |
985 | else | |
986 | /* The optimizer might shove anything into the prologue, | |
987 | so we just skip what we don't recognize. */ | |
988 | continue; | |
c906108c SS |
989 | } |
990 | ||
991 | /* The frame size is just the negative of the offset (from the original SP) | |
992 | of the last thing thing we pushed on the stack. The frame offset is | |
993 | [new FP] - [new SP]. */ | |
c3b4394c | 994 | fi->extra_info->framesize = -sp_offset; |
34e8f22d | 995 | if (fi->extra_info->framereg == ARM_FP_REGNUM) |
c3b4394c | 996 | fi->extra_info->frameoffset = fp_offset - sp_offset; |
d4473757 | 997 | else |
c3b4394c | 998 | fi->extra_info->frameoffset = 0; |
ed9a39eb | 999 | |
c906108c SS |
1000 | save_prologue_cache (fi); |
1001 | } | |
1002 | ||
ed9a39eb JM |
1003 | /* Find REGNUM on the stack. Otherwise, it's in an active register. |
1004 | One thing we might want to do here is to check REGNUM against the | |
1005 | clobber mask, and somehow flag it as invalid if it isn't saved on | |
1006 | the stack somewhere. This would provide a graceful failure mode | |
1007 | when trying to get the value of caller-saves registers for an inner | |
1008 | frame. */ | |
c906108c SS |
1009 | |
1010 | static CORE_ADDR | |
ed9a39eb | 1011 | arm_find_callers_reg (struct frame_info *fi, int regnum) |
c906108c SS |
1012 | { |
1013 | for (; fi; fi = fi->next) | |
c5aa993b JM |
1014 | |
1015 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
c906108c SS |
1016 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1017 | return generic_read_register_dummy (fi->pc, fi->frame, regnum); | |
1018 | else | |
1019 | #endif | |
c3b4394c RE |
1020 | if (fi->saved_regs[regnum] != 0) |
1021 | return read_memory_integer (fi->saved_regs[regnum], | |
c5aa993b | 1022 | REGISTER_RAW_SIZE (regnum)); |
c906108c SS |
1023 | return read_register (regnum); |
1024 | } | |
148754e5 RE |
1025 | /* Function: frame_chain Given a GDB frame, determine the address of |
1026 | the calling function's frame. This will be used to create a new | |
1027 | GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC | |
1028 | will be called for the new frame. For ARM, we save the frame size | |
1029 | when we initialize the frame_info. */ | |
c5aa993b | 1030 | |
148754e5 | 1031 | static CORE_ADDR |
ed9a39eb | 1032 | arm_frame_chain (struct frame_info *fi) |
c906108c | 1033 | { |
c5aa993b | 1034 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1035 | CORE_ADDR fn_start, callers_pc, fp; |
1036 | ||
1037 | /* is this a dummy frame? */ | |
1038 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
c5aa993b | 1039 | return fi->frame; /* dummy frame same as caller's frame */ |
c906108c SS |
1040 | |
1041 | /* is caller-of-this a dummy frame? */ | |
c5aa993b | 1042 | callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ |
34e8f22d | 1043 | fp = arm_find_callers_reg (fi, ARM_FP_REGNUM); |
c5aa993b JM |
1044 | if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) |
1045 | return fp; /* dummy frame's frame may bear no relation to ours */ | |
c906108c SS |
1046 | |
1047 | if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) | |
1048 | if (fn_start == entry_point_address ()) | |
c5aa993b | 1049 | return 0; /* in _start fn, don't chain further */ |
c906108c SS |
1050 | #endif |
1051 | CORE_ADDR caller_pc, fn_start; | |
c3b4394c | 1052 | int framereg = fi->extra_info->framereg; |
c906108c SS |
1053 | |
1054 | if (fi->pc < LOWEST_PC) | |
1055 | return 0; | |
1056 | ||
1057 | /* If the caller is the startup code, we're at the end of the chain. */ | |
1058 | caller_pc = FRAME_SAVED_PC (fi); | |
1059 | if (find_pc_partial_function (caller_pc, 0, &fn_start, 0)) | |
1060 | if (fn_start == entry_point_address ()) | |
1061 | return 0; | |
1062 | ||
1063 | /* If the caller is Thumb and the caller is ARM, or vice versa, | |
1064 | the frame register of the caller is different from ours. | |
1065 | So we must scan the prologue of the caller to determine its | |
1066 | frame register number. */ | |
c3b4394c RE |
1067 | /* XXX Fixme, we should try to do this without creating a temporary |
1068 | caller_fi. */ | |
c906108c SS |
1069 | if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc)) |
1070 | { | |
c3b4394c RE |
1071 | struct frame_info caller_fi; |
1072 | struct cleanup *old_chain; | |
1073 | ||
1074 | /* Create a temporary frame suitable for scanning the caller's | |
1075 | prologue. (Ugh.) */ | |
c5aa993b | 1076 | memset (&caller_fi, 0, sizeof (caller_fi)); |
c3b4394c RE |
1077 | caller_fi.extra_info = (struct frame_extra_info *) |
1078 | xcalloc (1, sizeof (struct frame_extra_info)); | |
1079 | old_chain = make_cleanup (xfree, caller_fi.extra_info); | |
1080 | caller_fi.saved_regs = (CORE_ADDR *) | |
1081 | xcalloc (1, SIZEOF_FRAME_SAVED_REGS); | |
1082 | make_cleanup (xfree, caller_fi.saved_regs); | |
1083 | ||
1084 | /* Now, scan the prologue and obtain the frame register. */ | |
c906108c | 1085 | caller_fi.pc = caller_pc; |
c5aa993b | 1086 | arm_scan_prologue (&caller_fi); |
c3b4394c RE |
1087 | framereg = caller_fi.extra_info->framereg; |
1088 | ||
1089 | /* Deallocate the storage associated with the temporary frame | |
1090 | created above. */ | |
1091 | do_cleanups (old_chain); | |
c906108c SS |
1092 | } |
1093 | ||
1094 | /* If the caller used a frame register, return its value. | |
1095 | Otherwise, return the caller's stack pointer. */ | |
34e8f22d | 1096 | if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM) |
c906108c SS |
1097 | return arm_find_callers_reg (fi, framereg); |
1098 | else | |
c3b4394c | 1099 | return fi->frame + fi->extra_info->framesize; |
c906108c SS |
1100 | } |
1101 | ||
ed9a39eb JM |
1102 | /* This function actually figures out the frame address for a given pc |
1103 | and sp. This is tricky because we sometimes don't use an explicit | |
1104 | frame pointer, and the previous stack pointer isn't necessarily | |
1105 | recorded on the stack. The only reliable way to get this info is | |
1106 | to examine the prologue. FROMLEAF is a little confusing, it means | |
1107 | this is the next frame up the chain AFTER a frameless function. If | |
1108 | this is true, then the frame value for this frame is still in the | |
1109 | fp register. */ | |
c906108c | 1110 | |
148754e5 | 1111 | static void |
ed9a39eb | 1112 | arm_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c SS |
1113 | { |
1114 | int reg; | |
f079148d | 1115 | CORE_ADDR sp; |
c906108c | 1116 | |
c3b4394c RE |
1117 | if (fi->saved_regs == NULL) |
1118 | frame_saved_regs_zalloc (fi); | |
1119 | ||
1120 | fi->extra_info = (struct frame_extra_info *) | |
1121 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
1122 | ||
1123 | fi->extra_info->framesize = 0; | |
1124 | fi->extra_info->frameoffset = 0; | |
1125 | fi->extra_info->framereg = 0; | |
1126 | ||
c906108c SS |
1127 | if (fi->next) |
1128 | fi->pc = FRAME_SAVED_PC (fi->next); | |
1129 | ||
c3b4394c | 1130 | memset (fi->saved_regs, '\000', sizeof fi->saved_regs); |
c906108c | 1131 | |
c5aa993b | 1132 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1133 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1134 | { | |
1135 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
c5aa993b | 1136 | by assuming it's always FP. */ |
34e8f22d RE |
1137 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, |
1138 | ARM_SP_REGNUM); | |
c3b4394c RE |
1139 | fi->extra_info->framesize = 0; |
1140 | fi->extra_info->frameoffset = 0; | |
c906108c SS |
1141 | return; |
1142 | } | |
c5aa993b | 1143 | else |
c906108c | 1144 | #endif |
2a451106 | 1145 | |
f079148d KB |
1146 | /* Compute stack pointer for this frame. We use this value for both the |
1147 | sigtramp and call dummy cases. */ | |
1148 | if (!fi->next) | |
1149 | sp = read_sp(); | |
1150 | else | |
c3b4394c RE |
1151 | sp = (fi->next->frame - fi->next->extra_info->frameoffset |
1152 | + fi->next->extra_info->framesize); | |
f079148d | 1153 | |
2a451106 KB |
1154 | /* Determine whether or not we're in a sigtramp frame. |
1155 | Unfortunately, it isn't sufficient to test | |
1156 | fi->signal_handler_caller because this value is sometimes set | |
1157 | after invoking INIT_EXTRA_FRAME_INFO. So we test *both* | |
1158 | fi->signal_handler_caller and IN_SIGTRAMP to determine if we need | |
1159 | to use the sigcontext addresses for the saved registers. | |
1160 | ||
1161 | Note: If an ARM IN_SIGTRAMP method ever needs to compare against | |
