]>
Commit | Line | Data |
---|---|---|
dd3b648e RP |
1 | /* Low level packing and unpacking of values for GDB. |
2 | Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
99a7de40 | 6 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 7 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
dd3b648e | 10 | |
99a7de40 | 11 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e RP |
19 | |
20 | #include <stdio.h> | |
21 | #include <string.h> | |
22 | #include "defs.h" | |
23 | #include "param.h" | |
24 | #include "symtab.h" | |
25 | #include "value.h" | |
26 | #include "gdbcore.h" | |
27 | #include "frame.h" | |
28 | #include "command.h" | |
f266e564 | 29 | #include "gdbcmd.h" |
dd3b648e | 30 | |
71b16efa JK |
31 | extern char *cplus_demangle (); |
32 | extern char *cplus_mangle_opname (); | |
33 | ||
dd3b648e RP |
34 | /* The value-history records all the values printed |
35 | by print commands during this session. Each chunk | |
36 | records 60 consecutive values. The first chunk on | |
37 | the chain records the most recent values. | |
38 | The total number of values is in value_history_count. */ | |
39 | ||
40 | #define VALUE_HISTORY_CHUNK 60 | |
41 | ||
42 | struct value_history_chunk | |
43 | { | |
44 | struct value_history_chunk *next; | |
45 | value values[VALUE_HISTORY_CHUNK]; | |
46 | }; | |
47 | ||
48 | /* Chain of chunks now in use. */ | |
49 | ||
50 | static struct value_history_chunk *value_history_chain; | |
51 | ||
52 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
53 | \f |
54 | /* List of all value objects currently allocated | |
55 | (except for those released by calls to release_value) | |
56 | This is so they can be freed after each command. */ | |
57 | ||
58 | static value all_values; | |
59 | ||
60 | /* Allocate a value that has the correct length for type TYPE. */ | |
61 | ||
62 | value | |
63 | allocate_value (type) | |
64 | struct type *type; | |
65 | { | |
66 | register value val; | |
67 | ||
68 | check_stub_type (type); | |
69 | ||
70 | val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type)); | |
71 | VALUE_NEXT (val) = all_values; | |
72 | all_values = val; | |
73 | VALUE_TYPE (val) = type; | |
74 | VALUE_LVAL (val) = not_lval; | |
75 | VALUE_ADDRESS (val) = 0; | |
76 | VALUE_FRAME (val) = 0; | |
77 | VALUE_OFFSET (val) = 0; | |
78 | VALUE_BITPOS (val) = 0; | |
79 | VALUE_BITSIZE (val) = 0; | |
80 | VALUE_REPEATED (val) = 0; | |
81 | VALUE_REPETITIONS (val) = 0; | |
82 | VALUE_REGNO (val) = -1; | |
83 | VALUE_LAZY (val) = 0; | |
84 | VALUE_OPTIMIZED_OUT (val) = 0; | |
85 | return val; | |
86 | } | |
87 | ||
88 | /* Allocate a value that has the correct length | |
89 | for COUNT repetitions type TYPE. */ | |
90 | ||
91 | value | |
92 | allocate_repeat_value (type, count) | |
93 | struct type *type; | |
94 | int count; | |
95 | { | |
96 | register value val; | |
97 | ||
98 | val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count); | |
99 | VALUE_NEXT (val) = all_values; | |
100 | all_values = val; | |
101 | VALUE_TYPE (val) = type; | |
102 | VALUE_LVAL (val) = not_lval; | |
103 | VALUE_ADDRESS (val) = 0; | |
104 | VALUE_FRAME (val) = 0; | |
105 | VALUE_OFFSET (val) = 0; | |
106 | VALUE_BITPOS (val) = 0; | |
107 | VALUE_BITSIZE (val) = 0; | |
108 | VALUE_REPEATED (val) = 1; | |
109 | VALUE_REPETITIONS (val) = count; | |
110 | VALUE_REGNO (val) = -1; | |
111 | VALUE_LAZY (val) = 0; | |
112 | VALUE_OPTIMIZED_OUT (val) = 0; | |
113 | return val; | |
114 | } | |
115 | ||
fcb887ff JK |
116 | /* Return a mark in the value chain. All values allocated after the |
117 | mark is obtained (except for those released) are subject to being freed | |
118 | if a subsequent value_free_to_mark is passed the mark. */ | |
119 | value | |
120 | value_mark () | |
121 | { | |
122 | return all_values; | |
123 | } | |
124 | ||
125 | /* Free all values allocated since MARK was obtained by value_mark | |
126 | (except for those released). */ | |
127 | void | |
128 | value_free_to_mark (mark) | |
129 | value mark; | |
130 | { | |
131 | value val, next; | |
132 | ||
133 | for (val = all_values; val && val != mark; val = next) | |
134 | { | |
135 | next = VALUE_NEXT (val); | |
136 | value_free (val); | |
137 | } | |
138 | all_values = val; | |
139 | } | |
140 | ||
dd3b648e RP |
141 | /* Free all the values that have been allocated (except for those released). |
142 | Called after each command, successful or not. */ | |
143 | ||
144 | void | |
145 | free_all_values () | |
146 | { | |
147 | register value val, next; | |
148 | ||
149 | for (val = all_values; val; val = next) | |
150 | { | |
151 | next = VALUE_NEXT (val); | |
152 | value_free (val); | |
153 | } | |
154 | ||
155 | all_values = 0; | |
