1 /* Target-dependent code for the HP PA architecture, for GDB.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
7 Contributed by the Center for Software Science at the
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
33 #include "completer.h"
36 #include "gdb_assert.h"
37 #include "infttrace.h"
38 #include "arch-utils.h"
39 /* For argument passing to the inferior */
43 #include "trad-frame.h"
44 #include "frame-unwind.h"
45 #include "frame-base.h"
55 #include "hppa-tdep.h"
57 static int hppa_debug = 0;
59 /* Some local constants. */
60 static const int hppa32_num_regs = 128;
61 static const int hppa64_num_regs = 96;
63 /* hppa-specific object data -- unwind and solib info.
64 TODO/maybe: think about splitting this into two parts; the unwind data is
65 common to all hppa targets, but is only used in this file; we can register
66 that separately and make this static. The solib data is probably hpux-
67 specific, so we can create a separate extern objfile_data that is registered
68 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
69 const struct objfile_data *hppa_objfile_priv_data = NULL;
71 /* Get at various relevent fields of an instruction word. */
74 #define MASK_14 0x3fff
75 #define MASK_21 0x1fffff
77 /* Define offsets into the call dummy for the _sr4export address.
78 See comments related to CALL_DUMMY for more info. */
79 #define SR4EXPORT_LDIL_OFFSET (HPPA_INSTRUCTION_SIZE * 12)
80 #define SR4EXPORT_LDO_OFFSET (HPPA_INSTRUCTION_SIZE * 13)
82 /* To support detection of the pseudo-initial frame
84 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
85 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
87 /* Sizes (in bytes) of the native unwind entries. */
88 #define UNWIND_ENTRY_SIZE 16
89 #define STUB_UNWIND_ENTRY_SIZE 8
91 static int get_field (unsigned word, int from, int to);
93 static int extract_5_load (unsigned int);
95 static unsigned extract_5R_store (unsigned int);
97 static unsigned extract_5r_store (unsigned int);
99 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
101 static int extract_17 (unsigned int);
103 static int extract_21 (unsigned);
105 static int extract_14 (unsigned);
107 static void unwind_command (char *, int);
109 static int low_sign_extend (unsigned int, unsigned int);
111 static int sign_extend (unsigned int, unsigned int);
113 static int hppa_alignof (struct type *);
115 static int prologue_inst_adjust_sp (unsigned long);
117 static int is_branch (unsigned long);
119 static int inst_saves_gr (unsigned long);
121 static int inst_saves_fr (unsigned long);
123 static int compare_unwind_entries (const void *, const void *);
125 static void read_unwind_info (struct objfile *);
127 static void internalize_unwinds (struct objfile *,
128 struct unwind_table_entry *,
129 asection *, unsigned int,
130 unsigned int, CORE_ADDR);
131 static void record_text_segment_lowaddr (bfd *, asection *, void *);
132 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
133 following functions static, once we hppa is partially multiarched. */
134 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
135 int hppa_instruction_nullified (void);
137 /* Handle 32/64-bit struct return conventions. */
139 static enum return_value_convention
140 hppa32_return_value (struct gdbarch *gdbarch,
141 struct type *type, struct regcache *regcache,
142 void *readbuf, const void *writebuf)
144 if (TYPE_CODE (type) == TYPE_CODE_FLT)
147 regcache_cooked_read_part (regcache, FP4_REGNUM, 0,
148 TYPE_LENGTH (type), readbuf);
149 if (writebuf != NULL)
150 regcache_cooked_write_part (regcache, FP4_REGNUM, 0,
151 TYPE_LENGTH (type), writebuf);
152 return RETURN_VALUE_REGISTER_CONVENTION;
154 if (TYPE_LENGTH (type) <= 2 * 4)
156 /* The value always lives in the right hand end of the register
157 (or register pair)? */
160 int part = TYPE_LENGTH (type) % 4;
161 /* The left hand register contains only part of the value,
162 transfer that first so that the rest can be xfered as entire
167 regcache_cooked_read_part (regcache, reg, 4 - part,
169 if (writebuf != NULL)
170 regcache_cooked_write_part (regcache, reg, 4 - part,
174 /* Now transfer the remaining register values. */
175 for (b = part; b < TYPE_LENGTH (type); b += 4)
178 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
179 if (writebuf != NULL)
180 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
183 return RETURN_VALUE_REGISTER_CONVENTION;
186 return RETURN_VALUE_STRUCT_CONVENTION;
189 static enum return_value_convention
190 hppa64_return_value (struct gdbarch *gdbarch,
191 struct type *type, struct regcache *regcache,
192 void *readbuf, const void *writebuf)
194 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
195 are in r28, padded on the left. Aggregates less that 65 bits are
196 in r28, right padded. Aggregates upto 128 bits are in r28 and
197 r29, right padded. */
198 if (TYPE_CODE (type) == TYPE_CODE_FLT
199 && TYPE_LENGTH (type) <= 8)
201 /* Floats are right aligned? */
202 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
204 regcache_cooked_read_part (regcache, FP4_REGNUM, offset,
205 TYPE_LENGTH (type), readbuf);
206 if (writebuf != NULL)
207 regcache_cooked_write_part (regcache, FP4_REGNUM, offset,
208 TYPE_LENGTH (type), writebuf);
209 return RETURN_VALUE_REGISTER_CONVENTION;
211 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
213 /* Integrals are right aligned. */
214 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
216 regcache_cooked_read_part (regcache, 28, offset,
217 TYPE_LENGTH (type), readbuf);
218 if (writebuf != NULL)
219 regcache_cooked_write_part (regcache, 28, offset,
220 TYPE_LENGTH (type), writebuf);
221 return RETURN_VALUE_REGISTER_CONVENTION;
223 else if (TYPE_LENGTH (type) <= 2 * 8)
225 /* Composite values are left aligned. */
227 for (b = 0; b < TYPE_LENGTH (type); b += 8)
229 int part = min (8, TYPE_LENGTH (type) - b);
231 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
232 (char *) readbuf + b);
233 if (writebuf != NULL)
234 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
235 (const char *) writebuf + b);
237 return RETURN_VALUE_REGISTER_CONVENTION;
240 return RETURN_VALUE_STRUCT_CONVENTION;
243 /* Routines to extract various sized constants out of hppa
246 /* This assumes that no garbage lies outside of the lower bits of
250 sign_extend (unsigned val, unsigned bits)
252 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
255 /* For many immediate values the sign bit is the low bit! */
258 low_sign_extend (unsigned val, unsigned bits)
260 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
263 /* Extract the bits at positions between FROM and TO, using HP's numbering
267 get_field (unsigned word, int from, int to)
269 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
272 /* extract the immediate field from a ld{bhw}s instruction */
275 extract_5_load (unsigned word)
277 return low_sign_extend (word >> 16 & MASK_5, 5);
280 /* extract the immediate field from a break instruction */
283 extract_5r_store (unsigned word)
285 return (word & MASK_5);
288 /* extract the immediate field from a {sr}sm instruction */
291 extract_5R_store (unsigned word)
293 return (word >> 16 & MASK_5);
296 /* extract a 14 bit immediate field */
299 extract_14 (unsigned word)
301 return low_sign_extend (word & MASK_14, 14);
304 /* extract a 21 bit constant */
307 extract_21 (unsigned word)
313 val = get_field (word, 20, 20);
315 val |= get_field (word, 9, 19);
317 val |= get_field (word, 5, 6);
319 val |= get_field (word, 0, 4);
321 val |= get_field (word, 7, 8);
322 return sign_extend (val, 21) << 11;
325 /* extract a 17 bit constant from branch instructions, returning the
326 19 bit signed value. */
329 extract_17 (unsigned word)
331 return sign_extend (get_field (word, 19, 28) |
332 get_field (word, 29, 29) << 10 |
333 get_field (word, 11, 15) << 11 |
334 (word & 0x1) << 16, 17) << 2;
338 /* Compare the start address for two unwind entries returning 1 if
339 the first address is larger than the second, -1 if the second is
340 larger than the first, and zero if they are equal. */
343 compare_unwind_entries (const void *arg1, const void *arg2)
345 const struct unwind_table_entry *a = arg1;
346 const struct unwind_table_entry *b = arg2;
348 if (a->region_start > b->region_start)
350 else if (a->region_start < b->region_start)
357 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
359 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
360 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
362 bfd_vma value = section->vma - section->filepos;
363 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
365 if (value < *low_text_segment_address)
366 *low_text_segment_address = value;
371 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
372 asection *section, unsigned int entries, unsigned int size,
373 CORE_ADDR text_offset)
375 /* We will read the unwind entries into temporary memory, then
376 fill in the actual unwind table. */
382 char *buf = alloca (size);
383 CORE_ADDR low_text_segment_address;
385 /* For ELF targets, then unwinds are supposed to
386 be segment relative offsets instead of absolute addresses.
