]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
1e698235 | 4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
c906108c SS |
5 | |
6 | Contributed by the Center for Software Science at the | |
7 | University of Utah ([email protected]). | |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b JM |
21 | You should have received a copy of the GNU General Public License |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 59 Temple Place - Suite 330, | |
24 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
25 | |
26 | #include "defs.h" | |
27 | #include "frame.h" | |
28 | #include "bfd.h" | |
29 | #include "inferior.h" | |
30 | #include "value.h" | |
4e052eda | 31 | #include "regcache.h" |
e5d66720 | 32 | #include "completer.h" |
d709c020 | 33 | #include "language.h" |
59623e27 | 34 | #include "osabi.h" |
a7ff40e7 | 35 | #include "gdb_assert.h" |
65e82032 | 36 | #include "infttrace.h" |
c906108c SS |
37 | /* For argument passing to the inferior */ |
38 | #include "symtab.h" | |
39 | ||
40 | #ifdef USG | |
41 | #include <sys/types.h> | |
42 | #endif | |
43 | ||
44 | #include <dl.h> | |
45 | #include <sys/param.h> | |
46 | #include <signal.h> | |
47 | ||
48 | #include <sys/ptrace.h> | |
49 | #include <machine/save_state.h> | |
50 | ||
51 | #ifdef COFF_ENCAPSULATE | |
52 | #include "a.out.encap.h" | |
53 | #else | |
54 | #endif | |
55 | ||
c5aa993b | 56 | /*#include <sys/user.h> After a.out.h */ |
c906108c SS |
57 | #include <sys/file.h> |
58 | #include "gdb_stat.h" | |
03f2053f | 59 | #include "gdb_wait.h" |
c906108c SS |
60 | |
61 | #include "gdbcore.h" | |
62 | #include "gdbcmd.h" | |
63 | #include "target.h" | |
64 | #include "symfile.h" | |
65 | #include "objfiles.h" | |
66 | ||
60383d10 JB |
67 | /* Some local constants. */ |
68 | static const int hppa_num_regs = 128; | |
69 | ||
c906108c SS |
70 | /* To support detection of the pseudo-initial frame |
71 | that threads have. */ | |
72 | #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" | |
73 | #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) | |
c5aa993b | 74 | |
a14ed312 | 75 | static int extract_5_load (unsigned int); |
c906108c | 76 | |
a14ed312 | 77 | static unsigned extract_5R_store (unsigned int); |
c906108c | 78 | |
a14ed312 | 79 | static unsigned extract_5r_store (unsigned int); |
c906108c | 80 | |
43bd9a9e | 81 | static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *); |
c906108c | 82 | |
a14ed312 | 83 | static int find_proc_framesize (CORE_ADDR); |
c906108c | 84 | |
a14ed312 | 85 | static int find_return_regnum (CORE_ADDR); |
c906108c | 86 | |
a14ed312 | 87 | struct unwind_table_entry *find_unwind_entry (CORE_ADDR); |
c906108c | 88 | |
a14ed312 | 89 | static int extract_17 (unsigned int); |
c906108c | 90 | |
a14ed312 | 91 | static unsigned deposit_21 (unsigned int, unsigned int); |
c906108c | 92 | |
a14ed312 | 93 | static int extract_21 (unsigned); |
c906108c | 94 | |
a14ed312 | 95 | static unsigned deposit_14 (int, unsigned int); |
c906108c | 96 | |
a14ed312 | 97 | static int extract_14 (unsigned); |
c906108c | 98 | |
a14ed312 | 99 | static void unwind_command (char *, int); |
c906108c | 100 | |
a14ed312 | 101 | static int low_sign_extend (unsigned int, unsigned int); |
c906108c | 102 | |
a14ed312 | 103 | static int sign_extend (unsigned int, unsigned int); |
c906108c | 104 | |
43bd9a9e | 105 | static int restore_pc_queue (CORE_ADDR *); |
c906108c | 106 | |
a14ed312 | 107 | static int hppa_alignof (struct type *); |
c906108c SS |
108 | |
109 | /* To support multi-threading and stepping. */ | |
a14ed312 | 110 | int hppa_prepare_to_proceed (); |
c906108c | 111 | |
a14ed312 | 112 | static int prologue_inst_adjust_sp (unsigned long); |
c906108c | 113 | |
a14ed312 | 114 | static int is_branch (unsigned long); |
c906108c | 115 | |
a14ed312 | 116 | static int inst_saves_gr (unsigned long); |
c906108c | 117 | |
a14ed312 | 118 | static int inst_saves_fr (unsigned long); |
c906108c | 119 | |
a14ed312 | 120 | static int pc_in_interrupt_handler (CORE_ADDR); |
c906108c | 121 | |
a14ed312 | 122 | static int pc_in_linker_stub (CORE_ADDR); |
c906108c | 123 | |
a14ed312 | 124 | static int compare_unwind_entries (const void *, const void *); |
c906108c | 125 | |
a14ed312 | 126 | static void read_unwind_info (struct objfile *); |
c906108c | 127 | |
a14ed312 KB |
128 | static void internalize_unwinds (struct objfile *, |
129 | struct unwind_table_entry *, | |
130 | asection *, unsigned int, | |
131 | unsigned int, CORE_ADDR); | |
132 | static void pa_print_registers (char *, int, int); | |
d9fcf2fb | 133 | static void pa_strcat_registers (char *, int, int, struct ui_file *); |
a14ed312 KB |
134 | static void pa_register_look_aside (char *, int, long *); |
135 | static void pa_print_fp_reg (int); | |
d9fcf2fb | 136 | static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type); |
a14ed312 | 137 | static void record_text_segment_lowaddr (bfd *, asection *, void *); |
d709c020 JB |
138 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
139 | following functions static, once we hppa is partially multiarched. */ | |
140 | int hppa_reg_struct_has_addr (int gcc_p, struct type *type); | |
60383d10 JB |
141 | CORE_ADDR hppa_skip_prologue (CORE_ADDR pc); |
142 | CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc); | |
143 | int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name); | |
144 | int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name); | |
145 | CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame); | |
d709c020 JB |
146 | int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs); |
147 | CORE_ADDR hppa_stack_align (CORE_ADDR sp); | |
148 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); | |
149 | int hppa_instruction_nullified (void); | |
60e1ff27 | 150 | int hppa_register_raw_size (int reg_nr); |
d709c020 JB |
151 | int hppa_register_byte (int reg_nr); |
152 | struct type * hppa_register_virtual_type (int reg_nr); | |
153 | void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp); | |
60383d10 JB |
154 | void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf); |
155 | int hppa_use_struct_convention (int gcc_p, struct type *type); | |
156 | void hppa_store_return_value (struct type *type, char *valbuf); | |
157 | CORE_ADDR hppa_extract_struct_value_address (char *regbuf); | |
d709c020 | 158 | int hppa_cannot_store_register (int regnum); |
60383d10 JB |
159 | void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame); |
160 | CORE_ADDR hppa_frame_chain (struct frame_info *frame); | |
161 | int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe); | |
162 | int hppa_frameless_function_invocation (struct frame_info *frame); | |
163 | CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame); | |
d709c020 JB |
164 | CORE_ADDR hppa_frame_args_address (struct frame_info *fi); |
165 | CORE_ADDR hppa_frame_locals_address (struct frame_info *fi); | |
60383d10 | 166 | int hppa_frame_num_args (struct frame_info *frame); |
7daf4f5b | 167 | void hppa_push_dummy_frame (void); |
60383d10 JB |
168 | void hppa_pop_frame (void); |
169 | CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, | |
170 | int nargs, struct value **args, | |
171 | struct type *type, int gcc_p); | |
172 | CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
173 | int struct_return, CORE_ADDR struct_addr); | |
d709c020 | 174 | CORE_ADDR hppa_smash_text_address (CORE_ADDR addr); |
60383d10 JB |
175 | CORE_ADDR hppa_target_read_pc (ptid_t ptid); |
176 | void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid); | |
177 | CORE_ADDR hppa_target_read_fp (void); | |
c906108c | 178 | |
c5aa993b JM |
179 | typedef struct |
180 | { | |
181 | struct minimal_symbol *msym; | |
182 | CORE_ADDR solib_handle; | |
a0b3c4fd | 183 | CORE_ADDR return_val; |
c5aa993b JM |
184 | } |
185 | args_for_find_stub; | |
c906108c | 186 | |
4efb68b1 | 187 | static int cover_find_stub_with_shl_get (void *); |
c906108c | 188 | |
c5aa993b | 189 | static int is_pa_2 = 0; /* False */ |
c906108c | 190 | |
c5aa993b | 191 | /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */ |
c906108c SS |
192 | extern int hp_som_som_object_present; |
193 | ||
194 | /* In breakpoint.c */ | |
195 | extern int exception_catchpoints_are_fragile; | |
196 | ||
c906108c | 197 | /* Should call_function allocate stack space for a struct return? */ |
d709c020 | 198 | |
c906108c | 199 | int |
fba45db2 | 200 | hppa_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 201 | { |
104c1213 | 202 | return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE); |
c906108c | 203 | } |
c906108c | 204 | \f |
c5aa993b | 205 | |
c906108c SS |
206 | /* Routines to extract various sized constants out of hppa |
207 | instructions. */ | |
208 | ||
209 | /* This assumes that no garbage lies outside of the lower bits of | |
210 | value. */ | |
211 | ||
212 | static int | |
fba45db2 | 213 | sign_extend (unsigned val, unsigned bits) |
c906108c | 214 | { |
c5aa993b | 215 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
216 | } |
217 | ||
218 | /* For many immediate values the sign bit is the low bit! */ | |
219 | ||
220 | static int | |
fba45db2 | 221 | low_sign_extend (unsigned val, unsigned bits) |
c906108c | 222 | { |
c5aa993b | 223 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
224 | } |
225 | ||
226 | /* extract the immediate field from a ld{bhw}s instruction */ | |
227 | ||
c906108c | 228 | static int |
fba45db2 | 229 | extract_5_load (unsigned word) |
c906108c SS |
230 | { |
231 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
232 | } | |
233 | ||
c906108c SS |
234 | /* extract the immediate field from a break instruction */ |
235 | ||
236 | static unsigned | |
fba45db2 | 237 | extract_5r_store (unsigned word) |
c906108c SS |
238 | { |
239 | return (word & MASK_5); | |
240 | } | |
241 | ||
242 | /* extract the immediate field from a {sr}sm instruction */ | |
243 | ||
244 | static unsigned | |
fba45db2 | 245 | extract_5R_store (unsigned word) |
c906108c SS |
246 | { |
247 | return (word >> 16 & MASK_5); | |
248 | } | |
249 | ||
c906108c SS |
250 | /* extract a 14 bit immediate field */ |
251 | ||
252 | static int | |
fba45db2 | 253 | extract_14 (unsigned word) |
c906108c SS |
254 | { |
255 | return low_sign_extend (word & MASK_14, 14); | |
256 | } | |
257 | ||
258 | /* deposit a 14 bit constant in a word */ | |
259 | ||
260 | static unsigned | |
fba45db2 | 261 | deposit_14 (int opnd, unsigned word) |
c906108c SS |
262 | { |
263 | unsigned sign = (opnd < 0 ? 1 : 0); | |
264 | ||
c5aa993b | 265 | return word | ((unsigned) opnd << 1 & MASK_14) | sign; |
c906108c SS |
266 | } |
267 | ||
268 | /* extract a 21 bit constant */ | |
269 | ||
270 | static int | |
fba45db2 | 271 | extract_21 (unsigned word) |
c906108c SS |
272 | { |
273 | int val; | |
274 | ||
275 | word &= MASK_21; | |
276 | word <<= 11; | |
277 | val = GET_FIELD (word, 20, 20); | |
278 | val <<= 11; | |
279 | val |= GET_FIELD (word, 9, 19); | |
280 | val <<= 2; | |
281 | val |= GET_FIELD (word, 5, 6); | |
282 | val <<= 5; | |
283 | val |= GET_FIELD (word, 0, 4); | |
284 | val <<= 2; | |
285 | val |= GET_FIELD (word, 7, 8); | |
286 | return sign_extend (val, 21) << 11; | |
287 | } | |
288 | ||
289 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
290 | usually the top 21 bits of a 32 bit constant, we assume that only | |
291 | the low 21 bits of opnd are relevant */ | |
292 | ||
293 | static unsigned | |
fba45db2 | 294 | deposit_21 (unsigned opnd, unsigned word) |
c906108c SS |
295 | { |
296 | unsigned val = 0; | |
297 | ||
298 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
299 | val <<= 2; | |
300 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
301 | val <<= 2; | |
302 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
303 | val <<= 11; | |
304 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
305 | val <<= 1; | |
306 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
307 | return word | val; | |
308 | } | |
309 | ||
c906108c SS |
310 | /* extract a 17 bit constant from branch instructions, returning the |
311 | 19 bit signed value. */ | |
312 | ||
313 | static int | |
fba45db2 | 314 | extract_17 (unsigned word) |
c906108c SS |
315 | { |
316 | return sign_extend (GET_FIELD (word, 19, 28) | | |
317 | GET_FIELD (word, 29, 29) << 10 | | |
318 | GET_FIELD (word, 11, 15) << 11 | | |
319 | (word & 0x1) << 16, 17) << 2; | |
320 | } | |
321 | \f | |
322 | ||
323 | /* Compare the start address for two unwind entries returning 1 if | |
324 | the first address is larger than the second, -1 if the second is | |
325 | larger than the first, and zero if they are equal. */ | |
326 | ||
327 | static int | |
fba45db2 | 328 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
329 | { |
330 | const struct unwind_table_entry *a = arg1; | |
331 | const struct unwind_table_entry *b = arg2; | |
332 | ||
333 | if (a->region_start > b->region_start) | |
334 | return 1; | |
335 | else if (a->region_start < b->region_start) | |
336 | return -1; | |
337 | else | |
338 | return 0; | |
339 | } | |
340 | ||
53a5351d JM |
341 | static CORE_ADDR low_text_segment_address; |
342 | ||
343 | static void | |
8fef05cc | 344 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored) |
53a5351d | 345 | { |
bf9c25dc | 346 | if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d JM |
347 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
348 | && section->vma < low_text_segment_address) | |
349 | low_text_segment_address = section->vma; | |
350 | } | |
351 | ||
c906108c | 352 | static void |
fba45db2 KB |
353 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
354 | asection *section, unsigned int entries, unsigned int size, | |
355 | CORE_ADDR text_offset) | |
c906108c SS |
356 | { |
357 | /* We will read the unwind entries into temporary memory, then | |
358 | fill in the actual unwind table. */ | |
359 | if (size > 0) | |
360 | { | |
361 | unsigned long tmp; | |
362 | unsigned i; | |
363 | char *buf = alloca (size); | |
364 | ||
53a5351d JM |
365 | low_text_segment_address = -1; |
366 | ||
367 | /* If addresses are 64 bits wide, then unwinds are supposed to | |
c2c6d25f JM |
368 | be segment relative offsets instead of absolute addresses. |
369 | ||
370 | Note that when loading a shared library (text_offset != 0) the | |
371 | unwinds are already relative to the text_offset that will be | |
372 | passed in. */ | |
373 | if (TARGET_PTR_BIT == 64 && text_offset == 0) | |
53a5351d JM |
374 | { |
375 | bfd_map_over_sections (objfile->obfd, | |
4efb68b1 | 376 | record_text_segment_lowaddr, NULL); |
53a5351d JM |
377 | |
378 | /* ?!? Mask off some low bits. Should this instead subtract | |
379 | out the lowest section's filepos or something like that? | |
380 | This looks very hokey to me. */ | |
381 | low_text_segment_address &= ~0xfff; | |
382 | text_offset += low_text_segment_address; | |
383 | } | |
384 | ||
c906108c SS |
385 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
386 | ||
387 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 388 | endian issues. */ |
c906108c SS |
389 | for (i = 0; i < entries; i++) |
390 | { | |
391 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 392 | (bfd_byte *) buf); |
c906108c SS |
393 | table[i].region_start += text_offset; |
394 | buf += 4; | |
c5aa993b | 395 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
396 | table[i].region_end += text_offset; |
397 | buf += 4; | |
c5aa993b | 398 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
399 | buf += 4; |
400 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
401 | table[i].Millicode = (tmp >> 30) & 0x1; | |
402 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
403 | table[i].Region_description = (tmp >> 27) & 0x3; | |
404 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
405 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
406 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
407 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
408 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
409 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
410 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
411 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
412 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
413 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
414 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
415 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
416 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
417 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
418 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
419 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
420 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
421 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
422 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
423 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 424 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
425 | buf += 4; |
426 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
427 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
428 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
429 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
430 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
431 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
432 | ||
c5aa993b | 433 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
434 | table[i].stub_unwind.stub_type = 0; |
435 | table[i].stub_unwind.padding = 0; | |
436 | } | |
437 | } | |
438 | } | |
439 | ||
440 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
441 | the object file. This info is used mainly by find_unwind_entry() to find | |
442 | out the stack frame size and frame pointer used by procedures. We put | |
443 | everything on the psymbol obstack in the objfile so that it automatically | |
444 | gets freed when the objfile is destroyed. */ | |
445 | ||
446 | static void | |
fba45db2 | 447 | read_unwind_info (struct objfile *objfile) |
c906108c | 448 | { |
d4f3574e SS |
449 | asection *unwind_sec, *stub_unwind_sec; |
450 | unsigned unwind_size, stub_unwind_size, total_size; | |
451 | unsigned index, unwind_entries; | |
c906108c SS |
452 | unsigned stub_entries, total_entries; |
453 | CORE_ADDR text_offset; | |
454 | struct obj_unwind_info *ui; | |
455 | obj_private_data_t *obj_private; | |
456 | ||
457 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
c5aa993b JM |
458 | ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack, |
459 | sizeof (struct obj_unwind_info)); | |
c906108c SS |
460 | |
461 | ui->table = NULL; | |
462 | ui->cache = NULL; | |
463 | ui->last = -1; | |
464 | ||
d4f3574e SS |
465 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
466 | sections in a single executable. So we just iterate over every | |
467 | section in the BFD looking for unwinder sections intead of trying | |
468 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 469 | |
d4f3574e SS |
470 | First determine the total size of the unwind tables so that we |
471 | can allocate memory in a nice big hunk. */ | |
472 | total_entries = 0; | |
473 | for (unwind_sec = objfile->obfd->sections; | |
474 | unwind_sec; | |
475 | unwind_sec = unwind_sec->next) | |
c906108c | 476 | { |
d4f3574e SS |
477 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
478 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
479 | { | |
480 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
481 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 482 | |
d4f3574e SS |
483 | total_entries += unwind_entries; |
484 | } | |
c906108c SS |
485 | } |
486 | ||
d4f3574e SS |
487 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
488 | use stub unwinds at the curren time. */ | |
489 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
490 | ||
c906108c SS |
491 | if (stub_unwind_sec) |
492 | { | |
493 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
494 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
495 | } | |
496 | else | |
497 | { | |
498 | stub_unwind_size = 0; | |
499 | stub_entries = 0; | |
500 | } | |
501 | ||
502 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 503 | total_entries += stub_entries; |
c906108c SS |
504 | total_size = total_entries * sizeof (struct unwind_table_entry); |
505 | ||
506 | /* Allocate memory for the unwind table. */ | |
507 | ui->table = (struct unwind_table_entry *) | |
508 | obstack_alloc (&objfile->psymbol_obstack, total_size); | |
c5aa993b | 509 | ui->last = total_entries - 1; |
c906108c | 510 | |
d4f3574e SS |
511 | /* Now read in each unwind section and internalize the standard unwind |
512 | entries. */ | |
c906108c | 513 | index = 0; |
d4f3574e SS |
514 | for (unwind_sec = objfile->obfd->sections; |
515 | unwind_sec; | |
516 | unwind_sec = unwind_sec->next) | |
517 | { | |
518 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
519 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
520 | { | |
521 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
522 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
523 | ||
524 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
525 | unwind_entries, unwind_size, text_offset); | |
526 | index += unwind_entries; | |
527 | } | |
528 | } | |
529 | ||
530 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
531 | if (stub_unwind_size > 0) |
532 | { | |
533 | unsigned int i; | |
534 | char *buf = alloca (stub_unwind_size); | |
535 | ||
536 | /* Read in the stub unwind entries. */ | |
537 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
538 | 0, stub_unwind_size); | |
539 | ||
540 | /* Now convert them into regular unwind entries. */ | |
541 | for (i = 0; i < stub_entries; i++, index++) | |
542 | { | |
543 | /* Clear out the next unwind entry. */ | |
544 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
545 | ||
546 | /* Convert offset & size into region_start and region_end. | |
547 | Stuff away the stub type into "reserved" fields. */ | |
548 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
549 | (bfd_byte *) buf); | |
550 | ui->table[index].region_start += text_offset; | |
551 | buf += 4; | |
552 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 553 | (bfd_byte *) buf); |
c906108c SS |
554 | buf += 2; |
555 | ui->table[index].region_end | |
c5aa993b JM |
556 | = ui->table[index].region_start + 4 * |
557 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
558 | buf += 2; |
559 | } | |
560 | ||
561 | } | |
562 | ||
563 | /* Unwind table needs to be kept sorted. */ | |
564 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
565 | compare_unwind_entries); | |
566 | ||
567 | /* Keep a pointer to the unwind information. */ | |
c5aa993b | 568 | if (objfile->obj_private == NULL) |
c906108c SS |
569 | { |
570 | obj_private = (obj_private_data_t *) | |
c5aa993b JM |
571 | obstack_alloc (&objfile->psymbol_obstack, |
572 | sizeof (obj_private_data_t)); | |
c906108c | 573 | obj_private->unwind_info = NULL; |
c5aa993b | 574 | obj_private->so_info = NULL; |
53a5351d | 575 | obj_private->dp = 0; |
c5aa993b | 576 | |
4efb68b1 | 577 | objfile->obj_private = obj_private; |
c906108c | 578 | } |
c5aa993b | 579 | obj_private = (obj_private_data_t *) objfile->obj_private; |
c906108c SS |
580 | obj_private->unwind_info = ui; |
581 | } | |
582 | ||
583 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
584 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
585 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
586 | search of the unwind tables, we depend upon them to be sorted. */ | |
587 | ||
588 | struct unwind_table_entry * | |
fba45db2 | 589 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
590 | { |
591 | int first, middle, last; | |
592 | struct objfile *objfile; | |
593 | ||
594 | /* A function at address 0? Not in HP-UX! */ | |
595 | if (pc == (CORE_ADDR) 0) | |
596 | return NULL; | |
597 | ||
598 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
599 | { |
600 | struct obj_unwind_info *ui; | |
601 | ui = NULL; | |
602 | if (objfile->obj_private) | |
603 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; | |
c906108c | 604 | |
c5aa993b JM |
605 | if (!ui) |
606 | { | |
607 | read_unwind_info (objfile); | |
608 | if (objfile->obj_private == NULL) | |
104c1213 | 609 | error ("Internal error reading unwind information."); |
c5aa993b JM |
610 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; |
611 | } | |
c906108c | 612 | |
c5aa993b | 613 | /* First, check the cache */ |
c906108c | 614 | |
c5aa993b JM |
615 | if (ui->cache |
616 | && pc >= ui->cache->region_start | |
617 | && pc <= ui->cache->region_end) | |
618 | return ui->cache; | |
c906108c | 619 | |
c5aa993b | 620 | /* Not in the cache, do a binary search */ |
c906108c | 621 | |
c5aa993b JM |
622 | first = 0; |
623 | last = ui->last; | |
c906108c | 624 | |
c5aa993b JM |
625 | while (first <= last) |
626 | { | |
627 | middle = (first + last) / 2; | |
628 | if (pc >= ui->table[middle].region_start | |
629 | && pc <= ui->table[middle].region_end) | |
630 | { | |
631 | ui->cache = &ui->table[middle]; | |
632 | return &ui->table[middle]; | |
633 | } | |
c906108c | 634 | |
c5aa993b JM |
635 | if (pc < ui->table[middle].region_start) |
636 | last = middle - 1; | |
637 | else | |
638 | first = middle + 1; | |
639 | } | |
640 | } /* ALL_OBJFILES() */ | |
c906108c SS |
641 | return NULL; |
642 | } | |
643 | ||
644 | /* Return the adjustment necessary to make for addresses on the stack | |
645 | as presented by hpread.c. | |
646 | ||
647 | This is necessary because of the stack direction on the PA and the | |
648 | bizarre way in which someone (?) decided they wanted to handle | |
649 | frame pointerless code in GDB. */ | |
650 | int | |
fba45db2 | 651 | hpread_adjust_stack_address (CORE_ADDR func_addr) |
c906108c SS |
652 | { |
653 | struct unwind_table_entry *u; | |
654 | ||
655 | u = find_unwind_entry (func_addr); | |
656 | if (!u) | |
657 | return 0; | |
658 | else | |
659 | return u->Total_frame_size << 3; | |
660 | } | |
661 | ||
662 | /* Called to determine if PC is in an interrupt handler of some | |
663 | kind. */ | |
664 | ||
665 | static int | |
fba45db2 | 666 | pc_in_interrupt_handler (CORE_ADDR pc) |
c906108c SS |
667 | { |
668 | struct unwind_table_entry *u; | |
669 | struct minimal_symbol *msym_us; | |
670 | ||
671 | u = find_unwind_entry (pc); | |
672 | if (!u) | |
673 | return 0; | |
674 | ||
675 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