156 | } | |
157 | ||
158 | /* Remove VAL from the chain all_values | |
159 | so it will not be freed automatically. */ | |
160 | ||
161 | void | |
162 | release_value (val) | |
163 | register value val; | |
164 | { | |
165 | register value v; | |
166 | ||
167 | if (all_values == val) | |
168 | { | |
169 | all_values = val->next; | |
170 | return; | |
171 | } | |
172 | ||
173 | for (v = all_values; v; v = v->next) | |
174 | { | |
175 | if (v->next == val) | |
176 | { | |
177 | v->next = val->next; | |
178 | break; | |
179 | } | |
180 | } | |
181 | } | |
182 | ||
183 | /* Return a copy of the value ARG. | |
184 | It contains the same contents, for same memory address, | |
185 | but it's a different block of storage. */ | |
186 | ||
187 | static value | |
188 | value_copy (arg) | |
189 | value arg; | |
190 | { | |
191 | register value val; | |
192 | register struct type *type = VALUE_TYPE (arg); | |
193 | if (VALUE_REPEATED (arg)) | |
194 | val = allocate_repeat_value (type, VALUE_REPETITIONS (arg)); | |
195 | else | |
196 | val = allocate_value (type); | |
197 | VALUE_LVAL (val) = VALUE_LVAL (arg); | |
198 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
199 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
200 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
201 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
202 | VALUE_REGNO (val) = VALUE_REGNO (arg); | |
203 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
204 | if (!VALUE_LAZY (val)) | |
205 | { | |
206 | bcopy (VALUE_CONTENTS_RAW (arg), VALUE_CONTENTS_RAW (val), | |
207 | TYPE_LENGTH (VALUE_TYPE (arg)) | |
208 | * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1)); | |
209 | } | |
210 | return val; | |
211 | } | |
212 | \f | |
213 | /* Access to the value history. */ | |
214 | ||
215 | /* Record a new value in the value history. | |
216 | Returns the absolute history index of the entry. | |
217 | Result of -1 indicates the value was not saved; otherwise it is the | |
218 | value history index of this new item. */ | |
219 | ||
220 | int | |
221 | record_latest_value (val) | |
222 | value val; | |
223 | { | |
224 | int i; | |
225 | ||
226 | /* Check error now if about to store an invalid float. We return -1 | |
227 | to the caller, but allow them to continue, e.g. to print it as "Nan". */ | |
228 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) { | |
229 | (void) unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i); | |
230 | if (i) return -1; /* Indicate value not saved in history */ | |
231 | } | |
232 | ||
233 | /* Here we treat value_history_count as origin-zero | |
234 | and applying to the value being stored now. */ | |
235 | ||
236 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
237 | if (i == 0) | |
238 | { | |
239 | register struct value_history_chunk *new | |
240 | = (struct value_history_chunk *) | |
241 | xmalloc (sizeof (struct value_history_chunk)); | |
242 | bzero (new->values, sizeof new->values); | |
243 | new->next = value_history_chain; | |
244 | value_history_chain = new; | |
245 | } | |
246 | ||
247 | value_history_chain->values[i] = val; | |
248 | release_value (val); | |
249 | ||
250 | /* Now we regard value_history_count as origin-one | |
251 | and applying to the value just stored. */ | |
252 | ||
253 | return ++value_history_count; | |
254 | } | |
255 | ||
256 | /* Return a copy of the value in the history with sequence number NUM. */ | |
257 | ||
258 | value | |
259 | access_value_history (num) | |
260 | int num; | |
261 | { | |
262 | register struct value_history_chunk *chunk; | |
263 | register int i; | |
264 | register int absnum = num; | |
265 | ||
266 | if (absnum <= 0) | |
267 | absnum += value_history_count; | |
268 | ||
269 | if (absnum <= 0) | |
270 | { | |
271 | if (num == 0) | |
272 | error ("The history is empty."); | |
273 | else if (num == 1) | |
274 | error ("There is only one value in the history."); | |
275 | else | |
276 | error ("History does not go back to $$%d.", -num); | |
277 | } | |
278 | if (absnum > value_history_count) | |
279 | error ("History has not yet reached $%d.", absnum); | |
280 | ||
281 | absnum--; | |
282 | ||
283 | /* Now absnum is always absolute and origin zero. */ | |
284 | ||
285 | chunk = value_history_chain; | |
286 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
287 | i > 0; i--) | |
288 | chunk = chunk->next; | |
289 | ||
290 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
291 | } | |
292 | ||
293 | /* Clear the value history entirely. | |
294 | Must be done when new symbol tables are loaded, | |
295 | because the type pointers become invalid. */ | |
296 | ||
297 | void | |
298 | clear_value_history () | |
299 | { | |
