]>
Commit | Line | Data |
---|---|---|
7a292a7a SS |
1 | /* Target-dependent code for the Acorn Risc Machine (ARM). |
2 | Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995-1999 | |
c906108c SS |
3 | Free Software Foundation, Inc. |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "inferior.h" | |
25 | #include "gdbcmd.h" | |
26 | #include "gdbcore.h" | |
27 | #include "symfile.h" | |
28 | #include "gdb_string.h" | |
29 | #include "coff/internal.h" /* Internal format of COFF symbols in BFD */ | |
30 | ||
31 | /* | |
c5aa993b JM |
32 | The following macros are actually wrong. Neither arm nor thumb can |
33 | or should set the lsb on addr. | |
34 | The thumb addresses are mod 2, so (addr & 2) would be a good heuristic | |
35 | to use when checking for thumb (see arm_pc_is_thumb() below). | |
36 | Unfortunately, something else depends on these (incorrect) macros, so | |
37 | fixing them actually breaks gdb. I didn't have time to investigate. Z.R. | |
38 | */ | |
c906108c SS |
39 | /* Thumb function addresses are odd (bit 0 is set). Here are some |
40 | macros to test, set, or clear bit 0 of addresses. */ | |
41 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
42 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
43 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
44 | ||
45 | /* Macros to round N up or down to the next A boundary; A must be | |
46 | a power of two. */ | |
47 | #define ROUND_DOWN(n,a) ((n) & ~((a) - 1)) | |
48 | #define ROUND_UP(n,a) (((n) + (a) - 1) & ~((a) - 1)) | |
085dd6e6 | 49 | |
96baa820 JM |
50 | static char *apcs_register_names[] = |
51 | { "a1", "a2", "a3", "a4", /* 0 1 2 3 */ | |
52 | "v1", "v2", "v3", "v4", /* 4 5 6 7 */ | |
53 | "v5", "v6", "sl", "fp", /* 8 9 10 11 */ | |
54 | "ip", "sp", "lr", "pc", /* 12 13 14 15 */ | |
55 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
56 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
57 | "fps","ps" } /* 24 25 */; | |
085dd6e6 JM |
58 | |
59 | /* These names are the ones which gcc emits, and | |
60 | I find them less confusing. Toggle between them | |
61 | using the `othernames' command. */ | |
62 | static char *additional_register_names[] = | |
96baa820 JM |
63 | { "r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
64 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
65 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
66 | "r12", "r13", "r14", "pc", /* 12 13 14 15 */ | |
67 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
68 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
69 | "fps","ps" } /* 24 25 */; | |
085dd6e6 JM |
70 | |
71 | /* By default use the APCS registers names */ | |
72 | ||
96baa820 JM |
73 | char **arm_register_names = apcs_register_names; |
74 | /* This is the variable the is set with "set disassembly-flavor", | |
75 | and its legitimate values. */ | |
76 | static char apcs_flavor[] = "apcs"; | |
77 | static char r_prefix_flavor[] = "r-prefix"; | |
78 | static char *valid_flavors[] = { | |
79 | apcs_flavor, | |
80 | r_prefix_flavor, | |
81 | NULL | |
82 | }; | |
83 | static char *disassembly_flavor = apcs_flavor; | |
84 | ||
85 | /* This is used to keep the bfd arch_info in sync with the disassembly flavor. */ | |
86 | static void set_disassembly_flavor_sfunc PARAMS ((char *, int, \ | |
87 | struct cmd_list_element *)); | |
88 | static void set_disassembly_flavor (); | |
085dd6e6 | 89 | |
c906108c SS |
90 | /* Should call_function allocate stack space for a struct return? */ |
91 | /* The system C compiler uses a similar structure return convention to gcc */ | |
92 | int | |
93 | arm_use_struct_convention (gcc_p, type) | |
94 | int gcc_p; | |
95 | struct type *type; | |
96 | { | |
97 | return (TYPE_LENGTH (type) > 4); | |
98 | } | |
99 | ||
100 | int | |
101 | arm_frame_chain_valid (chain, thisframe) | |
102 | CORE_ADDR chain; | |
103 | struct frame_info *thisframe; | |
104 | { | |
c5aa993b | 105 | #define LOWEST_PC 0x20 /* the first 0x20 bytes are the trap vectors. */ |
c906108c SS |
106 | return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC)); |
107 | } | |
108 | ||
109 | /* Set to true if the 32-bit mode is in use. */ | |
110 | ||
111 | int arm_apcs_32 = 1; | |
112 | ||
113 | /* Flag set by arm_fix_call_dummy that tells whether the target function | |
114 | is a Thumb function. This flag is checked by arm_push_arguments. | |
115 | FIXME: Change the PUSH_ARGUMENTS macro (and its use in valops.c) to | |
116 | pass the function address as an additional parameter. */ | |
117 | ||
118 | static int target_is_thumb; | |
119 | ||
120 | /* Flag set by arm_fix_call_dummy that tells whether the calling function | |
121 | is a Thumb function. This flag is checked by arm_pc_is_thumb | |
122 | and arm_call_dummy_breakpoint_offset. */ | |
123 | ||
124 | static int caller_is_thumb; | |
125 | ||
126 | /* Tell if the program counter value in MEMADDR is in a Thumb function. */ | |
127 | ||
128 | int | |
129 | arm_pc_is_thumb (memaddr) | |
130 | bfd_vma memaddr; | |
131 | { | |
c5aa993b | 132 | struct minimal_symbol *sym; |
c906108c SS |
133 | CORE_ADDR sp; |
134 | ||
135 | /* If bit 0 of the address is set, assume this is a Thumb address. */ | |
136 | if (IS_THUMB_ADDR (memaddr)) | |
137 | return 1; | |
138 | ||
139 | /* Thumb function have a "special" bit set in minimal symbols */ | |
140 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
141 | if (sym) | |
142 | { | |
c5aa993b | 143 | return (MSYMBOL_IS_SPECIAL (sym)); |
c906108c SS |
144 | } |
145 | else | |
146 | return 0; | |
147 | } | |
148 | ||
149 | /* Tell if the program counter value in MEMADDR is in a call dummy that | |
150 | is being called from a Thumb function. */ | |
151 | ||
152 | int | |
153 | arm_pc_is_thumb_dummy (memaddr) | |
154 | bfd_vma memaddr; | |
155 | { | |
c5aa993b | 156 | CORE_ADDR sp = read_sp (); |
c906108c | 157 | |
c5aa993b | 158 | if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 64)) |
c906108c SS |
159 | return caller_is_thumb; |
160 | else | |
161 | return 0; | |
162 | } | |
163 | ||
164 | CORE_ADDR | |
165 | arm_addr_bits_remove (val) | |
166 | CORE_ADDR val; | |
167 | { | |
168 | if (arm_pc_is_thumb (val)) | |
169 | return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe)); | |
170 | else | |
171 | return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc)); | |
172 | } | |
173 | ||
174 | CORE_ADDR | |
175 | arm_saved_pc_after_call (frame) | |
176 | struct frame_info *frame; | |
177 | { | |
178 | return ADDR_BITS_REMOVE (read_register (LR_REGNUM)); | |
179 | } | |
180 | ||
392a587b JM |
181 | int |
182 | arm_frameless_function_invocation (fi) | |
183 | struct frame_info *fi; | |
184 | { | |
392a587b | 185 | CORE_ADDR func_start, after_prologue; |
96baa820 JM |
186 | int frameless; |
187 | ||
392a587b JM |
188 | func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET); |
189 | after_prologue = func_start; | |
190 | SKIP_PROLOGUE (after_prologue); | |
96baa820 JM |
191 | /* There are some frameless functions whose first two instructions |
192 | follow the standard APCS form, in which case after_prologue | |
193 | will be func_start + 8. */ | |
194 | ||
195 | frameless = (after_prologue < func_start + 12); | |
392a587b JM |
196 | return frameless; |
197 | } | |
198 | ||
c906108c | 199 | /* A typical Thumb prologue looks like this: |
c5aa993b JM |
200 | push {r7, lr} |
201 | add sp, sp, #-28 | |
202 | add r7, sp, #12 | |
c906108c | 203 | Sometimes the latter instruction may be replaced by: |
c5aa993b JM |
204 | mov r7, sp |
205 | */ | |
c906108c SS |
206 | |
207 | static CORE_ADDR | |
208 | thumb_skip_prologue (pc) | |
209 | CORE_ADDR pc; | |
210 | { | |
211 | CORE_ADDR current_pc; | |
212 | ||
213 | for (current_pc = pc; current_pc < pc + 20; current_pc += 2) | |
214 | { | |
215 | unsigned short insn = read_memory_unsigned_integer (current_pc, 2); | |
216 | ||
c5aa993b JM |
217 | if ((insn & 0xfe00) != 0xb400 /* push {..., r7, lr} */ |
218 | && (insn & 0xff00) != 0xb000 /* add sp, #simm */ | |
219 | && (insn & 0xff00) != 0xaf00 /* add r7, sp, #imm */ | |
220 | && insn != 0x466f /* mov r7, sp */ | |
c906108c SS |
221 | && (insn & 0xffc0) != 0x4640) /* mov r0-r7, r8-r15 */ |
222 | break; | |
223 | } | |
224 | ||
225 | return current_pc; | |
226 | } | |
227 | ||
228 | /* APCS (ARM procedure call standard) defines the following prologue: | |
229 | ||
c5aa993b JM |
230 | mov ip, sp |
231 | [stmfd sp!, {a1,a2,a3,a4}] | |
232 | stmfd sp!, {...,fp,ip,lr,pc} | |
233 | [stfe f7, [sp, #-12]!] | |
234 | [stfe f6, [sp, #-12]!] | |
235 | [stfe f5, [sp, #-12]!] | |
236 | [stfe f4, [sp, #-12]!] | |
237 | sub fp, ip, #nn // nn == 20 or 4 depending on second ins | |
238 | */ | |
