]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
4 | 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. | |
c906108c SS |
5 | |
6 | Contributed by the Center for Software Science at the | |
7 | University of Utah ([email protected]). | |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b JM |
21 | You should have received a copy of the GNU General Public License |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 59 Temple Place - Suite 330, | |
24 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
25 | |
26 | #include "defs.h" | |
27 | #include "frame.h" | |
28 | #include "bfd.h" | |
29 | #include "inferior.h" | |
30 | #include "value.h" | |
4e052eda | 31 | #include "regcache.h" |
e5d66720 | 32 | #include "completer.h" |
d709c020 | 33 | #include "language.h" |
c906108c SS |
34 | |
35 | /* For argument passing to the inferior */ | |
36 | #include "symtab.h" | |
37 | ||
38 | #ifdef USG | |
39 | #include <sys/types.h> | |
40 | #endif | |
41 | ||
42 | #include <dl.h> | |
43 | #include <sys/param.h> | |
44 | #include <signal.h> | |
45 | ||
46 | #include <sys/ptrace.h> | |
47 | #include <machine/save_state.h> | |
48 | ||
49 | #ifdef COFF_ENCAPSULATE | |
50 | #include "a.out.encap.h" | |
51 | #else | |
52 | #endif | |
53 | ||
c5aa993b | 54 | /*#include <sys/user.h> After a.out.h */ |
c906108c SS |
55 | #include <sys/file.h> |
56 | #include "gdb_stat.h" | |
03f2053f | 57 | #include "gdb_wait.h" |
c906108c SS |
58 | |
59 | #include "gdbcore.h" | |
60 | #include "gdbcmd.h" | |
61 | #include "target.h" | |
62 | #include "symfile.h" | |
63 | #include "objfiles.h" | |
64 | ||
c906108c SS |
65 | /* To support detection of the pseudo-initial frame |
66 | that threads have. */ | |
67 | #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" | |
68 | #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) | |
c5aa993b | 69 | |
a14ed312 | 70 | static int extract_5_load (unsigned int); |
c906108c | 71 | |
a14ed312 | 72 | static unsigned extract_5R_store (unsigned int); |
c906108c | 73 | |
a14ed312 | 74 | static unsigned extract_5r_store (unsigned int); |
c906108c | 75 | |
a14ed312 KB |
76 | static void find_dummy_frame_regs (struct frame_info *, |
77 | struct frame_saved_regs *); | |
c906108c | 78 | |
a14ed312 | 79 | static int find_proc_framesize (CORE_ADDR); |
c906108c | 80 | |
a14ed312 | 81 | static int find_return_regnum (CORE_ADDR); |
c906108c | 82 | |
a14ed312 | 83 | struct unwind_table_entry *find_unwind_entry (CORE_ADDR); |
c906108c | 84 | |
a14ed312 | 85 | static int extract_17 (unsigned int); |
c906108c | 86 | |
a14ed312 | 87 | static unsigned deposit_21 (unsigned int, unsigned int); |
c906108c | 88 | |
a14ed312 | 89 | static int extract_21 (unsigned); |
c906108c | 90 | |
a14ed312 | 91 | static unsigned deposit_14 (int, unsigned int); |
c906108c | 92 | |
a14ed312 | 93 | static int extract_14 (unsigned); |
c906108c | 94 | |
a14ed312 | 95 | static void unwind_command (char *, int); |
c906108c | 96 | |
a14ed312 | 97 | static int low_sign_extend (unsigned int, unsigned int); |
c906108c | 98 | |
a14ed312 | 99 | static int sign_extend (unsigned int, unsigned int); |
c906108c | 100 | |
a14ed312 | 101 | static int restore_pc_queue (struct frame_saved_regs *); |
c906108c | 102 | |
a14ed312 | 103 | static int hppa_alignof (struct type *); |
c906108c SS |
104 | |
105 | /* To support multi-threading and stepping. */ | |
a14ed312 | 106 | int hppa_prepare_to_proceed (); |
c906108c | 107 | |
a14ed312 | 108 | static int prologue_inst_adjust_sp (unsigned long); |
c906108c | 109 | |
a14ed312 | 110 | static int is_branch (unsigned long); |
c906108c | 111 | |
a14ed312 | 112 | static int inst_saves_gr (unsigned long); |
c906108c | 113 | |
a14ed312 | 114 | static int inst_saves_fr (unsigned long); |
c906108c | 115 | |
a14ed312 | 116 | static int pc_in_interrupt_handler (CORE_ADDR); |
c906108c | 117 | |
a14ed312 | 118 | static int pc_in_linker_stub (CORE_ADDR); |
c906108c | 119 | |
a14ed312 | 120 | static int compare_unwind_entries (const void *, const void *); |
c906108c | 121 | |
a14ed312 | 122 | static void read_unwind_info (struct objfile *); |
c906108c | 123 | |
a14ed312 KB |
124 | static void internalize_unwinds (struct objfile *, |
125 | struct unwind_table_entry *, | |
126 | asection *, unsigned int, | |
127 | unsigned int, CORE_ADDR); | |
128 | static void pa_print_registers (char *, int, int); | |
d9fcf2fb | 129 | static void pa_strcat_registers (char *, int, int, struct ui_file *); |
a14ed312 KB |
130 | static void pa_register_look_aside (char *, int, long *); |
131 | static void pa_print_fp_reg (int); | |
d9fcf2fb | 132 | static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type); |
a14ed312 | 133 | static void record_text_segment_lowaddr (bfd *, asection *, void *); |
d709c020 JB |
134 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
135 | following functions static, once we hppa is partially multiarched. */ | |
136 | int hppa_reg_struct_has_addr (int gcc_p, struct type *type); | |
137 | int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs); | |
138 | CORE_ADDR hppa_stack_align (CORE_ADDR sp); | |
139 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); | |
140 | int hppa_instruction_nullified (void); | |
141 | int hppa_register_byte (int reg_nr); | |
142 | struct type * hppa_register_virtual_type (int reg_nr); | |
143 | void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp); | |
144 | int hppa_cannot_store_register (int regnum); | |
145 | CORE_ADDR hppa_frame_args_address (struct frame_info *fi); | |
146 | CORE_ADDR hppa_frame_locals_address (struct frame_info *fi); | |
147 | CORE_ADDR hppa_smash_text_address (CORE_ADDR addr); | |
148 | int hppa_coerce_float_to_double (struct type *formal, struct type *actual); | |
c906108c | 149 | |
c5aa993b JM |
150 | typedef struct |
151 | { | |
152 | struct minimal_symbol *msym; | |
153 | CORE_ADDR solib_handle; | |
a0b3c4fd | 154 | CORE_ADDR return_val; |
c5aa993b JM |
155 | } |
156 | args_for_find_stub; | |
c906108c | 157 | |
a0b3c4fd | 158 | static int cover_find_stub_with_shl_get (PTR); |
c906108c | 159 | |
c5aa993b | 160 | static int is_pa_2 = 0; /* False */ |
c906108c | 161 | |
c5aa993b | 162 | /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */ |
c906108c SS |
163 | extern int hp_som_som_object_present; |
164 | ||
165 | /* In breakpoint.c */ | |
166 | extern int exception_catchpoints_are_fragile; | |
167 | ||
c906108c | 168 | /* Should call_function allocate stack space for a struct return? */ |
d709c020 | 169 | |
c906108c | 170 | int |
fba45db2 | 171 | hppa_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 172 | { |
104c1213 | 173 | return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE); |
c906108c | 174 | } |
c906108c | 175 | \f |
c5aa993b | 176 | |
c906108c SS |
177 | /* Routines to extract various sized constants out of hppa |
178 | instructions. */ | |
179 | ||
180 | /* This assumes that no garbage lies outside of the lower bits of | |
181 | value. */ | |
182 | ||
183 | static int | |
fba45db2 | 184 | sign_extend (unsigned val, unsigned bits) |
c906108c | 185 | { |
c5aa993b | 186 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
187 | } |
188 | ||
189 | /* For many immediate values the sign bit is the low bit! */ | |
190 | ||
191 | static int | |
fba45db2 | 192 | low_sign_extend (unsigned val, unsigned bits) |
c906108c | 193 | { |
c5aa993b | 194 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
195 | } |
196 | ||
197 | /* extract the immediate field from a ld{bhw}s instruction */ | |
198 | ||
c906108c | 199 | static int |
fba45db2 | 200 | extract_5_load (unsigned word) |
c906108c SS |
201 | { |
202 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
203 | } | |
204 | ||
c906108c SS |
205 | /* extract the immediate field from a break instruction */ |
206 | ||
207 | static unsigned | |
fba45db2 | 208 | extract_5r_store (unsigned word) |
c906108c SS |
209 | { |
210 | return (word & MASK_5); | |
211 | } | |
212 | ||
213 | /* extract the immediate field from a {sr}sm instruction */ | |
214 | ||
215 | static unsigned | |
fba45db2 | 216 | extract_5R_store (unsigned word) |
c906108c SS |
217 | { |
218 | return (word >> 16 & MASK_5); | |
219 | } | |
220 | ||
c906108c SS |
221 | /* extract a 14 bit immediate field */ |
222 | ||
223 | static int | |
fba45db2 | 224 | extract_14 (unsigned word) |
c906108c SS |
225 | { |
226 | return low_sign_extend (word & MASK_14, 14); | |
227 | } | |
228 | ||
229 | /* deposit a 14 bit constant in a word */ | |
230 | ||
231 | static unsigned | |
fba45db2 | 232 | deposit_14 (int opnd, unsigned word) |
c906108c SS |
233 | { |
234 | unsigned sign = (opnd < 0 ? 1 : 0); | |
235 | ||
c5aa993b | 236 | return word | ((unsigned) opnd << 1 & MASK_14) | sign; |
c906108c SS |
237 | } |
238 | ||
239 | /* extract a 21 bit constant */ | |
240 | ||
241 | static int | |
fba45db2 | 242 | extract_21 (unsigned word) |
c906108c SS |
243 | { |
244 | int val; | |
245 | ||
246 | word &= MASK_21; | |
247 | word <<= 11; | |
248 | val = GET_FIELD (word, 20, 20); | |
249 | val <<= 11; | |
250 | val |= GET_FIELD (word, 9, 19); | |
251 | val <<= 2; | |
252 | val |= GET_FIELD (word, 5, 6); | |
253 | val <<= 5; | |
254 | val |= GET_FIELD (word, 0, 4); | |
255 | val <<= 2; | |
256 | val |= GET_FIELD (word, 7, 8); | |
257 | return sign_extend (val, 21) << 11; | |
258 | } | |
259 | ||
260 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
261 | usually the top 21 bits of a 32 bit constant, we assume that only | |
262 | the low 21 bits of opnd are relevant */ | |
263 | ||
264 | static unsigned | |
fba45db2 | 265 | deposit_21 (unsigned opnd, unsigned word) |
c906108c SS |
266 | { |
267 | unsigned val = 0; | |
268 | ||
269 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
270 | val <<= 2; | |
271 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
272 | val <<= 2; | |
273 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
274 | val <<= 11; | |
275 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
276 | val <<= 1; | |
277 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
278 | return word | val; | |
279 | } | |
280 | ||
c906108c SS |
281 | /* extract a 17 bit constant from branch instructions, returning the |
282 | 19 bit signed value. */ | |
283 | ||
284 | static int | |
fba45db2 | 285 | extract_17 (unsigned word) |
c906108c SS |
286 | { |
287 | return sign_extend (GET_FIELD (word, 19, 28) | | |
288 | GET_FIELD (word, 29, 29) << 10 | | |
289 | GET_FIELD (word, 11, 15) << 11 | | |
290 | (word & 0x1) << 16, 17) << 2; | |
291 | } | |
292 | \f | |
293 | ||
294 | /* Compare the start address for two unwind entries returning 1 if | |
295 | the first address is larger than the second, -1 if the second is | |
296 | larger than the first, and zero if they are equal. */ | |
297 | ||
298 | static int | |
fba45db2 | 299 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
300 | { |
301 | const struct unwind_table_entry *a = arg1; | |
302 | const struct unwind_table_entry *b = arg2; | |
303 | ||
304 | if (a->region_start > b->region_start) | |
305 | return 1; | |
306 | else if (a->region_start < b->region_start) | |
307 | return -1; | |
308 | else | |
309 | return 0; | |
310 | } | |
311 | ||
53a5351d JM |
312 | static CORE_ADDR low_text_segment_address; |
313 | ||
314 | static void | |
8fef05cc | 315 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored) |
53a5351d | 316 | { |
bf9c25dc | 317 | if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d JM |
318 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
319 | && section->vma < low_text_segment_address) | |
320 | low_text_segment_address = section->vma; | |
321 | } | |
322 | ||
c906108c | 323 | static void |
fba45db2 KB |
324 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
325 | asection *section, unsigned int entries, unsigned int size, | |
326 | CORE_ADDR text_offset) | |
c906108c SS |
327 | { |
328 | /* We will read the unwind entries into temporary memory, then | |
329 | fill in the actual unwind table. */ | |
330 | if (size > 0) | |
331 | { | |
332 | unsigned long tmp; | |
333 | unsigned i; | |
334 | char *buf = alloca (size); | |
335 | ||
53a5351d JM |
336 | low_text_segment_address = -1; |
337 | ||
338 | /* If addresses are 64 bits wide, then unwinds are supposed to | |
c2c6d25f JM |
339 | be segment relative offsets instead of absolute addresses. |
340 | ||
341 | Note that when loading a shared library (text_offset != 0) the | |
342 | unwinds are already relative to the text_offset that will be | |
343 | passed in. */ | |
344 | if (TARGET_PTR_BIT == 64 && text_offset == 0) | |
53a5351d JM |
345 | { |
346 | bfd_map_over_sections (objfile->obfd, | |
347 | record_text_segment_lowaddr, (PTR) NULL); | |
348 | ||
349 | /* ?!? Mask off some low bits. Should this instead subtract | |
350 | out the lowest section's filepos or something like that? | |
351 | This looks very hokey to me. */ | |
352 | low_text_segment_address &= ~0xfff; | |
353 | text_offset += low_text_segment_address; | |
354 | } | |
355 | ||
c906108c SS |
356 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
357 | ||
358 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 359 | endian issues. */ |
c906108c SS |
360 | for (i = 0; i < entries; i++) |
361 | { | |
362 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 363 | (bfd_byte *) buf); |
c906108c SS |
364 | table[i].region_start += text_offset; |
365 | buf += 4; | |
c5aa993b | 366 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
367 | table[i].region_end += text_offset; |
368 | buf += 4; | |
c5aa993b | 369 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
370 | buf += 4; |
371 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
372 | table[i].Millicode = (tmp >> 30) & 0x1; | |
373 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
374 | table[i].Region_description = (tmp >> 27) & 0x3; | |
375 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
376 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
377 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
378 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
379 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
380 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
381 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
382 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
383 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
384 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
385 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
386 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
387 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
388 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
389 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
390 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
391 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
392 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
393 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
394 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 395 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
396 | buf += 4; |
397 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
398 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
399 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
400 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
401 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
402 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
403 | ||
c5aa993b | 404 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
405 | table[i].stub_unwind.stub_type = 0; |
406 | table[i].stub_unwind.padding = 0; | |
407 | } | |
408 | } | |
409 | } | |
410 | ||
411 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
412 | the object file. This info is used mainly by find_unwind_entry() to find | |
413 | out the stack frame size and frame pointer used by procedures. We put | |
414 | everything on the psymbol obstack in the objfile so that it automatically | |
415 | gets freed when the objfile is destroyed. */ | |
416 | ||
417 | static void | |
fba45db2 | 418 | read_unwind_info (struct objfile *objfile) |
c906108c | 419 | { |
d4f3574e SS |
420 | asection *unwind_sec, *stub_unwind_sec; |
421 | unsigned unwind_size, stub_unwind_size, total_size; | |
422 | unsigned index, unwind_entries; | |
c906108c SS |
423 | unsigned stub_entries, total_entries; |
424 | CORE_ADDR text_offset; | |
425 | struct obj_unwind_info *ui; | |
426 | obj_private_data_t *obj_private; | |
427 | ||
428 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
c5aa993b JM |
429 | ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack, |
430 | sizeof (struct obj_unwind_info)); | |
c906108c SS |
431 | |
432 | ui->table = NULL; | |
433 | ui->cache = NULL; | |
434 | ui->last = -1; | |
435 | ||
d4f3574e SS |
436 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
437 | sections in a single executable. So we just iterate over every | |
438 | section in the BFD looking for unwinder sections intead of trying | |
439 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 440 | |
d4f3574e SS |
441 | First determine the total size of the unwind tables so that we |
442 | can allocate memory in a nice big hunk. */ | |
443 | total_entries = 0; | |
444 | for (unwind_sec = objfile->obfd->sections; | |
445 | unwind_sec; | |
446 | unwind_sec = unwind_sec->next) | |
c906108c | 447 | { |
d4f3574e SS |
448 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
449 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
450 | { | |
451 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
452 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 453 | |
d4f3574e SS |
454 | total_entries += unwind_entries; |
455 | } | |
c906108c SS |
456 | } |
457 | ||
d4f3574e SS |
458 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
459 | use stub unwinds at the curren time. */ | |
460 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
461 | ||
c906108c SS |
462 | if (stub_unwind_sec) |
463 | { | |
464 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
465 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
466 | } | |
467 | else | |
468 | { | |
469 | stub_unwind_size = 0; | |
470 | stub_entries = 0; | |
471 | } | |
472 | ||
473 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 474 | total_entries += stub_entries; |
c906108c SS |
475 | total_size = total_entries * sizeof (struct unwind_table_entry); |
476 | ||
477 | /* Allocate memory for the unwind table. */ | |
478 | ui->table = (struct unwind_table_entry *) | |
479 | obstack_alloc (&objfile->psymbol_obstack, total_size); | |
c5aa993b | 480 | ui->last = total_entries - 1; |
c906108c | 481 | |
d4f3574e SS |
482 | /* Now read in each unwind section and internalize the standard unwind |
483 | entries. */ | |
c906108c | 484 | index = 0; |
d4f3574e SS |
485 | for (unwind_sec = objfile->obfd->sections; |
486 | unwind_sec; | |
487 | unwind_sec = unwind_sec->next) | |
488 | { | |
489 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
490 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
491 | { | |
492 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
493 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
494 | ||
495 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
496 | unwind_entries, unwind_size, text_offset); | |
497 | index += unwind_entries; | |
498 | } | |
499 | } | |
500 | ||
501 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
502 | if (stub_unwind_size > 0) |
503 | { | |
504 | unsigned int i; | |
505 | char *buf = alloca (stub_unwind_size); | |
506 | ||
507 | /* Read in the stub unwind entries. */ | |
508 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
509 | 0, stub_unwind_size); | |
510 | ||
511 | /* Now convert them into regular unwind entries. */ | |
512 | for (i = 0; i < stub_entries; i++, index++) | |
513 | { | |
514 | /* Clear out the next unwind entry. */ | |
515 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
516 | ||
517 | /* Convert offset & size into region_start and region_end. | |
518 | Stuff away the stub type into "reserved" fields. */ | |
519 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
520 | (bfd_byte *) buf); | |
521 | ui->table[index].region_start += text_offset; | |
522 | buf += 4; | |
523 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 524 | (bfd_byte *) buf); |
c906108c SS |
525 | buf += 2; |
526 | ui->table[index].region_end | |
c5aa993b JM |
527 | = ui->table[index].region_start + 4 * |
528 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
529 | buf += 2; |
530 | } | |
531 | ||
532 | } | |
533 | ||
534 | /* Unwind table needs to be kept sorted. */ | |
535 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
536 | compare_unwind_entries); | |
537 | ||
538 | /* Keep a pointer to the unwind information. */ | |
c5aa993b | 539 | if (objfile->obj_private == NULL) |
c906108c SS |
540 | { |
541 | obj_private = (obj_private_data_t *) | |
c5aa993b JM |
542 | obstack_alloc (&objfile->psymbol_obstack, |
543 | sizeof (obj_private_data_t)); | |
c906108c | 544 | obj_private->unwind_info = NULL; |
c5aa993b | 545 | obj_private->so_info = NULL; |
53a5351d | 546 | obj_private->dp = 0; |
c5aa993b | 547 | |
c906108c SS |
548 | objfile->obj_private = (PTR) obj_private; |
549 | } | |
c5aa993b | 550 | obj_private = (obj_private_data_t *) objfile->obj_private; |
c906108c SS |
551 | obj_private->unwind_info = ui; |
552 | } | |
553 | ||
554 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
555 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
556 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
557 | search of the unwind tables, we depend upon them to be sorted. */ | |
558 | ||
559 | struct unwind_table_entry * | |
fba45db2 | 560 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
561 | { |
562 | int first, middle, last; | |
563 | struct objfile *objfile; | |
564 | ||
565 | /* A function at address 0? Not in HP-UX! */ | |
566 | if (pc == (CORE_ADDR) 0) | |
567 | return NULL; | |
568 | ||
569 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
570 | { |
571 | struct obj_unwind_info *ui; | |
572 | ui = NULL; | |
573 | if (objfile->obj_private) | |
574 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; | |
c906108c | 575 | |
c5aa993b JM |
576 | if (!ui) |
577 | { | |
578 | read_unwind_info (objfile); | |
579 | if (objfile->obj_private == NULL) | |
104c1213 | 580 | error ("Internal error reading unwind information."); |
c5aa993b JM |
581 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; |
582 | } | |
c906108c | 583 | |
c5aa993b | 584 | /* First, check the cache */ |
c906108c | 585 | |
c5aa993b JM |
586 | if (ui->cache |
587 | && pc >= ui->cache->region_start | |
588 | && pc <= ui->cache->region_end) | |
589 | return ui->cache; | |
c906108c | 590 | |
c5aa993b | 591 | /* Not in the cache, do a binary search */ |
c906108c | 592 | |
c5aa993b JM |
593 | first = 0; |
594 | last = ui->last; | |
c906108c | 595 | |
c5aa993b JM |
596 | while (first <= last) |
597 | { | |
598 | middle = (first + last) / 2; | |
599 | if (pc >= ui->table[middle].region_start | |
600 | && pc <= ui->table[middle].region_end) | |
601 | { | |
602 | ui->cache = &ui->table[middle]; | |
603 | return &ui->table[middle]; | |
604 | } | |
c906108c | 605 | |
c5aa993b JM |
606 | if (pc < ui->table[middle].region_start) |
607 | last = middle - 1; | |
608 | else | |
609 | first = middle + 1; | |
610 | } | |
611 | } /* ALL_OBJFILES() */ | |
c906108c SS |
612 | return NULL; |
613 | } | |
614 | ||
615 | /* Return the adjustment necessary to make for addresses on the stack | |
616 | as presented by hpread.c. | |
617 | ||
618 | This is necessary because of the stack direction on the PA and the | |
619 | bizarre way in which someone (?) decided they wanted to handle | |
620 | frame pointerless code in GDB. */ | |
621 | int | |
fba45db2 | 622 | hpread_adjust_stack_address (CORE_ADDR func_addr) |
c906108c SS |
623 | { |
624 | struct unwind_table_entry *u; | |
625 | ||
626 | u = find_unwind_entry (func_addr); | |
627 | if (!u) | |
628 | return 0; | |
629 | else | |
630 | return u->Total_frame_size << 3; | |
631 | } | |
632 | ||
633 | /* Called to determine if PC is in an interrupt handler of some | |
634 | kind. */ | |
635 | ||
636 | static int | |
fba45db2 | 637 | pc_in_interrupt_handler (CORE_ADDR pc) |
c906108c SS |
638 | { |
639 | struct unwind_table_entry *u; | |
640 | struct minimal_symbol *msym_us; | |
641 | ||
642 | u = find_unwind_entry (pc); | |
643 | if (!u) | |
644 | return 0; | |
645 | ||
646 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
647 | its frame isn't a pure interrupt frame. Deal with this. */ | |
648 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
649 | ||
d7bd68ca AC |
650 | return (u->HP_UX_interrupt_marker |
651 | && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))); | |
c906108c SS |
652 | } |
653 | ||
654 | /* Called when no unwind descriptor was found for PC. Returns 1 if it | |
104c1213 JM |
655 | appears that PC is in a linker stub. |
656 | ||
657 | ?!? Need to handle stubs which appear in PA64 code. */ | |
c906108c SS |
658 | |
659 | static int | |
fba45db2 | 660 | pc_in_linker_stub (CORE_ADDR pc) |
c906108c SS |
661 | { |
662 | int found_magic_instruction = 0; | |
663 | int i; | |
664 | char buf[4]; | |
665 | ||
666 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
667 | if (target_read_memory (pc, buf, 4) != 0) | |
