]>
Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
b6ba6518 | 2 | Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000, |
c3b4394c | 3 | 2001, 2002 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "inferior.h" | |
25 | #include "gdbcmd.h" | |
26 | #include "gdbcore.h" | |
27 | #include "symfile.h" | |
28 | #include "gdb_string.h" | |
29 | #include "coff/internal.h" /* Internal format of COFF symbols in BFD */ | |
e8b09175 | 30 | #include "dis-asm.h" /* For register flavors. */ |
30f6df08 | 31 | #include <ctype.h> /* for isupper () */ |
4e052eda | 32 | #include "regcache.h" |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
a42dd537 | 35 | #include "solib-svr4.h" |
082fc60d RE |
36 | #include "elf-bfd.h" |
37 | #include "coff/internal.h" | |
c906108c | 38 | |
2a451106 KB |
39 | /* Each OS has a different mechanism for accessing the various |
40 | registers stored in the sigcontext structure. | |
41 | ||
42 | SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or | |
43 | function pointer) which may be used to determine the addresses | |
44 | of the various saved registers in the sigcontext structure. | |
45 | ||
46 | For the ARM target, there are three parameters to this function. | |
47 | The first is the pc value of the frame under consideration, the | |
48 | second the stack pointer of this frame, and the last is the | |
49 | register number to fetch. | |
50 | ||
51 | If the tm.h file does not define this macro, then it's assumed that | |
52 | no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to | |
53 | be 0. | |
54 | ||
55 | When it comes time to multi-arching this code, see the identically | |
56 | named machinery in ia64-tdep.c for an example of how it could be | |
57 | done. It should not be necessary to modify the code below where | |
58 | this macro is used. */ | |
59 | ||
3bb04bdd AC |
60 | #ifdef SIGCONTEXT_REGISTER_ADDRESS |
61 | #ifndef SIGCONTEXT_REGISTER_ADDRESS_P | |
62 | #define SIGCONTEXT_REGISTER_ADDRESS_P() 1 | |
63 | #endif | |
64 | #else | |
65 | #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0 | |
66 | #define SIGCONTEXT_REGISTER_ADDRESS_P() 0 | |
2a451106 KB |
67 | #endif |
68 | ||
082fc60d RE |
69 | /* Macros for setting and testing a bit in a minimal symbol that marks |
70 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
71 | is used for this purpose. This field is already being used to store | |
72 | the symbol size, so the assumption is that the symbol size cannot | |
73 | exceed 2^31. | |
74 | ||
75 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
76 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. | |
77 | MSYMBOL_SIZE Returns the size of the minimal symbol, | |
78 | i.e. the "info" field with the "special" bit | |
79 | masked out. */ | |
80 | ||
81 | #define MSYMBOL_SET_SPECIAL(msym) \ | |
82 | MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \ | |
83 | | 0x80000000) | |
84 | ||
85 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
86 | (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0) | |
87 | ||
88 | #define MSYMBOL_SIZE(msym) \ | |
89 | ((long) MSYMBOL_INFO (msym) & 0x7fffffff) | |
ed9a39eb | 90 | |
bc90b915 FN |
91 | /* Number of different reg name sets (options). */ |
92 | static int num_flavor_options; | |
93 | ||
94 | /* We have more registers than the disassembler as gdb can print the value | |
95 | of special registers as well. | |
96 | The general register names are overwritten by whatever is being used by | |
97 | the disassembler at the moment. We also adjust the case of cpsr and fps. */ | |
98 | ||
99 | /* Initial value: Register names used in ARM's ISA documentation. */ | |
100 | static char * arm_register_name_strings[] = | |
da59e081 JM |
101 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
102 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
103 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
104 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
105 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
106 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
bc90b915 | 107 | "fps", "cpsr" }; /* 24 25 */ |
966fbf70 | 108 | static char **arm_register_names = arm_register_name_strings; |
ed9a39eb | 109 | |
bc90b915 | 110 | /* Valid register name flavors. */ |
53904c9e | 111 | static const char **valid_flavors; |
ed9a39eb | 112 | |
bc90b915 | 113 | /* Disassembly flavor to use. Default to "std" register names. */ |
53904c9e | 114 | static const char *disassembly_flavor; |
bc90b915 | 115 | static int current_option; /* Index to that option in the opcodes table. */ |
96baa820 | 116 | |
ed9a39eb JM |
117 | /* This is used to keep the bfd arch_info in sync with the disassembly |
118 | flavor. */ | |
119 | static void set_disassembly_flavor_sfunc(char *, int, | |
120 | struct cmd_list_element *); | |
121 | static void set_disassembly_flavor (void); | |
122 | ||
123 | static void convert_from_extended (void *ptr, void *dbl); | |
124 | ||
125 | /* Define other aspects of the stack frame. We keep the offsets of | |
126 | all saved registers, 'cause we need 'em a lot! We also keep the | |
127 | current size of the stack frame, and the offset of the frame | |
128 | pointer from the stack pointer (for frameless functions, and when | |
129 | we're still in the prologue of a function with a frame) */ | |
130 | ||
131 | struct frame_extra_info | |
c3b4394c RE |
132 | { |
133 | int framesize; | |
134 | int frameoffset; | |
135 | int framereg; | |
136 | }; | |
ed9a39eb | 137 | |
bc90b915 FN |
138 | /* Addresses for calling Thumb functions have the bit 0 set. |
139 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
140 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
141 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
142 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
143 | ||
ed9a39eb JM |
144 | /* Will a function return an aggregate type in memory or in a |
145 | register? Return 0 if an aggregate type can be returned in a | |
146 | register, 1 if it must be returned in memory. */ | |
085dd6e6 | 147 | |
c906108c | 148 | int |
ed9a39eb | 149 | arm_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 150 | { |
ed9a39eb JM |
151 | int nRc; |
152 | register enum type_code code; | |
153 | ||
154 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
155 | registers. For an aggregate type to be integer like, its size | |
156 | must be less than or equal to REGISTER_SIZE and the offset of | |
157 | each addressable subfield must be zero. Note that bit fields are | |
158 | not addressable, and all addressable subfields of unions always | |
159 | start at offset zero. | |
160 | ||
161 | This function is based on the behaviour of GCC 2.95.1. | |
162 | See: gcc/arm.c: arm_return_in_memory() for details. | |
163 | ||
164 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
165 | parameters correctly for a function returning the following | |
166 | structure: struct { float f;}; This should be returned in memory, | |
167 | not a register. Richard Earnshaw sent me a patch, but I do not | |
168 | know of any way to detect if a function like the above has been | |
169 | compiled with the correct calling convention. */ | |
170 | ||
171 | /* All aggregate types that won't fit in a register must be returned | |
172 | in memory. */ | |
173 | if (TYPE_LENGTH (type) > REGISTER_SIZE) | |
174 | { | |
175 | return 1; | |
176 | } | |
177 | ||
178 | /* The only aggregate types that can be returned in a register are | |
179 | structs and unions. Arrays must be returned in memory. */ | |
180 | code = TYPE_CODE (type); | |
181 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
182 | { | |
183 | return 1; | |
184 | } | |
185 | ||
186 | /* Assume all other aggregate types can be returned in a register. | |
187 | Run a check for structures, unions and arrays. */ | |
188 | nRc = 0; | |
189 | ||
190 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
191 | { | |
192 | int i; | |
193 | /* Need to check if this struct/union is "integer" like. For | |
194 | this to be true, its size must be less than or equal to | |
195 | REGISTER_SIZE and the offset of each addressable subfield | |
196 | must be zero. Note that bit fields are not addressable, and | |
197 | unions always start at offset zero. If any of the subfields | |
198 | is a floating point type, the struct/union cannot be an | |
199 | integer type. */ | |
200 | ||
201 | /* For each field in the object, check: | |
202 | 1) Is it FP? --> yes, nRc = 1; | |
203 | 2) Is it addressable (bitpos != 0) and | |
204 | not packed (bitsize == 0)? | |
205 | --> yes, nRc = 1 | |
206 | */ | |
207 | ||
208 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
209 | { | |
210 | enum type_code field_type_code; | |
211 | field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i)); | |
212 | ||
213 | /* Is it a floating point type field? */ | |
214 | if (field_type_code == TYPE_CODE_FLT) | |
215 | { | |
216 | nRc = 1; | |
217 | break; | |
218 | } | |
219 | ||
220 | /* If bitpos != 0, then we have to care about it. */ | |
221 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
222 | { | |
223 | /* Bitfields are not addressable. If the field bitsize is | |
224 | zero, then the field is not packed. Hence it cannot be | |
225 | a bitfield or any other packed type. */ | |
226 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
227 | { | |
228 | nRc = 1; | |
229 | break; | |
230 | } | |
231 | } | |
232 | } | |
233 | } | |
234 | ||
235 | return nRc; | |
c906108c SS |
236 | } |
237 | ||
39bbf761 | 238 | static int |
ed9a39eb | 239 | arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c | 240 | { |
c906108c SS |
241 | return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC)); |
242 | } | |
243 | ||
244 | /* Set to true if the 32-bit mode is in use. */ | |
245 | ||
246 | int arm_apcs_32 = 1; | |
247 | ||
ed9a39eb JM |
248 | /* Flag set by arm_fix_call_dummy that tells whether the target |
249 | function is a Thumb function. This flag is checked by | |
250 | arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and | |
251 | its use in valops.c) to pass the function address as an additional | |
252 | parameter. */ | |
c906108c SS |
253 | |
254 | static int target_is_thumb; | |
255 | ||
ed9a39eb JM |
256 | /* Flag set by arm_fix_call_dummy that tells whether the calling |
257 | function is a Thumb function. This flag is checked by | |
258 | arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */ | |
c906108c SS |
259 | |
260 | static int caller_is_thumb; | |
261 | ||
ed9a39eb JM |
262 | /* Determine if the program counter specified in MEMADDR is in a Thumb |
263 | function. */ | |
c906108c | 264 | |
148754e5 | 265 | static int |
2a451106 | 266 | arm_pc_is_thumb (CORE_ADDR memaddr) |
c906108c | 267 | { |
c5aa993b | 268 | struct minimal_symbol *sym; |
c906108c | 269 | |
ed9a39eb | 270 | /* If bit 0 of the address is set, assume this is a Thumb address. */ |
c906108c SS |
271 | if (IS_THUMB_ADDR (memaddr)) |
272 | return 1; | |
273 | ||
ed9a39eb | 274 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
275 | sym = lookup_minimal_symbol_by_pc (memaddr); |
276 | if (sym) | |
277 | { | |
c5aa993b | 278 | return (MSYMBOL_IS_SPECIAL (sym)); |
c906108c SS |
279 | } |
280 | else | |
ed9a39eb JM |
281 | { |
282 | return 0; | |
283 | } | |
c906108c SS |
284 | } |
285 | ||
ed9a39eb JM |
286 | /* Determine if the program counter specified in MEMADDR is in a call |
287 | dummy being called from a Thumb function. */ | |
c906108c | 288 | |
148754e5 | 289 | static int |
2a451106 | 290 | arm_pc_is_thumb_dummy (CORE_ADDR memaddr) |
c906108c | 291 | { |
c5aa993b | 292 | CORE_ADDR sp = read_sp (); |
c906108c | 293 | |
dfcd3bfb JM |
294 | /* FIXME: Until we switch for the new call dummy macros, this heuristic |
295 | is the best we can do. We are trying to determine if the pc is on | |
296 | the stack, which (hopefully) will only happen in a call dummy. | |
297 | We hope the current stack pointer is not so far alway from the dummy | |
298 | frame location (true if we have not pushed large data structures or | |
299 | gone too many levels deep) and that our 1024 is not enough to consider | |
300 | code regions as part of the stack (true for most practical purposes) */ | |
301 | if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024)) | |
c906108c SS |
302 | return caller_is_thumb; |
303 | else | |
304 | return 0; | |
305 | } | |
306 | ||
181c1381 | 307 | /* Remove useless bits from addresses in a running program. */ |