c906108c SS |
239 | |
240 | CORE_ADDR | |
241 | arm_skip_prologue (pc) | |
242 | CORE_ADDR pc; | |
243 | { | |
244 | unsigned long inst; | |
245 | CORE_ADDR skip_pc; | |
246 | CORE_ADDR func_addr, func_end; | |
247 | struct symtab_and_line sal; | |
248 | ||
96baa820 JM |
249 | /* See what the symbol table says. */ |
250 | ||
c5aa993b | 251 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
c906108c SS |
252 | { |
253 | sal = find_pc_line (func_addr, 0); | |
96baa820 | 254 | if ((sal.line != 0) && (sal.end < func_end)) |
c906108c SS |
255 | return sal.end; |
256 | } | |
257 | ||
258 | /* Check if this is Thumb code. */ | |
259 | if (arm_pc_is_thumb (pc)) | |
260 | return thumb_skip_prologue (pc); | |
261 | ||
262 | /* Can't find the prologue end in the symbol table, try it the hard way | |
263 | by disassembling the instructions. */ | |
264 | skip_pc = pc; | |
265 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 266 | if (inst != 0xe1a0c00d) /* mov ip, sp */ |
c906108c SS |
267 | return pc; |
268 | ||
269 | skip_pc += 4; | |
270 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 271 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
c906108c SS |
272 | { |
273 | skip_pc += 4; | |
274 | inst = read_memory_integer (skip_pc, 4); | |
275 | } | |
276 | ||
c5aa993b | 277 | if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */ |
c906108c SS |
278 | return pc; |
279 | ||
280 | skip_pc += 4; | |
281 | inst = read_memory_integer (skip_pc, 4); | |
282 | ||
283 | /* Any insns after this point may float into the code, if it makes | |
284 | for better instruction scheduling, so we skip them only if | |
285 | we find them, but still consdier the function to be frame-ful */ | |
286 | ||
287 | /* We may have either one sfmfd instruction here, or several stfe insns, | |
288 | depending on the version of floating point code we support. */ | |
c5aa993b | 289 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ |
c906108c SS |
290 | { |
291 | skip_pc += 4; | |
292 | inst = read_memory_integer (skip_pc, 4); | |
293 | } | |
294 | else | |
295 | { | |
c5aa993b JM |
296 | while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ |
297 | { | |
298 | skip_pc += 4; | |
299 | inst = read_memory_integer (skip_pc, 4); | |
300 | } | |
c906108c SS |
301 | } |
302 | ||
c5aa993b | 303 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ |
c906108c SS |
304 | skip_pc += 4; |
305 | ||
306 | return skip_pc; | |
307 | } | |
c5aa993b | 308 | /* *INDENT-OFF* */ |
c906108c SS |
309 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
310 | This function decodes a Thumb function prologue to determine: | |
311 | 1) the size of the stack frame | |
312 | 2) which registers are saved on it | |
313 | 3) the offsets of saved regs | |
314 | 4) the offset from the stack pointer to the frame pointer | |
315 | This information is stored in the "extra" fields of the frame_info. | |
316 | ||
317 | A typical Thumb function prologue might look like this: | |
318 | push {r7, lr} | |
319 | sub sp, #28, | |
320 | add r7, sp, #12 | |
321 | Which would create this stack frame (offsets relative to FP) | |
322 | old SP -> 24 stack parameters | |
323 | 20 LR | |
324 | 16 R7 | |
325 | R7 -> 0 local variables (16 bytes) | |
326 | SP -> -12 additional stack space (12 bytes) | |
327 | The frame size would thus be 36 bytes, and the frame offset would be | |
328 | 12 bytes. The frame register is R7. */ | |
c5aa993b JM |
329 | /* *INDENT-ON* */ |
330 | ||
331 | ||
332 | ||
333 | ||
c906108c SS |
334 | static void |
335 | thumb_scan_prologue (fi) | |
c5aa993b | 336 | struct frame_info *fi; |
c906108c SS |
337 | { |
338 | CORE_ADDR prologue_start; | |
339 | CORE_ADDR prologue_end; | |
340 | CORE_ADDR current_pc; | |
c5aa993b JM |
341 | int saved_reg[16]; /* which register has been copied to register n? */ |
342 | int i; | |
c906108c | 343 | |
c5aa993b | 344 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) |
c906108c SS |
345 | { |
346 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
347 | ||
c5aa993b | 348 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
349 | prologue_end = fi->pc; |
350 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 351 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
352 | } |
353 | else | |
c5aa993b JM |
354 | prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */ |
355 | /* 16 pushes, an add, and "mv fp,sp" */ | |
c906108c SS |
356 | |
357 | prologue_end = min (prologue_end, fi->pc); | |
358 | ||
359 | /* Initialize the saved register map. When register H is copied to | |
360 | register L, we will put H in saved_reg[L]. */ | |
361 | for (i = 0; i < 16; i++) | |
362 | saved_reg[i] = i; | |
363 | ||
364 | /* Search the prologue looking for instructions that set up the | |
365 | frame pointer, adjust the stack pointer, and save registers. */ | |
366 | ||
367 | fi->framesize = 0; | |
368 | for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2) | |
369 | { | |
370 | unsigned short insn; | |
371 | int regno; | |
372 | int offset; | |
373 | ||
374 | insn = read_memory_unsigned_integer (current_pc, 2); | |
375 | ||
c5aa993b | 376 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
c906108c SS |
377 | { |
378 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says | |
379 | whether to save LR (R14). */ | |
380 | int mask = (insn & 0xff) | ((insn & 0x100) << 6); | |
381 | ||
382 | /* Calculate offsets of saved R0-R7 and LR. */ | |
383 | for (regno = LR_REGNUM; regno >= 0; regno--) | |
384 | if (mask & (1 << regno)) | |
c5aa993b | 385 | { |
c906108c SS |
386 | fi->framesize += 4; |
387 | fi->fsr.regs[saved_reg[regno]] = -(fi->framesize); | |
388 | saved_reg[regno] = regno; /* reset saved register map */ | |
389 | } | |
390 | } | |
391 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm */ | |
392 | { | |
c5aa993b JM |
393 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
394 | if (insn & 0x80) /* is it signed? */ | |
395 | offset = -offset; | |
c906108c SS |
396 | fi->framesize -= offset; |
397 | } | |
398 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
399 | { | |
400 | fi->framereg = THUMB_FP_REGNUM; | |
c5aa993b | 401 | fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */ |
c906108c | 402 | } |
c5aa993b | 403 | else if (insn == 0x466f) /* mov r7, sp */ |
c906108c SS |
404 | { |
405 | fi->framereg = THUMB_FP_REGNUM; | |
406 | fi->frameoffset = 0; | |
407 | saved_reg[THUMB_FP_REGNUM] = SP_REGNUM; | |
408 | } | |
409 | else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ | |
410 | { | |
c5aa993b | 411 | int lo_reg = insn & 7; /* dest. register (r0-r7) */ |
c906108c | 412 | int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ |
c5aa993b | 413 | saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ |
c906108c SS |
414 | } |
415 | else | |
c5aa993b | 416 | break; /* anything else isn't prologue */ |
c906108c SS |
417 | } |
418 | } | |
419 | ||
420 | /* Function: check_prologue_cache | |
421 | Check if prologue for this frame's PC has already been scanned. | |
422 | If it has, copy the relevant information about that prologue and | |
423 | return non-zero. Otherwise do not copy anything and return zero. | |
424 | ||
425 | The information saved in the cache includes: | |
c5aa993b JM |
426 | * the frame register number; |
427 | * the size of the stack frame; | |
428 | * the offsets of saved regs (relative to the old SP); and | |
429 | * the offset from the stack pointer to the frame pointer | |
c906108c SS |
430 | |
431 | The cache contains only one entry, since this is adequate | |
432 | for the typical sequence of prologue scan requests we get. | |
433 | When performing a backtrace, GDB will usually ask to scan | |
434 | the same function twice in a row (once to get the frame chain, | |
435 | and once to fill in the extra frame information). | |
c5aa993b | 436 | */ |
c906108c SS |
437 | |
438 | static struct frame_info prologue_cache; | |
439 | ||
440 | static int | |
441 | check_prologue_cache (fi) | |
c5aa993b | 442 | struct frame_info *fi; |
c906108c SS |
443 | { |
444 | int i; | |
445 | ||
446 | if (fi->pc == prologue_cache.pc) | |
447 | { | |
448 | fi->framereg = prologue_cache.framereg; | |
449 | fi->framesize = prologue_cache.framesize; | |
450 | fi->frameoffset = prologue_cache.frameoffset; | |
451 | for (i = 0; i <= NUM_REGS; i++) | |
452 | fi->fsr.regs[i] = prologue_cache.fsr.regs[i]; | |
453 | return 1; | |
454 | } | |
455 | else | |
456 | return 0; | |
457 | } | |
458 | ||
459 | ||
460 | /* Function: save_prologue_cache | |
461 | Copy the prologue information from fi to the prologue cache. | |
c5aa993b | 462 | */ |
c906108c SS |
463 | |
464 | static void | |