676 | its frame isn't a pure interrupt frame. Deal with this. */ | |
677 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
678 | ||
d7bd68ca | 679 | return (u->HP_UX_interrupt_marker |
22abf04a | 680 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))); |
c906108c SS |
681 | } |
682 | ||
683 | /* Called when no unwind descriptor was found for PC. Returns 1 if it | |
104c1213 JM |
684 | appears that PC is in a linker stub. |
685 | ||
686 | ?!? Need to handle stubs which appear in PA64 code. */ | |
c906108c SS |
687 | |
688 | static int | |
fba45db2 | 689 | pc_in_linker_stub (CORE_ADDR pc) |
c906108c SS |
690 | { |
691 | int found_magic_instruction = 0; | |
692 | int i; | |
693 | char buf[4]; | |
694 | ||
695 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
696 | if (target_read_memory (pc, buf, 4) != 0) | |
697 | return 0; | |
698 | ||
699 | /* We are looking for something like | |
700 | ||
701 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
702 | ; before calling the "call stub" | |
703 | ldw -18(sp),rp | |
704 | ||
705 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
706 | mtsp r1,sp ; Move it into space register 0 | |
707 | be,n 0(sr0),rp) ; back to your regularly scheduled program */ | |
708 | ||
709 | /* Maximum known linker stub size is 4 instructions. Search forward | |
710 | from the given PC, then backward. */ | |
711 | for (i = 0; i < 4; i++) | |
712 | { | |
713 | /* If we hit something with an unwind, stop searching this direction. */ | |
714 | ||
715 | if (find_unwind_entry (pc + i * 4) != 0) | |
716 | break; | |
717 | ||
718 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 719 | return from a cross-space function call. */ |
c906108c SS |
720 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) |
721 | { | |
722 | found_magic_instruction = 1; | |
723 | break; | |
724 | } | |
725 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 726 | here. */ |
c906108c SS |
727 | } |
728 | ||
729 | if (found_magic_instruction != 0) | |
730 | return 1; | |
731 | ||
732 | /* Now look backward. */ | |
733 | for (i = 0; i < 4; i++) | |
734 | { | |
735 | /* If we hit something with an unwind, stop searching this direction. */ | |
736 | ||
737 | if (find_unwind_entry (pc - i * 4) != 0) | |
738 | break; | |
739 | ||
740 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 741 | return from a cross-space function call. */ |
c906108c SS |
742 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) |
743 | { | |
744 | found_magic_instruction = 1; | |
745 | break; | |
746 | } | |
747 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 748 | here. */ |
c906108c SS |
749 | } |
750 | return found_magic_instruction; | |
751 | } | |
752 | ||
753 | static int | |
fba45db2 | 754 | find_return_regnum (CORE_ADDR pc) |
c906108c SS |
755 | { |
756 | struct unwind_table_entry *u; | |
757 | ||
758 | u = find_unwind_entry (pc); | |
759 | ||
760 | if (!u) | |
761 | return RP_REGNUM; | |
762 | ||
763 | if (u->Millicode) | |
764 | return 31; | |
765 | ||
766 | return RP_REGNUM; | |
767 | } | |
768 | ||
769 | /* Return size of frame, or -1 if we should use a frame pointer. */ | |
770 | static int | |
fba45db2 | 771 | find_proc_framesize (CORE_ADDR pc) |
c906108c SS |
772 | { |
773 | struct unwind_table_entry *u; | |
774 | struct minimal_symbol *msym_us; | |
775 | ||
776 | /* This may indicate a bug in our callers... */ | |
c5aa993b | 777 | if (pc == (CORE_ADDR) 0) |
c906108c | 778 | return -1; |
c5aa993b | 779 | |
c906108c SS |
780 | u = find_unwind_entry (pc); |
781 | ||
782 | if (!u) | |
783 | { | |
784 | if (pc_in_linker_stub (pc)) | |
785 | /* Linker stubs have a zero size frame. */ | |
786 | return 0; | |
787 | else | |
788 | return -1; | |
789 | } | |
790 | ||
791 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
792 | ||
793 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
794 | then we have a frame pointer. Use it. */ | |
3fa41cdb JL |
795 | if (u->Save_SP |
796 | && !pc_in_interrupt_handler (pc) | |
797 | && msym_us | |
22abf04a | 798 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))) |
c906108c SS |
799 | return -1; |
800 | ||
801 | return u->Total_frame_size << 3; | |
802 | } | |
803 | ||
804 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ | |
a14ed312 | 805 | static int rp_saved (CORE_ADDR); |
c906108c SS |
806 | |
807 | static int | |
fba45db2 | 808 | rp_saved (CORE_ADDR pc) |
c906108c SS |
809 | { |
810 | struct unwind_table_entry *u; | |
811 | ||
812 | /* A function at, and thus a return PC from, address 0? Not in HP-UX! */ | |
813 | if (pc == (CORE_ADDR) 0) | |
814 | return 0; | |
815 | ||
816 | u = find_unwind_entry (pc); | |
817 | ||
818 | if (!u) | |
819 | { | |
820 | if (pc_in_linker_stub (pc)) | |
821 | /* This is the so-called RP'. */ | |
822 | return -24; | |
823 | else | |
824 | return 0; | |
825 | } | |
826 | ||
827 | if (u->Save_RP) | |
53a5351d | 828 | return (TARGET_PTR_BIT == 64 ? -16 : -20); |
c906108c SS |
829 | else if (u->stub_unwind.stub_type != 0) |
830 | { | |
831 | switch (u->stub_unwind.stub_type) | |
832 | { | |
833 | case EXPORT: | |
834 | case IMPORT: | |
835 | return -24; | |
836 | case PARAMETER_RELOCATION: | |
837 | return -8; | |
838 | default: | |
839 | return 0; | |
840 | } | |
841 | } | |
842 | else | |
843 | return 0; | |
844 | } | |
845 | \f | |
846 | int | |
60383d10 | 847 | hppa_frameless_function_invocation (struct frame_info *frame) |
c906108c SS |
848 | { |
849 | struct unwind_table_entry *u; | |
850 | ||
851 | u = find_unwind_entry (frame->pc); | |
852 | ||
853 | if (u == 0) | |
854 | return 0; | |
855 | ||
856 | return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0); | |
857 | } | |
858 | ||
d709c020 JB |
859 | /* Immediately after a function call, return the saved pc. |
860 | Can't go through the frames for this because on some machines | |
861 | the new frame is not set up until the new function executes | |
862 | some instructions. */ | |
863 | ||
c906108c | 864 | CORE_ADDR |
60383d10 | 865 | hppa_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
866 | { |
867 | int ret_regnum; | |
868 | CORE_ADDR pc; | |
869 | struct unwind_table_entry *u; | |
870 | ||
871 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
872 | pc = read_register (ret_regnum) & ~0x3; | |
c5aa993b | 873 | |
c906108c SS |
874 | /* If PC is in a linker stub, then we need to dig the address |
875 | the stub will return to out of the stack. */ | |
876 | u = find_unwind_entry (pc); | |
877 | if (u && u->stub_unwind.stub_type != 0) | |
8bedc050 | 878 | return DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
879 | else |
880 | return pc; | |
881 | } | |
882 | \f | |
883 | CORE_ADDR | |
fba45db2 | 884 | hppa_frame_saved_pc (struct frame_info *frame) |
c906108c SS |
885 | { |
886 | CORE_ADDR pc = get_frame_pc (frame); | |
887 | struct unwind_table_entry *u; | |
65e82032 | 888 | CORE_ADDR old_pc = 0; |
c5aa993b JM |
889 | int spun_around_loop = 0; |
890 | int rp_offset = 0; | |
c906108c SS |
891 | |
892 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner | |
893 | at the base of the frame in an interrupt handler. Registers within | |
894 | are saved in the exact same order as GDB numbers registers. How | |
895 | convienent. */ | |
896 | if (pc_in_interrupt_handler (pc)) | |
53a5351d JM |
897 | return read_memory_integer (frame->frame + PC_REGNUM * 4, |
898 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c | 899 | |
104c1213 JM |
900 | if ((frame->pc >= frame->frame |
901 | && frame->pc <= (frame->frame | |
902 | /* A call dummy is sized in words, but it is | |
903 | actually a series of instructions. Account | |
904 | for that scaling factor. */ | |
905 | + ((REGISTER_SIZE / INSTRUCTION_SIZE) | |
906 | * CALL_DUMMY_LENGTH) | |
907 | /* Similarly we have to account for 64bit | |
908 | wide register saves. */ | |
909 | + (32 * REGISTER_SIZE) | |
910 | /* We always consider FP regs 8 bytes long. */ | |
911 | + (NUM_REGS - FP0_REGNUM) * 8 | |
912 | /* Similarly we have to account for 64bit | |
913 | wide register saves. */ | |
914 | + (6 * REGISTER_SIZE)))) | |
915 | { | |
916 | return read_memory_integer ((frame->frame | |
917 | + (TARGET_PTR_BIT == 64 ? -16 : -20)), | |
918 | TARGET_PTR_BIT / 8) & ~0x3; | |
919 | } | |
920 | ||
c906108c SS |
921 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP |
922 | /* Deal with signal handler caller frames too. */ | |
5a203e44 | 923 | if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
924 | { |
925 | CORE_ADDR rp; | |
926 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
927 | return rp & ~0x3; | |
928 | } | |
929 | #endif | |
930 | ||
60383d10 | 931 | if (hppa_frameless_function_invocation (frame)) |
c906108c SS |
932 | { |
933 | int ret_regnum; | |
934 | ||
935 | ret_regnum = find_return_regnum (pc); | |
936 | ||
937 | /* If the next frame is an interrupt frame or a signal | |
c5aa993b JM |
938 | handler caller, then we need to look in the saved |
939 | register area to get the return pointer (the values | |
940 | in the registers may not correspond to anything useful). */ | |
941 | if (frame->next | |
5a203e44 | 942 | && ((get_frame_type (frame->next) == SIGTRAMP_FRAME) |
c906108c SS |
943 | || pc_in_interrupt_handler (frame->next->pc))) |
944 | { | |
43bd9a9e AC |
945 | CORE_ADDR *saved_regs; |
946 | hppa_frame_init_saved_regs (frame->next); | |
947 | saved_regs = get_frame_saved_regs (frame->next); | |
948 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 949 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 950 | { |
43bd9a9e | 951 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 952 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
953 | |
954 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
955 | with a return pointer in %rp and the kernel call with |
956 | a return pointer in %r31. We return the %rp variant | |
957 | if %r31 is the same as frame->pc. */ | |
c906108c | 958 | if (pc == frame->pc) |
43bd9a9e | 959 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 960 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
961 | } |
962 | else | |
43bd9a9e | 963 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 964 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
965 | } |
966 | else | |
967 | pc = read_register (ret_regnum) & ~0x3; | |
968 | } | |
969 | else | |
970 | { | |
971 | spun_around_loop = 0; | |
c5aa993b | 972 | old_pc = pc; |
c906108c | 973 | |
c5aa993b | 974 | restart: |
c906108c SS |
975 | rp_offset = rp_saved (pc); |
976 | ||
977 | /* Similar to code in frameless function case. If the next | |
c5aa993b JM |
978 | frame is a signal or interrupt handler, then dig the right |
979 | information out of the saved register info. */ | |
c906108c SS |
980 | if (rp_offset == 0 |
981 | && frame->next | |
5a203e44 | 982 | && ((get_frame_type (frame->next) == SIGTRAMP_FRAME) |
c906108c SS |
983 | || pc_in_interrupt_handler (frame->next->pc))) |
984 | { | |
43bd9a9e AC |
985 | CORE_ADDR *saved_regs; |
986 | hppa_frame_init_saved_regs (frame->next); | |
987 | saved_regs = get_frame_saved_regs (frame->next); | |
988 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 989 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 990 | { |
43bd9a9e | 991 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 992 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
993 | |
994 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
995 | with a return pointer in %rp and the kernel call with |
996 | a return pointer in %r31. We return the %rp variant | |
997 | if %r31 is the same as frame->pc. */ | |
c906108c | 998 | if (pc == frame->pc) |
43bd9a9e | 999 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1000 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1001 | } |
1002 | else | |
43bd9a9e | 1003 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1004 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1005 | } |
1006 | else if (rp_offset == 0) | |
c5aa993b JM |
1007 | { |
1008 | old_pc = pc; | |
1009 | pc = read_register (RP_REGNUM) & ~0x3; | |
1010 | } | |
c906108c | 1011 | else |
c5aa993b JM |
1012 | { |
1013 | old_pc = pc; | |
53a5351d JM |
1014 | pc = read_memory_integer (frame->frame + rp_offset, |
1015 | TARGET_PTR_BIT / 8) & ~0x3; | |
c5aa993b | 1016 | } |
c906108c SS |
1017 | } |
1018 | ||
1019 | /* If PC is inside a linker stub, then dig out the address the stub | |
1020 | will return to. | |
1021 | ||
1022 | Don't do this for long branch stubs. Why? For some unknown reason | |
1023 | _start is marked as a long branch stub in hpux10. */ | |
1024 | u = find_unwind_entry (pc); | |
1025 | if (u && u->stub_unwind.stub_type != 0 | |
1026 | && u->stub_unwind.stub_type != LONG_BRANCH) | |
1027 | { | |
1028 | unsigned int insn; | |
1029 | ||
1030 | /* If this is a dynamic executable, and we're in a signal handler, | |
c5aa993b JM |
1031 | then the call chain will eventually point us into the stub for |
1032 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
1033 | to the real sigreturn rather than the code after the real branch!. | |
c906108c | 1034 | |
c5aa993b JM |
1035 | Else, try to dig the address the stub will return to in the normal |
1036 | fashion. */ | |
c906108c SS |
1037 | insn = read_memory_integer (pc, 4); |
1038 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1039 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
1040 | else | |
1041 | { | |
c5aa993b JM |
1042 | if (old_pc == pc) |
1043 | spun_around_loop++; | |
1044 | ||
1045 | if (spun_around_loop > 1) | |
1046 | { | |
1047 | /* We're just about to go around the loop again with | |
1048 | no more hope of success. Die. */ | |
1049 | error ("Unable to find return pc for this frame"); | |
1050 | } | |
1051 | else | |
1052 | goto restart; | |
c906108c SS |
1053 | } |
1054 | } | |
1055 | ||
1056 | return pc; | |
1057 | } | |
1058 | \f | |
1059 | /* We need to correct the PC and the FP for the outermost frame when we are | |
1060 | in a system call. */ | |
1061 | ||
1062 | void | |
60383d10 | 1063 | hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame) |
c906108c SS |
1064 | { |
1065 | int flags; | |
1066 | int framesize; | |
1067 | ||
1068 | if (frame->next && !fromleaf) | |
1069 | return; | |
1070 | ||
618ce49f AC |
1071 | /* If the next frame represents a frameless function invocation then |
1072 | we have to do some adjustments that are normally done by | |
1073 | DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in | |
1074 | this case.) */ | |
c906108c SS |
1075 | if (fromleaf) |
1076 | { | |
1077 | /* Find the framesize of *this* frame without peeking at the PC | |
c5aa993b | 1078 | in the current frame structure (it isn't set yet). */ |
8bedc050 | 1079 | framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame))); |
c906108c SS |
1080 | |
1081 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
c5aa993b JM |
1082 | use it, else subtract the size of this frame from the current |
1083 | frame. (we always want frame->frame to point at the lowest address | |
1084 | in the frame). */ | |
c906108c SS |
1085 | if (framesize == -1) |
1086 | frame->frame = TARGET_READ_FP (); | |
1087 | else | |
1088 | frame->frame -= framesize; | |
1089 | return; | |
1090 | } | |
1091 | ||
1092 | flags = read_register (FLAGS_REGNUM); | |
c5aa993b | 1093 | if (flags & 2) /* In system call? */ |
c906108c SS |
1094 | frame->pc = read_register (31) & ~0x3; |
1095 | ||
1096 | /* The outermost frame is always derived from PC-framesize | |
1097 | ||
1098 | One might think frameless innermost frames should have | |
1099 | a frame->frame that is the same as the parent's frame->frame. | |
1100 | That is wrong; frame->frame in that case should be the *high* | |
1101 | address of the parent's frame. It's complicated as hell to | |
1102 | explain, but the parent *always* creates some stack space for | |
1103 | the child. So the child actually does have a frame of some | |
1104 | sorts, and its base is the high address in its parent's frame. */ | |
c5aa993b | 1105 | framesize = find_proc_framesize (frame->pc); |
c906108c SS |
1106 | if (framesize == -1) |
1107 | frame->frame = TARGET_READ_FP (); | |
1108 | else | |
1109 | frame->frame = read_register (SP_REGNUM) - framesize; | |
1110 | } | |
1111 | \f | |
a5afb99f AC |
1112 | /* Given a GDB frame, determine the address of the calling function's |
1113 | frame. This will be used to create a new GDB frame struct, and | |
e9582e71 AC |
1114 | then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC |
1115 | will be called for the new frame. | |
c906108c SS |
1116 | |
1117 | This may involve searching through prologues for several functions | |
1118 | at boundaries where GCC calls HP C code, or where code which has | |
1119 | a frame pointer calls code without a frame pointer. */ | |
1120 | ||
1121 | CORE_ADDR | |
60383d10 | 1122 | hppa_frame_chain (struct frame_info *frame) |
c906108c SS |
1123 | { |
1124 | int my_framesize, caller_framesize; | |
1125 | struct unwind_table_entry *u; | |
1126 | CORE_ADDR frame_base; | |
1127 | struct frame_info *tmp_frame; | |
1128 | ||
c2c6d25f JM |
1129 | /* A frame in the current frame list, or zero. */ |
1130 | struct frame_info *saved_regs_frame = 0; | |
43bd9a9e AC |
1131 | /* Where the registers were saved in saved_regs_frame. If |
1132 | saved_regs_frame is zero, this is garbage. */ | |
1133 | CORE_ADDR *saved_regs = NULL; | |
c2c6d25f | 1134 | |
c5aa993b | 1135 | CORE_ADDR caller_pc; |
c906108c SS |
1136 | |
1137 | struct minimal_symbol *min_frame_symbol; | |
c5aa993b JM |
1138 | struct symbol *frame_symbol; |
1139 | char *frame_symbol_name; | |
c906108c SS |
1140 | |
1141 | /* If this is a threaded application, and we see the | |
1142 | routine "__pthread_exit", treat it as the stack root | |
1143 | for this thread. */ | |
c5aa993b JM |
1144 | min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc); |
1145 | frame_symbol = find_pc_function (frame->pc); | |
c906108c | 1146 | |
c5aa993b | 1147 | if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ ) |
c906108c | 1148 | { |
c5aa993b JM |
1149 | /* The test above for "no user function name" would defend |
1150 | against the slim likelihood that a user might define a | |
1151 | routine named "__pthread_exit" and then try to debug it. | |
1152 | ||
1153 | If it weren't commented out, and you tried to debug the | |
1154 | pthread library itself, you'd get errors. | |
1155 | ||
1156 | So for today, we don't make that check. */ | |
22abf04a | 1157 | frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol); |
c5aa993b JM |
1158 | if (frame_symbol_name != 0) |
1159 | { | |
1160 | if (0 == strncmp (frame_symbol_name, | |
1161 | THREAD_INITIAL_FRAME_SYMBOL, | |
1162 | THREAD_INITIAL_FRAME_SYM_LEN)) | |
1163 | { | |
1164 | /* Pretend we've reached the bottom of the stack. */ | |
1165 | return (CORE_ADDR) 0; | |
1166 | } | |
1167 | } | |
1168 | } /* End of hacky code for threads. */ | |
1169 | ||
c906108c SS |
1170 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These |
1171 | are easy; at *sp we have a full save state strucutre which we can | |
1172 | pull the old stack pointer from. Also see frame_saved_pc for | |
1173 | code to dig a saved PC out of the save state structure. */ | |
1174 | if (pc_in_interrupt_handler (frame->pc)) | |
53a5351d JM |
1175 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, |
1176 | TARGET_PTR_BIT / 8); | |
c906108c | 1177 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP |
5a203e44 | 1178 | else if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1179 | { |
1180 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
1181 | } | |
1182 | #endif | |
1183 | else | |
1184 | frame_base = frame->frame; | |
1185 | ||
1186 | /* Get frame sizes for the current frame and the frame of the | |
1187 | caller. */ | |
1188 | my_framesize = find_proc_framesize (frame->pc); | |
8bedc050 | 1189 | caller_pc = DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
1190 | |
1191 | /* If we can't determine the caller's PC, then it's not likely we can | |
1192 | really determine anything meaningful about its frame. We'll consider | |
1193 | this to be stack bottom. */ | |
1194 | if (caller_pc == (CORE_ADDR) 0) | |
1195 | return (CORE_ADDR) 0; | |
1196 | ||
8bedc050 | 1197 | caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1198 | |
1199 | /* If caller does not have a frame pointer, then its frame | |
1200 | can be found at current_frame - caller_framesize. */ | |
1201 | if (caller_framesize != -1) | |
1202 | { | |
1203 | return frame_base - caller_framesize; | |
1204 | } | |
1205 | /* Both caller and callee have frame pointers and are GCC compiled | |
1206 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
1207 | The previous frame pointer is found at the top of the current frame. */ | |
1208 | if (caller_framesize == -1 && my_framesize == -1) | |
1209 | { | |
53a5351d | 1210 | return read_memory_integer (frame_base, TARGET_PTR_BIT / 8); |
c906108c SS |
1211 | } |
1212 | /* Caller has a frame pointer, but callee does not. This is a little | |
1213 | more difficult as GCC and HP C lay out locals and callee register save | |
1214 | areas very differently. | |
1215 | ||
1216 | The previous frame pointer could be in a register, or in one of | |
1217 | several areas on the stack. | |
1218 | ||
1219 | Walk from the current frame to the innermost frame examining | |
1220 | unwind descriptors to determine if %r3 ever gets saved into the | |
1221 | stack. If so return whatever value got saved into the stack. | |
1222 | If it was never saved in the stack, then the value in %r3 is still | |
1223 | valid, so use it. | |
1224 | ||
1225 | We use information from unwind descriptors to determine if %r3 | |
1226 | is saved into the stack (Entry_GR field has this information). */ | |
1227 | ||
c2c6d25f | 1228 | for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next) |
c906108c SS |
1229 | { |
1230 | u = find_unwind_entry (tmp_frame->pc); | |
1231 | ||
1232 | if (!u) | |
1233 | { | |
1234 | /* We could find this information by examining prologues. I don't | |
1235 | think anyone has actually written any tools (not even "strip") | |
1236 | which leave them out of an executable, so maybe this is a moot | |
1237 | point. */ | |
c5aa993b JM |
1238 | /* ??rehrauer: Actually, it's quite possible to stepi your way into |
1239 | code that doesn't have unwind entries. For example, stepping into | |
1240 | the dynamic linker will give you a PC that has none. Thus, I've | |
1241 | disabled this warning. */ | |
c906108c SS |
1242 | #if 0 |
1243 | warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc); | |
1244 | #endif | |
1245 | return (CORE_ADDR) 0; | |
1246 | } | |
1247 | ||
c2c6d25f | 1248 | if (u->Save_SP |
5a203e44 | 1249 | || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
c906108c SS |
1250 | || pc_in_interrupt_handler (tmp_frame->pc)) |
1251 | break; | |
c2c6d25f JM |
1252 | |
1253 | /* Entry_GR specifies the number of callee-saved general registers | |
1254 | saved in the stack. It starts at %r3, so %r3 would be 1. */ | |
1255 | if (u->Entry_GR >= 1) | |
1256 | { | |
1257 | /* The unwind entry claims that r3 is saved here. However, | |
1258 | in optimized code, GCC often doesn't actually save r3. | |
1259 | We'll discover this if we look at the prologue. */ | |
43bd9a9e AC |
1260 | hppa_frame_init_saved_regs (tmp_frame); |
1261 | saved_regs = get_frame_saved_regs (tmp_frame); | |
c2c6d25f JM |
1262 | saved_regs_frame = tmp_frame; |
1263 | ||
1264 | /* If we have an address for r3, that's good. */ | |
43bd9a9e | 1265 | if (saved_regs[FP_REGNUM]) |
c2c6d25f JM |
1266 | break; |
1267 | } | |
c906108c SS |
1268 | } |
1269 | ||
1270 | if (tmp_frame) | |
1271 | { | |
1272 | /* We may have walked down the chain into a function with a frame | |
c5aa993b | 1273 | pointer. */ |
c906108c | 1274 | if (u->Save_SP |
5a203e44 | 1275 | && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
c906108c SS |
1276 | && !pc_in_interrupt_handler (tmp_frame->pc)) |
1277 | { | |
53a5351d | 1278 | return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8); |
c906108c SS |
1279 | } |
1280 | /* %r3 was saved somewhere in the stack. Dig it out. */ | |
c5aa993b | 1281 | else |
c906108c | 1282 | { |
c906108c SS |
1283 | /* Sick. |
1284 | ||
1285 | For optimization purposes many kernels don't have the | |
1286 | callee saved registers into the save_state structure upon | |
1287 | entry into the kernel for a syscall; the optimization | |
1288 | is usually turned off if the process is being traced so | |
1289 | that the debugger can get full register state for the | |
1290 | process. | |
c5aa993b | 1291 | |
c906108c SS |
1292 | This scheme works well except for two cases: |
1293 | ||
c5aa993b JM |
1294 | * Attaching to a process when the process is in the |
1295 | kernel performing a system call (debugger can't get | |
1296 | full register state for the inferior process since | |
1297 | the process wasn't being traced when it entered the | |
1298 | system call). | |
c906108c | 1299 | |
c5aa993b JM |
1300 | * Register state is not complete if the system call |
1301 | causes the process to core dump. | |
c906108c SS |
1302 | |
1303 | ||
1304 | The following heinous code is an attempt to deal with | |
1305 | the lack of register state in a core dump. It will | |
1306 | fail miserably if the function which performs the | |
1307 | system call has a variable sized stack frame. */ | |
1308 | ||
c2c6d25f | 1309 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1310 | { |
1311 | hppa_frame_init_saved_regs (tmp_frame); | |
1312 | saved_regs = get_frame_saved_regs (tmp_frame); | |
1313 | } | |
c906108c SS |
1314 | |
1315 | /* Abominable hack. */ | |
1316 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1317 | && ((saved_regs[FLAGS_REGNUM] |
1318 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1319 | TARGET_PTR_BIT / 8) |
c906108c | 1320 | & 0x2)) |
43bd9a9e | 1321 | || (saved_regs[FLAGS_REGNUM] == 0 |
c906108c SS |
1322 | && read_register (FLAGS_REGNUM) & 0x2))) |
1323 | { | |
8bedc050 | 1324 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1325 | if (!u) |
1326 | { | |
43bd9a9e | 1327 | return read_memory_integer (saved_regs[FP_REGNUM], |
53a5351d | 1328 | TARGET_PTR_BIT / 8); |
c906108c SS |
1329 | } |
1330 | else | |
1331 | { | |
1332 | return frame_base - (u->Total_frame_size << 3); | |
1333 | } | |
1334 | } | |
c5aa993b | 1335 | |