c906108c | 308 | CORE_ADDR |
ed9a39eb | 309 | arm_addr_bits_remove (CORE_ADDR val) |
c906108c SS |
310 | { |
311 | if (arm_pc_is_thumb (val)) | |
312 | return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe)); | |
313 | else | |
314 | return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc)); | |
315 | } | |
316 | ||
181c1381 RE |
317 | /* When reading symbols, we need to zap the low bit of the address, |
318 | which may be set to 1 for Thumb functions. */ | |
319 | CORE_ADDR | |
320 | arm_smash_text_address (CORE_ADDR val) | |
321 | { | |
322 | return val & ~1; | |
323 | } | |
324 | ||
c906108c | 325 | CORE_ADDR |
ed9a39eb | 326 | arm_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
327 | { |
328 | return ADDR_BITS_REMOVE (read_register (LR_REGNUM)); | |
329 | } | |
330 | ||
0defa245 RE |
331 | /* Determine whether the function invocation represented by FI has a |
332 | frame on the stack associated with it. If it does return zero, | |
333 | otherwise return 1. */ | |
334 | ||
148754e5 | 335 | static int |
ed9a39eb | 336 | arm_frameless_function_invocation (struct frame_info *fi) |
392a587b | 337 | { |
392a587b | 338 | CORE_ADDR func_start, after_prologue; |
96baa820 | 339 | int frameless; |
ed9a39eb | 340 | |
0defa245 RE |
341 | /* Sometimes we have functions that do a little setup (like saving the |
342 | vN registers with the stmdb instruction, but DO NOT set up a frame. | |
343 | The symbol table will report this as a prologue. However, it is | |
344 | important not to try to parse these partial frames as frames, or we | |
345 | will get really confused. | |
346 | ||
347 | So I will demand 3 instructions between the start & end of the | |
348 | prologue before I call it a real prologue, i.e. at least | |
349 | mov ip, sp, | |
350 | stmdb sp!, {} | |
351 | sub sp, ip, #4. */ | |
352 | ||
392a587b | 353 | func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET); |
7be570e7 | 354 | after_prologue = SKIP_PROLOGUE (func_start); |
ed9a39eb | 355 | |
96baa820 | 356 | /* There are some frameless functions whose first two instructions |
ed9a39eb JM |
357 | follow the standard APCS form, in which case after_prologue will |
358 | be func_start + 8. */ | |
359 | ||
96baa820 | 360 | frameless = (after_prologue < func_start + 12); |
392a587b JM |
361 | return frameless; |
362 | } | |
363 | ||
0defa245 | 364 | /* The address of the arguments in the frame. */ |
148754e5 | 365 | static CORE_ADDR |
0defa245 RE |
366 | arm_frame_args_address (struct frame_info *fi) |
367 | { | |
368 | return fi->frame; | |
369 | } | |
370 | ||
371 | /* The address of the local variables in the frame. */ | |
148754e5 | 372 | static CORE_ADDR |
0defa245 RE |
373 | arm_frame_locals_address (struct frame_info *fi) |
374 | { | |
375 | return fi->frame; | |
376 | } | |
377 | ||
378 | /* The number of arguments being passed in the frame. */ | |
148754e5 | 379 | static int |
0defa245 RE |
380 | arm_frame_num_args (struct frame_info *fi) |
381 | { | |
382 | /* We have no way of knowing. */ | |
383 | return -1; | |
384 | } | |
385 | ||
c906108c | 386 | /* A typical Thumb prologue looks like this: |
c5aa993b JM |
387 | push {r7, lr} |
388 | add sp, sp, #-28 | |
389 | add r7, sp, #12 | |
c906108c | 390 | Sometimes the latter instruction may be replaced by: |
da59e081 JM |
391 | mov r7, sp |
392 | ||
393 | or like this: | |
394 | push {r7, lr} | |
395 | mov r7, sp | |
396 | sub sp, #12 | |
397 | ||
398 | or, on tpcs, like this: | |
399 | sub sp,#16 | |
400 | push {r7, lr} | |
401 | (many instructions) | |
402 | mov r7, sp | |
403 | sub sp, #12 | |
404 | ||
405 | There is always one instruction of three classes: | |
406 | 1 - push | |
407 | 2 - setting of r7 | |
408 | 3 - adjusting of sp | |
409 | ||
410 | When we have found at least one of each class we are done with the prolog. | |
411 | Note that the "sub sp, #NN" before the push does not count. | |
ed9a39eb | 412 | */ |
c906108c SS |
413 | |
414 | static CORE_ADDR | |
c7885828 | 415 | thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end) |
c906108c SS |
416 | { |
417 | CORE_ADDR current_pc; | |
da59e081 JM |
418 | int findmask = 0; /* findmask: |
419 | bit 0 - push { rlist } | |
420 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
421 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
422 | */ | |
c906108c | 423 | |
c7885828 | 424 | for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2) |
c906108c SS |
425 | { |
426 | unsigned short insn = read_memory_unsigned_integer (current_pc, 2); | |
427 | ||
da59e081 JM |
428 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
429 | { | |
430 | findmask |= 1; /* push found */ | |
431 | } | |
432 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ | |
433 | { | |
434 | if ((findmask & 1) == 0) /* before push ? */ | |
435 | continue; | |
436 | else | |
437 | findmask |= 4; /* add/sub sp found */ | |
438 | } | |
439 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
440 | { | |
441 | findmask |= 2; /* setting of r7 found */ | |
442 | } | |
443 | else if (insn == 0x466f) /* mov r7, sp */ | |
444 | { | |
445 | findmask |= 2; /* setting of r7 found */ | |
446 | } | |
3d74b771 FF |
447 | else if (findmask == (4+2+1)) |
448 | { | |
449 | break; /* We have found one of each type of prologue instruction */ | |
450 | } | |
da59e081 JM |
451 | else |
452 | continue; /* something in the prolog that we don't care about or some | |
453 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
454 | } |
455 | ||
456 | return current_pc; | |
457 | } | |
458 | ||
ed9a39eb JM |
459 | /* The APCS (ARM Procedure Call Standard) defines the following |
460 | prologue: | |
c906108c | 461 | |
c5aa993b JM |
462 | mov ip, sp |
463 | [stmfd sp!, {a1,a2,a3,a4}] | |
464 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
465 | [stfe f7, [sp, #-12]!] |
466 | [stfe f6, [sp, #-12]!] | |
467 | [stfe f5, [sp, #-12]!] | |
468 | [stfe f4, [sp, #-12]!] | |
469 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */ | |
c906108c SS |
470 | |
471 | CORE_ADDR | |
ed9a39eb | 472 | arm_skip_prologue (CORE_ADDR pc) |
c906108c SS |
473 | { |
474 | unsigned long inst; | |
475 | CORE_ADDR skip_pc; | |
476 | CORE_ADDR func_addr, func_end; | |
50f6fb4b | 477 | char *func_name; |
c906108c SS |
478 | struct symtab_and_line sal; |
479 | ||
96baa820 | 480 | /* See what the symbol table says. */ |
ed9a39eb | 481 | |
50f6fb4b | 482 | if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) |
c906108c | 483 | { |
50f6fb4b CV |
484 | struct symbol *sym; |
485 | ||
486 | /* Found a function. */ | |
487 | sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL); | |
488 | if (sym && SYMBOL_LANGUAGE (sym) != language_asm) | |
489 | { | |
490 | /* Don't use this trick for assembly source files. */ | |
491 | sal = find_pc_line (func_addr, 0); | |
492 | if ((sal.line != 0) && (sal.end < func_end)) | |
493 | return sal.end; | |
494 | } | |
c906108c SS |
495 | } |
496 | ||
497 | /* Check if this is Thumb code. */ | |
498 | if (arm_pc_is_thumb (pc)) | |
c7885828 | 499 | return thumb_skip_prologue (pc, func_end); |
c906108c SS |
500 | |
501 | /* Can't find the prologue end in the symbol table, try it the hard way | |
502 | by disassembling the instructions. */ | |
503 | skip_pc = pc; | |
504 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 505 | if (inst != 0xe1a0c00d) /* mov ip, sp */ |
c906108c SS |
506 | return pc; |
507 | ||
508 | skip_pc += 4; | |
509 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 510 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
c906108c SS |
511 | { |
512 | skip_pc += 4; | |
513 | inst = read_memory_integer (skip_pc, 4); | |
514 | } | |
515 | ||
c5aa993b | 516 | if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */ |
c906108c SS |
517 | return pc; |
518 | ||
519 | skip_pc += 4; | |
520 | inst = read_memory_integer (skip_pc, 4); | |
521 | ||
522 | /* Any insns after this point may float into the code, if it makes | |
ed9a39eb JM |
523 | for better instruction scheduling, so we skip them only if we |
524 | find them, but still consdier the function to be frame-ful. */ | |
c906108c | 525 | |
ed9a39eb JM |
526 | /* We may have either one sfmfd instruction here, or several stfe |
527 | insns, depending on the version of floating point code we | |
528 | support. */ | |
c5aa993b | 529 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ |
c906108c SS |
530 | { |
531 | skip_pc += 4; | |
532 | inst = read_memory_integer (skip_pc, 4); | |
533 | } | |
534 | else | |
535 | { | |
c5aa993b JM |
536 | while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ |
537 | { | |
538 | skip_pc += 4; | |
539 | inst = read_memory_integer (skip_pc, 4); | |
540 | } | |
c906108c SS |
541 | } |
542 | ||
c5aa993b | 543 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ |
c906108c SS |
544 | skip_pc += 4; |
545 | ||
546 | return skip_pc; | |
547 | } | |
c5aa993b | 548 | /* *INDENT-OFF* */ |
c906108c SS |
549 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
550 | This function decodes a Thumb function prologue to determine: | |
551 | 1) the size of the stack frame | |
552 | 2) which registers are saved on it | |
553 | 3) the offsets of saved regs | |
554 | 4) the offset from the stack pointer to the frame pointer | |
555 | This information is stored in the "extra" fields of the frame_info. | |
556 | ||
da59e081 JM |
557 | A typical Thumb function prologue would create this stack frame |
558 | (offsets relative to FP) | |
c906108c SS |
559 | old SP -> 24 stack parameters |
560 | 20 LR | |
561 | 16 R7 | |
562 | R7 -> 0 local variables (16 bytes) | |
563 | SP -> -12 additional stack space (12 bytes) | |
564 | The frame size would thus be 36 bytes, and the frame offset would be | |
da59e081 JM |
565 | 12 bytes. The frame register is R7. |
566 | ||
567 | The comments for thumb_skip_prolog() describe the algorithm we use to detect | |
568 | the end of the prolog */ | |
c5aa993b JM |
569 | /* *INDENT-ON* */ |
570 | ||
c906108c | 571 | static void |
ed9a39eb | 572 | thumb_scan_prologue (struct frame_info *fi) |
c906108c SS |
573 | { |
574 | CORE_ADDR prologue_start; | |
575 | CORE_ADDR prologue_end; | |
576 | CORE_ADDR current_pc; | |
c5aa993b | 577 | int saved_reg[16]; /* which register has been copied to register n? */ |
da59e081 JM |
578 | int findmask = 0; /* findmask: |
579 | bit 0 - push { rlist } | |
580 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
581 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
582 | */ | |
c5aa993b | 583 | int i; |
c906108c | 584 | |
c5aa993b | 585 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) |
c906108c SS |
586 | { |
587 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
588 | ||
c5aa993b | 589 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
590 | prologue_end = fi->pc; |
591 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 592 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
593 | } |
594 | else | |
c5aa993b JM |
595 | prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */ |
596 | /* 16 pushes, an add, and "mv fp,sp" */ | |
c906108c SS |
597 | |
598 | prologue_end = min (prologue_end, fi->pc); | |
599 | ||
600 | /* Initialize the saved register map. When register H is copied to | |
601 | register L, we will put H in saved_reg[L]. */ | |
602 | for (i = 0; i < 16; i++) | |
603 | saved_reg[i] = i; | |
604 | ||
605 | /* Search the prologue looking for instructions that set up the | |
da59e081 JM |
606 | frame pointer, adjust the stack pointer, and save registers. |
607 | Do this until all basic prolog instructions are found. */ | |
c906108c | 608 | |
c3b4394c | 609 | fi->extra_info->framesize = 0; |
da59e081 JM |
610 | for (current_pc = prologue_start; |
611 | (current_pc < prologue_end) && ((findmask & 7) != 7); | |
612 | current_pc += 2) | |
c906108c SS |
613 | { |
614 | unsigned short insn; | |
615 | int regno; | |
616 | int offset; | |
617 | ||
618 | insn = read_memory_unsigned_integer (current_pc, 2); | |
619 | ||
c5aa993b | 620 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
c906108c | 621 | { |
da59e081 JM |
622 | int mask; |
623 | findmask |= 1; /* push found */ | |
c906108c SS |
624 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says |
625 | whether to save LR (R14). */ | |
da59e081 | 626 | mask = (insn & 0xff) | ((insn & 0x100) << 6); |
c906108c SS |
627 | |
628 | /* Calculate offsets of saved R0-R7 and LR. */ | |