465 | save_prologue_cache (fi) | |
c5aa993b | 466 | struct frame_info *fi; |
c906108c SS |
467 | { |
468 | int i; | |
469 | ||
c5aa993b JM |
470 | prologue_cache.pc = fi->pc; |
471 | prologue_cache.framereg = fi->framereg; | |
472 | prologue_cache.framesize = fi->framesize; | |
c906108c | 473 | prologue_cache.frameoffset = fi->frameoffset; |
c5aa993b | 474 | |
c906108c SS |
475 | for (i = 0; i <= NUM_REGS; i++) |
476 | prologue_cache.fsr.regs[i] = fi->fsr.regs[i]; | |
477 | } | |
478 | ||
479 | ||
480 | /* Function: arm_scan_prologue | |
481 | This function decodes an ARM function prologue to determine: | |
c5aa993b JM |
482 | 1) the size of the stack frame |
483 | 2) which registers are saved on it | |
484 | 3) the offsets of saved regs | |
485 | 4) the offset from the stack pointer to the frame pointer | |
c906108c SS |
486 | This information is stored in the "extra" fields of the frame_info. |
487 | ||
96baa820 JM |
488 | There are two basic forms for the ARM prologue. The fixed argument |
489 | function call will look like: | |
490 | ||
491 | mov ip, sp | |
492 | stmfd sp!, {fp, ip, lr, pc} | |
493 | sub fp, ip, #4 | |
494 | [sub sp, sp, #4] | |
495 | ||
c906108c | 496 | Which would create this stack frame (offsets relative to FP): |
96baa820 JM |
497 | IP -> 4 (caller's stack) |
498 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
499 | -4 LR (return address in caller) | |
500 | -8 IP (copy of caller's SP) | |
501 | -12 FP (caller's FP) | |
502 | SP -> -28 Local variables | |
503 | ||
c906108c | 504 | The frame size would thus be 32 bytes, and the frame offset would be |
96baa820 JM |
505 | 28 bytes. The stmfd call can also save any of the vN registers it |
506 | plans to use, which increases the frame size accordingly. | |
507 | ||
508 | Note: The stored PC is 8 off of the STMFD instruction that stored it | |
509 | because the ARM Store instructions always store PC + 8 when you read | |
510 | the PC register. | |
511 | ||
512 | A variable argument function call will look like: | |
513 | ||
514 | mov ip, sp | |
515 | stmfd sp!, {a1, a2, a3, a4} | |
516 | stmfd sp!, {fp, ip, lr, pc} | |
517 | sub fp, ip, #20 | |
518 | ||
519 | Which would create this stack frame (offsets relative to FP): | |
520 | IP -> 20 (caller's stack) | |
521 | 16 A4 | |
522 | 12 A3 | |
523 | 8 A2 | |
524 | 4 A1 | |
525 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
526 | -4 LR (return address in caller) | |
527 | -8 IP (copy of caller's SP) | |
528 | -12 FP (caller's FP) | |
529 | SP -> -28 Local variables | |
530 | ||
531 | The frame size would thus be 48 bytes, and the frame offset would be | |
532 | 28 bytes. | |
533 | ||
534 | There is another potential complication, which is that the optimizer | |
535 | will try to separate the store of fp in the "stmfd" instruction from | |
536 | the "sub fp, ip, #NN" instruction. Almost anything can be there, so | |
537 | we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... | |
538 | ||
539 | Also, note, the original version of the ARM toolchain claimed that there | |
540 | should be an | |
541 | ||
542 | instruction at the end of the prologue. I have never seen GCC produce | |
543 | this, and the ARM docs don't mention it. We still test for it below in | |
544 | case it happens... | |
545 | ||
546 | */ | |
c906108c SS |
547 | |
548 | static void | |
549 | arm_scan_prologue (fi) | |
c5aa993b | 550 | struct frame_info *fi; |
c906108c SS |
551 | { |
552 | int regno, sp_offset, fp_offset; | |
553 | CORE_ADDR prologue_start, prologue_end, current_pc; | |
554 | ||
555 | /* Check if this function is already in the cache of frame information. */ | |
556 | if (check_prologue_cache (fi)) | |
557 | return; | |
558 | ||
559 | /* Assume there is no frame until proven otherwise. */ | |
c5aa993b JM |
560 | fi->framereg = SP_REGNUM; |
561 | fi->framesize = 0; | |
c906108c SS |
562 | fi->frameoffset = 0; |
563 | ||
564 | /* Check for Thumb prologue. */ | |
565 | if (arm_pc_is_thumb (fi->pc)) | |
566 | { | |
567 | thumb_scan_prologue (fi); | |
568 | save_prologue_cache (fi); | |
569 | return; | |
570 | } | |
571 | ||
572 | /* Find the function prologue. If we can't find the function in | |
573 | the symbol table, peek in the stack frame to find the PC. */ | |
574 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) | |
575 | { | |
576 | /* Assume the prologue is everything between the first instruction | |
577 | in the function and the first source line. */ | |
578 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
579 | ||
c5aa993b | 580 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
581 | prologue_end = fi->pc; |
582 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 583 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
584 | } |
585 | else | |
586 | { | |
587 | /* Get address of the stmfd in the prologue of the callee; the saved | |
96baa820 JM |
588 | PC is the address of the stmfd + 8. */ |
589 | prologue_start = ADDR_BITS_REMOVE(read_memory_integer (fi->frame, 4)) | |
590 | - 8; | |
591 | prologue_end = prologue_start + 64; /* This is all the insn's | |
592 | that could be in the prologue, | |
593 | plus room for 5 insn's inserted | |
594 | by the scheduler. */ | |
c906108c SS |
595 | } |
596 | ||
597 | /* Now search the prologue looking for instructions that set up the | |
96baa820 JM |
598 | frame pointer, adjust the stack pointer, and save registers. |
599 | ||
600 | Be careful, however, and if it doesn't look like a prologue, | |
601 | don't try to scan it. If, for instance, a frameless function | |
602 | begins with stmfd sp!, then we will tell ourselves there is | |
603 | a frame, which will confuse stack traceback, as well ad"finish" | |
604 | and other operations that rely on a knowledge of the stack | |
605 | traceback. | |
606 | ||
607 | In the APCS, the prologue should start with "mov ip, sp" so | |
608 | if we don't see this as the first insn, we will stop. */ | |
c906108c SS |
609 | |
610 | sp_offset = fp_offset = 0; | |
c906108c | 611 | |
96baa820 JM |
612 | if (read_memory_unsigned_integer (prologue_start, 4) |
613 | == 0xe1a0c00d) /* mov ip, sp */ | |
614 | { | |
615 | for (current_pc = prologue_start +4; current_pc < prologue_end; | |
616 | current_pc += 4) | |
c906108c | 617 | { |
96baa820 JM |
618 | unsigned int insn = read_memory_unsigned_integer (current_pc, 4); |
619 | ||
620 | if ((insn & 0xffff0000) == 0xe92d0000) | |
621 | /* stmfd sp!, {..., fp, ip, lr, pc} | |
622 | or | |
623 | stmfd sp!, {a1, a2, a3, a4} */ | |
624 | { | |
625 | int mask = insn & 0xffff; | |
626 | ||
627 | /* Calculate offsets of saved registers. */ | |
628 | for (regno = PC_REGNUM; regno >= 0; regno--) | |
629 | if (mask & (1 << regno)) | |
630 | { | |
631 | sp_offset -= 4; | |
632 | fi->fsr.regs[regno] = sp_offset; | |
633 | } | |
634 | } | |
635 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ | |
636 | { | |
637 | unsigned imm = insn & 0xff; /* immediate value */ | |
638 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
639 | imm = (imm >> rot) | (imm << (32-rot)); | |
640 | fp_offset = -imm; | |
641 | fi->framereg = FP_REGNUM; | |
642 | } | |
643 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
644 | { | |
645 | unsigned imm = insn & 0xff; /* immediate value */ | |
646 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
647 | imm = (imm >> rot) | (imm << (32-rot)); | |
648 | sp_offset -= imm; | |
649 | } | |
650 | else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ | |
651 | { | |
652 | sp_offset -= 12; | |
653 | regno = F0_REGNUM + ((insn >> 12) & 0x07); | |
654 | fi->fsr.regs[regno] = sp_offset; | |
655 | } | |
656 | else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */ | |
657 | { | |
658 | int n_saved_fp_regs, i; | |
659 | unsigned int fp_start_reg, fp_bound_reg; | |
660 | ||
661 | if ((insn & 0x800) == 0x800) /* N0 is set */ | |
662 | { | |
663 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ | |
664 | n_saved_fp_regs = 3; | |
665 | else | |
666 | n_saved_fp_regs = 1; | |
667 | } | |
668 | else | |
669 | { | |
670 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ | |
671 | n_saved_fp_regs = 2; | |
672 | else | |
673 | n_saved_fp_regs = 4; | |
674 | } | |
675 | ||
676 | fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7); | |
677 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; | |
678 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
679 | { | |
680 | sp_offset -= 12; | |
681 | fi->fsr.regs[fp_start_reg++] = sp_offset; | |
682 | } | |
683 | } | |
684 | else | |
685 | continue; /* The optimizer might shove anything into the | |
686 | prologue, so we just skip what we don't recognize. */ | |
c906108c | 687 | } |