388 Note that when loading a shared library (text_offset != 0) the
389 unwinds are already relative to the text_offset that will be
391 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
393 low_text_segment_address = -1;
395 bfd_map_over_sections (objfile->obfd,
396 record_text_segment_lowaddr,
397 &low_text_segment_address);
399 text_offset = low_text_segment_address;
402 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
404 /* Now internalize the information being careful to handle host/target
406 for (i = 0; i < entries; i++)
408 table[i].region_start = bfd_get_32 (objfile->obfd,
410 table[i].region_start += text_offset;
412 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
413 table[i].region_end += text_offset;
415 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
417 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
418 table[i].Millicode = (tmp >> 30) & 0x1;
419 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
420 table[i].Region_description = (tmp >> 27) & 0x3;
421 table[i].reserved1 = (tmp >> 26) & 0x1;
422 table[i].Entry_SR = (tmp >> 25) & 0x1;
423 table[i].Entry_FR = (tmp >> 21) & 0xf;
424 table[i].Entry_GR = (tmp >> 16) & 0x1f;
425 table[i].Args_stored = (tmp >> 15) & 0x1;
426 table[i].Variable_Frame = (tmp >> 14) & 0x1;
427 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
428 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
429 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
430 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
431 table[i].Ada_Region = (tmp >> 9) & 0x1;
432 table[i].cxx_info = (tmp >> 8) & 0x1;
433 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
434 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
435 table[i].reserved2 = (tmp >> 5) & 0x1;
436 table[i].Save_SP = (tmp >> 4) & 0x1;
437 table[i].Save_RP = (tmp >> 3) & 0x1;
438 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
439 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
440 table[i].Cleanup_defined = tmp & 0x1;
441 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
443 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
444 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
445 table[i].Large_frame = (tmp >> 29) & 0x1;
446 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
447 table[i].reserved4 = (tmp >> 27) & 0x1;
448 table[i].Total_frame_size = tmp & 0x7ffffff;
450 /* Stub unwinds are handled elsewhere. */
451 table[i].stub_unwind.stub_type = 0;
452 table[i].stub_unwind.padding = 0;
457 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
458 the object file. This info is used mainly by find_unwind_entry() to find
459 out the stack frame size and frame pointer used by procedures. We put
460 everything on the psymbol obstack in the objfile so that it automatically
461 gets freed when the objfile is destroyed. */
464 read_unwind_info (struct objfile *objfile)
466 asection *unwind_sec, *stub_unwind_sec;
467 unsigned unwind_size, stub_unwind_size, total_size;
468 unsigned index, unwind_entries;
469 unsigned stub_entries, total_entries;
470 CORE_ADDR text_offset;
471 struct hppa_unwind_info *ui;
472 struct hppa_objfile_private *obj_private;
474 text_offset = ANOFFSET (objfile->section_offsets, 0);
475 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
476 sizeof (struct hppa_unwind_info));
482 /* For reasons unknown the HP PA64 tools generate multiple unwinder
483 sections in a single executable. So we just iterate over every
484 section in the BFD looking for unwinder sections intead of trying
485 to do a lookup with bfd_get_section_by_name.
487 First determine the total size of the unwind tables so that we
488 can allocate memory in a nice big hunk. */
490 for (unwind_sec = objfile->obfd->sections;
492 unwind_sec = unwind_sec->next)
494 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
495 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
497 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
498 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
500 total_entries += unwind_entries;
504 /* Now compute the size of the stub unwinds. Note the ELF tools do not
505 use stub unwinds at the curren time. */
506 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
510 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
511 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
515 stub_unwind_size = 0;
519 /* Compute total number of unwind entries and their total size. */
520 total_entries += stub_entries;
521 total_size = total_entries * sizeof (struct unwind_table_entry);
523 /* Allocate memory for the unwind table. */
524 ui->table = (struct unwind_table_entry *)
525 obstack_alloc (&objfile->objfile_obstack, total_size);
526 ui->last = total_entries - 1;
528 /* Now read in each unwind section and internalize the standard unwind
531 for (unwind_sec = objfile->obfd->sections;
533 unwind_sec = unwind_sec->next)
535 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
536 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
538 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
539 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
541 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
542 unwind_entries, unwind_size, text_offset);
543 index += unwind_entries;
547 /* Now read in and internalize the stub unwind entries. */
548 if (stub_unwind_size > 0)
551 char *buf = alloca (stub_unwind_size);
553 /* Read in the stub unwind entries. */
554 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
555 0, stub_unwind_size);
557 /* Now convert them into regular unwind entries. */
558 for (i = 0; i < stub_entries; i++, index++)
560 /* Clear out the next unwind entry. */
561 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
563 /* Convert offset & size into region_start and region_end.
564 Stuff away the stub type into "reserved" fields. */
565 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
567 ui->table[index].region_start += text_offset;
569 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
572 ui->table[index].region_end
573 = ui->table[index].region_start + 4 *
574 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
580 /* Unwind table needs to be kept sorted. */
581 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
582 compare_unwind_entries);
584 /* Keep a pointer to the unwind information. */
585 obj_private = (struct hppa_objfile_private *)
586 objfile_data (objfile, hppa_objfile_priv_data);
587 if (obj_private == NULL)
589 obj_private = (struct hppa_objfile_private *)
590 obstack_alloc (&objfile->objfile_obstack,
591 sizeof (struct hppa_objfile_private));
592 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
593 obj_private->unwind_info = NULL;
594 obj_private->so_info = NULL;
597 obj_private->unwind_info = ui;
600 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
601 of the objfiles seeking the unwind table entry for this PC. Each objfile
602 contains a sorted list of struct unwind_table_entry. Since we do a binary
603 search of the unwind tables, we depend upon them to be sorted. */
605 struct unwind_table_entry *
606 find_unwind_entry (CORE_ADDR pc)
608 int first, middle, last;
609 struct objfile *objfile;
610 struct hppa_objfile_private *priv;
613 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
616 /* A function at address 0? Not in HP-UX! */
617 if (pc == (CORE_ADDR) 0)
620 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
624 ALL_OBJFILES (objfile)
626 struct hppa_unwind_info *ui;
628 priv = objfile_data (objfile, hppa_objfile_priv_data);
630 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
634 read_unwind_info (objfile);
635 priv = objfile_data (objfile, hppa_objfile_priv_data);
637 error ("Internal error reading unwind information.");
638 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
641 /* First, check the cache */
644 && pc >= ui->cache->region_start
645 && pc <= ui->cache->region_end)
648 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
649 paddr_nz ((CORE_ADDR) ui->cache));
653 /* Not in the cache, do a binary search */
658 while (first <= last)
660 middle = (first + last) / 2;
661 if (pc >= ui->table[middle].region_start
662 && pc <= ui->table[middle].region_end)
664 ui->cache = &ui->table[middle];
666 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
667 paddr_nz ((CORE_ADDR) ui->cache));
668 return &ui->table[middle];
671 if (pc < ui->table[middle].region_start)
676 } /* ALL_OBJFILES() */
679 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
684 static const unsigned char *
685 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
687 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
688 (*len) = sizeof (breakpoint);
692 /* Return the name of a register. */
695 hppa32_register_name (int i)
697 static char *names[] = {
698 "flags", "r1", "rp", "r3",
699 "r4", "r5", "r6", "r7",
700 "r8", "r9", "r10", "r11",
701 "r12", "r13", "r14", "r15",
702 "r16", "r17", "r18", "r19",
703 "r20", "r21", "r22", "r23",
704 "r24", "r25", "r26", "dp",
705 "ret0", "ret1", "sp", "r31",
706 "sar", "pcoqh", "pcsqh", "pcoqt",
707 "pcsqt", "eiem", "iir", "isr",
708 "ior", "ipsw", "goto", "sr4",
709 "sr0", "sr1", "sr2", "sr3",
710 "sr5", "sr6", "sr7", "cr0",
711 "cr8", "cr9", "ccr", "cr12",
712 "cr13", "cr24", "cr25", "cr26",
713 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
714 "fpsr", "fpe1", "fpe2", "fpe3",
715 "fpe4", "fpe5", "fpe6", "fpe7",
716 "fr4", "fr4R", "fr5", "fr5R",
717 "fr6", "fr6R", "fr7", "fr7R",
718 "fr8", "fr8R", "fr9", "fr9R",
719 "fr10", "fr10R", "fr11", "fr11R",
720 "fr12", "fr12R", "fr13", "fr13R",
721 "fr14", "fr14R", "fr15", "fr15R",
722 "fr16", "fr16R", "fr17", "fr17R",
723 "fr18", "fr18R", "fr19", "fr19R",
724 "fr20", "fr20R", "fr21", "fr21R",
725 "fr22", "fr22R", "fr23", "fr23R",
726 "fr24", "fr24R", "fr25", "fr25R",
727 "fr26", "fr26R", "fr27", "fr27R",
728 "fr28", "fr28R", "fr29", "fr29R",
729 "fr30", "fr30R", "fr31", "fr31R"
731 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
738 hppa64_register_name (int i)
740 static char *names[] = {
741 "flags", "r1", "rp", "r3",
742 "r4", "r5", "r6", "r7",
743 "r8", "r9", "r10", "r11",
744 "r12", "r13", "r14", "r15",
745 "r16", "r17", "r18", "r19",
746 "r20", "r21", "r22", "r23",
747 "r24", "r25", "r26", "dp",
748 "ret0", "ret1", "sp", "r31",
749 "sar", "pcoqh", "pcsqh", "pcoqt",
750 "pcsqt", "eiem", "iir", "isr",
751 "ior", "ipsw", "goto", "sr4",
752 "sr0", "sr1", "sr2", "sr3",
753 "sr5", "sr6", "sr7", "cr0",
754 "cr8", "cr9", "ccr", "cr12",
755 "cr13", "cr24", "cr25", "cr26",
756 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
757 "fpsr", "fpe1", "fpe2", "fpe3",
758 "fr4", "fr5", "fr6", "fr7",
759 "fr8", "fr9", "fr10", "fr11",
760 "fr12", "fr13", "fr14", "fr15",
761 "fr16", "fr17", "fr18", "fr19",
762 "fr20", "fr21", "fr22", "fr23",
763 "fr24", "fr25", "fr26", "fr27",
764 "fr28", "fr29", "fr30", "fr31"
766 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
772 /* This function pushes a stack frame with arguments as part of the
773 inferior function calling mechanism.