629 | for (regno = LR_REGNUM; regno >= 0; regno--) | |
630 | if (mask & (1 << regno)) | |
c5aa993b | 631 | { |
c3b4394c RE |
632 | fi->extra_info->framesize += 4; |
633 | fi->saved_regs[saved_reg[regno]] = | |
634 | -(fi->extra_info->framesize); | |
c906108c SS |
635 | saved_reg[regno] = regno; /* reset saved register map */ |
636 | } | |
637 | } | |
da59e081 | 638 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ |
c906108c | 639 | { |
da59e081 JM |
640 | if ((findmask & 1) == 0) /* before push ? */ |
641 | continue; | |
642 | else | |
643 | findmask |= 4; /* add/sub sp found */ | |
644 | ||
c5aa993b | 645 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
da59e081 JM |
646 | if (insn & 0x80) /* is it signed? (==subtracting) */ |
647 | { | |
c3b4394c | 648 | fi->extra_info->frameoffset += offset; |
da59e081 JM |
649 | offset = -offset; |
650 | } | |
c3b4394c | 651 | fi->extra_info->framesize -= offset; |
c906108c SS |
652 | } |
653 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
654 | { | |
da59e081 | 655 | findmask |= 2; /* setting of r7 found */ |
c3b4394c RE |
656 | fi->extra_info->framereg = THUMB_FP_REGNUM; |
657 | /* get scaled offset */ | |
658 | fi->extra_info->frameoffset = (insn & 0xff) << 2; | |
c906108c | 659 | } |
da59e081 | 660 | else if (insn == 0x466f) /* mov r7, sp */ |
c906108c | 661 | { |
da59e081 | 662 | findmask |= 2; /* setting of r7 found */ |
c3b4394c RE |
663 | fi->extra_info->framereg = THUMB_FP_REGNUM; |
664 | fi->extra_info->frameoffset = 0; | |
c906108c SS |
665 | saved_reg[THUMB_FP_REGNUM] = SP_REGNUM; |
666 | } | |
667 | else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ | |
668 | { | |
c5aa993b | 669 | int lo_reg = insn & 7; /* dest. register (r0-r7) */ |
c906108c | 670 | int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ |
c5aa993b | 671 | saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ |
c906108c SS |
672 | } |
673 | else | |
da59e081 JM |
674 | continue; /* something in the prolog that we don't care about or some |
675 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
676 | } |
677 | } | |
678 | ||
ed9a39eb JM |
679 | /* Check if prologue for this frame's PC has already been scanned. If |
680 | it has, copy the relevant information about that prologue and | |
c906108c SS |
681 | return non-zero. Otherwise do not copy anything and return zero. |
682 | ||
683 | The information saved in the cache includes: | |
c5aa993b JM |
684 | * the frame register number; |
685 | * the size of the stack frame; | |
686 | * the offsets of saved regs (relative to the old SP); and | |
687 | * the offset from the stack pointer to the frame pointer | |
c906108c | 688 | |
ed9a39eb JM |
689 | The cache contains only one entry, since this is adequate for the |
690 | typical sequence of prologue scan requests we get. When performing | |
691 | a backtrace, GDB will usually ask to scan the same function twice | |
692 | in a row (once to get the frame chain, and once to fill in the | |
693 | extra frame information). */ | |
c906108c SS |
694 | |
695 | static struct frame_info prologue_cache; | |
696 | ||
697 | static int | |
ed9a39eb | 698 | check_prologue_cache (struct frame_info *fi) |
c906108c SS |
699 | { |
700 | int i; | |
701 | ||
702 | if (fi->pc == prologue_cache.pc) | |
703 | { | |
c3b4394c RE |
704 | fi->extra_info->framereg = prologue_cache.extra_info->framereg; |
705 | fi->extra_info->framesize = prologue_cache.extra_info->framesize; | |
706 | fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset; | |
707 | for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) | |
708 | fi->saved_regs[i] = prologue_cache.saved_regs[i]; | |
c906108c SS |
709 | return 1; |
710 | } | |
711 | else | |
712 | return 0; | |
713 | } | |
714 | ||
715 | ||
ed9a39eb | 716 | /* Copy the prologue information from fi to the prologue cache. */ |
c906108c SS |
717 | |
718 | static void | |
ed9a39eb | 719 | save_prologue_cache (struct frame_info *fi) |
c906108c SS |
720 | { |
721 | int i; | |
722 | ||
c5aa993b | 723 | prologue_cache.pc = fi->pc; |
c3b4394c RE |
724 | prologue_cache.extra_info->framereg = fi->extra_info->framereg; |
725 | prologue_cache.extra_info->framesize = fi->extra_info->framesize; | |
726 | prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset; | |
c5aa993b | 727 | |
c3b4394c RE |
728 | for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) |
729 | prologue_cache.saved_regs[i] = fi->saved_regs[i]; | |
c906108c SS |
730 | } |
731 | ||
732 | ||
ed9a39eb | 733 | /* This function decodes an ARM function prologue to determine: |
c5aa993b JM |
734 | 1) the size of the stack frame |
735 | 2) which registers are saved on it | |
736 | 3) the offsets of saved regs | |
737 | 4) the offset from the stack pointer to the frame pointer | |
c906108c SS |
738 | This information is stored in the "extra" fields of the frame_info. |
739 | ||
96baa820 JM |
740 | There are two basic forms for the ARM prologue. The fixed argument |
741 | function call will look like: | |
ed9a39eb JM |
742 | |
743 | mov ip, sp | |
744 | stmfd sp!, {fp, ip, lr, pc} | |
745 | sub fp, ip, #4 | |
746 | [sub sp, sp, #4] | |
96baa820 | 747 | |
c906108c | 748 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
749 | IP -> 4 (caller's stack) |
750 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
751 | -4 LR (return address in caller) | |
752 | -8 IP (copy of caller's SP) | |
753 | -12 FP (caller's FP) | |
754 | SP -> -28 Local variables | |
755 | ||
c906108c | 756 | The frame size would thus be 32 bytes, and the frame offset would be |
96baa820 JM |
757 | 28 bytes. The stmfd call can also save any of the vN registers it |
758 | plans to use, which increases the frame size accordingly. | |
759 | ||
760 | Note: The stored PC is 8 off of the STMFD instruction that stored it | |
761 | because the ARM Store instructions always store PC + 8 when you read | |
762 | the PC register. | |
ed9a39eb | 763 | |
96baa820 JM |
764 | A variable argument function call will look like: |
765 | ||
ed9a39eb JM |
766 | mov ip, sp |
767 | stmfd sp!, {a1, a2, a3, a4} | |
768 | stmfd sp!, {fp, ip, lr, pc} | |
769 | sub fp, ip, #20 | |
770 | ||
96baa820 | 771 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
772 | IP -> 20 (caller's stack) |
773 | 16 A4 | |
774 | 12 A3 | |
775 | 8 A2 | |
776 | 4 A1 | |
777 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
778 | -4 LR (return address in caller) | |
779 | -8 IP (copy of caller's SP) | |
780 | -12 FP (caller's FP) | |
781 | SP -> -28 Local variables | |
96baa820 JM |
782 | |
783 | The frame size would thus be 48 bytes, and the frame offset would be | |
784 | 28 bytes. | |
785 | ||
786 | There is another potential complication, which is that the optimizer | |
787 | will try to separate the store of fp in the "stmfd" instruction from | |
788 | the "sub fp, ip, #NN" instruction. Almost anything can be there, so | |
789 | we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... | |
790 | ||
791 | Also, note, the original version of the ARM toolchain claimed that there | |
792 | should be an | |
793 | ||
794 | instruction at the end of the prologue. I have never seen GCC produce | |
795 | this, and the ARM docs don't mention it. We still test for it below in | |
796 | case it happens... | |
ed9a39eb JM |
797 | |
798 | */ | |
c906108c SS |
799 | |
800 | static void | |
ed9a39eb | 801 | arm_scan_prologue (struct frame_info *fi) |
c906108c SS |
802 | { |
803 | int regno, sp_offset, fp_offset; | |
16a0f3e7 | 804 | LONGEST return_value; |
c906108c SS |
805 | CORE_ADDR prologue_start, prologue_end, current_pc; |
806 | ||
807 | /* Check if this function is already in the cache of frame information. */ | |
808 | if (check_prologue_cache (fi)) | |
809 | return; | |
810 | ||
811 | /* Assume there is no frame until proven otherwise. */ | |
c3b4394c RE |
812 | fi->extra_info->framereg = SP_REGNUM; |
813 | fi->extra_info->framesize = 0; | |
814 | fi->extra_info->frameoffset = 0; | |
c906108c SS |
815 | |
816 | /* Check for Thumb prologue. */ | |
817 | if (arm_pc_is_thumb (fi->pc)) | |
818 | { | |
819 | thumb_scan_prologue (fi); | |
820 | save_prologue_cache (fi); | |
821 | return; | |
822 | } | |
823 | ||
824 | /* Find the function prologue. If we can't find the function in | |
825 | the symbol table, peek in the stack frame to find the PC. */ | |
826 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) | |
827 | { | |
2a451106 KB |
828 | /* One way to find the end of the prologue (which works well |
829 | for unoptimized code) is to do the following: | |
830 | ||
831 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
832 | ||
833 | if (sal.line == 0) | |
834 | prologue_end = fi->pc; | |
835 | else if (sal.end < prologue_end) | |
836 | prologue_end = sal.end; | |
837 | ||
838 | This mechanism is very accurate so long as the optimizer | |
839 | doesn't move any instructions from the function body into the | |
840 | prologue. If this happens, sal.end will be the last | |
841 | instruction in the first hunk of prologue code just before | |
842 | the first instruction that the scheduler has moved from | |
843 | the body to the prologue. | |
844 | ||
845 | In order to make sure that we scan all of the prologue | |
846 | instructions, we use a slightly less accurate mechanism which | |
847 | may scan more than necessary. To help compensate for this | |
848 | lack of accuracy, the prologue scanning loop below contains | |
849 | several clauses which'll cause the loop to terminate early if | |
850 | an implausible prologue instruction is encountered. | |
851 | ||
852 | The expression | |
853 | ||
854 | prologue_start + 64 | |
855 | ||
856 | is a suitable endpoint since it accounts for the largest | |
857 | possible prologue plus up to five instructions inserted by | |
858 | the scheduler. */ | |
859 | ||
860 | if (prologue_end > prologue_start + 64) | |
861 | { | |
862 | prologue_end = prologue_start + 64; /* See above. */ | |
863 | } | |
c906108c SS |
864 | } |
865 | else | |
866 | { | |
867 | /* Get address of the stmfd in the prologue of the callee; the saved | |
96baa820 | 868 | PC is the address of the stmfd + 8. */ |
16a0f3e7 EZ |
869 | if (!safe_read_memory_integer (fi->frame, 4, &return_value)) |
870 | return; | |
871 | else | |
872 | { | |
873 | prologue_start = ADDR_BITS_REMOVE (return_value) - 8; | |
874 | prologue_end = prologue_start + 64; /* See above. */ | |
875 | } | |
c906108c SS |
876 | } |
877 | ||
878 | /* Now search the prologue looking for instructions that set up the | |
96baa820 | 879 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 880 | |
96baa820 JM |
881 | Be careful, however, and if it doesn't look like a prologue, |
882 | don't try to scan it. If, for instance, a frameless function | |
883 | begins with stmfd sp!, then we will tell ourselves there is | |
884 | a frame, which will confuse stack traceback, as well ad"finish" | |
885 | and other operations that rely on a knowledge of the stack | |
886 | traceback. | |
887 | ||
888 | In the APCS, the prologue should start with "mov ip, sp" so | |
d4473757 KB |
889 | if we don't see this as the first insn, we will stop. [Note: |
890 | This doesn't seem to be true any longer, so it's now an optional | |
891 | part of the prologue. - Kevin Buettner, 2001-11-20] */ | |
c906108c SS |
892 | |
893 | sp_offset = fp_offset = 0; | |
c906108c | 894 | |
ed9a39eb JM |
895 | if (read_memory_unsigned_integer (prologue_start, 4) |
896 | == 0xe1a0c00d) /* mov ip, sp */ | |
d4473757 KB |
897 | current_pc = prologue_start + 4; |
898 | else | |
899 | current_pc = prologue_start; | |
900 | ||
901 | for (; current_pc < prologue_end; current_pc += 4) | |
96baa820 | 902 | { |
d4473757 KB |
903 | unsigned int insn = read_memory_unsigned_integer (current_pc, 4); |
904 | ||
905 | if ((insn & 0xffff0000) == 0xe92d0000) | |
906 | /* stmfd sp!, {..., fp, ip, lr, pc} | |
907 | or | |
908 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 909 | { |
d4473757 | 910 | int mask = insn & 0xffff; |
ed9a39eb | 911 | |
d4473757 KB |
912 | /* Calculate offsets of saved registers. */ |
913 | for (regno = PC_REGNUM; regno >= 0; regno--) | |
914 | if (mask & (1 << regno)) | |
915 | { | |
916 | sp_offset -= 4; | |
c3b4394c | 917 | fi->saved_regs[regno] = sp_offset; |
d4473757 KB |
918 | } |
919 | } | |
920 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ | |
921 | { | |
922 | unsigned imm = insn & 0xff; /* immediate value */ | |