1162 | the name of the function, the code below will have to be changed | |
1163 | to first fetch the name of the function and then pass this name | |
f079148d | 1164 | to IN_SIGTRAMP. */ |
2a451106 | 1165 | |
3bb04bdd | 1166 | if (SIGCONTEXT_REGISTER_ADDRESS_P () |
dd96c05b | 1167 | && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0))) |
2a451106 | 1168 | { |
2a451106 | 1169 | for (reg = 0; reg < NUM_REGS; reg++) |
c3b4394c | 1170 | fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg); |
2a451106 KB |
1171 | |
1172 | /* FIXME: What about thumb mode? */ | |
34e8f22d | 1173 | fi->extra_info->framereg = ARM_SP_REGNUM; |
c3b4394c RE |
1174 | fi->frame = |
1175 | read_memory_integer (fi->saved_regs[fi->extra_info->framereg], | |
1176 | REGISTER_RAW_SIZE (fi->extra_info->framereg)); | |
1177 | fi->extra_info->framesize = 0; | |
1178 | fi->extra_info->frameoffset = 0; | |
2a451106 KB |
1179 | |
1180 | } | |
f079148d KB |
1181 | else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame)) |
1182 | { | |
1183 | CORE_ADDR rp; | |
1184 | CORE_ADDR callers_sp; | |
1185 | ||
1186 | /* Set rp point at the high end of the saved registers. */ | |
1187 | rp = fi->frame - REGISTER_SIZE; | |
1188 | ||
1189 | /* Fill in addresses of saved registers. */ | |
34e8f22d RE |
1190 | fi->saved_regs[ARM_PS_REGNUM] = rp; |
1191 | rp -= REGISTER_RAW_SIZE (ARM_PS_REGNUM); | |
1192 | for (reg = ARM_PC_REGNUM; reg >= 0; reg--) | |
f079148d | 1193 | { |
c3b4394c | 1194 | fi->saved_regs[reg] = rp; |
f079148d KB |
1195 | rp -= REGISTER_RAW_SIZE (reg); |
1196 | } | |
1197 | ||
34e8f22d RE |
1198 | callers_sp = read_memory_integer (fi->saved_regs[ARM_SP_REGNUM], |
1199 | REGISTER_RAW_SIZE (ARM_SP_REGNUM)); | |
1200 | fi->extra_info->framereg = ARM_FP_REGNUM; | |
c3b4394c RE |
1201 | fi->extra_info->framesize = callers_sp - sp; |
1202 | fi->extra_info->frameoffset = fi->frame - sp; | |
f079148d | 1203 | } |
2a451106 | 1204 | else |
c906108c SS |
1205 | { |
1206 | arm_scan_prologue (fi); | |
1207 | ||
104c1213 JM |
1208 | if (!fi->next) |
1209 | /* this is the innermost frame? */ | |
c3b4394c | 1210 | fi->frame = read_register (fi->extra_info->framereg); |
34e8f22d | 1211 | else if (fi->extra_info->framereg == ARM_FP_REGNUM |
c3b4394c | 1212 | || fi->extra_info->framereg == THUMB_FP_REGNUM) |
ed9a39eb JM |
1213 | { |
1214 | /* not the innermost frame */ | |
1215 | /* If we have an FP, the callee saved it. */ | |
c3b4394c | 1216 | if (fi->next->saved_regs[fi->extra_info->framereg] != 0) |
ed9a39eb | 1217 | fi->frame = |
c3b4394c RE |
1218 | read_memory_integer (fi->next |
1219 | ->saved_regs[fi->extra_info->framereg], 4); | |
ed9a39eb JM |
1220 | else if (fromleaf) |
1221 | /* If we were called by a frameless fn. then our frame is | |
1222 | still in the frame pointer register on the board... */ | |
1223 | fi->frame = read_fp (); | |
1224 | } | |
c906108c | 1225 | |
ed9a39eb JM |
1226 | /* Calculate actual addresses of saved registers using offsets |
1227 | determined by arm_scan_prologue. */ | |
c906108c | 1228 | for (reg = 0; reg < NUM_REGS; reg++) |
c3b4394c RE |
1229 | if (fi->saved_regs[reg] != 0) |
1230 | fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize | |
1231 | - fi->extra_info->frameoffset); | |
c906108c SS |
1232 | } |
1233 | } | |
1234 | ||
1235 | ||
34e8f22d | 1236 | /* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM |
ed9a39eb JM |
1237 | is saved in the stack anywhere, otherwise we get it from the |
1238 | registers. | |
c906108c SS |
1239 | |
1240 | The old definition of this function was a macro: | |
c5aa993b | 1241 | #define FRAME_SAVED_PC(FRAME) \ |
ed9a39eb | 1242 | ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */ |
c906108c | 1243 | |
148754e5 | 1244 | static CORE_ADDR |
ed9a39eb | 1245 | arm_frame_saved_pc (struct frame_info *fi) |
c906108c | 1246 | { |
c5aa993b | 1247 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c | 1248 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
34e8f22d | 1249 | return generic_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM); |
c906108c SS |
1250 | else |
1251 | #endif | |
c3b4394c RE |
1252 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset, |
1253 | fi->frame)) | |
f079148d | 1254 | { |
34e8f22d RE |
1255 | return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM], |
1256 | REGISTER_RAW_SIZE (ARM_PC_REGNUM)); | |
f079148d KB |
1257 | } |
1258 | else | |
c906108c | 1259 | { |
34e8f22d | 1260 | CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM); |
c906108c SS |
1261 | return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; |
1262 | } | |
1263 | } | |
1264 | ||
c906108c SS |
1265 | /* Return the frame address. On ARM, it is R11; on Thumb it is R7. |
1266 | Examine the Program Status Register to decide which state we're in. */ | |
1267 | ||
148754e5 RE |
1268 | static CORE_ADDR |
1269 | arm_read_fp (void) | |
c906108c | 1270 | { |
34e8f22d | 1271 | if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */ |
c906108c SS |
1272 | return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */ |
1273 | else | |
34e8f22d | 1274 | return read_register (ARM_FP_REGNUM); /* R11 if ARM */ |
c906108c SS |
1275 | } |
1276 | ||
148754e5 RE |
1277 | /* Store into a struct frame_saved_regs the addresses of the saved |
1278 | registers of frame described by FRAME_INFO. This includes special | |
1279 | registers such as PC and FP saved in special ways in the stack | |
1280 | frame. SP is even more special: the address we return for it IS | |
1281 | the sp for the next frame. */ | |
c906108c | 1282 | |
148754e5 | 1283 | static void |
c3b4394c | 1284 | arm_frame_init_saved_regs (struct frame_info *fip) |
c906108c | 1285 | { |
c3b4394c RE |
1286 | |
1287 | if (fip->saved_regs) | |
1288 | return; | |
1289 | ||
1290 | arm_init_extra_frame_info (0, fip); | |
c906108c SS |
1291 | } |
1292 | ||
148754e5 RE |
1293 | /* Push an empty stack frame, to record the current PC, etc. */ |
1294 | ||
1295 | static void | |
ed9a39eb | 1296 | arm_push_dummy_frame (void) |
c906108c | 1297 | { |
34e8f22d | 1298 | CORE_ADDR old_sp = read_register (ARM_SP_REGNUM); |
c906108c SS |
1299 | CORE_ADDR sp = old_sp; |
1300 | CORE_ADDR fp, prologue_start; | |
1301 | int regnum; | |
1302 | ||
1303 | /* Push the two dummy prologue instructions in reverse order, | |
1304 | so that they'll be in the correct low-to-high order in memory. */ | |
1305 | /* sub fp, ip, #4 */ | |
1306 | sp = push_word (sp, 0xe24cb004); | |
1307 | /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */ | |
1308 | prologue_start = sp = push_word (sp, 0xe92ddfff); | |
1309 | ||
ed9a39eb JM |
1310 | /* Push a pointer to the dummy prologue + 12, because when stm |
1311 | instruction stores the PC, it stores the address of the stm | |
c906108c SS |
1312 | instruction itself plus 12. */ |
1313 | fp = sp = push_word (sp, prologue_start + 12); | |
c5aa993b | 1314 | |
f079148d | 1315 | /* Push the processor status. */ |
34e8f22d | 1316 | sp = push_word (sp, read_register (ARM_PS_REGNUM)); |
f079148d KB |
1317 | |
1318 | /* Push all 16 registers starting with r15. */ | |
34e8f22d | 1319 | for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--) |
c906108c | 1320 | sp = push_word (sp, read_register (regnum)); |
c5aa993b | 1321 | |
f079148d | 1322 | /* Update fp (for both Thumb and ARM) and sp. */ |
34e8f22d | 1323 | write_register (ARM_FP_REGNUM, fp); |
c906108c | 1324 | write_register (THUMB_FP_REGNUM, fp); |
34e8f22d | 1325 | write_register (ARM_SP_REGNUM, sp); |
c906108c SS |
1326 | } |
1327 | ||
6eb69eab RE |
1328 | /* CALL_DUMMY_WORDS: |
1329 | This sequence of words is the instructions | |
1330 | ||
1331 | mov lr,pc | |
1332 | mov pc,r4 | |
1333 | illegal | |
1334 | ||
1335 | Note this is 12 bytes. */ | |
1336 | ||
34e8f22d | 1337 | static LONGEST arm_call_dummy_words[] = |
6eb69eab RE |
1338 | { |
1339 | 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe | |
1340 | }; | |
1341 | ||
c906108c | 1342 | /* Fix up the call dummy, based on whether the processor is currently |
ed9a39eb JM |
1343 | in Thumb or ARM mode, and whether the target function is Thumb or |
1344 | ARM. There are three different situations requiring three | |
c906108c SS |
1345 | different dummies: |
1346 | ||
1347 | * ARM calling ARM: uses the call dummy in tm-arm.h, which has already | |
c5aa993b | 1348 | been copied into the dummy parameter to this function. |
c906108c | 1349 | * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the |