775 This is the version of the function for the 32-bit PA machines, in
776 which later arguments appear at lower addresses. (The stack always
777 grows towards higher addresses.)
779 We simply allocate the appropriate amount of stack space and put
780 arguments into their proper slots. */
783 hppa32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
784 struct regcache *regcache, CORE_ADDR bp_addr,
785 int nargs, struct value **args, CORE_ADDR sp,
786 int struct_return, CORE_ADDR struct_addr)
788 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
789 reverse engineering testsuite failures. */
791 /* Stack base address at which any pass-by-reference parameters are
793 CORE_ADDR struct_end = 0;
794 /* Stack base address at which the first parameter is stored. */
795 CORE_ADDR param_end = 0;
797 /* The inner most end of the stack after all the parameters have
799 CORE_ADDR new_sp = 0;
801 /* Two passes. First pass computes the location of everything,
802 second pass writes the bytes out. */
804 for (write_pass = 0; write_pass < 2; write_pass++)
806 CORE_ADDR struct_ptr = 0;
807 CORE_ADDR param_ptr = 0;
808 int reg = 27; /* NOTE: Registers go down. */
810 for (i = 0; i < nargs; i++)
812 struct value *arg = args[i];
813 struct type *type = check_typedef (VALUE_TYPE (arg));
814 /* The corresponding parameter that is pushed onto the
815 stack, and [possibly] passed in a register. */
818 memset (param_val, 0, sizeof param_val);
819 if (TYPE_LENGTH (type) > 8)
821 /* Large parameter, pass by reference. Store the value
822 in "struct" area and then pass its address. */
824 struct_ptr += align_up (TYPE_LENGTH (type), 8);
826 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
828 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
830 else if (TYPE_CODE (type) == TYPE_CODE_INT
831 || TYPE_CODE (type) == TYPE_CODE_ENUM)
833 /* Integer value store, right aligned. "unpack_long"
834 takes care of any sign-extension problems. */
835 param_len = align_up (TYPE_LENGTH (type), 4);
836 store_unsigned_integer (param_val, param_len,
838 VALUE_CONTENTS (arg)));
842 /* Small struct value, store right aligned? */
843 param_len = align_up (TYPE_LENGTH (type), 4);
844 memcpy (param_val + param_len - TYPE_LENGTH (type),
845 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
847 param_ptr += param_len;
848 reg -= param_len / 4;
851 write_memory (param_end - param_ptr, param_val, param_len);
854 regcache_cooked_write (regcache, reg, param_val);
856 regcache_cooked_write (regcache, reg + 1, param_val + 4);
861 /* Update the various stack pointers. */
864 struct_end = sp + struct_ptr;
865 /* PARAM_PTR already accounts for all the arguments passed
866 by the user. However, the ABI mandates minimum stack
867 space allocations for outgoing arguments. The ABI also
868 mandates minimum stack alignments which we must
870 param_end = struct_end + max (align_up (param_ptr, 8), 16);
874 /* If a structure has to be returned, set up register 28 to hold its
877 write_register (28, struct_addr);
879 /* Set the return address. */
880 regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr);
882 /* Update the Stack Pointer. */
883 regcache_cooked_write_unsigned (regcache, SP_REGNUM, param_end + 32);
885 /* The stack will have 32 bytes of additional space for a frame marker. */
886 return param_end + 32;
889 /* This function pushes a stack frame with arguments as part of the
890 inferior function calling mechanism.
892 This is the version for the PA64, in which later arguments appear
893 at higher addresses. (The stack always grows towards higher
896 We simply allocate the appropriate amount of stack space and put
897 arguments into their proper slots.
899 This ABI also requires that the caller provide an argument pointer
900 to the callee, so we do that too. */
903 hppa64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
904 struct regcache *regcache, CORE_ADDR bp_addr,
905 int nargs, struct value **args, CORE_ADDR sp,
906 int struct_return, CORE_ADDR struct_addr)
908 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
909 reverse engineering testsuite failures. */
911 /* Stack base address at which any pass-by-reference parameters are
913 CORE_ADDR struct_end = 0;
914 /* Stack base address at which the first parameter is stored. */
915 CORE_ADDR param_end = 0;
917 /* The inner most end of the stack after all the parameters have
919 CORE_ADDR new_sp = 0;
921 /* Two passes. First pass computes the location of everything,
922 second pass writes the bytes out. */
924 for (write_pass = 0; write_pass < 2; write_pass++)
926 CORE_ADDR struct_ptr = 0;
927 CORE_ADDR param_ptr = 0;
929 for (i = 0; i < nargs; i++)
931 struct value *arg = args[i];
932 struct type *type = check_typedef (VALUE_TYPE (arg));
933 if ((TYPE_CODE (type) == TYPE_CODE_INT
934 || TYPE_CODE (type) == TYPE_CODE_ENUM)
935 && TYPE_LENGTH (type) <= 8)
937 /* Integer value store, right aligned. "unpack_long"
938 takes care of any sign-extension problems. */
942 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
943 int reg = 27 - param_ptr / 8;
944 write_memory_unsigned_integer (param_end - param_ptr,
947 regcache_cooked_write_unsigned (regcache, reg, val);
952 /* Small struct value, store left aligned? */
954 if (TYPE_LENGTH (type) > 8)
956 param_ptr = align_up (param_ptr, 16);
957 reg = 26 - param_ptr / 8;
958 param_ptr += align_up (TYPE_LENGTH (type), 16);
962 param_ptr = align_up (param_ptr, 8);
963 reg = 26 - param_ptr / 8;
964 param_ptr += align_up (TYPE_LENGTH (type), 8);
969 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
971 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
975 int len = min (8, TYPE_LENGTH (type) - byte);
976 regcache_cooked_write_part (regcache, reg, 0, len,
977 VALUE_CONTENTS (arg) + byte);
984 /* Update the various stack pointers. */
987 struct_end = sp + struct_ptr;
988 /* PARAM_PTR already accounts for all the arguments passed
989 by the user. However, the ABI mandates minimum stack
990 space allocations for outgoing arguments. The ABI also
991 mandates minimum stack alignments which we must
993 param_end = struct_end + max (align_up (param_ptr, 16), 64);
997 /* If a structure has to be returned, set up register 28 to hold its
1000 write_register (28, struct_addr);
1002 /* Set the return address. */
1003 regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr);
1005 /* Update the Stack Pointer. */
1006 regcache_cooked_write_unsigned (regcache, SP_REGNUM, param_end + 64);
1008 /* The stack will have 32 bytes of additional space for a frame marker. */
1009 return param_end + 64;
1013 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1015 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1017 return align_up (addr, 64);
1020 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1023 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1025 /* Just always 16-byte align. */
1026 return align_up (addr, 16);
1030 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1034 hppa_target_read_pc (ptid_t ptid)
1036 int flags = read_register_pid (FLAGS_REGNUM, ptid);
1038 /* The following test does not belong here. It is OS-specific, and belongs
1040 /* Test SS_INSYSCALL */
1042 return read_register_pid (31, ptid) & ~0x3;
1044 return read_register_pid (PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1047 /* Write out the PC. If currently in a syscall, then also write the new
1048 PC value into %r31. */
1051 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1053 int flags = read_register_pid (FLAGS_REGNUM, ptid);
1055 /* The following test does not belong here. It is OS-specific, and belongs
1057 /* If in a syscall, then set %r31. Also make sure to get the
1058 privilege bits set correctly. */
1059 /* Test SS_INSYSCALL */
1061 write_register_pid (31, v | 0x3, ptid);
1063 write_register_pid (PCOQ_HEAD_REGNUM, v, ptid);
1064 write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid);
1067 /* return the alignment of a type in bytes. Structures have the maximum
1068 alignment required by their fields. */
1071 hppa_alignof (struct type *type)
1073 int max_align, align, i;
1074 CHECK_TYPEDEF (type);
1075 switch (TYPE_CODE (type))
1080 return TYPE_LENGTH (type);
1081 case TYPE_CODE_ARRAY:
1082 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1083 case TYPE_CODE_STRUCT:
1084 case TYPE_CODE_UNION:
1086 for (i = 0; i < TYPE_NFIELDS (type); i++)
1088 /* Bit fields have no real alignment. */
1089 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1090 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1092 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1093 max_align = max (max_align, align);
1102 /* Return one if PC is in the call path of a trampoline, else return zero.