c906108c SS |
688 | } |
689 | ||
690 | /* The frame size is just the negative of the offset (from the original SP) | |
691 | of the last thing thing we pushed on the stack. The frame offset is | |
692 | [new FP] - [new SP]. */ | |
693 | fi->framesize = -sp_offset; | |
694 | fi->frameoffset = fp_offset - sp_offset; | |
96baa820 | 695 | |
c906108c SS |
696 | save_prologue_cache (fi); |
697 | } | |
698 | ||
699 | ||
700 | /* Function: find_callers_reg | |
701 | Find REGNUM on the stack. Otherwise, it's in an active register. One thing | |
702 | we might want to do here is to check REGNUM against the clobber mask, and | |
703 | somehow flag it as invalid if it isn't saved on the stack somewhere. This | |
704 | would provide a graceful failure mode when trying to get the value of | |
705 | caller-saves registers for an inner frame. */ | |
706 | ||
707 | static CORE_ADDR | |
708 | arm_find_callers_reg (fi, regnum) | |
c5aa993b | 709 | struct frame_info *fi; |
c906108c SS |
710 | int regnum; |
711 | { | |
712 | for (; fi; fi = fi->next) | |
c5aa993b JM |
713 | |
714 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
c906108c SS |
715 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
716 | return generic_read_register_dummy (fi->pc, fi->frame, regnum); | |
717 | else | |
718 | #endif | |
c5aa993b JM |
719 | if (fi->fsr.regs[regnum] != 0) |
720 | return read_memory_integer (fi->fsr.regs[regnum], | |
721 | REGISTER_RAW_SIZE (regnum)); | |
c906108c SS |
722 | return read_register (regnum); |
723 | } | |
c5aa993b | 724 | /* *INDENT-OFF* */ |
c906108c SS |
725 | /* Function: frame_chain |
726 | Given a GDB frame, determine the address of the calling function's frame. | |
727 | This will be used to create a new GDB frame struct, and then | |
728 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
729 | For ARM, we save the frame size when we initialize the frame_info. | |
730 | ||
731 | The original definition of this function was a macro in tm-arm.h: | |
732 | { In the case of the ARM, the frame's nominal address is the FP value, | |
733 | and 12 bytes before comes the saved previous FP value as a 4-byte word. } | |
734 | ||
735 | #define FRAME_CHAIN(thisframe) \ | |
736 | ((thisframe)->pc >= LOWEST_PC ? \ | |
737 | read_memory_integer ((thisframe)->frame - 12, 4) :\ | |
738 | 0) | |
739 | */ | |
c5aa993b JM |
740 | /* *INDENT-ON* */ |
741 | ||
742 | ||
743 | ||
c906108c SS |
744 | |
745 | CORE_ADDR | |
746 | arm_frame_chain (fi) | |
c5aa993b | 747 | struct frame_info *fi; |
c906108c | 748 | { |
c5aa993b | 749 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
750 | CORE_ADDR fn_start, callers_pc, fp; |
751 | ||
752 | /* is this a dummy frame? */ | |
753 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
c5aa993b | 754 | return fi->frame; /* dummy frame same as caller's frame */ |
c906108c SS |
755 | |
756 | /* is caller-of-this a dummy frame? */ | |
c5aa993b | 757 | callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ |
c906108c | 758 | fp = arm_find_callers_reg (fi, FP_REGNUM); |
c5aa993b JM |
759 | if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) |
760 | return fp; /* dummy frame's frame may bear no relation to ours */ | |
c906108c SS |
761 | |
762 | if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) | |
763 | if (fn_start == entry_point_address ()) | |
c5aa993b | 764 | return 0; /* in _start fn, don't chain further */ |
c906108c SS |
765 | #endif |
766 | CORE_ADDR caller_pc, fn_start; | |
767 | struct frame_info caller_fi; | |
768 | int framereg = fi->framereg; | |
769 | ||
770 | if (fi->pc < LOWEST_PC) | |
771 | return 0; | |
772 | ||
773 | /* If the caller is the startup code, we're at the end of the chain. */ | |
774 | caller_pc = FRAME_SAVED_PC (fi); | |
775 | if (find_pc_partial_function (caller_pc, 0, &fn_start, 0)) | |
776 | if (fn_start == entry_point_address ()) | |
777 | return 0; | |
778 | ||
779 | /* If the caller is Thumb and the caller is ARM, or vice versa, | |
780 | the frame register of the caller is different from ours. | |
781 | So we must scan the prologue of the caller to determine its | |
782 | frame register number. */ | |
783 | if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc)) | |
784 | { | |
c5aa993b | 785 | memset (&caller_fi, 0, sizeof (caller_fi)); |
c906108c | 786 | caller_fi.pc = caller_pc; |
c5aa993b | 787 | arm_scan_prologue (&caller_fi); |
c906108c SS |
788 | framereg = caller_fi.framereg; |
789 | } | |
790 | ||
791 | /* If the caller used a frame register, return its value. | |
792 | Otherwise, return the caller's stack pointer. */ | |
793 | if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM) | |
794 | return arm_find_callers_reg (fi, framereg); | |
795 | else | |
796 | return fi->frame + fi->framesize; | |
797 | } | |
798 | ||
799 | /* Function: init_extra_frame_info | |
800 | This function actually figures out the frame address for a given pc and | |
801 | sp. This is tricky because we sometimes don't use an explicit | |
802 | frame pointer, and the previous stack pointer isn't necessarily recorded | |
803 | on the stack. The only reliable way to get this info is to | |
96baa820 JM |
804 | examine the prologue. |
805 | FROMLEAF is a little confusing, it means this is the next frame up | |
806 | the chain AFTER a frameless function. If this is true, then the | |
807 | frame value for this frame is still in the fp register. */ | |
c906108c SS |
808 | |
809 | void | |
96baa820 JM |
810 | arm_init_extra_frame_info (fromleaf, fi) |
811 | int fromleaf; | |
812 | struct frame_info * fi; | |
c906108c SS |
813 | { |
814 | int reg; | |
815 | ||
816 | if (fi->next) | |
817 | fi->pc = FRAME_SAVED_PC (fi->next); | |
818 | ||
819 | memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); | |
820 | ||
c5aa993b | 821 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
822 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
823 | { | |
824 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
c5aa993b JM |
825 | by assuming it's always FP. */ |
826 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); | |
827 | fi->framesize = 0; | |
c906108c SS |
828 | fi->frameoffset = 0; |
829 | return; | |
830 | } | |
c5aa993b | 831 | else |
c906108c SS |
832 | #endif |
833 | { | |
834 | arm_scan_prologue (fi); | |
835 | ||
c5aa993b | 836 | if (!fi->next) /* this is the innermost frame? */ |
c906108c | 837 | fi->frame = read_register (fi->framereg); |
96baa820 JM |
838 | else /* not the innermost frame */ |
839 | /* If we have an FP, the callee saved it. */ | |
840 | if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM) | |
841 | if (fi->next->fsr.regs[fi->framereg] != 0) | |
842 | fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg], | |
843 | 4); | |
844 | else if (fromleaf) /* If we were called by a frameless fn. | |
845 | then our frame is still in the frame pointer | |
846 | register on the board... */ | |
847 | fi->frame = read_fp (); | |
c906108c SS |
848 | |
849 | /* Calculate actual addresses of saved registers using offsets determined | |
850 | by arm_scan_prologue. */ | |
851 | for (reg = 0; reg < NUM_REGS; reg++) | |
852 | if (fi->fsr.regs[reg] != 0) | |
853 | fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset; | |
854 | } | |
855 | } | |
856 | ||
857 | ||
858 | /* Function: frame_saved_pc | |
859 | Find the caller of this frame. We do this by seeing if LR_REGNUM is saved | |
860 | in the stack anywhere, otherwise we get it from the registers. | |
861 | ||
862 | The old definition of this function was a macro: | |
c5aa993b JM |
863 | #define FRAME_SAVED_PC(FRAME) \ |
864 | ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) | |
865 | */ | |
c906108c SS |
866 | |
867 | CORE_ADDR | |
868 | arm_frame_saved_pc (fi) | |
c5aa993b | 869 | struct frame_info *fi; |
c906108c | 870 | { |
c5aa993b | 871 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
872 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
873 | return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
874 | else | |
875 | #endif | |
876 | { | |
877 | CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM); | |
878 | return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; | |
879 | } | |
880 | } | |
881 | ||
882 | ||
883 | /* Return the frame address. On ARM, it is R11; on Thumb it is R7. | |
884 | Examine the Program Status Register to decide which state we're in. */ | |
885 | ||
886 | CORE_ADDR | |
887 | arm_target_read_fp () | |
888 | { | |
889 | if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */ | |
890 | return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */ | |
891 | else | |
c5aa993b | 892 | return read_register (FP_REGNUM); /* R11 if ARM */ |