923 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
924 | imm = (imm >> rot) | (imm << (32 - rot)); | |
925 | fp_offset = -imm; | |
c3b4394c | 926 | fi->extra_info->framereg = FP_REGNUM; |
d4473757 KB |
927 | } |
928 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
929 | { | |
930 | unsigned imm = insn & 0xff; /* immediate value */ | |
931 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
932 | imm = (imm >> rot) | (imm << (32 - rot)); | |
933 | sp_offset -= imm; | |
934 | } | |
935 | else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ | |
936 | { | |
937 | sp_offset -= 12; | |
938 | regno = F0_REGNUM + ((insn >> 12) & 0x07); | |
c3b4394c | 939 | fi->saved_regs[regno] = sp_offset; |
d4473757 KB |
940 | } |
941 | else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */ | |
942 | { | |
943 | int n_saved_fp_regs; | |
944 | unsigned int fp_start_reg, fp_bound_reg; | |
945 | ||
946 | if ((insn & 0x800) == 0x800) /* N0 is set */ | |
96baa820 | 947 | { |
d4473757 KB |
948 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
949 | n_saved_fp_regs = 3; | |
950 | else | |
951 | n_saved_fp_regs = 1; | |
96baa820 | 952 | } |
d4473757 | 953 | else |
96baa820 | 954 | { |
d4473757 KB |
955 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
956 | n_saved_fp_regs = 2; | |
957 | else | |
958 | n_saved_fp_regs = 4; | |
96baa820 | 959 | } |
d4473757 KB |
960 | |
961 | fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7); | |
962 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; | |
963 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 JM |
964 | { |
965 | sp_offset -= 12; | |
c3b4394c | 966 | fi->saved_regs[fp_start_reg++] = sp_offset; |
96baa820 | 967 | } |
c906108c | 968 | } |
d4473757 KB |
969 | else if ((insn & 0xf0000000) != 0xe0000000) |
970 | break; /* Condition not true, exit early */ | |
971 | else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */ | |
972 | break; /* Don't scan past a block load */ | |
973 | else | |
974 | /* The optimizer might shove anything into the prologue, | |
975 | so we just skip what we don't recognize. */ | |
976 | continue; | |
c906108c SS |
977 | } |
978 | ||
979 | /* The frame size is just the negative of the offset (from the original SP) | |
980 | of the last thing thing we pushed on the stack. The frame offset is | |
981 | [new FP] - [new SP]. */ | |
c3b4394c RE |
982 | fi->extra_info->framesize = -sp_offset; |
983 | if (fi->extra_info->framereg == FP_REGNUM) | |
984 | fi->extra_info->frameoffset = fp_offset - sp_offset; | |
d4473757 | 985 | else |
c3b4394c | 986 | fi->extra_info->frameoffset = 0; |
ed9a39eb | 987 | |
c906108c SS |
988 | save_prologue_cache (fi); |
989 | } | |
990 | ||
ed9a39eb JM |
991 | /* Find REGNUM on the stack. Otherwise, it's in an active register. |
992 | One thing we might want to do here is to check REGNUM against the | |
993 | clobber mask, and somehow flag it as invalid if it isn't saved on | |
994 | the stack somewhere. This would provide a graceful failure mode | |
995 | when trying to get the value of caller-saves registers for an inner | |
996 | frame. */ | |
c906108c SS |
997 | |
998 | static CORE_ADDR | |
ed9a39eb | 999 | arm_find_callers_reg (struct frame_info *fi, int regnum) |
c906108c SS |
1000 | { |
1001 | for (; fi; fi = fi->next) | |
c5aa993b JM |
1002 | |
1003 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
c906108c SS |
1004 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1005 | return generic_read_register_dummy (fi->pc, fi->frame, regnum); | |
1006 | else | |
1007 | #endif | |
c3b4394c RE |
1008 | if (fi->saved_regs[regnum] != 0) |
1009 | return read_memory_integer (fi->saved_regs[regnum], | |
c5aa993b | 1010 | REGISTER_RAW_SIZE (regnum)); |
c906108c SS |
1011 | return read_register (regnum); |
1012 | } | |
148754e5 RE |
1013 | /* Function: frame_chain Given a GDB frame, determine the address of |
1014 | the calling function's frame. This will be used to create a new | |
1015 | GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC | |
1016 | will be called for the new frame. For ARM, we save the frame size | |
1017 | when we initialize the frame_info. */ | |
c5aa993b | 1018 | |
148754e5 | 1019 | static CORE_ADDR |
ed9a39eb | 1020 | arm_frame_chain (struct frame_info *fi) |
c906108c | 1021 | { |
c5aa993b | 1022 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1023 | CORE_ADDR fn_start, callers_pc, fp; |
1024 | ||
1025 | /* is this a dummy frame? */ | |
1026 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
c5aa993b | 1027 | return fi->frame; /* dummy frame same as caller's frame */ |
c906108c SS |
1028 | |
1029 | /* is caller-of-this a dummy frame? */ | |
c5aa993b | 1030 | callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ |
c906108c | 1031 | fp = arm_find_callers_reg (fi, FP_REGNUM); |
c5aa993b JM |
1032 | if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) |
1033 | return fp; /* dummy frame's frame may bear no relation to ours */ | |
c906108c SS |
1034 | |
1035 | if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) | |
1036 | if (fn_start == entry_point_address ()) | |
c5aa993b | 1037 | return 0; /* in _start fn, don't chain further */ |
c906108c SS |
1038 | #endif |
1039 | CORE_ADDR caller_pc, fn_start; | |
c3b4394c | 1040 | int framereg = fi->extra_info->framereg; |
c906108c SS |
1041 | |
1042 | if (fi->pc < LOWEST_PC) | |
1043 | return 0; | |
1044 | ||
1045 | /* If the caller is the startup code, we're at the end of the chain. */ | |
1046 | caller_pc = FRAME_SAVED_PC (fi); | |
1047 | if (find_pc_partial_function (caller_pc, 0, &fn_start, 0)) | |
1048 | if (fn_start == entry_point_address ()) | |
1049 | return 0; | |
1050 | ||
1051 | /* If the caller is Thumb and the caller is ARM, or vice versa, | |
1052 | the frame register of the caller is different from ours. | |
1053 | So we must scan the prologue of the caller to determine its | |
1054 | frame register number. */ | |
c3b4394c RE |
1055 | /* XXX Fixme, we should try to do this without creating a temporary |
1056 | caller_fi. */ | |
c906108c SS |
1057 | if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc)) |
1058 | { | |
c3b4394c RE |
1059 | struct frame_info caller_fi; |
1060 | struct cleanup *old_chain; | |
1061 | ||
1062 | /* Create a temporary frame suitable for scanning the caller's | |
1063 | prologue. (Ugh.) */ | |
c5aa993b | 1064 | memset (&caller_fi, 0, sizeof (caller_fi)); |
c3b4394c RE |
1065 | caller_fi.extra_info = (struct frame_extra_info *) |
1066 | xcalloc (1, sizeof (struct frame_extra_info)); | |
1067 | old_chain = make_cleanup (xfree, caller_fi.extra_info); | |
1068 | caller_fi.saved_regs = (CORE_ADDR *) | |
1069 | xcalloc (1, SIZEOF_FRAME_SAVED_REGS); | |
1070 | make_cleanup (xfree, caller_fi.saved_regs); | |
1071 | ||
1072 | /* Now, scan the prologue and obtain the frame register. */ | |
c906108c | 1073 | caller_fi.pc = caller_pc; |
c5aa993b | 1074 | arm_scan_prologue (&caller_fi); |
c3b4394c RE |
1075 | framereg = caller_fi.extra_info->framereg; |
1076 | ||
1077 | /* Deallocate the storage associated with the temporary frame | |
1078 | created above. */ | |
1079 | do_cleanups (old_chain); | |
c906108c SS |
1080 | } |
1081 | ||
1082 | /* If the caller used a frame register, return its value. | |
1083 | Otherwise, return the caller's stack pointer. */ | |
1084 | if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM) | |
1085 | return arm_find_callers_reg (fi, framereg); | |
1086 | else | |
c3b4394c | 1087 | return fi->frame + fi->extra_info->framesize; |
c906108c SS |
1088 | } |
1089 | ||
ed9a39eb JM |
1090 | /* This function actually figures out the frame address for a given pc |
1091 | and sp. This is tricky because we sometimes don't use an explicit | |
1092 | frame pointer, and the previous stack pointer isn't necessarily | |
1093 | recorded on the stack. The only reliable way to get this info is | |
1094 | to examine the prologue. FROMLEAF is a little confusing, it means | |
1095 | this is the next frame up the chain AFTER a frameless function. If | |
1096 | this is true, then the frame value for this frame is still in the | |
1097 | fp register. */ | |
c906108c | 1098 | |
148754e5 | 1099 | static void |
ed9a39eb | 1100 | arm_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c SS |
1101 | { |
1102 | int reg; | |
f079148d | 1103 | CORE_ADDR sp; |
c906108c | 1104 | |
c3b4394c RE |
1105 | if (fi->saved_regs == NULL) |
1106 | frame_saved_regs_zalloc (fi); | |
1107 | ||
1108 | fi->extra_info = (struct frame_extra_info *) | |
1109 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
1110 | ||
1111 | fi->extra_info->framesize = 0; | |
1112 | fi->extra_info->frameoffset = 0; | |
1113 | fi->extra_info->framereg = 0; | |
1114 | ||
c906108c SS |
1115 | if (fi->next) |
1116 | fi->pc = FRAME_SAVED_PC (fi->next); | |
1117 | ||
c3b4394c | 1118 | memset (fi->saved_regs, '\000', sizeof fi->saved_regs); |
c906108c | 1119 | |
c5aa993b | 1120 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1121 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1122 | { | |
1123 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
c5aa993b JM |
1124 | by assuming it's always FP. */ |
1125 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); | |
c3b4394c RE |
1126 | fi->extra_info->framesize = 0; |
1127 | fi->extra_info->frameoffset = 0; | |
c906108c SS |
1128 | return; |
1129 | } | |
c5aa993b | 1130 | else |
c906108c | 1131 | #endif |
2a451106 | 1132 | |
f079148d KB |
1133 | /* Compute stack pointer for this frame. We use this value for both the |
1134 | sigtramp and call dummy cases. */ | |
1135 | if (!fi->next) | |
1136 | sp = read_sp(); | |
1137 | else | |
c3b4394c RE |
1138 | sp = (fi->next->frame - fi->next->extra_info->frameoffset |
1139 | + fi->next->extra_info->framesize); | |
f079148d | 1140 | |
2a451106 KB |
1141 | /* Determine whether or not we're in a sigtramp frame. |
1142 | Unfortunately, it isn't sufficient to test | |
1143 | fi->signal_handler_caller because this value is sometimes set | |
1144 | after invoking INIT_EXTRA_FRAME_INFO. So we test *both* | |
1145 | fi->signal_handler_caller and IN_SIGTRAMP to determine if we need | |
1146 | to use the sigcontext addresses for the saved registers. | |
1147 | ||
1148 | Note: If an ARM IN_SIGTRAMP method ever needs to compare against | |
1149 | the name of the function, the code below will have to be changed | |
1150 | to first fetch the name of the function and then pass this name | |
f079148d | 1151 | to IN_SIGTRAMP. */ |
2a451106 | 1152 | |
3bb04bdd | 1153 | if (SIGCONTEXT_REGISTER_ADDRESS_P () |
dd96c05b | 1154 | && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0))) |
2a451106 | 1155 | { |
2a451106 | 1156 | for (reg = 0; reg < NUM_REGS; reg++) |
c3b4394c | 1157 | fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg); |
2a451106 KB |
1158 | |
1159 | /* FIXME: What about thumb mode? */ | |
c3b4394c RE |
1160 | fi->extra_info->framereg = SP_REGNUM; |
1161 | fi->frame = | |
1162 | read_memory_integer (fi->saved_regs[fi->extra_info->framereg], | |
1163 | REGISTER_RAW_SIZE (fi->extra_info->framereg)); | |
1164 | fi->extra_info->framesize = 0; | |
1165 | fi->extra_info->frameoffset = 0; | |
2a451106 KB |
1166 | |
1167 | } | |
f079148d KB |
1168 | else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame)) |
1169 | { | |
1170 | CORE_ADDR rp; | |
1171 | CORE_ADDR callers_sp; | |
1172 | ||
1173 | /* Set rp point at the high end of the saved registers. */ | |
1174 | rp = fi->frame - REGISTER_SIZE; | |
1175 | ||
1176 | /* Fill in addresses of saved registers. */ | |
c3b4394c | 1177 | fi->saved_regs[PS_REGNUM] = rp; |
f079148d KB |
1178 | rp -= REGISTER_RAW_SIZE (PS_REGNUM); |
1179 | for (reg = PC_REGNUM; reg >= 0; reg--) | |
1180 | { | |
c3b4394c | 1181 | fi->saved_regs[reg] = rp; |
f079148d KB |
1182 | rp -= REGISTER_RAW_SIZE (reg); |
1183 | } | |
1184 | ||
c3b4394c | 1185 | callers_sp = read_memory_integer (fi->saved_regs[SP_REGNUM], |
f079148d | 1186 | REGISTER_RAW_SIZE (SP_REGNUM)); |
c3b4394c RE |
1187 | fi->extra_info->framereg = FP_REGNUM; |
1188 | fi->extra_info->framesize = callers_sp - sp; | |
1189 | fi->extra_info->frameoffset = fi->frame - sp; | |
f079148d | 1190 | } |
2a451106 | 1191 | else |
c906108c SS |
1192 | { |
1193 | arm_scan_prologue (fi); | |
1194 | ||
104c1213 JM |
1195 | if (!fi->next) |
1196 | /* this is the innermost frame? */ | |
c3b4394c RE |
1197 | fi->frame = read_register (fi->extra_info->framereg); |