300 | register struct value_history_chunk *next; | |
301 | register int i; | |
302 | register value val; | |
303 | ||
304 | while (value_history_chain) | |
305 | { | |
306 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
307 | if (val = value_history_chain->values[i]) | |
308 | free (val); | |
309 | next = value_history_chain->next; | |
310 | free (value_history_chain); | |
311 | value_history_chain = next; | |
312 | } | |
313 | value_history_count = 0; | |
314 | } | |
315 | ||
316 | static void | |
f266e564 | 317 | show_values (num_exp, from_tty) |
dd3b648e RP |
318 | char *num_exp; |
319 | int from_tty; | |
320 | { | |
321 | register int i; | |
322 | register value val; | |
323 | static int num = 1; | |
324 | ||
325 | if (num_exp) | |
326 | { | |
327 | if (num_exp[0] == '+' && num_exp[1] == '\0') | |
328 | /* "info history +" should print from the stored position. */ | |
329 | ; | |
330 | else | |
331 | /* "info history <exp>" should print around value number <exp>. */ | |
332 | num = parse_and_eval_address (num_exp) - 5; | |
333 | } | |
334 | else | |
335 | { | |
336 | /* "info history" means print the last 10 values. */ | |
337 | num = value_history_count - 9; | |
338 | } | |
339 | ||
340 | if (num <= 0) | |
341 | num = 1; | |
342 | ||
343 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
344 | { | |
345 | val = access_value_history (i); | |
346 | printf_filtered ("$%d = ", i); | |
347 | value_print (val, stdout, 0, Val_pretty_default); | |
348 | printf_filtered ("\n"); | |
349 | } | |
350 | ||
351 | /* The next "info history +" should start after what we just printed. */ | |
352 | num += 10; | |
353 | ||
354 | /* Hitting just return after this command should do the same thing as | |
355 | "info history +". If num_exp is null, this is unnecessary, since | |
356 | "info history +" is not useful after "info history". */ | |
357 | if (from_tty && num_exp) | |
358 | { | |
359 | num_exp[0] = '+'; | |
360 | num_exp[1] = '\0'; | |
361 | } | |
362 | } | |
363 | \f | |
364 | /* Internal variables. These are variables within the debugger | |
365 | that hold values assigned by debugger commands. | |
366 | The user refers to them with a '$' prefix | |
367 | that does not appear in the variable names stored internally. */ | |
368 | ||
369 | static struct internalvar *internalvars; | |
370 | ||
371 | /* Look up an internal variable with name NAME. NAME should not | |
372 | normally include a dollar sign. | |
373 | ||
374 | If the specified internal variable does not exist, | |
375 | one is created, with a void value. */ | |
376 | ||
377 | struct internalvar * | |
378 | lookup_internalvar (name) | |
379 | char *name; | |
380 | { | |
381 | register struct internalvar *var; | |
382 | ||
383 | for (var = internalvars; var; var = var->next) | |
384 | if (!strcmp (var->name, name)) | |
385 | return var; | |
386 | ||
387 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
388 | var->name = concat (name, "", ""); | |
389 | var->value = allocate_value (builtin_type_void); | |
390 | release_value (var->value); | |
391 | var->next = internalvars; | |
392 | internalvars = var; | |
393 | return var; | |
394 | } | |
395 | ||
396 | value | |
397 | value_of_internalvar (var) | |
398 | struct internalvar *var; | |
399 | { | |
400 | register value val; | |
401 | ||
402 | #ifdef IS_TRAPPED_INTERNALVAR | |
403 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
404 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
405 | #endif | |
406 | ||
407 | val = value_copy (var->value); | |
408 | if (VALUE_LAZY (val)) | |
409 | value_fetch_lazy (val); | |
410 | VALUE_LVAL (val) = lval_internalvar; | |
411 | VALUE_INTERNALVAR (val) = var; | |
412 | return val; | |
413 | } | |
414 | ||
415 | void | |
416 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
417 | struct internalvar *var; | |
418 | int offset, bitpos, bitsize; | |
419 | value newval; | |
420 | { | |
421 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
422 | ||
423 | #ifdef IS_TRAPPED_INTERNALVAR | |
424 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
425 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
426 | #endif | |
427 | ||
428 | if (bitsize) | |
429 | modify_field (addr, (int) value_as_long (newval), | |
430 | bitpos, bitsize); | |
431 | else | |
432 | bcopy (VALUE_CONTENTS (newval), addr, | |
433 | TYPE_LENGTH (VALUE_TYPE (newval))); | |
434 | } | |
435 | ||
436 | void | |
437 | set_internalvar (var, val) | |
438 | struct internalvar *var; | |
439 | value val; | |
440 | { | |
441 | #ifdef IS_TRAPPED_INTERNALVAR | |
442 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
443 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
444 | #endif | |
445 | ||