1104 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1105 just shared library trampolines (import, export). */
1108 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
1110 struct minimal_symbol *minsym;
1111 struct unwind_table_entry *u;
1112 static CORE_ADDR dyncall = 0;
1113 static CORE_ADDR sr4export = 0;
1115 #ifdef GDB_TARGET_IS_HPPA_20W
1116 /* PA64 has a completely different stub/trampoline scheme. Is it
1117 better? Maybe. It's certainly harder to determine with any
1118 certainty that we are in a stub because we can not refer to the
1121 The heuristic is simple. Try to lookup the current PC value in th
1122 minimal symbol table. If that fails, then assume we are not in a
1125 Then see if the PC value falls within the section bounds for the
1126 section containing the minimal symbol we found in the first
1127 step. If it does, then assume we are not in a stub and return.
1129 Finally peek at the instructions to see if they look like a stub. */
1131 struct minimal_symbol *minsym;
1136 minsym = lookup_minimal_symbol_by_pc (pc);
1140 sec = SYMBOL_BFD_SECTION (minsym);
1142 if (bfd_get_section_vma (sec->owner, sec) <= pc
1143 && pc < (bfd_get_section_vma (sec->owner, sec)
1144 + bfd_section_size (sec->owner, sec)))
1147 /* We might be in a stub. Peek at the instructions. Stubs are 3
1148 instructions long. */
1149 insn = read_memory_integer (pc, 4);
1151 /* Find out where we think we are within the stub. */
1152 if ((insn & 0xffffc00e) == 0x53610000)
1154 else if ((insn & 0xffffffff) == 0xe820d000)
1156 else if ((insn & 0xffffc00e) == 0x537b0000)
1161 /* Now verify each insn in the range looks like a stub instruction. */
1162 insn = read_memory_integer (addr, 4);
1163 if ((insn & 0xffffc00e) != 0x53610000)
1166 /* Now verify each insn in the range looks like a stub instruction. */
1167 insn = read_memory_integer (addr + 4, 4);
1168 if ((insn & 0xffffffff) != 0xe820d000)
1171 /* Now verify each insn in the range looks like a stub instruction. */
1172 insn = read_memory_integer (addr + 8, 4);
1173 if ((insn & 0xffffc00e) != 0x537b0000)
1176 /* Looks like a stub. */
1181 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1184 /* First see if PC is in one of the two C-library trampolines. */
1187 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1189 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1196 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1198 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1203 if (pc == dyncall || pc == sr4export)
1206 minsym = lookup_minimal_symbol_by_pc (pc);
1207 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
1210 /* Get the unwind descriptor corresponding to PC, return zero
1211 if no unwind was found. */
1212 u = find_unwind_entry (pc);
1216 /* If this isn't a linker stub, then return now. */
1217 if (u->stub_unwind.stub_type == 0)
1220 /* By definition a long-branch stub is a call stub. */
1221 if (u->stub_unwind.stub_type == LONG_BRANCH)
1224 /* The call and return path execute the same instructions within
1225 an IMPORT stub! So an IMPORT stub is both a call and return
1227 if (u->stub_unwind.stub_type == IMPORT)
1230 /* Parameter relocation stubs always have a call path and may have a
1232 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
1233 || u->stub_unwind.stub_type == EXPORT)
1237 /* Search forward from the current PC until we hit a branch
1238 or the end of the stub. */
1239 for (addr = pc; addr <= u->region_end; addr += 4)
1243 insn = read_memory_integer (addr, 4);
1245 /* Does it look like a bl? If so then it's the call path, if
1246 we find a bv or be first, then we're on the return path. */
1247 if ((insn & 0xfc00e000) == 0xe8000000)
1249 else if ((insn & 0xfc00e001) == 0xe800c000
1250 || (insn & 0xfc000000) == 0xe0000000)
1254 /* Should never happen. */
1255 warning ("Unable to find branch in parameter relocation stub.\n");
1259 /* Unknown stub type. For now, just return zero. */
1263 /* Return one if PC is in the return path of a trampoline, else return zero.
1265 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1266 just shared library trampolines (import, export). */
1269 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1271 struct unwind_table_entry *u;
1273 /* Get the unwind descriptor corresponding to PC, return zero
1274 if no unwind was found. */
1275 u = find_unwind_entry (pc);
1279 /* If this isn't a linker stub or it's just a long branch stub, then
1281 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
1284 /* The call and return path execute the same instructions within
1285 an IMPORT stub! So an IMPORT stub is both a call and return
1287 if (u->stub_unwind.stub_type == IMPORT)
1290 /* Parameter relocation stubs always have a call path and may have a
1292 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
1293 || u->stub_unwind.stub_type == EXPORT)
1297 /* Search forward from the current PC until we hit a branch
1298 or the end of the stub. */
1299 for (addr = pc; addr <= u->region_end; addr += 4)
1303 insn = read_memory_integer (addr, 4);
1305 /* Does it look like a bl? If so then it's the call path, if
1306 we find a bv or be first, then we're on the return path. */
1307 if ((insn & 0xfc00e000) == 0xe8000000)
1309 else if ((insn & 0xfc00e001) == 0xe800c000
1310 || (insn & 0xfc000000) == 0xe0000000)
1314 /* Should never happen. */
1315 warning ("Unable to find branch in parameter relocation stub.\n");
1319 /* Unknown stub type. For now, just return zero. */
1324 /* Figure out if PC is in a trampoline, and if so find out where
1325 the trampoline will jump to. If not in a trampoline, return zero.
1327 Simple code examination probably is not a good idea since the code
1328 sequences in trampolines can also appear in user code.
1330 We use unwinds and information from the minimal symbol table to
1331 determine when we're in a trampoline. This won't work for ELF
1332 (yet) since it doesn't create stub unwind entries. Whether or
1333 not ELF will create stub unwinds or normal unwinds for linker
1334 stubs is still being debated.
1336 This should handle simple calls through dyncall or sr4export,
1337 long calls, argument relocation stubs, and dyncall/sr4export
1338 calling an argument relocation stub. It even handles some stubs
1339 used in dynamic executables. */
1342 hppa_skip_trampoline_code (CORE_ADDR pc)
1345 long prev_inst, curr_inst, loc;
1346 static CORE_ADDR dyncall = 0;
1347 static CORE_ADDR dyncall_external = 0;
1348 static CORE_ADDR sr4export = 0;
1349 struct minimal_symbol *msym;
1350 struct unwind_table_entry *u;
1352 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1357 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1359 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1364 if (!dyncall_external)
1366 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
1368 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
1370 dyncall_external = -1;
1375 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1377 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1382 /* Addresses passed to dyncall may *NOT* be the actual address
1383 of the function. So we may have to do something special. */
1386 pc = (CORE_ADDR) read_register (22);
1388 /* If bit 30 (counting from the left) is on, then pc is the address of
1389 the PLT entry for this function, not the address of the function
1390 itself. Bit 31 has meaning too, but only for MPE. */
1392 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
1394 if (pc == dyncall_external)
1396 pc = (CORE_ADDR) read_register (22);
1397 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
1399 else if (pc == sr4export)
1400 pc = (CORE_ADDR) (read_register (22));
1402 /* Get the unwind descriptor corresponding to PC, return zero
1403 if no unwind was found. */
1404 u = find_unwind_entry (pc);
1408 /* If this isn't a linker stub, then return now. */
1409 /* elz: attention here! (FIXME) because of a compiler/linker
1410 error, some stubs which should have a non zero stub_unwind.stub_type
1411 have unfortunately a value of zero. So this function would return here
1412 as if we were not in a trampoline. To fix this, we go look at the partial
1413 symbol information, which reports this guy as a stub.