c5aa993b | 1350 | "mov pc,r4" instruction patched to be a "bx r4" instead. |
c906108c | 1351 | * Thumb calling anything: uses the Thumb dummy defined below, which |
c5aa993b | 1352 | works for calling both ARM and Thumb functions. |
c906108c | 1353 | |
ed9a39eb JM |
1354 | All three call dummies expect to receive the target function |
1355 | address in R4, with the low bit set if it's a Thumb function. */ | |
c906108c | 1356 | |
34e8f22d | 1357 | static void |
ed9a39eb | 1358 | arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 1359 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
1360 | { |
1361 | static short thumb_dummy[4] = | |
1362 | { | |
c5aa993b JM |
1363 | 0xf000, 0xf801, /* bl label */ |
1364 | 0xdf18, /* swi 24 */ | |
1365 | 0x4720, /* label: bx r4 */ | |
c906108c SS |
1366 | }; |
1367 | static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */ | |
1368 | ||
1369 | /* Set flag indicating whether the current PC is in a Thumb function. */ | |
c5aa993b | 1370 | caller_is_thumb = arm_pc_is_thumb (read_pc ()); |
c906108c | 1371 | |
ed9a39eb JM |
1372 | /* If the target function is Thumb, set the low bit of the function |
1373 | address. And if the CPU is currently in ARM mode, patch the | |
1374 | second instruction of call dummy to use a BX instruction to | |
1375 | switch to Thumb mode. */ | |
c906108c SS |
1376 | target_is_thumb = arm_pc_is_thumb (fun); |
1377 | if (target_is_thumb) | |
1378 | { | |
1379 | fun |= 1; | |
1380 | if (!caller_is_thumb) | |
1381 | store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4); | |
1382 | } | |
1383 | ||
1384 | /* If the CPU is currently in Thumb mode, use the Thumb call dummy | |
1385 | instead of the ARM one that's already been copied. This will | |
1386 | work for both Thumb and ARM target functions. */ | |
1387 | if (caller_is_thumb) | |
1388 | { | |
1389 | int i; | |
1390 | char *p = dummy; | |
1391 | int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]); | |
1392 | ||
1393 | for (i = 0; i < len; i++) | |
1394 | { | |
1395 | store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]); | |
1396 | p += sizeof (thumb_dummy[0]); | |
1397 | } | |
1398 | } | |
1399 | ||
ed9a39eb JM |
1400 | /* Put the target address in r4; the call dummy will copy this to |
1401 | the PC. */ | |
c906108c SS |
1402 | write_register (4, fun); |
1403 | } | |
1404 | ||
c906108c | 1405 | /* Return the offset in the call dummy of the instruction that needs |
ed9a39eb JM |
1406 | to have a breakpoint placed on it. This is the offset of the 'swi |
1407 | 24' instruction, which is no longer actually used, but simply acts | |
c906108c SS |
1408 | as a place-holder now. |
1409 | ||
ed9a39eb | 1410 | This implements the CALL_DUMMY_BREAK_OFFSET macro. */ |
c906108c SS |
1411 | |
1412 | int | |
ed9a39eb | 1413 | arm_call_dummy_breakpoint_offset (void) |
c906108c SS |
1414 | { |
1415 | if (caller_is_thumb) | |
1416 | return 4; | |
1417 | else | |
1418 | return 8; | |
1419 | } | |
1420 | ||
ed9a39eb JM |
1421 | /* Note: ScottB |
1422 | ||
1423 | This function does not support passing parameters using the FPA | |
1424 | variant of the APCS. It passes any floating point arguments in the | |
1425 | general registers and/or on the stack. */ | |
c906108c | 1426 | |
39bbf761 | 1427 | static CORE_ADDR |
ea7c478f | 1428 | arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
ed9a39eb | 1429 | int struct_return, CORE_ADDR struct_addr) |
c906108c | 1430 | { |
ed9a39eb JM |
1431 | char *fp; |
1432 | int argnum, argreg, nstack_size; | |
1433 | ||
1434 | /* Walk through the list of args and determine how large a temporary | |
1435 | stack is required. Need to take care here as structs may be | |
1436 | passed on the stack, and we have to to push them. */ | |
1437 | nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */ | |
1438 | if (struct_return) /* The struct address goes in A1. */ | |
1439 | nstack_size += REGISTER_SIZE; | |
1440 | ||
1441 | /* Walk through the arguments and add their size to nstack_size. */ | |
1442 | for (argnum = 0; argnum < nargs; argnum++) | |
c5aa993b | 1443 | { |
c906108c | 1444 | int len; |
ed9a39eb JM |
1445 | struct type *arg_type; |
1446 | ||
1447 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1448 | len = TYPE_LENGTH (arg_type); | |
c906108c | 1449 | |
ed9a39eb JM |
1450 | /* ANSI C code passes float arguments as integers, K&R code |
1451 | passes float arguments as doubles. Correct for this here. */ | |
1452 | if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len) | |
1453 | nstack_size += FP_REGISTER_VIRTUAL_SIZE; | |
1454 | else | |
1455 | nstack_size += len; | |
1456 | } | |
c906108c | 1457 | |
ed9a39eb JM |
1458 | /* Allocate room on the stack, and initialize our stack frame |
1459 | pointer. */ | |
1460 | fp = NULL; | |
1461 | if (nstack_size > 0) | |
1462 | { | |
1463 | sp -= nstack_size; | |
1464 | fp = (char *) sp; | |
1465 | } | |
1466 | ||
1467 | /* Initialize the integer argument register pointer. */ | |
34e8f22d | 1468 | argreg = ARM_A1_REGNUM; |
c906108c | 1469 | |
ed9a39eb JM |
1470 | /* The struct_return pointer occupies the first parameter passing |
1471 | register. */ | |
c906108c | 1472 | if (struct_return) |
c5aa993b | 1473 | write_register (argreg++, struct_addr); |
c906108c | 1474 | |
ed9a39eb JM |
1475 | /* Process arguments from left to right. Store as many as allowed |
1476 | in the parameter passing registers (A1-A4), and save the rest on | |
1477 | the temporary stack. */ | |
c5aa993b | 1478 | for (argnum = 0; argnum < nargs; argnum++) |
c906108c | 1479 | { |
ed9a39eb | 1480 | int len; |
c5aa993b | 1481 | char *val; |
c5aa993b | 1482 | CORE_ADDR regval; |
ed9a39eb JM |
1483 | enum type_code typecode; |
1484 | struct type *arg_type, *target_type; | |
1485 | ||
1486 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1487 | target_type = TYPE_TARGET_TYPE (arg_type); | |
1488 | len = TYPE_LENGTH (arg_type); | |
1489 | typecode = TYPE_CODE (arg_type); | |
1490 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
1491 | ||
1492 | /* ANSI C code passes float arguments as integers, K&R code | |
1493 | passes float arguments as doubles. The .stabs record for | |
1494 | for ANSI prototype floating point arguments records the | |
1495 | type as FP_INTEGER, while a K&R style (no prototype) | |
1496 | .stabs records the type as FP_FLOAT. In this latter case | |
1497 | the compiler converts the float arguments to double before | |
1498 | calling the function. */ | |
1499 | if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len) | |
1500 | { | |
a37b3cc0 AC |
1501 | DOUBLEST dblval; |
1502 | dblval = extract_floating (val, len); | |
1503 | len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT; | |
1504 | val = alloca (len); | |
1505 | store_floating (val, len, dblval); | |
ed9a39eb | 1506 | } |
da59e081 JM |
1507 | #if 1 |
1508 | /* I don't know why this code was disable. The only logical use | |
1509 | for a function pointer is to call that function, so setting | |
1510 | the mode bit is perfectly fine. FN */ | |
ed9a39eb | 1511 | /* If the argument is a pointer to a function, and it is a Thumb |
c906108c | 1512 | function, set the low bit of the pointer. */ |
ed9a39eb JM |
1513 | if (TYPE_CODE_PTR == typecode |
1514 | && NULL != target_type | |
1515 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
c906108c | 1516 | { |
ed9a39eb | 1517 | CORE_ADDR regval = extract_address (val, len); |
c906108c SS |
1518 | if (arm_pc_is_thumb (regval)) |
1519 | store_address (val, len, MAKE_THUMB_ADDR (regval)); | |
1520 | } | |
c906108c | 1521 | #endif |
ed9a39eb JM |
1522 | /* Copy the argument to general registers or the stack in |
1523 | register-sized pieces. Large arguments are split between | |
1524 | registers and stack. */ | |
1525 | while (len > 0) | |
c906108c | 1526 | { |
ed9a39eb JM |
1527 | int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; |
1528 | ||
1529 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
c906108c | 1530 | { |
ed9a39eb JM |
1531 | /* It's an argument being passed in a general register. */ |
1532 | regval = extract_address (val, partial_len); | |
1533 | write_register (argreg++, regval); | |
c906108c | 1534 | } |
ed9a39eb JM |
1535 | else |
1536 | { | |
1537 | /* Push the arguments onto the stack. */ | |
1538 | write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE); | |
1539 | fp += REGISTER_SIZE; | |
1540 | } | |
1541 | ||
1542 | len -= partial_len; | |
1543 | val += partial_len; | |
c906108c SS |
1544 | } |