446 | free (var->value); | |
447 | var->value = value_copy (val); | |
448 | release_value (var->value); | |
449 | } | |
450 | ||
451 | char * | |
452 | internalvar_name (var) | |
453 | struct internalvar *var; | |
454 | { | |
455 | return var->name; | |
456 | } | |
457 | ||
458 | /* Free all internalvars. Done when new symtabs are loaded, | |
459 | because that makes the values invalid. */ | |
460 | ||
461 | void | |
462 | clear_internalvars () | |
463 | { | |
464 | register struct internalvar *var; | |
465 | ||
466 | while (internalvars) | |
467 | { | |
468 | var = internalvars; | |
469 | internalvars = var->next; | |
470 | free (var->name); | |
471 | free (var->value); | |
472 | free (var); | |
473 | } | |
474 | } | |
475 | ||
476 | static void | |
f266e564 | 477 | show_convenience () |
dd3b648e RP |
478 | { |
479 | register struct internalvar *var; | |
480 | int varseen = 0; | |
481 | ||
482 | for (var = internalvars; var; var = var->next) | |
483 | { | |
484 | #ifdef IS_TRAPPED_INTERNALVAR | |
485 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
486 | continue; | |
487 | #endif | |
488 | if (!varseen) | |
489 | { | |
490 | #if 0 | |
491 | /* Useless noise. */ | |
492 | printf ("Debugger convenience variables:\n\n"); | |
493 | #endif | |
494 | varseen = 1; | |
495 | } | |
496 | printf ("$%s = ", var->name); | |
497 | value_print (var->value, stdout, 0, Val_pretty_default); | |
498 | printf ("\n"); | |
499 | } | |
500 | if (!varseen) | |
501 | printf ("No debugger convenience variables now defined.\n\ | |
502 | Convenience variables have names starting with \"$\";\n\ | |
503 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
504 | } | |
505 | \f | |
506 | /* Extract a value as a C number (either long or double). | |
507 | Knows how to convert fixed values to double, or | |
508 | floating values to long. | |
509 | Does not deallocate the value. */ | |
510 | ||
511 | LONGEST | |
512 | value_as_long (val) | |
513 | register value val; | |
514 | { | |
515 | /* This coerces arrays and functions, which is necessary (e.g. | |
516 | in disassemble_command). It also dereferences references, which | |
517 | I suspect is the most logical thing to do. */ | |
518 | if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM) | |
519 | COERCE_ARRAY (val); | |
520 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); | |
521 | } | |
522 | ||
523 | double | |
524 | value_as_double (val) | |
525 | register value val; | |
526 | { | |
527 | double foo; | |
528 | int inv; | |
529 | ||
530 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
531 | if (inv) | |
532 | error ("Invalid floating value found in program."); | |
533 | return foo; | |
534 | } | |
e1ce8aa5 JK |
535 | /* Extract a value as a C pointer. |
536 | Does not deallocate the value. */ | |
537 | CORE_ADDR | |
538 | value_as_pointer (val) | |
539 | value val; | |
540 | { | |
2bff8e38 JK |
541 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
542 | whether we want this to be true eventually. */ | |
543 | return value_as_long (val); | |
e1ce8aa5 | 544 | } |
dd3b648e RP |
545 | \f |
546 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
547 | as a long, or as a double, assuming the raw data is described | |
548 | by type TYPE. Knows how to convert different sizes of values | |
549 | and can convert between fixed and floating point. We don't assume | |
550 | any alignment for the raw data. Return value is in host byte order. | |
551 | ||
552 | If you want functions and arrays to be coerced to pointers, and | |
553 | references to be dereferenced, call value_as_long() instead. | |
554 | ||
555 | C++: It is assumed that the front-end has taken care of | |
556 | all matters concerning pointers to members. A pointer | |
557 | to member which reaches here is considered to be equivalent | |
558 | to an INT (or some size). After all, it is only an offset. */ | |
559 | ||
560 | LONGEST | |
561 | unpack_long (type, valaddr) | |
562 | struct type *type; | |
563 | char *valaddr; | |
564 | { | |
565 | register enum type_code code = TYPE_CODE (type); | |
566 | register int len = TYPE_LENGTH (type); | |
567 | register int nosign = TYPE_UNSIGNED (type); | |
568 | ||
569 | if (code == TYPE_CODE_ENUM) | |
570 | code = TYPE_CODE_INT; | |
571 | if (code == TYPE_CODE_FLT) | |
572 | { | |
573 | if (len == sizeof (float)) | |
574 | { | |
575 | float retval; | |
576 | bcopy (valaddr, &retval, sizeof (retval)); | |
577 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
578 | return retval; | |
579 | } | |
580 | ||
581 | if (len == sizeof (double)) | |
582 | { | |
583 | double retval; | |
584 | bcopy (valaddr, &retval, sizeof (retval)); | |
585 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