1198 | else if (fi->extra_info->framereg == FP_REGNUM | |
1199 | || fi->extra_info->framereg == THUMB_FP_REGNUM) | |
ed9a39eb JM |
1200 | { |
1201 | /* not the innermost frame */ | |
1202 | /* If we have an FP, the callee saved it. */ | |
c3b4394c | 1203 | if (fi->next->saved_regs[fi->extra_info->framereg] != 0) |
ed9a39eb | 1204 | fi->frame = |
c3b4394c RE |
1205 | read_memory_integer (fi->next |
1206 | ->saved_regs[fi->extra_info->framereg], 4); | |
ed9a39eb JM |
1207 | else if (fromleaf) |
1208 | /* If we were called by a frameless fn. then our frame is | |
1209 | still in the frame pointer register on the board... */ | |
1210 | fi->frame = read_fp (); | |
1211 | } | |
c906108c | 1212 | |
ed9a39eb JM |
1213 | /* Calculate actual addresses of saved registers using offsets |
1214 | determined by arm_scan_prologue. */ | |
c906108c | 1215 | for (reg = 0; reg < NUM_REGS; reg++) |
c3b4394c RE |
1216 | if (fi->saved_regs[reg] != 0) |
1217 | fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize | |
1218 | - fi->extra_info->frameoffset); | |
c906108c SS |
1219 | } |
1220 | } | |
1221 | ||
1222 | ||
ed9a39eb JM |
1223 | /* Find the caller of this frame. We do this by seeing if LR_REGNUM |
1224 | is saved in the stack anywhere, otherwise we get it from the | |
1225 | registers. | |
c906108c SS |
1226 | |
1227 | The old definition of this function was a macro: | |
c5aa993b | 1228 | #define FRAME_SAVED_PC(FRAME) \ |
ed9a39eb | 1229 | ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */ |
c906108c | 1230 | |
148754e5 | 1231 | static CORE_ADDR |
ed9a39eb | 1232 | arm_frame_saved_pc (struct frame_info *fi) |
c906108c | 1233 | { |
c5aa993b | 1234 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1235 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1236 | return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
1237 | else | |
1238 | #endif | |
c3b4394c RE |
1239 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset, |
1240 | fi->frame)) | |
f079148d | 1241 | { |
c3b4394c RE |
1242 | return read_memory_integer (fi->saved_regs[PC_REGNUM], |
1243 | REGISTER_RAW_SIZE (PC_REGNUM)); | |
f079148d KB |
1244 | } |
1245 | else | |
c906108c SS |
1246 | { |
1247 | CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM); | |
1248 | return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; | |
1249 | } | |
1250 | } | |
1251 | ||
c906108c SS |
1252 | /* Return the frame address. On ARM, it is R11; on Thumb it is R7. |
1253 | Examine the Program Status Register to decide which state we're in. */ | |
1254 | ||
148754e5 RE |
1255 | static CORE_ADDR |
1256 | arm_read_fp (void) | |
c906108c SS |
1257 | { |
1258 | if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */ | |
1259 | return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */ | |
1260 | else | |
c5aa993b | 1261 | return read_register (FP_REGNUM); /* R11 if ARM */ |
c906108c SS |
1262 | } |
1263 | ||
148754e5 RE |
1264 | /* Store into a struct frame_saved_regs the addresses of the saved |
1265 | registers of frame described by FRAME_INFO. This includes special | |
1266 | registers such as PC and FP saved in special ways in the stack | |
1267 | frame. SP is even more special: the address we return for it IS | |
1268 | the sp for the next frame. */ | |
c906108c | 1269 | |
148754e5 | 1270 | static void |
c3b4394c | 1271 | arm_frame_init_saved_regs (struct frame_info *fip) |
c906108c | 1272 | { |
c3b4394c RE |
1273 | |
1274 | if (fip->saved_regs) | |
1275 | return; | |
1276 | ||
1277 | arm_init_extra_frame_info (0, fip); | |
c906108c SS |
1278 | } |
1279 | ||
148754e5 RE |
1280 | /* Push an empty stack frame, to record the current PC, etc. */ |
1281 | ||
1282 | static void | |
ed9a39eb | 1283 | arm_push_dummy_frame (void) |
c906108c SS |
1284 | { |
1285 | CORE_ADDR old_sp = read_register (SP_REGNUM); | |
1286 | CORE_ADDR sp = old_sp; | |
1287 | CORE_ADDR fp, prologue_start; | |
1288 | int regnum; | |
1289 | ||
1290 | /* Push the two dummy prologue instructions in reverse order, | |
1291 | so that they'll be in the correct low-to-high order in memory. */ | |
1292 | /* sub fp, ip, #4 */ | |
1293 | sp = push_word (sp, 0xe24cb004); | |
1294 | /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */ | |
1295 | prologue_start = sp = push_word (sp, 0xe92ddfff); | |
1296 | ||
ed9a39eb JM |
1297 | /* Push a pointer to the dummy prologue + 12, because when stm |
1298 | instruction stores the PC, it stores the address of the stm | |
c906108c SS |
1299 | instruction itself plus 12. */ |
1300 | fp = sp = push_word (sp, prologue_start + 12); | |
c5aa993b | 1301 | |
f079148d KB |
1302 | /* Push the processor status. */ |
1303 | sp = push_word (sp, read_register (PS_REGNUM)); | |
1304 | ||
1305 | /* Push all 16 registers starting with r15. */ | |
1306 | for (regnum = PC_REGNUM; regnum >= 0; regnum--) | |
c906108c | 1307 | sp = push_word (sp, read_register (regnum)); |
c5aa993b | 1308 | |
f079148d | 1309 | /* Update fp (for both Thumb and ARM) and sp. */ |
c906108c SS |
1310 | write_register (FP_REGNUM, fp); |
1311 | write_register (THUMB_FP_REGNUM, fp); | |
1312 | write_register (SP_REGNUM, sp); | |
1313 | } | |
1314 | ||
6eb69eab RE |
1315 | /* CALL_DUMMY_WORDS: |
1316 | This sequence of words is the instructions | |
1317 | ||
1318 | mov lr,pc | |
1319 | mov pc,r4 | |
1320 | illegal | |
1321 | ||
1322 | Note this is 12 bytes. */ | |
1323 | ||
1324 | LONGEST arm_call_dummy_words[] = | |
1325 | { | |
1326 | 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe | |
1327 | }; | |
1328 | ||
c906108c | 1329 | /* Fix up the call dummy, based on whether the processor is currently |
ed9a39eb JM |
1330 | in Thumb or ARM mode, and whether the target function is Thumb or |
1331 | ARM. There are three different situations requiring three | |
c906108c SS |
1332 | different dummies: |
1333 | ||
1334 | * ARM calling ARM: uses the call dummy in tm-arm.h, which has already | |
c5aa993b | 1335 | been copied into the dummy parameter to this function. |
c906108c | 1336 | * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the |
c5aa993b | 1337 | "mov pc,r4" instruction patched to be a "bx r4" instead. |
c906108c | 1338 | * Thumb calling anything: uses the Thumb dummy defined below, which |
c5aa993b | 1339 | works for calling both ARM and Thumb functions. |
c906108c | 1340 | |
ed9a39eb JM |
1341 | All three call dummies expect to receive the target function |
1342 | address in R4, with the low bit set if it's a Thumb function. */ | |
c906108c SS |
1343 | |
1344 | void | |
ed9a39eb | 1345 | arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 1346 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
1347 | { |
1348 | static short thumb_dummy[4] = | |
1349 | { | |
c5aa993b JM |
1350 | 0xf000, 0xf801, /* bl label */ |
1351 | 0xdf18, /* swi 24 */ | |
1352 | 0x4720, /* label: bx r4 */ | |
c906108c SS |
1353 | }; |
1354 | static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */ | |
1355 | ||
1356 | /* Set flag indicating whether the current PC is in a Thumb function. */ | |
c5aa993b | 1357 | caller_is_thumb = arm_pc_is_thumb (read_pc ()); |
c906108c | 1358 | |
ed9a39eb JM |
1359 | /* If the target function is Thumb, set the low bit of the function |
1360 | address. And if the CPU is currently in ARM mode, patch the | |
1361 | second instruction of call dummy to use a BX instruction to | |
1362 | switch to Thumb mode. */ | |
c906108c SS |
1363 | target_is_thumb = arm_pc_is_thumb (fun); |
1364 | if (target_is_thumb) | |
1365 | { | |
1366 | fun |= 1; | |
1367 | if (!caller_is_thumb) | |
1368 | store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4); | |
1369 | } | |
1370 | ||
1371 | /* If the CPU is currently in Thumb mode, use the Thumb call dummy | |
1372 | instead of the ARM one that's already been copied. This will | |
1373 | work for both Thumb and ARM target functions. */ | |
1374 | if (caller_is_thumb) | |
1375 | { | |
1376 | int i; | |
1377 | char *p = dummy; | |
1378 | int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]); | |
1379 | ||
1380 | for (i = 0; i < len; i++) | |
1381 | { | |
1382 | store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]); | |
1383 | p += sizeof (thumb_dummy[0]); | |
1384 | } | |
1385 | } | |
1386 | ||
ed9a39eb JM |
1387 | /* Put the target address in r4; the call dummy will copy this to |
1388 | the PC. */ | |
c906108c SS |
1389 | write_register (4, fun); |
1390 | } | |
1391 | ||
c906108c | 1392 | /* Return the offset in the call dummy of the instruction that needs |
ed9a39eb JM |
1393 | to have a breakpoint placed on it. This is the offset of the 'swi |
1394 | 24' instruction, which is no longer actually used, but simply acts | |
c906108c SS |
1395 | as a place-holder now. |
1396 | ||
ed9a39eb | 1397 | This implements the CALL_DUMMY_BREAK_OFFSET macro. */ |
c906108c SS |
1398 | |
1399 | int | |
ed9a39eb | 1400 | arm_call_dummy_breakpoint_offset (void) |
c906108c SS |
1401 | { |
1402 | if (caller_is_thumb) | |
1403 | return 4; | |
1404 | else | |
1405 | return 8; | |
1406 | } | |
1407 | ||
ed9a39eb JM |
1408 | /* Note: ScottB |
1409 | ||
1410 | This function does not support passing parameters using the FPA | |
1411 | variant of the APCS. It passes any floating point arguments in the | |
1412 | general registers and/or on the stack. */ | |
c906108c | 1413 | |
39bbf761 | 1414 | static CORE_ADDR |
ea7c478f | 1415 | arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
ed9a39eb | 1416 | int struct_return, CORE_ADDR struct_addr) |
c906108c | 1417 | { |
ed9a39eb JM |
1418 | char *fp; |
1419 | int argnum, argreg, nstack_size; | |
1420 | ||
1421 | /* Walk through the list of args and determine how large a temporary | |
1422 | stack is required. Need to take care here as structs may be | |
1423 | passed on the stack, and we have to to push them. */ | |
1424 | nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */ | |
1425 | if (struct_return) /* The struct address goes in A1. */ | |
1426 | nstack_size += REGISTER_SIZE; | |
1427 | ||
1428 | /* Walk through the arguments and add their size to nstack_size. */ | |
1429 | for (argnum = 0; argnum < nargs; argnum++) | |
c5aa993b | 1430 | { |
c906108c | 1431 | int len; |
ed9a39eb JM |
1432 | struct type *arg_type; |
1433 | ||
1434 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1435 | len = TYPE_LENGTH (arg_type); | |
c906108c | 1436 | |
ed9a39eb JM |
1437 | /* ANSI C code passes float arguments as integers, K&R code |
1438 | passes float arguments as doubles. Correct for this here. */ | |
1439 | if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len) | |
1440 | nstack_size += FP_REGISTER_VIRTUAL_SIZE; | |
1441 | else | |
1442 | nstack_size += len; | |
1443 | } | |
c906108c | 1444 | |
ed9a39eb JM |
1445 | /* Allocate room on the stack, and initialize our stack frame |
1446 | pointer. */ | |
1447 | fp = NULL; | |
1448 | if (nstack_size > 0) | |
1449 | { | |
1450 | sp -= nstack_size; | |
1451 | fp = (char *) sp; | |
1452 | } | |
1453 | ||
1454 | /* Initialize the integer argument register pointer. */ | |
c906108c | 1455 | argreg = A1_REGNUM; |
c906108c | 1456 | |
ed9a39eb JM |
1457 | /* The struct_return pointer occupies the first parameter passing |
1458 | register. */ | |
c906108c | 1459 | if (struct_return) |
c5aa993b | 1460 | write_register (argreg++, struct_addr); |
c906108c | 1461 | |
ed9a39eb JM |
1462 | /* Process arguments from left to right. Store as many as allowed |
1463 | in the parameter passing registers (A1-A4), and save the rest on | |
1464 | the temporary stack. */ | |
c5aa993b | 1465 | for (argnum = 0; argnum < nargs; argnum++) |
c906108c | 1466 | { |
ed9a39eb | 1467 | int len; |
c5aa993b | 1468 | char *val; |
c5aa993b | 1469 | CORE_ADDR regval; |
ed9a39eb JM |
1470 | enum type_code typecode; |
1471 | struct type *arg_type, *target_type; | |
1472 | ||
1473 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1474 | target_type = TYPE_TARGET_TYPE (arg_type); | |
1475 | len = TYPE_LENGTH (arg_type); | |
1476 | typecode = TYPE_CODE (arg_type); | |
1477 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
1478 | ||
1479 | /* ANSI C code passes float arguments as integers, K&R code | |
1480 | passes float arguments as doubles. The .stabs record for | |
1481 | for ANSI prototype floating point arguments records the | |
1482 | type as FP_INTEGER, while a K&R style (no prototype) | |
1483 | .stabs records the type as FP_FLOAT. In this latter case | |