1545 | } | |
c906108c SS |
1546 | |
1547 | /* Return adjusted stack pointer. */ | |
1548 | return sp; | |
1549 | } | |
1550 | ||
f079148d KB |
1551 | /* Pop the current frame. So long as the frame info has been initialized |
1552 | properly (see arm_init_extra_frame_info), this code works for dummy frames | |
1553 | as well as regular frames. I.e, there's no need to have a special case | |
1554 | for dummy frames. */ | |
148754e5 | 1555 | static void |
ed9a39eb | 1556 | arm_pop_frame (void) |
c906108c | 1557 | { |
c906108c | 1558 | int regnum; |
8b93c638 | 1559 | struct frame_info *frame = get_current_frame (); |
c3b4394c RE |
1560 | CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset |
1561 | + frame->extra_info->framesize); | |
c906108c | 1562 | |
f079148d | 1563 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
c3b4394c | 1564 | if (frame->saved_regs[regnum] != 0) |
f079148d | 1565 | write_register (regnum, |
c3b4394c | 1566 | read_memory_integer (frame->saved_regs[regnum], |
f079148d | 1567 | REGISTER_RAW_SIZE (regnum))); |
8b93c638 | 1568 | |
34e8f22d RE |
1569 | write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame)); |
1570 | write_register (ARM_SP_REGNUM, old_SP); | |
c906108c SS |
1571 | |
1572 | flush_cached_frames (); | |
1573 | } | |
1574 | ||
1575 | static void | |
ed9a39eb | 1576 | print_fpu_flags (int flags) |
c906108c | 1577 | { |
c5aa993b JM |
1578 | if (flags & (1 << 0)) |
1579 | fputs ("IVO ", stdout); | |
1580 | if (flags & (1 << 1)) | |
1581 | fputs ("DVZ ", stdout); | |
1582 | if (flags & (1 << 2)) | |
1583 | fputs ("OFL ", stdout); | |
1584 | if (flags & (1 << 3)) | |
1585 | fputs ("UFL ", stdout); | |
1586 | if (flags & (1 << 4)) | |
1587 | fputs ("INX ", stdout); | |
1588 | putchar ('\n'); | |
c906108c SS |
1589 | } |
1590 | ||
5e74b15c RE |
1591 | /* Print interesting information about the floating point processor |
1592 | (if present) or emulator. */ | |
34e8f22d | 1593 | static void |
5e74b15c | 1594 | arm_print_float_info (void) |
c906108c | 1595 | { |
34e8f22d | 1596 | register unsigned long status = read_register (ARM_FPS_REGNUM); |
c5aa993b JM |
1597 | int type; |
1598 | ||
1599 | type = (status >> 24) & 127; | |
1600 | printf ("%s FPU type %d\n", | |
ed9a39eb | 1601 | (status & (1 << 31)) ? "Hardware" : "Software", |
c5aa993b JM |
1602 | type); |
1603 | fputs ("mask: ", stdout); | |
1604 | print_fpu_flags (status >> 16); | |
1605 | fputs ("flags: ", stdout); | |
1606 | print_fpu_flags (status); | |
c906108c SS |
1607 | } |
1608 | ||
34e8f22d RE |
1609 | /* Return the GDB type object for the "standard" data type of data in |
1610 | register N. */ | |
1611 | ||
1612 | static struct type * | |
032758dc AC |
1613 | arm_register_type (int regnum) |
1614 | { | |
34e8f22d | 1615 | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
032758dc | 1616 | { |
d7449b42 | 1617 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
032758dc AC |
1618 | return builtin_type_arm_ext_big; |
1619 | else | |
1620 | return builtin_type_arm_ext_littlebyte_bigword; | |
1621 | } | |
1622 | else | |
1623 | return builtin_type_int32; | |
1624 | } | |
1625 | ||
34e8f22d RE |
1626 | /* Index within `registers' of the first byte of the space for |
1627 | register N. */ | |
1628 | ||
1629 | static int | |
1630 | arm_register_byte (int regnum) | |
1631 | { | |
1632 | if (regnum < ARM_F0_REGNUM) | |
1633 | return regnum * INT_REGISTER_RAW_SIZE; | |
1634 | else if (regnum < ARM_PS_REGNUM) | |
1635 | return (NUM_GREGS * INT_REGISTER_RAW_SIZE | |
1636 | + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE); | |
1637 | else | |
1638 | return (NUM_GREGS * INT_REGISTER_RAW_SIZE | |
1639 | + NUM_FREGS * FP_REGISTER_RAW_SIZE | |
1640 | + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE); | |
1641 | } | |
1642 | ||
1643 | /* Number of bytes of storage in the actual machine representation for | |
1644 | register N. All registers are 4 bytes, except fp0 - fp7, which are | |
1645 | 12 bytes in length. */ | |
1646 | ||
1647 | static int | |
1648 | arm_register_raw_size (int regnum) | |
1649 | { | |
1650 | if (regnum < ARM_F0_REGNUM) | |
1651 | return INT_REGISTER_RAW_SIZE; | |
1652 | else if (regnum < ARM_FPS_REGNUM) | |
1653 | return FP_REGISTER_RAW_SIZE; | |
1654 | else | |
1655 | return STATUS_REGISTER_SIZE; | |
1656 | } | |
1657 | ||
1658 | /* Number of bytes of storage in a program's representation | |
1659 | for register N. */ | |
1660 | static int | |
1661 | arm_register_virtual_size (int regnum) | |
1662 | { | |
1663 | if (regnum < ARM_F0_REGNUM) | |
1664 | return INT_REGISTER_VIRTUAL_SIZE; | |
1665 | else if (regnum < ARM_FPS_REGNUM) | |
1666 | return FP_REGISTER_VIRTUAL_SIZE; | |
1667 | else | |
1668 | return STATUS_REGISTER_SIZE; | |
1669 | } | |
1670 | ||
1671 | ||
a37b3cc0 AC |
1672 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
1673 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
1674 | It is thought that this is is the floating-point register format on | |
1675 | little-endian systems. */ | |
c906108c | 1676 | |
ed9a39eb JM |
1677 | static void |
1678 | convert_from_extended (void *ptr, void *dbl) | |
c906108c | 1679 | { |
a37b3cc0 | 1680 | DOUBLEST d; |
d7449b42 | 1681 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
1682 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); |
1683 | else | |
1684 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1685 | ptr, &d); | |
1686 | floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl); | |
c906108c SS |
1687 | } |
1688 | ||
34e8f22d | 1689 | static void |
ed9a39eb | 1690 | convert_to_extended (void *dbl, void *ptr) |
c906108c | 1691 | { |
a37b3cc0 AC |
1692 | DOUBLEST d; |
1693 | floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d); | |
d7449b42 | 1694 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
1695 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); |
1696 | else | |
1697 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1698 | &d, dbl); | |
c906108c | 1699 | } |
ed9a39eb | 1700 | |
c906108c | 1701 | static int |
ed9a39eb | 1702 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
1703 | { |
1704 | if (cond == INST_AL || cond == INST_NV) | |
1705 | return 1; | |
1706 | ||
1707 | switch (cond) | |
1708 | { | |
1709 | case INST_EQ: | |
1710 | return ((status_reg & FLAG_Z) != 0); | |
1711 | case INST_NE: | |
1712 | return ((status_reg & FLAG_Z) == 0); | |
1713 | case INST_CS: | |
1714 | return ((status_reg & FLAG_C) != 0); | |
1715 | case INST_CC: | |
1716 | return ((status_reg & FLAG_C) == 0); | |
1717 | case INST_MI: | |
1718 | return ((status_reg & FLAG_N) != 0); | |
1719 | case INST_PL: | |
1720 | return ((status_reg & FLAG_N) == 0); | |
1721 | case INST_VS: | |
1722 | return ((status_reg & FLAG_V) != 0); | |
1723 | case INST_VC: | |
1724 | return ((status_reg & FLAG_V) == 0); | |
1725 | case INST_HI: | |
1726 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
1727 | case INST_LS: | |
1728 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
1729 | case INST_GE: | |
1730 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
1731 | case INST_LT: | |
1732 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
1733 | case INST_GT: | |
1734 | return (((status_reg & FLAG_Z) == 0) && | |
ed9a39eb | 1735 | (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1736 | case INST_LE: |
1737 | return (((status_reg & FLAG_Z) != 0) || | |
ed9a39eb | 1738 | (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1739 | } |
1740 | return 1; | |
1741 | } | |
1742 | ||
9512d7fd | 1743 | /* Support routines for single stepping. Calculate the next PC value. */ |
c906108c SS |
1744 | #define submask(x) ((1L << ((x) + 1)) - 1) |
1745 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
1746 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
1747 | #define sbits(obj,st,fn) \ | |
1748 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
1749 | #define BranchDest(addr,instr) \ | |
1750 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
1751 | #define ARM_PC_32 1 | |
1752 | ||
1753 | static unsigned long | |
ed9a39eb JM |
1754 | shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val, |
1755 | unsigned long status_reg) | |
c906108c SS |
1756 | { |
1757 | unsigned long res, shift; | |
1758 | int rm = bits (inst, 0, 3); | |
1759 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
1760 | |
1761 | if (bit (inst, 4)) | |
c906108c SS |
1762 | { |
1763 | int rs = bits (inst, 8, 11); | |