586 | return retval; | |
587 | } | |
588 | else | |
589 | { | |
590 | error ("Unexpected type of floating point number."); | |
591 | } | |
592 | } | |
593 | else if (code == TYPE_CODE_INT && nosign) | |
594 | { | |
595 | if (len == sizeof (char)) | |
596 | { | |
597 | unsigned char retval = * (unsigned char *) valaddr; | |
598 | /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */ | |
599 | return retval; | |
600 | } | |
601 | ||
602 | if (len == sizeof (short)) | |
603 | { | |
604 | unsigned short retval; | |
605 | bcopy (valaddr, &retval, sizeof (retval)); | |
606 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
607 | return retval; | |
608 | } | |
609 | ||
610 | if (len == sizeof (int)) | |
611 | { | |
612 | unsigned int retval; | |
613 | bcopy (valaddr, &retval, sizeof (retval)); | |
614 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
615 | return retval; | |
616 | } | |
617 | ||
618 | if (len == sizeof (long)) | |
619 | { | |
620 | unsigned long retval; | |
621 | bcopy (valaddr, &retval, sizeof (retval)); | |
622 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
623 | return retval; | |
624 | } | |
625 | #ifdef LONG_LONG | |
626 | if (len == sizeof (long long)) | |
627 | { | |
628 | unsigned long long retval; | |
629 | bcopy (valaddr, &retval, sizeof (retval)); | |
630 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
631 | return retval; | |
632 | } | |
633 | #endif | |
634 | else | |
635 | { | |
636 | error ("That operation is not possible on an integer of that size."); | |
637 | } | |
638 | } | |
639 | else if (code == TYPE_CODE_INT) | |
640 | { | |
641 | if (len == sizeof (char)) | |
642 | { | |
643 | char retval; | |
644 | bcopy (valaddr, &retval, sizeof (retval)); | |
645 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
646 | return retval; | |
647 | } | |
648 | ||
649 | if (len == sizeof (short)) | |
650 | { | |
651 | short retval; | |
652 | bcopy (valaddr, &retval, sizeof (retval)); | |
653 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
654 | return retval; | |
655 | } | |
656 | ||
657 | if (len == sizeof (int)) | |
658 | { | |
659 | int retval; | |
660 | bcopy (valaddr, &retval, sizeof (retval)); | |
661 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
662 | return retval; | |
663 | } | |
664 | ||
665 | if (len == sizeof (long)) | |
666 | { | |
667 | long retval; | |
668 | bcopy (valaddr, &retval, sizeof (retval)); | |
669 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
670 | return retval; | |
671 | } | |
672 | ||
673 | #ifdef LONG_LONG | |
674 | if (len == sizeof (long long)) | |
675 | { | |
676 | long long retval; | |
677 | bcopy (valaddr, &retval, sizeof (retval)); | |
678 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
679 | return retval; | |
680 | } | |
681 | #endif | |
682 | else | |
683 | { | |
684 | error ("That operation is not possible on an integer of that size."); | |
685 | } | |
686 | } | |
2bff8e38 JK |
687 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
688 | whether we want this to be true eventually. */ | |
dd3b648e RP |
689 | else if (code == TYPE_CODE_PTR |
690 | || code == TYPE_CODE_REF) | |
691 | { | |
e1ce8aa5 | 692 | if (len == sizeof (CORE_ADDR)) |
dd3b648e RP |
693 | { |
694 | CORE_ADDR retval; | |
695 | bcopy (valaddr, &retval, sizeof (retval)); | |
696 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
697 | return retval; | |
698 | } | |
699 | } | |
700 | else if (code == TYPE_CODE_MEMBER) | |
701 | error ("not implemented: member types in unpack_long"); | |
702 | ||
703 | error ("Value not integer or pointer."); | |
704 | return 0; /* For lint -- never reached */ | |
705 | } | |
706 | ||
707 | /* Return a double value from the specified type and address. | |
708 | INVP points to an int which is set to 0 for valid value, | |
709 | 1 for invalid value (bad float format). In either case, | |
710 | the returned double is OK to use. Argument is in target | |
711 | format, result is in host format. */ | |
712 | ||
713 | double | |
714 | unpack_double (type, valaddr, invp) | |
715 | struct type *type; | |
716 | char *valaddr; | |
717 | int *invp; | |
718 | { | |
719 | register enum type_code code = TYPE_CODE (type); | |
720 | register int len = TYPE_LENGTH (type); | |
721 | register int nosign = TYPE_UNSIGNED (type); | |
722 | ||
723 | *invp = 0; /* Assume valid. */ | |
724 | if (code == TYPE_CODE_FLT) | |
725 | { | |
726 | if (INVALID_FLOAT (valaddr, len)) | |
727 | { | |
728 | *invp = 1; | |
729 | return 1.234567891011121314; | |
730 | } | |
731 | ||
732 | if (len == sizeof (float)) | |
733 | { | |
734 | float retval; | |
735 | bcopy (valaddr, &retval, sizeof (retval)); | |
736 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