c906108c SS |
893 | } |
894 | ||
895 | ||
896 | /* Calculate the frame offsets of the saved registers (ARM version). */ | |
897 | void | |
898 | arm_frame_find_saved_regs (fi, regaddr) | |
899 | struct frame_info *fi; | |
900 | struct frame_saved_regs *regaddr; | |
901 | { | |
902 | memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs)); | |
903 | } | |
904 | ||
905 | ||
906 | void | |
907 | arm_push_dummy_frame () | |
908 | { | |
909 | CORE_ADDR old_sp = read_register (SP_REGNUM); | |
910 | CORE_ADDR sp = old_sp; | |
911 | CORE_ADDR fp, prologue_start; | |
912 | int regnum; | |
913 | ||
914 | /* Push the two dummy prologue instructions in reverse order, | |
915 | so that they'll be in the correct low-to-high order in memory. */ | |
916 | /* sub fp, ip, #4 */ | |
917 | sp = push_word (sp, 0xe24cb004); | |
918 | /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */ | |
919 | prologue_start = sp = push_word (sp, 0xe92ddfff); | |
920 | ||
921 | /* push a pointer to the dummy prologue + 12, because when | |
922 | stm instruction stores the PC, it stores the address of the stm | |
923 | instruction itself plus 12. */ | |
924 | fp = sp = push_word (sp, prologue_start + 12); | |
c5aa993b | 925 | sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */ |
c906108c SS |
926 | sp = push_word (sp, old_sp); |
927 | sp = push_word (sp, read_register (FP_REGNUM)); | |
c5aa993b JM |
928 | |
929 | for (regnum = 10; regnum >= 0; regnum--) | |
c906108c | 930 | sp = push_word (sp, read_register (regnum)); |
c5aa993b | 931 | |
c906108c SS |
932 | write_register (FP_REGNUM, fp); |
933 | write_register (THUMB_FP_REGNUM, fp); | |
934 | write_register (SP_REGNUM, sp); | |
935 | } | |
936 | ||
937 | /* Fix up the call dummy, based on whether the processor is currently | |
938 | in Thumb or ARM mode, and whether the target function is Thumb | |
939 | or ARM. There are three different situations requiring three | |
940 | different dummies: | |
941 | ||
942 | * ARM calling ARM: uses the call dummy in tm-arm.h, which has already | |
c5aa993b | 943 | been copied into the dummy parameter to this function. |
c906108c | 944 | * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the |
c5aa993b | 945 | "mov pc,r4" instruction patched to be a "bx r4" instead. |
c906108c | 946 | * Thumb calling anything: uses the Thumb dummy defined below, which |
c5aa993b | 947 | works for calling both ARM and Thumb functions. |
c906108c SS |
948 | |
949 | All three call dummies expect to receive the target function address | |
950 | in R4, with the low bit set if it's a Thumb function. | |
c5aa993b | 951 | */ |
c906108c SS |
952 | |
953 | void | |
954 | arm_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) | |
c5aa993b JM |
955 | char *dummy; |
956 | CORE_ADDR pc; | |
957 | CORE_ADDR fun; | |
958 | int nargs; | |
959 | value_ptr *args; | |
960 | struct type *type; | |
961 | int gcc_p; | |
c906108c SS |
962 | { |
963 | static short thumb_dummy[4] = | |
964 | { | |
c5aa993b JM |
965 | 0xf000, 0xf801, /* bl label */ |
966 | 0xdf18, /* swi 24 */ | |
967 | 0x4720, /* label: bx r4 */ | |
c906108c SS |
968 | }; |
969 | static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */ | |
970 | ||
971 | /* Set flag indicating whether the current PC is in a Thumb function. */ | |
c5aa993b | 972 | caller_is_thumb = arm_pc_is_thumb (read_pc ()); |
c906108c SS |
973 | |
974 | /* If the target function is Thumb, set the low bit of the function address. | |
975 | And if the CPU is currently in ARM mode, patch the second instruction | |
976 | of call dummy to use a BX instruction to switch to Thumb mode. */ | |
977 | target_is_thumb = arm_pc_is_thumb (fun); | |
978 | if (target_is_thumb) | |
979 | { | |
980 | fun |= 1; | |
981 | if (!caller_is_thumb) | |
982 | store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4); | |
983 | } | |
984 | ||
985 | /* If the CPU is currently in Thumb mode, use the Thumb call dummy | |
986 | instead of the ARM one that's already been copied. This will | |
987 | work for both Thumb and ARM target functions. */ | |
988 | if (caller_is_thumb) | |
989 | { | |
990 | int i; | |
991 | char *p = dummy; | |
992 | int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]); | |
993 | ||
994 | for (i = 0; i < len; i++) | |
995 | { | |
996 | store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]); | |
997 | p += sizeof (thumb_dummy[0]); | |
998 | } | |
999 | } | |
1000 | ||
1001 | /* Put the target address in r4; the call dummy will copy this to the PC. */ | |
1002 | write_register (4, fun); | |
1003 | } | |
1004 | ||
1005 | ||
1006 | /* Return the offset in the call dummy of the instruction that needs | |
1007 | to have a breakpoint placed on it. This is the offset of the 'swi 24' | |
1008 | instruction, which is no longer actually used, but simply acts | |
1009 | as a place-holder now. | |
1010 | ||
1011 | This implements the CALL_DUMMY_BREAK_OFFSET macro. | |
c5aa993b | 1012 | */ |
c906108c SS |
1013 | |
1014 | int | |
1015 | arm_call_dummy_breakpoint_offset () | |
1016 | { | |
1017 | if (caller_is_thumb) | |
1018 | return 4; | |
1019 | else | |
1020 | return 8; | |
1021 | } | |
1022 | ||
1023 | ||
1024 | CORE_ADDR | |
c5aa993b JM |
1025 | arm_push_arguments (nargs, args, sp, struct_return, struct_addr) |
1026 | int nargs; | |
1027 | value_ptr *args; | |
1028 | CORE_ADDR sp; | |
1029 | int struct_return; | |
1030 | CORE_ADDR struct_addr; | |
c906108c SS |
1031 | { |
1032 | int argreg; | |
1033 | int float_argreg; | |
1034 | int argnum; | |
1035 | int stack_offset; | |
c5aa993b JM |
1036 | struct stack_arg |
1037 | { | |
c906108c SS |
1038 | char *val; |
1039 | int len; | |
1040 | int offset; | |
1041 | }; | |
1042 | struct stack_arg *stack_args = | |
c5aa993b | 1043 | (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg)); |
c906108c SS |
1044 | int nstack_args = 0; |
1045 | ||
1046 | ||
1047 | /* Initialize the integer and float register pointers. */ | |
1048 | argreg = A1_REGNUM; | |
1049 | float_argreg = F0_REGNUM; | |
1050 | ||
1051 | /* the struct_return pointer occupies the first parameter-passing reg */ | |
1052 | if (struct_return) | |
c5aa993b | 1053 | write_register (argreg++, struct_addr); |
c906108c SS |
1054 | |
1055 | /* The offset onto the stack at which we will start copying parameters | |
1056 | (after the registers are used up) begins at 16 in the old ABI. | |
1057 | This leaves room for the "home" area for register parameters. */ | |
1058 | stack_offset = REGISTER_SIZE * 4; | |
1059 | ||
1060 | /* Process args from left to right. Store as many as allowed in | |
c5aa993b JM |
1061 | registers, save the rest to be pushed on the stack */ |
1062 | for (argnum = 0; argnum < nargs; argnum++) | |
c906108c | 1063 | { |
c5aa993b JM |
1064 | char *val; |
1065 | value_ptr arg = args[argnum]; | |
1066 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1067 | struct type *target_type = TYPE_TARGET_TYPE (arg_type); | |
1068 | int len = TYPE_LENGTH (arg_type); | |
c906108c | 1069 | enum type_code typecode = TYPE_CODE (arg_type); |
c5aa993b | 1070 | CORE_ADDR regval; |
c906108c SS |
1071 | int newarg; |
1072 | ||
1073 | val = (char *) VALUE_CONTENTS (arg); | |
1074 | ||
1075 | /* If the argument is a pointer to a function, and it's a Thumb | |
1076 | function, set the low bit of the pointer. */ | |
1077 | if (typecode == TYPE_CODE_PTR | |
1078 | && target_type != NULL | |
1079 | && TYPE_CODE (target_type) == TYPE_CODE_FUNC) | |
1080 | { | |
1081 | regval = extract_address (val, len); | |
1082 | if (arm_pc_is_thumb (regval)) | |
1083 | store_address (val, len, MAKE_THUMB_ADDR (regval)); | |
1084 | } | |
1085 | ||
c5aa993b | 1086 | #define MAPCS_FLOAT 0 /* --mapcs-float not implemented by the compiler yet */ |
c906108c SS |
1087 | #if MAPCS_FLOAT |
1088 | /* Up to four floating point arguments can be passed in floating | |
1089 | point registers on ARM (not on Thumb). */ | |
1090 | if (typecode == TYPE_CODE_FLT | |
1091 | && float_argreg <= ARM_LAST_FP_ARG_REGNUM | |
1092 | && !target_is_thumb) | |
1093 | { | |
1094 | /* This is a floating point value that fits entirely | |
1095 | in a single register. */ | |
1096 | regval = extract_address (val, len); | |
1097 | write_register (float_argreg++, regval); | |
1098 | } | |
1099 | else | |
1100 | #endif | |
1101 | { | |
1102 | /* Copy the argument to general registers or the stack in | |
1103 | register-sized pieces. Large arguments are split between | |
1104 | registers and stack. */ | |
1105 | while (len > 0) | |
1106 | { | |
1107 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
1108 | { | |
c5aa993b | 1109 | int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; |