668 | return 0; | |
669 | ||
670 | /* We are looking for something like | |
671 | ||
672 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
673 | ; before calling the "call stub" | |
674 | ldw -18(sp),rp | |
675 | ||
676 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
677 | mtsp r1,sp ; Move it into space register 0 | |
678 | be,n 0(sr0),rp) ; back to your regularly scheduled program */ | |
679 | ||
680 | /* Maximum known linker stub size is 4 instructions. Search forward | |
681 | from the given PC, then backward. */ | |
682 | for (i = 0; i < 4; i++) | |
683 | { | |
684 | /* If we hit something with an unwind, stop searching this direction. */ | |
685 | ||
686 | if (find_unwind_entry (pc + i * 4) != 0) | |
687 | break; | |
688 | ||
689 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 690 | return from a cross-space function call. */ |
c906108c SS |
691 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) |
692 | { | |
693 | found_magic_instruction = 1; | |
694 | break; | |
695 | } | |
696 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 697 | here. */ |
c906108c SS |
698 | } |
699 | ||
700 | if (found_magic_instruction != 0) | |
701 | return 1; | |
702 | ||
703 | /* Now look backward. */ | |
704 | for (i = 0; i < 4; i++) | |
705 | { | |
706 | /* If we hit something with an unwind, stop searching this direction. */ | |
707 | ||
708 | if (find_unwind_entry (pc - i * 4) != 0) | |
709 | break; | |
710 | ||
711 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 712 | return from a cross-space function call. */ |
c906108c SS |
713 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) |
714 | { | |
715 | found_magic_instruction = 1; | |
716 | break; | |
717 | } | |
718 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 719 | here. */ |
c906108c SS |
720 | } |
721 | return found_magic_instruction; | |
722 | } | |
723 | ||
724 | static int | |
fba45db2 | 725 | find_return_regnum (CORE_ADDR pc) |
c906108c SS |
726 | { |
727 | struct unwind_table_entry *u; | |
728 | ||
729 | u = find_unwind_entry (pc); | |
730 | ||
731 | if (!u) | |
732 | return RP_REGNUM; | |
733 | ||
734 | if (u->Millicode) | |
735 | return 31; | |
736 | ||
737 | return RP_REGNUM; | |
738 | } | |
739 | ||
740 | /* Return size of frame, or -1 if we should use a frame pointer. */ | |
741 | static int | |
fba45db2 | 742 | find_proc_framesize (CORE_ADDR pc) |
c906108c SS |
743 | { |
744 | struct unwind_table_entry *u; | |
745 | struct minimal_symbol *msym_us; | |
746 | ||
747 | /* This may indicate a bug in our callers... */ | |
c5aa993b | 748 | if (pc == (CORE_ADDR) 0) |
c906108c | 749 | return -1; |
c5aa993b | 750 | |
c906108c SS |
751 | u = find_unwind_entry (pc); |
752 | ||
753 | if (!u) | |
754 | { | |
755 | if (pc_in_linker_stub (pc)) | |
756 | /* Linker stubs have a zero size frame. */ | |
757 | return 0; | |
758 | else | |
759 | return -1; | |
760 | } | |
761 | ||
762 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
763 | ||
764 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
765 | then we have a frame pointer. Use it. */ | |
3fa41cdb JL |
766 | if (u->Save_SP |
767 | && !pc_in_interrupt_handler (pc) | |
768 | && msym_us | |
d7bd68ca | 769 | && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) |
c906108c SS |
770 | return -1; |
771 | ||
772 | return u->Total_frame_size << 3; | |
773 | } | |
774 | ||
775 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ | |
a14ed312 | 776 | static int rp_saved (CORE_ADDR); |
c906108c SS |
777 | |
778 | static int | |
fba45db2 | 779 | rp_saved (CORE_ADDR pc) |
c906108c SS |
780 | { |
781 | struct unwind_table_entry *u; | |
782 | ||
783 | /* A function at, and thus a return PC from, address 0? Not in HP-UX! */ | |
784 | if (pc == (CORE_ADDR) 0) | |
785 | return 0; | |
786 | ||
787 | u = find_unwind_entry (pc); | |
788 | ||
789 | if (!u) | |
790 | { | |
791 | if (pc_in_linker_stub (pc)) | |
792 | /* This is the so-called RP'. */ | |
793 | return -24; | |
794 | else | |
795 | return 0; | |
796 | } | |
797 | ||
798 | if (u->Save_RP) | |
53a5351d | 799 | return (TARGET_PTR_BIT == 64 ? -16 : -20); |
c906108c SS |
800 | else if (u->stub_unwind.stub_type != 0) |
801 | { | |
802 | switch (u->stub_unwind.stub_type) | |
803 | { | |
804 | case EXPORT: | |
805 | case IMPORT: | |
806 | return -24; | |
807 | case PARAMETER_RELOCATION: | |
808 | return -8; | |
809 | default: | |
810 | return 0; | |
811 | } | |
812 | } | |
813 | else | |
814 | return 0; | |
815 | } | |
816 | \f | |
817 | int | |
fba45db2 | 818 | frameless_function_invocation (struct frame_info *frame) |
c906108c SS |
819 | { |
820 | struct unwind_table_entry *u; | |
821 | ||
822 | u = find_unwind_entry (frame->pc); | |
823 | ||
824 | if (u == 0) | |
825 | return 0; | |
826 | ||
827 | return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0); | |
828 | } | |
829 | ||
d709c020 JB |
830 | /* Immediately after a function call, return the saved pc. |
831 | Can't go through the frames for this because on some machines | |
832 | the new frame is not set up until the new function executes | |
833 | some instructions. */ | |
834 | ||
c906108c | 835 | CORE_ADDR |
fba45db2 | 836 | saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
837 | { |
838 | int ret_regnum; | |
839 | CORE_ADDR pc; | |
840 | struct unwind_table_entry *u; | |
841 | ||
842 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
843 | pc = read_register (ret_regnum) & ~0x3; | |
c5aa993b | 844 | |
c906108c SS |
845 | /* If PC is in a linker stub, then we need to dig the address |
846 | the stub will return to out of the stack. */ | |
847 | u = find_unwind_entry (pc); | |
848 | if (u && u->stub_unwind.stub_type != 0) | |
849 | return FRAME_SAVED_PC (frame); | |
850 | else | |
851 | return pc; | |
852 | } | |
853 | \f | |
854 | CORE_ADDR | |
fba45db2 | 855 | hppa_frame_saved_pc (struct frame_info *frame) |
c906108c SS |
856 | { |
857 | CORE_ADDR pc = get_frame_pc (frame); | |
858 | struct unwind_table_entry *u; | |
859 | CORE_ADDR old_pc; | |
c5aa993b JM |
860 | int spun_around_loop = 0; |
861 | int rp_offset = 0; | |
c906108c SS |
862 | |
863 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner | |
864 | at the base of the frame in an interrupt handler. Registers within | |
865 | are saved in the exact same order as GDB numbers registers. How | |
866 | convienent. */ | |
867 | if (pc_in_interrupt_handler (pc)) | |
53a5351d JM |
868 | return read_memory_integer (frame->frame + PC_REGNUM * 4, |
869 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c | 870 | |
104c1213 JM |
871 | if ((frame->pc >= frame->frame |
872 | && frame->pc <= (frame->frame | |
873 | /* A call dummy is sized in words, but it is | |
874 | actually a series of instructions. Account | |
875 | for that scaling factor. */ | |
876 | + ((REGISTER_SIZE / INSTRUCTION_SIZE) | |
877 | * CALL_DUMMY_LENGTH) | |
878 | /* Similarly we have to account for 64bit | |
879 | wide register saves. */ | |
880 | + (32 * REGISTER_SIZE) | |
881 | /* We always consider FP regs 8 bytes long. */ | |
882 | + (NUM_REGS - FP0_REGNUM) * 8 | |
883 | /* Similarly we have to account for 64bit | |
884 | wide register saves. */ | |
885 | + (6 * REGISTER_SIZE)))) | |
886 | { | |
887 | return read_memory_integer ((frame->frame | |
888 | + (TARGET_PTR_BIT == 64 ? -16 : -20)), | |
889 | TARGET_PTR_BIT / 8) & ~0x3; | |
890 | } | |
891 | ||
c906108c SS |
892 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP |
893 | /* Deal with signal handler caller frames too. */ | |
894 | if (frame->signal_handler_caller) | |
895 | { | |
896 | CORE_ADDR rp; | |
897 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
898 | return rp & ~0x3; | |
899 | } | |
900 | #endif | |
901 | ||
902 | if (frameless_function_invocation (frame)) | |
903 | { | |
904 | int ret_regnum; | |
905 | ||
906 | ret_regnum = find_return_regnum (pc); | |
907 | ||
908 | /* If the next frame is an interrupt frame or a signal | |
c5aa993b JM |
909 | handler caller, then we need to look in the saved |
910 | register area to get the return pointer (the values | |
911 | in the registers may not correspond to anything useful). */ | |
912 | if (frame->next | |
c906108c SS |
913 | && (frame->next->signal_handler_caller |
914 | || pc_in_interrupt_handler (frame->next->pc))) | |
915 | { | |
916 | struct frame_saved_regs saved_regs; | |
917 | ||
918 | get_frame_saved_regs (frame->next, &saved_regs); | |
53a5351d JM |
919 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], |
920 | TARGET_PTR_BIT / 8) & 0x2) | |
c906108c | 921 | { |
53a5351d JM |
922 | pc = read_memory_integer (saved_regs.regs[31], |
923 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
924 | |
925 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
926 | with a return pointer in %rp and the kernel call with |
927 | a return pointer in %r31. We return the %rp variant | |
928 | if %r31 is the same as frame->pc. */ | |
c906108c | 929 | if (pc == frame->pc) |
53a5351d JM |
930 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], |
931 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
932 | } |
933 | else | |
53a5351d JM |
934 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], |
935 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
936 | } |
937 | else | |
938 | pc = read_register (ret_regnum) & ~0x3; | |
939 | } | |
940 | else | |
941 | { | |
942 | spun_around_loop = 0; | |
c5aa993b | 943 | old_pc = pc; |
c906108c | 944 | |
c5aa993b | 945 | restart: |
c906108c SS |
946 | rp_offset = rp_saved (pc); |
947 | ||
948 | /* Similar to code in frameless function case. If the next | |
c5aa993b JM |
949 | frame is a signal or interrupt handler, then dig the right |
950 | information out of the saved register info. */ | |
c906108c SS |
951 | if (rp_offset == 0 |
952 | && frame->next | |
953 | && (frame->next->signal_handler_caller | |
954 | || pc_in_interrupt_handler (frame->next->pc))) | |
955 | { | |
956 | struct frame_saved_regs saved_regs; | |
957 | ||
958 | get_frame_saved_regs (frame->next, &saved_regs); | |
53a5351d JM |
959 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], |
960 | TARGET_PTR_BIT / 8) & 0x2) | |
c906108c | 961 | { |
53a5351d JM |
962 | pc = read_memory_integer (saved_regs.regs[31], |
963 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
964 | |
965 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
966 | with a return pointer in %rp and the kernel call with |
967 | a return pointer in %r31. We return the %rp variant | |
968 | if %r31 is the same as frame->pc. */ | |
c906108c | 969 | if (pc == frame->pc) |
53a5351d JM |
970 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], |
971 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
972 | } |
973 | else | |
53a5351d JM |
974 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], |
975 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
976 | } |
977 | else if (rp_offset == 0) | |
c5aa993b JM |
978 | { |
979 | old_pc = pc; | |
980 | pc = read_register (RP_REGNUM) & ~0x3; | |
981 | } | |
c906108c | 982 | else |
c5aa993b JM |
983 | { |
984 | old_pc = pc; | |
53a5351d JM |
985 | pc = read_memory_integer (frame->frame + rp_offset, |
986 | TARGET_PTR_BIT / 8) & ~0x3; | |
c5aa993b | 987 | } |
c906108c SS |
988 | } |
989 | ||
990 | /* If PC is inside a linker stub, then dig out the address the stub | |
991 | will return to. | |
992 | ||
993 | Don't do this for long branch stubs. Why? For some unknown reason | |
994 | _start is marked as a long branch stub in hpux10. */ | |
995 | u = find_unwind_entry (pc); | |
996 | if (u && u->stub_unwind.stub_type != 0 | |
997 | && u->stub_unwind.stub_type != LONG_BRANCH) | |
998 | { | |
999 | unsigned int insn; | |
1000 | ||
1001 | /* If this is a dynamic executable, and we're in a signal handler, | |
c5aa993b JM |
1002 | then the call chain will eventually point us into the stub for |
1003 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
1004 | to the real sigreturn rather than the code after the real branch!. | |
c906108c | 1005 | |
c5aa993b JM |
1006 | Else, try to dig the address the stub will return to in the normal |
1007 | fashion. */ | |
c906108c SS |
1008 | insn = read_memory_integer (pc, 4); |
1009 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1010 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
1011 | else | |
1012 | { | |
c5aa993b JM |
1013 | if (old_pc == pc) |
1014 | spun_around_loop++; | |
1015 | ||
1016 | if (spun_around_loop > 1) | |
1017 | { | |
1018 | /* We're just about to go around the loop again with | |
1019 | no more hope of success. Die. */ | |
1020 | error ("Unable to find return pc for this frame"); | |
1021 | } | |
1022 | else | |
1023 | goto restart; | |
c906108c SS |
1024 | } |
1025 | } | |
1026 | ||
1027 | return pc; | |
1028 | } | |
1029 | \f | |
1030 | /* We need to correct the PC and the FP for the outermost frame when we are | |
1031 | in a system call. */ | |
1032 | ||
1033 | void | |
fba45db2 | 1034 | init_extra_frame_info (int fromleaf, struct frame_info *frame) |
c906108c SS |
1035 | { |
1036 | int flags; | |
1037 | int framesize; | |
1038 | ||
1039 | if (frame->next && !fromleaf) | |
1040 | return; | |
1041 | ||
1042 | /* If the next frame represents a frameless function invocation | |
1043 | then we have to do some adjustments that are normally done by | |
1044 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
1045 | if (fromleaf) | |
1046 | { | |
1047 | /* Find the framesize of *this* frame without peeking at the PC | |
c5aa993b | 1048 | in the current frame structure (it isn't set yet). */ |
c906108c SS |
1049 | framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); |
1050 | ||
1051 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
c5aa993b JM |
1052 | use it, else subtract the size of this frame from the current |
1053 | frame. (we always want frame->frame to point at the lowest address | |
1054 | in the frame). */ | |
c906108c SS |
1055 | if (framesize == -1) |
1056 | frame->frame = TARGET_READ_FP (); | |
1057 | else | |
1058 | frame->frame -= framesize; | |
1059 | return; | |
1060 | } | |
1061 | ||
1062 | flags = read_register (FLAGS_REGNUM); | |
c5aa993b | 1063 | if (flags & 2) /* In system call? */ |
c906108c SS |
1064 | frame->pc = read_register (31) & ~0x3; |
1065 | ||
1066 | /* The outermost frame is always derived from PC-framesize | |
1067 | ||
1068 | One might think frameless innermost frames should have | |
1069 | a frame->frame that is the same as the parent's frame->frame. | |
1070 | That is wrong; frame->frame in that case should be the *high* | |
1071 | address of the parent's frame. It's complicated as hell to | |
1072 | explain, but the parent *always* creates some stack space for | |
1073 | the child. So the child actually does have a frame of some | |
1074 | sorts, and its base is the high address in its parent's frame. */ | |
c5aa993b | 1075 | framesize = find_proc_framesize (frame->pc); |
c906108c SS |
1076 | if (framesize == -1) |
1077 | frame->frame = TARGET_READ_FP (); | |
1078 | else | |
1079 | frame->frame = read_register (SP_REGNUM) - framesize; | |
1080 | } | |
1081 | \f | |
1082 | /* Given a GDB frame, determine the address of the calling function's frame. | |
1083 | This will be used to create a new GDB frame struct, and then | |
1084 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
1085 | ||
1086 | This may involve searching through prologues for several functions | |
1087 | at boundaries where GCC calls HP C code, or where code which has | |
1088 | a frame pointer calls code without a frame pointer. */ | |
1089 | ||
1090 | CORE_ADDR | |
fba45db2 | 1091 | frame_chain (struct frame_info *frame) |
c906108c SS |
1092 | { |
1093 | int my_framesize, caller_framesize; | |
1094 | struct unwind_table_entry *u; | |
1095 | CORE_ADDR frame_base; | |
1096 | struct frame_info *tmp_frame; | |
1097 | ||
c2c6d25f JM |
1098 | /* A frame in the current frame list, or zero. */ |
1099 | struct frame_info *saved_regs_frame = 0; | |
1100 | /* Where the registers were saved in saved_regs_frame. | |
1101 | If saved_regs_frame is zero, this is garbage. */ | |
1102 | struct frame_saved_regs saved_regs; | |
1103 | ||
c5aa993b | 1104 | CORE_ADDR caller_pc; |
c906108c SS |
1105 | |
1106 | struct minimal_symbol *min_frame_symbol; | |
c5aa993b JM |
1107 | struct symbol *frame_symbol; |
1108 | char *frame_symbol_name; | |
c906108c SS |
1109 | |
1110 | /* If this is a threaded application, and we see the | |
1111 | routine "__pthread_exit", treat it as the stack root | |
1112 | for this thread. */ | |
c5aa993b JM |
1113 | min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc); |
1114 | frame_symbol = find_pc_function (frame->pc); | |
c906108c | 1115 | |
c5aa993b | 1116 | if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ ) |
c906108c | 1117 | { |
c5aa993b JM |
1118 | /* The test above for "no user function name" would defend |
1119 | against the slim likelihood that a user might define a | |
1120 | routine named "__pthread_exit" and then try to debug it. | |
1121 | ||
1122 | If it weren't commented out, and you tried to debug the | |
1123 | pthread library itself, you'd get errors. | |
1124 | ||
1125 | So for today, we don't make that check. */ | |
1126 | frame_symbol_name = SYMBOL_NAME (min_frame_symbol); | |
1127 | if (frame_symbol_name != 0) | |
1128 | { | |
1129 | if (0 == strncmp (frame_symbol_name, | |
1130 | THREAD_INITIAL_FRAME_SYMBOL, | |
1131 | THREAD_INITIAL_FRAME_SYM_LEN)) | |
1132 | { | |
1133 | /* Pretend we've reached the bottom of the stack. */ | |
1134 | return (CORE_ADDR) 0; | |
1135 | } | |
1136 | } | |
1137 | } /* End of hacky code for threads. */ | |
1138 | ||
c906108c SS |
1139 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These |
1140 | are easy; at *sp we have a full save state strucutre which we can | |
1141 | pull the old stack pointer from. Also see frame_saved_pc for | |
1142 | code to dig a saved PC out of the save state structure. */ | |
1143 | if (pc_in_interrupt_handler (frame->pc)) | |
53a5351d JM |
1144 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, |
1145 | TARGET_PTR_BIT / 8); | |
c906108c SS |
1146 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP |
1147 | else if (frame->signal_handler_caller) | |
1148 | { | |
1149 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
1150 | } | |
1151 | #endif | |
1152 | else | |
1153 | frame_base = frame->frame; | |
1154 | ||
1155 | /* Get frame sizes for the current frame and the frame of the | |
1156 | caller. */ | |
1157 | my_framesize = find_proc_framesize (frame->pc); | |
c5aa993b | 1158 | caller_pc = FRAME_SAVED_PC (frame); |
c906108c SS |
1159 | |
1160 | /* If we can't determine the caller's PC, then it's not likely we can | |
1161 | really determine anything meaningful about its frame. We'll consider | |
1162 | this to be stack bottom. */ | |
1163 | if (caller_pc == (CORE_ADDR) 0) | |
1164 | return (CORE_ADDR) 0; | |
1165 | ||
c5aa993b | 1166 | caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame)); |
c906108c SS |
1167 | |
1168 | /* If caller does not have a frame pointer, then its frame | |
1169 | can be found at current_frame - caller_framesize. */ | |
1170 | if (caller_framesize != -1) | |
1171 | { | |
1172 | return frame_base - caller_framesize; | |
1173 | } | |
1174 | /* Both caller and callee have frame pointers and are GCC compiled | |
1175 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
1176 | The previous frame pointer is found at the top of the current frame. */ | |
1177 | if (caller_framesize == -1 && my_framesize == -1) | |
1178 | { | |
53a5351d | 1179 | return read_memory_integer (frame_base, TARGET_PTR_BIT / 8); |
c906108c SS |
1180 | } |
1181 | /* Caller has a frame pointer, but callee does not. This is a little | |
1182 | more difficult as GCC and HP C lay out locals and callee register save | |
1183 | areas very differently. | |
1184 | ||
1185 | The previous frame pointer could be in a register, or in one of | |
1186 | several areas on the stack. | |
1187 | ||
1188 | Walk from the current frame to the innermost frame examining | |
1189 | unwind descriptors to determine if %r3 ever gets saved into the | |
1190 | stack. If so return whatever value got saved into the stack. | |
1191 | If it was never saved in the stack, then the value in %r3 is still | |
1192 | valid, so use it. | |
1193 | ||
1194 | We use information from unwind descriptors to determine if %r3 | |
1195 | is saved into the stack (Entry_GR field has this information). */ | |
1196 | ||
c2c6d25f | 1197 | for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next) |
c906108c SS |
1198 | { |
1199 | u = find_unwind_entry (tmp_frame->pc); | |
1200 | ||
1201 | if (!u) | |
1202 | { | |
1203 | /* We could find this information by examining prologues. I don't | |
1204 | think anyone has actually written any tools (not even "strip") | |
1205 | which leave them out of an executable, so maybe this is a moot | |
1206 | point. */ | |
c5aa993b JM |
1207 | /* ??rehrauer: Actually, it's quite possible to stepi your way into |
1208 | code that doesn't have unwind entries. For example, stepping into | |
1209 | the dynamic linker will give you a PC that has none. Thus, I've | |
1210 | disabled this warning. */ | |
c906108c SS |
1211 | #if 0 |
1212 | warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc); | |
1213 | #endif | |
1214 | return (CORE_ADDR) 0; | |
1215 | } | |
1216 | ||
c2c6d25f | 1217 | if (u->Save_SP |
c906108c SS |
1218 | || tmp_frame->signal_handler_caller |
1219 | || pc_in_interrupt_handler (tmp_frame->pc)) | |
1220 | break; | |
c2c6d25f JM |
1221 | |
1222 | /* Entry_GR specifies the number of callee-saved general registers | |
1223 | saved in the stack. It starts at %r3, so %r3 would be 1. */ | |
1224 | if (u->Entry_GR >= 1) | |
1225 | { | |
1226 | /* The unwind entry claims that r3 is saved here. However, | |
1227 | in optimized code, GCC often doesn't actually save r3. | |
1228 | We'll discover this if we look at the prologue. */ | |
1229 | get_frame_saved_regs (tmp_frame, &saved_regs); | |
1230 | saved_regs_frame = tmp_frame; | |
1231 | ||
1232 | /* If we have an address for r3, that's good. */ | |
1233 | if (saved_regs.regs[FP_REGNUM]) | |
1234 | break; | |
1235 | } | |
c906108c SS |
1236 | } |
1237 | ||
1238 | if (tmp_frame) | |
1239 | { | |
1240 | /* We may have walked down the chain into a function with a frame | |
c5aa993b | 1241 | pointer. */ |
c906108c SS |
1242 | if (u->Save_SP |
1243 | && !tmp_frame->signal_handler_caller | |
1244 | && !pc_in_interrupt_handler (tmp_frame->pc)) | |
1245 | { | |
53a5351d | 1246 | return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8); |
c906108c SS |
1247 | } |
1248 | /* %r3 was saved somewhere in the stack. Dig it out. */ | |
c5aa993b | 1249 | else |
c906108c | 1250 | { |
c906108c SS |
1251 | /* Sick. |
1252 | ||
1253 | For optimization purposes many kernels don't have the | |
1254 | callee saved registers into the save_state structure upon | |
1255 | entry into the kernel for a syscall; the optimization | |
1256 | is usually turned off if the process is being traced so | |
1257 | that the debugger can get full register state for the | |
1258 | process. | |
c5aa993b | 1259 | |
c906108c SS |
1260 | This scheme works well except for two cases: |
1261 | ||
c5aa993b JM |
1262 | * Attaching to a process when the process is in the |
1263 | kernel performing a system call (debugger can't get | |
1264 | full register state for the inferior process since | |
1265 | the process wasn't being traced when it entered the | |
1266 | system call). | |
c906108c | 1267 | |
c5aa993b JM |
1268 | * Register state is not complete if the system call |
1269 | causes the process to core dump. | |
c906108c SS |
1270 | |
1271 | ||
1272 | The following heinous code is an attempt to deal with | |
1273 | the lack of register state in a core dump. It will | |
1274 | fail miserably if the function which performs the | |
1275 | system call has a variable sized stack frame. */ | |
1276 | ||
c2c6d25f JM |
1277 | if (tmp_frame != saved_regs_frame) |
1278 | get_frame_saved_regs (tmp_frame, &saved_regs); | |
c906108c SS |
1279 | |
1280 | /* Abominable hack. */ | |
1281 | if (current_target.to_has_execution == 0 | |
1282 | && ((saved_regs.regs[FLAGS_REGNUM] | |
53a5351d JM |
1283 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], |
1284 | TARGET_PTR_BIT / 8) | |
c906108c SS |
1285 | & 0x2)) |
1286 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
1287 | && read_register (FLAGS_REGNUM) & 0x2))) | |
1288 | { | |
1289 | u = find_unwind_entry (FRAME_SAVED_PC (frame)); | |
1290 | if (!u) | |
1291 | { | |
53a5351d JM |
1292 | return read_memory_integer (saved_regs.regs[FP_REGNUM], |
1293 | TARGET_PTR_BIT / 8); | |
c906108c SS |
1294 | } |
1295 | else | |
1296 | { | |
1297 | return frame_base - (u->Total_frame_size << 3); | |
1298 | } | |
1299 | } | |
c5aa993b | 1300 | |
53a5351d JM |
1301 | return read_memory_integer (saved_regs.regs[FP_REGNUM], |
1302 | TARGET_PTR_BIT / 8); | |
c906108c SS |
1303 | } |
1304 | } | |
1305 | else | |
1306 | { | |
c906108c SS |
1307 | /* Get the innermost frame. */ |
1308 | tmp_frame = frame; | |
1309 | while (tmp_frame->next != NULL) | |
1310 | tmp_frame = tmp_frame->next; | |
1311 | ||
c2c6d25f JM |
1312 | if (tmp_frame != saved_regs_frame) |
1313 | get_frame_saved_regs (tmp_frame, &saved_regs); | |