43bd9a9e | 1336 | return read_memory_integer (saved_regs[FP_REGNUM], |
53a5351d | 1337 | TARGET_PTR_BIT / 8); |
c906108c SS |
1338 | } |
1339 | } | |
1340 | else | |
1341 | { | |
c906108c SS |
1342 | /* Get the innermost frame. */ |
1343 | tmp_frame = frame; | |
1344 | while (tmp_frame->next != NULL) | |
1345 | tmp_frame = tmp_frame->next; | |
1346 | ||
c2c6d25f | 1347 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1348 | { |
1349 | hppa_frame_init_saved_regs (tmp_frame); | |
1350 | saved_regs = get_frame_saved_regs (tmp_frame); | |
1351 | } | |
c2c6d25f | 1352 | |
c906108c SS |
1353 | /* Abominable hack. See above. */ |
1354 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1355 | && ((saved_regs[FLAGS_REGNUM] |
1356 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1357 | TARGET_PTR_BIT / 8) |
c906108c | 1358 | & 0x2)) |
43bd9a9e | 1359 | || (saved_regs[FLAGS_REGNUM] == 0 |
c5aa993b | 1360 | && read_register (FLAGS_REGNUM) & 0x2))) |
c906108c | 1361 | { |
8bedc050 | 1362 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1363 | if (!u) |
1364 | { | |
43bd9a9e | 1365 | return read_memory_integer (saved_regs[FP_REGNUM], |
53a5351d | 1366 | TARGET_PTR_BIT / 8); |
c906108c | 1367 | } |
c5aa993b JM |
1368 | else |
1369 | { | |
1370 | return frame_base - (u->Total_frame_size << 3); | |
1371 | } | |
c906108c | 1372 | } |
c5aa993b | 1373 | |
c906108c | 1374 | /* The value in %r3 was never saved into the stack (thus %r3 still |
c5aa993b | 1375 | holds the value of the previous frame pointer). */ |
c906108c SS |
1376 | return TARGET_READ_FP (); |
1377 | } | |
1378 | } | |
c906108c | 1379 | \f |
c5aa993b | 1380 | |
c906108c SS |
1381 | /* To see if a frame chain is valid, see if the caller looks like it |
1382 | was compiled with gcc. */ | |
1383 | ||
1384 | int | |
fba45db2 | 1385 | hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
1386 | { |
1387 | struct minimal_symbol *msym_us; | |
1388 | struct minimal_symbol *msym_start; | |
1389 | struct unwind_table_entry *u, *next_u = NULL; | |
1390 | struct frame_info *next; | |
1391 | ||
c906108c SS |
1392 | u = find_unwind_entry (thisframe->pc); |
1393 | ||
1394 | if (u == NULL) | |
1395 | return 1; | |
1396 | ||
1397 | /* We can't just check that the same of msym_us is "_start", because | |
1398 | someone idiotically decided that they were going to make a Ltext_end | |
1399 | symbol with the same address. This Ltext_end symbol is totally | |
1400 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1401 | which is (legitimately, since it is in the user's namespace) | |
1402 | named Ltext_end, so we can't just ignore it. */ | |
8bedc050 | 1403 | msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe)); |
c906108c SS |
1404 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); |
1405 | if (msym_us | |
1406 | && msym_start | |
1407 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1408 | return 0; | |
1409 | ||
1410 | /* Grrrr. Some new idiot decided that they don't want _start for the | |
1411 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1412 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1413 | if (msym_us | |
1414 | && msym_start | |
1415 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1416 | return 0; | |
1417 | ||
1418 | next = get_next_frame (thisframe); | |
1419 | if (next) | |
1420 | next_u = find_unwind_entry (next->pc); | |
1421 | ||
1422 | /* If this frame does not save SP, has no stack, isn't a stub, | |
1423 | and doesn't "call" an interrupt routine or signal handler caller, | |
1424 | then its not valid. */ | |
1425 | if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0 | |
5a203e44 | 1426 | || (thisframe->next && (get_frame_type (thisframe->next) == SIGTRAMP_FRAME)) |
c906108c SS |
1427 | || (next_u && next_u->HP_UX_interrupt_marker)) |
1428 | return 1; | |
1429 | ||
1430 | if (pc_in_linker_stub (thisframe->pc)) | |
1431 | return 1; | |
1432 | ||
1433 | return 0; | |
1434 | } | |
1435 | ||
7daf4f5b JB |
1436 | /* These functions deal with saving and restoring register state |
1437 | around a function call in the inferior. They keep the stack | |
1438 | double-word aligned; eventually, on an hp700, the stack will have | |
1439 | to be aligned to a 64-byte boundary. */ | |
c906108c SS |
1440 | |
1441 | void | |
7daf4f5b | 1442 | hppa_push_dummy_frame (void) |
c906108c SS |
1443 | { |
1444 | CORE_ADDR sp, pc, pcspace; | |
1445 | register int regnum; | |
53a5351d | 1446 | CORE_ADDR int_buffer; |
c906108c SS |
1447 | double freg_buffer; |
1448 | ||
60383d10 | 1449 | pc = hppa_target_read_pc (inferior_ptid); |
c906108c SS |
1450 | int_buffer = read_register (FLAGS_REGNUM); |
1451 | if (int_buffer & 0x2) | |
1452 | { | |
3371ccc0 | 1453 | const unsigned int sid = (pc >> 30) & 0x3; |
c906108c SS |
1454 | if (sid == 0) |
1455 | pcspace = read_register (SR4_REGNUM); | |
1456 | else | |
1457 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
c906108c SS |
1458 | } |
1459 | else | |
1460 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1461 | ||
1462 | /* Space for "arguments"; the RP goes in here. */ | |
1463 | sp = read_register (SP_REGNUM) + 48; | |
1464 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
53a5351d JM |
1465 | |
1466 | /* The 32bit and 64bit ABIs save the return pointer into different | |
1467 | stack slots. */ | |
1468 | if (REGISTER_SIZE == 8) | |
1469 | write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE); | |
1470 | else | |
1471 | write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE); | |
c906108c SS |
1472 | |
1473 | int_buffer = TARGET_READ_FP (); | |
53a5351d | 1474 | write_memory (sp, (char *) &int_buffer, REGISTER_SIZE); |
c906108c SS |
1475 | |
1476 | write_register (FP_REGNUM, sp); | |
1477 | ||
53a5351d | 1478 | sp += 2 * REGISTER_SIZE; |
c906108c SS |
1479 | |
1480 | for (regnum = 1; regnum < 32; regnum++) | |
1481 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1482 | sp = push_word (sp, read_register (regnum)); | |
1483 | ||
53a5351d JM |
1484 | /* This is not necessary for the 64bit ABI. In fact it is dangerous. */ |
1485 | if (REGISTER_SIZE != 8) | |
1486 | sp += 4; | |
c906108c SS |
1487 | |
1488 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1489 | { | |
73937e03 AC |
1490 | deprecated_read_register_bytes (REGISTER_BYTE (regnum), |
1491 | (char *) &freg_buffer, 8); | |
c5aa993b | 1492 | sp = push_bytes (sp, (char *) &freg_buffer, 8); |
c906108c SS |
1493 | } |
1494 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1495 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1496 | sp = push_word (sp, pc); | |
1497 | sp = push_word (sp, pcspace); | |
1498 | sp = push_word (sp, pc + 4); | |
1499 | sp = push_word (sp, pcspace); | |
1500 | write_register (SP_REGNUM, sp); | |
1501 | } | |
1502 | ||
1503 | static void | |
fba45db2 | 1504 | find_dummy_frame_regs (struct frame_info *frame, |
43bd9a9e | 1505 | CORE_ADDR frame_saved_regs[]) |
c906108c SS |
1506 | { |
1507 | CORE_ADDR fp = frame->frame; | |
1508 | int i; | |
1509 | ||
53a5351d JM |
1510 | /* The 32bit and 64bit ABIs save RP into different locations. */ |
1511 | if (REGISTER_SIZE == 8) | |
43bd9a9e | 1512 | frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3; |
53a5351d | 1513 | else |
43bd9a9e | 1514 | frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3; |
53a5351d | 1515 | |
43bd9a9e | 1516 | frame_saved_regs[FP_REGNUM] = fp; |
c906108c | 1517 | |
43bd9a9e | 1518 | frame_saved_regs[1] = fp + (2 * REGISTER_SIZE); |
53a5351d JM |
1519 | |
1520 | for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++) | |
c906108c SS |
1521 | { |
1522 | if (i != FP_REGNUM) | |
1523 | { | |
43bd9a9e | 1524 | frame_saved_regs[i] = fp; |
53a5351d | 1525 | fp += REGISTER_SIZE; |
c906108c SS |
1526 | } |
1527 | } | |
1528 | ||
53a5351d JM |
1529 | /* This is not necessary or desirable for the 64bit ABI. */ |
1530 | if (REGISTER_SIZE != 8) | |
1531 | fp += 4; | |
1532 | ||
c906108c | 1533 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) |
43bd9a9e AC |
1534 | frame_saved_regs[i] = fp; |
1535 | ||
1536 | frame_saved_regs[IPSW_REGNUM] = fp; | |
1537 | frame_saved_regs[SAR_REGNUM] = fp + REGISTER_SIZE; | |
1538 | frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE; | |
1539 | frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE; | |
1540 | frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE; | |
1541 | frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE; | |
c906108c SS |
1542 | } |
1543 | ||
1544 | void | |
fba45db2 | 1545 | hppa_pop_frame (void) |
c906108c SS |
1546 | { |
1547 | register struct frame_info *frame = get_current_frame (); | |
1548 | register CORE_ADDR fp, npc, target_pc; | |
1549 | register int regnum; | |
43bd9a9e | 1550 | CORE_ADDR *fsr; |
c906108c SS |
1551 | double freg_buffer; |
1552 | ||
c193f6ac | 1553 | fp = get_frame_base (frame); |
43bd9a9e AC |
1554 | hppa_frame_init_saved_regs (frame); |
1555 | fsr = get_frame_saved_regs (frame); | |
c906108c SS |
1556 | |
1557 | #ifndef NO_PC_SPACE_QUEUE_RESTORE | |
43bd9a9e AC |
1558 | if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1559 | restore_pc_queue (fsr); | |
c906108c SS |
1560 | #endif |
1561 | ||
1562 | for (regnum = 31; regnum > 0; regnum--) | |
43bd9a9e AC |
1563 | if (fsr[regnum]) |
1564 | write_register (regnum, read_memory_integer (fsr[regnum], | |
53a5351d | 1565 | REGISTER_SIZE)); |
c906108c | 1566 | |
c5aa993b | 1567 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--) |
43bd9a9e | 1568 | if (fsr[regnum]) |
c906108c | 1569 | { |
43bd9a9e | 1570 | read_memory (fsr[regnum], (char *) &freg_buffer, 8); |
73937e03 AC |
1571 | deprecated_write_register_bytes (REGISTER_BYTE (regnum), |
1572 | (char *) &freg_buffer, 8); | |
c906108c SS |
1573 | } |
1574 | ||
43bd9a9e | 1575 | if (fsr[IPSW_REGNUM]) |
c906108c | 1576 | write_register (IPSW_REGNUM, |
43bd9a9e | 1577 | read_memory_integer (fsr[IPSW_REGNUM], |
53a5351d | 1578 | REGISTER_SIZE)); |
c906108c | 1579 | |
43bd9a9e | 1580 | if (fsr[SAR_REGNUM]) |
c906108c | 1581 | write_register (SAR_REGNUM, |
43bd9a9e | 1582 | read_memory_integer (fsr[SAR_REGNUM], |
53a5351d | 1583 | REGISTER_SIZE)); |
c906108c SS |
1584 | |
1585 | /* If the PC was explicitly saved, then just restore it. */ | |
43bd9a9e | 1586 | if (fsr[PCOQ_TAIL_REGNUM]) |
c906108c | 1587 | { |
43bd9a9e | 1588 | npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM], |
53a5351d | 1589 | REGISTER_SIZE); |
c906108c SS |
1590 | write_register (PCOQ_TAIL_REGNUM, npc); |
1591 | } | |
1592 | /* Else use the value in %rp to set the new PC. */ | |
c5aa993b | 1593 | else |
c906108c SS |
1594 | { |
1595 | npc = read_register (RP_REGNUM); | |
1596 | write_pc (npc); | |
1597 | } | |
1598 | ||
53a5351d | 1599 | write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE)); |
c906108c | 1600 | |
43bd9a9e | 1601 | if (fsr[IPSW_REGNUM]) /* call dummy */ |
c906108c SS |
1602 | write_register (SP_REGNUM, fp - 48); |
1603 | else | |
1604 | write_register (SP_REGNUM, fp); | |
1605 | ||
1606 | /* The PC we just restored may be inside a return trampoline. If so | |
1607 | we want to restart the inferior and run it through the trampoline. | |
1608 | ||
1609 | Do this by setting a momentary breakpoint at the location the | |
1610 | trampoline returns to. | |
1611 | ||
1612 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
1613 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; | |
43bd9a9e | 1614 | if (target_pc && !fsr[IPSW_REGNUM]) |
c906108c SS |
1615 | { |
1616 | struct symtab_and_line sal; | |
1617 | struct breakpoint *breakpoint; | |
1618 | struct cleanup *old_chain; | |
1619 | ||
1620 | /* Set up our breakpoint. Set it to be silent as the MI code | |
c5aa993b | 1621 | for "return_command" will print the frame we returned to. */ |
c906108c SS |
1622 | sal = find_pc_line (target_pc, 0); |
1623 | sal.pc = target_pc; | |
516b1f28 | 1624 | breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish); |
c906108c SS |
1625 | breakpoint->silent = 1; |
1626 | ||
1627 | /* So we can clean things up. */ | |
4d6140d9 | 1628 | old_chain = make_cleanup_delete_breakpoint (breakpoint); |
c906108c SS |
1629 | |
1630 | /* Start up the inferior. */ | |
1631 | clear_proceed_status (); | |
1632 | proceed_to_finish = 1; | |
2acceee2 | 1633 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); |
c906108c SS |
1634 | |
1635 | /* Perform our cleanups. */ | |
1636 | do_cleanups (old_chain); | |
1637 | } | |
1638 | flush_cached_frames (); | |
1639 | } | |
1640 | ||
1641 | /* After returning to a dummy on the stack, restore the instruction | |
1642 | queue space registers. */ | |
1643 | ||
1644 | static int | |
43bd9a9e | 1645 | restore_pc_queue (CORE_ADDR *fsr) |
c906108c SS |
1646 | { |
1647 | CORE_ADDR pc = read_pc (); | |
43bd9a9e | 1648 | CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM], |
53a5351d | 1649 | TARGET_PTR_BIT / 8); |
c906108c SS |
1650 | struct target_waitstatus w; |
1651 | int insn_count; | |
1652 | ||
1653 | /* Advance past break instruction in the call dummy. */ | |
1654 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1655 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1656 | ||
1657 | /* HPUX doesn't let us set the space registers or the space | |
1658 | registers of the PC queue through ptrace. Boo, hiss. | |
1659 | Conveniently, the call dummy has this sequence of instructions | |
1660 | after the break: | |
c5aa993b JM |
1661 | mtsp r21, sr0 |
1662 | ble,n 0(sr0, r22) | |
1663 | ||
c906108c SS |
1664 | So, load up the registers and single step until we are in the |
1665 | right place. */ | |
1666 | ||
43bd9a9e | 1667 | write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM], |
53a5351d | 1668 | REGISTER_SIZE)); |
c906108c SS |
1669 | write_register (22, new_pc); |
1670 | ||
1671 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1672 | { | |
1673 | /* FIXME: What if the inferior gets a signal right now? Want to | |
c5aa993b JM |
1674 | merge this into wait_for_inferior (as a special kind of |
1675 | watchpoint? By setting a breakpoint at the end? Is there | |
1676 | any other choice? Is there *any* way to do this stuff with | |
1677 | ptrace() or some equivalent?). */ | |
c906108c | 1678 | resume (1, 0); |
39f77062 | 1679 | target_wait (inferior_ptid, &w); |
c906108c SS |
1680 | |
1681 | if (w.kind == TARGET_WAITKIND_SIGNALLED) | |
c5aa993b JM |
1682 | { |
1683 | stop_signal = w.value.sig; | |
1684 | terminal_ours_for_output (); | |
1685 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", | |
c906108c SS |
1686 | target_signal_to_name (stop_signal), |
1687 | target_signal_to_string (stop_signal)); | |
c5aa993b JM |
1688 | gdb_flush (gdb_stdout); |
1689 | return 0; | |
1690 | } | |
c906108c SS |
1691 | } |
1692 | target_terminal_ours (); | |
1693 | target_fetch_registers (-1); | |
1694 | return 1; | |
1695 | } | |
1696 | ||
c2c6d25f JM |
1697 | |
1698 | #ifdef PA20W_CALLING_CONVENTIONS | |
1699 | ||
53a5351d JM |
1700 | /* This function pushes a stack frame with arguments as part of the |
1701 | inferior function calling mechanism. | |
c906108c | 1702 | |
c2c6d25f JM |
1703 | This is the version for the PA64, in which later arguments appear |
1704 | at higher addresses. (The stack always grows towards higher | |
1705 | addresses.) | |
c906108c | 1706 | |
53a5351d JM |
1707 | We simply allocate the appropriate amount of stack space and put |
1708 | arguments into their proper slots. The call dummy code will copy | |
1709 | arguments into registers as needed by the ABI. | |
c906108c | 1710 | |
c2c6d25f JM |
1711 | This ABI also requires that the caller provide an argument pointer |
1712 | to the callee, so we do that too. */ | |
53a5351d | 1713 | |
c906108c | 1714 | CORE_ADDR |
ea7c478f | 1715 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1716 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1717 | { |
1718 | /* array of arguments' offsets */ | |
c5aa993b | 1719 | int *offset = (int *) alloca (nargs * sizeof (int)); |
53a5351d JM |
1720 | |
1721 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1722 | word size */ | |
c5aa993b | 1723 | int *lengths = (int *) alloca (nargs * sizeof (int)); |
c906108c | 1724 | |
53a5351d JM |
1725 | /* The value of SP as it was passed into this function after |
1726 | aligning. */ | |
1727 | CORE_ADDR orig_sp = STACK_ALIGN (sp); | |
c906108c | 1728 | |
53a5351d JM |
1729 | /* The number of stack bytes occupied by the current argument. */ |
1730 | int bytes_reserved; | |
1731 | ||
1732 | /* The total number of bytes reserved for the arguments. */ | |
1733 | int cum_bytes_reserved = 0; | |
c906108c | 1734 | |
53a5351d JM |
1735 | /* Similarly, but aligned. */ |
1736 | int cum_bytes_aligned = 0; | |
1737 | int i; | |
c5aa993b | 1738 | |
53a5351d | 1739 | /* Iterate over each argument provided by the user. */ |
c906108c SS |
1740 | for (i = 0; i < nargs; i++) |
1741 | { | |
c2c6d25f JM |
1742 | struct type *arg_type = VALUE_TYPE (args[i]); |
1743 | ||
1744 | /* Integral scalar values smaller than a register are padded on | |
1745 | the left. We do this by promoting them to full-width, | |
1746 | although the ABI says to pad them with garbage. */ | |
1747 | if (is_integral_type (arg_type) | |
1748 | && TYPE_LENGTH (arg_type) < REGISTER_SIZE) | |
1749 | { | |
1750 | args[i] = value_cast ((TYPE_UNSIGNED (arg_type) | |
1751 | ? builtin_type_unsigned_long | |
1752 | : builtin_type_long), | |
1753 | args[i]); | |
1754 | arg_type = VALUE_TYPE (args[i]); | |
1755 | } | |
1756 | ||
1757 | lengths[i] = TYPE_LENGTH (arg_type); | |
c906108c | 1758 | |
53a5351d JM |
1759 | /* Align the size of the argument to the word size for this |
1760 | target. */ | |
1761 | bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE; | |
c906108c | 1762 | |
53a5351d JM |
1763 | offset[i] = cum_bytes_reserved; |
1764 | ||
c2c6d25f JM |
1765 | /* Aggregates larger than eight bytes (the only types larger |
1766 | than eight bytes we have) are aligned on a 16-byte boundary, | |
1767 | possibly padded on the right with garbage. This may leave an | |
1768 | empty word on the stack, and thus an unused register, as per | |
1769 | the ABI. */ | |
1770 | if (bytes_reserved > 8) | |
1771 | { | |
1772 | /* Round up the offset to a multiple of two slots. */ | |
1773 | int new_offset = ((offset[i] + 2*REGISTER_SIZE-1) | |
1774 | & -(2*REGISTER_SIZE)); | |
c906108c | 1775 | |
c2c6d25f JM |
1776 | /* Note the space we've wasted, if any. */ |
1777 | bytes_reserved += new_offset - offset[i]; | |
1778 | offset[i] = new_offset; | |
1779 | } | |
53a5351d | 1780 | |
c2c6d25f JM |
1781 | cum_bytes_reserved += bytes_reserved; |
1782 | } | |
1783 | ||
1784 | /* CUM_BYTES_RESERVED already accounts for all the arguments | |
1785 | passed by the user. However, the ABIs mandate minimum stack space | |
1786 | allocations for outgoing arguments. | |
1787 | ||
1788 | The ABIs also mandate minimum stack alignments which we must | |
1789 | preserve. */ | |
1790 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); | |
1791 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); | |
1792 | ||
1793 | /* Now write each of the args at the proper offset down the stack. */ | |
1794 | for (i = 0; i < nargs; i++) | |
1795 | write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
1796 | ||
1797 | /* If a structure has to be returned, set up register 28 to hold its | |
1798 | address */ | |
1799 | if (struct_return) | |
1800 | write_register (28, struct_addr); | |
1801 | ||
1802 | /* For the PA64 we must pass a pointer to the outgoing argument list. | |
1803 | The ABI mandates that the pointer should point to the first byte of | |
1804 | storage beyond the register flushback area. | |
1805 | ||
1806 | However, the call dummy expects the outgoing argument pointer to | |
1807 | be passed in register %r4. */ | |
1808 | write_register (4, orig_sp + REG_PARM_STACK_SPACE); | |
1809 | ||
1810 | /* ?!? This needs further work. We need to set up the global data | |
1811 | pointer for this procedure. This assumes the same global pointer | |
1812 | for every procedure. The call dummy expects the dp value to | |
1813 | be passed in register %r6. */ | |
1814 | write_register (6, read_register (27)); | |
1815 | ||
1816 | /* The stack will have 64 bytes of additional space for a frame marker. */ | |
1817 | return sp + 64; | |
1818 | } | |
1819 | ||
1820 | #else | |
1821 | ||
1822 | /* This function pushes a stack frame with arguments as part of the | |
1823 | inferior function calling mechanism. | |
1824 | ||
1825 | This is the version of the function for the 32-bit PA machines, in | |
1826 | which later arguments appear at lower addresses. (The stack always | |
1827 | grows towards higher addresses.) | |
1828 | ||
1829 | We simply allocate the appropriate amount of stack space and put | |
1830 | arguments into their proper slots. The call dummy code will copy | |
1831 | arguments into registers as needed by the ABI. */ | |
1832 | ||
1833 | CORE_ADDR | |
ea7c478f | 1834 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1835 | int struct_return, CORE_ADDR struct_addr) |
c2c6d25f JM |
1836 | { |
1837 | /* array of arguments' offsets */ | |
1838 | int *offset = (int *) alloca (nargs * sizeof (int)); | |
1839 | ||
1840 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1841 | word size */ | |
1842 | int *lengths = (int *) alloca (nargs * sizeof (int)); | |
1843 | ||
1844 | /* The number of stack bytes occupied by the current argument. */ | |
1845 | int bytes_reserved; | |
1846 | ||
1847 | /* The total number of bytes reserved for the arguments. */ | |
1848 | int cum_bytes_reserved = 0; | |
1849 | ||
1850 | /* Similarly, but aligned. */ | |
1851 | int cum_bytes_aligned = 0; | |
1852 | int i; | |
1853 | ||
1854 | /* Iterate over each argument provided by the user. */ | |
1855 | for (i = 0; i < nargs; i++) | |
1856 | { | |
1857 | lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1858 | ||
1859 | /* Align the size of the argument to the word size for this | |
1860 | target. */ | |
1861 | bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE; | |
1862 | ||
b6649e88 AC |
1863 | offset[i] = (cum_bytes_reserved |
1864 | + (lengths[i] > 4 ? bytes_reserved : lengths[i])); | |
c2c6d25f JM |
1865 | |
1866 | /* If the argument is a double word argument, then it needs to be | |
1867 | double word aligned. */ | |
53a5351d | 1868 | if ((bytes_reserved == 2 * REGISTER_SIZE) |
c2c6d25f | 1869 | && (offset[i] % 2 * REGISTER_SIZE)) |
c5aa993b JM |
1870 | { |
1871 | int new_offset = 0; | |
53a5351d JM |
1872 | /* BYTES_RESERVED is already aligned to the word, so we put |
1873 | the argument at one word more down the stack. | |
1874 | ||
1875 | This will leave one empty word on the stack, and one unused | |
1876 | register as mandated by the ABI. */ | |
1877 | new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1) | |
1878 | & -(2 * REGISTER_SIZE)); | |
1879 | ||
1880 | if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE) | |
c5aa993b | 1881 | { |
53a5351d JM |
1882 | bytes_reserved += REGISTER_SIZE; |
1883 | offset[i] += REGISTER_SIZE; | |
c5aa993b JM |
1884 | } |
1885 | } | |
c906108c SS |
1886 | |
1887 | cum_bytes_reserved += bytes_reserved; | |
1888 | ||
1889 | } | |
1890 | ||
c2c6d25f JM |
1891 | /* CUM_BYTES_RESERVED already accounts for all the arguments passed |
1892 | by the user. However, the ABI mandates minimum stack space | |
53a5351d JM |
1893 | allocations for outgoing arguments. |
1894 | ||
c2c6d25f | 1895 | The ABI also mandates minimum stack alignments which we must |
53a5351d | 1896 | preserve. */ |
c906108c | 1897 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); |
53a5351d JM |
1898 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
1899 | ||
1900 | /* Now write each of the args at the proper offset down the stack. | |
53a5351d JM |
1901 | ?!? We need to promote values to a full register instead of skipping |
1902 | words in the stack. */ | |
c906108c SS |
1903 | for (i = 0; i < nargs; i++) |
1904 | write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
c906108c | 1905 | |
53a5351d JM |
1906 | /* If a structure has to be returned, set up register 28 to hold its |
1907 | address */ | |
c906108c SS |
1908 | if (struct_return) |
1909 | write_register (28, struct_addr); | |
1910 | ||
53a5351d | 1911 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
c906108c SS |
1912 | return sp + 32; |
1913 | } | |
1914 | ||
c2c6d25f | 1915 | #endif |
c906108c SS |
1916 | |
1917 | /* elz: this function returns a value which is built looking at the given address. | |
1918 | It is called from call_function_by_hand, in case we need to return a | |
1919 | value which is larger than 64 bits, and it is stored in the stack rather than | |
1920 | in the registers r28 and r29 or fr4. | |
1921 | This function does the same stuff as value_being_returned in values.c, but | |
1922 | gets the value from the stack rather than from the buffer where all the | |
1923 | registers were saved when the function called completed. */ | |
ea7c478f | 1924 | struct value * |
fba45db2 | 1925 | hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr) |
c906108c | 1926 | { |
ea7c478f | 1927 | register struct value *val; |
c906108c SS |
1928 | |
1929 | val = allocate_value (valtype); | |
1930 | CHECK_TYPEDEF (valtype); | |
c5aa993b | 1931 | target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype)); |
c906108c SS |
1932 | |
1933 | return val; | |
1934 | } | |
1935 | ||
1936 | ||
1937 | ||
1938 | /* elz: Used to lookup a symbol in the shared libraries. | |
c5aa993b JM |
1939 | This function calls shl_findsym, indirectly through a |
1940 | call to __d_shl_get. __d_shl_get is in end.c, which is always | |
1941 | linked in by the hp compilers/linkers. | |
1942 | The call to shl_findsym cannot be made directly because it needs | |
1943 | to be active in target address space. | |
1944 | inputs: - minimal symbol pointer for the function we want to look up | |
1945 | - address in target space of the descriptor for the library | |
1946 | where we want to look the symbol up. | |
1947 | This address is retrieved using the | |
1948 | som_solib_get_solib_by_pc function (somsolib.c). | |
1949 | output: - real address in the library of the function. | |
1950 | note: the handle can be null, in which case shl_findsym will look for | |
1951 | the symbol in all the loaded shared libraries. | |
1952 | files to look at if you need reference on this stuff: | |