1764 | shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; | |
1765 | } | |
1766 | else | |
1767 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
1768 | |
1769 | res = (rm == 15 | |
c906108c | 1770 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
c5aa993b | 1771 | + (bit (inst, 4) ? 12 : 8)) |
c906108c SS |
1772 | : read_register (rm)); |
1773 | ||
1774 | switch (shifttype) | |
1775 | { | |
c5aa993b | 1776 | case 0: /* LSL */ |
c906108c SS |
1777 | res = shift >= 32 ? 0 : res << shift; |
1778 | break; | |
c5aa993b JM |
1779 | |
1780 | case 1: /* LSR */ | |
c906108c SS |
1781 | res = shift >= 32 ? 0 : res >> shift; |
1782 | break; | |
1783 | ||
c5aa993b JM |
1784 | case 2: /* ASR */ |
1785 | if (shift >= 32) | |
1786 | shift = 31; | |
c906108c SS |
1787 | res = ((res & 0x80000000L) |
1788 | ? ~((~res) >> shift) : res >> shift); | |
1789 | break; | |
1790 | ||
c5aa993b | 1791 | case 3: /* ROR/RRX */ |
c906108c SS |
1792 | shift &= 31; |
1793 | if (shift == 0) | |
1794 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
1795 | else | |
c5aa993b | 1796 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
1797 | break; |
1798 | } | |
1799 | ||
1800 | return res & 0xffffffff; | |
1801 | } | |
1802 | ||
c906108c SS |
1803 | /* Return number of 1-bits in VAL. */ |
1804 | ||
1805 | static int | |
ed9a39eb | 1806 | bitcount (unsigned long val) |
c906108c SS |
1807 | { |
1808 | int nbits; | |
1809 | for (nbits = 0; val != 0; nbits++) | |
c5aa993b | 1810 | val &= val - 1; /* delete rightmost 1-bit in val */ |
c906108c SS |
1811 | return nbits; |
1812 | } | |
1813 | ||
34e8f22d | 1814 | CORE_ADDR |
ed9a39eb | 1815 | thumb_get_next_pc (CORE_ADDR pc) |
c906108c | 1816 | { |
c5aa993b | 1817 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
c906108c | 1818 | unsigned short inst1 = read_memory_integer (pc, 2); |
c5aa993b | 1819 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ |
c906108c SS |
1820 | unsigned long offset; |
1821 | ||
1822 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
1823 | { | |
1824 | CORE_ADDR sp; | |
1825 | ||
1826 | /* Fetch the saved PC from the stack. It's stored above | |
1827 | all of the other registers. */ | |
1828 | offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE; | |
34e8f22d | 1829 | sp = read_register (ARM_SP_REGNUM); |
c906108c SS |
1830 | nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4); |
1831 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1832 | if (nextpc == pc) | |
1833 | error ("Infinite loop detected"); | |
1834 | } | |
1835 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
1836 | { | |
34e8f22d | 1837 | unsigned long status = read_register (ARM_PS_REGNUM); |
c5aa993b | 1838 | unsigned long cond = bits (inst1, 8, 11); |
c906108c SS |
1839 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ |
1840 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); | |
1841 | } | |
1842 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
1843 | { | |
1844 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
1845 | } | |
1846 | else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */ | |
1847 | { | |
1848 | unsigned short inst2 = read_memory_integer (pc + 2, 2); | |
c5aa993b | 1849 | offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); |
c906108c SS |
1850 | nextpc = pc_val + offset; |
1851 | } | |
1852 | ||
1853 | return nextpc; | |
1854 | } | |
1855 | ||
34e8f22d | 1856 | CORE_ADDR |
ed9a39eb | 1857 | arm_get_next_pc (CORE_ADDR pc) |
c906108c SS |
1858 | { |
1859 | unsigned long pc_val; | |
1860 | unsigned long this_instr; | |
1861 | unsigned long status; | |
1862 | CORE_ADDR nextpc; | |
1863 | ||
1864 | if (arm_pc_is_thumb (pc)) | |
1865 | return thumb_get_next_pc (pc); | |
1866 | ||
1867 | pc_val = (unsigned long) pc; | |
1868 | this_instr = read_memory_integer (pc, 4); | |
34e8f22d | 1869 | status = read_register (ARM_PS_REGNUM); |
c5aa993b | 1870 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c SS |
1871 | |
1872 | if (condition_true (bits (this_instr, 28, 31), status)) | |
1873 | { | |
1874 | switch (bits (this_instr, 24, 27)) | |
1875 | { | |
c5aa993b JM |
1876 | case 0x0: |
1877 | case 0x1: /* data processing */ | |
1878 | case 0x2: | |
1879 | case 0x3: | |
c906108c SS |
1880 | { |
1881 | unsigned long operand1, operand2, result = 0; | |
1882 | unsigned long rn; | |
1883 | int c; | |
c5aa993b | 1884 | |
c906108c SS |
1885 | if (bits (this_instr, 12, 15) != 15) |
1886 | break; | |
1887 | ||
1888 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 1889 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
c906108c SS |
1890 | error ("Illegal update to pc in instruction"); |
1891 | ||
1892 | /* Multiply into PC */ | |
1893 | c = (status & FLAG_C) ? 1 : 0; | |
1894 | rn = bits (this_instr, 16, 19); | |
1895 | operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); | |
c5aa993b | 1896 | |
c906108c SS |
1897 | if (bit (this_instr, 25)) |
1898 | { | |
1899 | unsigned long immval = bits (this_instr, 0, 7); | |
1900 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
1901 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
1902 | & 0xffffffff; | |
c906108c | 1903 | } |
c5aa993b | 1904 | else /* operand 2 is a shifted register */ |
c906108c | 1905 | operand2 = shifted_reg_val (this_instr, c, pc_val, status); |
c5aa993b | 1906 | |
c906108c SS |
1907 | switch (bits (this_instr, 21, 24)) |
1908 | { | |
c5aa993b | 1909 | case 0x0: /*and */ |
c906108c SS |
1910 | result = operand1 & operand2; |
1911 | break; | |
1912 | ||
c5aa993b | 1913 | case 0x1: /*eor */ |
c906108c SS |
1914 | result = operand1 ^ operand2; |
1915 | break; | |
1916 | ||
c5aa993b | 1917 | case 0x2: /*sub */ |
c906108c SS |
1918 | result = operand1 - operand2; |
1919 | break; | |
1920 | ||
c5aa993b | 1921 | case 0x3: /*rsb */ |
c906108c SS |
1922 | result = operand2 - operand1; |
1923 | break; | |
1924 | ||
c5aa993b | 1925 | case 0x4: /*add */ |
c906108c SS |
1926 | result = operand1 + operand2; |
1927 | break; | |
1928 | ||
c5aa993b | 1929 | case 0x5: /*adc */ |
c906108c SS |
1930 | result = operand1 + operand2 + c; |
1931 | break; | |
1932 | ||
c5aa993b | 1933 | case 0x6: /*sbc */ |
c906108c SS |
1934 | result = operand1 - operand2 + c; |
1935 | break; | |
1936 | ||
c5aa993b | 1937 | case 0x7: /*rsc */ |
c906108c SS |
1938 | result = operand2 - operand1 + c; |
1939 | break; | |
1940 | ||
c5aa993b JM |
1941 | case 0x8: |
1942 | case 0x9: | |
1943 | case 0xa: | |
1944 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
1945 | result = (unsigned long) nextpc; |
1946 | break; | |
1947 | ||
c5aa993b | 1948 | case 0xc: /*orr */ |
c906108c SS |
1949 | result = operand1 | operand2; |
1950 | break; | |
1951 | ||
c5aa993b | 1952 | case 0xd: /*mov */ |
c906108c SS |
1953 | /* Always step into a function. */ |
1954 | result = operand2; | |
c5aa993b | 1955 | break; |
c906108c | 1956 | |
c5aa993b | 1957 | case 0xe: /*bic */ |
c906108c SS |
1958 | result = operand1 & ~operand2; |
1959 | break; | |
1960 | ||
c5aa993b | 1961 | case 0xf: /*mvn */ |
c906108c SS |
1962 | result = ~operand2; |
1963 | break; | |
1964 | } | |
1965 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1966 | ||
1967 | if (nextpc == pc) | |
1968 | error ("Infinite loop detected"); | |
1969 | break; | |
1970 | } | |
c5aa993b JM |
1971 | |
1972 | case 0x4: | |
1973 | case 0x5: /* data transfer */ | |
1974 | case 0x6: | |
1975 | case 0x7: | |
c906108c SS |
1976 | if (bit (this_instr, 20)) |
1977 | { | |
1978 | /* load */ | |
1979 | if (bits (this_instr, 12, 15) == 15) | |
1980 | { | |
1981 | /* rd == pc */ | |
c5aa993b | 1982 | unsigned long rn; |
c906108c | 1983 | unsigned long base; |
c5aa993b | 1984 | |
c906108c SS |
1985 | if (bit (this_instr, 22)) |
1986 | error ("Illegal update to pc in instruction"); | |
1987 | ||
1988 | /* byte write to PC */ | |
1989 | rn = bits (this_instr, 16, 19); | |
1990 | base = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1991 | if (bit (this_instr, 24)) | |
1992 | { | |
1993 | /* pre-indexed */ | |
1994 | int c = (status & FLAG_C) ? 1 : 0; | |
1995 | unsigned long offset = | |
c5aa993b | 1996 | (bit (this_instr, 25) |
ed9a39eb | 1997 | ? shifted_reg_val (this_instr, c, pc_val, status) |
c5aa993b | 1998 | : bits (this_instr, 0, 11)); |
c906108c SS |
1999 | |
2000 | if (bit (this_instr, 23)) | |
2001 | base += offset; | |
2002 | else | |
2003 | base -= offset; | |
2004 | } | |
c5aa993b | 2005 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
c906108c | 2006 | 4); |