1314 | ||
c906108c SS |
1315 | /* Abominable hack. See above. */ |
1316 | if (current_target.to_has_execution == 0 | |
1317 | && ((saved_regs.regs[FLAGS_REGNUM] | |
53a5351d JM |
1318 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], |
1319 | TARGET_PTR_BIT / 8) | |
c906108c SS |
1320 | & 0x2)) |
1321 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
c5aa993b | 1322 | && read_register (FLAGS_REGNUM) & 0x2))) |
c906108c SS |
1323 | { |
1324 | u = find_unwind_entry (FRAME_SAVED_PC (frame)); | |
1325 | if (!u) | |
1326 | { | |
53a5351d JM |
1327 | return read_memory_integer (saved_regs.regs[FP_REGNUM], |
1328 | TARGET_PTR_BIT / 8); | |
c906108c | 1329 | } |
c5aa993b JM |
1330 | else |
1331 | { | |
1332 | return frame_base - (u->Total_frame_size << 3); | |
1333 | } | |
c906108c | 1334 | } |
c5aa993b | 1335 | |
c906108c | 1336 | /* The value in %r3 was never saved into the stack (thus %r3 still |
c5aa993b | 1337 | holds the value of the previous frame pointer). */ |
c906108c SS |
1338 | return TARGET_READ_FP (); |
1339 | } | |
1340 | } | |
c906108c | 1341 | \f |
c5aa993b | 1342 | |
c906108c SS |
1343 | /* To see if a frame chain is valid, see if the caller looks like it |
1344 | was compiled with gcc. */ | |
1345 | ||
1346 | int | |
fba45db2 | 1347 | hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
1348 | { |
1349 | struct minimal_symbol *msym_us; | |
1350 | struct minimal_symbol *msym_start; | |
1351 | struct unwind_table_entry *u, *next_u = NULL; | |
1352 | struct frame_info *next; | |
1353 | ||
1354 | if (!chain) | |
1355 | return 0; | |
1356 | ||
1357 | u = find_unwind_entry (thisframe->pc); | |
1358 | ||
1359 | if (u == NULL) | |
1360 | return 1; | |
1361 | ||
1362 | /* We can't just check that the same of msym_us is "_start", because | |
1363 | someone idiotically decided that they were going to make a Ltext_end | |
1364 | symbol with the same address. This Ltext_end symbol is totally | |
1365 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1366 | which is (legitimately, since it is in the user's namespace) | |
1367 | named Ltext_end, so we can't just ignore it. */ | |
1368 | msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); | |
1369 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); | |
1370 | if (msym_us | |
1371 | && msym_start | |
1372 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1373 | return 0; | |
1374 | ||
1375 | /* Grrrr. Some new idiot decided that they don't want _start for the | |
1376 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1377 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1378 | if (msym_us | |
1379 | && msym_start | |
1380 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1381 | return 0; | |
1382 | ||
1383 | next = get_next_frame (thisframe); | |
1384 | if (next) | |
1385 | next_u = find_unwind_entry (next->pc); | |
1386 | ||
1387 | /* If this frame does not save SP, has no stack, isn't a stub, | |
1388 | and doesn't "call" an interrupt routine or signal handler caller, | |
1389 | then its not valid. */ | |
1390 | if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0 | |
1391 | || (thisframe->next && thisframe->next->signal_handler_caller) | |
1392 | || (next_u && next_u->HP_UX_interrupt_marker)) | |
1393 | return 1; | |
1394 | ||
1395 | if (pc_in_linker_stub (thisframe->pc)) | |
1396 | return 1; | |
1397 | ||
1398 | return 0; | |
1399 | } | |
1400 | ||
1401 | /* | |
1402 | These functions deal with saving and restoring register state | |
1403 | around a function call in the inferior. They keep the stack | |
1404 | double-word aligned; eventually, on an hp700, the stack will have | |
1405 | to be aligned to a 64-byte boundary. */ | |
1406 | ||
1407 | void | |
fba45db2 | 1408 | push_dummy_frame (struct inferior_status *inf_status) |
c906108c SS |
1409 | { |
1410 | CORE_ADDR sp, pc, pcspace; | |
1411 | register int regnum; | |
53a5351d | 1412 | CORE_ADDR int_buffer; |
c906108c SS |
1413 | double freg_buffer; |
1414 | ||
1415 | /* Oh, what a hack. If we're trying to perform an inferior call | |
1416 | while the inferior is asleep, we have to make sure to clear | |
1417 | the "in system call" bit in the flag register (the call will | |
1418 | start after the syscall returns, so we're no longer in the system | |
1419 | call!) This state is kept in "inf_status", change it there. | |
1420 | ||
1421 | We also need a number of horrid hacks to deal with lossage in the | |
1422 | PC queue registers (apparently they're not valid when the in syscall | |
1423 | bit is set). */ | |
39f77062 | 1424 | pc = target_read_pc (inferior_ptid); |
c906108c SS |
1425 | int_buffer = read_register (FLAGS_REGNUM); |
1426 | if (int_buffer & 0x2) | |
1427 | { | |
1428 | unsigned int sid; | |
1429 | int_buffer &= ~0x2; | |
7a292a7a SS |
1430 | write_inferior_status_register (inf_status, 0, int_buffer); |
1431 | write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0); | |
1432 | write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4); | |
c906108c SS |
1433 | sid = (pc >> 30) & 0x3; |
1434 | if (sid == 0) | |
1435 | pcspace = read_register (SR4_REGNUM); | |
1436 | else | |
1437 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
7a292a7a SS |
1438 | write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace); |
1439 | write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace); | |
c906108c SS |
1440 | } |
1441 | else | |
1442 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1443 | ||
1444 | /* Space for "arguments"; the RP goes in here. */ | |
1445 | sp = read_register (SP_REGNUM) + 48; | |
1446 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
53a5351d JM |
1447 | |
1448 | /* The 32bit and 64bit ABIs save the return pointer into different | |
1449 | stack slots. */ | |
1450 | if (REGISTER_SIZE == 8) | |
1451 | write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE); | |
1452 | else | |
1453 | write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE); | |
c906108c SS |
1454 | |
1455 | int_buffer = TARGET_READ_FP (); | |
53a5351d | 1456 | write_memory (sp, (char *) &int_buffer, REGISTER_SIZE); |
c906108c SS |
1457 | |
1458 | write_register (FP_REGNUM, sp); | |
1459 | ||
53a5351d | 1460 | sp += 2 * REGISTER_SIZE; |
c906108c SS |
1461 | |
1462 | for (regnum = 1; regnum < 32; regnum++) | |
1463 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1464 | sp = push_word (sp, read_register (regnum)); | |
1465 | ||
53a5351d JM |
1466 | /* This is not necessary for the 64bit ABI. In fact it is dangerous. */ |
1467 | if (REGISTER_SIZE != 8) | |
1468 | sp += 4; | |
c906108c SS |
1469 | |
1470 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1471 | { | |
c5aa993b JM |
1472 | read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8); |
1473 | sp = push_bytes (sp, (char *) &freg_buffer, 8); | |
c906108c SS |
1474 | } |
1475 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1476 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1477 | sp = push_word (sp, pc); | |
1478 | sp = push_word (sp, pcspace); | |
1479 | sp = push_word (sp, pc + 4); | |
1480 | sp = push_word (sp, pcspace); | |
1481 | write_register (SP_REGNUM, sp); | |
1482 | } | |
1483 | ||
1484 | static void | |
fba45db2 KB |
1485 | find_dummy_frame_regs (struct frame_info *frame, |
1486 | struct frame_saved_regs *frame_saved_regs) | |
c906108c SS |
1487 | { |
1488 | CORE_ADDR fp = frame->frame; | |
1489 | int i; | |
1490 | ||
53a5351d JM |
1491 | /* The 32bit and 64bit ABIs save RP into different locations. */ |
1492 | if (REGISTER_SIZE == 8) | |
1493 | frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3; | |
1494 | else | |
1495 | frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3; | |
1496 | ||
c906108c | 1497 | frame_saved_regs->regs[FP_REGNUM] = fp; |
c906108c | 1498 | |
53a5351d JM |
1499 | frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE); |
1500 | ||
1501 | for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++) | |
c906108c SS |
1502 | { |
1503 | if (i != FP_REGNUM) | |
1504 | { | |
1505 | frame_saved_regs->regs[i] = fp; | |
53a5351d | 1506 | fp += REGISTER_SIZE; |
c906108c SS |
1507 | } |
1508 | } | |
1509 | ||
53a5351d JM |
1510 | /* This is not necessary or desirable for the 64bit ABI. */ |
1511 | if (REGISTER_SIZE != 8) | |
1512 | fp += 4; | |
1513 | ||
c906108c SS |
1514 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) |
1515 | frame_saved_regs->regs[i] = fp; | |
1516 | ||
1517 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
53a5351d JM |
1518 | frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE; |
1519 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE; | |
1520 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE; | |
1521 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE; | |
1522 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE; | |
c906108c SS |
1523 | } |
1524 | ||
1525 | void | |
fba45db2 | 1526 | hppa_pop_frame (void) |
c906108c SS |
1527 | { |
1528 | register struct frame_info *frame = get_current_frame (); | |
1529 | register CORE_ADDR fp, npc, target_pc; | |
1530 | register int regnum; | |
1531 | struct frame_saved_regs fsr; | |
1532 | double freg_buffer; | |
1533 | ||
1534 | fp = FRAME_FP (frame); | |
1535 | get_frame_saved_regs (frame, &fsr); | |
1536 | ||
1537 | #ifndef NO_PC_SPACE_QUEUE_RESTORE | |
c5aa993b | 1538 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
c906108c SS |
1539 | restore_pc_queue (&fsr); |
1540 | #endif | |
1541 | ||
1542 | for (regnum = 31; regnum > 0; regnum--) | |
1543 | if (fsr.regs[regnum]) | |
53a5351d JM |
1544 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
1545 | REGISTER_SIZE)); | |
c906108c | 1546 | |
c5aa993b | 1547 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--) |
c906108c SS |
1548 | if (fsr.regs[regnum]) |
1549 | { | |
c5aa993b JM |
1550 | read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8); |
1551 | write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8); | |
c906108c SS |
1552 | } |
1553 | ||
1554 | if (fsr.regs[IPSW_REGNUM]) | |
1555 | write_register (IPSW_REGNUM, | |
53a5351d JM |
1556 | read_memory_integer (fsr.regs[IPSW_REGNUM], |
1557 | REGISTER_SIZE)); | |
c906108c SS |
1558 | |
1559 | if (fsr.regs[SAR_REGNUM]) | |
1560 | write_register (SAR_REGNUM, | |
53a5351d JM |
1561 | read_memory_integer (fsr.regs[SAR_REGNUM], |
1562 | REGISTER_SIZE)); | |
c906108c SS |
1563 | |
1564 | /* If the PC was explicitly saved, then just restore it. */ | |
1565 | if (fsr.regs[PCOQ_TAIL_REGNUM]) | |
1566 | { | |
53a5351d JM |
1567 | npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], |
1568 | REGISTER_SIZE); | |
c906108c SS |
1569 | write_register (PCOQ_TAIL_REGNUM, npc); |
1570 | } | |
1571 | /* Else use the value in %rp to set the new PC. */ | |
c5aa993b | 1572 | else |
c906108c SS |
1573 | { |
1574 | npc = read_register (RP_REGNUM); | |
1575 | write_pc (npc); | |
1576 | } | |
1577 | ||
53a5351d | 1578 | write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE)); |
c906108c | 1579 | |
c5aa993b | 1580 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ |
c906108c SS |
1581 | write_register (SP_REGNUM, fp - 48); |
1582 | else | |
1583 | write_register (SP_REGNUM, fp); | |
1584 | ||
1585 | /* The PC we just restored may be inside a return trampoline. If so | |
1586 | we want to restart the inferior and run it through the trampoline. | |
1587 | ||
1588 | Do this by setting a momentary breakpoint at the location the | |
1589 | trampoline returns to. | |
1590 | ||
1591 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
1592 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; | |
1593 | if (target_pc && !fsr.regs[IPSW_REGNUM]) | |
1594 | { | |
1595 | struct symtab_and_line sal; | |
1596 | struct breakpoint *breakpoint; | |
1597 | struct cleanup *old_chain; | |
1598 | ||
1599 | /* Set up our breakpoint. Set it to be silent as the MI code | |
c5aa993b | 1600 | for "return_command" will print the frame we returned to. */ |
c906108c SS |
1601 | sal = find_pc_line (target_pc, 0); |
1602 | sal.pc = target_pc; | |
1603 | breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish); | |
1604 | breakpoint->silent = 1; | |
1605 | ||
1606 | /* So we can clean things up. */ | |
4d6140d9 | 1607 | old_chain = make_cleanup_delete_breakpoint (breakpoint); |
c906108c SS |
1608 | |
1609 | /* Start up the inferior. */ | |
1610 | clear_proceed_status (); | |
1611 | proceed_to_finish = 1; | |
2acceee2 | 1612 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); |
c906108c SS |
1613 | |
1614 | /* Perform our cleanups. */ | |
1615 | do_cleanups (old_chain); | |
1616 | } | |
1617 | flush_cached_frames (); | |
1618 | } | |
1619 | ||
1620 | /* After returning to a dummy on the stack, restore the instruction | |
1621 | queue space registers. */ | |
1622 | ||
1623 | static int | |
fba45db2 | 1624 | restore_pc_queue (struct frame_saved_regs *fsr) |
c906108c SS |
1625 | { |
1626 | CORE_ADDR pc = read_pc (); | |
53a5351d JM |
1627 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], |
1628 | TARGET_PTR_BIT / 8); | |
c906108c SS |
1629 | struct target_waitstatus w; |
1630 | int insn_count; | |
1631 | ||
1632 | /* Advance past break instruction in the call dummy. */ | |
1633 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1634 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1635 | ||
1636 | /* HPUX doesn't let us set the space registers or the space | |
1637 | registers of the PC queue through ptrace. Boo, hiss. | |
1638 | Conveniently, the call dummy has this sequence of instructions | |
1639 | after the break: | |
c5aa993b JM |
1640 | mtsp r21, sr0 |
1641 | ble,n 0(sr0, r22) | |
1642 | ||
c906108c SS |
1643 | So, load up the registers and single step until we are in the |
1644 | right place. */ | |
1645 | ||
53a5351d JM |
1646 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], |
1647 | REGISTER_SIZE)); | |
c906108c SS |
1648 | write_register (22, new_pc); |
1649 | ||
1650 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1651 | { | |
1652 | /* FIXME: What if the inferior gets a signal right now? Want to | |
c5aa993b JM |
1653 | merge this into wait_for_inferior (as a special kind of |
1654 | watchpoint? By setting a breakpoint at the end? Is there | |
1655 | any other choice? Is there *any* way to do this stuff with | |
1656 | ptrace() or some equivalent?). */ | |
c906108c | 1657 | resume (1, 0); |
39f77062 | 1658 | target_wait (inferior_ptid, &w); |
c906108c SS |
1659 | |
1660 | if (w.kind == TARGET_WAITKIND_SIGNALLED) | |
c5aa993b JM |
1661 | { |
1662 | stop_signal = w.value.sig; | |
1663 | terminal_ours_for_output (); | |
1664 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", | |
c906108c SS |
1665 | target_signal_to_name (stop_signal), |
1666 | target_signal_to_string (stop_signal)); | |
c5aa993b JM |
1667 | gdb_flush (gdb_stdout); |
1668 | return 0; | |
1669 | } | |
c906108c SS |
1670 | } |
1671 | target_terminal_ours (); | |
1672 | target_fetch_registers (-1); | |
1673 | return 1; | |
1674 | } | |
1675 | ||
c2c6d25f JM |
1676 | |
1677 | #ifdef PA20W_CALLING_CONVENTIONS | |
1678 | ||
53a5351d JM |
1679 | /* This function pushes a stack frame with arguments as part of the |
1680 | inferior function calling mechanism. | |
c906108c | 1681 | |
c2c6d25f JM |
1682 | This is the version for the PA64, in which later arguments appear |
1683 | at higher addresses. (The stack always grows towards higher | |
1684 | addresses.) | |
c906108c | 1685 | |
53a5351d JM |
1686 | We simply allocate the appropriate amount of stack space and put |
1687 | arguments into their proper slots. The call dummy code will copy | |
1688 | arguments into registers as needed by the ABI. | |
c906108c | 1689 | |
c2c6d25f JM |
1690 | This ABI also requires that the caller provide an argument pointer |
1691 | to the callee, so we do that too. */ | |
53a5351d | 1692 | |
c906108c | 1693 | CORE_ADDR |
ea7c478f | 1694 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1695 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1696 | { |
1697 | /* array of arguments' offsets */ | |
c5aa993b | 1698 | int *offset = (int *) alloca (nargs * sizeof (int)); |
53a5351d JM |
1699 | |
1700 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1701 | word size */ | |
c5aa993b | 1702 | int *lengths = (int *) alloca (nargs * sizeof (int)); |
c906108c | 1703 | |
53a5351d JM |
1704 | /* The value of SP as it was passed into this function after |
1705 | aligning. */ | |
1706 | CORE_ADDR orig_sp = STACK_ALIGN (sp); | |
c906108c | 1707 | |
53a5351d JM |
1708 | /* The number of stack bytes occupied by the current argument. */ |
1709 | int bytes_reserved; | |
1710 | ||
1711 | /* The total number of bytes reserved for the arguments. */ | |
1712 | int cum_bytes_reserved = 0; | |
c906108c | 1713 | |
53a5351d JM |
1714 | /* Similarly, but aligned. */ |
1715 | int cum_bytes_aligned = 0; | |
1716 | int i; | |
c5aa993b | 1717 | |
53a5351d | 1718 | /* Iterate over each argument provided by the user. */ |
c906108c SS |
1719 | for (i = 0; i < nargs; i++) |
1720 | { | |
c2c6d25f JM |
1721 | struct type *arg_type = VALUE_TYPE (args[i]); |
1722 | ||
1723 | /* Integral scalar values smaller than a register are padded on | |
1724 | the left. We do this by promoting them to full-width, | |
1725 | although the ABI says to pad them with garbage. */ | |
1726 | if (is_integral_type (arg_type) | |
1727 | && TYPE_LENGTH (arg_type) < REGISTER_SIZE) | |
1728 | { | |
1729 | args[i] = value_cast ((TYPE_UNSIGNED (arg_type) | |
1730 | ? builtin_type_unsigned_long | |
1731 | : builtin_type_long), | |
1732 | args[i]); | |
1733 | arg_type = VALUE_TYPE (args[i]); | |
1734 | } | |
1735 | ||
1736 | lengths[i] = TYPE_LENGTH (arg_type); | |
c906108c | 1737 | |
53a5351d JM |
1738 | /* Align the size of the argument to the word size for this |
1739 | target. */ | |
1740 | bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE; | |
c906108c | 1741 | |
53a5351d JM |
1742 | offset[i] = cum_bytes_reserved; |
1743 | ||
c2c6d25f JM |
1744 | /* Aggregates larger than eight bytes (the only types larger |
1745 | than eight bytes we have) are aligned on a 16-byte boundary, | |
1746 | possibly padded on the right with garbage. This may leave an | |
1747 | empty word on the stack, and thus an unused register, as per | |
1748 | the ABI. */ | |
1749 | if (bytes_reserved > 8) | |
1750 | { | |
1751 | /* Round up the offset to a multiple of two slots. */ | |
1752 | int new_offset = ((offset[i] + 2*REGISTER_SIZE-1) | |
1753 | & -(2*REGISTER_SIZE)); | |
c906108c | 1754 | |
c2c6d25f JM |
1755 | /* Note the space we've wasted, if any. */ |
1756 | bytes_reserved += new_offset - offset[i]; | |
1757 | offset[i] = new_offset; | |
1758 | } | |
53a5351d | 1759 | |
c2c6d25f JM |
1760 | cum_bytes_reserved += bytes_reserved; |
1761 | } | |
1762 | ||
1763 | /* CUM_BYTES_RESERVED already accounts for all the arguments | |
1764 | passed by the user. However, the ABIs mandate minimum stack space | |
1765 | allocations for outgoing arguments. | |
1766 | ||
1767 | The ABIs also mandate minimum stack alignments which we must | |
1768 | preserve. */ | |
1769 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); | |
1770 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); | |
1771 | ||
1772 | /* Now write each of the args at the proper offset down the stack. */ | |
1773 | for (i = 0; i < nargs; i++) | |
1774 | write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
1775 | ||
1776 | /* If a structure has to be returned, set up register 28 to hold its | |
1777 | address */ | |
1778 | if (struct_return) | |
1779 | write_register (28, struct_addr); | |
1780 | ||
1781 | /* For the PA64 we must pass a pointer to the outgoing argument list. | |
1782 | The ABI mandates that the pointer should point to the first byte of | |
1783 | storage beyond the register flushback area. | |
1784 | ||
1785 | However, the call dummy expects the outgoing argument pointer to | |
1786 | be passed in register %r4. */ | |
1787 | write_register (4, orig_sp + REG_PARM_STACK_SPACE); | |
1788 | ||
1789 | /* ?!? This needs further work. We need to set up the global data | |
1790 | pointer for this procedure. This assumes the same global pointer | |
1791 | for every procedure. The call dummy expects the dp value to | |
1792 | be passed in register %r6. */ | |
1793 | write_register (6, read_register (27)); | |
1794 | ||
1795 | /* The stack will have 64 bytes of additional space for a frame marker. */ | |
1796 | return sp + 64; | |
1797 | } | |
1798 | ||
1799 | #else | |
1800 | ||
1801 | /* This function pushes a stack frame with arguments as part of the | |
1802 | inferior function calling mechanism. | |
1803 | ||
1804 | This is the version of the function for the 32-bit PA machines, in | |
1805 | which later arguments appear at lower addresses. (The stack always | |
1806 | grows towards higher addresses.) | |
1807 | ||
1808 | We simply allocate the appropriate amount of stack space and put | |
1809 | arguments into their proper slots. The call dummy code will copy | |
1810 | arguments into registers as needed by the ABI. */ | |
1811 | ||
1812 | CORE_ADDR | |
ea7c478f | 1813 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1814 | int struct_return, CORE_ADDR struct_addr) |
c2c6d25f JM |
1815 | { |
1816 | /* array of arguments' offsets */ | |
1817 | int *offset = (int *) alloca (nargs * sizeof (int)); | |
1818 | ||
1819 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1820 | word size */ | |
1821 | int *lengths = (int *) alloca (nargs * sizeof (int)); | |
1822 | ||
1823 | /* The number of stack bytes occupied by the current argument. */ | |
1824 | int bytes_reserved; | |
1825 | ||
1826 | /* The total number of bytes reserved for the arguments. */ | |
1827 | int cum_bytes_reserved = 0; | |
1828 | ||
1829 | /* Similarly, but aligned. */ | |
1830 | int cum_bytes_aligned = 0; | |
1831 | int i; | |
1832 | ||
1833 | /* Iterate over each argument provided by the user. */ | |
1834 | for (i = 0; i < nargs; i++) | |
1835 | { | |
1836 | lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1837 | ||
1838 | /* Align the size of the argument to the word size for this | |
1839 | target. */ | |
1840 | bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE; | |
1841 | ||
b6649e88 AC |
1842 | offset[i] = (cum_bytes_reserved |
1843 | + (lengths[i] > 4 ? bytes_reserved : lengths[i])); | |
c2c6d25f JM |
1844 | |
1845 | /* If the argument is a double word argument, then it needs to be | |
1846 | double word aligned. */ | |
53a5351d | 1847 | if ((bytes_reserved == 2 * REGISTER_SIZE) |
c2c6d25f | 1848 | && (offset[i] % 2 * REGISTER_SIZE)) |
c5aa993b JM |
1849 | { |
1850 | int new_offset = 0; | |
53a5351d JM |
1851 | /* BYTES_RESERVED is already aligned to the word, so we put |
1852 | the argument at one word more down the stack. | |
1853 | ||
1854 | This will leave one empty word on the stack, and one unused | |
1855 | register as mandated by the ABI. */ | |
1856 | new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1) | |
1857 | & -(2 * REGISTER_SIZE)); | |
1858 | ||
1859 | if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE) | |
c5aa993b | 1860 | { |
53a5351d JM |
1861 | bytes_reserved += REGISTER_SIZE; |
1862 | offset[i] += REGISTER_SIZE; | |
c5aa993b JM |
1863 | } |
1864 | } | |
c906108c SS |
1865 | |
1866 | cum_bytes_reserved += bytes_reserved; | |
1867 | ||
1868 | } | |
1869 | ||
c2c6d25f JM |
1870 | /* CUM_BYTES_RESERVED already accounts for all the arguments passed |
1871 | by the user. However, the ABI mandates minimum stack space | |
53a5351d JM |
1872 | allocations for outgoing arguments. |
1873 | ||
c2c6d25f | 1874 | The ABI also mandates minimum stack alignments which we must |
53a5351d | 1875 | preserve. */ |
c906108c | 1876 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); |
53a5351d JM |
1877 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
1878 | ||
1879 | /* Now write each of the args at the proper offset down the stack. | |
53a5351d JM |
1880 | ?!? We need to promote values to a full register instead of skipping |
1881 | words in the stack. */ | |
c906108c SS |
1882 | for (i = 0; i < nargs; i++) |
1883 | write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
c906108c | 1884 | |
53a5351d JM |
1885 | /* If a structure has to be returned, set up register 28 to hold its |
1886 | address */ | |
c906108c SS |
1887 | if (struct_return) |
1888 | write_register (28, struct_addr); | |
1889 | ||
53a5351d | 1890 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
c906108c SS |
1891 | return sp + 32; |
1892 | } | |
1893 | ||
c2c6d25f | 1894 | #endif |
c906108c SS |
1895 | |
1896 | /* elz: this function returns a value which is built looking at the given address. | |
1897 | It is called from call_function_by_hand, in case we need to return a | |
1898 | value which is larger than 64 bits, and it is stored in the stack rather than | |
1899 | in the registers r28 and r29 or fr4. | |
1900 | This function does the same stuff as value_being_returned in values.c, but | |
1901 | gets the value from the stack rather than from the buffer where all the | |
1902 | registers were saved when the function called completed. */ | |
ea7c478f | 1903 | struct value * |
fba45db2 | 1904 | hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr) |
c906108c | 1905 | { |
ea7c478f | 1906 | register struct value *val; |
c906108c SS |
1907 | |