1953 | dld.c, dld_shl_findsym.c | |
1954 | end.c | |
1955 | man entry for shl_findsym */ | |
c906108c SS |
1956 | |
1957 | CORE_ADDR | |
fba45db2 | 1958 | find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle) |
c906108c | 1959 | { |
c5aa993b JM |
1960 | struct symbol *get_sym, *symbol2; |
1961 | struct minimal_symbol *buff_minsym, *msymbol; | |
1962 | struct type *ftype; | |
ea7c478f AC |
1963 | struct value **args; |
1964 | struct value *funcval; | |
1965 | struct value *val; | |
c5aa993b JM |
1966 | |
1967 | int x, namelen, err_value, tmp = -1; | |
1968 | CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr; | |
1969 | CORE_ADDR stub_addr; | |
1970 | ||
1971 | ||
ea7c478f | 1972 | args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */ |
c5aa993b JM |
1973 | funcval = find_function_in_inferior ("__d_shl_get"); |
1974 | get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL); | |
1975 | buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL); | |
1976 | msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL); | |
1977 | symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL); | |
1978 | endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym); | |
22abf04a | 1979 | namelen = strlen (DEPRECATED_SYMBOL_NAME (function)); |
c5aa993b JM |
1980 | value_return_addr = endo_buff_addr + namelen; |
1981 | ftype = check_typedef (SYMBOL_TYPE (get_sym)); | |
1982 | ||
1983 | /* do alignment */ | |
1984 | if ((x = value_return_addr % 64) != 0) | |
1985 | value_return_addr = value_return_addr + 64 - x; | |
1986 | ||
1987 | errno_return_addr = value_return_addr + 64; | |
1988 | ||
1989 | ||
1990 | /* set up stuff needed by __d_shl_get in buffer in end.o */ | |
1991 | ||
22abf04a | 1992 | target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen); |
c5aa993b JM |
1993 | |
1994 | target_write_memory (value_return_addr, (char *) &tmp, 4); | |
1995 | ||
1996 | target_write_memory (errno_return_addr, (char *) &tmp, 4); | |
1997 | ||
1998 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
1999 | (char *) &handle, 4); | |
2000 | ||
2001 | /* now prepare the arguments for the call */ | |
2002 | ||
2003 | args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12); | |
4478b372 JB |
2004 | args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol)); |
2005 | args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr); | |
c5aa993b | 2006 | args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE); |
4478b372 JB |
2007 | args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr); |
2008 | args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr); | |
c5aa993b JM |
2009 | |
2010 | /* now call the function */ | |
2011 | ||
2012 | val = call_function_by_hand (funcval, 6, args); | |
2013 | ||
2014 | /* now get the results */ | |
2015 | ||
2016 | target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value)); | |
2017 | ||
2018 | target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr)); | |
2019 | if (stub_addr <= 0) | |
104c1213 | 2020 | error ("call to __d_shl_get failed, error code is %d", err_value); |
c5aa993b JM |
2021 | |
2022 | return (stub_addr); | |
c906108c SS |
2023 | } |
2024 | ||
c5aa993b | 2025 | /* Cover routine for find_stub_with_shl_get to pass to catch_errors */ |
a0b3c4fd | 2026 | static int |
4efb68b1 | 2027 | cover_find_stub_with_shl_get (void *args_untyped) |
c906108c | 2028 | { |
a0b3c4fd JM |
2029 | args_for_find_stub *args = args_untyped; |
2030 | args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle); | |
2031 | return 0; | |
c906108c SS |
2032 | } |
2033 | ||
c906108c SS |
2034 | /* Insert the specified number of args and function address |
2035 | into a call sequence of the above form stored at DUMMYNAME. | |
2036 | ||
2037 | On the hppa we need to call the stack dummy through $$dyncall. | |
2038 | Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
2039 | real_pc, which is the location where gdb should start up the | |
cce74817 JM |
2040 | inferior to do the function call. |
2041 | ||
2042 | This has to work across several versions of hpux, bsd, osf1. It has to | |
2043 | work regardless of what compiler was used to build the inferior program. | |
2044 | It should work regardless of whether or not end.o is available. It has | |
2045 | to work even if gdb can not call into the dynamic loader in the inferior | |
2046 | to query it for symbol names and addresses. | |
2047 | ||
2048 | Yes, all those cases should work. Luckily code exists to handle most | |
2049 | of them. The complexity is in selecting exactly what scheme should | |
2050 | be used to perform the inferior call. | |
2051 | ||
2052 | At the current time this routine is known not to handle cases where | |
2053 | the program was linked with HP's compiler without including end.o. | |
2054 | ||
2055 | Please contact Jeff Law ([email protected]) before changing this code. */ | |
c906108c SS |
2056 | |
2057 | CORE_ADDR | |
fba45db2 | 2058 | hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 2059 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
2060 | { |
2061 | CORE_ADDR dyncall_addr; | |
2062 | struct minimal_symbol *msymbol; | |
2063 | struct minimal_symbol *trampoline; | |
2064 | int flags = read_register (FLAGS_REGNUM); | |
cce74817 JM |
2065 | struct unwind_table_entry *u = NULL; |
2066 | CORE_ADDR new_stub = 0; | |
2067 | CORE_ADDR solib_handle = 0; | |
2068 | ||
2069 | /* Nonzero if we will use GCC's PLT call routine. This routine must be | |
c2c6d25f JM |
2070 | passed an import stub, not a PLABEL. It is also necessary to set %r19 |
2071 | (the PIC register) before performing the call. | |
c906108c | 2072 | |
cce74817 JM |
2073 | If zero, then we are using __d_plt_call (HP's PLT call routine) or we |
2074 | are calling the target directly. When using __d_plt_call we want to | |
2075 | use a PLABEL instead of an import stub. */ | |
2076 | int using_gcc_plt_call = 1; | |
2077 | ||
53a5351d JM |
2078 | #ifdef GDB_TARGET_IS_HPPA_20W |
2079 | /* We currently use completely different code for the PA2.0W inferior | |
2080 | function call sequences. This needs to be cleaned up. */ | |
2081 | { | |
2082 | CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5; | |
2083 | struct target_waitstatus w; | |
2084 | int inst1, inst2; | |
2085 | char buf[4]; | |
2086 | int status; | |
2087 | struct objfile *objfile; | |
2088 | ||
2089 | /* We can not modify the PC space queues directly, so we start | |
2090 | up the inferior and execute a couple instructions to set the | |
2091 | space queues so that they point to the call dummy in the stack. */ | |
2092 | pcsqh = read_register (PCSQ_HEAD_REGNUM); | |
2093 | sr5 = read_register (SR5_REGNUM); | |
2094 | if (1) | |
2095 | { | |
2096 | pcoqh = read_register (PCOQ_HEAD_REGNUM); | |
2097 | pcoqt = read_register (PCOQ_TAIL_REGNUM); | |
2098 | if (target_read_memory (pcoqh, buf, 4) != 0) | |
2099 | error ("Couldn't modify space queue\n"); | |
2100 | inst1 = extract_unsigned_integer (buf, 4); | |
2101 | ||
2102 | if (target_read_memory (pcoqt, buf, 4) != 0) | |
2103 | error ("Couldn't modify space queue\n"); | |
2104 | inst2 = extract_unsigned_integer (buf, 4); | |
2105 | ||
2106 | /* BVE (r1) */ | |
2107 | *((int *) buf) = 0xe820d000; | |
2108 | if (target_write_memory (pcoqh, buf, 4) != 0) | |
2109 | error ("Couldn't modify space queue\n"); | |
2110 | ||
2111 | /* NOP */ | |
2112 | *((int *) buf) = 0x08000240; | |
2113 | if (target_write_memory (pcoqt, buf, 4) != 0) | |
2114 | { | |
2115 | *((int *) buf) = inst1; | |
2116 | target_write_memory (pcoqh, buf, 4); | |
2117 | error ("Couldn't modify space queue\n"); | |
2118 | } | |
2119 | ||
2120 | write_register (1, pc); | |
2121 | ||
2122 | /* Single step twice, the BVE instruction will set the space queue | |
2123 | such that it points to the PC value written immediately above | |
2124 | (ie the call dummy). */ | |
2125 | resume (1, 0); | |
39f77062 | 2126 | target_wait (inferior_ptid, &w); |
53a5351d | 2127 | resume (1, 0); |
39f77062 | 2128 | target_wait (inferior_ptid, &w); |
53a5351d JM |
2129 | |
2130 | /* Restore the two instructions at the old PC locations. */ | |
2131 | *((int *) buf) = inst1; | |
2132 | target_write_memory (pcoqh, buf, 4); | |
2133 | *((int *) buf) = inst2; | |
2134 | target_write_memory (pcoqt, buf, 4); | |
2135 | } | |
2136 | ||
2137 | /* The call dummy wants the ultimate destination address initially | |
2138 | in register %r5. */ | |
2139 | write_register (5, fun); | |
2140 | ||
2141 | /* We need to see if this objfile has a different DP value than our | |
c2c6d25f | 2142 | own (it could be a shared library for example). */ |
53a5351d JM |
2143 | ALL_OBJFILES (objfile) |
2144 | { | |
2145 | struct obj_section *s; | |
2146 | obj_private_data_t *obj_private; | |
2147 | ||
2148 | /* See if FUN is in any section within this shared library. */ | |
2149 | for (s = objfile->sections; s < objfile->sections_end; s++) | |
2150 | if (s->addr <= fun && fun < s->endaddr) | |
2151 | break; | |
2152 | ||
2153 | if (s >= objfile->sections_end) | |
2154 | continue; | |
2155 | ||
2156 | obj_private = (obj_private_data_t *) objfile->obj_private; | |
2157 | ||
2158 | /* The DP value may be different for each objfile. But within an | |
2159 | objfile each function uses the same dp value. Thus we do not need | |
2160 | to grope around the opd section looking for dp values. | |
2161 | ||
2162 | ?!? This is not strictly correct since we may be in a shared library | |
2163 | and want to call back into the main program. To make that case | |
2164 | work correctly we need to set obj_private->dp for the main program's | |
2165 | objfile, then remove this conditional. */ | |
2166 | if (obj_private->dp) | |
2167 | write_register (27, obj_private->dp); | |
2168 | break; | |
2169 | } | |
2170 | return pc; | |
2171 | } | |
2172 | #endif | |
2173 | ||
2174 | #ifndef GDB_TARGET_IS_HPPA_20W | |
cce74817 | 2175 | /* Prefer __gcc_plt_call over the HP supplied routine because |
c5aa993b | 2176 | __gcc_plt_call works for any number of arguments. */ |
c906108c | 2177 | trampoline = NULL; |
cce74817 JM |
2178 | if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL) |
2179 | using_gcc_plt_call = 0; | |
2180 | ||
c906108c SS |
2181 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
2182 | if (msymbol == NULL) | |
cce74817 | 2183 | error ("Can't find an address for $$dyncall trampoline"); |
c906108c SS |
2184 | |
2185 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2186 | ||
2187 | /* FUN could be a procedure label, in which case we have to get | |
cce74817 JM |
2188 | its real address and the value of its GOT/DP if we plan to |
2189 | call the routine via gcc_plt_call. */ | |
2190 | if ((fun & 0x2) && using_gcc_plt_call) | |
c906108c SS |
2191 | { |
2192 | /* Get the GOT/DP value for the target function. It's | |
c5aa993b JM |
2193 | at *(fun+4). Note the call dummy is *NOT* allowed to |
2194 | trash %r19 before calling the target function. */ | |
53a5351d JM |
2195 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, |
2196 | REGISTER_SIZE)); | |
c906108c SS |
2197 | |
2198 | /* Now get the real address for the function we are calling, it's | |
c5aa993b | 2199 | at *fun. */ |
53a5351d JM |
2200 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, |
2201 | TARGET_PTR_BIT / 8); | |
c906108c SS |
2202 | } |
2203 | else | |
2204 | { | |
2205 | ||
2206 | #ifndef GDB_TARGET_IS_PA_ELF | |
cce74817 | 2207 | /* FUN could be an export stub, the real address of a function, or |
c5aa993b JM |
2208 | a PLABEL. When using gcc's PLT call routine we must call an import |
2209 | stub rather than the export stub or real function for lazy binding | |
2210 | to work correctly | |
cce74817 | 2211 | |
39f77062 | 2212 | If we are using the gcc PLT call routine, then we need to |
c5aa993b | 2213 | get the import stub for the target function. */ |
cce74817 | 2214 | if (using_gcc_plt_call && som_solib_get_got_by_pc (fun)) |
c906108c SS |
2215 | { |
2216 | struct objfile *objfile; | |
2217 | struct minimal_symbol *funsymbol, *stub_symbol; | |
2218 | CORE_ADDR newfun = 0; | |
2219 | ||
2220 | funsymbol = lookup_minimal_symbol_by_pc (fun); | |
2221 | if (!funsymbol) | |
4ce44c66 | 2222 | error ("Unable to find minimal symbol for target function.\n"); |
c906108c SS |
2223 | |
2224 | /* Search all the object files for an import symbol with the | |
2225 | right name. */ | |
2226 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
2227 | { |
2228 | stub_symbol | |
2229 | = lookup_minimal_symbol_solib_trampoline | |
22abf04a | 2230 | (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile); |
c5aa993b JM |
2231 | |
2232 | if (!stub_symbol) | |
22abf04a | 2233 | stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol), |
c5aa993b JM |
2234 | NULL, objfile); |
2235 | ||
2236 | /* Found a symbol with the right name. */ | |
2237 | if (stub_symbol) | |
2238 | { | |
2239 | struct unwind_table_entry *u; | |
2240 | /* It must be a shared library trampoline. */ | |
2241 | if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
2242 | continue; | |
2243 | ||
2244 | /* It must also be an import stub. */ | |
2245 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
6426a772 JM |
2246 | if (u == NULL |
2247 | || (u->stub_unwind.stub_type != IMPORT | |
2248 | #ifdef GDB_NATIVE_HPUX_11 | |
2249 | /* Sigh. The hpux 10.20 dynamic linker will blow | |
2250 | chunks if we perform a call to an unbound function | |
2251 | via the IMPORT_SHLIB stub. The hpux 11.00 dynamic | |
2252 | linker will blow chunks if we do not call the | |
2253 | unbound function via the IMPORT_SHLIB stub. | |
2254 | ||
2255 | We currently have no way to select bevahior on just | |
2256 | the target. However, we only support HPUX/SOM in | |
2257 | native mode. So we conditinalize on a native | |
2258 | #ifdef. Ugly. Ugly. Ugly */ | |
2259 | && u->stub_unwind.stub_type != IMPORT_SHLIB | |
2260 | #endif | |
2261 | )) | |
c5aa993b JM |
2262 | continue; |
2263 | ||
2264 | /* OK. Looks like the correct import stub. */ | |
2265 | newfun = SYMBOL_VALUE (stub_symbol); | |
2266 | fun = newfun; | |
6426a772 JM |
2267 | |
2268 | /* If we found an IMPORT stub, then we want to stop | |
2269 | searching now. If we found an IMPORT_SHLIB, we want | |
2270 | to continue the search in the hopes that we will find | |
2271 | an IMPORT stub. */ | |
2272 | if (u->stub_unwind.stub_type == IMPORT) | |
2273 | break; | |
c5aa993b JM |
2274 | } |
2275 | } | |
cce74817 JM |
2276 | |
2277 | /* Ouch. We did not find an import stub. Make an attempt to | |
2278 | do the right thing instead of just croaking. Most of the | |
2279 | time this will actually work. */ | |
c906108c SS |
2280 | if (newfun == 0) |
2281 | write_register (19, som_solib_get_got_by_pc (fun)); | |
cce74817 JM |
2282 | |
2283 | u = find_unwind_entry (fun); | |
c5aa993b | 2284 | if (u |
cce74817 JM |
2285 | && (u->stub_unwind.stub_type == IMPORT |
2286 | || u->stub_unwind.stub_type == IMPORT_SHLIB)) | |
2287 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
2288 | ||
2289 | /* If we found the import stub in the shared library, then we have | |
2290 | to set %r19 before we call the stub. */ | |
2291 | if (u && u->stub_unwind.stub_type == IMPORT_SHLIB) | |
2292 | write_register (19, som_solib_get_got_by_pc (fun)); | |
c906108c | 2293 | } |
c906108c SS |
2294 | #endif |
2295 | } | |
2296 | ||
cce74817 JM |
2297 | /* If we are calling into another load module then have sr4export call the |
2298 | magic __d_plt_call routine which is linked in from end.o. | |
c906108c | 2299 | |
cce74817 JM |
2300 | You can't use _sr4export to make the call as the value in sp-24 will get |
2301 | fried and you end up returning to the wrong location. You can't call the | |
2302 | target as the code to bind the PLT entry to a function can't return to a | |
2303 | stack address. | |
2304 | ||
2305 | Also, query the dynamic linker in the inferior to provide a suitable | |
2306 | PLABEL for the target function. */ | |
c5aa993b | 2307 | if (!using_gcc_plt_call) |
c906108c SS |
2308 | { |
2309 | CORE_ADDR new_fun; | |
2310 | ||
cce74817 | 2311 | /* Get a handle for the shared library containing FUN. Given the |
c5aa993b | 2312 | handle we can query the shared library for a PLABEL. */ |
cce74817 | 2313 | solib_handle = som_solib_get_solib_by_pc (fun); |
c906108c | 2314 | |
cce74817 | 2315 | if (solib_handle) |
c906108c | 2316 | { |
cce74817 | 2317 | struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun); |
c906108c | 2318 | |
cce74817 JM |
2319 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); |
2320 | ||
2321 | if (trampoline == NULL) | |
2322 | { | |
2323 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc."); | |
2324 | } | |
2325 | ||
2326 | /* This is where sr4export will jump to. */ | |
2327 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); | |
2328 | ||
2329 | /* If the function is in a shared library, then call __d_shl_get to | |
2330 | get a PLABEL for the target function. */ | |
2331 | new_stub = find_stub_with_shl_get (fmsymbol, solib_handle); | |
2332 | ||
c5aa993b | 2333 | if (new_stub == 0) |
22abf04a | 2334 | error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol)); |
c906108c SS |
2335 | |
2336 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
cce74817 | 2337 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, |
c5aa993b | 2338 | (struct objfile *) NULL); |
c906108c | 2339 | |
cce74817 JM |
2340 | if (msymbol == NULL) |
2341 | error ("Can't find an address for __shlib_funcptr"); | |
2342 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
c5aa993b | 2343 | (char *) &new_stub, 4); |
c906108c SS |
2344 | |
2345 | /* We want sr4export to call __d_plt_call, so we claim it is | |
2346 | the final target. Clear trampoline. */ | |
cce74817 JM |
2347 | fun = new_fun; |
2348 | trampoline = NULL; | |
c906108c SS |
2349 | } |
2350 | } | |
2351 | ||
2352 | /* Store upper 21 bits of function address into ldil. fun will either be | |
2353 | the final target (most cases) or __d_plt_call when calling into a shared | |
2354 | library and __gcc_plt_call is not available. */ | |
2355 | store_unsigned_integer | |
2356 | (&dummy[FUNC_LDIL_OFFSET], | |
2357 | INSTRUCTION_SIZE, | |
2358 | deposit_21 (fun >> 11, | |
2359 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], | |
2360 | INSTRUCTION_SIZE))); | |
2361 | ||
2362 | /* Store lower 11 bits of function address into ldo */ | |
2363 | store_unsigned_integer | |
2364 | (&dummy[FUNC_LDO_OFFSET], | |
2365 | INSTRUCTION_SIZE, | |
2366 | deposit_14 (fun & MASK_11, | |
2367 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], | |
2368 | INSTRUCTION_SIZE))); | |
2369 | #ifdef SR4EXPORT_LDIL_OFFSET | |
2370 | ||
2371 | { | |
2372 | CORE_ADDR trampoline_addr; | |
2373 | ||
2374 | /* We may still need sr4export's address too. */ | |
2375 | ||
2376 | if (trampoline == NULL) | |
2377 | { | |
2378 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2379 | if (msymbol == NULL) | |
cce74817 | 2380 | error ("Can't find an address for _sr4export trampoline"); |
c906108c SS |
2381 | |
2382 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2383 | } | |
2384 | else | |
2385 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
2386 | ||
2387 | ||
2388 | /* Store upper 21 bits of trampoline's address into ldil */ | |
2389 | store_unsigned_integer | |
2390 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2391 | INSTRUCTION_SIZE, | |
2392 | deposit_21 (trampoline_addr >> 11, | |
2393 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2394 | INSTRUCTION_SIZE))); | |
2395 | ||
2396 | /* Store lower 11 bits of trampoline's address into ldo */ | |
2397 | store_unsigned_integer | |
2398 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
2399 | INSTRUCTION_SIZE, | |
2400 | deposit_14 (trampoline_addr & MASK_11, | |
2401 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], | |
2402 | INSTRUCTION_SIZE))); | |
2403 | } | |
2404 | #endif | |
2405 | ||
2406 | write_register (22, pc); | |
2407 | ||
2408 | /* If we are in a syscall, then we should call the stack dummy | |
2409 | directly. $$dyncall is not needed as the kernel sets up the | |
2410 | space id registers properly based on the value in %r31. In | |
2411 | fact calling $$dyncall will not work because the value in %r22 | |
2412 | will be clobbered on the syscall exit path. | |
2413 | ||
2414 | Similarly if the current PC is in a shared library. Note however, | |
2415 | this scheme won't work if the shared library isn't mapped into | |
2416 | the same space as the stack. */ | |
2417 | if (flags & 2) | |
2418 | return pc; | |
2419 | #ifndef GDB_TARGET_IS_PA_ELF | |
60383d10 | 2420 | else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid))) |
c906108c SS |
2421 | return pc; |
2422 | #endif | |
2423 | else | |
2424 | return dyncall_addr; | |
53a5351d | 2425 | #endif |
c906108c SS |
2426 | } |
2427 | ||
c906108c SS |
2428 | /* If the pid is in a syscall, then the FP register is not readable. |
2429 | We'll return zero in that case, rather than attempting to read it | |
2430 | and cause a warning. */ | |
60383d10 | 2431 | |
c906108c | 2432 | CORE_ADDR |
60383d10 | 2433 | hppa_read_fp (int pid) |
c906108c SS |
2434 | { |
2435 | int flags = read_register (FLAGS_REGNUM); | |
2436 | ||
c5aa993b JM |
2437 | if (flags & 2) |
2438 | { | |
2439 | return (CORE_ADDR) 0; | |
2440 | } | |
c906108c SS |
2441 | |
2442 | /* This is the only site that may directly read_register () the FP | |
2443 | register. All others must use TARGET_READ_FP (). */ | |
2444 | return read_register (FP_REGNUM); | |
2445 | } | |
2446 | ||
60383d10 JB |
2447 | CORE_ADDR |
2448 | hppa_target_read_fp (void) | |
2449 | { | |
2450 | return hppa_read_fp (PIDGET (inferior_ptid)); | |
2451 | } | |
c906108c SS |
2452 | |
2453 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege | |
2454 | bits. */ | |
2455 | ||
2456 | CORE_ADDR | |
60383d10 | 2457 | hppa_target_read_pc (ptid_t ptid) |
c906108c | 2458 | { |
39f77062 | 2459 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2460 | |
2461 | /* The following test does not belong here. It is OS-specific, and belongs | |
2462 | in native code. */ | |
2463 | /* Test SS_INSYSCALL */ | |
2464 | if (flags & 2) | |
39f77062 | 2465 | return read_register_pid (31, ptid) & ~0x3; |
c906108c | 2466 | |
39f77062 | 2467 | return read_register_pid (PC_REGNUM, ptid) & ~0x3; |
c906108c SS |
2468 | } |
2469 | ||
2470 | /* Write out the PC. If currently in a syscall, then also write the new | |
2471 | PC value into %r31. */ | |
2472 | ||
2473 | void | |
60383d10 | 2474 | hppa_target_write_pc (CORE_ADDR v, ptid_t ptid) |
c906108c | 2475 | { |
39f77062 | 2476 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2477 | |
2478 | /* The following test does not belong here. It is OS-specific, and belongs | |
2479 | in native code. */ | |
2480 | /* If in a syscall, then set %r31. Also make sure to get the | |
2481 | privilege bits set correctly. */ | |
2482 | /* Test SS_INSYSCALL */ | |
2483 | if (flags & 2) | |
39f77062 | 2484 | write_register_pid (31, v | 0x3, ptid); |
c906108c | 2485 | |
39f77062 KB |
2486 | write_register_pid (PC_REGNUM, v, ptid); |
2487 | write_register_pid (NPC_REGNUM, v + 4, ptid); | |
c906108c SS |
2488 | } |
2489 | ||
2490 | /* return the alignment of a type in bytes. Structures have the maximum | |
2491 | alignment required by their fields. */ | |
2492 | ||
2493 | static int | |
fba45db2 | 2494 | hppa_alignof (struct type *type) |
c906108c SS |
2495 | { |
2496 | int max_align, align, i; | |
2497 | CHECK_TYPEDEF (type); | |
2498 | switch (TYPE_CODE (type)) | |
2499 | { | |
2500 | case TYPE_CODE_PTR: | |
2501 | case TYPE_CODE_INT: | |
2502 | case TYPE_CODE_FLT: | |
2503 | return TYPE_LENGTH (type); | |
2504 | case TYPE_CODE_ARRAY: | |
2505 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
2506 | case TYPE_CODE_STRUCT: | |
2507 | case TYPE_CODE_UNION: | |
2508 | max_align = 1; | |
2509 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2510 | { | |
2511 | /* Bit fields have no real alignment. */ | |
2512 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 2513 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
2514 | { |
2515 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
2516 | max_align = max (max_align, align); | |
2517 | } | |
2518 | } | |
2519 | return max_align; | |
2520 | default: | |
2521 | return 4; | |
2522 | } | |
2523 | } | |
2524 | ||
2525 | /* Print the register regnum, or all registers if regnum is -1 */ | |
2526 | ||
2527 | void | |
fba45db2 | 2528 | pa_do_registers_info (int regnum, int fpregs) |
c906108c | 2529 | { |
c5aa993b | 2530 | char raw_regs[REGISTER_BYTES]; |
c906108c SS |
2531 | int i; |
2532 | ||
2533 | /* Make a copy of gdb's save area (may cause actual | |
2534 | reads from the target). */ | |
2535 | for (i = 0; i < NUM_REGS; i++) | |
6e7f8b9c | 2536 | frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i)); |
c906108c SS |
2537 | |
2538 | if (regnum == -1) | |
2539 | pa_print_registers (raw_regs, regnum, fpregs); | |
c5aa993b JM |
2540 | else if (regnum < FP4_REGNUM) |
2541 | { | |
2542 | long reg_val[2]; | |
2543 | ||
2544 | /* Why is the value not passed through "extract_signed_integer" | |
2545 | as in "pa_print_registers" below? */ | |
2546 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
2547 | ||
2548 | if (!is_pa_2) | |
2549 | { | |
ce414844 | 2550 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2551 | } |
c906108c | 2552 | else |
c5aa993b JM |
2553 | { |
2554 | /* Fancy % formats to prevent leading zeros. */ | |
2555 | if (reg_val[0] == 0) | |
ce414844 | 2556 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2557 | else |
ce414844 | 2558 | printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum), |
c5aa993b JM |
2559 | reg_val[0], reg_val[1]); |
2560 | } | |
c906108c | 2561 | } |
c906108c | 2562 | else |
c5aa993b JM |
2563 | /* Note that real floating point values only start at |
2564 | FP4_REGNUM. FP0 and up are just status and error | |
2565 | registers, which have integral (bit) values. */ | |
c906108c SS |
2566 | pa_print_fp_reg (regnum); |
2567 | } | |
2568 | ||
2569 | /********** new function ********************/ | |
2570 | void | |
fba45db2 KB |
2571 | pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream, |
2572 | enum precision_type precision) | |
c906108c | 2573 | { |
c5aa993b | 2574 | char raw_regs[REGISTER_BYTES]; |