c5aa993b | 2007 | |
c906108c SS |
2008 | nextpc = ADDR_BITS_REMOVE (nextpc); |
2009 | ||
2010 | if (nextpc == pc) | |
2011 | error ("Infinite loop detected"); | |
2012 | } | |
2013 | } | |
2014 | break; | |
c5aa993b JM |
2015 | |
2016 | case 0x8: | |
2017 | case 0x9: /* block transfer */ | |
c906108c SS |
2018 | if (bit (this_instr, 20)) |
2019 | { | |
2020 | /* LDM */ | |
2021 | if (bit (this_instr, 15)) | |
2022 | { | |
2023 | /* loading pc */ | |
2024 | int offset = 0; | |
2025 | ||
2026 | if (bit (this_instr, 23)) | |
2027 | { | |
2028 | /* up */ | |
2029 | unsigned long reglist = bits (this_instr, 0, 14); | |
2030 | offset = bitcount (reglist) * 4; | |
c5aa993b | 2031 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
2032 | offset += 4; |
2033 | } | |
2034 | else if (bit (this_instr, 24)) | |
2035 | offset = -4; | |
c5aa993b | 2036 | |
c906108c | 2037 | { |
c5aa993b JM |
2038 | unsigned long rn_val = |
2039 | read_register (bits (this_instr, 16, 19)); | |
c906108c SS |
2040 | nextpc = |
2041 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 2042 | + offset), |
c906108c SS |
2043 | 4); |
2044 | } | |
2045 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
2046 | if (nextpc == pc) | |
2047 | error ("Infinite loop detected"); | |
2048 | } | |
2049 | } | |
2050 | break; | |
c5aa993b JM |
2051 | |
2052 | case 0xb: /* branch & link */ | |
2053 | case 0xa: /* branch */ | |
c906108c SS |
2054 | { |
2055 | nextpc = BranchDest (pc, this_instr); | |
2056 | ||
2057 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
2058 | if (nextpc == pc) | |
2059 | error ("Infinite loop detected"); | |
2060 | break; | |
2061 | } | |
c5aa993b JM |
2062 | |
2063 | case 0xc: | |
2064 | case 0xd: | |
2065 | case 0xe: /* coproc ops */ | |
2066 | case 0xf: /* SWI */ | |
c906108c SS |
2067 | break; |
2068 | ||
2069 | default: | |
2070 | fprintf (stderr, "Bad bit-field extraction\n"); | |
2071 | return (pc); | |
2072 | } | |
2073 | } | |
2074 | ||
2075 | return nextpc; | |
2076 | } | |
2077 | ||
9512d7fd FN |
2078 | /* single_step() is called just before we want to resume the inferior, |
2079 | if we want to single-step it but there is no hardware or kernel | |
2080 | single-step support. We find the target of the coming instruction | |
2081 | and breakpoint it. | |
2082 | ||
2083 | single_step is also called just after the inferior stops. If we had | |
2084 | set up a simulated single-step, we undo our damage. */ | |
2085 | ||
34e8f22d RE |
2086 | static void |
2087 | arm_software_single_step (enum target_signal sig, int insert_bpt) | |
9512d7fd FN |
2088 | { |
2089 | static int next_pc; /* State between setting and unsetting. */ | |
2090 | static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */ | |
2091 | ||
2092 | if (insert_bpt) | |
2093 | { | |
34e8f22d | 2094 | next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM)); |
80fcf3f0 | 2095 | target_insert_breakpoint (next_pc, break_mem); |
9512d7fd FN |
2096 | } |
2097 | else | |
80fcf3f0 | 2098 | target_remove_breakpoint (next_pc, break_mem); |
9512d7fd | 2099 | } |
9512d7fd | 2100 | |
c906108c SS |
2101 | #include "bfd-in2.h" |
2102 | #include "libcoff.h" | |
2103 | ||
2104 | static int | |
ed9a39eb | 2105 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
2106 | { |
2107 | if (arm_pc_is_thumb (memaddr)) | |
2108 | { | |
c5aa993b JM |
2109 | static asymbol *asym; |
2110 | static combined_entry_type ce; | |
2111 | static struct coff_symbol_struct csym; | |
2112 | static struct _bfd fake_bfd; | |
2113 | static bfd_target fake_target; | |
c906108c SS |
2114 | |
2115 | if (csym.native == NULL) | |
2116 | { | |
2117 | /* Create a fake symbol vector containing a Thumb symbol. This is | |
2118 | solely so that the code in print_insn_little_arm() and | |
2119 | print_insn_big_arm() in opcodes/arm-dis.c will detect the presence | |
2120 | of a Thumb symbol and switch to decoding Thumb instructions. */ | |
c5aa993b JM |
2121 | |
2122 | fake_target.flavour = bfd_target_coff_flavour; | |
2123 | fake_bfd.xvec = &fake_target; | |
c906108c | 2124 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; |
c5aa993b JM |
2125 | csym.native = &ce; |
2126 | csym.symbol.the_bfd = &fake_bfd; | |
2127 | csym.symbol.name = "fake"; | |
2128 | asym = (asymbol *) & csym; | |
c906108c | 2129 | } |
c5aa993b | 2130 | |
c906108c | 2131 | memaddr = UNMAKE_THUMB_ADDR (memaddr); |
c5aa993b | 2132 | info->symbols = &asym; |
c906108c SS |
2133 | } |
2134 | else | |
2135 | info->symbols = NULL; | |
c5aa993b | 2136 | |
d7449b42 | 2137 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
2138 | return print_insn_big_arm (memaddr, info); |
2139 | else | |
2140 | return print_insn_little_arm (memaddr, info); | |
2141 | } | |
2142 | ||
34e8f22d RE |
2143 | /* Determine the type and size of breakpoint to insert at PCPTR. Uses |
2144 | the program counter value to determine whether a 16-bit or 32-bit | |
ed9a39eb JM |
2145 | breakpoint should be used. It returns a pointer to a string of |
2146 | bytes that encode a breakpoint instruction, stores the length of | |
2147 | the string to *lenptr, and adjusts the program counter (if | |
2148 | necessary) to point to the actual memory location where the | |
c906108c SS |
2149 | breakpoint should be inserted. */ |
2150 | ||
34e8f22d RE |
2151 | /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting |
2152 | breakpoints and storing their handles instread of what was in | |
2153 | memory. It is nice that this is the same size as a handle - | |
2154 | otherwise remote-rdp will have to change. */ | |
2155 | ||
c906108c | 2156 | unsigned char * |
ed9a39eb | 2157 | arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
c906108c SS |
2158 | { |
2159 | if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr)) | |
2160 | { | |
d7449b42 | 2161 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c5aa993b JM |
2162 | { |
2163 | static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT; | |
2164 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
2165 | *lenptr = sizeof (thumb_breakpoint); | |
2166 | return thumb_breakpoint; | |
2167 | } | |
c906108c | 2168 | else |
c5aa993b JM |
2169 | { |
2170 | static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT; | |
2171 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
2172 | *lenptr = sizeof (thumb_breakpoint); | |
2173 | return thumb_breakpoint; | |
2174 | } | |
c906108c SS |
2175 | } |
2176 | else | |
2177 | { | |
d7449b42 | 2178 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c5aa993b JM |
2179 | { |
2180 | static char arm_breakpoint[] = ARM_BE_BREAKPOINT; | |
2181 | *lenptr = sizeof (arm_breakpoint); | |
2182 | return arm_breakpoint; | |
2183 | } | |
c906108c | 2184 | else |
c5aa993b JM |
2185 | { |
2186 | static char arm_breakpoint[] = ARM_LE_BREAKPOINT; | |
2187 | *lenptr = sizeof (arm_breakpoint); | |
2188 | return arm_breakpoint; | |
2189 | } | |
c906108c SS |
2190 | } |
2191 | } | |
ed9a39eb JM |
2192 | |
2193 | /* Extract from an array REGBUF containing the (raw) register state a | |
2194 | function return value of type TYPE, and copy that, in virtual | |
2195 | format, into VALBUF. */ | |
2196 | ||
34e8f22d | 2197 | static void |
ed9a39eb JM |
2198 | arm_extract_return_value (struct type *type, |
2199 | char regbuf[REGISTER_BYTES], | |
2200 | char *valbuf) | |
2201 | { | |
2202 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
34e8f22d | 2203 | convert_from_extended (®buf[REGISTER_BYTE (ARM_F0_REGNUM)], valbuf); |
ed9a39eb | 2204 | else |
34e8f22d RE |
2205 | memcpy (valbuf, ®buf[REGISTER_BYTE (ARM_A1_REGNUM)], |
2206 | TYPE_LENGTH (type)); | |
2207 | } | |
2208 | ||
2209 | /* Write into appropriate registers a function return value of type | |
2210 | TYPE, given in virtual format. */ | |
2211 | ||
2212 | static void | |
2213 | arm_store_return_value (struct type *type, char *valbuf) | |
2214 | { | |
2215 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
2216 | { | |
2217 | char buf[MAX_REGISTER_RAW_SIZE]; | |
2218 | ||
2219 | convert_to_extended (valbuf, buf); | |
2220 | /* XXX Is this correct for soft-float? */ | |
2221 | write_register_bytes (REGISTER_BYTE (ARM_F0_REGNUM), buf, | |
2222 | MAX_REGISTER_RAW_SIZE); | |
2223 | } | |
2224 | else | |
2225 | write_register_bytes (0, valbuf, TYPE_LENGTH (type)); | |
2226 | } | |
2227 | ||
2228 | /* Store the address of the place in which to copy the structure the | |
2229 | subroutine will return. This is called from call_function. */ | |