c906108c SS |
1110 | regval = extract_address (val, partial_len); |
1111 | ||
1112 | /* It's a simple argument being passed in a general | |
1113 | register. */ | |
1114 | write_register (argreg, regval); | |
1115 | argreg++; | |
c5aa993b JM |
1116 | len -= partial_len; |
1117 | val += partial_len; | |
c906108c SS |
1118 | } |
1119 | else | |
1120 | { | |
1121 | /* keep for later pushing */ | |
1122 | stack_args[nstack_args].val = val; | |
1123 | stack_args[nstack_args++].len = len; | |
1124 | break; | |
1125 | } | |
1126 | } | |
1127 | } | |
1128 | } | |
c5aa993b JM |
1129 | /* now do the real stack pushing, process args right to left */ |
1130 | while (nstack_args--) | |
1131 | { | |
1132 | sp -= stack_args[nstack_args].len; | |
1133 | write_memory (sp, stack_args[nstack_args].val, | |
1134 | stack_args[nstack_args].len); | |
1135 | } | |
c906108c SS |
1136 | |
1137 | /* Return adjusted stack pointer. */ | |
1138 | return sp; | |
1139 | } | |
1140 | ||
1141 | void | |
1142 | arm_pop_frame () | |
1143 | { | |
c5aa993b | 1144 | struct frame_info *frame = get_current_frame (); |
c906108c | 1145 | int regnum; |
7a292a7a | 1146 | CORE_ADDR old_SP; |
c906108c | 1147 | |
7a292a7a | 1148 | old_SP = read_register (frame->framereg); |
c906108c SS |
1149 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
1150 | if (frame->fsr.regs[regnum] != 0) | |
c5aa993b | 1151 | write_register (regnum, |
c906108c SS |
1152 | read_memory_integer (frame->fsr.regs[regnum], 4)); |
1153 | ||
1154 | write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); | |
7a292a7a | 1155 | write_register (SP_REGNUM, old_SP); |
c906108c SS |
1156 | |
1157 | flush_cached_frames (); | |
1158 | } | |
1159 | ||
1160 | static void | |
1161 | print_fpu_flags (flags) | |
1162 | int flags; | |
1163 | { | |
c5aa993b JM |
1164 | if (flags & (1 << 0)) |
1165 | fputs ("IVO ", stdout); | |
1166 | if (flags & (1 << 1)) | |
1167 | fputs ("DVZ ", stdout); | |
1168 | if (flags & (1 << 2)) | |
1169 | fputs ("OFL ", stdout); | |
1170 | if (flags & (1 << 3)) | |
1171 | fputs ("UFL ", stdout); | |
1172 | if (flags & (1 << 4)) | |
1173 | fputs ("INX ", stdout); | |
1174 | putchar ('\n'); | |
c906108c SS |
1175 | } |
1176 | ||
1177 | void | |
1178 | arm_float_info () | |
1179 | { | |
c5aa993b JM |
1180 | register unsigned long status = read_register (FPS_REGNUM); |
1181 | int type; | |
1182 | ||
1183 | type = (status >> 24) & 127; | |
1184 | printf ("%s FPU type %d\n", | |
96baa820 | 1185 | (status & (1<<31)) ? "Hardware" : "Software", |
c5aa993b JM |
1186 | type); |
1187 | fputs ("mask: ", stdout); | |
1188 | print_fpu_flags (status >> 16); | |
1189 | fputs ("flags: ", stdout); | |
1190 | print_fpu_flags (status); | |
c906108c SS |
1191 | } |
1192 | ||
96baa820 JM |
1193 | /* If the disassembly mode is APCS, we have to also switch the |
1194 | bfd mach_type. This function is run in the set disassembly_flavor | |
1195 | command, and does that. */ | |
1196 | ||
c906108c | 1197 | static void |
96baa820 JM |
1198 | set_disassembly_flavor_sfunc (args, from_tty, c) |
1199 | char *args; | |
1200 | int from_tty; | |
1201 | struct cmd_list_element *c; | |
c906108c | 1202 | { |
96baa820 JM |
1203 | set_disassembly_flavor (); |
1204 | ||
1205 | if (disassembly_flavor_hook != NULL) | |
1206 | disassembly_flavor_hook(args, from_tty); | |
1207 | } | |
085dd6e6 | 1208 | |
96baa820 JM |
1209 | static void |
1210 | set_disassembly_flavor () | |
1211 | { | |
1212 | if (disassembly_flavor == apcs_flavor) | |
c5aa993b | 1213 | { |
96baa820 JM |
1214 | if (arm_toggle_regnames () == 0) |
1215 | arm_toggle_regnames (); | |
1216 | arm_register_names = apcs_register_names; | |
1217 | } | |
1218 | else if (disassembly_flavor == r_prefix_flavor) | |
1219 | { | |
1220 | if (arm_toggle_regnames () == 1) | |
1221 | arm_toggle_regnames (); | |
1222 | arm_register_names = additional_register_names; | |
1223 | } | |
1224 | } | |
1225 | ||
1226 | /* arm_othernames implements the "othernames" command. This is kind of | |
1227 | hacky, and I prefer the set-show disassembly-flavor which is also used | |
1228 | for the x86 gdb. I will keep this around, however, in case anyone is | |
1229 | actually using it. */ | |
1230 | ||
1231 | static void | |
1232 | arm_othernames () | |
1233 | { | |
1234 | if (disassembly_flavor == r_prefix_flavor) | |
1235 | { | |
1236 | disassembly_flavor = apcs_flavor; | |
1237 | set_disassembly_flavor (); | |
c5aa993b JM |
1238 | } |
1239 | else | |
1240 | { | |
96baa820 JM |
1241 | disassembly_flavor = r_prefix_flavor; |
1242 | set_disassembly_flavor (); | |
c5aa993b | 1243 | } |
c906108c SS |
1244 | } |
1245 | ||
1246 | /* FIXME: Fill in with the 'right thing', see asm | |
1247 | template in arm-convert.s */ | |
1248 | ||
c5aa993b | 1249 | void |
c906108c | 1250 | convert_from_extended (ptr, dbl) |
c5aa993b JM |
1251 | void *ptr; |
1252 | double *dbl; | |
c906108c | 1253 | { |
c5aa993b | 1254 | *dbl = *(double *) ptr; |
c906108c SS |
1255 | } |
1256 | ||
c5aa993b | 1257 | void |
c906108c | 1258 | convert_to_extended (dbl, ptr) |
c5aa993b JM |
1259 | void *ptr; |
1260 | double *dbl; | |
c906108c | 1261 | { |
c5aa993b | 1262 | *(double *) ptr = *dbl; |
c906108c SS |
1263 | } |
1264 | ||
1265 | static int | |
1266 | condition_true (cond, status_reg) | |
1267 | unsigned long cond; | |
1268 | unsigned long status_reg; | |
1269 | { | |
1270 | if (cond == INST_AL || cond == INST_NV) | |
1271 | return 1; | |
1272 | ||
1273 | switch (cond) | |
1274 | { | |
1275 | case INST_EQ: | |
1276 | return ((status_reg & FLAG_Z) != 0); | |
1277 | case INST_NE: | |
1278 | return ((status_reg & FLAG_Z) == 0); | |
1279 | case INST_CS: | |
1280 | return ((status_reg & FLAG_C) != 0); | |
1281 | case INST_CC: | |
1282 | return ((status_reg & FLAG_C) == 0); | |
1283 | case INST_MI: | |
1284 | return ((status_reg & FLAG_N) != 0); | |
1285 | case INST_PL: | |
1286 | return ((status_reg & FLAG_N) == 0); | |
1287 | case INST_VS: | |
1288 | return ((status_reg & FLAG_V) != 0); | |
1289 | case INST_VC: | |
1290 | return ((status_reg & FLAG_V) == 0); | |
1291 | case INST_HI: | |
1292 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
1293 | case INST_LS: | |
1294 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
1295 | case INST_GE: | |
1296 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
1297 | case INST_LT: | |
1298 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
1299 | case INST_GT: | |
1300 | return (((status_reg & FLAG_Z) == 0) && | |
c5aa993b | 1301 | (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1302 | case INST_LE: |
1303 | return (((status_reg & FLAG_Z) != 0) || | |
c5aa993b | 1304 | (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1305 | } |
1306 | return 1; | |
1307 | } | |
1308 | ||
1309 | #define submask(x) ((1L << ((x) + 1)) - 1) | |
1310 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
1311 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
1312 | #define sbits(obj,st,fn) \ | |
1313 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
1314 | #define BranchDest(addr,instr) \ | |
1315 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
1316 | #define ARM_PC_32 1 | |
1317 | ||
1318 | static unsigned long | |
1319 | shifted_reg_val (inst, carry, pc_val, status_reg) | |
1320 | unsigned long inst; | |
1321 | int carry; | |
1322 | unsigned long pc_val; | |
1323 | unsigned long status_reg; | |
1324 | { | |
1325 | unsigned long res, shift; | |
1326 | int rm = bits (inst, 0, 3); | |
1327 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
1328 | |
1329 | if (bit (inst, 4)) | |
c906108c SS |
1330 | { |
1331 | int rs = bits (inst, 8, 11); | |
1332 | shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; | |
1333 | } | |
1334 | else | |
1335 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
1336 | |
1337 | res = (rm == 15 | |
c906108c | 1338 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
c5aa993b | 1339 | + (bit (inst, 4) ? 12 : 8)) |
c906108c SS |
1340 | : read_register (rm)); |
1341 | ||
1342 | switch (shifttype) | |
1343 | { | |
c5aa993b | 1344 | case 0: /* LSL */ |
c906108c SS |
1345 | res = shift >= 32 ? 0 : res << shift; |
1346 | break; | |
c5aa993b JM |
1347 | |
1348 | case 1: /* LSR */ | |
c906108c SS |
1349 | res = shift >= 32 ? 0 : res >> shift; |
1350 | break; | |
1351 | ||
c5aa993b JM |
1352 | case 2: /* ASR */ |
1353 | if (shift >= 32) | |
1354 | shift = 31; | |
c906108c SS |
1355 | res = ((res & 0x80000000L) |
1356 | ? ~((~res) >> shift) : res >> shift); | |
1357 | break; | |
1358 | ||
c5aa993b | 1359 | case 3: /* ROR/RRX */ |
c906108c SS |
1360 | shift &= 31; |
1361 | if (shift == 0) | |