c906108c SS |
2575 | int i; |
2576 | ||
2577 | /* Make a copy of gdb's save area (may cause actual | |
c5aa993b | 2578 | reads from the target). */ |
c906108c | 2579 | for (i = 0; i < NUM_REGS; i++) |
6e7f8b9c | 2580 | frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i)); |
c906108c SS |
2581 | |
2582 | if (regnum == -1) | |
2583 | pa_strcat_registers (raw_regs, regnum, fpregs, stream); | |
2584 | ||
c5aa993b JM |
2585 | else if (regnum < FP4_REGNUM) |
2586 | { | |
2587 | long reg_val[2]; | |
2588 | ||
2589 | /* Why is the value not passed through "extract_signed_integer" | |
2590 | as in "pa_print_registers" below? */ | |
2591 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
c906108c | 2592 | |
c5aa993b JM |
2593 | if (!is_pa_2) |
2594 | { | |
ce414844 | 2595 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2596 | } |
c906108c | 2597 | else |
c5aa993b JM |
2598 | { |
2599 | /* Fancy % formats to prevent leading zeros. */ | |
2600 | if (reg_val[0] == 0) | |
ce414844 | 2601 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2602 | reg_val[1]); |
2603 | else | |
ce414844 | 2604 | fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2605 | reg_val[0], reg_val[1]); |
2606 | } | |
c906108c | 2607 | } |
c906108c | 2608 | else |
c5aa993b JM |
2609 | /* Note that real floating point values only start at |
2610 | FP4_REGNUM. FP0 and up are just status and error | |
2611 | registers, which have integral (bit) values. */ | |
c906108c SS |
2612 | pa_strcat_fp_reg (regnum, stream, precision); |
2613 | } | |
2614 | ||
2615 | /* If this is a PA2.0 machine, fetch the real 64-bit register | |
2616 | value. Otherwise use the info from gdb's saved register area. | |
2617 | ||
2618 | Note that reg_val is really expected to be an array of longs, | |
2619 | with two elements. */ | |
2620 | static void | |
fba45db2 | 2621 | pa_register_look_aside (char *raw_regs, int regnum, long *raw_val) |
c906108c | 2622 | { |
c5aa993b | 2623 | static int know_which = 0; /* False */ |
c906108c | 2624 | |
c5aa993b | 2625 | int regaddr; |
c906108c SS |
2626 | unsigned int offset; |
2627 | register int i; | |
c5aa993b JM |
2628 | int start; |
2629 | ||
2630 | ||
6789195b | 2631 | char *buf = alloca (max_register_size (current_gdbarch)); |
c906108c SS |
2632 | long long reg_val; |
2633 | ||
c5aa993b JM |
2634 | if (!know_which) |
2635 | { | |
2636 | if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION)) | |
2637 | { | |
2638 | is_pa_2 = (1 == 1); | |
2639 | } | |
2640 | ||
2641 | know_which = 1; /* True */ | |
2642 | } | |
c906108c SS |
2643 | |
2644 | raw_val[0] = 0; | |
2645 | raw_val[1] = 0; | |
2646 | ||
c5aa993b JM |
2647 | if (!is_pa_2) |
2648 | { | |
2649 | raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum)); | |
c906108c | 2650 | return; |
c5aa993b | 2651 | } |
c906108c SS |
2652 | |
2653 | /* Code below copied from hppah-nat.c, with fixes for wide | |
2654 | registers, using different area of save_state, etc. */ | |
2655 | if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM || | |
c5aa993b JM |
2656 | !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE) |
2657 | { | |
c906108c | 2658 | /* Use narrow regs area of save_state and default macro. */ |
c5aa993b JM |
2659 | offset = U_REGS_OFFSET; |
2660 | regaddr = register_addr (regnum, offset); | |
2661 | start = 1; | |
2662 | } | |
2663 | else | |
2664 | { | |
c906108c SS |
2665 | /* Use wide regs area, and calculate registers as 8 bytes wide. |
2666 | ||
2667 | We'd like to do this, but current version of "C" doesn't | |
2668 | permit "offsetof": | |
2669 | ||
c5aa993b | 2670 | offset = offsetof(save_state_t, ss_wide); |
c906108c SS |
2671 | |
2672 | Note that to avoid "C" doing typed pointer arithmetic, we | |
2673 | have to cast away the type in our offset calculation: | |
2674 | otherwise we get an offset of 1! */ | |
2675 | ||
7a292a7a | 2676 | /* NB: save_state_t is not available before HPUX 9. |
c5aa993b | 2677 | The ss_wide field is not available previous to HPUX 10.20, |
7a292a7a SS |
2678 | so to avoid compile-time warnings, we only compile this for |
2679 | PA 2.0 processors. This control path should only be followed | |
2680 | if we're debugging a PA 2.0 processor, so this should not cause | |
2681 | problems. */ | |
2682 | ||
c906108c SS |
2683 | /* #if the following code out so that this file can still be |
2684 | compiled on older HPUX boxes (< 10.20) which don't have | |
2685 | this structure/structure member. */ | |
2686 | #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1 | |
2687 | save_state_t temp; | |
2688 | ||
2689 | offset = ((int) &temp.ss_wide) - ((int) &temp); | |
2690 | regaddr = offset + regnum * 8; | |
c5aa993b | 2691 | start = 0; |
c906108c | 2692 | #endif |
c5aa993b JM |
2693 | } |
2694 | ||
2695 | for (i = start; i < 2; i++) | |
c906108c SS |
2696 | { |
2697 | errno = 0; | |
39f77062 | 2698 | raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid), |
c5aa993b | 2699 | (PTRACE_ARG3_TYPE) regaddr, 0); |
c906108c SS |
2700 | if (errno != 0) |
2701 | { | |
2702 | /* Warning, not error, in case we are attached; sometimes the | |
2703 | kernel doesn't let us at the registers. */ | |
2704 | char *err = safe_strerror (errno); | |
2705 | char *msg = alloca (strlen (err) + 128); | |
2706 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err); | |
2707 | warning (msg); | |
2708 | goto error_exit; | |
2709 | } | |
2710 | ||
2711 | regaddr += sizeof (long); | |
2712 | } | |
c5aa993b | 2713 | |
c906108c | 2714 | if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) |
c5aa993b | 2715 | raw_val[1] &= ~0x3; /* I think we're masking out space bits */ |
c906108c SS |
2716 | |
2717 | error_exit: | |
2718 | ; | |
2719 | } | |
2720 | ||
2721 | /* "Info all-reg" command */ | |
c5aa993b | 2722 | |
c906108c | 2723 | static void |
fba45db2 | 2724 | pa_print_registers (char *raw_regs, int regnum, int fpregs) |
c906108c | 2725 | { |
c5aa993b | 2726 | int i, j; |
adf40b2e JM |
2727 | /* Alas, we are compiled so that "long long" is 32 bits */ |
2728 | long raw_val[2]; | |
c906108c | 2729 | long long_val; |
a0b3c4fd | 2730 | int rows = 48, columns = 2; |
c906108c | 2731 | |
adf40b2e | 2732 | for (i = 0; i < rows; i++) |
c906108c | 2733 | { |
adf40b2e | 2734 | for (j = 0; j < columns; j++) |
c906108c | 2735 | { |
adf40b2e JM |
2736 | /* We display registers in column-major order. */ |
2737 | int regnum = i + j * rows; | |
2738 | ||
c5aa993b JM |
2739 | /* Q: Why is the value passed through "extract_signed_integer", |
2740 | while above, in "pa_do_registers_info" it isn't? | |
2741 | A: ? */ | |
adf40b2e | 2742 | pa_register_look_aside (raw_regs, regnum, &raw_val[0]); |
c5aa993b JM |
2743 | |
2744 | /* Even fancier % formats to prevent leading zeros | |
2745 | and still maintain the output in columns. */ | |
2746 | if (!is_pa_2) | |
2747 | { | |
2748 | /* Being big-endian, on this machine the low bits | |
2749 | (the ones we want to look at) are in the second longword. */ | |
2750 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 | 2751 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2752 | REGISTER_NAME (regnum), long_val); |
c5aa993b JM |
2753 | } |
2754 | else | |
2755 | { | |
2756 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2757 | if (raw_val[0] == 0) | |
ce414844 | 2758 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2759 | REGISTER_NAME (regnum), raw_val[1]); |
c5aa993b | 2760 | else |
ce414844 | 2761 | printf_filtered ("%10.10s: %8lx%8.8lx ", |
a0b3c4fd | 2762 | REGISTER_NAME (regnum), |
c5aa993b JM |
2763 | raw_val[0], raw_val[1]); |
2764 | } | |
c906108c SS |
2765 | } |
2766 | printf_unfiltered ("\n"); | |
2767 | } | |
c5aa993b | 2768 | |
c906108c | 2769 | if (fpregs) |
c5aa993b | 2770 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2771 | pa_print_fp_reg (i); |
2772 | } | |
2773 | ||
c5aa993b | 2774 | /************* new function ******************/ |
c906108c | 2775 | static void |
fba45db2 KB |
2776 | pa_strcat_registers (char *raw_regs, int regnum, int fpregs, |
2777 | struct ui_file *stream) | |
c906108c | 2778 | { |
c5aa993b JM |
2779 | int i, j; |
2780 | long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ | |
c906108c SS |
2781 | long long_val; |
2782 | enum precision_type precision; | |
2783 | ||
2784 | precision = unspecified_precision; | |
2785 | ||
2786 | for (i = 0; i < 18; i++) | |
2787 | { | |
2788 | for (j = 0; j < 4; j++) | |
2789 | { | |
c5aa993b JM |
2790 | /* Q: Why is the value passed through "extract_signed_integer", |
2791 | while above, in "pa_do_registers_info" it isn't? | |
2792 | A: ? */ | |
2793 | pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]); | |
2794 | ||
2795 | /* Even fancier % formats to prevent leading zeros | |
2796 | and still maintain the output in columns. */ | |
2797 | if (!is_pa_2) | |
2798 | { | |
2799 | /* Being big-endian, on this machine the low bits | |
2800 | (the ones we want to look at) are in the second longword. */ | |
2801 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 AC |
2802 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2803 | REGISTER_NAME (i + (j * 18)), long_val); | |
c5aa993b JM |
2804 | } |
2805 | else | |
2806 | { | |
2807 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2808 | if (raw_val[0] == 0) | |
ce414844 AC |
2809 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2810 | REGISTER_NAME (i + (j * 18)), raw_val[1]); | |
c5aa993b | 2811 | else |
ce414844 AC |
2812 | fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ", |
2813 | REGISTER_NAME (i + (j * 18)), raw_val[0], | |
2814 | raw_val[1]); | |
c5aa993b | 2815 | } |
c906108c SS |
2816 | } |
2817 | fprintf_unfiltered (stream, "\n"); | |
2818 | } | |
c5aa993b | 2819 | |
c906108c | 2820 | if (fpregs) |
c5aa993b | 2821 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2822 | pa_strcat_fp_reg (i, stream, precision); |
2823 | } | |
2824 | ||
2825 | static void | |
fba45db2 | 2826 | pa_print_fp_reg (int i) |
c906108c | 2827 | { |
6789195b AC |
2828 | char *raw_buffer = alloca (max_register_size (current_gdbarch)); |
2829 | char *virtual_buffer = alloca (max_register_size (current_gdbarch)); | |
c906108c SS |
2830 | |
2831 | /* Get 32bits of data. */ | |
6e7f8b9c | 2832 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
2833 | |
2834 | /* Put it in the buffer. No conversions are ever necessary. */ | |
2835 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
2836 | ||
2837 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2838 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2839 | fputs_filtered ("(single precision) ", gdb_stdout); | |
2840 | ||
2841 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0, | |
2842 | 1, 0, Val_pretty_default); | |
2843 | printf_filtered ("\n"); | |
2844 | ||
2845 | /* If "i" is even, then this register can also be a double-precision | |
2846 | FP register. Dump it out as such. */ | |
2847 | if ((i % 2) == 0) | |
2848 | { | |
2849 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 2850 | frame_register_read (deprecated_selected_frame, i + 1, raw_buffer); |
c906108c SS |
2851 | |
2852 | /* Copy it into the appropriate part of the virtual buffer. */ | |
2853 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
2854 | REGISTER_RAW_SIZE (i)); | |
2855 | ||
2856 | /* Dump it as a double. */ | |
2857 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2858 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2859 | fputs_filtered ("(double precision) ", gdb_stdout); | |
2860 | ||
2861 | val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0, | |
2862 | 1, 0, Val_pretty_default); | |
2863 | printf_filtered ("\n"); | |
2864 | } | |
2865 | } | |
2866 | ||
2867 | /*************** new function ***********************/ | |
2868 | static void | |
fba45db2 | 2869 | pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision) |
c906108c | 2870 | { |
6789195b AC |
2871 | char *raw_buffer = alloca (max_register_size (current_gdbarch)); |
2872 | char *virtual_buffer = alloca (max_register_size (current_gdbarch)); | |
c906108c SS |
2873 | |
2874 | fputs_filtered (REGISTER_NAME (i), stream); | |
2875 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream); | |
2876 | ||
2877 | /* Get 32bits of data. */ | |
6e7f8b9c | 2878 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
2879 | |
2880 | /* Put it in the buffer. No conversions are ever necessary. */ | |
2881 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
2882 | ||
2883 | if (precision == double_precision && (i % 2) == 0) | |
2884 | { | |
2885 | ||
6789195b | 2886 | char *raw_buf = alloca (max_register_size (current_gdbarch)); |
c5aa993b JM |
2887 | |
2888 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 2889 | frame_register_read (deprecated_selected_frame, i + 1, raw_buf); |
c5aa993b JM |
2890 | |
2891 | /* Copy it into the appropriate part of the virtual buffer. */ | |
2892 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i)); | |
c906108c | 2893 | |
c5aa993b JM |
2894 | val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0, |
2895 | 1, 0, Val_pretty_default); | |
c906108c SS |
2896 | |
2897 | } | |
c5aa993b JM |
2898 | else |
2899 | { | |
2900 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0, | |
2901 | 1, 0, Val_pretty_default); | |
2902 | } | |
c906108c SS |
2903 | |
2904 | } | |
2905 | ||
2906 | /* Return one if PC is in the call path of a trampoline, else return zero. | |
2907 | ||
2908 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
2909 | just shared library trampolines (import, export). */ | |
2910 | ||
2911 | int | |
60383d10 | 2912 | hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
2913 | { |
2914 | struct minimal_symbol *minsym; | |
2915 | struct unwind_table_entry *u; | |
2916 | static CORE_ADDR dyncall = 0; | |
2917 | static CORE_ADDR sr4export = 0; | |
2918 | ||
c2c6d25f JM |
2919 | #ifdef GDB_TARGET_IS_HPPA_20W |
2920 | /* PA64 has a completely different stub/trampoline scheme. Is it | |
2921 | better? Maybe. It's certainly harder to determine with any | |
2922 | certainty that we are in a stub because we can not refer to the | |
2923 | unwinders to help. | |
2924 | ||
2925 | The heuristic is simple. Try to lookup the current PC value in th | |
2926 | minimal symbol table. If that fails, then assume we are not in a | |
2927 | stub and return. | |
2928 | ||
2929 | Then see if the PC value falls within the section bounds for the | |
2930 | section containing the minimal symbol we found in the first | |
2931 | step. If it does, then assume we are not in a stub and return. | |
2932 | ||
2933 | Finally peek at the instructions to see if they look like a stub. */ | |
2934 | { | |
2935 | struct minimal_symbol *minsym; | |
2936 | asection *sec; | |
2937 | CORE_ADDR addr; | |
2938 | int insn, i; | |
2939 | ||
2940 | minsym = lookup_minimal_symbol_by_pc (pc); | |
2941 | if (! minsym) | |
2942 | return 0; | |
2943 | ||
2944 | sec = SYMBOL_BFD_SECTION (minsym); | |
2945 | ||
2946 | if (sec->vma <= pc | |
2947 | && sec->vma + sec->_cooked_size < pc) | |
2948 | return 0; | |
2949 | ||
2950 | /* We might be in a stub. Peek at the instructions. Stubs are 3 | |
2951 | instructions long. */ | |
2952 | insn = read_memory_integer (pc, 4); | |
2953 | ||
b84a8afe | 2954 | /* Find out where we think we are within the stub. */ |
c2c6d25f JM |
2955 | if ((insn & 0xffffc00e) == 0x53610000) |
2956 | addr = pc; | |
2957 | else if ((insn & 0xffffffff) == 0xe820d000) | |
2958 | addr = pc - 4; | |
2959 | else if ((insn & 0xffffc00e) == 0x537b0000) | |
2960 | addr = pc - 8; | |
2961 | else | |
2962 | return 0; | |
2963 | ||
2964 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2965 | insn = read_memory_integer (addr, 4); | |
2966 | if ((insn & 0xffffc00e) != 0x53610000) | |
2967 | return 0; | |
2968 | ||
2969 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2970 | insn = read_memory_integer (addr + 4, 4); | |
2971 | if ((insn & 0xffffffff) != 0xe820d000) | |
2972 | return 0; | |
2973 | ||
2974 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2975 | insn = read_memory_integer (addr + 8, 4); | |
2976 | if ((insn & 0xffffc00e) != 0x537b0000) | |
2977 | return 0; | |
2978 | ||
2979 | /* Looks like a stub. */ | |
2980 | return 1; | |
2981 | } | |
2982 | #endif | |
2983 | ||
2984 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
2985 | new exec file */ | |
c906108c SS |
2986 | |
2987 | /* First see if PC is in one of the two C-library trampolines. */ | |
2988 | if (!dyncall) | |
2989 | { | |
2990 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
2991 | if (minsym) | |
2992 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
2993 | else | |
2994 | dyncall = -1; | |
2995 | } | |
2996 | ||
2997 | if (!sr4export) | |
2998 | { | |
2999 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3000 | if (minsym) | |
3001 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
3002 | else | |
3003 | sr4export = -1; | |
3004 | } | |
3005 | ||
3006 | if (pc == dyncall || pc == sr4export) | |
3007 | return 1; | |
3008 | ||
104c1213 | 3009 | minsym = lookup_minimal_symbol_by_pc (pc); |
22abf04a | 3010 | if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0) |
104c1213 JM |
3011 | return 1; |
3012 | ||
c906108c SS |
3013 | /* Get the unwind descriptor corresponding to PC, return zero |
3014 | if no unwind was found. */ | |
3015 | u = find_unwind_entry (pc); | |
3016 | if (!u) | |
3017 | return 0; | |
3018 | ||
3019 | /* If this isn't a linker stub, then return now. */ | |
3020 | if (u->stub_unwind.stub_type == 0) | |
3021 | return 0; | |
3022 | ||
3023 | /* By definition a long-branch stub is a call stub. */ | |
3024 | if (u->stub_unwind.stub_type == LONG_BRANCH) | |
3025 | return 1; | |
3026 | ||
3027 | /* The call and return path execute the same instructions within | |
3028 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3029 | trampoline. */ | |
3030 | if (u->stub_unwind.stub_type == IMPORT) | |
3031 | return 1; | |
3032 | ||
3033 | /* Parameter relocation stubs always have a call path and may have a | |
3034 | return path. */ | |
3035 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3036 | || u->stub_unwind.stub_type == EXPORT) | |
3037 | { | |
3038 | CORE_ADDR addr; | |
3039 | ||
3040 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3041 | or the end of the stub. */ |
c906108c SS |
3042 | for (addr = pc; addr <= u->region_end; addr += 4) |
3043 | { | |
3044 | unsigned long insn; | |
3045 | ||
3046 | insn = read_memory_integer (addr, 4); | |
3047 | ||
3048 | /* Does it look like a bl? If so then it's the call path, if | |
3049 | we find a bv or be first, then we're on the return path. */ | |
3050 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3051 | return 1; | |
3052 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3053 | || (insn & 0xfc000000) == 0xe0000000) | |
3054 | return 0; | |
3055 | } | |
3056 | ||
3057 | /* Should never happen. */ | |
104c1213 JM |
3058 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3059 | return 0; | |
c906108c SS |
3060 | } |
3061 | ||
3062 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3063 | return 0; |
c906108c SS |
3064 | } |
3065 | ||
3066 | /* Return one if PC is in the return path of a trampoline, else return zero. | |
3067 | ||
3068 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3069 | just shared library trampolines (import, export). */ | |
3070 | ||
3071 | int | |
60383d10 | 3072 | hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3073 | { |
3074 | struct unwind_table_entry *u; | |
3075 | ||
3076 | /* Get the unwind descriptor corresponding to PC, return zero | |
3077 | if no unwind was found. */ | |
3078 | u = find_unwind_entry (pc); | |
3079 | if (!u) | |
3080 | return 0; | |
3081 | ||
3082 | /* If this isn't a linker stub or it's just a long branch stub, then | |
3083 | return zero. */ | |
3084 | if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) | |
3085 | return 0; | |
3086 | ||
3087 | /* The call and return path execute the same instructions within | |
3088 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3089 | trampoline. */ | |
3090 | if (u->stub_unwind.stub_type == IMPORT) | |
3091 | return 1; | |
3092 | ||
3093 | /* Parameter relocation stubs always have a call path and may have a | |
3094 | return path. */ | |
3095 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3096 | || u->stub_unwind.stub_type == EXPORT) | |
3097 | { | |
3098 | CORE_ADDR addr; | |
3099 | ||
3100 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3101 | or the end of the stub. */ |
c906108c SS |
3102 | for (addr = pc; addr <= u->region_end; addr += 4) |
3103 | { | |
3104 | unsigned long insn; | |
3105 | ||
3106 | insn = read_memory_integer (addr, 4); | |
3107 | ||
3108 | /* Does it look like a bl? If so then it's the call path, if | |
3109 | we find a bv or be first, then we're on the return path. */ | |
3110 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3111 | return 0; | |
3112 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3113 | || (insn & 0xfc000000) == 0xe0000000) | |
3114 | return 1; | |
3115 | } | |
3116 | ||
3117 | /* Should never happen. */ | |
104c1213 JM |
3118 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3119 | return 0; | |
c906108c SS |
3120 | } |
3121 | ||
3122 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3123 | return 0; |
c906108c SS |
3124 | |
3125 | } | |
3126 | ||
3127 | /* Figure out if PC is in a trampoline, and if so find out where | |
3128 | the trampoline will jump to. If not in a trampoline, return zero. | |
3129 | ||
3130 | Simple code examination probably is not a good idea since the code | |
3131 | sequences in trampolines can also appear in user code. | |
3132 | ||
3133 | We use unwinds and information from the minimal symbol table to | |
3134 | determine when we're in a trampoline. This won't work for ELF | |
3135 | (yet) since it doesn't create stub unwind entries. Whether or | |
3136 | not ELF will create stub unwinds or normal unwinds for linker | |
3137 | stubs is still being debated. | |
3138 | ||
3139 | This should handle simple calls through dyncall or sr4export, | |
3140 | long calls, argument relocation stubs, and dyncall/sr4export | |
3141 | calling an argument relocation stub. It even handles some stubs | |
3142 | used in dynamic executables. */ | |
3143 | ||
c906108c | 3144 | CORE_ADDR |
60383d10 | 3145 | hppa_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
3146 | { |
3147 | long orig_pc = pc; | |
3148 | long prev_inst, curr_inst, loc; | |
3149 | static CORE_ADDR dyncall = 0; | |
3150 | static CORE_ADDR dyncall_external = 0; | |
3151 | static CORE_ADDR sr4export = 0; | |
3152 | struct minimal_symbol *msym; | |
3153 | struct unwind_table_entry *u; | |
3154 | ||
c2c6d25f JM |
3155 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
3156 | new exec file */ | |
c906108c SS |
3157 | |
3158 | if (!dyncall) | |
3159 | { | |
3160 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3161 | if (msym) | |
3162 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
3163 | else | |
3164 | dyncall = -1; | |
3165 | } | |
3166 | ||
3167 | if (!dyncall_external) | |
3168 | { | |
3169 | msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); | |
3170 | if (msym) | |
3171 | dyncall_external = SYMBOL_VALUE_ADDRESS (msym); | |
3172 | else | |
3173 | dyncall_external = -1; | |
3174 | } | |
3175 | ||
3176 | if (!sr4export) | |
3177 | { | |
3178 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3179 | if (msym) | |
3180 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
3181 | else | |
3182 | sr4export = -1; | |
3183 | } | |
3184 | ||
3185 | /* Addresses passed to dyncall may *NOT* be the actual address | |
3186 | of the function. So we may have to do something special. */ | |
3187 | if (pc == dyncall) | |
3188 | { | |
3189 | pc = (CORE_ADDR) read_register (22); | |
3190 | ||
3191 | /* If bit 30 (counting from the left) is on, then pc is the address of | |
c5aa993b JM |
3192 | the PLT entry for this function, not the address of the function |
3193 | itself. Bit 31 has meaning too, but only for MPE. */ | |
c906108c | 3194 | if (pc & 0x2) |
53a5351d | 3195 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3196 | } |
3197 | if (pc == dyncall_external) | |
3198 | { | |
3199 | pc = (CORE_ADDR) read_register (22); | |
53a5351d | 3200 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3201 | } |
3202 | else if (pc == sr4export) | |
3203 | pc = (CORE_ADDR) (read_register (22)); | |
3204 | ||
3205 | /* Get the unwind descriptor corresponding to PC, return zero | |
3206 | if no unwind was found. */ | |
3207 | u = find_unwind_entry (pc); | |
3208 | if (!u) | |
3209 | return 0; | |
3210 | ||
3211 | /* If this isn't a linker stub, then return now. */ | |
3212 | /* elz: attention here! (FIXME) because of a compiler/linker | |
3213 | error, some stubs which should have a non zero stub_unwind.stub_type | |
3214 | have unfortunately a value of zero. So this function would return here | |
3215 | as if we were not in a trampoline. To fix this, we go look at the partial | |
3216 | symbol information, which reports this guy as a stub. | |
3217 | (FIXME): Unfortunately, we are not that lucky: it turns out that the | |
3218 | partial symbol information is also wrong sometimes. This is because | |
3219 | when it is entered (somread.c::som_symtab_read()) it can happen that | |
3220 | if the type of the symbol (from the som) is Entry, and the symbol is | |
3221 | in a shared library, then it can also be a trampoline. This would | |
3222 | be OK, except that I believe the way they decide if we are ina shared library | |
3223 | does not work. SOOOO..., even if we have a regular function w/o trampolines | |
3224 | its minimal symbol can be assigned type mst_solib_trampoline. | |
3225 | Also, if we find that the symbol is a real stub, then we fix the unwind | |
3226 | descriptor, and define the stub type to be EXPORT. | |
c5aa993b | 3227 | Hopefully this is correct most of the times. */ |
c906108c | 3228 | if (u->stub_unwind.stub_type == 0) |
c5aa993b | 3229 | { |
c906108c SS |
3230 | |
3231 | /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed | |
3232 | we can delete all the code which appears between the lines */ | |
3233 | /*--------------------------------------------------------------------------*/ | |
c5aa993b | 3234 | msym = lookup_minimal_symbol_by_pc (pc); |
c906108c | 3235 | |
c5aa993b JM |