1908 | val = allocate_value (valtype); | |
1909 | CHECK_TYPEDEF (valtype); | |
c5aa993b | 1910 | target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype)); |
c906108c SS |
1911 | |
1912 | return val; | |
1913 | } | |
1914 | ||
1915 | ||
1916 | ||
1917 | /* elz: Used to lookup a symbol in the shared libraries. | |
c5aa993b JM |
1918 | This function calls shl_findsym, indirectly through a |
1919 | call to __d_shl_get. __d_shl_get is in end.c, which is always | |
1920 | linked in by the hp compilers/linkers. | |
1921 | The call to shl_findsym cannot be made directly because it needs | |
1922 | to be active in target address space. | |
1923 | inputs: - minimal symbol pointer for the function we want to look up | |
1924 | - address in target space of the descriptor for the library | |
1925 | where we want to look the symbol up. | |
1926 | This address is retrieved using the | |
1927 | som_solib_get_solib_by_pc function (somsolib.c). | |
1928 | output: - real address in the library of the function. | |
1929 | note: the handle can be null, in which case shl_findsym will look for | |
1930 | the symbol in all the loaded shared libraries. | |
1931 | files to look at if you need reference on this stuff: | |
1932 | dld.c, dld_shl_findsym.c | |
1933 | end.c | |
1934 | man entry for shl_findsym */ | |
c906108c SS |
1935 | |
1936 | CORE_ADDR | |
fba45db2 | 1937 | find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle) |
c906108c | 1938 | { |
c5aa993b JM |
1939 | struct symbol *get_sym, *symbol2; |
1940 | struct minimal_symbol *buff_minsym, *msymbol; | |
1941 | struct type *ftype; | |
ea7c478f AC |
1942 | struct value **args; |
1943 | struct value *funcval; | |
1944 | struct value *val; | |
c5aa993b JM |
1945 | |
1946 | int x, namelen, err_value, tmp = -1; | |
1947 | CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr; | |
1948 | CORE_ADDR stub_addr; | |
1949 | ||
1950 | ||
ea7c478f | 1951 | args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */ |
c5aa993b JM |
1952 | funcval = find_function_in_inferior ("__d_shl_get"); |
1953 | get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL); | |
1954 | buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL); | |
1955 | msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL); | |
1956 | symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL); | |
1957 | endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym); | |
1958 | namelen = strlen (SYMBOL_NAME (function)); | |
1959 | value_return_addr = endo_buff_addr + namelen; | |
1960 | ftype = check_typedef (SYMBOL_TYPE (get_sym)); | |
1961 | ||
1962 | /* do alignment */ | |
1963 | if ((x = value_return_addr % 64) != 0) | |
1964 | value_return_addr = value_return_addr + 64 - x; | |
1965 | ||
1966 | errno_return_addr = value_return_addr + 64; | |
1967 | ||
1968 | ||
1969 | /* set up stuff needed by __d_shl_get in buffer in end.o */ | |
1970 | ||
1971 | target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen); | |
1972 | ||
1973 | target_write_memory (value_return_addr, (char *) &tmp, 4); | |
1974 | ||
1975 | target_write_memory (errno_return_addr, (char *) &tmp, 4); | |
1976 | ||
1977 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
1978 | (char *) &handle, 4); | |
1979 | ||
1980 | /* now prepare the arguments for the call */ | |
1981 | ||
1982 | args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12); | |
4478b372 JB |
1983 | args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol)); |
1984 | args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr); | |
c5aa993b | 1985 | args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE); |
4478b372 JB |
1986 | args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr); |
1987 | args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr); | |
c5aa993b JM |
1988 | |
1989 | /* now call the function */ | |
1990 | ||
1991 | val = call_function_by_hand (funcval, 6, args); | |
1992 | ||
1993 | /* now get the results */ | |
1994 | ||
1995 | target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value)); | |
1996 | ||
1997 | target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr)); | |
1998 | if (stub_addr <= 0) | |
104c1213 | 1999 | error ("call to __d_shl_get failed, error code is %d", err_value); |
c5aa993b JM |
2000 | |
2001 | return (stub_addr); | |
c906108c SS |
2002 | } |
2003 | ||
c5aa993b | 2004 | /* Cover routine for find_stub_with_shl_get to pass to catch_errors */ |
a0b3c4fd JM |
2005 | static int |
2006 | cover_find_stub_with_shl_get (PTR args_untyped) | |
c906108c | 2007 | { |
a0b3c4fd JM |
2008 | args_for_find_stub *args = args_untyped; |
2009 | args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle); | |
2010 | return 0; | |
c906108c SS |
2011 | } |
2012 | ||
c906108c SS |
2013 | /* Insert the specified number of args and function address |
2014 | into a call sequence of the above form stored at DUMMYNAME. | |
2015 | ||
2016 | On the hppa we need to call the stack dummy through $$dyncall. | |
2017 | Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
2018 | real_pc, which is the location where gdb should start up the | |
cce74817 JM |
2019 | inferior to do the function call. |
2020 | ||
2021 | This has to work across several versions of hpux, bsd, osf1. It has to | |
2022 | work regardless of what compiler was used to build the inferior program. | |
2023 | It should work regardless of whether or not end.o is available. It has | |
2024 | to work even if gdb can not call into the dynamic loader in the inferior | |
2025 | to query it for symbol names and addresses. | |
2026 | ||
2027 | Yes, all those cases should work. Luckily code exists to handle most | |
2028 | of them. The complexity is in selecting exactly what scheme should | |
2029 | be used to perform the inferior call. | |
2030 | ||
2031 | At the current time this routine is known not to handle cases where | |
2032 | the program was linked with HP's compiler without including end.o. | |
2033 | ||
2034 | Please contact Jeff Law ([email protected]) before changing this code. */ | |
c906108c SS |
2035 | |
2036 | CORE_ADDR | |
fba45db2 | 2037 | hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 2038 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
2039 | { |
2040 | CORE_ADDR dyncall_addr; | |
2041 | struct minimal_symbol *msymbol; | |
2042 | struct minimal_symbol *trampoline; | |
2043 | int flags = read_register (FLAGS_REGNUM); | |
cce74817 JM |
2044 | struct unwind_table_entry *u = NULL; |
2045 | CORE_ADDR new_stub = 0; | |
2046 | CORE_ADDR solib_handle = 0; | |
2047 | ||
2048 | /* Nonzero if we will use GCC's PLT call routine. This routine must be | |
c2c6d25f JM |
2049 | passed an import stub, not a PLABEL. It is also necessary to set %r19 |
2050 | (the PIC register) before performing the call. | |
c906108c | 2051 | |
cce74817 JM |
2052 | If zero, then we are using __d_plt_call (HP's PLT call routine) or we |
2053 | are calling the target directly. When using __d_plt_call we want to | |
2054 | use a PLABEL instead of an import stub. */ | |
2055 | int using_gcc_plt_call = 1; | |
2056 | ||
53a5351d JM |
2057 | #ifdef GDB_TARGET_IS_HPPA_20W |
2058 | /* We currently use completely different code for the PA2.0W inferior | |
2059 | function call sequences. This needs to be cleaned up. */ | |
2060 | { | |
2061 | CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5; | |
2062 | struct target_waitstatus w; | |
2063 | int inst1, inst2; | |
2064 | char buf[4]; | |
2065 | int status; | |
2066 | struct objfile *objfile; | |
2067 | ||
2068 | /* We can not modify the PC space queues directly, so we start | |
2069 | up the inferior and execute a couple instructions to set the | |
2070 | space queues so that they point to the call dummy in the stack. */ | |
2071 | pcsqh = read_register (PCSQ_HEAD_REGNUM); | |
2072 | sr5 = read_register (SR5_REGNUM); | |
2073 | if (1) | |
2074 | { | |
2075 | pcoqh = read_register (PCOQ_HEAD_REGNUM); | |
2076 | pcoqt = read_register (PCOQ_TAIL_REGNUM); | |
2077 | if (target_read_memory (pcoqh, buf, 4) != 0) | |
2078 | error ("Couldn't modify space queue\n"); | |
2079 | inst1 = extract_unsigned_integer (buf, 4); | |
2080 | ||
2081 | if (target_read_memory (pcoqt, buf, 4) != 0) | |
2082 | error ("Couldn't modify space queue\n"); | |
2083 | inst2 = extract_unsigned_integer (buf, 4); | |
2084 | ||
2085 | /* BVE (r1) */ | |
2086 | *((int *) buf) = 0xe820d000; | |
2087 | if (target_write_memory (pcoqh, buf, 4) != 0) | |
2088 | error ("Couldn't modify space queue\n"); | |
2089 | ||
2090 | /* NOP */ | |
2091 | *((int *) buf) = 0x08000240; | |
2092 | if (target_write_memory (pcoqt, buf, 4) != 0) | |
2093 | { | |
2094 | *((int *) buf) = inst1; | |
2095 | target_write_memory (pcoqh, buf, 4); | |
2096 | error ("Couldn't modify space queue\n"); | |
2097 | } | |
2098 | ||
2099 | write_register (1, pc); | |
2100 | ||
2101 | /* Single step twice, the BVE instruction will set the space queue | |
2102 | such that it points to the PC value written immediately above | |
2103 | (ie the call dummy). */ | |
2104 | resume (1, 0); | |
39f77062 | 2105 | target_wait (inferior_ptid, &w); |
53a5351d | 2106 | resume (1, 0); |
39f77062 | 2107 | target_wait (inferior_ptid, &w); |
53a5351d JM |
2108 | |
2109 | /* Restore the two instructions at the old PC locations. */ | |
2110 | *((int *) buf) = inst1; | |
2111 | target_write_memory (pcoqh, buf, 4); | |
2112 | *((int *) buf) = inst2; | |
2113 | target_write_memory (pcoqt, buf, 4); | |
2114 | } | |
2115 | ||
2116 | /* The call dummy wants the ultimate destination address initially | |
2117 | in register %r5. */ | |
2118 | write_register (5, fun); | |
2119 | ||
2120 | /* We need to see if this objfile has a different DP value than our | |
c2c6d25f | 2121 | own (it could be a shared library for example). */ |
53a5351d JM |
2122 | ALL_OBJFILES (objfile) |
2123 | { | |
2124 | struct obj_section *s; | |
2125 | obj_private_data_t *obj_private; | |
2126 | ||
2127 | /* See if FUN is in any section within this shared library. */ | |
2128 | for (s = objfile->sections; s < objfile->sections_end; s++) | |
2129 | if (s->addr <= fun && fun < s->endaddr) | |
2130 | break; | |
2131 | ||
2132 | if (s >= objfile->sections_end) | |
2133 | continue; | |
2134 | ||
2135 | obj_private = (obj_private_data_t *) objfile->obj_private; | |
2136 | ||
2137 | /* The DP value may be different for each objfile. But within an | |
2138 | objfile each function uses the same dp value. Thus we do not need | |
2139 | to grope around the opd section looking for dp values. | |
2140 | ||
2141 | ?!? This is not strictly correct since we may be in a shared library | |
2142 | and want to call back into the main program. To make that case | |
2143 | work correctly we need to set obj_private->dp for the main program's | |
2144 | objfile, then remove this conditional. */ | |
2145 | if (obj_private->dp) | |
2146 | write_register (27, obj_private->dp); | |
2147 | break; | |
2148 | } | |
2149 | return pc; | |
2150 | } | |
2151 | #endif | |
2152 | ||
2153 | #ifndef GDB_TARGET_IS_HPPA_20W | |
cce74817 | 2154 | /* Prefer __gcc_plt_call over the HP supplied routine because |
c5aa993b | 2155 | __gcc_plt_call works for any number of arguments. */ |
c906108c | 2156 | trampoline = NULL; |
cce74817 JM |
2157 | if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL) |
2158 | using_gcc_plt_call = 0; | |
2159 | ||
c906108c SS |
2160 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
2161 | if (msymbol == NULL) | |
cce74817 | 2162 | error ("Can't find an address for $$dyncall trampoline"); |
c906108c SS |
2163 | |
2164 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2165 | ||
2166 | /* FUN could be a procedure label, in which case we have to get | |
cce74817 JM |
2167 | its real address and the value of its GOT/DP if we plan to |
2168 | call the routine via gcc_plt_call. */ | |
2169 | if ((fun & 0x2) && using_gcc_plt_call) | |
c906108c SS |
2170 | { |
2171 | /* Get the GOT/DP value for the target function. It's | |
c5aa993b JM |
2172 | at *(fun+4). Note the call dummy is *NOT* allowed to |
2173 | trash %r19 before calling the target function. */ | |
53a5351d JM |
2174 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, |
2175 | REGISTER_SIZE)); | |
c906108c SS |
2176 | |
2177 | /* Now get the real address for the function we are calling, it's | |
c5aa993b | 2178 | at *fun. */ |
53a5351d JM |
2179 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, |
2180 | TARGET_PTR_BIT / 8); | |
c906108c SS |
2181 | } |
2182 | else | |
2183 | { | |
2184 | ||
2185 | #ifndef GDB_TARGET_IS_PA_ELF | |
cce74817 | 2186 | /* FUN could be an export stub, the real address of a function, or |
c5aa993b JM |
2187 | a PLABEL. When using gcc's PLT call routine we must call an import |
2188 | stub rather than the export stub or real function for lazy binding | |
2189 | to work correctly | |
cce74817 | 2190 | |
39f77062 | 2191 | If we are using the gcc PLT call routine, then we need to |
c5aa993b | 2192 | get the import stub for the target function. */ |
cce74817 | 2193 | if (using_gcc_plt_call && som_solib_get_got_by_pc (fun)) |
c906108c SS |
2194 | { |
2195 | struct objfile *objfile; | |
2196 | struct minimal_symbol *funsymbol, *stub_symbol; | |
2197 | CORE_ADDR newfun = 0; | |
2198 | ||
2199 | funsymbol = lookup_minimal_symbol_by_pc (fun); | |
2200 | if (!funsymbol) | |
4ce44c66 | 2201 | error ("Unable to find minimal symbol for target function.\n"); |
c906108c SS |
2202 | |
2203 | /* Search all the object files for an import symbol with the | |
2204 | right name. */ | |
2205 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
2206 | { |
2207 | stub_symbol | |
2208 | = lookup_minimal_symbol_solib_trampoline | |
2209 | (SYMBOL_NAME (funsymbol), NULL, objfile); | |
2210 | ||
2211 | if (!stub_symbol) | |
2212 | stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol), | |
2213 | NULL, objfile); | |
2214 | ||
2215 | /* Found a symbol with the right name. */ | |
2216 | if (stub_symbol) | |
2217 | { | |
2218 | struct unwind_table_entry *u; | |
2219 | /* It must be a shared library trampoline. */ | |
2220 | if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
2221 | continue; | |
2222 | ||
2223 | /* It must also be an import stub. */ | |
2224 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
6426a772 JM |
2225 | if (u == NULL |
2226 | || (u->stub_unwind.stub_type != IMPORT | |
2227 | #ifdef GDB_NATIVE_HPUX_11 | |
2228 | /* Sigh. The hpux 10.20 dynamic linker will blow | |
2229 | chunks if we perform a call to an unbound function | |
2230 | via the IMPORT_SHLIB stub. The hpux 11.00 dynamic | |
2231 | linker will blow chunks if we do not call the | |
2232 | unbound function via the IMPORT_SHLIB stub. | |
2233 | ||
2234 | We currently have no way to select bevahior on just | |
2235 | the target. However, we only support HPUX/SOM in | |
2236 | native mode. So we conditinalize on a native | |
2237 | #ifdef. Ugly. Ugly. Ugly */ | |
2238 | && u->stub_unwind.stub_type != IMPORT_SHLIB | |
2239 | #endif | |
2240 | )) | |
c5aa993b JM |
2241 | continue; |
2242 | ||
2243 | /* OK. Looks like the correct import stub. */ | |
2244 | newfun = SYMBOL_VALUE (stub_symbol); | |
2245 | fun = newfun; | |
6426a772 JM |
2246 | |
2247 | /* If we found an IMPORT stub, then we want to stop | |
2248 | searching now. If we found an IMPORT_SHLIB, we want | |
2249 | to continue the search in the hopes that we will find | |
2250 | an IMPORT stub. */ | |
2251 | if (u->stub_unwind.stub_type == IMPORT) | |
2252 | break; | |
c5aa993b JM |
2253 | } |
2254 | } | |
cce74817 JM |
2255 | |
2256 | /* Ouch. We did not find an import stub. Make an attempt to | |
2257 | do the right thing instead of just croaking. Most of the | |
2258 | time this will actually work. */ | |
c906108c SS |
2259 | if (newfun == 0) |
2260 | write_register (19, som_solib_get_got_by_pc (fun)); | |
cce74817 JM |
2261 | |
2262 | u = find_unwind_entry (fun); | |
c5aa993b | 2263 | if (u |
cce74817 JM |
2264 | && (u->stub_unwind.stub_type == IMPORT |
2265 | || u->stub_unwind.stub_type == IMPORT_SHLIB)) | |
2266 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
2267 | ||
2268 | /* If we found the import stub in the shared library, then we have | |
2269 | to set %r19 before we call the stub. */ | |
2270 | if (u && u->stub_unwind.stub_type == IMPORT_SHLIB) | |
2271 | write_register (19, som_solib_get_got_by_pc (fun)); | |
c906108c | 2272 | } |
c906108c SS |
2273 | #endif |
2274 | } | |
2275 | ||
cce74817 JM |
2276 | /* If we are calling into another load module then have sr4export call the |
2277 | magic __d_plt_call routine which is linked in from end.o. | |
c906108c | 2278 | |
cce74817 JM |
2279 | You can't use _sr4export to make the call as the value in sp-24 will get |
2280 | fried and you end up returning to the wrong location. You can't call the | |
2281 | target as the code to bind the PLT entry to a function can't return to a | |
2282 | stack address. | |
2283 | ||
2284 | Also, query the dynamic linker in the inferior to provide a suitable | |
2285 | PLABEL for the target function. */ | |
c5aa993b | 2286 | if (!using_gcc_plt_call) |
c906108c SS |
2287 | { |
2288 | CORE_ADDR new_fun; | |
2289 | ||
cce74817 | 2290 | /* Get a handle for the shared library containing FUN. Given the |
c5aa993b | 2291 | handle we can query the shared library for a PLABEL. */ |
cce74817 | 2292 | solib_handle = som_solib_get_solib_by_pc (fun); |
c906108c | 2293 | |
cce74817 | 2294 | if (solib_handle) |
c906108c | 2295 | { |
cce74817 | 2296 | struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun); |
c906108c | 2297 | |
cce74817 JM |
2298 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); |
2299 | ||
2300 | if (trampoline == NULL) | |
2301 | { | |
2302 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc."); | |
2303 | } | |
2304 | ||
2305 | /* This is where sr4export will jump to. */ | |
2306 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); | |
2307 | ||
2308 | /* If the function is in a shared library, then call __d_shl_get to | |
2309 | get a PLABEL for the target function. */ | |
2310 | new_stub = find_stub_with_shl_get (fmsymbol, solib_handle); | |
2311 | ||
c5aa993b | 2312 | if (new_stub == 0) |
cce74817 | 2313 | error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol)); |
c906108c SS |
2314 | |
2315 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
cce74817 | 2316 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, |
c5aa993b | 2317 | (struct objfile *) NULL); |
c906108c | 2318 | |
cce74817 JM |
2319 | if (msymbol == NULL) |
2320 | error ("Can't find an address for __shlib_funcptr"); | |
2321 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
c5aa993b | 2322 | (char *) &new_stub, 4); |
c906108c SS |
2323 | |
2324 | /* We want sr4export to call __d_plt_call, so we claim it is | |
2325 | the final target. Clear trampoline. */ | |
cce74817 JM |
2326 | fun = new_fun; |
2327 | trampoline = NULL; | |
c906108c SS |
2328 | } |
2329 | } | |
2330 | ||
2331 | /* Store upper 21 bits of function address into ldil. fun will either be | |
2332 | the final target (most cases) or __d_plt_call when calling into a shared | |
2333 | library and __gcc_plt_call is not available. */ | |
2334 | store_unsigned_integer | |
2335 | (&dummy[FUNC_LDIL_OFFSET], | |
2336 | INSTRUCTION_SIZE, | |
2337 | deposit_21 (fun >> 11, | |
2338 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], | |
2339 | INSTRUCTION_SIZE))); | |
2340 | ||
2341 | /* Store lower 11 bits of function address into ldo */ | |
2342 | store_unsigned_integer | |
2343 | (&dummy[FUNC_LDO_OFFSET], | |
2344 | INSTRUCTION_SIZE, | |
2345 | deposit_14 (fun & MASK_11, | |
2346 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], | |
2347 | INSTRUCTION_SIZE))); | |
2348 | #ifdef SR4EXPORT_LDIL_OFFSET | |
2349 | ||
2350 | { | |
2351 | CORE_ADDR trampoline_addr; | |
2352 | ||
2353 | /* We may still need sr4export's address too. */ | |
2354 | ||
2355 | if (trampoline == NULL) | |
2356 | { | |
2357 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2358 | if (msymbol == NULL) | |
cce74817 | 2359 | error ("Can't find an address for _sr4export trampoline"); |
c906108c SS |
2360 | |
2361 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2362 | } | |
2363 | else | |
2364 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
2365 | ||
2366 | ||
2367 | /* Store upper 21 bits of trampoline's address into ldil */ | |
2368 | store_unsigned_integer | |
2369 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2370 | INSTRUCTION_SIZE, | |
2371 | deposit_21 (trampoline_addr >> 11, | |
2372 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2373 | INSTRUCTION_SIZE))); | |
2374 | ||
2375 | /* Store lower 11 bits of trampoline's address into ldo */ | |
2376 | store_unsigned_integer | |
2377 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
2378 | INSTRUCTION_SIZE, | |
2379 | deposit_14 (trampoline_addr & MASK_11, | |
2380 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], | |
2381 | INSTRUCTION_SIZE))); | |
2382 | } | |
2383 | #endif | |
2384 | ||
2385 | write_register (22, pc); | |
2386 | ||
2387 | /* If we are in a syscall, then we should call the stack dummy | |
2388 | directly. $$dyncall is not needed as the kernel sets up the | |
2389 | space id registers properly based on the value in %r31. In | |
2390 | fact calling $$dyncall will not work because the value in %r22 | |
2391 | will be clobbered on the syscall exit path. | |
2392 | ||
2393 | Similarly if the current PC is in a shared library. Note however, | |
2394 | this scheme won't work if the shared library isn't mapped into | |
2395 | the same space as the stack. */ | |
2396 | if (flags & 2) | |
2397 | return pc; | |
2398 | #ifndef GDB_TARGET_IS_PA_ELF | |
39f77062 | 2399 | else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid))) |
c906108c SS |
2400 | return pc; |
2401 | #endif | |
2402 | else | |
2403 | return dyncall_addr; | |
53a5351d | 2404 | #endif |
c906108c SS |
2405 | } |
2406 | ||
2407 | ||
2408 | ||
2409 | ||
2410 | /* If the pid is in a syscall, then the FP register is not readable. | |
2411 | We'll return zero in that case, rather than attempting to read it | |
2412 | and cause a warning. */ | |
2413 | CORE_ADDR | |
fba45db2 | 2414 | target_read_fp (int pid) |
c906108c SS |
2415 | { |
2416 | int flags = read_register (FLAGS_REGNUM); | |
2417 | ||
c5aa993b JM |
2418 | if (flags & 2) |
2419 | { | |
2420 | return (CORE_ADDR) 0; | |
2421 | } | |
c906108c SS |
2422 | |
2423 | /* This is the only site that may directly read_register () the FP | |
2424 | register. All others must use TARGET_READ_FP (). */ | |
2425 | return read_register (FP_REGNUM); | |
2426 | } | |
2427 | ||
2428 | ||
2429 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege | |
2430 | bits. */ | |
2431 | ||
2432 | CORE_ADDR | |
39f77062 | 2433 | target_read_pc (ptid_t ptid) |
c906108c | 2434 | { |
39f77062 | 2435 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2436 | |
2437 | /* The following test does not belong here. It is OS-specific, and belongs | |
2438 | in native code. */ | |
2439 | /* Test SS_INSYSCALL */ | |
2440 | if (flags & 2) | |
39f77062 | 2441 | return read_register_pid (31, ptid) & ~0x3; |
c906108c | 2442 | |
39f77062 | 2443 | return read_register_pid (PC_REGNUM, ptid) & ~0x3; |
c906108c SS |
2444 | } |
2445 | ||
2446 | /* Write out the PC. If currently in a syscall, then also write the new | |
2447 | PC value into %r31. */ | |
2448 | ||
2449 | void | |
39f77062 | 2450 | target_write_pc (CORE_ADDR v, ptid_t ptid) |
c906108c | 2451 | { |
39f77062 | 2452 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2453 | |
2454 | /* The following test does not belong here. It is OS-specific, and belongs | |
2455 | in native code. */ | |
2456 | /* If in a syscall, then set %r31. Also make sure to get the | |
2457 | privilege bits set correctly. */ | |
2458 | /* Test SS_INSYSCALL */ | |
2459 | if (flags & 2) | |
39f77062 | 2460 | write_register_pid (31, v | 0x3, ptid); |
c906108c | 2461 | |
39f77062 KB |
2462 | write_register_pid (PC_REGNUM, v, ptid); |
2463 | write_register_pid (NPC_REGNUM, v + 4, ptid); | |
c906108c SS |
2464 | } |
2465 | ||
2466 | /* return the alignment of a type in bytes. Structures have the maximum | |
2467 | alignment required by their fields. */ | |
2468 | ||
2469 | static int | |
fba45db2 | 2470 | hppa_alignof (struct type *type) |
c906108c SS |
2471 | { |
2472 | int max_align, align, i; | |
2473 | CHECK_TYPEDEF (type); | |
2474 | switch (TYPE_CODE (type)) | |
2475 | { | |
2476 | case TYPE_CODE_PTR: | |
2477 | case TYPE_CODE_INT: | |
2478 | case TYPE_CODE_FLT: | |
2479 | return TYPE_LENGTH (type); | |
2480 | case TYPE_CODE_ARRAY: | |
2481 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
2482 | case TYPE_CODE_STRUCT: | |
2483 | case TYPE_CODE_UNION: | |
2484 | max_align = 1; | |
2485 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2486 | { | |
2487 | /* Bit fields have no real alignment. */ | |
2488 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 2489 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
2490 | { |
2491 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
2492 | max_align = max (max_align, align); | |
2493 | } | |
2494 | } | |
2495 | return max_align; | |
2496 | default: | |
2497 | return 4; | |
2498 | } | |
2499 | } | |
2500 | ||