737 | return retval; | |
738 | } | |
739 | ||
740 | if (len == sizeof (double)) | |
741 | { | |
742 | double retval; | |
743 | bcopy (valaddr, &retval, sizeof (retval)); | |
744 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
745 | return retval; | |
746 | } | |
747 | else | |
748 | { | |
749 | error ("Unexpected type of floating point number."); | |
e1ce8aa5 | 750 | return 0; /* Placate lint. */ |
dd3b648e RP |
751 | } |
752 | } | |
753 | else if (nosign) { | |
754 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
755 | #ifdef LONG_LONG | |
756 | return (unsigned long long) unpack_long (type, valaddr); | |
757 | #else | |
758 | return (unsigned long ) unpack_long (type, valaddr); | |
759 | #endif | |
760 | } else { | |
761 | /* Signed -- we are OK with unpack_long. */ | |
762 | return unpack_long (type, valaddr); | |
763 | } | |
764 | } | |
e1ce8aa5 JK |
765 | |
766 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
767 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
768 | We don't assume any alignment for the raw data. Return value is in | |
769 | host byte order. | |
770 | ||
771 | If you want functions and arrays to be coerced to pointers, and | |
772 | references to be dereferenced, call value_as_pointer() instead. | |
773 | ||
774 | C++: It is assumed that the front-end has taken care of | |
775 | all matters concerning pointers to members. A pointer | |
776 | to member which reaches here is considered to be equivalent | |
777 | to an INT (or some size). After all, it is only an offset. */ | |
778 | ||
779 | CORE_ADDR | |
780 | unpack_pointer (type, valaddr) | |
781 | struct type *type; | |
782 | char *valaddr; | |
783 | { | |
2bff8e38 JK |
784 | #if 0 |
785 | /* The user should be able to use an int (e.g. 0x7892) in contexts | |
786 | where a pointer is expected. So this doesn't do enough. */ | |
e1ce8aa5 JK |
787 | register enum type_code code = TYPE_CODE (type); |
788 | register int len = TYPE_LENGTH (type); | |
789 | ||
790 | if (code == TYPE_CODE_PTR | |
791 | || code == TYPE_CODE_REF) | |
792 | { | |
793 | if (len == sizeof (CORE_ADDR)) | |
794 | { | |
795 | CORE_ADDR retval; | |
796 | bcopy (valaddr, &retval, sizeof (retval)); | |
797 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
798 | return retval; | |
799 | } | |
800 | error ("Unrecognized pointer size."); | |
801 | } | |
802 | else if (code == TYPE_CODE_MEMBER) | |
803 | error ("not implemented: member types in unpack_pointer"); | |
804 | ||
805 | error ("Value is not a pointer."); | |
806 | return 0; /* For lint -- never reached */ | |
2bff8e38 JK |
807 | #else |
808 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
809 | whether we want this to be true eventually. */ | |
810 | return unpack_long (type, valaddr); | |
811 | #endif | |
e1ce8aa5 | 812 | } |
dd3b648e RP |
813 | \f |
814 | /* Given a value ARG1 (offset by OFFSET bytes) | |
815 | of a struct or union type ARG_TYPE, | |
816 | extract and return the value of one of its fields. | |
817 | FIELDNO says which field. | |
818 | ||
819 | For C++, must also be able to return values from static fields */ | |
820 | ||
821 | value | |
822 | value_primitive_field (arg1, offset, fieldno, arg_type) | |
823 | register value arg1; | |
824 | int offset; | |
825 | register int fieldno; | |
826 | register struct type *arg_type; | |
827 | { | |
828 | register value v; | |
829 | register struct type *type; | |
830 | ||
831 | check_stub_type (arg_type); | |
832 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
833 | ||
834 | /* Handle packed fields */ | |
835 | ||
836 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
837 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
838 | { | |
839 | v = value_from_long (type, | |
840 | unpack_field_as_long (arg_type, | |
841 | VALUE_CONTENTS (arg1), | |
842 | fieldno)); | |
843 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
844 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
845 | } | |
846 | else | |
847 | { | |
848 | v = allocate_value (type); | |
849 | if (VALUE_LAZY (arg1)) | |
850 | VALUE_LAZY (v) = 1; | |
851 | else | |
852 | bcopy (VALUE_CONTENTS_RAW (arg1) + offset, | |
853 | VALUE_CONTENTS_RAW (v), | |
854 | TYPE_LENGTH (type)); | |
855 | } | |
856 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
857 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
858 | VALUE_LVAL (v) = lval_internalvar_component; | |
859 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
860 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
861 | return v; | |
862 | } | |
863 | ||
864 | /* Given a value ARG1 of a struct or union type, | |
865 | extract and return the value of one of its fields. | |