3236 | if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) |
3237 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3238 | ||
3239 | else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) | |
3240 | { | |
3241 | struct objfile *objfile; | |
3242 | struct minimal_symbol *msymbol; | |
3243 | int function_found = 0; | |
3244 | ||
3245 | /* go look if there is another minimal symbol with the same name as | |
3246 | this one, but with type mst_text. This would happen if the msym | |
3247 | is an actual trampoline, in which case there would be another | |
3248 | symbol with the same name corresponding to the real function */ | |
3249 | ||
3250 | ALL_MSYMBOLS (objfile, msymbol) | |
3251 | { | |
3252 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
22abf04a | 3253 | && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym))) |
c5aa993b JM |
3254 | { |
3255 | function_found = 1; | |
3256 | break; | |
3257 | } | |
3258 | } | |
3259 | ||
3260 | if (function_found) | |
3261 | /* the type of msym is correct (mst_solib_trampoline), but | |
3262 | the unwind info is wrong, so set it to the correct value */ | |
3263 | u->stub_unwind.stub_type = EXPORT; | |
3264 | else | |
3265 | /* the stub type info in the unwind is correct (this is not a | |
3266 | trampoline), but the msym type information is wrong, it | |
3267 | should be mst_text. So we need to fix the msym, and also | |
3268 | get out of this function */ | |
3269 | { | |
3270 | MSYMBOL_TYPE (msym) = mst_text; | |
3271 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3272 | } | |
3273 | } | |
c906108c | 3274 | |
c906108c | 3275 | /*--------------------------------------------------------------------------*/ |
c5aa993b | 3276 | } |
c906108c SS |
3277 | |
3278 | /* It's a stub. Search for a branch and figure out where it goes. | |
3279 | Note we have to handle multi insn branch sequences like ldil;ble. | |
3280 | Most (all?) other branches can be determined by examining the contents | |
3281 | of certain registers and the stack. */ | |
3282 | ||
3283 | loc = pc; | |
3284 | curr_inst = 0; | |
3285 | prev_inst = 0; | |
3286 | while (1) | |
3287 | { | |
3288 | /* Make sure we haven't walked outside the range of this stub. */ | |
3289 | if (u != find_unwind_entry (loc)) | |
3290 | { | |
3291 | warning ("Unable to find branch in linker stub"); | |
3292 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3293 | } | |
3294 | ||
3295 | prev_inst = curr_inst; | |
3296 | curr_inst = read_memory_integer (loc, 4); | |
3297 | ||
3298 | /* Does it look like a branch external using %r1? Then it's the | |
c5aa993b | 3299 | branch from the stub to the actual function. */ |
c906108c SS |
3300 | if ((curr_inst & 0xffe0e000) == 0xe0202000) |
3301 | { | |
3302 | /* Yup. See if the previous instruction loaded | |
3303 | a value into %r1. If so compute and return the jump address. */ | |
3304 | if ((prev_inst & 0xffe00000) == 0x20200000) | |
3305 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
3306 | else | |
3307 | { | |
3308 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
3309 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3310 | } | |
3311 | } | |
3312 | ||
3313 | /* Does it look like a be 0(sr0,%r21)? OR | |
3314 | Does it look like a be, n 0(sr0,%r21)? OR | |
3315 | Does it look like a bve (r21)? (this is on PA2.0) | |
3316 | Does it look like a bve, n(r21)? (this is also on PA2.0) | |
3317 | That's the branch from an | |
c5aa993b | 3318 | import stub to an export stub. |
c906108c | 3319 | |
c5aa993b JM |
3320 | It is impossible to determine the target of the branch via |
3321 | simple examination of instructions and/or data (consider | |
3322 | that the address in the plabel may be the address of the | |
3323 | bind-on-reference routine in the dynamic loader). | |
c906108c | 3324 | |
c5aa993b | 3325 | So we have try an alternative approach. |
c906108c | 3326 | |
c5aa993b JM |
3327 | Get the name of the symbol at our current location; it should |
3328 | be a stub symbol with the same name as the symbol in the | |
3329 | shared library. | |
c906108c | 3330 | |
c5aa993b JM |
3331 | Then lookup a minimal symbol with the same name; we should |
3332 | get the minimal symbol for the target routine in the shared | |
3333 | library as those take precedence of import/export stubs. */ | |
c906108c | 3334 | if ((curr_inst == 0xe2a00000) || |
c5aa993b JM |
3335 | (curr_inst == 0xe2a00002) || |
3336 | (curr_inst == 0xeaa0d000) || | |
3337 | (curr_inst == 0xeaa0d002)) | |
c906108c SS |
3338 | { |
3339 | struct minimal_symbol *stubsym, *libsym; | |
3340 | ||
3341 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
3342 | if (stubsym == NULL) | |
3343 | { | |
ce414844 | 3344 | warning ("Unable to find symbol for 0x%lx", loc); |
c906108c SS |
3345 | return orig_pc == pc ? 0 : pc & ~0x3; |
3346 | } | |
3347 | ||
22abf04a | 3348 | libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL); |
c906108c SS |
3349 | if (libsym == NULL) |
3350 | { | |
3351 | warning ("Unable to find library symbol for %s\n", | |
22abf04a | 3352 | DEPRECATED_SYMBOL_NAME (stubsym)); |
c906108c SS |
3353 | return orig_pc == pc ? 0 : pc & ~0x3; |
3354 | } | |
3355 | ||
3356 | return SYMBOL_VALUE (libsym); | |
3357 | } | |
3358 | ||
3359 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a | |
c5aa993b JM |
3360 | branch from the stub to the actual function. */ |
3361 | /*elz */ | |
c906108c SS |
3362 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 |
3363 | || (curr_inst & 0xffe0e000) == 0xe8000000 | |
c5aa993b | 3364 | || (curr_inst & 0xffe0e000) == 0xe800A000) |
c906108c SS |
3365 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
3366 | ||
3367 | /* Does it look like bv (rp)? Note this depends on the | |
c5aa993b JM |
3368 | current stack pointer being the same as the stack |
3369 | pointer in the stub itself! This is a branch on from the | |
3370 | stub back to the original caller. */ | |
3371 | /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ | |
c906108c SS |
3372 | else if ((curr_inst & 0xffe0f000) == 0xe840c000) |
3373 | { | |
3374 | /* Yup. See if the previous instruction loaded | |
3375 | rp from sp - 8. */ | |
3376 | if (prev_inst == 0x4bc23ff1) | |
3377 | return (read_memory_integer | |
3378 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
3379 | else | |
3380 | { | |
3381 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
3382 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3383 | } | |
3384 | } | |
3385 | ||
3386 | /* elz: added this case to capture the new instruction | |
3387 | at the end of the return part of an export stub used by | |
3388 | the PA2.0: BVE, n (rp) */ | |
3389 | else if ((curr_inst & 0xffe0f000) == 0xe840d000) | |
3390 | { | |
c5aa993b | 3391 | return (read_memory_integer |
53a5351d | 3392 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3393 | } |
3394 | ||
3395 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
c5aa993b | 3396 | the original caller from the stub. Used in dynamic executables. */ |
c906108c SS |
3397 | else if (curr_inst == 0xe0400002) |
3398 | { | |
3399 | /* The value we jump to is sitting in sp - 24. But that's | |
3400 | loaded several instructions before the be instruction. | |
3401 | I guess we could check for the previous instruction being | |
3402 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
c5aa993b | 3403 | return (read_memory_integer |
53a5351d | 3404 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3405 | } |
3406 | ||
3407 | /* Haven't found the branch yet, but we're still in the stub. | |
c5aa993b | 3408 | Keep looking. */ |
c906108c SS |
3409 | loc += 4; |
3410 | } | |
3411 | } | |
3412 | ||
3413 | ||
3414 | /* For the given instruction (INST), return any adjustment it makes | |
3415 | to the stack pointer or zero for no adjustment. | |
3416 | ||
3417 | This only handles instructions commonly found in prologues. */ | |
3418 | ||
3419 | static int | |
fba45db2 | 3420 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
3421 | { |
3422 | /* This must persist across calls. */ | |
3423 | static int save_high21; | |
3424 | ||
3425 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
3426 | if ((inst & 0xffffc000) == 0x37de0000) | |
3427 | return extract_14 (inst); | |
3428 | ||
3429 | /* stwm X,D(sp) */ | |
3430 | if ((inst & 0xffe00000) == 0x6fc00000) | |
3431 | return extract_14 (inst); | |
3432 | ||
104c1213 JM |
3433 | /* std,ma X,D(sp) */ |
3434 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 3435 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 3436 | |
c906108c SS |
3437 | /* addil high21,%r1; ldo low11,(%r1),%r30) |
3438 | save high bits in save_high21 for later use. */ | |
3439 | if ((inst & 0xffe00000) == 0x28200000) | |
3440 | { | |
3441 | save_high21 = extract_21 (inst); | |
3442 | return 0; | |
3443 | } | |
3444 | ||
3445 | if ((inst & 0xffff0000) == 0x343e0000) | |
3446 | return save_high21 + extract_14 (inst); | |
3447 | ||
3448 | /* fstws as used by the HP compilers. */ | |
3449 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
3450 | return extract_5_load (inst); | |
3451 | ||
3452 | /* No adjustment. */ | |
3453 | return 0; | |
3454 | } | |
3455 | ||
3456 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
3457 | ||
3458 | static int | |
fba45db2 | 3459 | is_branch (unsigned long inst) |
c906108c SS |
3460 | { |
3461 | switch (inst >> 26) | |
3462 | { | |
3463 | case 0x20: | |
3464 | case 0x21: | |
3465 | case 0x22: | |
3466 | case 0x23: | |
7be570e7 | 3467 | case 0x27: |
c906108c SS |
3468 | case 0x28: |
3469 | case 0x29: | |
3470 | case 0x2a: | |
3471 | case 0x2b: | |
7be570e7 | 3472 | case 0x2f: |
c906108c SS |
3473 | case 0x30: |
3474 | case 0x31: | |
3475 | case 0x32: | |
3476 | case 0x33: | |
3477 | case 0x38: | |
3478 | case 0x39: | |
3479 | case 0x3a: | |
7be570e7 | 3480 | case 0x3b: |
c906108c SS |
3481 | return 1; |
3482 | ||
3483 | default: | |
3484 | return 0; | |
3485 | } | |
3486 | } | |
3487 | ||
3488 | /* Return the register number for a GR which is saved by INST or | |
3489 | zero it INST does not save a GR. */ | |
3490 | ||
3491 | static int | |
fba45db2 | 3492 | inst_saves_gr (unsigned long inst) |
c906108c SS |
3493 | { |
3494 | /* Does it look like a stw? */ | |
7be570e7 JM |
3495 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
3496 | || (inst >> 26) == 0x1f | |
3497 | || ((inst >> 26) == 0x1f | |
3498 | && ((inst >> 6) == 0xa))) | |
3499 | return extract_5R_store (inst); | |
3500 | ||
3501 | /* Does it look like a std? */ | |
3502 | if ((inst >> 26) == 0x1c | |
3503 | || ((inst >> 26) == 0x03 | |
3504 | && ((inst >> 6) & 0xf) == 0xb)) | |
c906108c SS |
3505 | return extract_5R_store (inst); |
3506 | ||
3507 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
3508 | if ((inst >> 26) == 0x1b) | |
3509 | return extract_5R_store (inst); | |
3510 | ||
3511 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
3512 | too. */ | |
7be570e7 JM |
3513 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
3514 | || ((inst >> 26) == 0x3 | |
3515 | && (((inst >> 6) & 0xf) == 0x8 | |
3516 | || (inst >> 6) & 0xf) == 0x9)) | |
c906108c | 3517 | return extract_5R_store (inst); |
c5aa993b | 3518 | |
c906108c SS |
3519 | return 0; |
3520 | } | |
3521 | ||
3522 | /* Return the register number for a FR which is saved by INST or | |
3523 | zero it INST does not save a FR. | |
3524 | ||
3525 | Note we only care about full 64bit register stores (that's the only | |
3526 | kind of stores the prologue will use). | |
3527 | ||
3528 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
3529 | ||
3530 | static int | |
fba45db2 | 3531 | inst_saves_fr (unsigned long inst) |
c906108c | 3532 | { |
7be570e7 | 3533 | /* is this an FSTD ? */ |
c906108c SS |
3534 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
3535 | return extract_5r_store (inst); | |
7be570e7 JM |
3536 | if ((inst & 0xfc000002) == 0x70000002) |
3537 | return extract_5R_store (inst); | |
3538 | /* is this an FSTW ? */ | |
c906108c SS |
3539 | if ((inst & 0xfc00df80) == 0x24001200) |
3540 | return extract_5r_store (inst); | |
7be570e7 JM |
3541 | if ((inst & 0xfc000002) == 0x7c000000) |
3542 | return extract_5R_store (inst); | |
c906108c SS |
3543 | return 0; |
3544 | } | |
3545 | ||
3546 | /* Advance PC across any function entry prologue instructions | |
3547 | to reach some "real" code. | |
3548 | ||
3549 | Use information in the unwind table to determine what exactly should | |
3550 | be in the prologue. */ | |
3551 | ||
3552 | ||
3553 | CORE_ADDR | |
fba45db2 | 3554 | skip_prologue_hard_way (CORE_ADDR pc) |
c906108c SS |
3555 | { |
3556 | char buf[4]; | |
3557 | CORE_ADDR orig_pc = pc; | |
3558 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3559 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
3560 | struct unwind_table_entry *u; | |
3561 | ||
3562 | restart_gr = 0; | |
3563 | restart_fr = 0; | |
3564 | ||
3565 | restart: | |
3566 | u = find_unwind_entry (pc); | |
3567 | if (!u) | |
3568 | return pc; | |
3569 | ||
c5aa993b | 3570 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
3571 | if ((pc & ~0x3) != u->region_start) |
3572 | return pc; | |
3573 | ||
3574 | /* This is how much of a frame adjustment we need to account for. */ | |
3575 | stack_remaining = u->Total_frame_size << 3; | |
3576 | ||
3577 | /* Magic register saves we want to know about. */ | |
3578 | save_rp = u->Save_RP; | |
3579 | save_sp = u->Save_SP; | |
3580 | ||
3581 | /* An indication that args may be stored into the stack. Unfortunately | |
3582 | the HPUX compilers tend to set this in cases where no args were | |
3583 | stored too!. */ | |
3584 | args_stored = 1; | |
3585 | ||
3586 | /* Turn the Entry_GR field into a bitmask. */ | |
3587 | save_gr = 0; | |
3588 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3589 | { | |
3590 | /* Frame pointer gets saved into a special location. */ | |
3591 | if (u->Save_SP && i == FP_REGNUM) | |
3592 | continue; | |
3593 | ||
3594 | save_gr |= (1 << i); | |
3595 | } | |
3596 | save_gr &= ~restart_gr; | |
3597 | ||
3598 | /* Turn the Entry_FR field into a bitmask too. */ | |
3599 | save_fr = 0; | |
3600 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3601 | save_fr |= (1 << i); | |
3602 | save_fr &= ~restart_fr; | |
3603 | ||
3604 | /* Loop until we find everything of interest or hit a branch. | |
3605 | ||
3606 | For unoptimized GCC code and for any HP CC code this will never ever | |
3607 | examine any user instructions. | |
3608 | ||
3609 | For optimzied GCC code we're faced with problems. GCC will schedule | |
3610 | its prologue and make prologue instructions available for delay slot | |
3611 | filling. The end result is user code gets mixed in with the prologue | |
3612 | and a prologue instruction may be in the delay slot of the first branch | |
3613 | or call. | |
3614 | ||
3615 | Some unexpected things are expected with debugging optimized code, so | |
3616 | we allow this routine to walk past user instructions in optimized | |
3617 | GCC code. */ | |
3618 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
3619 | || args_stored) | |
3620 | { | |
3621 | unsigned int reg_num; | |
3622 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
3623 | unsigned long old_save_rp, old_save_sp, next_inst; | |
3624 | ||
3625 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 3626 | (only for HPC). */ |
c906108c SS |
3627 | old_save_gr = save_gr; |
3628 | old_save_fr = save_fr; | |
3629 | old_save_rp = save_rp; | |
3630 | old_save_sp = save_sp; | |
3631 | old_stack_remaining = stack_remaining; | |
3632 | ||
3633 | status = target_read_memory (pc, buf, 4); | |
3634 | inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3635 | |
c906108c SS |
3636 | /* Yow! */ |
3637 | if (status != 0) | |
3638 | return pc; | |
3639 | ||
3640 | /* Note the interesting effects of this instruction. */ | |
3641 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3642 | ||
7be570e7 JM |
3643 | /* There are limited ways to store the return pointer into the |
3644 | stack. */ | |
3645 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
3646 | save_rp = 0; |
3647 | ||
104c1213 | 3648 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 3649 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
3650 | if ((inst & 0xffffc000) == 0x6fc10000 |
3651 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
3652 | save_sp = 0; |
3653 | ||
6426a772 JM |
3654 | /* Are we loading some register with an offset from the argument |
3655 | pointer? */ | |
3656 | if ((inst & 0xffe00000) == 0x37a00000 | |
3657 | || (inst & 0xffffffe0) == 0x081d0240) | |
3658 | { | |
3659 | pc += 4; | |
3660 | continue; | |
3661 | } | |
3662 | ||
c906108c SS |
3663 | /* Account for general and floating-point register saves. */ |
3664 | reg_num = inst_saves_gr (inst); | |
3665 | save_gr &= ~(1 << reg_num); | |
3666 | ||
3667 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3668 | Unfortunately args_stored only tells us that some arguments |
3669 | where stored into the stack. Not how many or what kind! | |
c906108c | 3670 | |
c5aa993b JM |
3671 | This is a kludge as on the HP compiler sets this bit and it |
3672 | never does prologue scheduling. So once we see one, skip past | |
3673 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 3674 | |
c5aa993b JM |
3675 | FIXME. Can still die if we have a mix of GR and FR argument |
3676 | stores! */ | |
6426a772 | 3677 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 3678 | { |
6426a772 | 3679 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
3680 | { |
3681 | pc += 4; | |
3682 | status = target_read_memory (pc, buf, 4); | |
3683 | inst = extract_unsigned_integer (buf, 4); | |
3684 | if (status != 0) | |
3685 | return pc; | |
3686 | reg_num = inst_saves_gr (inst); | |
3687 | } | |
3688 | args_stored = 0; | |
3689 | continue; | |
3690 | } | |
3691 | ||
3692 | reg_num = inst_saves_fr (inst); | |
3693 | save_fr &= ~(1 << reg_num); | |
3694 | ||
3695 | status = target_read_memory (pc + 4, buf, 4); | |
3696 | next_inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3697 | |
c906108c SS |
3698 | /* Yow! */ |
3699 | if (status != 0) | |
3700 | return pc; | |
3701 | ||
3702 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 3703 | save. */ |
c906108c SS |
3704 | if ((inst & 0xfc000000) == 0x34000000 |
3705 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 3706 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3707 | { |
3708 | /* So we drop into the code below in a reasonable state. */ | |
3709 | reg_num = inst_saves_fr (next_inst); | |
3710 | pc -= 4; | |
3711 | } | |
3712 | ||
3713 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3714 | This is a kludge as on the HP compiler sets this bit and it |
3715 | never does prologue scheduling. So once we see one, skip past | |
3716 | all of them. */ | |
6426a772 | 3717 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 3718 | { |
6426a772 | 3719 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3720 | { |
3721 | pc += 8; | |
3722 | status = target_read_memory (pc, buf, 4); | |
3723 | inst = extract_unsigned_integer (buf, 4); | |
3724 | if (status != 0) | |
3725 | return pc; | |
3726 | if ((inst & 0xfc000000) != 0x34000000) | |
3727 | break; | |
3728 | status = target_read_memory (pc + 4, buf, 4); | |
3729 | next_inst = extract_unsigned_integer (buf, 4); | |
3730 | if (status != 0) | |
3731 | return pc; | |
3732 | reg_num = inst_saves_fr (next_inst); | |
3733 | } | |
3734 | args_stored = 0; | |
3735 | continue; | |
3736 | } | |
3737 | ||
3738 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 3739 | instruction is in the delay slot of the first call/branch. */ |
c906108c SS |
3740 | if (is_branch (inst)) |
3741 | break; | |
3742 | ||
3743 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
3744 | arguments were stored into the stack (boo hiss). This could |
3745 | cause this code to then skip a bunch of user insns (up to the | |
3746 | first branch). | |
3747 | ||
3748 | To combat this we try to identify when args_stored was bogusly | |
3749 | set and clear it. We only do this when args_stored is nonzero, | |
3750 | all other resources are accounted for, and nothing changed on | |
3751 | this pass. */ | |
c906108c | 3752 | if (args_stored |
c5aa993b | 3753 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
3754 | && old_save_gr == save_gr && old_save_fr == save_fr |
3755 | && old_save_rp == save_rp && old_save_sp == save_sp | |
3756 | && old_stack_remaining == stack_remaining) | |
3757 | break; | |
c5aa993b | 3758 | |
c906108c SS |
3759 | /* Bump the PC. */ |
3760 | pc += 4; | |
3761 | } | |
3762 | ||
3763 | /* We've got a tenative location for the end of the prologue. However | |
3764 | because of limitations in the unwind descriptor mechanism we may | |
3765 | have went too far into user code looking for the save of a register | |
3766 | that does not exist. So, if there registers we expected to be saved | |
3767 | but never were, mask them out and restart. | |
3768 | ||
3769 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 3770 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
3771 | { |
3772 | pc = orig_pc; | |
3773 | restart_gr = save_gr; | |
3774 | restart_fr = save_fr; | |
3775 | goto restart; | |
3776 | } | |
3777 | ||
3778 | return pc; | |
3779 | } | |
3780 | ||
3781 | ||
7be570e7 JM |
3782 | /* Return the address of the PC after the last prologue instruction if |
3783 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
3784 | |
3785 | static CORE_ADDR | |
fba45db2 | 3786 | after_prologue (CORE_ADDR pc) |
c906108c SS |
3787 | { |
3788 | struct symtab_and_line sal; | |
3789 | CORE_ADDR func_addr, func_end; | |
3790 | struct symbol *f; | |
3791 | ||
7be570e7 JM |
3792 | /* If we can not find the symbol in the partial symbol table, then |
3793 | there is no hope we can determine the function's start address | |
3794 | with this code. */ | |
c906108c | 3795 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 3796 | return 0; |
c906108c | 3797 | |
7be570e7 | 3798 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
3799 | sal = find_pc_line (func_addr, 0); |
3800 | ||
7be570e7 JM |
3801 | /* There are only two cases to consider. First, the end of the source line |
3802 | is within the function bounds. In that case we return the end of the | |
3803 | source line. Second is the end of the source line extends beyond the | |
3804 | bounds of the current function. We need to use the slow code to | |
3805 | examine instructions in that case. | |
c906108c | 3806 | |
7be570e7 JM |
3807 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
3808 | the wrong thing to do. In fact, it should be entirely possible for this | |
3809 | function to always return zero since the slow instruction scanning code | |
3810 | is supposed to *always* work. If it does not, then it is a bug. */ | |
3811 | if (sal.end < func_end) | |
3812 | return sal.end; | |
c5aa993b | 3813 | else |
7be570e7 | 3814 | return 0; |
c906108c SS |
3815 | } |
3816 | ||
3817 | /* To skip prologues, I use this predicate. Returns either PC itself | |
3818 | if the code at PC does not look like a function prologue; otherwise | |
3819 | returns an address that (if we're lucky) follows the prologue. If | |
3820 | LENIENT, then we must skip everything which is involved in setting | |
3821 | up the frame (it's OK to skip more, just so long as we don't skip | |
3822 | anything which might clobber the registers which are being saved. | |
3823 | Currently we must not skip more on the alpha, but we might the lenient | |
3824 | stuff some day. */ | |
3825 | ||
3826 | CORE_ADDR | |
fba45db2 | 3827 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 3828 | { |
c5aa993b JM |
3829 | unsigned long inst; |
3830 | int offset; | |
3831 | CORE_ADDR post_prologue_pc; | |
3832 | char buf[4]; | |
c906108c | 3833 | |
c5aa993b JM |
3834 | /* See if we can determine the end of the prologue via the symbol table. |
3835 | If so, then return either PC, or the PC after the prologue, whichever | |
3836 | is greater. */ | |
c906108c | 3837 | |
c5aa993b | 3838 | post_prologue_pc = after_prologue (pc); |
c906108c | 3839 | |
7be570e7 JM |
3840 | /* If after_prologue returned a useful address, then use it. Else |
3841 | fall back on the instruction skipping code. | |
3842 | ||
3843 | Some folks have claimed this causes problems because the breakpoint | |
3844 | may be the first instruction of the prologue. If that happens, then | |
3845 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
3846 | if (post_prologue_pc != 0) |
3847 | return max (pc, post_prologue_pc); | |
c5aa993b JM |
3848 | else |
3849 | return (skip_prologue_hard_way (pc)); | |
c906108c SS |
3850 | } |
3851 | ||
43bd9a9e AC |
3852 | /* Put here the code to store, into the SAVED_REGS, the addresses of |
3853 | the saved registers of frame described by FRAME_INFO. This | |
3854 | includes special registers such as pc and fp saved in special ways | |
3855 | in the stack frame. sp is even more special: the address we return | |
3856 | for it IS the sp for the next frame. */ | |
c906108c SS |
3857 | |
3858 | void | |
fba45db2 | 3859 | hppa_frame_find_saved_regs (struct frame_info *frame_info, |
43bd9a9e | 3860 | CORE_ADDR frame_saved_regs[]) |
c906108c SS |
3861 | { |
3862 | CORE_ADDR pc; | |
3863 | struct unwind_table_entry *u; | |
3864 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3865 | int status, i, reg; | |
3866 | char buf[4]; | |
3867 | int fp_loc = -1; | |
d4f3574e | 3868 | int final_iteration; |
c906108c SS |
3869 | |
3870 | /* Zero out everything. */ | |
43bd9a9e | 3871 | memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
3872 | |
3873 | /* Call dummy frames always look the same, so there's no need to | |
3874 | examine the dummy code to determine locations of saved registers; | |
3875 | instead, let find_dummy_frame_regs fill in the correct offsets | |
3876 | for the saved registers. */ | |
3877 | if ((frame_info->pc >= frame_info->frame | |
53a5351d JM |
3878 | && frame_info->pc <= (frame_info->frame |
3879 | /* A call dummy is sized in words, but it is | |
3880 | actually a series of instructions. Account | |
3881 | for that scaling factor. */ | |
3882 | + ((REGISTER_SIZE / INSTRUCTION_SIZE) | |
3883 | * CALL_DUMMY_LENGTH) | |
3884 | /* Similarly we have to account for 64bit | |
3885 | wide register saves. */ | |
3886 | + (32 * REGISTER_SIZE) | |