1362 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
1363 | else | |
c5aa993b | 1364 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
1365 | break; |
1366 | } | |
1367 | ||
1368 | return res & 0xffffffff; | |
1369 | } | |
1370 | ||
1371 | ||
1372 | /* Return number of 1-bits in VAL. */ | |
1373 | ||
1374 | static int | |
1375 | bitcount (val) | |
1376 | unsigned long val; | |
1377 | { | |
1378 | int nbits; | |
1379 | for (nbits = 0; val != 0; nbits++) | |
c5aa993b | 1380 | val &= val - 1; /* delete rightmost 1-bit in val */ |
c906108c SS |
1381 | return nbits; |
1382 | } | |
1383 | ||
1384 | ||
1385 | static CORE_ADDR | |
1386 | thumb_get_next_pc (pc) | |
1387 | CORE_ADDR pc; | |
1388 | { | |
c5aa993b | 1389 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
c906108c | 1390 | unsigned short inst1 = read_memory_integer (pc, 2); |
c5aa993b | 1391 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ |
c906108c SS |
1392 | unsigned long offset; |
1393 | ||
1394 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
1395 | { | |
1396 | CORE_ADDR sp; | |
1397 | ||
1398 | /* Fetch the saved PC from the stack. It's stored above | |
1399 | all of the other registers. */ | |
1400 | offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE; | |
1401 | sp = read_register (SP_REGNUM); | |
1402 | nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4); | |
1403 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1404 | if (nextpc == pc) | |
1405 | error ("Infinite loop detected"); | |
1406 | } | |
1407 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
1408 | { | |
1409 | unsigned long status = read_register (PS_REGNUM); | |
c5aa993b | 1410 | unsigned long cond = bits (inst1, 8, 11); |
c906108c SS |
1411 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ |
1412 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); | |
1413 | } | |
1414 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
1415 | { | |
1416 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
1417 | } | |
1418 | else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */ | |
1419 | { | |
1420 | unsigned short inst2 = read_memory_integer (pc + 2, 2); | |
c5aa993b | 1421 | offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); |
c906108c SS |
1422 | nextpc = pc_val + offset; |
1423 | } | |
1424 | ||
1425 | return nextpc; | |
1426 | } | |
1427 | ||
1428 | ||
1429 | CORE_ADDR | |
1430 | arm_get_next_pc (pc) | |
1431 | CORE_ADDR pc; | |
1432 | { | |
1433 | unsigned long pc_val; | |
1434 | unsigned long this_instr; | |
1435 | unsigned long status; | |
1436 | CORE_ADDR nextpc; | |
1437 | ||
1438 | if (arm_pc_is_thumb (pc)) | |
1439 | return thumb_get_next_pc (pc); | |
1440 | ||
1441 | pc_val = (unsigned long) pc; | |
1442 | this_instr = read_memory_integer (pc, 4); | |
1443 | status = read_register (PS_REGNUM); | |
c5aa993b | 1444 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c SS |
1445 | |
1446 | if (condition_true (bits (this_instr, 28, 31), status)) | |
1447 | { | |
1448 | switch (bits (this_instr, 24, 27)) | |
1449 | { | |
c5aa993b JM |
1450 | case 0x0: |
1451 | case 0x1: /* data processing */ | |
1452 | case 0x2: | |
1453 | case 0x3: | |
c906108c SS |
1454 | { |
1455 | unsigned long operand1, operand2, result = 0; | |
1456 | unsigned long rn; | |
1457 | int c; | |
c5aa993b | 1458 | |
c906108c SS |
1459 | if (bits (this_instr, 12, 15) != 15) |
1460 | break; | |
1461 | ||
1462 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 1463 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
c906108c SS |
1464 | error ("Illegal update to pc in instruction"); |
1465 | ||
1466 | /* Multiply into PC */ | |
1467 | c = (status & FLAG_C) ? 1 : 0; | |
1468 | rn = bits (this_instr, 16, 19); | |
1469 | operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); | |
c5aa993b | 1470 | |
c906108c SS |
1471 | if (bit (this_instr, 25)) |
1472 | { | |
1473 | unsigned long immval = bits (this_instr, 0, 7); | |
1474 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
1475 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
1476 | & 0xffffffff; | |
c906108c | 1477 | } |
c5aa993b | 1478 | else /* operand 2 is a shifted register */ |
c906108c | 1479 | operand2 = shifted_reg_val (this_instr, c, pc_val, status); |
c5aa993b | 1480 | |
c906108c SS |
1481 | switch (bits (this_instr, 21, 24)) |
1482 | { | |
c5aa993b | 1483 | case 0x0: /*and */ |
c906108c SS |
1484 | result = operand1 & operand2; |
1485 | break; | |
1486 | ||
c5aa993b | 1487 | case 0x1: /*eor */ |
c906108c SS |
1488 | result = operand1 ^ operand2; |
1489 | break; | |
1490 | ||
c5aa993b | 1491 | case 0x2: /*sub */ |
c906108c SS |
1492 | result = operand1 - operand2; |
1493 | break; | |
1494 | ||
c5aa993b | 1495 | case 0x3: /*rsb */ |
c906108c SS |
1496 | result = operand2 - operand1; |
1497 | break; | |
1498 | ||
c5aa993b | 1499 | case 0x4: /*add */ |
c906108c SS |
1500 | result = operand1 + operand2; |
1501 | break; | |
1502 | ||
c5aa993b | 1503 | case 0x5: /*adc */ |
c906108c SS |
1504 | result = operand1 + operand2 + c; |
1505 | break; | |
1506 | ||
c5aa993b | 1507 | case 0x6: /*sbc */ |
c906108c SS |
1508 | result = operand1 - operand2 + c; |
1509 | break; | |
1510 | ||
c5aa993b | 1511 | case 0x7: /*rsc */ |
c906108c SS |
1512 | result = operand2 - operand1 + c; |
1513 | break; | |
1514 | ||
c5aa993b JM |
1515 | case 0x8: |
1516 | case 0x9: | |
1517 | case 0xa: | |
1518 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
1519 | result = (unsigned long) nextpc; |
1520 | break; | |
1521 | ||
c5aa993b | 1522 | case 0xc: /*orr */ |
c906108c SS |
1523 | result = operand1 | operand2; |
1524 | break; | |
1525 | ||
c5aa993b | 1526 | case 0xd: /*mov */ |
c906108c SS |
1527 | /* Always step into a function. */ |
1528 | result = operand2; | |
c5aa993b | 1529 | break; |
c906108c | 1530 | |
c5aa993b | 1531 | case 0xe: /*bic */ |
c906108c SS |
1532 | result = operand1 & ~operand2; |
1533 | break; | |
1534 | ||
c5aa993b | 1535 | case 0xf: /*mvn */ |
c906108c SS |
1536 | result = ~operand2; |
1537 | break; | |
1538 | } | |
1539 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1540 | ||
1541 | if (nextpc == pc) | |
1542 | error ("Infinite loop detected"); | |
1543 | break; | |
1544 | } | |
c5aa993b JM |
1545 | |
1546 | case 0x4: | |
1547 | case 0x5: /* data transfer */ | |
1548 | case 0x6: | |
1549 | case 0x7: | |
c906108c SS |
1550 | if (bit (this_instr, 20)) |
1551 | { | |
1552 | /* load */ | |
1553 | if (bits (this_instr, 12, 15) == 15) | |
1554 | { | |
1555 | /* rd == pc */ | |
c5aa993b | 1556 | unsigned long rn; |
c906108c | 1557 | unsigned long base; |
c5aa993b | 1558 | |
c906108c SS |
1559 | if (bit (this_instr, 22)) |
1560 | error ("Illegal update to pc in instruction"); | |
1561 | ||
1562 | /* byte write to PC */ | |
1563 | rn = bits (this_instr, 16, 19); | |
1564 | base = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1565 | if (bit (this_instr, 24)) | |
1566 | { | |
1567 | /* pre-indexed */ | |
1568 | int c = (status & FLAG_C) ? 1 : 0; | |
1569 | unsigned long offset = | |
c5aa993b JM |
1570 | (bit (this_instr, 25) |
1571 | ? shifted_reg_val (this_instr, c, pc_val) | |
1572 | : bits (this_instr, 0, 11)); | |
c906108c SS |
1573 | |
1574 | if (bit (this_instr, 23)) | |
1575 | base += offset; | |
1576 | else | |
1577 | base -= offset; | |
1578 | } | |
c5aa993b | 1579 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
c906108c | 1580 | 4); |
c5aa993b | 1581 | |
c906108c SS |
1582 | nextpc = ADDR_BITS_REMOVE (nextpc); |
1583 | ||
1584 | if (nextpc == pc) | |
1585 | error ("Infinite loop detected"); | |
1586 | } | |
1587 | } | |
1588 | break; | |
c5aa993b JM |
1589 | |
1590 | case 0x8: | |
1591 | case 0x9: /* block transfer */ | |
c906108c SS |
1592 | if (bit (this_instr, 20)) |
1593 | { | |
1594 | /* LDM */ | |
1595 | if (bit (this_instr, 15)) | |
1596 | { | |
1597 | /* loading pc */ | |
1598 | int offset = 0; | |
1599 | ||
1600 | if (bit (this_instr, 23)) | |
1601 | { | |
1602 | /* up */ | |
1603 | unsigned long reglist = bits (this_instr, 0, 14); | |
1604 | offset = bitcount (reglist) * 4; | |
c5aa993b | 1605 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
1606 | offset += 4; |
1607 | } | |
1608 | else if (bit (this_instr, 24)) | |
1609 | offset = -4; | |
c5aa993b | 1610 | |
c906108c | 1611 | { |
c5aa993b JM |
1612 | unsigned long rn_val = |
1613 | read_register (bits (this_instr, 16, 19)); | |
c906108c SS |
1614 | nextpc = |
1615 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 1616 | + offset), |
c906108c SS |
1617 | 4); |
1618 | } | |
1619 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1620 | if (nextpc == pc) | |
1621 | error ("Infinite loop detected"); | |