1484 | the compiler converts the float arguments to double before | |
1485 | calling the function. */ | |
1486 | if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len) | |
1487 | { | |
a37b3cc0 AC |
1488 | DOUBLEST dblval; |
1489 | dblval = extract_floating (val, len); | |
1490 | len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT; | |
1491 | val = alloca (len); | |
1492 | store_floating (val, len, dblval); | |
ed9a39eb | 1493 | } |
da59e081 JM |
1494 | #if 1 |
1495 | /* I don't know why this code was disable. The only logical use | |
1496 | for a function pointer is to call that function, so setting | |
1497 | the mode bit is perfectly fine. FN */ | |
ed9a39eb | 1498 | /* If the argument is a pointer to a function, and it is a Thumb |
c906108c | 1499 | function, set the low bit of the pointer. */ |
ed9a39eb JM |
1500 | if (TYPE_CODE_PTR == typecode |
1501 | && NULL != target_type | |
1502 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
c906108c | 1503 | { |
ed9a39eb | 1504 | CORE_ADDR regval = extract_address (val, len); |
c906108c SS |
1505 | if (arm_pc_is_thumb (regval)) |
1506 | store_address (val, len, MAKE_THUMB_ADDR (regval)); | |
1507 | } | |
c906108c | 1508 | #endif |
ed9a39eb JM |
1509 | /* Copy the argument to general registers or the stack in |
1510 | register-sized pieces. Large arguments are split between | |
1511 | registers and stack. */ | |
1512 | while (len > 0) | |
c906108c | 1513 | { |
ed9a39eb JM |
1514 | int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; |
1515 | ||
1516 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
c906108c | 1517 | { |
ed9a39eb JM |
1518 | /* It's an argument being passed in a general register. */ |
1519 | regval = extract_address (val, partial_len); | |
1520 | write_register (argreg++, regval); | |
c906108c | 1521 | } |
ed9a39eb JM |
1522 | else |
1523 | { | |
1524 | /* Push the arguments onto the stack. */ | |
1525 | write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE); | |
1526 | fp += REGISTER_SIZE; | |
1527 | } | |
1528 | ||
1529 | len -= partial_len; | |
1530 | val += partial_len; | |
c906108c SS |
1531 | } |
1532 | } | |
c906108c SS |
1533 | |
1534 | /* Return adjusted stack pointer. */ | |
1535 | return sp; | |
1536 | } | |
1537 | ||
f079148d KB |
1538 | /* Pop the current frame. So long as the frame info has been initialized |
1539 | properly (see arm_init_extra_frame_info), this code works for dummy frames | |
1540 | as well as regular frames. I.e, there's no need to have a special case | |
1541 | for dummy frames. */ | |
148754e5 | 1542 | static void |
ed9a39eb | 1543 | arm_pop_frame (void) |
c906108c | 1544 | { |
c906108c | 1545 | int regnum; |
8b93c638 | 1546 | struct frame_info *frame = get_current_frame (); |
c3b4394c RE |
1547 | CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset |
1548 | + frame->extra_info->framesize); | |
c906108c | 1549 | |
f079148d | 1550 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
c3b4394c | 1551 | if (frame->saved_regs[regnum] != 0) |
f079148d | 1552 | write_register (regnum, |
c3b4394c | 1553 | read_memory_integer (frame->saved_regs[regnum], |
f079148d | 1554 | REGISTER_RAW_SIZE (regnum))); |
8b93c638 | 1555 | |
f079148d KB |
1556 | write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); |
1557 | write_register (SP_REGNUM, old_SP); | |
c906108c SS |
1558 | |
1559 | flush_cached_frames (); | |
1560 | } | |
1561 | ||
1562 | static void | |
ed9a39eb | 1563 | print_fpu_flags (int flags) |
c906108c | 1564 | { |
c5aa993b JM |
1565 | if (flags & (1 << 0)) |
1566 | fputs ("IVO ", stdout); | |
1567 | if (flags & (1 << 1)) | |
1568 | fputs ("DVZ ", stdout); | |
1569 | if (flags & (1 << 2)) | |
1570 | fputs ("OFL ", stdout); | |
1571 | if (flags & (1 << 3)) | |
1572 | fputs ("UFL ", stdout); | |
1573 | if (flags & (1 << 4)) | |
1574 | fputs ("INX ", stdout); | |
1575 | putchar ('\n'); | |
c906108c SS |
1576 | } |
1577 | ||
5e74b15c RE |
1578 | /* Print interesting information about the floating point processor |
1579 | (if present) or emulator. */ | |
c906108c | 1580 | void |
5e74b15c | 1581 | arm_print_float_info (void) |
c906108c | 1582 | { |
c5aa993b JM |
1583 | register unsigned long status = read_register (FPS_REGNUM); |
1584 | int type; | |
1585 | ||
1586 | type = (status >> 24) & 127; | |
1587 | printf ("%s FPU type %d\n", | |
ed9a39eb | 1588 | (status & (1 << 31)) ? "Hardware" : "Software", |
c5aa993b JM |
1589 | type); |
1590 | fputs ("mask: ", stdout); | |
1591 | print_fpu_flags (status >> 16); | |
1592 | fputs ("flags: ", stdout); | |
1593 | print_fpu_flags (status); | |
c906108c SS |
1594 | } |
1595 | ||
032758dc AC |
1596 | struct type * |
1597 | arm_register_type (int regnum) | |
1598 | { | |
1599 | if (regnum >= F0_REGNUM && regnum < F0_REGNUM + NUM_FREGS) | |
1600 | { | |
d7449b42 | 1601 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
032758dc AC |
1602 | return builtin_type_arm_ext_big; |
1603 | else | |
1604 | return builtin_type_arm_ext_littlebyte_bigword; | |
1605 | } | |
1606 | else | |
1607 | return builtin_type_int32; | |
1608 | } | |
1609 | ||
a37b3cc0 AC |
1610 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
1611 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
1612 | It is thought that this is is the floating-point register format on | |
1613 | little-endian systems. */ | |
c906108c | 1614 | |
ed9a39eb JM |
1615 | static void |
1616 | convert_from_extended (void *ptr, void *dbl) | |
c906108c | 1617 | { |
a37b3cc0 | 1618 | DOUBLEST d; |
d7449b42 | 1619 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
1620 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); |
1621 | else | |
1622 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1623 | ptr, &d); | |
1624 | floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl); | |
c906108c SS |
1625 | } |
1626 | ||
c5aa993b | 1627 | void |
ed9a39eb | 1628 | convert_to_extended (void *dbl, void *ptr) |
c906108c | 1629 | { |
a37b3cc0 AC |
1630 | DOUBLEST d; |
1631 | floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d); | |
d7449b42 | 1632 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
1633 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); |
1634 | else | |
1635 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1636 | &d, dbl); | |
c906108c | 1637 | } |
ed9a39eb | 1638 | |
c906108c | 1639 | static int |
ed9a39eb | 1640 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
1641 | { |
1642 | if (cond == INST_AL || cond == INST_NV) | |
1643 | return 1; | |
1644 | ||
1645 | switch (cond) | |
1646 | { | |
1647 | case INST_EQ: | |
1648 | return ((status_reg & FLAG_Z) != 0); | |
1649 | case INST_NE: | |
1650 | return ((status_reg & FLAG_Z) == 0); | |
1651 | case INST_CS: | |
1652 | return ((status_reg & FLAG_C) != 0); | |
1653 | case INST_CC: | |
1654 | return ((status_reg & FLAG_C) == 0); | |
1655 | case INST_MI: | |
1656 | return ((status_reg & FLAG_N) != 0); | |
1657 | case INST_PL: | |
1658 | return ((status_reg & FLAG_N) == 0); | |
1659 | case INST_VS: | |
1660 | return ((status_reg & FLAG_V) != 0); | |
1661 | case INST_VC: | |
1662 | return ((status_reg & FLAG_V) == 0); | |
1663 | case INST_HI: | |
1664 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
1665 | case INST_LS: | |
1666 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
1667 | case INST_GE: | |
1668 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
1669 | case INST_LT: | |
1670 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
1671 | case INST_GT: | |
1672 | return (((status_reg & FLAG_Z) == 0) && | |
ed9a39eb | 1673 | (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1674 | case INST_LE: |
1675 | return (((status_reg & FLAG_Z) != 0) || | |
ed9a39eb | 1676 | (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1677 | } |
1678 | return 1; | |
1679 | } | |
1680 | ||
9512d7fd | 1681 | /* Support routines for single stepping. Calculate the next PC value. */ |
c906108c SS |
1682 | #define submask(x) ((1L << ((x) + 1)) - 1) |
1683 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
1684 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
1685 | #define sbits(obj,st,fn) \ | |
1686 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
1687 | #define BranchDest(addr,instr) \ | |
1688 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
1689 | #define ARM_PC_32 1 | |
1690 | ||
1691 | static unsigned long | |
ed9a39eb JM |
1692 | shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val, |
1693 | unsigned long status_reg) | |
c906108c SS |
1694 | { |
1695 | unsigned long res, shift; | |
1696 | int rm = bits (inst, 0, 3); | |
1697 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
1698 | |
1699 | if (bit (inst, 4)) | |
c906108c SS |
1700 | { |
1701 | int rs = bits (inst, 8, 11); | |
1702 | shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; | |
1703 | } | |
1704 | else | |
1705 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
1706 | |
1707 | res = (rm == 15 | |
c906108c | 1708 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
c5aa993b | 1709 | + (bit (inst, 4) ? 12 : 8)) |
c906108c SS |
1710 | : read_register (rm)); |
1711 | ||
1712 | switch (shifttype) | |
1713 | { | |
c5aa993b | 1714 | case 0: /* LSL */ |
c906108c SS |
1715 | res = shift >= 32 ? 0 : res << shift; |
1716 | break; | |
c5aa993b JM |
1717 | |
1718 | case 1: /* LSR */ | |
c906108c SS |
1719 | res = shift >= 32 ? 0 : res >> shift; |
1720 | break; | |
1721 | ||
c5aa993b JM |
1722 | case 2: /* ASR */ |
1723 | if (shift >= 32) | |
1724 | shift = 31; | |
c906108c SS |
1725 | res = ((res & 0x80000000L) |
1726 | ? ~((~res) >> shift) : res >> shift); | |
1727 | break; | |
1728 | ||
c5aa993b | 1729 | case 3: /* ROR/RRX */ |
c906108c SS |
1730 | shift &= 31; |
1731 | if (shift == 0) | |
1732 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
1733 | else | |
c5aa993b | 1734 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
1735 | break; |
1736 | } | |
1737 | ||
1738 | return res & 0xffffffff; | |
1739 | } | |
1740 | ||
c906108c SS |
1741 | /* Return number of 1-bits in VAL. */ |
1742 | ||
1743 | static int | |
ed9a39eb | 1744 | bitcount (unsigned long val) |
c906108c SS |
1745 | { |
1746 | int nbits; | |
1747 | for (nbits = 0; val != 0; nbits++) | |
c5aa993b | 1748 | val &= val - 1; /* delete rightmost 1-bit in val */ |
c906108c SS |
1749 | return nbits; |
1750 | } | |
1751 | ||
c906108c | 1752 | static CORE_ADDR |
ed9a39eb | 1753 | thumb_get_next_pc (CORE_ADDR pc) |
c906108c | 1754 | { |
c5aa993b | 1755 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
c906108c | 1756 | unsigned short inst1 = read_memory_integer (pc, 2); |
c5aa993b | 1757 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ |
c906108c SS |
1758 | unsigned long offset; |
1759 | ||
1760 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
1761 | { | |
1762 | CORE_ADDR sp; | |
1763 | ||
1764 | /* Fetch the saved PC from the stack. It's stored above | |
1765 | all of the other registers. */ | |
1766 | offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE; | |
1767 | sp = read_register (SP_REGNUM); | |
1768 | nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4); | |
1769 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1770 | if (nextpc == pc) | |
1771 | error ("Infinite loop detected"); | |
1772 | } | |
1773 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
1774 | { | |
1775 | unsigned long status = read_register (PS_REGNUM); | |
c5aa993b | 1776 | unsigned long cond = bits (inst1, 8, 11); |
c906108c SS |
1777 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ |
1778 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); | |
1779 | } | |
1780 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
1781 | { | |
1782 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
1783 | } | |
1784 | else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */ | |
1785 | { | |
1786 | unsigned short inst2 = read_memory_integer (pc + 2, 2); | |
c5aa993b | 1787 | offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); |
c906108c SS |
1788 | nextpc = pc_val + offset; |
1789 | } | |
1790 | ||
1791 | return nextpc; | |
1792 | } | |
1793 | ||
148754e5 | 1794 | static CORE_ADDR |
ed9a39eb | 1795 | arm_get_next_pc (CORE_ADDR pc) |
c906108c SS |
1796 | { |
1797 | unsigned long pc_val; | |
1798 | unsigned long this_instr; | |
1799 | unsigned long status; | |
1800 | CORE_ADDR nextpc; | |
1801 | ||
1802 | if (arm_pc_is_thumb (pc)) | |
1803 | return thumb_get_next_pc (pc); | |