3887 | /* We always consider FP regs 8 bytes long. */ | |
3888 | + (NUM_REGS - FP0_REGNUM) * 8 | |
3889 | /* Similarly we have to account for 64bit | |
3890 | wide register saves. */ | |
3891 | + (6 * REGISTER_SIZE)))) | |
c906108c SS |
3892 | find_dummy_frame_regs (frame_info, frame_saved_regs); |
3893 | ||
3894 | /* Interrupt handlers are special too. They lay out the register | |
3895 | state in the exact same order as the register numbers in GDB. */ | |
3896 | if (pc_in_interrupt_handler (frame_info->pc)) | |
3897 | { | |
3898 | for (i = 0; i < NUM_REGS; i++) | |
3899 | { | |
3900 | /* SP is a little special. */ | |
3901 | if (i == SP_REGNUM) | |
43bd9a9e | 3902 | frame_saved_regs[SP_REGNUM] |
53a5351d JM |
3903 | = read_memory_integer (frame_info->frame + SP_REGNUM * 4, |
3904 | TARGET_PTR_BIT / 8); | |
c906108c | 3905 | else |
43bd9a9e | 3906 | frame_saved_regs[i] = frame_info->frame + i * 4; |
c906108c SS |
3907 | } |
3908 | return; | |
3909 | } | |
3910 | ||
3911 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP | |
3912 | /* Handle signal handler callers. */ | |
5a203e44 | 3913 | if ((get_frame_type (frame_info) == SIGTRAMP_FRAME)) |
c906108c SS |
3914 | { |
3915 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); | |
3916 | return; | |
3917 | } | |
3918 | #endif | |
3919 | ||
3920 | /* Get the starting address of the function referred to by the PC | |
3921 | saved in frame. */ | |
be41e9f4 | 3922 | pc = get_frame_func (frame_info); |
c906108c SS |
3923 | |
3924 | /* Yow! */ | |
3925 | u = find_unwind_entry (pc); | |
3926 | if (!u) | |
3927 | return; | |
3928 | ||
3929 | /* This is how much of a frame adjustment we need to account for. */ | |
3930 | stack_remaining = u->Total_frame_size << 3; | |
3931 | ||
3932 | /* Magic register saves we want to know about. */ | |
3933 | save_rp = u->Save_RP; | |
3934 | save_sp = u->Save_SP; | |
3935 | ||
3936 | /* Turn the Entry_GR field into a bitmask. */ | |
3937 | save_gr = 0; | |
3938 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3939 | { | |
3940 | /* Frame pointer gets saved into a special location. */ | |
3941 | if (u->Save_SP && i == FP_REGNUM) | |
3942 | continue; | |
3943 | ||
3944 | save_gr |= (1 << i); | |
3945 | } | |
3946 | ||
3947 | /* Turn the Entry_FR field into a bitmask too. */ | |
3948 | save_fr = 0; | |
3949 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3950 | save_fr |= (1 << i); | |
3951 | ||
3952 | /* The frame always represents the value of %sp at entry to the | |
3953 | current function (and is thus equivalent to the "saved" stack | |
3954 | pointer. */ | |
43bd9a9e | 3955 | frame_saved_regs[SP_REGNUM] = frame_info->frame; |
c906108c SS |
3956 | |
3957 | /* Loop until we find everything of interest or hit a branch. | |
3958 | ||
3959 | For unoptimized GCC code and for any HP CC code this will never ever | |
3960 | examine any user instructions. | |
3961 | ||
7be570e7 | 3962 | For optimized GCC code we're faced with problems. GCC will schedule |
c906108c SS |
3963 | its prologue and make prologue instructions available for delay slot |
3964 | filling. The end result is user code gets mixed in with the prologue | |
3965 | and a prologue instruction may be in the delay slot of the first branch | |
3966 | or call. | |
3967 | ||
3968 | Some unexpected things are expected with debugging optimized code, so | |
3969 | we allow this routine to walk past user instructions in optimized | |
3970 | GCC code. */ | |
d4f3574e SS |
3971 | final_iteration = 0; |
3972 | while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
3973 | && pc <= frame_info->pc) | |
c906108c SS |
3974 | { |
3975 | status = target_read_memory (pc, buf, 4); | |
3976 | inst = extract_unsigned_integer (buf, 4); | |
3977 | ||
3978 | /* Yow! */ | |
3979 | if (status != 0) | |
3980 | return; | |
3981 | ||
3982 | /* Note the interesting effects of this instruction. */ | |
3983 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3984 | ||
104c1213 JM |
3985 | /* There are limited ways to store the return pointer into the |
3986 | stack. */ | |
c2c6d25f | 3987 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
c906108c SS |
3988 | { |
3989 | save_rp = 0; | |
43bd9a9e | 3990 | frame_saved_regs[RP_REGNUM] = frame_info->frame - 20; |
c906108c | 3991 | } |
c2c6d25f JM |
3992 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
3993 | { | |
3994 | save_rp = 0; | |
43bd9a9e | 3995 | frame_saved_regs[RP_REGNUM] = frame_info->frame - 16; |
c2c6d25f | 3996 | } |
c906108c | 3997 | |
104c1213 JM |
3998 | /* Note if we saved SP into the stack. This also happens to indicate |
3999 | the location of the saved frame pointer. */ | |
c2c6d25f JM |
4000 | if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ |
4001 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
104c1213 | 4002 | { |
43bd9a9e | 4003 | frame_saved_regs[FP_REGNUM] = frame_info->frame; |
104c1213 JM |
4004 | save_sp = 0; |
4005 | } | |
c906108c SS |
4006 | |
4007 | /* Account for general and floating-point register saves. */ | |
4008 | reg = inst_saves_gr (inst); | |
4009 | if (reg >= 3 && reg <= 18 | |
4010 | && (!u->Save_SP || reg != FP_REGNUM)) | |
4011 | { | |
4012 | save_gr &= ~(1 << reg); | |
4013 | ||
4014 | /* stwm with a positive displacement is a *post modify*. */ | |
4015 | if ((inst >> 26) == 0x1b | |
4016 | && extract_14 (inst) >= 0) | |
43bd9a9e | 4017 | frame_saved_regs[reg] = frame_info->frame; |
104c1213 JM |
4018 | /* A std has explicit post_modify forms. */ |
4019 | else if ((inst & 0xfc00000c0) == 0x70000008) | |
43bd9a9e | 4020 | frame_saved_regs[reg] = frame_info->frame; |
c906108c SS |
4021 | else |
4022 | { | |
104c1213 JM |
4023 | CORE_ADDR offset; |
4024 | ||
4025 | if ((inst >> 26) == 0x1c) | |
d4f3574e | 4026 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 JM |
4027 | else if ((inst >> 26) == 0x03) |
4028 | offset = low_sign_extend (inst & 0x1f, 5); | |
4029 | else | |
4030 | offset = extract_14 (inst); | |
4031 | ||
c906108c SS |
4032 | /* Handle code with and without frame pointers. */ |
4033 | if (u->Save_SP) | |
43bd9a9e | 4034 | frame_saved_regs[reg] |
104c1213 | 4035 | = frame_info->frame + offset; |
c906108c | 4036 | else |
43bd9a9e | 4037 | frame_saved_regs[reg] |
104c1213 JM |
4038 | = (frame_info->frame + (u->Total_frame_size << 3) |
4039 | + offset); | |
c906108c SS |
4040 | } |
4041 | } | |
4042 | ||
4043 | ||
4044 | /* GCC handles callee saved FP regs a little differently. | |
4045 | ||
c5aa993b JM |
4046 | It emits an instruction to put the value of the start of |
4047 | the FP store area into %r1. It then uses fstds,ma with | |
4048 | a basereg of %r1 for the stores. | |
c906108c | 4049 | |
c5aa993b JM |
4050 | HP CC emits them at the current stack pointer modifying |
4051 | the stack pointer as it stores each register. */ | |
c906108c SS |
4052 | |
4053 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4054 | if ((inst & 0xffffc000) == 0x34610000 | |
4055 | || (inst & 0xffffc000) == 0x37c10000) | |
4056 | fp_loc = extract_14 (inst); | |
c5aa993b | 4057 | |
c906108c SS |
4058 | reg = inst_saves_fr (inst); |
4059 | if (reg >= 12 && reg <= 21) | |
4060 | { | |
4061 | /* Note +4 braindamage below is necessary because the FP status | |
4062 | registers are internally 8 registers rather than the expected | |
4063 | 4 registers. */ | |
4064 | save_fr &= ~(1 << reg); | |
4065 | if (fp_loc == -1) | |
4066 | { | |
4067 | /* 1st HP CC FP register store. After this instruction | |
c5aa993b JM |
4068 | we've set enough state that the GCC and HPCC code are |
4069 | both handled in the same manner. */ | |
43bd9a9e | 4070 | frame_saved_regs[reg + FP4_REGNUM + 4] = frame_info->frame; |
c906108c SS |
4071 | fp_loc = 8; |
4072 | } | |
4073 | else | |
4074 | { | |
43bd9a9e | 4075 | frame_saved_regs[reg + FP0_REGNUM + 4] |
c906108c SS |
4076 | = frame_info->frame + fp_loc; |
4077 | fp_loc += 8; | |
4078 | } | |
4079 | } | |
4080 | ||
39f77062 | 4081 | /* Quit if we hit any kind of branch the previous iteration. */ |
d4f3574e | 4082 | if (final_iteration) |
c906108c SS |
4083 | break; |
4084 | ||
d4f3574e SS |
4085 | /* We want to look precisely one instruction beyond the branch |
4086 | if we have not found everything yet. */ | |
4087 | if (is_branch (inst)) | |
4088 | final_iteration = 1; | |
4089 | ||
c906108c SS |
4090 | /* Bump the PC. */ |
4091 | pc += 4; | |
4092 | } | |
4093 | } | |
4094 | ||
43bd9a9e AC |
4095 | /* XXX - deprecated. This is a compatibility function for targets |
4096 | that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */ | |
4097 | /* Find the addresses in which registers are saved in FRAME. */ | |
4098 | ||
4099 | void | |
4100 | hppa_frame_init_saved_regs (struct frame_info *frame) | |
4101 | { | |
4102 | if (get_frame_saved_regs (frame) == NULL) | |
4103 | frame_saved_regs_zalloc (frame); | |
4104 | hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame)); | |
4105 | } | |
c906108c SS |
4106 | |
4107 | /* Exception handling support for the HP-UX ANSI C++ compiler. | |
4108 | The compiler (aCC) provides a callback for exception events; | |
4109 | GDB can set a breakpoint on this callback and find out what | |
4110 | exception event has occurred. */ | |
4111 | ||
4112 | /* The name of the hook to be set to point to the callback function */ | |
c5aa993b JM |
4113 | static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook"; |
4114 | /* The name of the function to be used to set the hook value */ | |
4115 | static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value"; | |
4116 | /* The name of the callback function in end.o */ | |
c906108c | 4117 | static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback"; |
c5aa993b JM |
4118 | /* Name of function in end.o on which a break is set (called by above) */ |
4119 | static char HP_ACC_EH_break[] = "__d_eh_break"; | |
4120 | /* Name of flag (in end.o) that enables catching throws */ | |
4121 | static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw"; | |
4122 | /* Name of flag (in end.o) that enables catching catching */ | |
4123 | static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch"; | |
4124 | /* The enum used by aCC */ | |
4125 | typedef enum | |
4126 | { | |
4127 | __EH_NOTIFY_THROW, | |
4128 | __EH_NOTIFY_CATCH | |
4129 | } | |
4130 | __eh_notification; | |
c906108c SS |
4131 | |
4132 | /* Is exception-handling support available with this executable? */ | |
4133 | static int hp_cxx_exception_support = 0; | |
4134 | /* Has the initialize function been run? */ | |
4135 | int hp_cxx_exception_support_initialized = 0; | |
4136 | /* Similar to above, but imported from breakpoint.c -- non-target-specific */ | |
4137 | extern int exception_support_initialized; | |
4138 | /* Address of __eh_notify_hook */ | |
a0b3c4fd | 4139 | static CORE_ADDR eh_notify_hook_addr = 0; |
c906108c | 4140 | /* Address of __d_eh_notify_callback */ |
a0b3c4fd | 4141 | static CORE_ADDR eh_notify_callback_addr = 0; |
c906108c | 4142 | /* Address of __d_eh_break */ |
a0b3c4fd | 4143 | static CORE_ADDR eh_break_addr = 0; |
c906108c | 4144 | /* Address of __d_eh_catch_catch */ |
a0b3c4fd | 4145 | static CORE_ADDR eh_catch_catch_addr = 0; |
c906108c | 4146 | /* Address of __d_eh_catch_throw */ |
a0b3c4fd | 4147 | static CORE_ADDR eh_catch_throw_addr = 0; |
c906108c | 4148 | /* Sal for __d_eh_break */ |
a0b3c4fd | 4149 | static struct symtab_and_line *break_callback_sal = 0; |
c906108c SS |
4150 | |
4151 | /* Code in end.c expects __d_pid to be set in the inferior, | |
4152 | otherwise __d_eh_notify_callback doesn't bother to call | |
4153 | __d_eh_break! So we poke the pid into this symbol | |
4154 | ourselves. | |
4155 | 0 => success | |
c5aa993b | 4156 | 1 => failure */ |
c906108c | 4157 | int |
fba45db2 | 4158 | setup_d_pid_in_inferior (void) |
c906108c SS |
4159 | { |
4160 | CORE_ADDR anaddr; | |
c5aa993b JM |
4161 | struct minimal_symbol *msymbol; |
4162 | char buf[4]; /* FIXME 32x64? */ | |
4163 | ||
c906108c SS |
4164 | /* Slam the pid of the process into __d_pid; failing is only a warning! */ |
4165 | msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile); | |
4166 | if (msymbol == NULL) | |
4167 | { | |
4168 | warning ("Unable to find __d_pid symbol in object file."); | |
4169 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4170 | return 1; | |
4171 | } | |
4172 | ||
4173 | anaddr = SYMBOL_VALUE_ADDRESS (msymbol); | |
39f77062 | 4174 | store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */ |
c5aa993b | 4175 | if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */ |
c906108c SS |
4176 | { |
4177 | warning ("Unable to write __d_pid"); | |
4178 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4179 | return 1; | |
4180 | } | |
4181 | return 0; | |
4182 | } | |
4183 | ||
4184 | /* Initialize exception catchpoint support by looking for the | |
4185 | necessary hooks/callbacks in end.o, etc., and set the hook value to | |
4186 | point to the required debug function | |
4187 | ||
4188 | Return 0 => failure | |
c5aa993b | 4189 | 1 => success */ |
c906108c SS |
4190 | |
4191 | static int | |
fba45db2 | 4192 | initialize_hp_cxx_exception_support (void) |
c906108c SS |
4193 | { |
4194 | struct symtabs_and_lines sals; | |
c5aa993b JM |
4195 | struct cleanup *old_chain; |
4196 | struct cleanup *canonical_strings_chain = NULL; | |
c906108c | 4197 | int i; |
c5aa993b JM |
4198 | char *addr_start; |
4199 | char *addr_end = NULL; | |
4200 | char **canonical = (char **) NULL; | |
c906108c | 4201 | int thread = -1; |
c5aa993b JM |
4202 | struct symbol *sym = NULL; |
4203 | struct minimal_symbol *msym = NULL; | |
4204 | struct objfile *objfile; | |
c906108c SS |
4205 | asection *shlib_info; |
4206 | ||
4207 | /* Detect and disallow recursion. On HP-UX with aCC, infinite | |
4208 | recursion is a possibility because finding the hook for exception | |
4209 | callbacks involves making a call in the inferior, which means | |
4210 | re-inserting breakpoints which can re-invoke this code */ | |
4211 | ||
c5aa993b JM |
4212 | static int recurse = 0; |
4213 | if (recurse > 0) | |
c906108c SS |
4214 | { |
4215 | hp_cxx_exception_support_initialized = 0; | |
4216 | exception_support_initialized = 0; | |
4217 | return 0; | |
4218 | } | |
4219 | ||
4220 | hp_cxx_exception_support = 0; | |
4221 | ||
4222 | /* First check if we have seen any HP compiled objects; if not, | |
4223 | it is very unlikely that HP's idiosyncratic callback mechanism | |
4224 | for exception handling debug support will be available! | |
4225 | This will percolate back up to breakpoint.c, where our callers | |
4226 | will decide to try the g++ exception-handling support instead. */ | |
4227 | if (!hp_som_som_object_present) | |
4228 | return 0; | |
c5aa993b | 4229 | |
c906108c SS |
4230 | /* We have a SOM executable with SOM debug info; find the hooks */ |
4231 | ||
4232 | /* First look for the notify hook provided by aCC runtime libs */ | |
4233 | /* If we find this symbol, we conclude that the executable must | |
4234 | have HP aCC exception support built in. If this symbol is not | |
4235 | found, even though we're a HP SOM-SOM file, we may have been | |
4236 | built with some other compiler (not aCC). This results percolates | |
4237 | back up to our callers in breakpoint.c which can decide to | |
4238 | try the g++ style of exception support instead. | |
4239 | If this symbol is found but the other symbols we require are | |
4240 | not found, there is something weird going on, and g++ support | |
4241 | should *not* be tried as an alternative. | |
c5aa993b | 4242 | |
c906108c SS |
4243 | ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined. |
4244 | ASSUMPTION: HP aCC and g++ modules cannot be linked together. */ | |
c5aa993b | 4245 | |
c906108c SS |
4246 | /* libCsup has this hook; it'll usually be non-debuggable */ |
4247 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL); | |
4248 | if (msym) | |
4249 | { | |
4250 | eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4251 | hp_cxx_exception_support = 1; | |
c5aa993b | 4252 | } |
c906108c SS |
4253 | else |
4254 | { | |
4255 | warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook); | |
4256 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4257 | warning ("GDB will be unable to intercept exception events."); | |
4258 | eh_notify_hook_addr = 0; | |
4259 | hp_cxx_exception_support = 0; | |
4260 | return 0; | |
4261 | } | |
4262 | ||
c906108c | 4263 | /* Next look for the notify callback routine in end.o */ |
c5aa993b | 4264 | /* This is always available in the SOM symbol dictionary if end.o is linked in */ |
c906108c SS |
4265 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL); |
4266 | if (msym) | |
4267 | { | |
4268 | eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4269 | hp_cxx_exception_support = 1; | |
c5aa993b JM |
4270 | } |
4271 | else | |
c906108c SS |
4272 | { |
4273 | warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback); | |
4274 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4275 | warning ("GDB will be unable to intercept exception events."); | |
4276 | eh_notify_callback_addr = 0; | |
4277 | return 0; | |
4278 | } | |
4279 | ||
53a5351d | 4280 | #ifndef GDB_TARGET_IS_HPPA_20W |
c906108c SS |
4281 | /* Check whether the executable is dynamically linked or archive bound */ |
4282 | /* With an archive-bound executable we can use the raw addresses we find | |
4283 | for the callback function, etc. without modification. For an executable | |
4284 | with shared libraries, we have to do more work to find the plabel, which | |
4285 | can be the target of a call through $$dyncall from the aCC runtime support | |
4286 | library (libCsup) which is linked shared by default by aCC. */ | |
4287 | /* This test below was copied from somsolib.c/somread.c. It may not be a very | |
c5aa993b | 4288 | reliable one to test that an executable is linked shared. pai/1997-07-18 */ |
c906108c SS |
4289 | shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$"); |
4290 | if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0)) | |
4291 | { | |
4292 | /* The minsym we have has the local code address, but that's not the | |
4293 | plabel that can be used by an inter-load-module call. */ | |
4294 | /* Find solib handle for main image (which has end.o), and use that | |
4295 | and the min sym as arguments to __d_shl_get() (which does the equivalent | |
c5aa993b | 4296 | of shl_findsym()) to find the plabel. */ |
c906108c SS |
4297 | |
4298 | args_for_find_stub args; | |
4299 | static char message[] = "Error while finding exception callback hook:\n"; | |
c5aa993b | 4300 | |
c906108c SS |
4301 | args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr); |
4302 | args.msym = msym; | |
a0b3c4fd | 4303 | args.return_val = 0; |
c5aa993b | 4304 | |
c906108c | 4305 | recurse++; |
4efb68b1 | 4306 | catch_errors (cover_find_stub_with_shl_get, &args, message, |
a0b3c4fd JM |
4307 | RETURN_MASK_ALL); |
4308 | eh_notify_callback_addr = args.return_val; | |
c906108c | 4309 | recurse--; |
c5aa993b | 4310 | |
c906108c | 4311 | exception_catchpoints_are_fragile = 1; |
c5aa993b | 4312 | |
c906108c | 4313 | if (!eh_notify_callback_addr) |
c5aa993b JM |
4314 | { |
4315 | /* We can get here either if there is no plabel in the export list | |
1faa59a8 | 4316 | for the main image, or if something strange happened (?) */ |
c5aa993b JM |
4317 | warning ("Couldn't find a plabel (indirect function label) for the exception callback."); |
4318 | warning ("GDB will not be able to intercept exception events."); | |
4319 | return 0; | |
4320 | } | |
c906108c SS |
4321 | } |
4322 | else | |
4323 | exception_catchpoints_are_fragile = 0; | |
53a5351d | 4324 | #endif |
c906108c | 4325 | |
c906108c | 4326 | /* Now, look for the breakpointable routine in end.o */ |
c5aa993b | 4327 | /* This should also be available in the SOM symbol dict. if end.o linked in */ |
c906108c SS |
4328 | msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL); |
4329 | if (msym) | |
4330 | { | |
4331 | eh_break_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4332 | hp_cxx_exception_support = 1; | |
c5aa993b | 4333 | } |
c906108c SS |
4334 | else |
4335 | { | |
4336 | warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break); | |
4337 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4338 | warning ("GDB will be unable to intercept exception events."); | |
4339 | eh_break_addr = 0; | |
4340 | return 0; | |
4341 | } | |
4342 | ||
c906108c SS |
4343 | /* Next look for the catch enable flag provided in end.o */ |
4344 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
c5aa993b JM |
4345 | VAR_NAMESPACE, 0, (struct symtab **) NULL); |
4346 | if (sym) /* sometimes present in debug info */ | |
c906108c SS |
4347 | { |
4348 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4349 | hp_cxx_exception_support = 1; | |
4350 | } | |
c5aa993b JM |
4351 | else |
4352 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4353 | { |
4354 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL); | |
4355 | if (msym) | |
c5aa993b JM |
4356 | { |
4357 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4358 | hp_cxx_exception_support = 1; | |
4359 | } | |
c906108c | 4360 | else |
c5aa993b JM |
4361 | { |
4362 | warning ("Unable to enable interception of exception catches."); | |
4363 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4364 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4365 | return 0; | |
4366 | } | |
c906108c SS |
4367 | } |
4368 | ||
c906108c SS |
4369 | /* Next look for the catch enable flag provided end.o */ |
4370 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
c5aa993b JM |
4371 | VAR_NAMESPACE, 0, (struct symtab **) NULL); |
4372 | if (sym) /* sometimes present in debug info */ | |
c906108c SS |
4373 | { |
4374 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4375 | hp_cxx_exception_support = 1; | |
4376 | } | |
c5aa993b JM |
4377 | else |
4378 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4379 | { |
4380 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL); | |
4381 | if (msym) | |
c5aa993b JM |
4382 | { |
4383 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4384 | hp_cxx_exception_support = 1; | |
4385 | } | |
c906108c | 4386 | else |
c5aa993b JM |
4387 | { |
4388 | warning ("Unable to enable interception of exception throws."); | |
4389 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4390 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4391 | return 0; | |
4392 | } | |
c906108c SS |
4393 | } |
4394 | ||
c5aa993b JM |
4395 | /* Set the flags */ |
4396 | hp_cxx_exception_support = 2; /* everything worked so far */ | |
c906108c SS |
4397 | hp_cxx_exception_support_initialized = 1; |
4398 | exception_support_initialized = 1; | |
4399 | ||
4400 | return 1; | |
4401 | } | |
4402 | ||
4403 | /* Target operation for enabling or disabling interception of | |
4404 | exception events. | |
4405 | KIND is either EX_EVENT_THROW or EX_EVENT_CATCH | |
4406 | ENABLE is either 0 (disable) or 1 (enable). | |
4407 | Return value is NULL if no support found; | |
4408 | -1 if something went wrong, | |
4409 | or a pointer to a symtab/line struct if the breakpointable | |
c5aa993b | 4410 | address was found. */ |
c906108c | 4411 | |
c5aa993b | 4412 | struct symtab_and_line * |
fba45db2 | 4413 | child_enable_exception_callback (enum exception_event_kind kind, int enable) |
c906108c SS |
4414 | { |
4415 | char buf[4]; | |
4416 | ||
4417 | if (!exception_support_initialized || !hp_cxx_exception_support_initialized) | |
4418 | if (!initialize_hp_cxx_exception_support ()) | |
4419 | return NULL; | |
4420 | ||
4421 | switch (hp_cxx_exception_support) | |
4422 | { | |
c5aa993b JM |
4423 | case 0: |
4424 | /* Assuming no HP support at all */ | |
4425 | return NULL; | |
4426 | case 1: | |
4427 | /* HP support should be present, but something went wrong */ | |
4428 | return (struct symtab_and_line *) -1; /* yuck! */ | |
4429 | /* there may be other cases in the future */ | |
c906108c | 4430 | } |
c5aa993b | 4431 | |
c906108c | 4432 | /* Set the EH hook to point to the callback routine */ |
c5aa993b | 4433 | store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */ |
c906108c | 4434 | /* pai: (temp) FIXME should there be a pack operation first? */ |
c5aa993b | 4435 | if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */ |
c906108c SS |
4436 | { |
4437 | warning ("Could not write to target memory for exception event callback."); | |
4438 | warning ("Interception of exception events may not work."); | |
c5aa993b | 4439 | return (struct symtab_and_line *) -1; |
c906108c SS |
4440 | } |
4441 | if (enable) | |
4442 | { | |
c5aa993b | 4443 | /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */ |
39f77062 | 4444 | if (PIDGET (inferior_ptid) > 0) |
c5aa993b JM |
4445 | { |
4446 | if (setup_d_pid_in_inferior ()) | |
4447 | return (struct symtab_and_line *) -1; | |
4448 | } | |
c906108c | 4449 | else |
c5aa993b | 4450 | { |
104c1213 JM |
4451 | warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); |
4452 | return (struct symtab_and_line *) -1; | |
c5aa993b | 4453 | } |
c906108c | 4454 | } |
c5aa993b | 4455 | |
c906108c SS |
4456 | switch (kind) |
4457 | { | |
c5aa993b JM |
4458 | case EX_EVENT_THROW: |
4459 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4460 | if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */ | |
4461 | { | |
4462 | warning ("Couldn't enable exception throw interception."); | |
4463 | return (struct symtab_and_line *) -1; | |
4464 | } | |
4465 | break; | |
4466 | case EX_EVENT_CATCH: | |
4467 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4468 | if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */ | |
4469 | { | |
4470 | warning ("Couldn't enable exception catch interception."); | |
4471 | return (struct symtab_and_line *) -1; | |
4472 | } | |
4473 | break; | |
104c1213 JM |
4474 | default: |
4475 | error ("Request to enable unknown or unsupported exception event."); | |
c906108c | 4476 | } |
c5aa993b | 4477 | |
c906108c SS |
4478 | /* Copy break address into new sal struct, malloc'ing if needed. */ |
4479 | if (!break_callback_sal) | |
4480 | { | |
4481 | break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line)); | |
4482 | } | |
fe39c653 | 4483 | init_sal (break_callback_sal); |
c906108c SS |
4484 | break_callback_sal->symtab = NULL; |
4485 | break_callback_sal->pc = eh_break_addr; | |
4486 | break_callback_sal->line = 0; | |