1622 | } | |
1623 | } | |
1624 | break; | |
c5aa993b JM |
1625 | |
1626 | case 0xb: /* branch & link */ | |
1627 | case 0xa: /* branch */ | |
c906108c SS |
1628 | { |
1629 | nextpc = BranchDest (pc, this_instr); | |
1630 | ||
1631 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1632 | if (nextpc == pc) | |
1633 | error ("Infinite loop detected"); | |
1634 | break; | |
1635 | } | |
c5aa993b JM |
1636 | |
1637 | case 0xc: | |
1638 | case 0xd: | |
1639 | case 0xe: /* coproc ops */ | |
1640 | case 0xf: /* SWI */ | |
c906108c SS |
1641 | break; |
1642 | ||
1643 | default: | |
1644 | fprintf (stderr, "Bad bit-field extraction\n"); | |
1645 | return (pc); | |
1646 | } | |
1647 | } | |
1648 | ||
1649 | return nextpc; | |
1650 | } | |
1651 | ||
1652 | #include "bfd-in2.h" | |
1653 | #include "libcoff.h" | |
1654 | ||
1655 | static int | |
1656 | gdb_print_insn_arm (memaddr, info) | |
1657 | bfd_vma memaddr; | |
c5aa993b | 1658 | disassemble_info *info; |
c906108c SS |
1659 | { |
1660 | if (arm_pc_is_thumb (memaddr)) | |
1661 | { | |
c5aa993b JM |
1662 | static asymbol *asym; |
1663 | static combined_entry_type ce; | |
1664 | static struct coff_symbol_struct csym; | |
1665 | static struct _bfd fake_bfd; | |
1666 | static bfd_target fake_target; | |
c906108c SS |
1667 | |
1668 | if (csym.native == NULL) | |
1669 | { | |
1670 | /* Create a fake symbol vector containing a Thumb symbol. This is | |
1671 | solely so that the code in print_insn_little_arm() and | |
1672 | print_insn_big_arm() in opcodes/arm-dis.c will detect the presence | |
1673 | of a Thumb symbol and switch to decoding Thumb instructions. */ | |
c5aa993b JM |
1674 | |
1675 | fake_target.flavour = bfd_target_coff_flavour; | |
1676 | fake_bfd.xvec = &fake_target; | |
c906108c | 1677 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; |
c5aa993b JM |
1678 | csym.native = &ce; |
1679 | csym.symbol.the_bfd = &fake_bfd; | |
1680 | csym.symbol.name = "fake"; | |
1681 | asym = (asymbol *) & csym; | |
c906108c | 1682 | } |
c5aa993b | 1683 | |
c906108c | 1684 | memaddr = UNMAKE_THUMB_ADDR (memaddr); |
c5aa993b | 1685 | info->symbols = &asym; |
c906108c SS |
1686 | } |
1687 | else | |
1688 | info->symbols = NULL; | |
c5aa993b | 1689 | |
c906108c SS |
1690 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
1691 | return print_insn_big_arm (memaddr, info); | |
1692 | else | |
1693 | return print_insn_little_arm (memaddr, info); | |
1694 | } | |
1695 | ||
1696 | /* Sequence of bytes for breakpoint instruction. */ | |
c5aa993b JM |
1697 | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} /* Recognized illegal opcodes */ |
1698 | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | |
1699 | #define THUMB_LE_BREAKPOINT {0xfe,0xdf} | |
1700 | #define THUMB_BE_BREAKPOINT {0xdf,0xfe} | |
c906108c SS |
1701 | |
1702 | /* The following has been superseded by BREAKPOINT_FOR_PC, but | |
1703 | is defined merely to keep mem-break.c happy. */ | |
1704 | #define LITTLE_BREAKPOINT ARM_LE_BREAKPOINT | |
1705 | #define BIG_BREAKPOINT ARM_BE_BREAKPOINT | |
1706 | ||
1707 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program | |
1708 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
1709 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
1710 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
1711 | (if necessary) to point to the actual memory location where the | |
1712 | breakpoint should be inserted. */ | |
1713 | ||
1714 | unsigned char * | |
1715 | arm_breakpoint_from_pc (pcptr, lenptr) | |
c5aa993b JM |
1716 | CORE_ADDR *pcptr; |
1717 | int *lenptr; | |
c906108c SS |
1718 | { |
1719 | if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr)) | |
1720 | { | |
1721 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b JM |
1722 | { |
1723 | static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT; | |
1724 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
1725 | *lenptr = sizeof (thumb_breakpoint); | |
1726 | return thumb_breakpoint; | |
1727 | } | |
c906108c | 1728 | else |
c5aa993b JM |
1729 | { |
1730 | static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT; | |
1731 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
1732 | *lenptr = sizeof (thumb_breakpoint); | |
1733 | return thumb_breakpoint; | |
1734 | } | |
c906108c SS |
1735 | } |
1736 | else | |
1737 | { | |
1738 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b JM |
1739 | { |
1740 | static char arm_breakpoint[] = ARM_BE_BREAKPOINT; | |
1741 | *lenptr = sizeof (arm_breakpoint); | |
1742 | return arm_breakpoint; | |
1743 | } | |
c906108c | 1744 | else |
c5aa993b JM |
1745 | { |
1746 | static char arm_breakpoint[] = ARM_LE_BREAKPOINT; | |
1747 | *lenptr = sizeof (arm_breakpoint); | |
1748 | return arm_breakpoint; | |
1749 | } | |
c906108c SS |
1750 | } |
1751 | } | |
1752 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
1753 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
1754 | ||
1755 | int | |
1756 | arm_in_call_stub (pc, name) | |
1757 | CORE_ADDR pc; | |
c5aa993b | 1758 | char *name; |
c906108c SS |
1759 | { |
1760 | CORE_ADDR start_addr; | |
1761 | ||
1762 | /* Find the starting address of the function containing the PC. If the | |
1763 | caller didn't give us a name, look it up at the same time. */ | |
1764 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) | |
1765 | return 0; | |
1766 | ||
1767 | return strncmp (name, "_call_via_r", 11) == 0; | |
1768 | } | |
1769 | ||
1770 | ||
1771 | /* If PC is in a Thumb call or return stub, return the address of the target | |
1772 | PC, which is in a register. The thunk functions are called _called_via_xx, | |
1773 | where x is the register name. The possible names are r0-r9, sl, fp, ip, | |
1774 | sp, and lr. */ | |
1775 | ||
1776 | CORE_ADDR | |
1777 | arm_skip_stub (pc) | |
1778 | CORE_ADDR pc; | |
1779 | { | |
c5aa993b | 1780 | char *name; |
c906108c SS |
1781 | CORE_ADDR start_addr; |
1782 | ||
1783 | /* Find the starting address and name of the function containing the PC. */ | |
1784 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
1785 | return 0; | |
1786 | ||
1787 | /* Call thunks always start with "_call_via_". */ | |
1788 | if (strncmp (name, "_call_via_", 10) == 0) | |
1789 | { | |
1790 | /* Use the name suffix to determine which register contains | |
1791 | the target PC. */ | |
c5aa993b JM |
1792 | static char *table[15] = |
1793 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
1794 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
1795 | }; | |
c906108c SS |
1796 | int regno; |
1797 | ||
1798 | for (regno = 0; regno <= 14; regno++) | |
1799 | if (strcmp (&name[10], table[regno]) == 0) | |
1800 | return read_register (regno); | |
1801 | } | |
c5aa993b | 1802 | return 0; /* not a stub */ |
c906108c SS |
1803 | } |
1804 | ||
1805 | ||
1806 | void | |
1807 | _initialize_arm_tdep () | |
1808 | { | |
96baa820 | 1809 | struct cmd_list_element *new_cmd; |
085dd6e6 | 1810 | |
c906108c | 1811 | tm_print_insn = gdb_print_insn_arm; |
96baa820 | 1812 | |
085dd6e6 | 1813 | /* Sync the opcode insn printer with our register viewer: */ |
c906108c | 1814 | |
96baa820 | 1815 | if (arm_toggle_regnames () != 1) |
085dd6e6 | 1816 | arm_toggle_regnames (); |
c5aa993b | 1817 | |
96baa820 JM |
1818 | /* Add the deprecated "othernames" command */ |
1819 | ||
c906108c SS |
1820 | add_com ("othernames", class_obscure, arm_othernames, |
1821 | "Switch to the other set of register names."); | |
1822 | ||
96baa820 JM |
1823 | /* Add the disassembly-flavor command */ |
1824 | ||
1825 | new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, | |
1826 | valid_flavors, | |
1827 | (char *) &disassembly_flavor, | |
1828 | "Set the disassembly flavor, \ | |
1829 | the valid values are \"apcs\" and \"r-prefix\", \ | |
1830 | and the default value is \"apcs\".", | |
1831 | &setlist); | |
1832 | new_cmd->function.sfunc = set_disassembly_flavor_sfunc; | |
1833 | add_show_from_set(new_cmd, &showlist); | |
1834 | ||
c906108c SS |
1835 | /* ??? Maybe this should be a boolean. */ |
1836 | add_show_from_set (add_set_cmd ("apcs32", no_class, | |
96baa820 JM |
1837 | var_zinteger, (char *)&arm_apcs_32, |
1838 | "Set usage of ARM 32-bit mode.\n", &setlist), | |
1839 | & showlist); | |
c906108c SS |
1840 | |
1841 | } | |
1842 | ||
1843 | /* Test whether the coff symbol specific value corresponds to a Thumb function */ | |
1844 | int | |
c5aa993b | 1845 | coff_sym_is_thumb (int val) |
c906108c | 1846 | { |
c5aa993b JM |
1847 | return (val == C_THUMBEXT || |
1848 | val == C_THUMBSTAT || | |
1849 | val == C_THUMBEXTFUNC || | |
1850 | val == C_THUMBSTATFUNC || | |
1851 | val == C_THUMBLABEL); | |
c906108c | 1852 | } |