2230 | ||
2231 | static void | |
2232 | arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2233 | { | |
2234 | write_register (ARM_A1_REGNUM, addr); | |
ed9a39eb JM |
2235 | } |
2236 | ||
2237 | /* Return non-zero if the PC is inside a thumb call thunk. */ | |
c906108c SS |
2238 | |
2239 | int | |
ed9a39eb | 2240 | arm_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
2241 | { |
2242 | CORE_ADDR start_addr; | |
2243 | ||
ed9a39eb JM |
2244 | /* Find the starting address of the function containing the PC. If |
2245 | the caller didn't give us a name, look it up at the same time. */ | |
c906108c SS |
2246 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) |
2247 | return 0; | |
2248 | ||
2249 | return strncmp (name, "_call_via_r", 11) == 0; | |
2250 | } | |
2251 | ||
ed9a39eb JM |
2252 | /* If PC is in a Thumb call or return stub, return the address of the |
2253 | target PC, which is in a register. The thunk functions are called | |
2254 | _called_via_xx, where x is the register name. The possible names | |
2255 | are r0-r9, sl, fp, ip, sp, and lr. */ | |
c906108c SS |
2256 | |
2257 | CORE_ADDR | |
ed9a39eb | 2258 | arm_skip_stub (CORE_ADDR pc) |
c906108c | 2259 | { |
c5aa993b | 2260 | char *name; |
c906108c SS |
2261 | CORE_ADDR start_addr; |
2262 | ||
2263 | /* Find the starting address and name of the function containing the PC. */ | |
2264 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
2265 | return 0; | |
2266 | ||
2267 | /* Call thunks always start with "_call_via_". */ | |
2268 | if (strncmp (name, "_call_via_", 10) == 0) | |
2269 | { | |
ed9a39eb JM |
2270 | /* Use the name suffix to determine which register contains the |
2271 | target PC. */ | |
c5aa993b JM |
2272 | static char *table[15] = |
2273 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
2274 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
2275 | }; | |
c906108c SS |
2276 | int regno; |
2277 | ||
2278 | for (regno = 0; regno <= 14; regno++) | |
2279 | if (strcmp (&name[10], table[regno]) == 0) | |
2280 | return read_register (regno); | |
2281 | } | |
ed9a39eb | 2282 | |
c5aa993b | 2283 | return 0; /* not a stub */ |
c906108c SS |
2284 | } |
2285 | ||
bc90b915 FN |
2286 | /* If the user changes the register disassembly flavor used for info register |
2287 | and other commands, we have to also switch the flavor used in opcodes | |
2288 | for disassembly output. | |
2289 | This function is run in the set disassembly_flavor command, and does that. */ | |
2290 | ||
2291 | static void | |
2292 | set_disassembly_flavor_sfunc (char *args, int from_tty, | |
2293 | struct cmd_list_element *c) | |
2294 | { | |
2295 | set_disassembly_flavor (); | |
2296 | } | |
2297 | \f | |
966fbf70 | 2298 | /* Return the ARM register name corresponding to register I. */ |
34e8f22d RE |
2299 | static char * |
2300 | arm_register_name (int i) | |
966fbf70 RE |
2301 | { |
2302 | return arm_register_names[i]; | |
2303 | } | |
2304 | ||
bc90b915 FN |
2305 | static void |
2306 | set_disassembly_flavor (void) | |
2307 | { | |
2308 | const char *setname, *setdesc, **regnames; | |
2309 | int numregs, j; | |
2310 | ||
2311 | /* Find the flavor that the user wants in the opcodes table. */ | |
2312 | int current = 0; | |
2313 | numregs = get_arm_regnames (current, &setname, &setdesc, ®names); | |
2314 | while ((disassembly_flavor != setname) | |
2315 | && (current < num_flavor_options)) | |
2316 | get_arm_regnames (++current, &setname, &setdesc, ®names); | |
2317 | current_option = current; | |
2318 | ||
2319 | /* Fill our copy. */ | |
2320 | for (j = 0; j < numregs; j++) | |
2321 | arm_register_names[j] = (char *) regnames[j]; | |
2322 | ||
2323 | /* Adjust case. */ | |
34e8f22d | 2324 | if (isupper (*regnames[ARM_PC_REGNUM])) |
bc90b915 | 2325 | { |
34e8f22d RE |
2326 | arm_register_names[ARM_FPS_REGNUM] = "FPS"; |
2327 | arm_register_names[ARM_PS_REGNUM] = "CPSR"; | |
bc90b915 FN |
2328 | } |
2329 | else | |
2330 | { | |
34e8f22d RE |
2331 | arm_register_names[ARM_FPS_REGNUM] = "fps"; |
2332 | arm_register_names[ARM_PS_REGNUM] = "cpsr"; | |
bc90b915 FN |
2333 | } |
2334 | ||
2335 | /* Synchronize the disassembler. */ | |
2336 | set_arm_regname_option (current); | |
2337 | } | |
2338 | ||
2339 | /* arm_othernames implements the "othernames" command. This is kind | |
2340 | of hacky, and I prefer the set-show disassembly-flavor which is | |
2341 | also used for the x86 gdb. I will keep this around, however, in | |
2342 | case anyone is actually using it. */ | |
2343 | ||
2344 | static void | |
2345 | arm_othernames (char *names, int n) | |
2346 | { | |
2347 | /* Circle through the various flavors. */ | |
2348 | current_option = (current_option + 1) % num_flavor_options; | |
2349 | ||
2350 | disassembly_flavor = valid_flavors[current_option]; | |
2351 | set_disassembly_flavor (); | |
2352 | } | |
2353 | ||
a42dd537 KB |
2354 | /* Fetch, and possibly build, an appropriate link_map_offsets structure |
2355 | for ARM linux targets using the struct offsets defined in <link.h>. | |
2356 | Note, however, that link.h is not actually referred to in this file. | |
2357 | Instead, the relevant structs offsets were obtained from examining | |
2358 | link.h. (We can't refer to link.h from this file because the host | |
2359 | system won't necessarily have it, or if it does, the structs which | |
2360 | it defines will refer to the host system, not the target.) */ | |
2361 | ||
2362 | struct link_map_offsets * | |
2363 | arm_linux_svr4_fetch_link_map_offsets (void) | |
2364 | { | |
2365 | static struct link_map_offsets lmo; | |
2366 | static struct link_map_offsets *lmp = 0; | |
2367 | ||
2368 | if (lmp == 0) | |
2369 | { | |
2370 | lmp = &lmo; | |
2371 | ||
2372 | lmo.r_debug_size = 8; /* Actual size is 20, but this is all we | |
2373 | need. */ | |
2374 | ||
2375 | lmo.r_map_offset = 4; | |
2376 | lmo.r_map_size = 4; | |
2377 | ||
2378 | lmo.link_map_size = 20; /* Actual size is 552, but this is all we | |
2379 | need. */ | |
2380 | ||
2381 | lmo.l_addr_offset = 0; | |
2382 | lmo.l_addr_size = 4; | |
2383 | ||
2384 | lmo.l_name_offset = 4; | |
2385 | lmo.l_name_size = 4; | |
2386 | ||
2387 | lmo.l_next_offset = 12; | |
2388 | lmo.l_next_size = 4; | |
2389 | ||
2390 | lmo.l_prev_offset = 16; | |
2391 | lmo.l_prev_size = 4; | |
2392 | } | |
2393 | ||
2394 | return lmp; | |
2395 | } | |
2396 | ||
082fc60d RE |
2397 | /* Test whether the coff symbol specific value corresponds to a Thumb |
2398 | function. */ | |
2399 | ||
2400 | static int | |
2401 | coff_sym_is_thumb (int val) | |
2402 | { | |
2403 | return (val == C_THUMBEXT || | |
2404 | val == C_THUMBSTAT || | |
2405 | val == C_THUMBEXTFUNC || | |
2406 | val == C_THUMBSTATFUNC || | |
2407 | val == C_THUMBLABEL); | |
2408 | } | |
2409 | ||
2410 | /* arm_coff_make_msymbol_special() | |
2411 | arm_elf_make_msymbol_special() | |
2412 | ||
2413 | These functions test whether the COFF or ELF symbol corresponds to | |
2414 | an address in thumb code, and set a "special" bit in a minimal | |
2415 | symbol to indicate that it does. */ | |
2416 | ||
34e8f22d | 2417 | static void |
082fc60d RE |
2418 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
2419 | { | |
2420 | /* Thumb symbols are of type STT_LOPROC, (synonymous with | |
2421 | STT_ARM_TFUNC). */ | |
2422 | if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info) | |
2423 | == STT_LOPROC) | |
2424 | MSYMBOL_SET_SPECIAL (msym); | |
2425 | } | |
2426 | ||
34e8f22d | 2427 | static void |
082fc60d RE |
2428 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
2429 | { | |
2430 | if (coff_sym_is_thumb (val)) | |
2431 | MSYMBOL_SET_SPECIAL (msym); | |
2432 | } | |
2433 | ||
39bbf761 RE |
2434 | static struct gdbarch * |
2435 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2436 | { | |
2437 | struct gdbarch *gdbarch; | |
2438 | ||
2439 | if (arches != NULL) | |
2440 | return arches->gdbarch; | |
2441 | ||
2442 | /* XXX We'll probably need to set the tdep field soon. */ | |
2443 | gdbarch = gdbarch_alloc (&info, NULL); | |
2444 | ||
2445 | set_gdbarch_use_generic_dummy_frames (gdbarch, 0); | |
2446 | ||
2447 | /* Call dummy code. */ | |
2448 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | |
2449 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
2450 | set_gdbarch_call_dummy_p (gdbarch, 1); | |
2451 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
2452 | ||
34e8f22d RE |
2453 | set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words); |