4487 | break_callback_sal->end = eh_break_addr; | |
c5aa993b | 4488 | |
c906108c SS |
4489 | return break_callback_sal; |
4490 | } | |
4491 | ||
c5aa993b | 4492 | /* Record some information about the current exception event */ |
c906108c | 4493 | static struct exception_event_record current_ex_event; |
c5aa993b JM |
4494 | /* Convenience struct */ |
4495 | static struct symtab_and_line null_symtab_and_line = | |
4496 | {NULL, 0, 0, 0}; | |
c906108c SS |
4497 | |
4498 | /* Report current exception event. Returns a pointer to a record | |
4499 | that describes the kind of the event, where it was thrown from, | |
4500 | and where it will be caught. More information may be reported | |
c5aa993b | 4501 | in the future */ |
c906108c | 4502 | struct exception_event_record * |
fba45db2 | 4503 | child_get_current_exception_event (void) |
c906108c | 4504 | { |
c5aa993b JM |
4505 | CORE_ADDR event_kind; |
4506 | CORE_ADDR throw_addr; | |
4507 | CORE_ADDR catch_addr; | |
c906108c SS |
4508 | struct frame_info *fi, *curr_frame; |
4509 | int level = 1; | |
4510 | ||
c5aa993b | 4511 | curr_frame = get_current_frame (); |
c906108c SS |
4512 | if (!curr_frame) |
4513 | return (struct exception_event_record *) NULL; | |
4514 | ||
4515 | /* Go up one frame to __d_eh_notify_callback, because at the | |
4516 | point when this code is executed, there's garbage in the | |
4517 | arguments of __d_eh_break. */ | |
4518 | fi = find_relative_frame (curr_frame, &level); | |
4519 | if (level != 0) | |
4520 | return (struct exception_event_record *) NULL; | |
4521 | ||
0f7d239c | 4522 | select_frame (fi); |
c906108c SS |
4523 | |
4524 | /* Read in the arguments */ | |
4525 | /* __d_eh_notify_callback() is called with 3 arguments: | |
c5aa993b JM |
4526 | 1. event kind catch or throw |
4527 | 2. the target address if known | |
4528 | 3. a flag -- not sure what this is. pai/1997-07-17 */ | |
4529 | event_kind = read_register (ARG0_REGNUM); | |
c906108c SS |
4530 | catch_addr = read_register (ARG1_REGNUM); |
4531 | ||
4532 | /* Now go down to a user frame */ | |
4533 | /* For a throw, __d_eh_break is called by | |
c5aa993b JM |
4534 | __d_eh_notify_callback which is called by |
4535 | __notify_throw which is called | |
4536 | from user code. | |
c906108c | 4537 | For a catch, __d_eh_break is called by |
c5aa993b JM |
4538 | __d_eh_notify_callback which is called by |
4539 | <stackwalking stuff> which is called by | |
4540 | __throw__<stuff> or __rethrow_<stuff> which is called | |
4541 | from user code. */ | |
4542 | /* FIXME: Don't use such magic numbers; search for the frames */ | |
c906108c SS |
4543 | level = (event_kind == EX_EVENT_THROW) ? 3 : 4; |
4544 | fi = find_relative_frame (curr_frame, &level); | |
4545 | if (level != 0) | |
4546 | return (struct exception_event_record *) NULL; | |
4547 | ||
0f7d239c | 4548 | select_frame (fi); |
c906108c SS |
4549 | throw_addr = fi->pc; |
4550 | ||
4551 | /* Go back to original (top) frame */ | |
0f7d239c | 4552 | select_frame (curr_frame); |
c906108c SS |
4553 | |
4554 | current_ex_event.kind = (enum exception_event_kind) event_kind; | |
4555 | current_ex_event.throw_sal = find_pc_line (throw_addr, 1); | |
4556 | current_ex_event.catch_sal = find_pc_line (catch_addr, 1); | |
4557 | ||
4558 | return ¤t_ex_event; | |
4559 | } | |
4560 | ||
9a043c1d AC |
4561 | /* Instead of this nasty cast, add a method pvoid() that prints out a |
4562 | host VOID data type (remember %p isn't portable). */ | |
4563 | ||
4564 | static CORE_ADDR | |
4565 | hppa_pointer_to_address_hack (void *ptr) | |
4566 | { | |
4567 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
4568 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
4569 | } | |
4570 | ||
c906108c | 4571 | static void |
fba45db2 | 4572 | unwind_command (char *exp, int from_tty) |
c906108c SS |
4573 | { |
4574 | CORE_ADDR address; | |
4575 | struct unwind_table_entry *u; | |
4576 | ||
4577 | /* If we have an expression, evaluate it and use it as the address. */ | |
4578 | ||
4579 | if (exp != 0 && *exp != 0) | |
4580 | address = parse_and_eval_address (exp); | |
4581 | else | |
4582 | return; | |
4583 | ||
4584 | u = find_unwind_entry (address); | |
4585 | ||
4586 | if (!u) | |
4587 | { | |
4588 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
4589 | return; | |
4590 | } | |
4591 | ||
ce414844 | 4592 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
9a043c1d | 4593 | paddr_nz (hppa_pointer_to_address_hack (u))); |
c906108c SS |
4594 | |
4595 | printf_unfiltered ("\tregion_start = "); | |
4596 | print_address (u->region_start, gdb_stdout); | |
4597 | ||
4598 | printf_unfiltered ("\n\tregion_end = "); | |
4599 | print_address (u->region_end, gdb_stdout); | |
4600 | ||
c906108c | 4601 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
4602 | |
4603 | printf_unfiltered ("\n\tflags ="); | |
4604 | pif (Cannot_unwind); | |
4605 | pif (Millicode); | |
4606 | pif (Millicode_save_sr0); | |
4607 | pif (Entry_SR); | |
4608 | pif (Args_stored); | |
4609 | pif (Variable_Frame); | |
4610 | pif (Separate_Package_Body); | |
4611 | pif (Frame_Extension_Millicode); | |
4612 | pif (Stack_Overflow_Check); | |
4613 | pif (Two_Instruction_SP_Increment); | |
4614 | pif (Ada_Region); | |
4615 | pif (Save_SP); | |
4616 | pif (Save_RP); | |
4617 | pif (Save_MRP_in_frame); | |
4618 | pif (extn_ptr_defined); | |
4619 | pif (Cleanup_defined); | |
4620 | pif (MPE_XL_interrupt_marker); | |
4621 | pif (HP_UX_interrupt_marker); | |
4622 | pif (Large_frame); | |
4623 | ||
4624 | putchar_unfiltered ('\n'); | |
4625 | ||
c906108c | 4626 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
4627 | |
4628 | pin (Region_description); | |
4629 | pin (Entry_FR); | |
4630 | pin (Entry_GR); | |
4631 | pin (Total_frame_size); | |
4632 | } | |
c906108c SS |
4633 | |
4634 | #ifdef PREPARE_TO_PROCEED | |
4635 | ||
4636 | /* If the user has switched threads, and there is a breakpoint | |
4637 | at the old thread's pc location, then switch to that thread | |
4638 | and return TRUE, else return FALSE and don't do a thread | |
4639 | switch (or rather, don't seem to have done a thread switch). | |
4640 | ||
4641 | Ptrace-based gdb will always return FALSE to the thread-switch | |
4642 | query, and thus also to PREPARE_TO_PROCEED. | |
4643 | ||
4644 | The important thing is whether there is a BPT instruction, | |
4645 | not how many user breakpoints there are. So we have to worry | |
4646 | about things like these: | |
4647 | ||
4648 | o Non-bp stop -- NO | |
4649 | ||
4650 | o User hits bp, no switch -- NO | |
4651 | ||
4652 | o User hits bp, switches threads -- YES | |
4653 | ||
4654 | o User hits bp, deletes bp, switches threads -- NO | |
4655 | ||
4656 | o User hits bp, deletes one of two or more bps | |
c5aa993b | 4657 | at that PC, user switches threads -- YES |
c906108c SS |
4658 | |
4659 | o Plus, since we're buffering events, the user may have hit a | |
c5aa993b JM |
4660 | breakpoint, deleted the breakpoint and then gotten another |
4661 | hit on that same breakpoint on another thread which | |
4662 | actually hit before the delete. (FIXME in breakpoint.c | |
4663 | so that "dead" breakpoints are ignored?) -- NO | |
c906108c SS |
4664 | |
4665 | For these reasons, we have to violate information hiding and | |
4666 | call "breakpoint_here_p". If core gdb thinks there is a bpt | |
4667 | here, that's what counts, as core gdb is the one which is | |
e02bc4cc DS |
4668 | putting the BPT instruction in and taking it out. |
4669 | ||
4670 | Note that this implementation is potentially redundant now that | |
8849f47d JL |
4671 | default_prepare_to_proceed() has been added. |
4672 | ||
4673 | FIXME This may not support switching threads after Ctrl-C | |
4674 | correctly. The default implementation does support this. */ | |
c906108c | 4675 | int |
fba45db2 | 4676 | hppa_prepare_to_proceed (void) |
c906108c SS |
4677 | { |
4678 | pid_t old_thread; | |
4679 | pid_t current_thread; | |
4680 | ||
39f77062 | 4681 | old_thread = hppa_switched_threads (PIDGET (inferior_ptid)); |
c906108c SS |
4682 | if (old_thread != 0) |
4683 | { | |
4684 | /* Switched over from "old_thread". Try to do | |
4685 | as little work as possible, 'cause mostly | |
4686 | we're going to switch back. */ | |
4687 | CORE_ADDR new_pc; | |
c5aa993b | 4688 | CORE_ADDR old_pc = read_pc (); |
c906108c SS |
4689 | |
4690 | /* Yuk, shouldn't use global to specify current | |
4691 | thread. But that's how gdb does it. */ | |
39f77062 KB |
4692 | current_thread = PIDGET (inferior_ptid); |
4693 | inferior_ptid = pid_to_ptid (old_thread); | |
c906108c | 4694 | |
c5aa993b JM |
4695 | new_pc = read_pc (); |
4696 | if (new_pc != old_pc /* If at same pc, no need */ | |
c906108c | 4697 | && breakpoint_here_p (new_pc)) |
c5aa993b | 4698 | { |
c906108c | 4699 | /* User hasn't deleted the BP. |
c5aa993b | 4700 | Return TRUE, finishing switch to "old_thread". */ |
c906108c SS |
4701 | flush_cached_frames (); |
4702 | registers_changed (); | |
4703 | #if 0 | |
c5aa993b | 4704 | printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n", |
39f77062 | 4705 | current_thread, PIDGET (inferior_ptid)); |
c906108c | 4706 | #endif |
c5aa993b | 4707 | |
c906108c | 4708 | return 1; |
c5aa993b | 4709 | } |
c906108c SS |
4710 | |
4711 | /* Otherwise switch back to the user-chosen thread. */ | |
39f77062 | 4712 | inferior_ptid = pid_to_ptid (current_thread); |
c5aa993b | 4713 | new_pc = read_pc (); /* Re-prime register cache */ |
c906108c SS |
4714 | } |
4715 | ||
4716 | return 0; | |
4717 | } | |
4718 | #endif /* PREPARE_TO_PROCEED */ | |
4719 | ||
c2c6d25f | 4720 | void |
fba45db2 | 4721 | hppa_skip_permanent_breakpoint (void) |
c2c6d25f JM |
4722 | { |
4723 | /* To step over a breakpoint instruction on the PA takes some | |
4724 | fiddling with the instruction address queue. | |
4725 | ||
4726 | When we stop at a breakpoint, the IA queue front (the instruction | |
4727 | we're executing now) points at the breakpoint instruction, and | |
4728 | the IA queue back (the next instruction to execute) points to | |
4729 | whatever instruction we would execute after the breakpoint, if it | |
4730 | were an ordinary instruction. This is the case even if the | |
4731 | breakpoint is in the delay slot of a branch instruction. | |
4732 | ||
4733 | Clearly, to step past the breakpoint, we need to set the queue | |
4734 | front to the back. But what do we put in the back? What | |
4735 | instruction comes after that one? Because of the branch delay | |
4736 | slot, the next insn is always at the back + 4. */ | |
4737 | write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM)); | |
4738 | write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM)); | |
4739 | ||
4740 | write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4); | |
4741 | /* We can leave the tail's space the same, since there's no jump. */ | |
4742 | } | |
4743 | ||
1cdb71fe JL |
4744 | /* Copy the function value from VALBUF into the proper location |
4745 | for a function return. | |
4746 | ||
4747 | Called only in the context of the "return" command. */ | |
4748 | ||
4749 | void | |
4750 | hppa_store_return_value (struct type *type, char *valbuf) | |
4751 | { | |
4752 | /* For software floating point, the return value goes into the | |
4753 | integer registers. But we do not have any flag to key this on, | |
4754 | so we always store the value into the integer registers. | |
4755 | ||
4756 | If its a float value, then we also store it into the floating | |
4757 | point registers. */ | |
73937e03 AC |
4758 | deprecated_write_register_bytes (REGISTER_BYTE (28) |
4759 | + (TYPE_LENGTH (type) > 4 | |
4760 | ? (8 - TYPE_LENGTH (type)) | |
4761 | : (4 - TYPE_LENGTH (type))), | |
4762 | valbuf, TYPE_LENGTH (type)); | |
1cdb71fe | 4763 | if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT) |
73937e03 AC |
4764 | deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM), |
4765 | valbuf, TYPE_LENGTH (type)); | |
1cdb71fe JL |
4766 | } |
4767 | ||
4768 | /* Copy the function's return value into VALBUF. | |
4769 | ||
4770 | This function is called only in the context of "target function calls", | |
4771 | ie. when the debugger forces a function to be called in the child, and | |
4772 | when the debugger forces a fucntion to return prematurely via the | |
4773 | "return" command. */ | |
4774 | ||
4775 | void | |
4776 | hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
4777 | { | |
4778 | if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT) | |
4779 | memcpy (valbuf, | |
4780 | (char *)regbuf + REGISTER_BYTE (FP4_REGNUM), | |
4781 | TYPE_LENGTH (type)); | |
4782 | else | |
4783 | memcpy (valbuf, | |
4784 | ((char *)regbuf | |
4785 | + REGISTER_BYTE (28) | |
4786 | + (TYPE_LENGTH (type) > 4 | |
4787 | ? (8 - TYPE_LENGTH (type)) | |
4788 | : (4 - TYPE_LENGTH (type)))), | |
4789 | TYPE_LENGTH (type)); | |
4790 | } | |
4facf7e8 | 4791 | |
d709c020 JB |
4792 | int |
4793 | hppa_reg_struct_has_addr (int gcc_p, struct type *type) | |
4794 | { | |
4795 | /* On the PA, any pass-by-value structure > 8 bytes is actually passed | |
4796 | via a pointer regardless of its type or the compiler used. */ | |
4797 | return (TYPE_LENGTH (type) > 8); | |
4798 | } | |
4799 | ||
4800 | int | |
4801 | hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs) | |
4802 | { | |
4803 | /* Stack grows upward */ | |
4804 | return (lhs > rhs); | |
4805 | } | |
4806 | ||
4807 | CORE_ADDR | |
4808 | hppa_stack_align (CORE_ADDR sp) | |
4809 | { | |
4810 | /* elz: adjust the quantity to the next highest value which is | |
4811 | 64-bit aligned. This is used in valops.c, when the sp is adjusted. | |
4812 | On hppa the sp must always be kept 64-bit aligned */ | |
4813 | return ((sp % 8) ? (sp + 7) & -8 : sp); | |
4814 | } | |
4815 | ||
4816 | int | |
4817 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
4818 | { | |
4819 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
4820 | ||
4821 | An example of this occurs when an a.out is linked against a foo.sl. | |
4822 | The foo.sl defines a global bar(), and the a.out declares a signature | |
4823 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
4824 | its address in another call. | |
4825 | ||
4826 | If you have this scenario and attempt to "break bar" before running, | |
4827 | gdb will find a minimal symbol for bar() in the a.out. But that | |
4828 | symbol's address will be negative. What this appears to denote is | |
4829 | an index backwards from the base of the procedure linkage table (PLT) | |
4830 | into the data linkage table (DLT), the end of which is contiguous | |
4831 | with the start of the PLT. This is clearly not a valid address for | |
4832 | us to set a breakpoint on. | |
4833 | ||
4834 | Note that one must be careful in how one checks for a negative address. | |
4835 | 0xc0000000 is a legitimate address of something in a shared text | |
4836 | segment, for example. Since I don't know what the possible range | |
4837 | is of these "really, truly negative" addresses that come from the | |
4838 | minimal symbols, I'm resorting to the gross hack of checking the | |
4839 | top byte of the address for all 1's. Sigh. */ | |
4840 | ||
4841 | return (!target_has_stack && (pc & 0xFF000000)); | |
4842 | } | |
4843 | ||
4844 | int | |
4845 | hppa_instruction_nullified (void) | |
4846 | { | |
4847 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
4848 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
4849 | semi-mechanical multiarching-related changes. */ | |
4850 | const int ipsw = (int) read_register (IPSW_REGNUM); | |
4851 | const int flags = (int) read_register (FLAGS_REGNUM); | |
4852 | ||
4853 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
4854 | } | |
4855 | ||
60e1ff27 JB |
4856 | int |
4857 | hppa_register_raw_size (int reg_nr) | |
4858 | { | |
4859 | /* All registers have the same size. */ | |
4860 | return REGISTER_SIZE; | |
4861 | } | |
4862 | ||
d709c020 JB |
4863 | /* Index within the register vector of the first byte of the space i |
4864 | used for register REG_NR. */ | |
4865 | ||
4866 | int | |
4867 | hppa_register_byte (int reg_nr) | |
4868 | { | |
4869 | return reg_nr * 4; | |
4870 | } | |
4871 | ||
4872 | /* Return the GDB type object for the "standard" data type of data | |
4873 | in register N. */ | |
4874 | ||
4875 | struct type * | |
4876 | hppa_register_virtual_type (int reg_nr) | |
4877 | { | |
4878 | if (reg_nr < FP4_REGNUM) | |
4879 | return builtin_type_int; | |
4880 | else | |
4881 | return builtin_type_float; | |
4882 | } | |
4883 | ||
4884 | /* Store the address of the place in which to copy the structure the | |
4885 | subroutine will return. This is called from call_function. */ | |
4886 | ||
4887 | void | |
4888 | hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
4889 | { | |
4890 | write_register (28, addr); | |
4891 | } | |
4892 | ||
60383d10 JB |
4893 | CORE_ADDR |
4894 | hppa_extract_struct_value_address (char *regbuf) | |
4895 | { | |
4896 | /* Extract from an array REGBUF containing the (raw) register state | |
4897 | the address in which a function should return its structure value, | |
4898 | as a CORE_ADDR (or an expression that can be used as one). */ | |
4899 | /* FIXME: brobecker 2002-12-26. | |
4900 | The current implementation is historical, but we should eventually | |
4901 | implement it in a more robust manner as it relies on the fact that | |
4902 | the address size is equal to the size of an int* _on the host_... | |
4903 | One possible implementation that crossed my mind is to use | |
4904 | extract_address. */ | |
4905 | return (*(int *)(regbuf + REGISTER_BYTE (28))); | |
4906 | } | |
4907 | ||
d709c020 JB |
4908 | /* Return True if REGNUM is not a register available to the user |
4909 | through ptrace(). */ | |
4910 | ||
4911 | int | |
4912 | hppa_cannot_store_register (int regnum) | |
4913 | { | |
4914 | return (regnum == 0 | |
4915 | || regnum == PCSQ_HEAD_REGNUM | |
4916 | || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM) | |
4917 | || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM)); | |
4918 | ||
4919 | } | |
4920 | ||
4921 | CORE_ADDR | |
4922 | hppa_frame_args_address (struct frame_info *fi) | |
4923 | { | |
4924 | return fi->frame; | |
4925 | } | |
4926 | ||
4927 | CORE_ADDR | |
4928 | hppa_frame_locals_address (struct frame_info *fi) | |
4929 | { | |
4930 | return fi->frame; | |
4931 | } | |
4932 | ||
60383d10 JB |
4933 | int |
4934 | hppa_frame_num_args (struct frame_info *frame) | |
4935 | { | |
4936 | /* We can't tell how many args there are now that the C compiler delays | |
4937 | popping them. */ | |
4938 | return -1; | |
4939 | } | |
4940 | ||
d709c020 JB |
4941 | CORE_ADDR |
4942 | hppa_smash_text_address (CORE_ADDR addr) | |
4943 | { | |
4944 | /* The low two bits of the PC on the PA contain the privilege level. | |
4945 | Some genius implementing a (non-GCC) compiler apparently decided | |
4946 | this means that "addresses" in a text section therefore include a | |
4947 | privilege level, and thus symbol tables should contain these bits. | |
4948 | This seems like a bonehead thing to do--anyway, it seems to work | |
4949 | for our purposes to just ignore those bits. */ | |
4950 | ||
4951 | return (addr &= ~0x3); | |
4952 | } | |
4953 | ||
e6e68f1f JB |
4954 | static struct gdbarch * |
4955 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
4956 | { | |
4957 | struct gdbarch *gdbarch; | |
59623e27 JB |
4958 | |
4959 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 4960 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 4961 | { |
4be87837 DJ |
4962 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
4963 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
4964 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 4965 | } |
e6e68f1f JB |
4966 | |
4967 | /* find a candidate among the list of pre-declared architectures. */ | |
4968 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
4969 | if (arches != NULL) | |
4970 | return (arches->gdbarch); | |
4971 | ||
4972 | /* If none found, then allocate and initialize one. */ | |
4973 | gdbarch = gdbarch_alloc (&info, NULL); | |
4974 | ||
273f8429 | 4975 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 4976 | gdbarch_init_osabi (info, gdbarch); |
273f8429 | 4977 | |
60383d10 JB |
4978 | set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr); |
4979 | set_gdbarch_function_start_offset (gdbarch, 0); | |
4980 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); | |
4981 | set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); | |
4982 | set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline); | |
4983 | set_gdbarch_in_solib_return_trampoline (gdbarch, | |
4984 | hppa_in_solib_return_trampoline); | |
6913c89a | 4985 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call); |
60383d10 JB |
4986 | set_gdbarch_inner_than (gdbarch, hppa_inner_than); |
4987 | set_gdbarch_stack_align (gdbarch, hppa_stack_align); | |
60383d10 JB |
4988 | set_gdbarch_decr_pc_after_break (gdbarch, 0); |
4989 | set_gdbarch_register_size (gdbarch, 4); | |
4990 | set_gdbarch_num_regs (gdbarch, hppa_num_regs); | |
4991 | set_gdbarch_fp_regnum (gdbarch, 3); | |
4992 | set_gdbarch_sp_regnum (gdbarch, 30); | |
4993 | set_gdbarch_fp0_regnum (gdbarch, 64); | |
4994 | set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM); | |
4995 | set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM); | |
4996 | set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size); | |
4997 | set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4); | |
4998 | set_gdbarch_register_byte (gdbarch, hppa_register_byte); | |
4999 | set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size); | |
a0ed5532 AC |
5000 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4); |
5001 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8); | |
60383d10 | 5002 | set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type); |
4183d812 | 5003 | set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return); |
60383d10 JB |
5004 | set_gdbarch_deprecated_extract_return_value (gdbarch, |
5005 | hppa_extract_return_value); | |
5006 | set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention); | |
5007 | set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value); | |
5008 | set_gdbarch_deprecated_extract_struct_value_address | |
5009 | (gdbarch, hppa_extract_struct_value_address); | |
5010 | set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register); | |
e9582e71 | 5011 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info); |
618ce49f AC |
5012 | set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain); |
5013 | set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid); | |
60383d10 JB |
5014 | set_gdbarch_frameless_function_invocation |
5015 | (gdbarch, hppa_frameless_function_invocation); | |
8bedc050 | 5016 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc); |
60383d10 JB |
5017 | set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address); |
5018 | set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address); | |
5019 | set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args); | |
5020 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
5ef7553b | 5021 | set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame); |
749b82f6 | 5022 | set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame); |
60383d10 | 5023 | set_gdbarch_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28); |
60383d10 | 5024 | /* set_gdbarch_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */ |
b81774d8 | 5025 | set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments); |
60383d10 JB |
5026 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
5027 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
5028 | set_gdbarch_read_pc (gdbarch, hppa_target_read_pc); | |
5029 | set_gdbarch_write_pc (gdbarch, hppa_target_write_pc); | |
5030 | set_gdbarch_read_fp (gdbarch, hppa_target_read_fp); | |
60383d10 | 5031 | |
e6e68f1f JB |
5032 | return gdbarch; |
5033 | } | |
5034 | ||
5035 | static void | |
5036 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
5037 | { | |
5038 | /* Nothing to print for the moment. */ | |
5039 | } | |
5040 | ||
4facf7e8 JB |
5041 | void |
5042 | _initialize_hppa_tdep (void) | |
5043 | { | |
5044 | struct cmd_list_element *c; | |
5045 | void break_at_finish_command (char *arg, int from_tty); | |
5046 | void tbreak_at_finish_command (char *arg, int from_tty); | |
5047 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
5048 | ||
e6e68f1f | 5049 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 JB |
5050 | tm_print_insn = print_insn_hppa; |
5051 | ||
5052 | add_cmd ("unwind", class_maintenance, unwind_command, | |
5053 | "Print unwind table entry at given address.", | |
5054 | &maintenanceprintlist); | |
5055 | ||
5056 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
5057 | break_at_finish_command, | |
5058 | concat ("Set breakpoint at procedure exit. \n\ | |
5059 | Argument may be function name, or \"*\" and an address.\n\ | |
5060 | If function is specified, break at end of code for that function.\n\ | |
5061 | If an address is specified, break at the end of the function that contains \n\ | |
5062 | that exact address.\n", | |
5063 | "With no arg, uses current execution address of selected stack frame.\n\ | |
5064 | This is useful for breaking on return to a stack frame.\n\ | |
5065 | \n\ | |
5066 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
5067 | \n\ | |
5068 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
5069 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
5070 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
5071 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
5072 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
5073 | ||
5074 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
5075 | tbreak_at_finish_command, | |
5076 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
5077 | be no argument or the argument must be a depth.\n"), NULL); | |
5078 | set_cmd_completer (c, location_completer); | |
5079 | ||
5080 | if (xdb_commands) | |
5081 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
5082 | break_at_finish_at_depth_command, | |
5083 | "Set breakpoint at procedure exit. Either there should\n\ | |
5084 | be no argument or the argument must be a depth.\n"), NULL); | |
5085 | } | |
5086 |