1414 (FIXME): Unfortunately, we are not that lucky: it turns out that the
1415 partial symbol information is also wrong sometimes. This is because
1416 when it is entered (somread.c::som_symtab_read()) it can happen that
1417 if the type of the symbol (from the som) is Entry, and the symbol is
1418 in a shared library, then it can also be a trampoline. This would
1419 be OK, except that I believe the way they decide if we are ina shared library
1420 does not work. SOOOO..., even if we have a regular function w/o trampolines
1421 its minimal symbol can be assigned type mst_solib_trampoline.
1422 Also, if we find that the symbol is a real stub, then we fix the unwind
1423 descriptor, and define the stub type to be EXPORT.
1424 Hopefully this is correct most of the times. */
1425 if (u->stub_unwind.stub_type == 0)
1428 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
1429 we can delete all the code which appears between the lines */
1430 /*--------------------------------------------------------------------------*/
1431 msym = lookup_minimal_symbol_by_pc (pc);
1433 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
1434 return orig_pc == pc ? 0 : pc & ~0x3;
1436 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
1438 struct objfile *objfile;
1439 struct minimal_symbol *msymbol;
1440 int function_found = 0;
1442 /* go look if there is another minimal symbol with the same name as
1443 this one, but with type mst_text. This would happen if the msym
1444 is an actual trampoline, in which case there would be another
1445 symbol with the same name corresponding to the real function */
1447 ALL_MSYMBOLS (objfile, msymbol)
1449 if (MSYMBOL_TYPE (msymbol) == mst_text
1450 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
1458 /* the type of msym is correct (mst_solib_trampoline), but
1459 the unwind info is wrong, so set it to the correct value */
1460 u->stub_unwind.stub_type = EXPORT;
1462 /* the stub type info in the unwind is correct (this is not a
1463 trampoline), but the msym type information is wrong, it
1464 should be mst_text. So we need to fix the msym, and also
1465 get out of this function */
1467 MSYMBOL_TYPE (msym) = mst_text;
1468 return orig_pc == pc ? 0 : pc & ~0x3;
1472 /*--------------------------------------------------------------------------*/
1475 /* It's a stub. Search for a branch and figure out where it goes.
1476 Note we have to handle multi insn branch sequences like ldil;ble.
1477 Most (all?) other branches can be determined by examining the contents
1478 of certain registers and the stack. */
1485 /* Make sure we haven't walked outside the range of this stub. */
1486 if (u != find_unwind_entry (loc))
1488 warning ("Unable to find branch in linker stub");
1489 return orig_pc == pc ? 0 : pc & ~0x3;
1492 prev_inst = curr_inst;
1493 curr_inst = read_memory_integer (loc, 4);
1495 /* Does it look like a branch external using %r1? Then it's the
1496 branch from the stub to the actual function. */
1497 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1499 /* Yup. See if the previous instruction loaded
1500 a value into %r1. If so compute and return the jump address. */
1501 if ((prev_inst & 0xffe00000) == 0x20200000)
1502 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1505 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1506 return orig_pc == pc ? 0 : pc & ~0x3;
1510 /* Does it look like a be 0(sr0,%r21)? OR
1511 Does it look like a be, n 0(sr0,%r21)? OR
1512 Does it look like a bve (r21)? (this is on PA2.0)
1513 Does it look like a bve, n(r21)? (this is also on PA2.0)
1514 That's the branch from an
1515 import stub to an export stub.
1517 It is impossible to determine the target of the branch via
1518 simple examination of instructions and/or data (consider
1519 that the address in the plabel may be the address of the
1520 bind-on-reference routine in the dynamic loader).
1522 So we have try an alternative approach.
1524 Get the name of the symbol at our current location; it should
1525 be a stub symbol with the same name as the symbol in the
1528 Then lookup a minimal symbol with the same name; we should
1529 get the minimal symbol for the target routine in the shared
1530 library as those take precedence of import/export stubs. */
1531 if ((curr_inst == 0xe2a00000) ||
1532 (curr_inst == 0xe2a00002) ||
1533 (curr_inst == 0xeaa0d000) ||
1534 (curr_inst == 0xeaa0d002))
1536 struct minimal_symbol *stubsym, *libsym;
1538 stubsym = lookup_minimal_symbol_by_pc (loc);
1539 if (stubsym == NULL)
1541 warning ("Unable to find symbol for 0x%lx", loc);
1542 return orig_pc == pc ? 0 : pc & ~0x3;
1545 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
1548 warning ("Unable to find library symbol for %s\n",
1549 DEPRECATED_SYMBOL_NAME (stubsym));
1550 return orig_pc == pc ? 0 : pc & ~0x3;
1553 return SYMBOL_VALUE (libsym);
1556 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1557 branch from the stub to the actual function. */
1559 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1560 || (curr_inst & 0xffe0e000) == 0xe8000000
1561 || (curr_inst & 0xffe0e000) == 0xe800A000)
1562 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1564 /* Does it look like bv (rp)? Note this depends on the
1565 current stack pointer being the same as the stack
1566 pointer in the stub itself! This is a branch on from the
1567 stub back to the original caller. */
1568 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
1569 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
1571 /* Yup. See if the previous instruction loaded
1573 if (prev_inst == 0x4bc23ff1)
1574 return (read_memory_integer
1575 (read_register (HPPA_SP_REGNUM) - 8, 4)) & ~0x3;
1578 warning ("Unable to find restore of %%rp before bv (%%rp).");
1579 return orig_pc == pc ? 0 : pc & ~0x3;
1583 /* elz: added this case to capture the new instruction
1584 at the end of the return part of an export stub used by
1585 the PA2.0: BVE, n (rp) */
1586 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
1588 return (read_memory_integer
1589 (read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
1592 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1593 the original caller from the stub. Used in dynamic executables. */
1594 else if (curr_inst == 0xe0400002)
1596 /* The value we jump to is sitting in sp - 24. But that's
1597 loaded several instructions before the be instruction.
1598 I guess we could check for the previous instruction being
1599 mtsp %r1,%sr0 if we want to do sanity checking. */
1600 return (read_memory_integer
1601 (read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
1604 /* Haven't found the branch yet, but we're still in the stub.
1611 /* For the given instruction (INST), return any adjustment it makes
1612 to the stack pointer or zero for no adjustment.
1614 This only handles instructions commonly found in prologues. */
1617 prologue_inst_adjust_sp (unsigned long inst)
1619 /* This must persist across calls. */
1620 static int save_high21;
1622 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1623 if ((inst & 0xffffc000) == 0x37de0000)
1624 return extract_14 (inst);
1627 if ((inst & 0xffe00000) == 0x6fc00000)
1628 return extract_14 (inst);
1630 /* std,ma X,D(sp) */
1631 if ((inst & 0xffe00008) == 0x73c00008)
1632 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1634 /* addil high21,%r1; ldo low11,(%r1),%r30)
1635 save high bits in save_high21 for later use. */
1636 if ((inst & 0xffe00000) == 0x28200000)
1638 save_high21 = extract_21 (inst);
1642 if ((inst & 0xffff0000) == 0x343e0000)
1643 return save_high21 + extract_14 (inst);
1645 /* fstws as used by the HP compilers. */
1646 if ((inst & 0xffffffe0) == 0x2fd01220)
1647 return extract_5_load (inst);
1649 /* No adjustment. */
1653 /* Return nonzero if INST is a branch of some kind, else return zero. */
1656 is_branch (unsigned long inst)
1685 /* Return the register number for a GR which is saved by INST or
1686 zero it INST does not save a GR. */
1689 inst_saves_gr (unsigned long inst)
1691 /* Does it look like a stw? */
1692 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1693 || (inst >> 26) == 0x1f
1694 || ((inst >> 26) == 0x1f
1695 && ((inst >> 6) == 0xa)))
1696 return extract_5R_store (inst);
1698 /* Does it look like a std? */
1699 if ((inst >> 26) == 0x1c
1700 || ((inst >> 26) == 0x03
1701 && ((inst >> 6) & 0xf) == 0xb))
1702 return extract_5R_store (inst);
1704 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1705 if ((inst >> 26) == 0x1b)
1706 return extract_5R_store (inst);
1708 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1710 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1711 || ((inst >> 26) == 0x3
1712 && (((inst >> 6) & 0xf) == 0x8
1713 || (inst >> 6) & 0xf) == 0x9))
1714 return extract_5R_store (inst);
1719 /* Return the register number for a FR which is saved by INST or
1720 zero it INST does not save a FR.
1722 Note we only care about full 64bit register stores (that's the only
1723 kind of stores the prologue will use).
1725 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1728 inst_saves_fr (unsigned long inst)
1730 /* is this an FSTD ? */
1731 if ((inst & 0xfc00dfc0) == 0x2c001200)
1732 return extract_5r_store (inst);
1733 if ((inst & 0xfc000002) == 0x70000002)
1734 return extract_5R_store (inst);
1735 /* is this an FSTW ? */
1736 if ((inst & 0xfc00df80) == 0x24001200)
1737 return extract_5r_store (inst);
1738 if ((inst & 0xfc000002) == 0x7c000000)
1739 return extract_5R_store (inst);
1743 /* Advance PC across any function entry prologue instructions
1744 to reach some "real" code.