1804 | ||
1805 | pc_val = (unsigned long) pc; | |
1806 | this_instr = read_memory_integer (pc, 4); | |
1807 | status = read_register (PS_REGNUM); | |
c5aa993b | 1808 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c SS |
1809 | |
1810 | if (condition_true (bits (this_instr, 28, 31), status)) | |
1811 | { | |
1812 | switch (bits (this_instr, 24, 27)) | |
1813 | { | |
c5aa993b JM |
1814 | case 0x0: |
1815 | case 0x1: /* data processing */ | |
1816 | case 0x2: | |
1817 | case 0x3: | |
c906108c SS |
1818 | { |
1819 | unsigned long operand1, operand2, result = 0; | |
1820 | unsigned long rn; | |
1821 | int c; | |
c5aa993b | 1822 | |
c906108c SS |
1823 | if (bits (this_instr, 12, 15) != 15) |
1824 | break; | |
1825 | ||
1826 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 1827 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
c906108c SS |
1828 | error ("Illegal update to pc in instruction"); |
1829 | ||
1830 | /* Multiply into PC */ | |
1831 | c = (status & FLAG_C) ? 1 : 0; | |
1832 | rn = bits (this_instr, 16, 19); | |
1833 | operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); | |
c5aa993b | 1834 | |
c906108c SS |
1835 | if (bit (this_instr, 25)) |
1836 | { | |
1837 | unsigned long immval = bits (this_instr, 0, 7); | |
1838 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
1839 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
1840 | & 0xffffffff; | |
c906108c | 1841 | } |
c5aa993b | 1842 | else /* operand 2 is a shifted register */ |
c906108c | 1843 | operand2 = shifted_reg_val (this_instr, c, pc_val, status); |
c5aa993b | 1844 | |
c906108c SS |
1845 | switch (bits (this_instr, 21, 24)) |
1846 | { | |
c5aa993b | 1847 | case 0x0: /*and */ |
c906108c SS |
1848 | result = operand1 & operand2; |
1849 | break; | |
1850 | ||
c5aa993b | 1851 | case 0x1: /*eor */ |
c906108c SS |
1852 | result = operand1 ^ operand2; |
1853 | break; | |
1854 | ||
c5aa993b | 1855 | case 0x2: /*sub */ |
c906108c SS |
1856 | result = operand1 - operand2; |
1857 | break; | |
1858 | ||
c5aa993b | 1859 | case 0x3: /*rsb */ |
c906108c SS |
1860 | result = operand2 - operand1; |
1861 | break; | |
1862 | ||
c5aa993b | 1863 | case 0x4: /*add */ |
c906108c SS |
1864 | result = operand1 + operand2; |
1865 | break; | |
1866 | ||
c5aa993b | 1867 | case 0x5: /*adc */ |
c906108c SS |
1868 | result = operand1 + operand2 + c; |
1869 | break; | |
1870 | ||
c5aa993b | 1871 | case 0x6: /*sbc */ |
c906108c SS |
1872 | result = operand1 - operand2 + c; |
1873 | break; | |
1874 | ||
c5aa993b | 1875 | case 0x7: /*rsc */ |
c906108c SS |
1876 | result = operand2 - operand1 + c; |
1877 | break; | |
1878 | ||
c5aa993b JM |
1879 | case 0x8: |
1880 | case 0x9: | |
1881 | case 0xa: | |
1882 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
1883 | result = (unsigned long) nextpc; |
1884 | break; | |
1885 | ||
c5aa993b | 1886 | case 0xc: /*orr */ |
c906108c SS |
1887 | result = operand1 | operand2; |
1888 | break; | |
1889 | ||
c5aa993b | 1890 | case 0xd: /*mov */ |
c906108c SS |
1891 | /* Always step into a function. */ |
1892 | result = operand2; | |
c5aa993b | 1893 | break; |
c906108c | 1894 | |
c5aa993b | 1895 | case 0xe: /*bic */ |
c906108c SS |
1896 | result = operand1 & ~operand2; |
1897 | break; | |
1898 | ||
c5aa993b | 1899 | case 0xf: /*mvn */ |
c906108c SS |
1900 | result = ~operand2; |
1901 | break; | |
1902 | } | |
1903 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1904 | ||
1905 | if (nextpc == pc) | |
1906 | error ("Infinite loop detected"); | |
1907 | break; | |
1908 | } | |
c5aa993b JM |
1909 | |
1910 | case 0x4: | |
1911 | case 0x5: /* data transfer */ | |
1912 | case 0x6: | |
1913 | case 0x7: | |
c906108c SS |
1914 | if (bit (this_instr, 20)) |
1915 | { | |
1916 | /* load */ | |
1917 | if (bits (this_instr, 12, 15) == 15) | |
1918 | { | |
1919 | /* rd == pc */ | |
c5aa993b | 1920 | unsigned long rn; |
c906108c | 1921 | unsigned long base; |
c5aa993b | 1922 | |
c906108c SS |
1923 | if (bit (this_instr, 22)) |
1924 | error ("Illegal update to pc in instruction"); | |
1925 | ||
1926 | /* byte write to PC */ | |
1927 | rn = bits (this_instr, 16, 19); | |
1928 | base = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1929 | if (bit (this_instr, 24)) | |
1930 | { | |
1931 | /* pre-indexed */ | |
1932 | int c = (status & FLAG_C) ? 1 : 0; | |
1933 | unsigned long offset = | |
c5aa993b | 1934 | (bit (this_instr, 25) |
ed9a39eb | 1935 | ? shifted_reg_val (this_instr, c, pc_val, status) |
c5aa993b | 1936 | : bits (this_instr, 0, 11)); |
c906108c SS |
1937 | |
1938 | if (bit (this_instr, 23)) | |
1939 | base += offset; | |
1940 | else | |
1941 | base -= offset; | |
1942 | } | |
c5aa993b | 1943 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
c906108c | 1944 | 4); |
c5aa993b | 1945 | |
c906108c SS |
1946 | nextpc = ADDR_BITS_REMOVE (nextpc); |
1947 | ||
1948 | if (nextpc == pc) | |
1949 | error ("Infinite loop detected"); | |
1950 | } | |
1951 | } | |
1952 | break; | |
c5aa993b JM |
1953 | |
1954 | case 0x8: | |
1955 | case 0x9: /* block transfer */ | |
c906108c SS |
1956 | if (bit (this_instr, 20)) |
1957 | { | |
1958 | /* LDM */ | |
1959 | if (bit (this_instr, 15)) | |
1960 | { | |
1961 | /* loading pc */ | |
1962 | int offset = 0; | |
1963 | ||
1964 | if (bit (this_instr, 23)) | |
1965 | { | |
1966 | /* up */ | |
1967 | unsigned long reglist = bits (this_instr, 0, 14); | |
1968 | offset = bitcount (reglist) * 4; | |
c5aa993b | 1969 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
1970 | offset += 4; |
1971 | } | |
1972 | else if (bit (this_instr, 24)) | |
1973 | offset = -4; | |
c5aa993b | 1974 | |
c906108c | 1975 | { |
c5aa993b JM |
1976 | unsigned long rn_val = |
1977 | read_register (bits (this_instr, 16, 19)); | |
c906108c SS |
1978 | nextpc = |
1979 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 1980 | + offset), |
c906108c SS |
1981 | 4); |
1982 | } | |
1983 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1984 | if (nextpc == pc) | |
1985 | error ("Infinite loop detected"); | |
1986 | } | |
1987 | } | |
1988 | break; | |
c5aa993b JM |
1989 | |
1990 | case 0xb: /* branch & link */ | |
1991 | case 0xa: /* branch */ | |
c906108c SS |
1992 | { |
1993 | nextpc = BranchDest (pc, this_instr); | |
1994 | ||
1995 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1996 | if (nextpc == pc) | |
1997 | error ("Infinite loop detected"); | |
1998 | break; | |
1999 | } | |
c5aa993b JM |
2000 | |
2001 | case 0xc: | |
2002 | case 0xd: | |
2003 | case 0xe: /* coproc ops */ | |
2004 | case 0xf: /* SWI */ | |
c906108c SS |
2005 | break; |
2006 | ||
2007 | default: | |
2008 | fprintf (stderr, "Bad bit-field extraction\n"); | |
2009 | return (pc); | |
2010 | } | |
2011 | } | |
2012 | ||
2013 | return nextpc; | |
2014 | } | |
2015 | ||
9512d7fd FN |
2016 | /* single_step() is called just before we want to resume the inferior, |
2017 | if we want to single-step it but there is no hardware or kernel | |
2018 | single-step support. We find the target of the coming instruction | |
2019 | and breakpoint it. | |
2020 | ||
2021 | single_step is also called just after the inferior stops. If we had | |
2022 | set up a simulated single-step, we undo our damage. */ | |
2023 | ||
2024 | void | |
039c5766 | 2025 | arm_software_single_step (int ignore, int insert_bpt) |
9512d7fd FN |
2026 | { |
2027 | static int next_pc; /* State between setting and unsetting. */ | |
2028 | static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */ | |
2029 | ||
2030 | if (insert_bpt) | |
2031 | { | |
2032 | next_pc = arm_get_next_pc (read_register (PC_REGNUM)); | |
80fcf3f0 | 2033 | target_insert_breakpoint (next_pc, break_mem); |
9512d7fd FN |
2034 | } |
2035 | else | |
80fcf3f0 | 2036 | target_remove_breakpoint (next_pc, break_mem); |
9512d7fd | 2037 | } |
9512d7fd | 2038 | |
c906108c SS |
2039 | #include "bfd-in2.h" |
2040 | #include "libcoff.h" | |
2041 | ||
2042 | static int | |
ed9a39eb | 2043 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
2044 | { |
2045 | if (arm_pc_is_thumb (memaddr)) | |
2046 | { | |
c5aa993b JM |
2047 | static asymbol *asym; |
2048 | static combined_entry_type ce; | |
2049 | static struct coff_symbol_struct csym; | |
2050 | static struct _bfd fake_bfd; | |
2051 | static bfd_target fake_target; | |
c906108c SS |
2052 | |
2053 | if (csym.native == NULL) | |
2054 | { | |
2055 | /* Create a fake symbol vector containing a Thumb symbol. This is | |
2056 | solely so that the code in print_insn_little_arm() and | |
2057 | print_insn_big_arm() in opcodes/arm-dis.c will detect the presence | |
2058 | of a Thumb symbol and switch to decoding Thumb instructions. */ | |
c5aa993b JM |
2059 | |
2060 | fake_target.flavour = bfd_target_coff_flavour; | |
2061 | fake_bfd.xvec = &fake_target; | |
c906108c | 2062 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; |
c5aa993b JM |
2063 | csym.native = &ce; |
2064 | csym.symbol.the_bfd = &fake_bfd; | |
2065 | csym.symbol.name = "fake"; | |
2066 | asym = (asymbol *) & csym; | |
c906108c | 2067 | } |
c5aa993b | 2068 | |
c906108c | 2069 | memaddr = UNMAKE_THUMB_ADDR (memaddr); |
c5aa993b | 2070 | info->symbols = &asym; |
c906108c SS |
2071 | } |
2072 | else | |
2073 | info->symbols = NULL; | |
c5aa993b | 2074 | |
d7449b42 | 2075 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
2076 | return print_insn_big_arm (memaddr, info); |
2077 | else | |
2078 | return print_insn_little_arm (memaddr, info); | |
2079 | } | |
2080 | ||
ed9a39eb JM |
2081 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the |
2082 | program counter value to determine whether a 16-bit or 32-bit | |
2083 | breakpoint should be used. It returns a pointer to a string of | |
2084 | bytes that encode a breakpoint instruction, stores the length of | |
2085 | the string to *lenptr, and adjusts the program counter (if | |
2086 | necessary) to point to the actual memory location where the | |
c906108c SS |
2087 | breakpoint should be inserted. */ |
2088 | ||
2089 | unsigned char * | |
ed9a39eb | 2090 | arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
c906108c SS |
2091 | { |
2092 | if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr)) | |
2093 | { | |
d7449b42 | 2094 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c5aa993b JM |
2095 | { |
2096 | static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT; | |
2097 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
2098 | *lenptr = sizeof (thumb_breakpoint); | |
2099 | return thumb_breakpoint; | |
2100 | } | |
c906108c | 2101 | else |
c5aa993b JM |
2102 | { |
2103 | static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT; | |
2104 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
2105 | *lenptr = sizeof (thumb_breakpoint); | |
2106 | return thumb_breakpoint; | |
2107 | } | |
c906108c SS |
2108 | } |
2109 | else | |
2110 | { | |
d7449b42 | 2111 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c5aa993b JM |
2112 | { |
2113 | static char arm_breakpoint[] = ARM_BE_BREAKPOINT; | |
2114 | *lenptr = sizeof (arm_breakpoint); | |
2115 | return arm_breakpoint; | |
2116 | } | |
c906108c | 2117 | else |
c5aa993b JM |
2118 | { |
2119 | static char arm_breakpoint[] = ARM_LE_BREAKPOINT; | |
2120 | *lenptr = sizeof (arm_breakpoint); | |
2121 | return arm_breakpoint; | |
2122 | } | |
c906108c SS |
2123 | } |
2124 | } | |
ed9a39eb JM |
2125 | |
2126 | /* Extract from an array REGBUF containing the (raw) register state a | |
2127 | function return value of type TYPE, and copy that, in virtual | |
2128 | format, into VALBUF. */ | |
2129 | ||
2130 | void | |
2131 | arm_extract_return_value (struct type *type, | |
2132 | char regbuf[REGISTER_BYTES], | |
2133 | char *valbuf) | |
2134 | { | |
2135 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
2136 | convert_from_extended (®buf[REGISTER_BYTE (F0_REGNUM)], valbuf); | |
2137 | else | |
2138 | memcpy (valbuf, ®buf[REGISTER_BYTE (A1_REGNUM)], TYPE_LENGTH (type)); | |
2139 | } | |
2140 | ||
2141 | /* Return non-zero if the PC is inside a thumb call thunk. */ | |
c906108c SS |
2142 | |
2143 | int | |
ed9a39eb | 2144 | arm_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
2145 | { |
2146 | CORE_ADDR start_addr; | |
2147 | ||
ed9a39eb JM |
2148 | /* Find the starting address of the function containing the PC. If |
2149 | the caller didn't give us a name, look it up at the same time. */ | |
c906108c SS |
2150 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) |
2151 | return 0; | |