2501 | /* Print the register regnum, or all registers if regnum is -1 */ | |
2502 | ||
2503 | void | |
fba45db2 | 2504 | pa_do_registers_info (int regnum, int fpregs) |
c906108c | 2505 | { |
c5aa993b | 2506 | char raw_regs[REGISTER_BYTES]; |
c906108c SS |
2507 | int i; |
2508 | ||
2509 | /* Make a copy of gdb's save area (may cause actual | |
2510 | reads from the target). */ | |
2511 | for (i = 0; i < NUM_REGS; i++) | |
cda5a58a | 2512 | frame_register_read (selected_frame, i, raw_regs + REGISTER_BYTE (i)); |
c906108c SS |
2513 | |
2514 | if (regnum == -1) | |
2515 | pa_print_registers (raw_regs, regnum, fpregs); | |
c5aa993b JM |
2516 | else if (regnum < FP4_REGNUM) |
2517 | { | |
2518 | long reg_val[2]; | |
2519 | ||
2520 | /* Why is the value not passed through "extract_signed_integer" | |
2521 | as in "pa_print_registers" below? */ | |
2522 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
2523 | ||
2524 | if (!is_pa_2) | |
2525 | { | |
ce414844 | 2526 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2527 | } |
c906108c | 2528 | else |
c5aa993b JM |
2529 | { |
2530 | /* Fancy % formats to prevent leading zeros. */ | |
2531 | if (reg_val[0] == 0) | |
ce414844 | 2532 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2533 | else |
ce414844 | 2534 | printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum), |
c5aa993b JM |
2535 | reg_val[0], reg_val[1]); |
2536 | } | |
c906108c | 2537 | } |
c906108c | 2538 | else |
c5aa993b JM |
2539 | /* Note that real floating point values only start at |
2540 | FP4_REGNUM. FP0 and up are just status and error | |
2541 | registers, which have integral (bit) values. */ | |
c906108c SS |
2542 | pa_print_fp_reg (regnum); |
2543 | } | |
2544 | ||
2545 | /********** new function ********************/ | |
2546 | void | |
fba45db2 KB |
2547 | pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream, |
2548 | enum precision_type precision) | |
c906108c | 2549 | { |
c5aa993b | 2550 | char raw_regs[REGISTER_BYTES]; |
c906108c SS |
2551 | int i; |
2552 | ||
2553 | /* Make a copy of gdb's save area (may cause actual | |
c5aa993b | 2554 | reads from the target). */ |
c906108c | 2555 | for (i = 0; i < NUM_REGS; i++) |
cda5a58a | 2556 | frame_register_read (selected_frame, i, raw_regs + REGISTER_BYTE (i)); |
c906108c SS |
2557 | |
2558 | if (regnum == -1) | |
2559 | pa_strcat_registers (raw_regs, regnum, fpregs, stream); | |
2560 | ||
c5aa993b JM |
2561 | else if (regnum < FP4_REGNUM) |
2562 | { | |
2563 | long reg_val[2]; | |
2564 | ||
2565 | /* Why is the value not passed through "extract_signed_integer" | |
2566 | as in "pa_print_registers" below? */ | |
2567 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
c906108c | 2568 | |
c5aa993b JM |
2569 | if (!is_pa_2) |
2570 | { | |
ce414844 | 2571 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2572 | } |
c906108c | 2573 | else |
c5aa993b JM |
2574 | { |
2575 | /* Fancy % formats to prevent leading zeros. */ | |
2576 | if (reg_val[0] == 0) | |
ce414844 | 2577 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2578 | reg_val[1]); |
2579 | else | |
ce414844 | 2580 | fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2581 | reg_val[0], reg_val[1]); |
2582 | } | |
c906108c | 2583 | } |
c906108c | 2584 | else |
c5aa993b JM |
2585 | /* Note that real floating point values only start at |
2586 | FP4_REGNUM. FP0 and up are just status and error | |
2587 | registers, which have integral (bit) values. */ | |
c906108c SS |
2588 | pa_strcat_fp_reg (regnum, stream, precision); |
2589 | } | |
2590 | ||
2591 | /* If this is a PA2.0 machine, fetch the real 64-bit register | |
2592 | value. Otherwise use the info from gdb's saved register area. | |
2593 | ||
2594 | Note that reg_val is really expected to be an array of longs, | |
2595 | with two elements. */ | |
2596 | static void | |
fba45db2 | 2597 | pa_register_look_aside (char *raw_regs, int regnum, long *raw_val) |
c906108c | 2598 | { |
c5aa993b | 2599 | static int know_which = 0; /* False */ |
c906108c | 2600 | |
c5aa993b | 2601 | int regaddr; |
c906108c SS |
2602 | unsigned int offset; |
2603 | register int i; | |
c5aa993b JM |
2604 | int start; |
2605 | ||
2606 | ||
c906108c SS |
2607 | char buf[MAX_REGISTER_RAW_SIZE]; |
2608 | long long reg_val; | |
2609 | ||
c5aa993b JM |
2610 | if (!know_which) |
2611 | { | |
2612 | if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION)) | |
2613 | { | |
2614 | is_pa_2 = (1 == 1); | |
2615 | } | |
2616 | ||
2617 | know_which = 1; /* True */ | |
2618 | } | |
c906108c SS |
2619 | |
2620 | raw_val[0] = 0; | |
2621 | raw_val[1] = 0; | |
2622 | ||
c5aa993b JM |
2623 | if (!is_pa_2) |
2624 | { | |
2625 | raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum)); | |
c906108c | 2626 | return; |
c5aa993b | 2627 | } |
c906108c SS |
2628 | |
2629 | /* Code below copied from hppah-nat.c, with fixes for wide | |
2630 | registers, using different area of save_state, etc. */ | |
2631 | if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM || | |
c5aa993b JM |
2632 | !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE) |
2633 | { | |
c906108c | 2634 | /* Use narrow regs area of save_state and default macro. */ |
c5aa993b JM |
2635 | offset = U_REGS_OFFSET; |
2636 | regaddr = register_addr (regnum, offset); | |
2637 | start = 1; | |
2638 | } | |
2639 | else | |
2640 | { | |
c906108c SS |
2641 | /* Use wide regs area, and calculate registers as 8 bytes wide. |
2642 | ||
2643 | We'd like to do this, but current version of "C" doesn't | |
2644 | permit "offsetof": | |
2645 | ||
c5aa993b | 2646 | offset = offsetof(save_state_t, ss_wide); |
c906108c SS |
2647 | |
2648 | Note that to avoid "C" doing typed pointer arithmetic, we | |
2649 | have to cast away the type in our offset calculation: | |
2650 | otherwise we get an offset of 1! */ | |
2651 | ||
7a292a7a | 2652 | /* NB: save_state_t is not available before HPUX 9. |
c5aa993b | 2653 | The ss_wide field is not available previous to HPUX 10.20, |
7a292a7a SS |
2654 | so to avoid compile-time warnings, we only compile this for |
2655 | PA 2.0 processors. This control path should only be followed | |
2656 | if we're debugging a PA 2.0 processor, so this should not cause | |
2657 | problems. */ | |
2658 | ||
c906108c SS |
2659 | /* #if the following code out so that this file can still be |
2660 | compiled on older HPUX boxes (< 10.20) which don't have | |
2661 | this structure/structure member. */ | |
2662 | #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1 | |
2663 | save_state_t temp; | |
2664 | ||
2665 | offset = ((int) &temp.ss_wide) - ((int) &temp); | |
2666 | regaddr = offset + regnum * 8; | |
c5aa993b | 2667 | start = 0; |
c906108c | 2668 | #endif |
c5aa993b JM |
2669 | } |
2670 | ||
2671 | for (i = start; i < 2; i++) | |
c906108c SS |
2672 | { |
2673 | errno = 0; | |
39f77062 | 2674 | raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid), |
c5aa993b | 2675 | (PTRACE_ARG3_TYPE) regaddr, 0); |
c906108c SS |
2676 | if (errno != 0) |
2677 | { | |
2678 | /* Warning, not error, in case we are attached; sometimes the | |
2679 | kernel doesn't let us at the registers. */ | |
2680 | char *err = safe_strerror (errno); | |
2681 | char *msg = alloca (strlen (err) + 128); | |
2682 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err); | |
2683 | warning (msg); | |
2684 | goto error_exit; | |
2685 | } | |
2686 | ||
2687 | regaddr += sizeof (long); | |
2688 | } | |
c5aa993b | 2689 | |
c906108c | 2690 | if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) |
c5aa993b | 2691 | raw_val[1] &= ~0x3; /* I think we're masking out space bits */ |
c906108c SS |
2692 | |
2693 | error_exit: | |
2694 | ; | |
2695 | } | |
2696 | ||
2697 | /* "Info all-reg" command */ | |
c5aa993b | 2698 | |
c906108c | 2699 | static void |
fba45db2 | 2700 | pa_print_registers (char *raw_regs, int regnum, int fpregs) |
c906108c | 2701 | { |
c5aa993b | 2702 | int i, j; |
adf40b2e JM |
2703 | /* Alas, we are compiled so that "long long" is 32 bits */ |
2704 | long raw_val[2]; | |
c906108c | 2705 | long long_val; |
a0b3c4fd | 2706 | int rows = 48, columns = 2; |
c906108c | 2707 | |
adf40b2e | 2708 | for (i = 0; i < rows; i++) |
c906108c | 2709 | { |
adf40b2e | 2710 | for (j = 0; j < columns; j++) |
c906108c | 2711 | { |
adf40b2e JM |
2712 | /* We display registers in column-major order. */ |
2713 | int regnum = i + j * rows; | |
2714 | ||
c5aa993b JM |
2715 | /* Q: Why is the value passed through "extract_signed_integer", |
2716 | while above, in "pa_do_registers_info" it isn't? | |
2717 | A: ? */ | |
adf40b2e | 2718 | pa_register_look_aside (raw_regs, regnum, &raw_val[0]); |
c5aa993b JM |
2719 | |
2720 | /* Even fancier % formats to prevent leading zeros | |
2721 | and still maintain the output in columns. */ | |
2722 | if (!is_pa_2) | |
2723 | { | |
2724 | /* Being big-endian, on this machine the low bits | |
2725 | (the ones we want to look at) are in the second longword. */ | |
2726 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 | 2727 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2728 | REGISTER_NAME (regnum), long_val); |
c5aa993b JM |
2729 | } |
2730 | else | |
2731 | { | |
2732 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2733 | if (raw_val[0] == 0) | |
ce414844 | 2734 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2735 | REGISTER_NAME (regnum), raw_val[1]); |
c5aa993b | 2736 | else |
ce414844 | 2737 | printf_filtered ("%10.10s: %8lx%8.8lx ", |
a0b3c4fd | 2738 | REGISTER_NAME (regnum), |
c5aa993b JM |
2739 | raw_val[0], raw_val[1]); |
2740 | } | |
c906108c SS |
2741 | } |
2742 | printf_unfiltered ("\n"); | |
2743 | } | |
c5aa993b | 2744 | |
c906108c | 2745 | if (fpregs) |
c5aa993b | 2746 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2747 | pa_print_fp_reg (i); |
2748 | } | |
2749 | ||
c5aa993b | 2750 | /************* new function ******************/ |
c906108c | 2751 | static void |
fba45db2 KB |
2752 | pa_strcat_registers (char *raw_regs, int regnum, int fpregs, |
2753 | struct ui_file *stream) | |
c906108c | 2754 | { |
c5aa993b JM |
2755 | int i, j; |
2756 | long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ | |
c906108c SS |
2757 | long long_val; |
2758 | enum precision_type precision; | |
2759 | ||
2760 | precision = unspecified_precision; | |
2761 | ||
2762 | for (i = 0; i < 18; i++) | |
2763 | { | |
2764 | for (j = 0; j < 4; j++) | |
2765 | { | |
c5aa993b JM |
2766 | /* Q: Why is the value passed through "extract_signed_integer", |
2767 | while above, in "pa_do_registers_info" it isn't? | |
2768 | A: ? */ | |
2769 | pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]); | |
2770 | ||
2771 | /* Even fancier % formats to prevent leading zeros | |
2772 | and still maintain the output in columns. */ | |
2773 | if (!is_pa_2) | |
2774 | { | |
2775 | /* Being big-endian, on this machine the low bits | |
2776 | (the ones we want to look at) are in the second longword. */ | |
2777 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 AC |
2778 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2779 | REGISTER_NAME (i + (j * 18)), long_val); | |
c5aa993b JM |
2780 | } |
2781 | else | |
2782 | { | |
2783 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2784 | if (raw_val[0] == 0) | |
ce414844 AC |
2785 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2786 | REGISTER_NAME (i + (j * 18)), raw_val[1]); | |
c5aa993b | 2787 | else |
ce414844 AC |
2788 | fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ", |
2789 | REGISTER_NAME (i + (j * 18)), raw_val[0], | |
2790 | raw_val[1]); | |
c5aa993b | 2791 | } |
c906108c SS |
2792 | } |
2793 | fprintf_unfiltered (stream, "\n"); | |
2794 | } | |
c5aa993b | 2795 | |
c906108c | 2796 | if (fpregs) |
c5aa993b | 2797 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2798 | pa_strcat_fp_reg (i, stream, precision); |
2799 | } | |
2800 | ||
2801 | static void | |
fba45db2 | 2802 | pa_print_fp_reg (int i) |
c906108c SS |
2803 | { |
2804 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
2805 | char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
2806 | ||
2807 | /* Get 32bits of data. */ | |
cda5a58a | 2808 | frame_register_read (selected_frame, i, raw_buffer); |
c906108c SS |
2809 | |
2810 | /* Put it in the buffer. No conversions are ever necessary. */ | |
2811 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
2812 | ||
2813 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2814 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2815 | fputs_filtered ("(single precision) ", gdb_stdout); | |
2816 | ||
2817 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0, | |
2818 | 1, 0, Val_pretty_default); | |
2819 | printf_filtered ("\n"); | |
2820 | ||
2821 | /* If "i" is even, then this register can also be a double-precision | |
2822 | FP register. Dump it out as such. */ | |
2823 | if ((i % 2) == 0) | |
2824 | { | |
2825 | /* Get the data in raw format for the 2nd half. */ | |
cda5a58a | 2826 | frame_register_read (selected_frame, i + 1, raw_buffer); |
c906108c SS |
2827 | |
2828 | /* Copy it into the appropriate part of the virtual buffer. */ | |
2829 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
2830 | REGISTER_RAW_SIZE (i)); | |
2831 | ||
2832 | /* Dump it as a double. */ | |
2833 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2834 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2835 | fputs_filtered ("(double precision) ", gdb_stdout); | |
2836 | ||
2837 | val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0, | |
2838 | 1, 0, Val_pretty_default); | |
2839 | printf_filtered ("\n"); | |
2840 | } | |
2841 | } | |
2842 | ||
2843 | /*************** new function ***********************/ | |
2844 | static void | |
fba45db2 | 2845 | pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision) |
c906108c SS |
2846 | { |
2847 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
2848 | char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
2849 | ||
2850 | fputs_filtered (REGISTER_NAME (i), stream); | |
2851 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream); | |
2852 | ||
2853 | /* Get 32bits of data. */ | |
cda5a58a | 2854 | frame_register_read (selected_frame, i, raw_buffer); |
c906108c SS |
2855 | |
2856 | /* Put it in the buffer. No conversions are ever necessary. */ | |
2857 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
2858 | ||
2859 | if (precision == double_precision && (i % 2) == 0) | |
2860 | { | |
2861 | ||
c5aa993b JM |
2862 | char raw_buf[MAX_REGISTER_RAW_SIZE]; |
2863 | ||
2864 | /* Get the data in raw format for the 2nd half. */ | |
cda5a58a | 2865 | frame_register_read (selected_frame, i + 1, raw_buf); |
c5aa993b JM |
2866 | |
2867 | /* Copy it into the appropriate part of the virtual buffer. */ | |
2868 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i)); | |
c906108c | 2869 | |
c5aa993b JM |
2870 | val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0, |
2871 | 1, 0, Val_pretty_default); | |
c906108c SS |
2872 | |
2873 | } | |
c5aa993b JM |
2874 | else |
2875 | { | |
2876 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0, | |
2877 | 1, 0, Val_pretty_default); | |
2878 | } | |
c906108c SS |
2879 | |
2880 | } | |
2881 | ||
2882 | /* Return one if PC is in the call path of a trampoline, else return zero. | |
2883 | ||
2884 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
2885 | just shared library trampolines (import, export). */ | |
2886 | ||
2887 | int | |
fba45db2 | 2888 | in_solib_call_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
2889 | { |
2890 | struct minimal_symbol *minsym; | |
2891 | struct unwind_table_entry *u; | |
2892 | static CORE_ADDR dyncall = 0; | |
2893 | static CORE_ADDR sr4export = 0; | |
2894 | ||
c2c6d25f JM |
2895 | #ifdef GDB_TARGET_IS_HPPA_20W |
2896 | /* PA64 has a completely different stub/trampoline scheme. Is it | |
2897 | better? Maybe. It's certainly harder to determine with any | |
2898 | certainty that we are in a stub because we can not refer to the | |
2899 | unwinders to help. | |
2900 | ||
2901 | The heuristic is simple. Try to lookup the current PC value in th | |
2902 | minimal symbol table. If that fails, then assume we are not in a | |
2903 | stub and return. | |
2904 | ||
2905 | Then see if the PC value falls within the section bounds for the | |
2906 | section containing the minimal symbol we found in the first | |
2907 | step. If it does, then assume we are not in a stub and return. | |
2908 | ||
2909 | Finally peek at the instructions to see if they look like a stub. */ | |
2910 | { | |
2911 | struct minimal_symbol *minsym; | |
2912 | asection *sec; | |
2913 | CORE_ADDR addr; | |
2914 | int insn, i; | |
2915 | ||
2916 | minsym = lookup_minimal_symbol_by_pc (pc); | |
2917 | if (! minsym) | |
2918 | return 0; | |
2919 | ||
2920 | sec = SYMBOL_BFD_SECTION (minsym); | |
2921 | ||
2922 | if (sec->vma <= pc | |
2923 | && sec->vma + sec->_cooked_size < pc) | |
2924 | return 0; | |
2925 | ||
2926 | /* We might be in a stub. Peek at the instructions. Stubs are 3 | |
2927 | instructions long. */ | |
2928 | insn = read_memory_integer (pc, 4); | |
2929 | ||
b84a8afe | 2930 | /* Find out where we think we are within the stub. */ |
c2c6d25f JM |
2931 | if ((insn & 0xffffc00e) == 0x53610000) |
2932 | addr = pc; | |
2933 | else if ((insn & 0xffffffff) == 0xe820d000) | |
2934 | addr = pc - 4; | |
2935 | else if ((insn & 0xffffc00e) == 0x537b0000) | |
2936 | addr = pc - 8; | |
2937 | else | |
2938 | return 0; | |
2939 | ||
2940 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2941 | insn = read_memory_integer (addr, 4); | |
2942 | if ((insn & 0xffffc00e) != 0x53610000) | |
2943 | return 0; | |
2944 | ||
2945 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2946 | insn = read_memory_integer (addr + 4, 4); | |
2947 | if ((insn & 0xffffffff) != 0xe820d000) | |
2948 | return 0; | |
2949 | ||
2950 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2951 | insn = read_memory_integer (addr + 8, 4); | |
2952 | if ((insn & 0xffffc00e) != 0x537b0000) | |
2953 | return 0; | |
2954 | ||
2955 | /* Looks like a stub. */ | |
2956 | return 1; | |
2957 | } | |
2958 | #endif | |
2959 | ||
2960 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
2961 | new exec file */ | |
c906108c SS |
2962 | |
2963 | /* First see if PC is in one of the two C-library trampolines. */ | |
2964 | if (!dyncall) | |
2965 | { | |
2966 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
2967 | if (minsym) | |
2968 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
2969 | else | |
2970 | dyncall = -1; | |
2971 | } | |
2972 | ||
2973 | if (!sr4export) | |
2974 | { | |
2975 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2976 | if (minsym) | |
2977 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
2978 | else | |
2979 | sr4export = -1; | |
2980 | } | |
2981 | ||
2982 | if (pc == dyncall || pc == sr4export) | |
2983 | return 1; | |
2984 | ||
104c1213 JM |
2985 | minsym = lookup_minimal_symbol_by_pc (pc); |
2986 | if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0) | |
2987 | return 1; | |
2988 | ||
c906108c SS |
2989 | /* Get the unwind descriptor corresponding to PC, return zero |
2990 | if no unwind was found. */ | |
2991 | u = find_unwind_entry (pc); | |
2992 | if (!u) | |
2993 | return 0; | |
2994 | ||
2995 | /* If this isn't a linker stub, then return now. */ | |
2996 | if (u->stub_unwind.stub_type == 0) | |
2997 | return 0; | |
2998 | ||
2999 | /* By definition a long-branch stub is a call stub. */ | |
3000 | if (u->stub_unwind.stub_type == LONG_BRANCH) | |
3001 | return 1; | |
3002 | ||
3003 | /* The call and return path execute the same instructions within | |
3004 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3005 | trampoline. */ | |
3006 | if (u->stub_unwind.stub_type == IMPORT) | |
3007 | return 1; | |
3008 | ||
3009 | /* Parameter relocation stubs always have a call path and may have a | |
3010 | return path. */ | |
3011 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3012 | || u->stub_unwind.stub_type == EXPORT) | |
3013 | { | |
3014 | CORE_ADDR addr; | |
3015 | ||
3016 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3017 | or the end of the stub. */ |
c906108c SS |
3018 | for (addr = pc; addr <= u->region_end; addr += 4) |
3019 | { | |
3020 | unsigned long insn; | |
3021 | ||
3022 | insn = read_memory_integer (addr, 4); | |
3023 | ||
3024 | /* Does it look like a bl? If so then it's the call path, if | |
3025 | we find a bv or be first, then we're on the return path. */ | |
3026 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3027 | return 1; | |
3028 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3029 | || (insn & 0xfc000000) == 0xe0000000) | |
3030 | return 0; | |
3031 | } | |
3032 | ||
3033 | /* Should never happen. */ | |
104c1213 JM |
3034 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3035 | return 0; | |
c906108c SS |
3036 | } |
3037 | ||
3038 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3039 | return 0; |
c906108c SS |
3040 | } |
3041 | ||
3042 | /* Return one if PC is in the return path of a trampoline, else return zero. | |
3043 | ||
3044 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3045 | just shared library trampolines (import, export). */ | |
3046 | ||
3047 | int | |
fba45db2 | 3048 | in_solib_return_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3049 | { |
3050 | struct unwind_table_entry *u; | |
3051 | ||
3052 | /* Get the unwind descriptor corresponding to PC, return zero | |
3053 | if no unwind was found. */ | |
3054 | u = find_unwind_entry (pc); | |
3055 | if (!u) | |
3056 | return 0; | |
3057 | ||
3058 | /* If this isn't a linker stub or it's just a long branch stub, then | |
3059 | return zero. */ | |
3060 | if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) | |
3061 | return 0; | |
3062 | ||
3063 | /* The call and return path execute the same instructions within | |
3064 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3065 | trampoline. */ | |
3066 | if (u->stub_unwind.stub_type == IMPORT) | |
3067 | return 1; | |
3068 | ||
3069 | /* Parameter relocation stubs always have a call path and may have a | |
3070 | return path. */ | |
3071 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3072 | || u->stub_unwind.stub_type == EXPORT) | |
3073 | { | |
3074 | CORE_ADDR addr; | |
3075 | ||
3076 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3077 | or the end of the stub. */ |
c906108c SS |
3078 | for (addr = pc; addr <= u->region_end; addr += 4) |
3079 | { | |
3080 | unsigned long insn; | |
3081 | ||
3082 | insn = read_memory_integer (addr, 4); | |
3083 | ||
3084 | /* Does it look like a bl? If so then it's the call path, if | |
3085 | we find a bv or be first, then we're on the return path. */ | |
3086 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3087 | return 0; | |
3088 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3089 | || (insn & 0xfc000000) == 0xe0000000) | |
3090 | return 1; | |
3091 | } | |
3092 | ||
3093 | /* Should never happen. */ | |
104c1213 JM |
3094 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3095 | return 0; | |
c906108c SS |
3096 | } |
3097 | ||
3098 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3099 | return 0; |
c906108c SS |
3100 | |
3101 | } | |
3102 | ||
3103 | /* Figure out if PC is in a trampoline, and if so find out where | |
3104 | the trampoline will jump to. If not in a trampoline, return zero. | |
3105 | ||
3106 | Simple code examination probably is not a good idea since the code | |
3107 | sequences in trampolines can also appear in user code. | |
3108 | ||
3109 | We use unwinds and information from the minimal symbol table to | |
3110 | determine when we're in a trampoline. This won't work for ELF | |
3111 | (yet) since it doesn't create stub unwind entries. Whether or | |
3112 | not ELF will create stub unwinds or normal unwinds for linker | |
3113 | stubs is still being debated. | |
3114 | ||
3115 | This should handle simple calls through dyncall or sr4export, | |
3116 | long calls, argument relocation stubs, and dyncall/sr4export | |
3117 | calling an argument relocation stub. It even handles some stubs | |
3118 | used in dynamic executables. */ | |
3119 | ||
c906108c | 3120 | CORE_ADDR |
fba45db2 | 3121 | skip_trampoline_code (CORE_ADDR pc, char *name) |
c906108c SS |
3122 | { |
3123 | long orig_pc = pc; | |
3124 | long prev_inst, curr_inst, loc; | |
3125 | static CORE_ADDR dyncall = 0; | |
3126 | static CORE_ADDR dyncall_external = 0; | |
3127 | static CORE_ADDR sr4export = 0; | |
3128 | struct minimal_symbol *msym; | |
3129 | struct unwind_table_entry *u; | |
3130 | ||
c2c6d25f JM |
3131 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
3132 | new exec file */ | |
c906108c SS |
3133 | |
3134 | if (!dyncall) | |
3135 | { | |
3136 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3137 | if (msym) | |
3138 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
3139 | else | |
3140 | dyncall = -1; | |
3141 | } | |
3142 | ||
3143 | if (!dyncall_external) | |
3144 | { | |
3145 | msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); | |
3146 | if (msym) | |
3147 | dyncall_external = SYMBOL_VALUE_ADDRESS (msym); | |
3148 | else | |
3149 | dyncall_external = -1; | |
3150 | } | |
3151 | ||
3152 | if (!sr4export) | |
3153 | { | |
3154 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3155 | if (msym) | |
3156 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