1746 Use information in the unwind table to determine what exactly should
1747 be in the prologue. */
1751 skip_prologue_hard_way (CORE_ADDR pc)
1754 CORE_ADDR orig_pc = pc;
1755 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1756 unsigned long args_stored, status, i, restart_gr, restart_fr;
1757 struct unwind_table_entry *u;
1763 u = find_unwind_entry (pc);
1767 /* If we are not at the beginning of a function, then return now. */
1768 if ((pc & ~0x3) != u->region_start)
1771 /* This is how much of a frame adjustment we need to account for. */
1772 stack_remaining = u->Total_frame_size << 3;
1774 /* Magic register saves we want to know about. */
1775 save_rp = u->Save_RP;
1776 save_sp = u->Save_SP;
1778 /* An indication that args may be stored into the stack. Unfortunately
1779 the HPUX compilers tend to set this in cases where no args were
1783 /* Turn the Entry_GR field into a bitmask. */
1785 for (i = 3; i < u->Entry_GR + 3; i++)
1787 /* Frame pointer gets saved into a special location. */
1788 if (u->Save_SP && i == HPPA_FP_REGNUM)
1791 save_gr |= (1 << i);
1793 save_gr &= ~restart_gr;
1795 /* Turn the Entry_FR field into a bitmask too. */
1797 for (i = 12; i < u->Entry_FR + 12; i++)
1798 save_fr |= (1 << i);
1799 save_fr &= ~restart_fr;
1801 /* Loop until we find everything of interest or hit a branch.
1803 For unoptimized GCC code and for any HP CC code this will never ever
1804 examine any user instructions.
1806 For optimzied GCC code we're faced with problems. GCC will schedule
1807 its prologue and make prologue instructions available for delay slot
1808 filling. The end result is user code gets mixed in with the prologue
1809 and a prologue instruction may be in the delay slot of the first branch
1812 Some unexpected things are expected with debugging optimized code, so
1813 we allow this routine to walk past user instructions in optimized
1815 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1818 unsigned int reg_num;
1819 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1820 unsigned long old_save_rp, old_save_sp, next_inst;
1822 /* Save copies of all the triggers so we can compare them later
1824 old_save_gr = save_gr;
1825 old_save_fr = save_fr;
1826 old_save_rp = save_rp;
1827 old_save_sp = save_sp;
1828 old_stack_remaining = stack_remaining;
1830 status = target_read_memory (pc, buf, 4);
1831 inst = extract_unsigned_integer (buf, 4);
1837 /* Note the interesting effects of this instruction. */
1838 stack_remaining -= prologue_inst_adjust_sp (inst);
1840 /* There are limited ways to store the return pointer into the
1842 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1845 /* These are the only ways we save SP into the stack. At this time
1846 the HP compilers never bother to save SP into the stack. */
1847 if ((inst & 0xffffc000) == 0x6fc10000
1848 || (inst & 0xffffc00c) == 0x73c10008)
1851 /* Are we loading some register with an offset from the argument
1853 if ((inst & 0xffe00000) == 0x37a00000
1854 || (inst & 0xffffffe0) == 0x081d0240)
1860 /* Account for general and floating-point register saves. */
1861 reg_num = inst_saves_gr (inst);
1862 save_gr &= ~(1 << reg_num);
1864 /* Ugh. Also account for argument stores into the stack.
1865 Unfortunately args_stored only tells us that some arguments
1866 where stored into the stack. Not how many or what kind!
1868 This is a kludge as on the HP compiler sets this bit and it
1869 never does prologue scheduling. So once we see one, skip past
1870 all of them. We have similar code for the fp arg stores below.
1872 FIXME. Can still die if we have a mix of GR and FR argument
1874 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1876 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1879 status = target_read_memory (pc, buf, 4);
1880 inst = extract_unsigned_integer (buf, 4);
1883 reg_num = inst_saves_gr (inst);
1889 reg_num = inst_saves_fr (inst);
1890 save_fr &= ~(1 << reg_num);
1892 status = target_read_memory (pc + 4, buf, 4);
1893 next_inst = extract_unsigned_integer (buf, 4);
1899 /* We've got to be read to handle the ldo before the fp register
1901 if ((inst & 0xfc000000) == 0x34000000
1902 && inst_saves_fr (next_inst) >= 4
1903 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1905 /* So we drop into the code below in a reasonable state. */
1906 reg_num = inst_saves_fr (next_inst);
1910 /* Ugh. Also account for argument stores into the stack.
1911 This is a kludge as on the HP compiler sets this bit and it
1912 never does prologue scheduling. So once we see one, skip past
1914 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1916 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1919 status = target_read_memory (pc, buf, 4);
1920 inst = extract_unsigned_integer (buf, 4);
1923 if ((inst & 0xfc000000) != 0x34000000)
1925 status = target_read_memory (pc + 4, buf, 4);
1926 next_inst = extract_unsigned_integer (buf, 4);
1929 reg_num = inst_saves_fr (next_inst);
1935 /* Quit if we hit any kind of branch. This can happen if a prologue
1936 instruction is in the delay slot of the first call/branch. */
1937 if (is_branch (inst))
1940 /* What a crock. The HP compilers set args_stored even if no
1941 arguments were stored into the stack (boo hiss). This could
1942 cause this code to then skip a bunch of user insns (up to the
1945 To combat this we try to identify when args_stored was bogusly
1946 set and clear it. We only do this when args_stored is nonzero,
1947 all other resources are accounted for, and nothing changed on
1950 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1951 && old_save_gr == save_gr && old_save_fr == save_fr
1952 && old_save_rp == save_rp && old_save_sp == save_sp
1953 && old_stack_remaining == stack_remaining)
1960 /* We've got a tenative location for the end of the prologue. However
1961 because of limitations in the unwind descriptor mechanism we may
1962 have went too far into user code looking for the save of a register
1963 that does not exist. So, if there registers we expected to be saved
1964 but never were, mask them out and restart.
1966 This should only happen in optimized code, and should be very rare. */
1967 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1970 restart_gr = save_gr;
1971 restart_fr = save_fr;
1979 /* Return the address of the PC after the last prologue instruction if
1980 we can determine it from the debug symbols. Else return zero. */
1983 after_prologue (CORE_ADDR pc)
1985 struct symtab_and_line sal;
1986 CORE_ADDR func_addr, func_end;
1989 /* If we can not find the symbol in the partial symbol table, then
1990 there is no hope we can determine the function's start address
1992 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1995 /* Get the line associated with FUNC_ADDR. */
1996 sal = find_pc_line (func_addr, 0);
1998 /* There are only two cases to consider. First, the end of the source line
1999 is within the function bounds. In that case we return the end of the
2000 source line. Second is the end of the source line extends beyond the
2001 bounds of the current function. We need to use the slow code to
2002 examine instructions in that case.
2004 Anything else is simply a bug elsewhere. Fixing it here is absolutely
2005 the wrong thing to do. In fact, it should be entirely possible for this
2006 function to always return zero since the slow instruction scanning code
2007 is supposed to *always* work. If it does not, then it is a bug. */
2008 if (sal.end < func_end)
2014 /* To skip prologues, I use this predicate. Returns either PC itself
2015 if the code at PC does not look like a function prologue; otherwise
2016 returns an address that (if we're lucky) follows the prologue. If
2017 LENIENT, then we must skip everything which is involved in setting
2018 up the frame (it's OK to skip more, just so long as we don't skip
2019 anything which might clobber the registers which are being saved.
2020 Currently we must not skip more on the alpha, but we might the lenient
2024 hppa_skip_prologue (CORE_ADDR pc)
2028 CORE_ADDR post_prologue_pc;
2031 /* See if we can determine the end of the prologue via the symbol table.
2032 If so, then return either PC, or the PC after the prologue, whichever
2035 post_prologue_pc = after_prologue (pc);
2037 /* If after_prologue returned a useful address, then use it. Else
2038 fall back on the instruction skipping code.
2040 Some folks have claimed this causes problems because the breakpoint
2041 may be the first instruction of the prologue. If that happens, then
2042 the instruction skipping code has a bug that needs to be fixed. */
2043 if (post_prologue_pc != 0)
2044 return max (pc, post_prologue_pc);
2046 return (skip_prologue_hard_way (pc));
2049 struct hppa_frame_cache
2052 struct trad_frame_saved_reg *saved_regs;
2055 static struct hppa_frame_cache *
2056 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
2058 struct hppa_frame_cache *cache;
2063 struct unwind_table_entry *u;
2067 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
2068 frame_relative_level(next_frame));
2070 if ((*this_cache) != NULL)
2073 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
2074 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2075 return (*this_cache);
2077 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2078 (*this_cache) = cache;
2079 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2082 u = find_unwind_entry (frame_func_unwind (next_frame));
2086 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
2087 return (*this_cache);
2090 /* Turn the Entry_GR field into a bitmask. */
2092 for (i = 3; i < u->Entry_GR + 3; i++)
2094 /* Frame pointer gets saved into a special location. */
2095 if (u->Save_SP && i == HPPA_FP_REGNUM)
2098 saved_gr_mask |= (1 << i);
2101 /* Turn the Entry_FR field into a bitmask too. */
2103 for (i = 12; i < u->Entry_FR + 12; i++)
2104 saved_fr_mask |= (1 << i);
2106 /* Loop until we find everything of interest or hit a branch.