2152 | ||
2153 | return strncmp (name, "_call_via_r", 11) == 0; | |
2154 | } | |
2155 | ||
ed9a39eb JM |
2156 | /* If PC is in a Thumb call or return stub, return the address of the |
2157 | target PC, which is in a register. The thunk functions are called | |
2158 | _called_via_xx, where x is the register name. The possible names | |
2159 | are r0-r9, sl, fp, ip, sp, and lr. */ | |
c906108c SS |
2160 | |
2161 | CORE_ADDR | |
ed9a39eb | 2162 | arm_skip_stub (CORE_ADDR pc) |
c906108c | 2163 | { |
c5aa993b | 2164 | char *name; |
c906108c SS |
2165 | CORE_ADDR start_addr; |
2166 | ||
2167 | /* Find the starting address and name of the function containing the PC. */ | |
2168 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
2169 | return 0; | |
2170 | ||
2171 | /* Call thunks always start with "_call_via_". */ | |
2172 | if (strncmp (name, "_call_via_", 10) == 0) | |
2173 | { | |
ed9a39eb JM |
2174 | /* Use the name suffix to determine which register contains the |
2175 | target PC. */ | |
c5aa993b JM |
2176 | static char *table[15] = |
2177 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
2178 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
2179 | }; | |
c906108c SS |
2180 | int regno; |
2181 | ||
2182 | for (regno = 0; regno <= 14; regno++) | |
2183 | if (strcmp (&name[10], table[regno]) == 0) | |
2184 | return read_register (regno); | |
2185 | } | |
ed9a39eb | 2186 | |
c5aa993b | 2187 | return 0; /* not a stub */ |
c906108c SS |
2188 | } |
2189 | ||
bc90b915 FN |
2190 | /* If the user changes the register disassembly flavor used for info register |
2191 | and other commands, we have to also switch the flavor used in opcodes | |
2192 | for disassembly output. | |
2193 | This function is run in the set disassembly_flavor command, and does that. */ | |
2194 | ||
2195 | static void | |
2196 | set_disassembly_flavor_sfunc (char *args, int from_tty, | |
2197 | struct cmd_list_element *c) | |
2198 | { | |
2199 | set_disassembly_flavor (); | |
2200 | } | |
2201 | \f | |
966fbf70 RE |
2202 | /* Return the ARM register name corresponding to register I. */ |
2203 | char * | |
2204 | arm_register_name(int i) | |
2205 | { | |
2206 | return arm_register_names[i]; | |
2207 | } | |
2208 | ||
bc90b915 FN |
2209 | static void |
2210 | set_disassembly_flavor (void) | |
2211 | { | |
2212 | const char *setname, *setdesc, **regnames; | |
2213 | int numregs, j; | |
2214 | ||
2215 | /* Find the flavor that the user wants in the opcodes table. */ | |
2216 | int current = 0; | |
2217 | numregs = get_arm_regnames (current, &setname, &setdesc, ®names); | |
2218 | while ((disassembly_flavor != setname) | |
2219 | && (current < num_flavor_options)) | |
2220 | get_arm_regnames (++current, &setname, &setdesc, ®names); | |
2221 | current_option = current; | |
2222 | ||
2223 | /* Fill our copy. */ | |
2224 | for (j = 0; j < numregs; j++) | |
2225 | arm_register_names[j] = (char *) regnames[j]; | |
2226 | ||
2227 | /* Adjust case. */ | |
2228 | if (isupper (*regnames[PC_REGNUM])) | |
2229 | { | |
2230 | arm_register_names[FPS_REGNUM] = "FPS"; | |
2231 | arm_register_names[PS_REGNUM] = "CPSR"; | |
2232 | } | |
2233 | else | |
2234 | { | |
2235 | arm_register_names[FPS_REGNUM] = "fps"; | |
2236 | arm_register_names[PS_REGNUM] = "cpsr"; | |
2237 | } | |
2238 | ||
2239 | /* Synchronize the disassembler. */ | |
2240 | set_arm_regname_option (current); | |
2241 | } | |
2242 | ||
2243 | /* arm_othernames implements the "othernames" command. This is kind | |
2244 | of hacky, and I prefer the set-show disassembly-flavor which is | |
2245 | also used for the x86 gdb. I will keep this around, however, in | |
2246 | case anyone is actually using it. */ | |
2247 | ||
2248 | static void | |
2249 | arm_othernames (char *names, int n) | |
2250 | { | |
2251 | /* Circle through the various flavors. */ | |
2252 | current_option = (current_option + 1) % num_flavor_options; | |
2253 | ||
2254 | disassembly_flavor = valid_flavors[current_option]; | |
2255 | set_disassembly_flavor (); | |
2256 | } | |
2257 | ||
a42dd537 KB |
2258 | /* Fetch, and possibly build, an appropriate link_map_offsets structure |
2259 | for ARM linux targets using the struct offsets defined in <link.h>. | |
2260 | Note, however, that link.h is not actually referred to in this file. | |
2261 | Instead, the relevant structs offsets were obtained from examining | |
2262 | link.h. (We can't refer to link.h from this file because the host | |
2263 | system won't necessarily have it, or if it does, the structs which | |
2264 | it defines will refer to the host system, not the target.) */ | |
2265 | ||
2266 | struct link_map_offsets * | |
2267 | arm_linux_svr4_fetch_link_map_offsets (void) | |
2268 | { | |
2269 | static struct link_map_offsets lmo; | |
2270 | static struct link_map_offsets *lmp = 0; | |
2271 | ||
2272 | if (lmp == 0) | |
2273 | { | |
2274 | lmp = &lmo; | |
2275 | ||
2276 | lmo.r_debug_size = 8; /* Actual size is 20, but this is all we | |
2277 | need. */ | |
2278 | ||
2279 | lmo.r_map_offset = 4; | |
2280 | lmo.r_map_size = 4; | |
2281 | ||
2282 | lmo.link_map_size = 20; /* Actual size is 552, but this is all we | |
2283 | need. */ | |
2284 | ||
2285 | lmo.l_addr_offset = 0; | |
2286 | lmo.l_addr_size = 4; | |
2287 | ||
2288 | lmo.l_name_offset = 4; | |
2289 | lmo.l_name_size = 4; | |
2290 | ||
2291 | lmo.l_next_offset = 12; | |
2292 | lmo.l_next_size = 4; | |
2293 | ||
2294 | lmo.l_prev_offset = 16; | |
2295 | lmo.l_prev_size = 4; | |
2296 | } | |
2297 | ||
2298 | return lmp; | |
2299 | } | |
2300 | ||
082fc60d RE |
2301 | /* Test whether the coff symbol specific value corresponds to a Thumb |
2302 | function. */ | |
2303 | ||
2304 | static int | |
2305 | coff_sym_is_thumb (int val) | |
2306 | { | |
2307 | return (val == C_THUMBEXT || | |
2308 | val == C_THUMBSTAT || | |
2309 | val == C_THUMBEXTFUNC || | |
2310 | val == C_THUMBSTATFUNC || | |
2311 | val == C_THUMBLABEL); | |
2312 | } | |
2313 | ||
2314 | /* arm_coff_make_msymbol_special() | |
2315 | arm_elf_make_msymbol_special() | |
2316 | ||
2317 | These functions test whether the COFF or ELF symbol corresponds to | |
2318 | an address in thumb code, and set a "special" bit in a minimal | |
2319 | symbol to indicate that it does. */ | |
2320 | ||
2321 | void | |
2322 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) | |
2323 | { | |
2324 | /* Thumb symbols are of type STT_LOPROC, (synonymous with | |
2325 | STT_ARM_TFUNC). */ | |
2326 | if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info) | |
2327 | == STT_LOPROC) | |
2328 | MSYMBOL_SET_SPECIAL (msym); | |
2329 | } | |
2330 | ||
2331 | void | |
2332 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) | |
2333 | { | |
2334 | if (coff_sym_is_thumb (val)) | |
2335 | MSYMBOL_SET_SPECIAL (msym); | |
2336 | } | |
2337 | ||
39bbf761 RE |
2338 | static struct gdbarch * |
2339 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2340 | { | |
2341 | struct gdbarch *gdbarch; | |
2342 | ||
2343 | if (arches != NULL) | |
2344 | return arches->gdbarch; | |
2345 | ||
2346 | /* XXX We'll probably need to set the tdep field soon. */ | |
2347 | gdbarch = gdbarch_alloc (&info, NULL); | |
2348 | ||
2349 | set_gdbarch_use_generic_dummy_frames (gdbarch, 0); | |
2350 | ||
2351 | /* Call dummy code. */ | |
2352 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | |
2353 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
2354 | set_gdbarch_call_dummy_p (gdbarch, 1); | |
2355 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
2356 | ||
2357 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack); | |
2358 | ||
2359 | set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); | |
2360 | set_gdbarch_push_arguments (gdbarch, arm_push_arguments); | |
2361 | ||
148754e5 | 2362 | /* Frame handling. */ |
39bbf761 | 2363 | set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid); |
148754e5 RE |
2364 | set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info); |
2365 | set_gdbarch_read_fp (gdbarch, arm_read_fp); | |
2366 | set_gdbarch_frame_chain (gdbarch, arm_frame_chain); | |
2367 | set_gdbarch_frameless_function_invocation | |
2368 | (gdbarch, arm_frameless_function_invocation); | |
2369 | set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc); | |
2370 | set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address); | |
2371 | set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address); | |
2372 | set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args); | |
2373 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
2374 | set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs); | |
2375 | set_gdbarch_push_dummy_frame (gdbarch, arm_push_dummy_frame); | |
2376 | set_gdbarch_pop_frame (gdbarch, arm_pop_frame); | |
2377 | ||
39bbf761 RE |
2378 | |
2379 | return gdbarch; | |
2380 | } | |
2381 | ||
c906108c | 2382 | void |
ed9a39eb | 2383 | _initialize_arm_tdep (void) |
c906108c | 2384 | { |
bc90b915 FN |
2385 | struct ui_file *stb; |
2386 | long length; | |
96baa820 | 2387 | struct cmd_list_element *new_cmd; |
53904c9e AC |
2388 | const char *setname; |
2389 | const char *setdesc; | |
2390 | const char **regnames; | |
bc90b915 FN |
2391 | int numregs, i, j; |
2392 | static char *helptext; | |
085dd6e6 | 2393 | |
39bbf761 RE |
2394 | if (GDB_MULTI_ARCH) |
2395 | register_gdbarch_init (bfd_arch_arm, arm_gdbarch_init); | |
2396 | ||
c906108c | 2397 | tm_print_insn = gdb_print_insn_arm; |
ed9a39eb | 2398 | |
bc90b915 FN |
2399 | /* Get the number of possible sets of register names defined in opcodes. */ |
2400 | num_flavor_options = get_arm_regname_num_options (); | |
2401 | ||
085dd6e6 | 2402 | /* Sync the opcode insn printer with our register viewer: */ |
bc90b915 | 2403 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 2404 | |
bc90b915 FN |
2405 | /* Begin creating the help text. */ |
2406 | stb = mem_fileopen (); | |
2407 | fprintf_unfiltered (stb, "Set the disassembly flavor.\n\ | |
2408 | The valid values are:\n"); | |
ed9a39eb | 2409 | |
bc90b915 FN |
2410 | /* Initialize the array that will be passed to add_set_enum_cmd(). */ |
2411 | valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *)); | |
2412 | for (i = 0; i < num_flavor_options; i++) | |
2413 | { | |
2414 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
53904c9e | 2415 | valid_flavors[i] = setname; |
bc90b915 FN |
2416 | fprintf_unfiltered (stb, "%s - %s\n", setname, |
2417 | setdesc); | |
2418 | /* Copy the default names (if found) and synchronize disassembler. */ | |
2419 | if (!strcmp (setname, "std")) | |
2420 | { | |
53904c9e | 2421 | disassembly_flavor = setname; |
bc90b915 FN |
2422 | current_option = i; |
2423 | for (j = 0; j < numregs; j++) | |
2424 | arm_register_names[j] = (char *) regnames[j]; | |
2425 | set_arm_regname_option (i); | |
2426 | } | |
2427 | } | |
2428 | /* Mark the end of valid options. */ | |
2429 | valid_flavors[num_flavor_options] = NULL; | |
c906108c | 2430 | |
bc90b915 FN |
2431 | /* Finish the creation of the help text. */ |
2432 | fprintf_unfiltered (stb, "The default is \"std\"."); | |
2433 | helptext = ui_file_xstrdup (stb, &length); | |
2434 | ui_file_delete (stb); | |
ed9a39eb | 2435 | |
bc90b915 | 2436 | /* Add the disassembly-flavor command */ |
96baa820 | 2437 | new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, |
ed9a39eb | 2438 | valid_flavors, |
1ed2a135 | 2439 | &disassembly_flavor, |
bc90b915 | 2440 | helptext, |
ed9a39eb | 2441 | &setlist); |
9f60d481 | 2442 | set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc); |
ed9a39eb JM |
2443 | add_show_from_set (new_cmd, &showlist); |
2444 | ||
c906108c SS |
2445 | /* ??? Maybe this should be a boolean. */ |
2446 | add_show_from_set (add_set_cmd ("apcs32", no_class, | |
ed9a39eb | 2447 | var_zinteger, (char *) &arm_apcs_32, |
96baa820 | 2448 | "Set usage of ARM 32-bit mode.\n", &setlist), |
ed9a39eb | 2449 | &showlist); |
c906108c | 2450 | |
bc90b915 FN |
2451 | /* Add the deprecated "othernames" command */ |
2452 | ||
2453 | add_com ("othernames", class_obscure, arm_othernames, | |
2454 | "Switch to the next set of register names."); | |
c3b4394c RE |
2455 | |
2456 | /* Fill in the prologue_cache fields. */ | |
2457 | prologue_cache.extra_info = (struct frame_extra_info *) | |
2458 | xcalloc (1, sizeof (struct frame_extra_info)); | |
2459 | prologue_cache.saved_regs = (CORE_ADDR *) | |
2460 | xcalloc (1, SIZEOF_FRAME_SAVED_REGS); | |
c906108c | 2461 | } |