866 | FIELDNO says which field. | |
867 | ||
868 | For C++, must also be able to return values from static fields */ | |
869 | ||
870 | value | |
871 | value_field (arg1, fieldno) | |
872 | register value arg1; | |
873 | register int fieldno; | |
874 | { | |
875 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
876 | } | |
877 | ||
878 | value | |
879 | value_fn_field (arg1, fieldno, subfieldno) | |
880 | register value arg1; | |
881 | register int fieldno; | |
882 | int subfieldno; | |
883 | { | |
884 | register value v; | |
885 | struct fn_field *f = TYPE_FN_FIELDLIST1 (VALUE_TYPE (arg1), fieldno); | |
886 | register struct type *type = TYPE_FN_FIELD_TYPE (f, subfieldno); | |
887 | struct symbol *sym; | |
888 | ||
889 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, subfieldno), | |
890 | 0, VAR_NAMESPACE, 0, NULL); | |
891 | if (! sym) error ("Internal error: could not find physical method named %s", | |
892 | TYPE_FN_FIELD_PHYSNAME (f, subfieldno)); | |
893 | ||
894 | v = allocate_value (type); | |
895 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
896 | VALUE_TYPE (v) = type; | |
897 | return v; | |
898 | } | |
899 | ||
900 | /* Return a virtual function as a value. | |
901 | ARG1 is the object which provides the virtual function | |
902 | table pointer. ARG1 is side-effected in calling this function. | |
903 | F is the list of member functions which contains the desired virtual | |
904 | function. | |
e532974c JK |
905 | J is an index into F which provides the desired virtual function. |
906 | ||
907 | TYPE is the type in which F is located. */ | |
dd3b648e | 908 | value |
e532974c | 909 | value_virtual_fn_field (arg1, f, j, type) |
dd3b648e RP |
910 | value arg1; |
911 | struct fn_field *f; | |
912 | int j; | |
e532974c | 913 | struct type *type; |
dd3b648e RP |
914 | { |
915 | /* First, get the virtual function table pointer. That comes | |
916 | with a strange type, so cast it to type `pointer to long' (which | |
917 | should serve just fine as a function type). Then, index into | |
918 | the table, and convert final value to appropriate function type. */ | |
919 | value entry, vfn, vtbl; | |
920 | value vi = value_from_long (builtin_type_int, | |
921 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); | |
e532974c JK |
922 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
923 | struct type *context; | |
924 | if (fcontext == NULL) | |
925 | /* We don't have an fcontext (e.g. the program was compiled with | |
926 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
927 | This won't work right for multiple inheritance, but at least we | |
928 | should do as well as GDB 3.x did. */ | |
929 | fcontext = TYPE_VPTR_BASETYPE (type); | |
930 | context = lookup_pointer_type (fcontext); | |
931 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
dd3b648e RP |
932 | if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1)) |
933 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
934 | ||
935 | context = VALUE_TYPE (arg1); | |
e532974c | 936 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
937 | |
938 | /* This type may have been defined before its virtual function table | |
939 | was. If so, fill in the virtual function table entry for the | |
940 | type now. */ | |
941 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 942 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
943 | |
944 | /* The virtual function table is now an array of structures | |
945 | which have the form { int16 offset, delta; void *pfn; }. */ | |
946 | vtbl = value_ind (value_field (arg1, TYPE_VPTR_FIELDNO (context))); | |
947 | ||
948 | /* Index into the virtual function table. This is hard-coded because | |
949 | looking up a field is not cheap, and it may be important to save | |
950 | time, e.g. if the user has set a conditional breakpoint calling | |
951 | a virtual function. */ | |
952 | entry = value_subscript (vtbl, vi); | |
953 | ||
954 | /* Move the `this' pointer according to the virtual function table. */ | |
955 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)); | |
956 | if (! VALUE_LAZY (arg1)) | |
957 | { | |
958 | VALUE_LAZY (arg1) = 1; | |
959 | value_fetch_lazy (arg1); | |
960 | } | |
961 | ||
962 | vfn = value_field (entry, 2); | |
963 | /* Reinstantiate the function pointer with the correct type. */ | |
964 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
965 | ||
966 | return vfn; | |
967 | } | |
968 | ||
71b16efa JK |
969 | /* ARG is a pointer to an object we know to be at least |
970 | a DTYPE. BTYPE is the most derived basetype that has | |
971 | already been searched (and need not be searched again). | |
972 | After looking at the vtables between BTYPE and DTYPE, | |