2108 For unoptimized GCC code and for any HP CC code this will never ever
2109 examine any user instructions.
2111 For optimized GCC code we're faced with problems. GCC will schedule
2112 its prologue and make prologue instructions available for delay slot
2113 filling. The end result is user code gets mixed in with the prologue
2114 and a prologue instruction may be in the delay slot of the first branch
2117 Some unexpected things are expected with debugging optimized code, so
2118 we allow this routine to walk past user instructions in optimized
2121 int final_iteration = 0;
2124 int looking_for_sp = u->Save_SP;
2125 int looking_for_rp = u->Save_RP;
2127 end_pc = skip_prologue_using_sal (frame_func_unwind (next_frame));
2129 end_pc = frame_pc_unwind (next_frame);
2131 for (pc = frame_func_unwind (next_frame);
2132 ((saved_gr_mask || saved_fr_mask
2133 || looking_for_sp || looking_for_rp
2134 || frame_size < (u->Total_frame_size << 3))
2140 long status = target_read_memory (pc, buf4, sizeof buf4);
2141 long inst = extract_unsigned_integer (buf4, sizeof buf4);
2143 /* Note the interesting effects of this instruction. */
2144 frame_size += prologue_inst_adjust_sp (inst);
2146 /* There are limited ways to store the return pointer into the
2148 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2151 cache->saved_regs[RP_REGNUM].addr = -20;
2153 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
2156 cache->saved_regs[RP_REGNUM].addr = -16;
2159 /* Check to see if we saved SP into the stack. This also
2160 happens to indicate the location of the saved frame
2162 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2163 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2166 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2169 /* Account for general and floating-point register saves. */
2170 reg = inst_saves_gr (inst);
2171 if (reg >= 3 && reg <= 18
2172 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2174 saved_gr_mask &= ~(1 << reg);
2175 if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0)
2176 /* stwm with a positive displacement is a _post_
2178 cache->saved_regs[reg].addr = 0;
2179 else if ((inst & 0xfc00000c) == 0x70000008)
2180 /* A std has explicit post_modify forms. */
2181 cache->saved_regs[reg].addr = 0;
2186 if ((inst >> 26) == 0x1c)
2187 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
2188 else if ((inst >> 26) == 0x03)
2189 offset = low_sign_extend (inst & 0x1f, 5);
2191 offset = extract_14 (inst);
2193 /* Handle code with and without frame pointers. */
2195 cache->saved_regs[reg].addr = offset;
2197 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2201 /* GCC handles callee saved FP regs a little differently.
2203 It emits an instruction to put the value of the start of
2204 the FP store area into %r1. It then uses fstds,ma with a
2205 basereg of %r1 for the stores.
2207 HP CC emits them at the current stack pointer modifying the
2208 stack pointer as it stores each register. */
2210 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2211 if ((inst & 0xffffc000) == 0x34610000
2212 || (inst & 0xffffc000) == 0x37c10000)
2213 fp_loc = extract_14 (inst);
2215 reg = inst_saves_fr (inst);
2216 if (reg >= 12 && reg <= 21)
2218 /* Note +4 braindamage below is necessary because the FP
2219 status registers are internally 8 registers rather than
2220 the expected 4 registers. */
2221 saved_fr_mask &= ~(1 << reg);
2224 /* 1st HP CC FP register store. After this
2225 instruction we've set enough state that the GCC and
2226 HPCC code are both handled in the same manner. */
2227 cache->saved_regs[reg + FP4_REGNUM + 4].addr = 0;
2232 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2237 /* Quit if we hit any kind of branch the previous iteration. */
2238 if (final_iteration)
2240 /* We want to look precisely one instruction beyond the branch
2241 if we have not found everything yet. */
2242 if (is_branch (inst))
2243 final_iteration = 1;
2248 /* The frame base always represents the value of %sp at entry to
2249 the current function (and is thus equivalent to the "saved"
2251 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2252 /* FIXME: cagney/2004-02-22: This assumes that the frame has been
2253 created. If it hasn't everything will be out-of-wack. */
2254 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2255 /* Both we're expecting the SP to be saved and the SP has been
2256 saved. The entry SP value is saved at this frame's SP
2258 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
2260 /* The prologue has been slowly allocating stack space. Adjust
2262 cache->base = this_sp - frame_size;
2263 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2266 /* The PC is found in the "return register", "Millicode" uses "r31"
2267 as the return register while normal code uses "rp". */
2269 cache->saved_regs[PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2271 cache->saved_regs[PCOQ_HEAD_REGNUM] = cache->saved_regs[RP_REGNUM];
2274 /* Convert all the offsets into addresses. */
2276 for (reg = 0; reg < NUM_REGS; reg++)
2278 if (trad_frame_addr_p (cache->saved_regs, reg))
2279 cache->saved_regs[reg].addr += cache->base;
2284 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2285 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2286 return (*this_cache);
2290 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2291 struct frame_id *this_id)
2293 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2294 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2298 hppa_frame_prev_register (struct frame_info *next_frame,
2300 int regnum, int *optimizedp,
2301 enum lval_type *lvalp, CORE_ADDR *addrp,
2302 int *realnump, void *valuep)
2304 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2305 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2306 if (regnum == PCOQ_TAIL_REGNUM)
2308 /* The PCOQ TAIL, or NPC, needs to be computed from the unwound
2316 int regsize = register_size (gdbarch, PCOQ_HEAD_REGNUM);
2319 enum lval_type lval;
2322 bfd_byte value[MAX_REGISTER_SIZE];
2323 trad_frame_prev_register (next_frame, info->saved_regs,
2324 PCOQ_HEAD_REGNUM, &optimized, &lval, &addr,
2326 pc = extract_unsigned_integer (&value, regsize);
2327 store_unsigned_integer (valuep, regsize, pc + 4);
2332 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
2333 optimizedp, lvalp, addrp, realnump, valuep);
2337 static const struct frame_unwind hppa_frame_unwind =
2341 hppa_frame_prev_register
2344 static const struct frame_unwind *
2345 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2347 return &hppa_frame_unwind;
2351 hppa_frame_base_address (struct frame_info *next_frame,
2354 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
2359 static const struct frame_base hppa_frame_base = {
2361 hppa_frame_base_address,
2362 hppa_frame_base_address,
2363 hppa_frame_base_address
2366 static const struct frame_base *
2367 hppa_frame_base_sniffer (struct frame_info *next_frame)
2369 return &hppa_frame_base;
2372 static struct frame_id
2373 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2375 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2377 frame_pc_unwind (next_frame));
2381 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2383 return frame_unwind_register_signed (next_frame, PCOQ_HEAD_REGNUM) & ~3;
2386 /* Instead of this nasty cast, add a method pvoid() that prints out a
2387 host VOID data type (remember %p isn't portable). */
2390 hppa_pointer_to_address_hack (void *ptr)
2392 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2393 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2397 unwind_command (char *exp, int from_tty)
2400 struct unwind_table_entry *u;
2402 /* If we have an expression, evaluate it and use it as the address. */
2404 if (exp != 0 && *exp != 0)
2405 address = parse_and_eval_address (exp);
2409 u = find_unwind_entry (address);
2413 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2417 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2418 paddr_nz (hppa_pointer_to_address_hack (u)));
2420 printf_unfiltered ("\tregion_start = ");
2421 print_address (u->region_start, gdb_stdout);
2423 printf_unfiltered ("\n\tregion_end = ");
2424 print_address (u->region_end, gdb_stdout);
2426 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2428 printf_unfiltered ("\n\tflags =");
2429 pif (Cannot_unwind);
2431 pif (Millicode_save_sr0);
2434 pif (Variable_Frame);
2435 pif (Separate_Package_Body);
2436 pif (Frame_Extension_Millicode);
2437 pif (Stack_Overflow_Check);
2438 pif (Two_Instruction_SP_Increment);
2442 pif (Save_MRP_in_frame);
2443 pif (extn_ptr_defined);
2444 pif (Cleanup_defined);
2445 pif (MPE_XL_interrupt_marker);
2446 pif (HP_UX_interrupt_marker);
2449 putchar_unfiltered ('\n');
2451 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2453 pin (Region_description);
2456 pin (Total_frame_size);
2460 hppa_skip_permanent_breakpoint (void)
2462 /* To step over a breakpoint instruction on the PA takes some
2463 fiddling with the instruction address queue.