3157 | else | |
3158 | sr4export = -1; | |
3159 | } | |
3160 | ||
3161 | /* Addresses passed to dyncall may *NOT* be the actual address | |
3162 | of the function. So we may have to do something special. */ | |
3163 | if (pc == dyncall) | |
3164 | { | |
3165 | pc = (CORE_ADDR) read_register (22); | |
3166 | ||
3167 | /* If bit 30 (counting from the left) is on, then pc is the address of | |
c5aa993b JM |
3168 | the PLT entry for this function, not the address of the function |
3169 | itself. Bit 31 has meaning too, but only for MPE. */ | |
c906108c | 3170 | if (pc & 0x2) |
53a5351d | 3171 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3172 | } |
3173 | if (pc == dyncall_external) | |
3174 | { | |
3175 | pc = (CORE_ADDR) read_register (22); | |
53a5351d | 3176 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3177 | } |
3178 | else if (pc == sr4export) | |
3179 | pc = (CORE_ADDR) (read_register (22)); | |
3180 | ||
3181 | /* Get the unwind descriptor corresponding to PC, return zero | |
3182 | if no unwind was found. */ | |
3183 | u = find_unwind_entry (pc); | |
3184 | if (!u) | |
3185 | return 0; | |
3186 | ||
3187 | /* If this isn't a linker stub, then return now. */ | |
3188 | /* elz: attention here! (FIXME) because of a compiler/linker | |
3189 | error, some stubs which should have a non zero stub_unwind.stub_type | |
3190 | have unfortunately a value of zero. So this function would return here | |
3191 | as if we were not in a trampoline. To fix this, we go look at the partial | |
3192 | symbol information, which reports this guy as a stub. | |
3193 | (FIXME): Unfortunately, we are not that lucky: it turns out that the | |
3194 | partial symbol information is also wrong sometimes. This is because | |
3195 | when it is entered (somread.c::som_symtab_read()) it can happen that | |
3196 | if the type of the symbol (from the som) is Entry, and the symbol is | |
3197 | in a shared library, then it can also be a trampoline. This would | |
3198 | be OK, except that I believe the way they decide if we are ina shared library | |
3199 | does not work. SOOOO..., even if we have a regular function w/o trampolines | |
3200 | its minimal symbol can be assigned type mst_solib_trampoline. | |
3201 | Also, if we find that the symbol is a real stub, then we fix the unwind | |
3202 | descriptor, and define the stub type to be EXPORT. | |
c5aa993b | 3203 | Hopefully this is correct most of the times. */ |
c906108c | 3204 | if (u->stub_unwind.stub_type == 0) |
c5aa993b | 3205 | { |
c906108c SS |
3206 | |
3207 | /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed | |
3208 | we can delete all the code which appears between the lines */ | |
3209 | /*--------------------------------------------------------------------------*/ | |
c5aa993b | 3210 | msym = lookup_minimal_symbol_by_pc (pc); |
c906108c | 3211 | |
c5aa993b JM |
3212 | if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) |
3213 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3214 | ||
3215 | else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) | |
3216 | { | |
3217 | struct objfile *objfile; | |
3218 | struct minimal_symbol *msymbol; | |
3219 | int function_found = 0; | |
3220 | ||
3221 | /* go look if there is another minimal symbol with the same name as | |
3222 | this one, but with type mst_text. This would happen if the msym | |
3223 | is an actual trampoline, in which case there would be another | |
3224 | symbol with the same name corresponding to the real function */ | |
3225 | ||
3226 | ALL_MSYMBOLS (objfile, msymbol) | |
3227 | { | |
3228 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
3229 | && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym))) | |
3230 | { | |
3231 | function_found = 1; | |
3232 | break; | |
3233 | } | |
3234 | } | |
3235 | ||
3236 | if (function_found) | |
3237 | /* the type of msym is correct (mst_solib_trampoline), but | |
3238 | the unwind info is wrong, so set it to the correct value */ | |
3239 | u->stub_unwind.stub_type = EXPORT; | |
3240 | else | |
3241 | /* the stub type info in the unwind is correct (this is not a | |
3242 | trampoline), but the msym type information is wrong, it | |
3243 | should be mst_text. So we need to fix the msym, and also | |
3244 | get out of this function */ | |
3245 | { | |
3246 | MSYMBOL_TYPE (msym) = mst_text; | |
3247 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3248 | } | |
3249 | } | |
c906108c | 3250 | |
c906108c | 3251 | /*--------------------------------------------------------------------------*/ |
c5aa993b | 3252 | } |
c906108c SS |
3253 | |
3254 | /* It's a stub. Search for a branch and figure out where it goes. | |
3255 | Note we have to handle multi insn branch sequences like ldil;ble. | |
3256 | Most (all?) other branches can be determined by examining the contents | |
3257 | of certain registers and the stack. */ | |
3258 | ||
3259 | loc = pc; | |
3260 | curr_inst = 0; | |
3261 | prev_inst = 0; | |
3262 | while (1) | |
3263 | { | |
3264 | /* Make sure we haven't walked outside the range of this stub. */ | |
3265 | if (u != find_unwind_entry (loc)) | |
3266 | { | |
3267 | warning ("Unable to find branch in linker stub"); | |
3268 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3269 | } | |
3270 | ||
3271 | prev_inst = curr_inst; | |
3272 | curr_inst = read_memory_integer (loc, 4); | |
3273 | ||
3274 | /* Does it look like a branch external using %r1? Then it's the | |
c5aa993b | 3275 | branch from the stub to the actual function. */ |
c906108c SS |
3276 | if ((curr_inst & 0xffe0e000) == 0xe0202000) |
3277 | { | |
3278 | /* Yup. See if the previous instruction loaded | |
3279 | a value into %r1. If so compute and return the jump address. */ | |
3280 | if ((prev_inst & 0xffe00000) == 0x20200000) | |
3281 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
3282 | else | |
3283 | { | |
3284 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
3285 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3286 | } | |
3287 | } | |
3288 | ||
3289 | /* Does it look like a be 0(sr0,%r21)? OR | |
3290 | Does it look like a be, n 0(sr0,%r21)? OR | |
3291 | Does it look like a bve (r21)? (this is on PA2.0) | |
3292 | Does it look like a bve, n(r21)? (this is also on PA2.0) | |
3293 | That's the branch from an | |
c5aa993b | 3294 | import stub to an export stub. |
c906108c | 3295 | |
c5aa993b JM |
3296 | It is impossible to determine the target of the branch via |
3297 | simple examination of instructions and/or data (consider | |
3298 | that the address in the plabel may be the address of the | |
3299 | bind-on-reference routine in the dynamic loader). | |
c906108c | 3300 | |
c5aa993b | 3301 | So we have try an alternative approach. |
c906108c | 3302 | |
c5aa993b JM |
3303 | Get the name of the symbol at our current location; it should |
3304 | be a stub symbol with the same name as the symbol in the | |
3305 | shared library. | |
c906108c | 3306 | |
c5aa993b JM |
3307 | Then lookup a minimal symbol with the same name; we should |
3308 | get the minimal symbol for the target routine in the shared | |
3309 | library as those take precedence of import/export stubs. */ | |
c906108c | 3310 | if ((curr_inst == 0xe2a00000) || |
c5aa993b JM |
3311 | (curr_inst == 0xe2a00002) || |
3312 | (curr_inst == 0xeaa0d000) || | |
3313 | (curr_inst == 0xeaa0d002)) | |
c906108c SS |
3314 | { |
3315 | struct minimal_symbol *stubsym, *libsym; | |
3316 | ||
3317 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
3318 | if (stubsym == NULL) | |
3319 | { | |
ce414844 | 3320 | warning ("Unable to find symbol for 0x%lx", loc); |
c906108c SS |
3321 | return orig_pc == pc ? 0 : pc & ~0x3; |
3322 | } | |
3323 | ||
3324 | libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL); | |
3325 | if (libsym == NULL) | |
3326 | { | |
3327 | warning ("Unable to find library symbol for %s\n", | |
3328 | SYMBOL_NAME (stubsym)); | |
3329 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3330 | } | |
3331 | ||
3332 | return SYMBOL_VALUE (libsym); | |
3333 | } | |
3334 | ||
3335 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a | |
c5aa993b JM |
3336 | branch from the stub to the actual function. */ |
3337 | /*elz */ | |
c906108c SS |
3338 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 |
3339 | || (curr_inst & 0xffe0e000) == 0xe8000000 | |
c5aa993b | 3340 | || (curr_inst & 0xffe0e000) == 0xe800A000) |
c906108c SS |
3341 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
3342 | ||
3343 | /* Does it look like bv (rp)? Note this depends on the | |
c5aa993b JM |
3344 | current stack pointer being the same as the stack |
3345 | pointer in the stub itself! This is a branch on from the | |
3346 | stub back to the original caller. */ | |
3347 | /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ | |
c906108c SS |
3348 | else if ((curr_inst & 0xffe0f000) == 0xe840c000) |
3349 | { | |
3350 | /* Yup. See if the previous instruction loaded | |
3351 | rp from sp - 8. */ | |
3352 | if (prev_inst == 0x4bc23ff1) | |
3353 | return (read_memory_integer | |
3354 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
3355 | else | |
3356 | { | |
3357 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
3358 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3359 | } | |
3360 | } | |
3361 | ||
3362 | /* elz: added this case to capture the new instruction | |
3363 | at the end of the return part of an export stub used by | |
3364 | the PA2.0: BVE, n (rp) */ | |
3365 | else if ((curr_inst & 0xffe0f000) == 0xe840d000) | |
3366 | { | |
c5aa993b | 3367 | return (read_memory_integer |
53a5351d | 3368 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3369 | } |
3370 | ||
3371 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
c5aa993b | 3372 | the original caller from the stub. Used in dynamic executables. */ |
c906108c SS |
3373 | else if (curr_inst == 0xe0400002) |
3374 | { | |
3375 | /* The value we jump to is sitting in sp - 24. But that's | |
3376 | loaded several instructions before the be instruction. | |
3377 | I guess we could check for the previous instruction being | |
3378 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
c5aa993b | 3379 | return (read_memory_integer |
53a5351d | 3380 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3381 | } |
3382 | ||
3383 | /* Haven't found the branch yet, but we're still in the stub. | |
c5aa993b | 3384 | Keep looking. */ |
c906108c SS |
3385 | loc += 4; |
3386 | } | |
3387 | } | |
3388 | ||
3389 | ||
3390 | /* For the given instruction (INST), return any adjustment it makes | |
3391 | to the stack pointer or zero for no adjustment. | |
3392 | ||
3393 | This only handles instructions commonly found in prologues. */ | |
3394 | ||
3395 | static int | |
fba45db2 | 3396 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
3397 | { |
3398 | /* This must persist across calls. */ | |
3399 | static int save_high21; | |
3400 | ||
3401 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
3402 | if ((inst & 0xffffc000) == 0x37de0000) | |
3403 | return extract_14 (inst); | |
3404 | ||
3405 | /* stwm X,D(sp) */ | |
3406 | if ((inst & 0xffe00000) == 0x6fc00000) | |
3407 | return extract_14 (inst); | |
3408 | ||
104c1213 JM |
3409 | /* std,ma X,D(sp) */ |
3410 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 3411 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 3412 | |
c906108c SS |
3413 | /* addil high21,%r1; ldo low11,(%r1),%r30) |
3414 | save high bits in save_high21 for later use. */ | |
3415 | if ((inst & 0xffe00000) == 0x28200000) | |
3416 | { | |
3417 | save_high21 = extract_21 (inst); | |
3418 | return 0; | |
3419 | } | |
3420 | ||
3421 | if ((inst & 0xffff0000) == 0x343e0000) | |
3422 | return save_high21 + extract_14 (inst); | |
3423 | ||
3424 | /* fstws as used by the HP compilers. */ | |
3425 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
3426 | return extract_5_load (inst); | |
3427 | ||
3428 | /* No adjustment. */ | |
3429 | return 0; | |
3430 | } | |
3431 | ||
3432 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
3433 | ||
3434 | static int | |
fba45db2 | 3435 | is_branch (unsigned long inst) |
c906108c SS |
3436 | { |
3437 | switch (inst >> 26) | |
3438 | { | |
3439 | case 0x20: | |
3440 | case 0x21: | |
3441 | case 0x22: | |
3442 | case 0x23: | |
7be570e7 | 3443 | case 0x27: |
c906108c SS |
3444 | case 0x28: |
3445 | case 0x29: | |
3446 | case 0x2a: | |
3447 | case 0x2b: | |
7be570e7 | 3448 | case 0x2f: |
c906108c SS |
3449 | case 0x30: |
3450 | case 0x31: | |
3451 | case 0x32: | |
3452 | case 0x33: | |
3453 | case 0x38: | |
3454 | case 0x39: | |
3455 | case 0x3a: | |
7be570e7 | 3456 | case 0x3b: |
c906108c SS |
3457 | return 1; |
3458 | ||
3459 | default: | |
3460 | return 0; | |
3461 | } | |
3462 | } | |
3463 | ||
3464 | /* Return the register number for a GR which is saved by INST or | |
3465 | zero it INST does not save a GR. */ | |
3466 | ||
3467 | static int | |
fba45db2 | 3468 | inst_saves_gr (unsigned long inst) |
c906108c SS |
3469 | { |
3470 | /* Does it look like a stw? */ | |
7be570e7 JM |
3471 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
3472 | || (inst >> 26) == 0x1f | |
3473 | || ((inst >> 26) == 0x1f | |
3474 | && ((inst >> 6) == 0xa))) | |
3475 | return extract_5R_store (inst); | |
3476 | ||
3477 | /* Does it look like a std? */ | |
3478 | if ((inst >> 26) == 0x1c | |
3479 | || ((inst >> 26) == 0x03 | |
3480 | && ((inst >> 6) & 0xf) == 0xb)) | |
c906108c SS |
3481 | return extract_5R_store (inst); |
3482 | ||
3483 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
3484 | if ((inst >> 26) == 0x1b) | |
3485 | return extract_5R_store (inst); | |
3486 | ||
3487 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
3488 | too. */ | |
7be570e7 JM |
3489 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
3490 | || ((inst >> 26) == 0x3 | |
3491 | && (((inst >> 6) & 0xf) == 0x8 | |
3492 | || (inst >> 6) & 0xf) == 0x9)) | |
c906108c | 3493 | return extract_5R_store (inst); |
c5aa993b | 3494 | |
c906108c SS |
3495 | return 0; |
3496 | } | |
3497 | ||
3498 | /* Return the register number for a FR which is saved by INST or | |
3499 | zero it INST does not save a FR. | |
3500 | ||
3501 | Note we only care about full 64bit register stores (that's the only | |
3502 | kind of stores the prologue will use). | |
3503 | ||
3504 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
3505 | ||
3506 | static int | |
fba45db2 | 3507 | inst_saves_fr (unsigned long inst) |
c906108c | 3508 | { |
7be570e7 | 3509 | /* is this an FSTD ? */ |
c906108c SS |
3510 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
3511 | return extract_5r_store (inst); | |
7be570e7 JM |
3512 | if ((inst & 0xfc000002) == 0x70000002) |
3513 | return extract_5R_store (inst); | |
3514 | /* is this an FSTW ? */ | |
c906108c SS |
3515 | if ((inst & 0xfc00df80) == 0x24001200) |
3516 | return extract_5r_store (inst); | |
7be570e7 JM |
3517 | if ((inst & 0xfc000002) == 0x7c000000) |
3518 | return extract_5R_store (inst); | |
c906108c SS |
3519 | return 0; |
3520 | } | |
3521 | ||
3522 | /* Advance PC across any function entry prologue instructions | |
3523 | to reach some "real" code. | |
3524 | ||
3525 | Use information in the unwind table to determine what exactly should | |
3526 | be in the prologue. */ | |
3527 | ||
3528 | ||
3529 | CORE_ADDR | |
fba45db2 | 3530 | skip_prologue_hard_way (CORE_ADDR pc) |
c906108c SS |
3531 | { |
3532 | char buf[4]; | |
3533 | CORE_ADDR orig_pc = pc; | |
3534 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3535 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
3536 | struct unwind_table_entry *u; | |
3537 | ||
3538 | restart_gr = 0; | |
3539 | restart_fr = 0; | |
3540 | ||
3541 | restart: | |
3542 | u = find_unwind_entry (pc); | |
3543 | if (!u) | |
3544 | return pc; | |
3545 | ||
c5aa993b | 3546 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
3547 | if ((pc & ~0x3) != u->region_start) |
3548 | return pc; | |
3549 | ||
3550 | /* This is how much of a frame adjustment we need to account for. */ | |
3551 | stack_remaining = u->Total_frame_size << 3; | |
3552 | ||
3553 | /* Magic register saves we want to know about. */ | |
3554 | save_rp = u->Save_RP; | |
3555 | save_sp = u->Save_SP; | |
3556 | ||
3557 | /* An indication that args may be stored into the stack. Unfortunately | |
3558 | the HPUX compilers tend to set this in cases where no args were | |
3559 | stored too!. */ | |
3560 | args_stored = 1; | |
3561 | ||
3562 | /* Turn the Entry_GR field into a bitmask. */ | |
3563 | save_gr = 0; | |
3564 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3565 | { | |
3566 | /* Frame pointer gets saved into a special location. */ | |
3567 | if (u->Save_SP && i == FP_REGNUM) | |
3568 | continue; | |
3569 | ||
3570 | save_gr |= (1 << i); | |
3571 | } | |
3572 | save_gr &= ~restart_gr; | |
3573 | ||
3574 | /* Turn the Entry_FR field into a bitmask too. */ | |
3575 | save_fr = 0; | |
3576 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3577 | save_fr |= (1 << i); | |
3578 | save_fr &= ~restart_fr; | |
3579 | ||
3580 | /* Loop until we find everything of interest or hit a branch. | |
3581 | ||
3582 | For unoptimized GCC code and for any HP CC code this will never ever | |
3583 | examine any user instructions. | |
3584 | ||
3585 | For optimzied GCC code we're faced with problems. GCC will schedule | |
3586 | its prologue and make prologue instructions available for delay slot | |
3587 | filling. The end result is user code gets mixed in with the prologue | |
3588 | and a prologue instruction may be in the delay slot of the first branch | |
3589 | or call. | |
3590 | ||
3591 | Some unexpected things are expected with debugging optimized code, so | |
3592 | we allow this routine to walk past user instructions in optimized | |
3593 | GCC code. */ | |
3594 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
3595 | || args_stored) | |
3596 | { | |
3597 | unsigned int reg_num; | |
3598 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
3599 | unsigned long old_save_rp, old_save_sp, next_inst; | |
3600 | ||
3601 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 3602 | (only for HPC). */ |
c906108c SS |
3603 | old_save_gr = save_gr; |
3604 | old_save_fr = save_fr; | |
3605 | old_save_rp = save_rp; | |
3606 | old_save_sp = save_sp; | |
3607 | old_stack_remaining = stack_remaining; | |
3608 | ||
3609 | status = target_read_memory (pc, buf, 4); | |
3610 | inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3611 | |
c906108c SS |
3612 | /* Yow! */ |
3613 | if (status != 0) | |
3614 | return pc; | |
3615 | ||
3616 | /* Note the interesting effects of this instruction. */ | |
3617 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3618 | ||
7be570e7 JM |
3619 | /* There are limited ways to store the return pointer into the |
3620 | stack. */ | |
3621 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
3622 | save_rp = 0; |
3623 | ||
104c1213 | 3624 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 3625 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
3626 | if ((inst & 0xffffc000) == 0x6fc10000 |
3627 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
3628 | save_sp = 0; |
3629 | ||
6426a772 JM |
3630 | /* Are we loading some register with an offset from the argument |
3631 | pointer? */ | |
3632 | if ((inst & 0xffe00000) == 0x37a00000 | |
3633 | || (inst & 0xffffffe0) == 0x081d0240) | |
3634 | { | |
3635 | pc += 4; | |
3636 | continue; | |
3637 | } | |
3638 | ||
c906108c SS |
3639 | /* Account for general and floating-point register saves. */ |
3640 | reg_num = inst_saves_gr (inst); | |
3641 | save_gr &= ~(1 << reg_num); | |
3642 | ||
3643 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3644 | Unfortunately args_stored only tells us that some arguments |
3645 | where stored into the stack. Not how many or what kind! | |
c906108c | 3646 | |
c5aa993b JM |
3647 | This is a kludge as on the HP compiler sets this bit and it |
3648 | never does prologue scheduling. So once we see one, skip past | |
3649 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 3650 | |
c5aa993b JM |
3651 | FIXME. Can still die if we have a mix of GR and FR argument |
3652 | stores! */ | |
6426a772 | 3653 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 3654 | { |
6426a772 | 3655 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
3656 | { |
3657 | pc += 4; | |
3658 | status = target_read_memory (pc, buf, 4); | |
3659 | inst = extract_unsigned_integer (buf, 4); | |
3660 | if (status != 0) | |
3661 | return pc; | |
3662 | reg_num = inst_saves_gr (inst); | |
3663 | } | |
3664 | args_stored = 0; | |
3665 | continue; | |
3666 | } | |
3667 | ||
3668 | reg_num = inst_saves_fr (inst); | |
3669 | save_fr &= ~(1 << reg_num); | |
3670 | ||
3671 | status = target_read_memory (pc + 4, buf, 4); | |
3672 | next_inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3673 | |
c906108c SS |
3674 | /* Yow! */ |
3675 | if (status != 0) | |
3676 | return pc; | |
3677 | ||
3678 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 3679 | save. */ |
c906108c SS |
3680 | if ((inst & 0xfc000000) == 0x34000000 |
3681 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 3682 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3683 | { |
3684 | /* So we drop into the code below in a reasonable state. */ | |
3685 | reg_num = inst_saves_fr (next_inst); | |
3686 | pc -= 4; | |
3687 | } | |
3688 | ||
3689 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3690 | This is a kludge as on the HP compiler sets this bit and it |
3691 | never does prologue scheduling. So once we see one, skip past | |
3692 | all of them. */ | |
6426a772 | 3693 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 3694 | { |
6426a772 | 3695 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3696 | { |
3697 | pc += 8; | |
3698 | status = target_read_memory (pc, buf, 4); | |
3699 | inst = extract_unsigned_integer (buf, 4); | |
3700 | if (status != 0) | |
3701 | return pc; | |
3702 | if ((inst & 0xfc000000) != 0x34000000) | |
3703 | break; | |
3704 | status = target_read_memory (pc + 4, buf, 4); | |
3705 | next_inst = extract_unsigned_integer (buf, 4); | |
3706 | if (status != 0) | |
3707 | return pc; | |
3708 | reg_num = inst_saves_fr (next_inst); | |
3709 | } | |
3710 | args_stored = 0; | |
3711 | continue; | |
3712 | } | |
3713 | ||
3714 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 3715 | instruction is in the delay slot of the first call/branch. */ |
c906108c SS |
3716 | if (is_branch (inst)) |
3717 | break; | |
3718 | ||
3719 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
3720 | arguments were stored into the stack (boo hiss). This could |
3721 | cause this code to then skip a bunch of user insns (up to the | |
3722 | first branch). | |
3723 | ||
3724 | To combat this we try to identify when args_stored was bogusly | |
3725 | set and clear it. We only do this when args_stored is nonzero, | |
3726 | all other resources are accounted for, and nothing changed on | |
3727 | this pass. */ | |
c906108c | 3728 | if (args_stored |
c5aa993b | 3729 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
3730 | && old_save_gr == save_gr && old_save_fr == save_fr |
3731 | && old_save_rp == save_rp && old_save_sp == save_sp | |
3732 | && old_stack_remaining == stack_remaining) | |
3733 | break; | |
c5aa993b | 3734 | |
c906108c SS |
3735 | /* Bump the PC. */ |
3736 | pc += 4; | |
3737 | } | |
3738 | ||
3739 | /* We've got a tenative location for the end of the prologue. However | |
3740 | because of limitations in the unwind descriptor mechanism we may | |
3741 | have went too far into user code looking for the save of a register | |
3742 | that does not exist. So, if there registers we expected to be saved | |
3743 | but never were, mask them out and restart. | |
3744 | ||
3745 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 3746 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
3747 | { |
3748 | pc = orig_pc; | |
3749 | restart_gr = save_gr; | |
3750 | restart_fr = save_fr; | |
3751 | goto restart; | |
3752 | } | |
3753 | ||
3754 | return pc; | |
3755 | } | |
3756 | ||
3757 | ||
7be570e7 JM |
3758 | /* Return the address of the PC after the last prologue instruction if |
3759 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
3760 | |
3761 | static CORE_ADDR | |
fba45db2 | 3762 | after_prologue (CORE_ADDR pc) |
c906108c SS |
3763 | { |
3764 | struct symtab_and_line sal; | |
3765 | CORE_ADDR func_addr, func_end; | |
3766 | struct symbol *f; | |
3767 | ||
7be570e7 JM |
3768 | /* If we can not find the symbol in the partial symbol table, then |
3769 | there is no hope we can determine the function's start address | |
3770 | with this code. */ | |
c906108c | 3771 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 3772 | return 0; |
c906108c | 3773 | |
7be570e7 | 3774 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
3775 | sal = find_pc_line (func_addr, 0); |
3776 | ||
7be570e7 JM |
3777 | /* There are only two cases to consider. First, the end of the source line |
3778 | is within the function bounds. In that case we return the end of the | |
3779 | source line. Second is the end of the source line extends beyond the | |
3780 | bounds of the current function. We need to use the slow code to | |
3781 | examine instructions in that case. | |