2454 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (arm_call_dummy_words)); | |
2455 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
2456 | ||
2457 | set_gdbarch_fix_call_dummy (gdbarch, arm_fix_call_dummy); | |
2458 | ||
39bbf761 RE |
2459 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack); |
2460 | ||
2461 | set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); | |
2462 | set_gdbarch_push_arguments (gdbarch, arm_push_arguments); | |
2463 | ||
148754e5 | 2464 | /* Frame handling. */ |
39bbf761 | 2465 | set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid); |
148754e5 RE |
2466 | set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info); |
2467 | set_gdbarch_read_fp (gdbarch, arm_read_fp); | |
2468 | set_gdbarch_frame_chain (gdbarch, arm_frame_chain); | |
2469 | set_gdbarch_frameless_function_invocation | |
2470 | (gdbarch, arm_frameless_function_invocation); | |
2471 | set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc); | |
2472 | set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address); | |
2473 | set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address); | |
2474 | set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args); | |
2475 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
2476 | set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs); | |
2477 | set_gdbarch_push_dummy_frame (gdbarch, arm_push_dummy_frame); | |
2478 | set_gdbarch_pop_frame (gdbarch, arm_pop_frame); | |
2479 | ||
34e8f22d RE |
2480 | /* Address manipulation. */ |
2481 | set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address); | |
2482 | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); | |
2483 | ||
2484 | /* Offset from address of function to start of its code. */ | |
2485 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2486 | ||
2487 | /* Advance PC across function entry code. */ | |
2488 | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | |
2489 | ||
2490 | /* Get the PC when a frame might not be available. */ | |
2491 | set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call); | |
2492 | ||
2493 | /* The stack grows downward. */ | |
2494 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2495 | ||
2496 | /* Breakpoint manipulation. */ | |
2497 | set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc); | |
2498 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2499 | ||
2500 | /* Information about registers, etc. */ | |
2501 | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | |
2502 | set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */ | |
2503 | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); | |
2504 | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | |
2505 | set_gdbarch_register_byte (gdbarch, arm_register_byte); | |
2506 | set_gdbarch_register_bytes (gdbarch, | |
2507 | (NUM_GREGS * INT_REGISTER_RAW_SIZE | |
2508 | + NUM_FREGS * FP_REGISTER_RAW_SIZE | |
2509 | + NUM_SREGS * STATUS_REGISTER_SIZE)); | |
2510 | set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS); | |
2511 | set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size); | |
2512 | set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size); | |
2513 | set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE); | |
2514 | set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE); | |
2515 | set_gdbarch_register_virtual_type (gdbarch, arm_register_type); | |
2516 | ||
2517 | /* Integer registers are 4 bytes. */ | |
2518 | set_gdbarch_register_size (gdbarch, 4); | |
2519 | set_gdbarch_register_name (gdbarch, arm_register_name); | |
2520 | ||
2521 | /* Returning results. */ | |
2522 | set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value); | |
2523 | set_gdbarch_store_return_value (gdbarch, arm_store_return_value); | |
2524 | set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return); | |
2525 | ||
2526 | /* Single stepping. */ | |
2527 | /* XXX For an RDI target we should ask the target if it can single-step. */ | |
2528 | set_gdbarch_software_single_step (gdbarch, arm_software_single_step); | |
2529 | ||
2530 | /* Minsymbol frobbing. */ | |
2531 | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | |
2532 | set_gdbarch_coff_make_msymbol_special (gdbarch, | |
2533 | arm_coff_make_msymbol_special); | |
2534 | ||
2535 | /* XXX We can't do this until NUM_REGS is set for the architecture. | |
2536 | Even then, we can't use SIZEOF_FRAME_SAVED_REGS, since that still | |
2537 | references the old architecture vector, not the one we are | |
2538 | building here. */ | |
2539 | if (prologue_cache.saved_regs != NULL) | |
2540 | xfree (prologue_cache.saved_regs); | |
2541 | ||
2542 | prologue_cache.saved_regs = (CORE_ADDR *) | |
2543 | xcalloc (1, (sizeof (CORE_ADDR) | |
2544 | * (NUM_GREGS + NUM_FREGS + NUM_SREGS + NUM_PSEUDO_REGS))); | |
39bbf761 RE |
2545 | |
2546 | return gdbarch; | |
2547 | } | |
2548 | ||
c906108c | 2549 | void |
ed9a39eb | 2550 | _initialize_arm_tdep (void) |
c906108c | 2551 | { |
bc90b915 FN |
2552 | struct ui_file *stb; |
2553 | long length; | |
96baa820 | 2554 | struct cmd_list_element *new_cmd; |
53904c9e AC |
2555 | const char *setname; |
2556 | const char *setdesc; | |
2557 | const char **regnames; | |
bc90b915 FN |
2558 | int numregs, i, j; |
2559 | static char *helptext; | |
085dd6e6 | 2560 | |
39bbf761 RE |
2561 | if (GDB_MULTI_ARCH) |
2562 | register_gdbarch_init (bfd_arch_arm, arm_gdbarch_init); | |
2563 | ||
c906108c | 2564 | tm_print_insn = gdb_print_insn_arm; |
ed9a39eb | 2565 | |
bc90b915 FN |
2566 | /* Get the number of possible sets of register names defined in opcodes. */ |
2567 | num_flavor_options = get_arm_regname_num_options (); | |
2568 | ||
085dd6e6 | 2569 | /* Sync the opcode insn printer with our register viewer: */ |
bc90b915 | 2570 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 2571 | |
bc90b915 FN |
2572 | /* Begin creating the help text. */ |
2573 | stb = mem_fileopen (); | |
2574 | fprintf_unfiltered (stb, "Set the disassembly flavor.\n\ | |
2575 | The valid values are:\n"); | |
ed9a39eb | 2576 | |
bc90b915 FN |
2577 | /* Initialize the array that will be passed to add_set_enum_cmd(). */ |
2578 | valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *)); | |
2579 | for (i = 0; i < num_flavor_options; i++) | |
2580 | { | |
2581 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
53904c9e | 2582 | valid_flavors[i] = setname; |
bc90b915 FN |
2583 | fprintf_unfiltered (stb, "%s - %s\n", setname, |
2584 | setdesc); | |
2585 | /* Copy the default names (if found) and synchronize disassembler. */ | |
2586 | if (!strcmp (setname, "std")) | |
2587 | { | |
53904c9e | 2588 | disassembly_flavor = setname; |
bc90b915 FN |
2589 | current_option = i; |
2590 | for (j = 0; j < numregs; j++) | |
2591 | arm_register_names[j] = (char *) regnames[j]; | |
2592 | set_arm_regname_option (i); | |
2593 | } | |
2594 | } | |
2595 | /* Mark the end of valid options. */ | |
2596 | valid_flavors[num_flavor_options] = NULL; | |
c906108c | 2597 | |
bc90b915 FN |
2598 | /* Finish the creation of the help text. */ |
2599 | fprintf_unfiltered (stb, "The default is \"std\"."); | |
2600 | helptext = ui_file_xstrdup (stb, &length); | |
2601 | ui_file_delete (stb); | |
ed9a39eb | 2602 | |
bc90b915 | 2603 | /* Add the disassembly-flavor command */ |
96baa820 | 2604 | new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, |
ed9a39eb | 2605 | valid_flavors, |
1ed2a135 | 2606 | &disassembly_flavor, |
bc90b915 | 2607 | helptext, |
ed9a39eb | 2608 | &setlist); |
9f60d481 | 2609 | set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc); |
ed9a39eb JM |
2610 | add_show_from_set (new_cmd, &showlist); |
2611 | ||
c906108c SS |
2612 | /* ??? Maybe this should be a boolean. */ |
2613 | add_show_from_set (add_set_cmd ("apcs32", no_class, | |
ed9a39eb | 2614 | var_zinteger, (char *) &arm_apcs_32, |
96baa820 | 2615 | "Set usage of ARM 32-bit mode.\n", &setlist), |
ed9a39eb | 2616 | &showlist); |
c906108c | 2617 | |
bc90b915 FN |
2618 | /* Add the deprecated "othernames" command */ |
2619 | ||
2620 | add_com ("othernames", class_obscure, arm_othernames, | |
2621 | "Switch to the next set of register names."); | |
c3b4394c RE |
2622 | |
2623 | /* Fill in the prologue_cache fields. */ | |
34e8f22d | 2624 | prologue_cache.saved_regs = NULL; |
c3b4394c RE |
2625 | prologue_cache.extra_info = (struct frame_extra_info *) |
2626 | xcalloc (1, sizeof (struct frame_extra_info)); | |
c906108c | 2627 | } |