2465 When we stop at a breakpoint, the IA queue front (the instruction
2466 we're executing now) points at the breakpoint instruction, and
2467 the IA queue back (the next instruction to execute) points to
2468 whatever instruction we would execute after the breakpoint, if it
2469 were an ordinary instruction. This is the case even if the
2470 breakpoint is in the delay slot of a branch instruction.
2472 Clearly, to step past the breakpoint, we need to set the queue
2473 front to the back. But what do we put in the back? What
2474 instruction comes after that one? Because of the branch delay
2475 slot, the next insn is always at the back + 4. */
2476 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
2477 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
2479 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
2480 /* We can leave the tail's space the same, since there's no jump. */
2484 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2486 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2488 An example of this occurs when an a.out is linked against a foo.sl.
2489 The foo.sl defines a global bar(), and the a.out declares a signature
2490 for bar(). However, the a.out doesn't directly call bar(), but passes
2491 its address in another call.
2493 If you have this scenario and attempt to "break bar" before running,
2494 gdb will find a minimal symbol for bar() in the a.out. But that
2495 symbol's address will be negative. What this appears to denote is
2496 an index backwards from the base of the procedure linkage table (PLT)
2497 into the data linkage table (DLT), the end of which is contiguous
2498 with the start of the PLT. This is clearly not a valid address for
2499 us to set a breakpoint on.
2501 Note that one must be careful in how one checks for a negative address.
2502 0xc0000000 is a legitimate address of something in a shared text
2503 segment, for example. Since I don't know what the possible range
2504 is of these "really, truly negative" addresses that come from the
2505 minimal symbols, I'm resorting to the gross hack of checking the
2506 top byte of the address for all 1's. Sigh. */
2508 return (!target_has_stack && (pc & 0xFF000000));
2512 hppa_instruction_nullified (void)
2514 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2515 avoid the type cast. I'm leaving it as is for now as I'm doing
2516 semi-mechanical multiarching-related changes. */
2517 const int ipsw = (int) read_register (IPSW_REGNUM);
2518 const int flags = (int) read_register (FLAGS_REGNUM);
2520 return ((ipsw & 0x00200000) && !(flags & 0x2));
2523 /* Return the GDB type object for the "standard" data type of data
2526 static struct type *
2527 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2529 if (reg_nr < FP4_REGNUM)
2530 return builtin_type_uint32;
2532 return builtin_type_ieee_single_big;
2535 /* Return the GDB type object for the "standard" data type of data
2536 in register N. hppa64 version. */
2538 static struct type *
2539 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2541 if (reg_nr < FP4_REGNUM)
2542 return builtin_type_uint64;
2544 return builtin_type_ieee_double_big;
2547 /* Return True if REGNUM is not a register available to the user
2548 through ptrace(). */
2551 hppa_cannot_store_register (int regnum)
2554 || regnum == PCSQ_HEAD_REGNUM
2555 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
2556 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
2561 hppa_smash_text_address (CORE_ADDR addr)
2563 /* The low two bits of the PC on the PA contain the privilege level.
2564 Some genius implementing a (non-GCC) compiler apparently decided
2565 this means that "addresses" in a text section therefore include a
2566 privilege level, and thus symbol tables should contain these bits.
2567 This seems like a bonehead thing to do--anyway, it seems to work
2568 for our purposes to just ignore those bits. */
2570 return (addr &= ~0x3);
2573 /* Get the ith function argument for the current function. */
2575 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2579 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
2584 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2585 int regnum, void *buf)
2589 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2590 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2592 store_unsigned_integer (buf, sizeof(tmp), tmp);
2595 /* Here is a table of C type sizes on hppa with various compiles
2596 and options. I measured this on PA 9000/800 with HP-UX 11.11
2597 and these compilers:
2599 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2600 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2601 /opt/aCC/bin/aCC B3910B A.03.45
2602 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2604 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2605 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2606 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2607 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2608 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2609 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2610 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2611 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2615 compiler and options
2616 char, short, int, long, long long
2617 float, double, long double
2620 So all these compilers use either ILP32 or LP64 model.
2621 TODO: gcc has more options so it needs more investigation.
2623 For floating point types, see:
2625 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2626 HP-UX floating-point guide, hpux 11.00
2628 -- chastain 2003-12-18 */
2630 static struct gdbarch *
2631 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2633 struct gdbarch_tdep *tdep;
2634 struct gdbarch *gdbarch;
2636 /* Try to determine the ABI of the object we are loading. */
2637 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2639 /* If it's a SOM file, assume it's HP/UX SOM. */
2640 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2641 info.osabi = GDB_OSABI_HPUX_SOM;
2644 /* find a candidate among the list of pre-declared architectures. */
2645 arches = gdbarch_list_lookup_by_info (arches, &info);
2647 return (arches->gdbarch);
2649 /* If none found, then allocate and initialize one. */
2650 tdep = XZALLOC (struct gdbarch_tdep);
2651 gdbarch = gdbarch_alloc (&info, tdep);
2653 /* Determine from the bfd_arch_info structure if we are dealing with
2654 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2655 then default to a 32bit machine. */
2656 if (info.bfd_arch_info != NULL)
2657 tdep->bytes_per_address =
2658 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2660 tdep->bytes_per_address = 4;
2662 /* Some parts of the gdbarch vector depend on whether we are running
2663 on a 32 bits or 64 bits target. */
2664 switch (tdep->bytes_per_address)
2667 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2668 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2669 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2672 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2673 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2674 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2677 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2678 tdep->bytes_per_address);
2681 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2682 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2684 /* The following gdbarch vector elements are the same in both ILP32
2685 and LP64, but might show differences some day. */
2686 set_gdbarch_long_long_bit (gdbarch, 64);
2687 set_gdbarch_long_double_bit (gdbarch, 128);
2688 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2690 /* The following gdbarch vector elements do not depend on the address
2691 size, or in any other gdbarch element previously set. */
2692 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2693 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
2694 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
2695 set_gdbarch_in_solib_return_trampoline (gdbarch,
2696 hppa_in_solib_return_trampoline);
2697 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2698 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2699 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2700 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2701 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2702 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2703 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2704 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2705 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2707 /* Helper for function argument information. */
2708 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2710 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2712 /* When a hardware watchpoint triggers, we'll move the inferior past
2713 it by removing all eventpoints; stepping past the instruction
2714 that caused the trigger; reinserting eventpoints; and checking
2715 whether any watched location changed. */
2716 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2718 /* Inferior function call methods. */
2719 switch (tdep->bytes_per_address)
2722 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2723 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2726 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2727 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2730 internal_error (__FILE__, __LINE__, "bad switch");
2733 /* Struct return methods. */
2734 switch (tdep->bytes_per_address)
2737 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2740 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2743 internal_error (__FILE__, __LINE__, "bad switch");
2746 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2748 /* Frame unwind methods. */
2749 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2750 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2751 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2752 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
2754 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2756 /* Hook in ABI-specific overrides, if they have been registered. */
2757 gdbarch_init_osabi (info, gdbarch);
2763 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2765 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2767 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2768 tdep->bytes_per_address);
2769 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2773 _initialize_hppa_tdep (void)
2775 struct cmd_list_element *c;
2776 void break_at_finish_command (char *arg, int from_tty);
2777 void tbreak_at_finish_command (char *arg, int from_tty);
2778 void break_at_finish_at_depth_command (char *arg, int from_tty);
2780 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2782 hppa_objfile_priv_data = register_objfile_data ();
2784 add_cmd ("unwind", class_maintenance, unwind_command,
2785 "Print unwind table entry at given address.",
2786 &maintenanceprintlist);
2788 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2789 break_at_finish_command,
2790 concat ("Set breakpoint at procedure exit. \n\
2791 Argument may be function name, or \"*\" and an address.\n\
2792 If function is specified, break at end of code for that function.\n\
2793 If an address is specified, break at the end of the function that contains \n\
2794 that exact address.\n",
2795 "With no arg, uses current execution address of selected stack frame.\n\
2796 This is useful for breaking on return to a stack frame.\n\
2798 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2800 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2801 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2802 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2803 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2804 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2806 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2807 tbreak_at_finish_command,
2808 "Set temporary breakpoint at procedure exit. Either there should\n\
2809 be no argument or the argument must be a depth.\n"), NULL);
2810 set_cmd_completer (c, location_completer);
2813 deprecate_cmd (add_com ("bx", class_breakpoint,
2814 break_at_finish_at_depth_command,
2815 "Set breakpoint at procedure exit. Either there should\n\
2816 be no argument or the argument must be a depth.\n"), NULL);
2818 /* Debug this files internals. */
2819 add_show_from_set (add_set_cmd ("hppa", class_maintenance, var_zinteger,
2820 &hppa_debug, "Set hppa debugging.\n\
2821 When non-zero, hppa specific debugging is enabled.", &setdebuglist), &showdebuglist);