c906108c | 3782 | |
7be570e7 JM |
3783 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
3784 | the wrong thing to do. In fact, it should be entirely possible for this | |
3785 | function to always return zero since the slow instruction scanning code | |
3786 | is supposed to *always* work. If it does not, then it is a bug. */ | |
3787 | if (sal.end < func_end) | |
3788 | return sal.end; | |
c5aa993b | 3789 | else |
7be570e7 | 3790 | return 0; |
c906108c SS |
3791 | } |
3792 | ||
3793 | /* To skip prologues, I use this predicate. Returns either PC itself | |
3794 | if the code at PC does not look like a function prologue; otherwise | |
3795 | returns an address that (if we're lucky) follows the prologue. If | |
3796 | LENIENT, then we must skip everything which is involved in setting | |
3797 | up the frame (it's OK to skip more, just so long as we don't skip | |
3798 | anything which might clobber the registers which are being saved. | |
3799 | Currently we must not skip more on the alpha, but we might the lenient | |
3800 | stuff some day. */ | |
3801 | ||
3802 | CORE_ADDR | |
fba45db2 | 3803 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 3804 | { |
c5aa993b JM |
3805 | unsigned long inst; |
3806 | int offset; | |
3807 | CORE_ADDR post_prologue_pc; | |
3808 | char buf[4]; | |
c906108c | 3809 | |
c5aa993b JM |
3810 | /* See if we can determine the end of the prologue via the symbol table. |
3811 | If so, then return either PC, or the PC after the prologue, whichever | |
3812 | is greater. */ | |
c906108c | 3813 | |
c5aa993b | 3814 | post_prologue_pc = after_prologue (pc); |
c906108c | 3815 | |
7be570e7 JM |
3816 | /* If after_prologue returned a useful address, then use it. Else |
3817 | fall back on the instruction skipping code. | |
3818 | ||
3819 | Some folks have claimed this causes problems because the breakpoint | |
3820 | may be the first instruction of the prologue. If that happens, then | |
3821 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
3822 | if (post_prologue_pc != 0) |
3823 | return max (pc, post_prologue_pc); | |
c5aa993b JM |
3824 | else |
3825 | return (skip_prologue_hard_way (pc)); | |
c906108c SS |
3826 | } |
3827 | ||
3828 | /* Put here the code to store, into a struct frame_saved_regs, | |
3829 | the addresses of the saved registers of frame described by FRAME_INFO. | |
3830 | This includes special registers such as pc and fp saved in special | |
3831 | ways in the stack frame. sp is even more special: | |
3832 | the address we return for it IS the sp for the next frame. */ | |
3833 | ||
3834 | void | |
fba45db2 KB |
3835 | hppa_frame_find_saved_regs (struct frame_info *frame_info, |
3836 | struct frame_saved_regs *frame_saved_regs) | |
c906108c SS |
3837 | { |
3838 | CORE_ADDR pc; | |
3839 | struct unwind_table_entry *u; | |
3840 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3841 | int status, i, reg; | |
3842 | char buf[4]; | |
3843 | int fp_loc = -1; | |
d4f3574e | 3844 | int final_iteration; |
c906108c SS |
3845 | |
3846 | /* Zero out everything. */ | |
3847 | memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); | |
3848 | ||
3849 | /* Call dummy frames always look the same, so there's no need to | |
3850 | examine the dummy code to determine locations of saved registers; | |
3851 | instead, let find_dummy_frame_regs fill in the correct offsets | |
3852 | for the saved registers. */ | |
3853 | if ((frame_info->pc >= frame_info->frame | |
53a5351d JM |
3854 | && frame_info->pc <= (frame_info->frame |
3855 | /* A call dummy is sized in words, but it is | |
3856 | actually a series of instructions. Account | |
3857 | for that scaling factor. */ | |
3858 | + ((REGISTER_SIZE / INSTRUCTION_SIZE) | |
3859 | * CALL_DUMMY_LENGTH) | |
3860 | /* Similarly we have to account for 64bit | |
3861 | wide register saves. */ | |
3862 | + (32 * REGISTER_SIZE) | |
3863 | /* We always consider FP regs 8 bytes long. */ | |
3864 | + (NUM_REGS - FP0_REGNUM) * 8 | |
3865 | /* Similarly we have to account for 64bit | |
3866 | wide register saves. */ | |
3867 | + (6 * REGISTER_SIZE)))) | |
c906108c SS |
3868 | find_dummy_frame_regs (frame_info, frame_saved_regs); |
3869 | ||
3870 | /* Interrupt handlers are special too. They lay out the register | |
3871 | state in the exact same order as the register numbers in GDB. */ | |
3872 | if (pc_in_interrupt_handler (frame_info->pc)) | |
3873 | { | |
3874 | for (i = 0; i < NUM_REGS; i++) | |
3875 | { | |
3876 | /* SP is a little special. */ | |
3877 | if (i == SP_REGNUM) | |
3878 | frame_saved_regs->regs[SP_REGNUM] | |
53a5351d JM |
3879 | = read_memory_integer (frame_info->frame + SP_REGNUM * 4, |
3880 | TARGET_PTR_BIT / 8); | |
c906108c SS |
3881 | else |
3882 | frame_saved_regs->regs[i] = frame_info->frame + i * 4; | |
3883 | } | |
3884 | return; | |
3885 | } | |
3886 | ||
3887 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP | |
3888 | /* Handle signal handler callers. */ | |
3889 | if (frame_info->signal_handler_caller) | |
3890 | { | |
3891 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); | |
3892 | return; | |
3893 | } | |
3894 | #endif | |
3895 | ||
3896 | /* Get the starting address of the function referred to by the PC | |
3897 | saved in frame. */ | |
3898 | pc = get_pc_function_start (frame_info->pc); | |
3899 | ||
3900 | /* Yow! */ | |
3901 | u = find_unwind_entry (pc); | |
3902 | if (!u) | |
3903 | return; | |
3904 | ||
3905 | /* This is how much of a frame adjustment we need to account for. */ | |
3906 | stack_remaining = u->Total_frame_size << 3; | |
3907 | ||
3908 | /* Magic register saves we want to know about. */ | |
3909 | save_rp = u->Save_RP; | |
3910 | save_sp = u->Save_SP; | |
3911 | ||
3912 | /* Turn the Entry_GR field into a bitmask. */ | |
3913 | save_gr = 0; | |
3914 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3915 | { | |
3916 | /* Frame pointer gets saved into a special location. */ | |
3917 | if (u->Save_SP && i == FP_REGNUM) | |
3918 | continue; | |
3919 | ||
3920 | save_gr |= (1 << i); | |
3921 | } | |
3922 | ||
3923 | /* Turn the Entry_FR field into a bitmask too. */ | |
3924 | save_fr = 0; | |
3925 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3926 | save_fr |= (1 << i); | |
3927 | ||
3928 | /* The frame always represents the value of %sp at entry to the | |
3929 | current function (and is thus equivalent to the "saved" stack | |
3930 | pointer. */ | |
3931 | frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; | |
3932 | ||
3933 | /* Loop until we find everything of interest or hit a branch. | |
3934 | ||
3935 | For unoptimized GCC code and for any HP CC code this will never ever | |
3936 | examine any user instructions. | |
3937 | ||
7be570e7 | 3938 | For optimized GCC code we're faced with problems. GCC will schedule |
c906108c SS |
3939 | its prologue and make prologue instructions available for delay slot |
3940 | filling. The end result is user code gets mixed in with the prologue | |
3941 | and a prologue instruction may be in the delay slot of the first branch | |
3942 | or call. | |
3943 | ||
3944 | Some unexpected things are expected with debugging optimized code, so | |
3945 | we allow this routine to walk past user instructions in optimized | |
3946 | GCC code. */ | |
d4f3574e SS |
3947 | final_iteration = 0; |
3948 | while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
3949 | && pc <= frame_info->pc) | |
c906108c SS |
3950 | { |
3951 | status = target_read_memory (pc, buf, 4); | |
3952 | inst = extract_unsigned_integer (buf, 4); | |
3953 | ||
3954 | /* Yow! */ | |
3955 | if (status != 0) | |
3956 | return; | |
3957 | ||
3958 | /* Note the interesting effects of this instruction. */ | |
3959 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3960 | ||
104c1213 JM |
3961 | /* There are limited ways to store the return pointer into the |
3962 | stack. */ | |
c2c6d25f | 3963 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
c906108c SS |
3964 | { |
3965 | save_rp = 0; | |
3966 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; | |
3967 | } | |
c2c6d25f JM |
3968 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
3969 | { | |
3970 | save_rp = 0; | |
3971 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16; | |
3972 | } | |
c906108c | 3973 | |
104c1213 JM |
3974 | /* Note if we saved SP into the stack. This also happens to indicate |
3975 | the location of the saved frame pointer. */ | |
c2c6d25f JM |
3976 | if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ |
3977 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
104c1213 JM |
3978 | { |
3979 | frame_saved_regs->regs[FP_REGNUM] = frame_info->frame; | |
3980 | save_sp = 0; | |
3981 | } | |
c906108c SS |
3982 | |
3983 | /* Account for general and floating-point register saves. */ | |
3984 | reg = inst_saves_gr (inst); | |
3985 | if (reg >= 3 && reg <= 18 | |
3986 | && (!u->Save_SP || reg != FP_REGNUM)) | |
3987 | { | |
3988 | save_gr &= ~(1 << reg); | |
3989 | ||
3990 | /* stwm with a positive displacement is a *post modify*. */ | |
3991 | if ((inst >> 26) == 0x1b | |
3992 | && extract_14 (inst) >= 0) | |
3993 | frame_saved_regs->regs[reg] = frame_info->frame; | |
104c1213 JM |
3994 | /* A std has explicit post_modify forms. */ |
3995 | else if ((inst & 0xfc00000c0) == 0x70000008) | |
3996 | frame_saved_regs->regs[reg] = frame_info->frame; | |
c906108c SS |
3997 | else |
3998 | { | |
104c1213 JM |
3999 | CORE_ADDR offset; |
4000 | ||
4001 | if ((inst >> 26) == 0x1c) | |
d4f3574e | 4002 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 JM |
4003 | else if ((inst >> 26) == 0x03) |
4004 | offset = low_sign_extend (inst & 0x1f, 5); | |
4005 | else | |
4006 | offset = extract_14 (inst); | |
4007 | ||
c906108c SS |
4008 | /* Handle code with and without frame pointers. */ |
4009 | if (u->Save_SP) | |
4010 | frame_saved_regs->regs[reg] | |
104c1213 | 4011 | = frame_info->frame + offset; |
c906108c SS |
4012 | else |
4013 | frame_saved_regs->regs[reg] | |
104c1213 JM |
4014 | = (frame_info->frame + (u->Total_frame_size << 3) |
4015 | + offset); | |
c906108c SS |
4016 | } |
4017 | } | |
4018 | ||
4019 | ||
4020 | /* GCC handles callee saved FP regs a little differently. | |
4021 | ||
c5aa993b JM |
4022 | It emits an instruction to put the value of the start of |
4023 | the FP store area into %r1. It then uses fstds,ma with | |
4024 | a basereg of %r1 for the stores. | |
c906108c | 4025 | |
c5aa993b JM |
4026 | HP CC emits them at the current stack pointer modifying |
4027 | the stack pointer as it stores each register. */ | |
c906108c SS |
4028 | |
4029 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4030 | if ((inst & 0xffffc000) == 0x34610000 | |
4031 | || (inst & 0xffffc000) == 0x37c10000) | |
4032 | fp_loc = extract_14 (inst); | |
c5aa993b | 4033 | |
c906108c SS |
4034 | reg = inst_saves_fr (inst); |
4035 | if (reg >= 12 && reg <= 21) | |
4036 | { | |
4037 | /* Note +4 braindamage below is necessary because the FP status | |
4038 | registers are internally 8 registers rather than the expected | |
4039 | 4 registers. */ | |
4040 | save_fr &= ~(1 << reg); | |
4041 | if (fp_loc == -1) | |
4042 | { | |
4043 | /* 1st HP CC FP register store. After this instruction | |
c5aa993b JM |
4044 | we've set enough state that the GCC and HPCC code are |
4045 | both handled in the same manner. */ | |
c906108c SS |
4046 | frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; |
4047 | fp_loc = 8; | |
4048 | } | |
4049 | else | |
4050 | { | |
4051 | frame_saved_regs->regs[reg + FP0_REGNUM + 4] | |
4052 | = frame_info->frame + fp_loc; | |
4053 | fp_loc += 8; | |
4054 | } | |
4055 | } | |
4056 | ||
39f77062 | 4057 | /* Quit if we hit any kind of branch the previous iteration. */ |
d4f3574e | 4058 | if (final_iteration) |
c906108c SS |
4059 | break; |
4060 | ||
d4f3574e SS |
4061 | /* We want to look precisely one instruction beyond the branch |
4062 | if we have not found everything yet. */ | |
4063 | if (is_branch (inst)) | |
4064 | final_iteration = 1; | |
4065 | ||
c906108c SS |
4066 | /* Bump the PC. */ |
4067 | pc += 4; | |
4068 | } | |
4069 | } | |
4070 | ||
4071 | ||
4072 | /* Exception handling support for the HP-UX ANSI C++ compiler. | |
4073 | The compiler (aCC) provides a callback for exception events; | |
4074 | GDB can set a breakpoint on this callback and find out what | |
4075 | exception event has occurred. */ | |
4076 | ||
4077 | /* The name of the hook to be set to point to the callback function */ | |
c5aa993b JM |
4078 | static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook"; |
4079 | /* The name of the function to be used to set the hook value */ | |
4080 | static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value"; | |
4081 | /* The name of the callback function in end.o */ | |
c906108c | 4082 | static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback"; |
c5aa993b JM |
4083 | /* Name of function in end.o on which a break is set (called by above) */ |
4084 | static char HP_ACC_EH_break[] = "__d_eh_break"; | |
4085 | /* Name of flag (in end.o) that enables catching throws */ | |
4086 | static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw"; | |
4087 | /* Name of flag (in end.o) that enables catching catching */ | |
4088 | static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch"; | |
4089 | /* The enum used by aCC */ | |
4090 | typedef enum | |
4091 | { | |
4092 | __EH_NOTIFY_THROW, | |
4093 | __EH_NOTIFY_CATCH | |
4094 | } | |
4095 | __eh_notification; | |
c906108c SS |
4096 | |
4097 | /* Is exception-handling support available with this executable? */ | |
4098 | static int hp_cxx_exception_support = 0; | |
4099 | /* Has the initialize function been run? */ | |
4100 | int hp_cxx_exception_support_initialized = 0; | |
4101 | /* Similar to above, but imported from breakpoint.c -- non-target-specific */ | |
4102 | extern int exception_support_initialized; | |
4103 | /* Address of __eh_notify_hook */ | |
a0b3c4fd | 4104 | static CORE_ADDR eh_notify_hook_addr = 0; |
c906108c | 4105 | /* Address of __d_eh_notify_callback */ |
a0b3c4fd | 4106 | static CORE_ADDR eh_notify_callback_addr = 0; |
c906108c | 4107 | /* Address of __d_eh_break */ |
a0b3c4fd | 4108 | static CORE_ADDR eh_break_addr = 0; |
c906108c | 4109 | /* Address of __d_eh_catch_catch */ |
a0b3c4fd | 4110 | static CORE_ADDR eh_catch_catch_addr = 0; |
c906108c | 4111 | /* Address of __d_eh_catch_throw */ |
a0b3c4fd | 4112 | static CORE_ADDR eh_catch_throw_addr = 0; |
c906108c | 4113 | /* Sal for __d_eh_break */ |
a0b3c4fd | 4114 | static struct symtab_and_line *break_callback_sal = 0; |
c906108c SS |
4115 | |
4116 | /* Code in end.c expects __d_pid to be set in the inferior, | |
4117 | otherwise __d_eh_notify_callback doesn't bother to call | |
4118 | __d_eh_break! So we poke the pid into this symbol | |
4119 | ourselves. | |
4120 | 0 => success | |
c5aa993b | 4121 | 1 => failure */ |
c906108c | 4122 | int |
fba45db2 | 4123 | setup_d_pid_in_inferior (void) |
c906108c SS |
4124 | { |
4125 | CORE_ADDR anaddr; | |
c5aa993b JM |
4126 | struct minimal_symbol *msymbol; |
4127 | char buf[4]; /* FIXME 32x64? */ | |
4128 | ||
c906108c SS |
4129 | /* Slam the pid of the process into __d_pid; failing is only a warning! */ |
4130 | msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile); | |
4131 | if (msymbol == NULL) | |
4132 | { | |
4133 | warning ("Unable to find __d_pid symbol in object file."); | |
4134 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4135 | return 1; | |
4136 | } | |
4137 | ||
4138 | anaddr = SYMBOL_VALUE_ADDRESS (msymbol); | |
39f77062 | 4139 | store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */ |
c5aa993b | 4140 | if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */ |
c906108c SS |
4141 | { |
4142 | warning ("Unable to write __d_pid"); | |
4143 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4144 | return 1; | |
4145 | } | |
4146 | return 0; | |
4147 | } | |
4148 | ||
4149 | /* Initialize exception catchpoint support by looking for the | |
4150 | necessary hooks/callbacks in end.o, etc., and set the hook value to | |
4151 | point to the required debug function | |
4152 | ||
4153 | Return 0 => failure | |
c5aa993b | 4154 | 1 => success */ |
c906108c SS |
4155 | |
4156 | static int | |
fba45db2 | 4157 | initialize_hp_cxx_exception_support (void) |
c906108c SS |
4158 | { |
4159 | struct symtabs_and_lines sals; | |
c5aa993b JM |
4160 | struct cleanup *old_chain; |
4161 | struct cleanup *canonical_strings_chain = NULL; | |
c906108c | 4162 | int i; |
c5aa993b JM |
4163 | char *addr_start; |
4164 | char *addr_end = NULL; | |
4165 | char **canonical = (char **) NULL; | |
c906108c | 4166 | int thread = -1; |
c5aa993b JM |
4167 | struct symbol *sym = NULL; |
4168 | struct minimal_symbol *msym = NULL; | |
4169 | struct objfile *objfile; | |
c906108c SS |
4170 | asection *shlib_info; |
4171 | ||
4172 | /* Detect and disallow recursion. On HP-UX with aCC, infinite | |
4173 | recursion is a possibility because finding the hook for exception | |
4174 | callbacks involves making a call in the inferior, which means | |
4175 | re-inserting breakpoints which can re-invoke this code */ | |
4176 | ||
c5aa993b JM |
4177 | static int recurse = 0; |
4178 | if (recurse > 0) | |
c906108c SS |
4179 | { |
4180 | hp_cxx_exception_support_initialized = 0; | |
4181 | exception_support_initialized = 0; | |
4182 | return 0; | |
4183 | } | |
4184 | ||
4185 | hp_cxx_exception_support = 0; | |
4186 | ||
4187 | /* First check if we have seen any HP compiled objects; if not, | |
4188 | it is very unlikely that HP's idiosyncratic callback mechanism | |
4189 | for exception handling debug support will be available! | |
4190 | This will percolate back up to breakpoint.c, where our callers | |
4191 | will decide to try the g++ exception-handling support instead. */ | |
4192 | if (!hp_som_som_object_present) | |
4193 | return 0; | |
c5aa993b | 4194 | |
c906108c SS |
4195 | /* We have a SOM executable with SOM debug info; find the hooks */ |
4196 | ||
4197 | /* First look for the notify hook provided by aCC runtime libs */ | |
4198 | /* If we find this symbol, we conclude that the executable must | |
4199 | have HP aCC exception support built in. If this symbol is not | |
4200 | found, even though we're a HP SOM-SOM file, we may have been | |
4201 | built with some other compiler (not aCC). This results percolates | |
4202 | back up to our callers in breakpoint.c which can decide to | |
4203 | try the g++ style of exception support instead. | |
4204 | If this symbol is found but the other symbols we require are | |
4205 | not found, there is something weird going on, and g++ support | |
4206 | should *not* be tried as an alternative. | |
c5aa993b | 4207 | |
c906108c SS |
4208 | ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined. |
4209 | ASSUMPTION: HP aCC and g++ modules cannot be linked together. */ | |
c5aa993b | 4210 | |
c906108c SS |
4211 | /* libCsup has this hook; it'll usually be non-debuggable */ |
4212 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL); | |
4213 | if (msym) | |
4214 | { | |
4215 | eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4216 | hp_cxx_exception_support = 1; | |
c5aa993b | 4217 | } |
c906108c SS |
4218 | else |
4219 | { | |
4220 | warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook); | |
4221 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4222 | warning ("GDB will be unable to intercept exception events."); | |
4223 | eh_notify_hook_addr = 0; | |
4224 | hp_cxx_exception_support = 0; | |
4225 | return 0; | |
4226 | } | |
4227 | ||
c906108c | 4228 | /* Next look for the notify callback routine in end.o */ |
c5aa993b | 4229 | /* This is always available in the SOM symbol dictionary if end.o is linked in */ |
c906108c SS |
4230 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL); |
4231 | if (msym) | |
4232 | { | |
4233 | eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4234 | hp_cxx_exception_support = 1; | |
c5aa993b JM |
4235 | } |
4236 | else | |
c906108c SS |
4237 | { |
4238 | warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback); | |
4239 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4240 | warning ("GDB will be unable to intercept exception events."); | |
4241 | eh_notify_callback_addr = 0; | |
4242 | return 0; | |
4243 | } | |
4244 | ||
53a5351d | 4245 | #ifndef GDB_TARGET_IS_HPPA_20W |
c906108c SS |
4246 | /* Check whether the executable is dynamically linked or archive bound */ |
4247 | /* With an archive-bound executable we can use the raw addresses we find | |
4248 | for the callback function, etc. without modification. For an executable | |
4249 | with shared libraries, we have to do more work to find the plabel, which | |
4250 | can be the target of a call through $$dyncall from the aCC runtime support | |
4251 | library (libCsup) which is linked shared by default by aCC. */ | |
4252 | /* This test below was copied from somsolib.c/somread.c. It may not be a very | |
c5aa993b | 4253 | reliable one to test that an executable is linked shared. pai/1997-07-18 */ |
c906108c SS |
4254 | shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$"); |
4255 | if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0)) | |
4256 | { | |
4257 | /* The minsym we have has the local code address, but that's not the | |
4258 | plabel that can be used by an inter-load-module call. */ | |
4259 | /* Find solib handle for main image (which has end.o), and use that | |
4260 | and the min sym as arguments to __d_shl_get() (which does the equivalent | |
c5aa993b | 4261 | of shl_findsym()) to find the plabel. */ |
c906108c SS |
4262 | |
4263 | args_for_find_stub args; | |
4264 | static char message[] = "Error while finding exception callback hook:\n"; | |
c5aa993b | 4265 | |
c906108c SS |
4266 | args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr); |
4267 | args.msym = msym; | |
a0b3c4fd | 4268 | args.return_val = 0; |
c5aa993b | 4269 | |
c906108c | 4270 | recurse++; |
a0b3c4fd JM |
4271 | catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message, |
4272 | RETURN_MASK_ALL); | |
4273 | eh_notify_callback_addr = args.return_val; | |
c906108c | 4274 | recurse--; |
c5aa993b | 4275 | |
c906108c | 4276 | exception_catchpoints_are_fragile = 1; |
c5aa993b | 4277 | |
c906108c | 4278 | if (!eh_notify_callback_addr) |
c5aa993b JM |
4279 | { |
4280 | /* We can get here either if there is no plabel in the export list | |
1faa59a8 | 4281 | for the main image, or if something strange happened (?) */ |
c5aa993b JM |
4282 | warning ("Couldn't find a plabel (indirect function label) for the exception callback."); |
4283 | warning ("GDB will not be able to intercept exception events."); | |
4284 | return 0; | |
4285 | } | |
c906108c SS |
4286 | } |
4287 | else | |
4288 | exception_catchpoints_are_fragile = 0; | |
53a5351d | 4289 | #endif |
c906108c | 4290 | |
c906108c | 4291 | /* Now, look for the breakpointable routine in end.o */ |
c5aa993b | 4292 | /* This should also be available in the SOM symbol dict. if end.o linked in */ |
c906108c SS |
4293 | msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL); |
4294 | if (msym) | |
4295 | { | |
4296 | eh_break_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4297 | hp_cxx_exception_support = 1; | |
c5aa993b | 4298 | } |
c906108c SS |
4299 | else |
4300 | { | |
4301 | warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break); | |
4302 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4303 | warning ("GDB will be unable to intercept exception events."); | |
4304 | eh_break_addr = 0; | |
4305 | return 0; | |
4306 | } | |
4307 | ||
c906108c SS |
4308 | /* Next look for the catch enable flag provided in end.o */ |
4309 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
c5aa993b JM |
4310 | VAR_NAMESPACE, 0, (struct symtab **) NULL); |
4311 | if (sym) /* sometimes present in debug info */ | |
c906108c SS |
4312 | { |
4313 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4314 | hp_cxx_exception_support = 1; | |
4315 | } | |
c5aa993b JM |
4316 | else |
4317 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4318 | { |
4319 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL); | |
4320 | if (msym) | |
c5aa993b JM |
4321 | { |
4322 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4323 | hp_cxx_exception_support = 1; | |
4324 | } | |
c906108c | 4325 | else |
c5aa993b JM |
4326 | { |
4327 | warning ("Unable to enable interception of exception catches."); | |
4328 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4329 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4330 | return 0; | |
4331 | } | |
c906108c SS |
4332 | } |
4333 | ||
c906108c SS |
4334 | /* Next look for the catch enable flag provided end.o */ |
4335 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
c5aa993b JM |
4336 | VAR_NAMESPACE, 0, (struct symtab **) NULL); |
4337 | if (sym) /* sometimes present in debug info */ | |
c906108c SS |
4338 | { |
4339 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4340 | hp_cxx_exception_support = 1; | |
4341 | } | |
c5aa993b JM |
4342 | else |
4343 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4344 | { |
4345 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL); | |
4346 | if (msym) | |
c5aa993b JM |
4347 | { |
4348 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4349 | hp_cxx_exception_support = 1; | |
4350 | } | |
c906108c | 4351 | else |
c5aa993b JM |
4352 | { |
4353 | warning ("Unable to enable interception of exception throws."); | |
4354 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4355 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4356 | return 0; | |
4357 | } | |
c906108c SS |
4358 | } |
4359 | ||
c5aa993b JM |
4360 | /* Set the flags */ |
4361 | hp_cxx_exception_support = 2; /* everything worked so far */ | |
c906108c SS |
4362 | hp_cxx_exception_support_initialized = 1; |
4363 | exception_support_initialized = 1; | |
4364 | ||
4365 | return 1; | |
4366 | } | |
4367 | ||
4368 | /* Target operation for enabling or disabling interception of | |
4369 | exception events. | |
4370 | KIND is either EX_EVENT_THROW or EX_EVENT_CATCH | |
4371 | ENABLE is either 0 (disable) or 1 (enable). | |
4372 | Return value is NULL if no support found; | |
4373 | -1 if something went wrong, | |
4374 | or a pointer to a symtab/line struct if the breakpointable | |
c5aa993b | 4375 | address was found. */ |
c906108c | 4376 | |
c5aa993b | 4377 | struct symtab_and_line * |
fba45db2 | 4378 | child_enable_exception_callback (enum exception_event_kind kind, int enable) |
c906108c SS |
4379 | { |
4380 | char buf[4]; | |
4381 | ||
4382 | if (!exception_support_initialized || !hp_cxx_exception_support_initialized) | |
4383 | if (!initialize_hp_cxx_exception_support ()) | |
4384 | return NULL; | |
4385 | ||
4386 | switch (hp_cxx_exception_support) | |
4387 | { | |
c5aa993b JM |
4388 | case 0: |
4389 | /* Assuming no HP support at all */ | |
4390 | return NULL; | |
4391 | case 1: | |
4392 | /* HP support should be present, but something went wrong */ | |
4393 | return (struct symtab_and_line *) -1; /* yuck! */ | |
4394 | /* there may be other cases in the future */ | |
c906108c | 4395 | } |
c5aa993b | 4396 | |
c906108c | 4397 | /* Set the EH hook to point to the callback routine */ |
c5aa993b | 4398 | store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */ |
c906108c | 4399 | /* pai: (temp) FIXME should there be a pack operation first? */ |
c5aa993b | 4400 | if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */ |
c906108c SS |
4401 | { |
4402 | warning ("Could not write to target memory for exception event callback."); | |
4403 | warning ("Interception of exception events may not work."); | |
c5aa993b | 4404 | return (struct symtab_and_line *) -1; |
c906108c SS |
4405 | } |
4406 | if (enable) | |
4407 | { | |
c5aa993b | 4408 | /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */ |
39f77062 | 4409 | if (PIDGET (inferior_ptid) > 0) |
c5aa993b JM |
4410 | { |
4411 | if (setup_d_pid_in_inferior ()) | |
4412 | return (struct symtab_and_line *) -1; | |
4413 | } | |
c906108c | 4414 | else |
c5aa993b | 4415 | { |
104c1213 JM |
4416 | warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); |
4417 | return (struct symtab_and_line *) -1; | |
c5aa993b | 4418 | } |
c906108c | 4419 | } |
c5aa993b | 4420 | |
c906108c SS |
4421 | switch (kind) |
4422 | { | |
c5aa993b JM |
4423 | case EX_EVENT_THROW: |
4424 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4425 | if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */ | |
4426 | { | |
4427 | warning ("Couldn't enable exception throw interception."); | |
4428 | return (struct symtab_and_line *) -1; | |
4429 | } | |
4430 | break; | |
4431 | case EX_EVENT_CATCH: | |
4432 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4433 | if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */ | |
4434 | { | |
4435 | warning ("Couldn't enable exception catch interception."); | |
4436 | return (struct symtab_and_line *) -1; | |
4437 | } | |
4438 | break; | |
104c1213 JM |
4439 | default: |
4440 | error ("Request to enable unknown or unsupported exception event."); | |
c906108c | 4441 | } |
c5aa993b | 4442 | |
c906108c SS |
4443 | /* Copy break address into new sal struct, malloc'ing if needed. */ |
4444 | if (!break_callback_sal) | |
4445 | { | |
4446 | break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line)); | |
4447 | } | |
fe39c653 | 4448 | init_sal (break_callback_sal); |
c906108c SS |
4449 | break_callback_sal->symtab = NULL; |
4450 | break_callback_sal->pc = eh_break_addr; | |
4451 | break_callback_sal->line = 0; | |
4452 | break_callback_sal->end = eh_break_addr; | |
c5aa993b | 4453 | |
c906108c SS |
4454 | return break_callback_sal; |
4455 | } | |
4456 | ||
c5aa993b | 4457 | /* Record some information about the current exception event */ |
c906108c | 4458 | static struct exception_event_record current_ex_event; |
c5aa993b JM |
4459 | /* Convenience struct */ |
4460 | static struct symtab_and_line null_symtab_and_line = | |
4461 | {NULL, 0, 0, 0}; | |
c906108c SS |
4462 | |
4463 | /* Report current exception event. Returns a pointer to a record | |
4464 | that describes the kind of the event, where it was thrown from, | |
4465 | and where it will be caught. More information may be reported | |
c5aa993b | 4466 | in the future */ |
c906108c | 4467 | struct exception_event_record * |
fba45db2 | 4468 | child_get_current_exception_event (void) |
c906108c | 4469 | { |
c5aa993b JM |
4470 | CORE_ADDR event_kind; |
4471 | CORE_ADDR throw_addr; | |
4472 | CORE_ADDR catch_addr; | |
c906108c SS |
4473 | struct frame_info *fi, *curr_frame; |
4474 | int level = 1; | |
4475 | ||
c5aa993b | 4476 | curr_frame = get_current_frame (); |
c906108c SS |
4477 | if (!curr_frame) |
4478 | return (struct exception_event_record *) NULL; | |
4479 | ||
4480 | /* Go up one frame to __d_eh_notify_callback, because at the | |
4481 | point when this code is executed, there's garbage in the | |
4482 | arguments of __d_eh_break. */ | |
4483 | fi = find_relative_frame (curr_frame, &level); | |
4484 | if (level != 0) | |
4485 | return (struct exception_event_record *) NULL; | |
4486 | ||
0f7d239c | 4487 | select_frame (fi); |
c906108c SS |
4488 | |
4489 | /* Read in the arguments */ | |
4490 | /* __d_eh_notify_callback() is called with 3 arguments: | |
c5aa993b JM |
4491 | 1. event kind catch or throw |
4492 | 2. the target address if known | |
4493 | 3. a flag -- not sure what this is. pai/1997-07-17 */ | |
4494 | event_kind = read_register (ARG0_REGNUM); | |
c906108c SS |
4495 | catch_addr = read_register (ARG1_REGNUM); |
4496 | ||
4497 | /* Now go down to a user frame */ | |
4498 | /* For a throw, __d_eh_break is called by | |
c5aa993b JM |
4499 | __d_eh_notify_callback which is called by |
4500 | __notify_throw which is called | |
4501 | from user code. | |
c906108c | 4502 | For a catch, __d_eh_break is called by |
c5aa993b JM |
4503 | __d_eh_notify_callback which is called by |
4504 | <stackwalking stuff> which is called by | |
4505 | __throw__<stuff> or __rethrow_<stuff> which is called | |
4506 | from user code. */ | |
4507 | /* FIXME: Don't use such magic numbers; search for the frames */ | |
c906108c SS |
4508 | level = (event_kind == EX_EVENT_THROW) ? 3 : 4; |
4509 | fi = find_relative_frame (curr_frame, &level); | |
4510 | if (level != 0) | |
4511 | return (struct exception_event_record *) NULL; | |
4512 | ||
0f7d239c | 4513 | select_frame (fi); |
c906108c SS |
4514 | throw_addr = fi->pc; |
4515 | ||
4516 | /* Go back to original (top) frame */ | |
0f7d239c | 4517 | select_frame (curr_frame); |
c906108c SS |
4518 | |
4519 | current_ex_event.kind = (enum exception_event_kind) event_kind; | |
4520 | current_ex_event.throw_sal = find_pc_line (throw_addr, 1); | |
4521 | current_ex_event.catch_sal = find_pc_line (catch_addr, 1); | |
4522 | ||
4523 | return ¤t_ex_event; | |
4524 | } | |
4525 | ||
c906108c | 4526 | static void |
fba45db2 | 4527 | unwind_command (char *exp, int from_tty) |
c906108c SS |
4528 | { |
4529 | CORE_ADDR address; | |
4530 | struct unwind_table_entry *u; | |
4531 | ||
4532 | /* If we have an expression, evaluate it and use it as the address. */ | |
4533 | ||
4534 | if (exp != 0 && *exp != 0) | |
4535 | address = parse_and_eval_address (exp); | |
4536 | else | |
4537 | return; | |
4538 | ||
4539 | u = find_unwind_entry (address); | |
4540 | ||
4541 | if (!u) | |
4542 | { | |
4543 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
4544 | return; | |
4545 | } | |
4546 | ||
ce414844 AC |
4547 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
4548 | paddr_nz (host_pointer_to_address (u))); | |
c906108c SS |
4549 | |
4550 | printf_unfiltered ("\tregion_start = "); | |
4551 | print_address (u->region_start, gdb_stdout); | |
4552 | ||
4553 | printf_unfiltered ("\n\tregion_end = "); | |
4554 | print_address (u->region_end, gdb_stdout); | |
4555 | ||
c906108c | 4556 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
4557 | |
4558 | printf_unfiltered ("\n\tflags ="); | |
4559 | pif (Cannot_unwind); | |
4560 | pif (Millicode); | |
4561 | pif (Millicode_save_sr0); | |
4562 | pif (Entry_SR); | |
4563 | pif (Args_stored); | |
4564 | pif (Variable_Frame); | |
4565 | pif (Separate_Package_Body); | |
4566 | pif (Frame_Extension_Millicode); | |
4567 | pif (Stack_Overflow_Check); | |
4568 | pif (Two_Instruction_SP_Increment); | |
4569 | pif (Ada_Region); | |
4570 | pif (Save_SP); | |
4571 | pif (Save_RP); | |
4572 | pif (Save_MRP_in_frame); | |
4573 | pif (extn_ptr_defined); | |
4574 | pif (Cleanup_defined); | |
4575 | pif (MPE_XL_interrupt_marker); | |
4576 | pif (HP_UX_interrupt_marker); | |
4577 | pif (Large_frame); | |
4578 | ||
4579 | putchar_unfiltered ('\n'); | |
4580 | ||
c906108c | 4581 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
4582 | |
4583 | pin (Region_description); | |
4584 | pin (Entry_FR); | |
4585 | pin (Entry_GR); | |
4586 | pin (Total_frame_size); | |
4587 | } | |
c906108c SS |
4588 | |
4589 | #ifdef PREPARE_TO_PROCEED | |
4590 | ||
4591 | /* If the user has switched threads, and there is a breakpoint | |
4592 | at the old thread's pc location, then switch to that thread | |
4593 | and return TRUE, else return FALSE and don't do a thread | |
4594 | switch (or rather, don't seem to have done a thread switch). | |
4595 | ||
4596 | Ptrace-based gdb will always return FALSE to the thread-switch | |
4597 | query, and thus also to PREPARE_TO_PROCEED. | |
4598 | ||
4599 | The important thing is whether there is a BPT instruction, | |
4600 | not how many user breakpoints there are. So we have to worry | |
4601 | about things like these: | |
4602 | ||
4603 | o Non-bp stop -- NO | |
4604 | ||
4605 | o User hits bp, no switch -- NO | |
4606 | ||
4607 | o User hits bp, switches threads -- YES | |
4608 | ||
4609 | o User hits bp, deletes bp, switches threads -- NO | |
4610 | ||
4611 | o User hits bp, deletes one of two or more bps | |
c5aa993b | 4612 | at that PC, user switches threads -- YES |
c906108c SS |
4613 | |
4614 | o Plus, since we're buffering events, the user may have hit a | |
c5aa993b JM |
4615 | breakpoint, deleted the breakpoint and then gotten another |
4616 | hit on that same breakpoint on another thread which | |
4617 | actually hit before the delete. (FIXME in breakpoint.c | |
4618 | so that "dead" breakpoints are ignored?) -- NO | |
c906108c SS |
4619 | |
4620 | For these reasons, we have to violate information hiding and | |
4621 | call "breakpoint_here_p". If core gdb thinks there is a bpt | |
4622 | here, that's what counts, as core gdb is the one which is | |
e02bc4cc DS |
4623 | putting the BPT instruction in and taking it out. |
4624 | ||
4625 | Note that this implementation is potentially redundant now that | |
8849f47d JL |
4626 | default_prepare_to_proceed() has been added. |
4627 | ||
4628 | FIXME This may not support switching threads after Ctrl-C | |
4629 | correctly. The default implementation does support this. */ | |
c906108c | 4630 | int |
fba45db2 | 4631 | hppa_prepare_to_proceed (void) |
c906108c SS |
4632 | { |
4633 | pid_t old_thread; | |
4634 | pid_t current_thread; | |
4635 | ||
39f77062 | 4636 | old_thread = hppa_switched_threads (PIDGET (inferior_ptid)); |
c906108c SS |
4637 | if (old_thread != 0) |
4638 | { | |
4639 | /* Switched over from "old_thread". Try to do | |
4640 | as little work as possible, 'cause mostly | |
4641 | we're going to switch back. */ | |
4642 | CORE_ADDR new_pc; | |
c5aa993b | 4643 | CORE_ADDR old_pc = read_pc (); |
c906108c SS |
4644 | |
4645 | /* Yuk, shouldn't use global to specify current | |
4646 | thread. But that's how gdb does it. */ | |
39f77062 KB |
4647 | current_thread = PIDGET (inferior_ptid); |
4648 | inferior_ptid = pid_to_ptid (old_thread); | |
c906108c | 4649 | |
c5aa993b JM |
4650 | new_pc = read_pc (); |
4651 | if (new_pc != old_pc /* If at same pc, no need */ | |
c906108c | 4652 | && breakpoint_here_p (new_pc)) |
c5aa993b | 4653 | { |
c906108c | 4654 | /* User hasn't deleted the BP. |
c5aa993b | 4655 | Return TRUE, finishing switch to "old_thread". */ |
c906108c SS |
4656 | flush_cached_frames (); |
4657 | registers_changed (); | |
4658 | #if 0 | |
c5aa993b | 4659 | printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n", |
39f77062 | 4660 | current_thread, PIDGET (inferior_ptid)); |
c906108c | 4661 | #endif |
c5aa993b | 4662 | |
c906108c | 4663 | return 1; |
c5aa993b | 4664 | } |
c906108c SS |
4665 | |
4666 | /* Otherwise switch back to the user-chosen thread. */ | |
39f77062 | 4667 | inferior_ptid = pid_to_ptid (current_thread); |
c5aa993b | 4668 | new_pc = read_pc (); /* Re-prime register cache */ |
c906108c SS |
4669 | } |
4670 | ||
4671 | return 0; | |
4672 | } | |
4673 | #endif /* PREPARE_TO_PROCEED */ | |
4674 | ||
c2c6d25f | 4675 | void |
fba45db2 | 4676 | hppa_skip_permanent_breakpoint (void) |
c2c6d25f JM |
4677 | { |
4678 | /* To step over a breakpoint instruction on the PA takes some | |
4679 | fiddling with the instruction address queue. | |
4680 | ||
4681 | When we stop at a breakpoint, the IA queue front (the instruction | |
4682 | we're executing now) points at the breakpoint instruction, and | |
4683 | the IA queue back (the next instruction to execute) points to | |
4684 | whatever instruction we would execute after the breakpoint, if it | |
4685 | were an ordinary instruction. This is the case even if the | |
4686 | breakpoint is in the delay slot of a branch instruction. | |
4687 | ||
4688 | Clearly, to step past the breakpoint, we need to set the queue | |
4689 | front to the back. But what do we put in the back? What | |
4690 | instruction comes after that one? Because of the branch delay | |
4691 | slot, the next insn is always at the back + 4. */ | |
4692 | write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM)); | |
4693 | write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM)); | |
4694 | ||
4695 | write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4); | |
4696 | /* We can leave the tail's space the same, since there's no jump. */ | |
4697 | } | |
4698 | ||
1cdb71fe JL |
4699 | /* Copy the function value from VALBUF into the proper location |
4700 | for a function return. | |
4701 | ||
4702 | Called only in the context of the "return" command. */ | |
4703 | ||
4704 | void | |
4705 | hppa_store_return_value (struct type *type, char *valbuf) | |
4706 | { | |
4707 | /* For software floating point, the return value goes into the | |
4708 | integer registers. But we do not have any flag to key this on, | |
4709 | so we always store the value into the integer registers. | |
4710 | ||
4711 | If its a float value, then we also store it into the floating | |
4712 | point registers. */ | |
4713 | write_register_bytes (REGISTER_BYTE (28) | |
4714 | + (TYPE_LENGTH (type) > 4 | |
4715 | ? (8 - TYPE_LENGTH (type)) | |
4716 | : (4 - TYPE_LENGTH (type))), | |
4717 | valbuf, | |
4718 | TYPE_LENGTH (type)); | |
4719 | if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT) | |
4720 | write_register_bytes (REGISTER_BYTE (FP4_REGNUM), | |
4721 | valbuf, | |
4722 | TYPE_LENGTH (type)); | |
4723 | } | |
4724 | ||
4725 | /* Copy the function's return value into VALBUF. | |
4726 | ||
4727 | This function is called only in the context of "target function calls", | |
4728 | ie. when the debugger forces a function to be called in the child, and | |
4729 | when the debugger forces a fucntion to return prematurely via the | |
4730 | "return" command. */ | |
4731 | ||
4732 | void | |
4733 | hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
4734 | { | |
4735 | if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT) | |
4736 | memcpy (valbuf, | |
4737 | (char *)regbuf + REGISTER_BYTE (FP4_REGNUM), | |
4738 | TYPE_LENGTH (type)); | |
4739 | else | |
4740 | memcpy (valbuf, | |
4741 | ((char *)regbuf | |
4742 | + REGISTER_BYTE (28) | |
4743 | + (TYPE_LENGTH (type) > 4 | |
4744 | ? (8 - TYPE_LENGTH (type)) | |
4745 | : (4 - TYPE_LENGTH (type)))), | |
4746 | TYPE_LENGTH (type)); | |
4747 | } | |
4facf7e8 | 4748 | |
d709c020 JB |
4749 | int |
4750 | hppa_reg_struct_has_addr (int gcc_p, struct type *type) | |
4751 | { | |
4752 | /* On the PA, any pass-by-value structure > 8 bytes is actually passed | |
4753 | via a pointer regardless of its type or the compiler used. */ | |
4754 | return (TYPE_LENGTH (type) > 8); | |
4755 | } | |
4756 | ||
4757 | int | |
4758 | hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs) | |
4759 | { | |
4760 | /* Stack grows upward */ | |
4761 | return (lhs > rhs); | |
4762 | } | |
4763 | ||
4764 | CORE_ADDR | |
4765 | hppa_stack_align (CORE_ADDR sp) | |
4766 | { | |
4767 | /* elz: adjust the quantity to the next highest value which is | |
4768 | 64-bit aligned. This is used in valops.c, when the sp is adjusted. | |
4769 | On hppa the sp must always be kept 64-bit aligned */ | |
4770 | return ((sp % 8) ? (sp + 7) & -8 : sp); | |
4771 | } | |
4772 | ||
4773 | int | |
4774 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
4775 | { | |
4776 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
4777 | ||
4778 | An example of this occurs when an a.out is linked against a foo.sl. | |
4779 | The foo.sl defines a global bar(), and the a.out declares a signature | |
4780 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
4781 | its address in another call. | |
4782 | ||
4783 | If you have this scenario and attempt to "break bar" before running, | |
4784 | gdb will find a minimal symbol for bar() in the a.out. But that | |
4785 | symbol's address will be negative. What this appears to denote is | |
4786 | an index backwards from the base of the procedure linkage table (PLT) | |
4787 | into the data linkage table (DLT), the end of which is contiguous | |
4788 | with the start of the PLT. This is clearly not a valid address for | |
4789 | us to set a breakpoint on. | |
4790 | ||
4791 | Note that one must be careful in how one checks for a negative address. | |
4792 | 0xc0000000 is a legitimate address of something in a shared text | |
4793 | segment, for example. Since I don't know what the possible range | |
4794 | is of these "really, truly negative" addresses that come from the | |
4795 | minimal symbols, I'm resorting to the gross hack of checking the | |
4796 | top byte of the address for all 1's. Sigh. */ | |
4797 | ||
4798 | return (!target_has_stack && (pc & 0xFF000000)); | |
4799 | } | |
4800 | ||
4801 | int | |
4802 | hppa_instruction_nullified (void) | |
4803 | { | |
4804 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
4805 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
4806 | semi-mechanical multiarching-related changes. */ | |
4807 | const int ipsw = (int) read_register (IPSW_REGNUM); | |
4808 | const int flags = (int) read_register (FLAGS_REGNUM); | |
4809 | ||
4810 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
4811 | } | |
4812 | ||
4813 | /* Index within the register vector of the first byte of the space i | |
4814 | used for register REG_NR. */ | |
4815 | ||
4816 | int | |
4817 | hppa_register_byte (int reg_nr) | |
4818 | { | |
4819 | return reg_nr * 4; | |
4820 | } | |
4821 | ||
4822 | /* Return the GDB type object for the "standard" data type of data | |
4823 | in register N. */ | |
4824 | ||
4825 | struct type * | |
4826 | hppa_register_virtual_type (int reg_nr) | |
4827 | { | |
4828 | if (reg_nr < FP4_REGNUM) | |
4829 | return builtin_type_int; | |
4830 | else | |
4831 | return builtin_type_float; | |
4832 | } | |
4833 | ||
4834 | /* Store the address of the place in which to copy the structure the | |
4835 | subroutine will return. This is called from call_function. */ | |
4836 | ||
4837 | void | |
4838 | hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
4839 | { | |
4840 | write_register (28, addr); | |
4841 | } | |
4842 | ||
4843 | /* Return True if REGNUM is not a register available to the user | |
4844 | through ptrace(). */ | |
4845 | ||
4846 | int | |
4847 | hppa_cannot_store_register (int regnum) | |
4848 | { | |
4849 | return (regnum == 0 | |
4850 | || regnum == PCSQ_HEAD_REGNUM | |
4851 | || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM) | |
4852 | || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM)); | |
4853 | ||
4854 | } | |
4855 | ||
4856 | CORE_ADDR | |
4857 | hppa_frame_args_address (struct frame_info *fi) | |
4858 | { | |
4859 | return fi->frame; | |
4860 | } | |
4861 | ||
4862 | CORE_ADDR | |
4863 | hppa_frame_locals_address (struct frame_info *fi) | |
4864 | { | |
4865 | return fi->frame; | |
4866 | } | |
4867 | ||
4868 | CORE_ADDR | |
4869 | hppa_smash_text_address (CORE_ADDR addr) | |
4870 | { | |
4871 | /* The low two bits of the PC on the PA contain the privilege level. | |
4872 | Some genius implementing a (non-GCC) compiler apparently decided | |
4873 | this means that "addresses" in a text section therefore include a | |
4874 | privilege level, and thus symbol tables should contain these bits. | |
4875 | This seems like a bonehead thing to do--anyway, it seems to work | |
4876 | for our purposes to just ignore those bits. */ | |
4877 | ||
4878 | return (addr &= ~0x3); | |
4879 | } | |
4880 | ||
4881 | int | |
4882 | hppa_coerce_float_to_double (struct type *formal, struct type *actual) | |
4883 | { | |
4884 | /* FIXME: For the pa, it appears that the debug info marks the | |
4885 | parameters as floats regardless of whether the function is | |
4886 | prototyped, but the actual values are passed as doubles for the | |
4887 | non-prototyped case and floats for the prototyped case. Thus we | |
4888 | choose to make the non-prototyped case work for C and break the | |
4889 | prototyped case, since the non-prototyped case is probably much | |
4890 | more common. */ | |
4891 | return (current_language -> la_language == language_c); | |
4892 | } | |
4893 | ||
e6e68f1f JB |
4894 | static struct gdbarch * |
4895 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
4896 | { | |
4897 | struct gdbarch *gdbarch; | |
4898 | ||
4899 | /* find a candidate among the list of pre-declared architectures. */ | |
4900 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
4901 | if (arches != NULL) | |
4902 | return (arches->gdbarch); | |
4903 | ||
4904 | /* If none found, then allocate and initialize one. */ | |
4905 | gdbarch = gdbarch_alloc (&info, NULL); | |
4906 | ||
4907 | return gdbarch; | |
4908 | } | |
4909 | ||
4910 | static void | |
4911 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
4912 | { | |
4913 | /* Nothing to print for the moment. */ | |
4914 | } | |
4915 | ||
4facf7e8 JB |
4916 | void |
4917 | _initialize_hppa_tdep (void) | |
4918 | { | |
4919 | struct cmd_list_element *c; | |
4920 | void break_at_finish_command (char *arg, int from_tty); | |
4921 | void tbreak_at_finish_command (char *arg, int from_tty); | |
4922 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
4923 | ||
e6e68f1f | 4924 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 JB |
4925 | tm_print_insn = print_insn_hppa; |
4926 | ||
4927 | add_cmd ("unwind", class_maintenance, unwind_command, | |
4928 | "Print unwind table entry at given address.", | |
4929 | &maintenanceprintlist); | |
4930 | ||
4931 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
4932 | break_at_finish_command, | |
4933 | concat ("Set breakpoint at procedure exit. \n\ | |
4934 | Argument may be function name, or \"*\" and an address.\n\ | |
4935 | If function is specified, break at end of code for that function.\n\ | |
4936 | If an address is specified, break at the end of the function that contains \n\ | |
4937 | that exact address.\n", | |
4938 | "With no arg, uses current execution address of selected stack frame.\n\ | |
4939 | This is useful for breaking on return to a stack frame.\n\ | |
4940 | \n\ | |
4941 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
4942 | \n\ | |
4943 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
4944 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
4945 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
4946 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
4947 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
4948 | ||
4949 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
4950 | tbreak_at_finish_command, | |
4951 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
4952 | be no argument or the argument must be a depth.\n"), NULL); | |
4953 | set_cmd_completer (c, location_completer); | |
4954 | ||
4955 | if (xdb_commands) | |
4956 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
4957 | break_at_finish_at_depth_command, | |
4958 | "Set breakpoint at procedure exit. Either there should\n\ | |
4959 | be no argument or the argument must be a depth.\n"), NULL); | |
4960 | } | |
4961 |