973 | return the most derived type we find. The caller must | |
974 | be satisfied when the return value == DTYPE. | |
975 | ||
976 | FIXME-tiemann: should work with dossier entries as well. */ | |
977 | ||
978 | static value | |
979 | value_headof (arg, btype, dtype) | |
980 | value arg; | |
981 | struct type *btype, *dtype; | |
982 | { | |
983 | /* First collect the vtables we must look at for this object. */ | |
984 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
985 | value vtbl, entry, best_entry = 0; | |
e1ce8aa5 | 986 | /* FIXME: entry_type is never used. */ |
71b16efa JK |
987 | struct type *entry_type; |
988 | int i, nelems; | |
989 | int offset, best_offset = 0; | |
990 | struct symbol *sym; | |
991 | CORE_ADDR pc_for_sym; | |
992 | char *demangled_name; | |
993 | ||
aec4cb91 MT |
994 | btype = TYPE_VPTR_BASETYPE (dtype); |
995 | check_stub_type (btype); | |
996 | if (btype != dtype) | |
997 | vtbl = value_cast (lookup_pointer_type (btype), arg); | |
998 | else | |
999 | vtbl = arg; | |
1000 | vtbl = value_ind (value_field (value_ind (vtbl), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
1001 | |
1002 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1003 | i = find_pc_misc_function (VALUE_ADDRESS (vtbl)); | |
1004 | if (i < 0 || ! VTBL_PREFIX_P (misc_function_vector[i].name)) | |
1005 | { | |
1006 | /* If we expected to find a vtable, but did not, let the user | |
1007 | know that we aren't happy, but don't throw an error. | |
1008 | FIXME: there has to be a better way to do this. */ | |
1009 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
1010 | bcopy (VALUE_TYPE (arg), error_type, sizeof (struct type)); | |
1011 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); | |
1012 | VALUE_TYPE (arg) = error_type; | |
1013 | return arg; | |
1014 | } | |
1015 | ||
1016 | /* Now search through the virtual function table. */ | |
1017 | entry = value_ind (vtbl); | |
1018 | entry_type = VALUE_TYPE (entry); | |
e1ce8aa5 | 1019 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
1020 | for (i = 1; i <= nelems; i++) |
1021 | { | |
1022 | entry = value_subscript (vtbl, value_from_long (builtin_type_int, i)); | |
e1ce8aa5 | 1023 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
71b16efa JK |
1024 | if (offset < best_offset) |
1025 | { | |
1026 | best_offset = offset; | |
1027 | best_entry = entry; | |
1028 | } | |
1029 | } | |
1030 | if (best_entry == 0) | |
1031 | return arg; | |
1032 | ||
1033 | /* Move the pointer according to BEST_ENTRY's offset, and figure | |
1034 | out what type we should return as the new pointer. */ | |
e1ce8aa5 | 1035 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); |
71b16efa JK |
1036 | sym = find_pc_function (pc_for_sym); |
1037 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), -1); | |
1038 | *(strchr (demangled_name, ':')) = '\0'; | |
1039 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); | |
1040 | if (sym == 0) | |
1041 | error ("could not find type declaration for `%s'", SYMBOL_NAME (sym)); | |
1042 | free (demangled_name); | |
1043 | arg = value_add (value_cast (builtin_type_int, arg), | |
1044 | value_field (best_entry, 0)); | |
1045 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); | |
1046 | return arg; | |
1047 | } | |
1048 | ||
1049 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
1050 | function tables, probe ARG's tables (including the vtables | |
1051 | of its baseclasses) to figure out the most derived type that ARG | |
1052 | could actually be a pointer to. */ | |
1053 | ||
1054 | value | |
1055 | value_from_vtable_info (arg, type) | |
1056 | value arg; | |
1057 | struct type *type; | |
1058 | { | |
1059 | /* Take care of preliminaries. */ | |
1060 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1061 | fill_in_vptr_fieldno (type); | |
1062 | if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg)) | |
1063 | return 0; | |
1064 | ||
1065 | return value_headof (arg, 0, type); | |
1066 | } | |
1067 | ||
dd3b648e RP |
1068 | /* The value of a static class member does not depend |
1069 | on its instance, only on its type. If FIELDNO >= 0, | |
1070 | then fieldno is a valid field number and is used directly. | |
1071 | Otherwise, FIELDNAME is the name of the field we are | |
1072 | searching for. If it is not a static field name, an | |
1073 | error is signaled. TYPE is the type in which we look for the | |
71b16efa JK |
1074 | static field member. |
1075 | ||
1076 | Return zero if we couldn't find anything; the caller may signal | |
1077 | an error in that case. */ | |
1078 | ||
dd3b648e RP |
1079 | value |
1080 | value_static_field (type, fieldname, fieldno) | |
1081 | register struct type *type; | |
1082 | char *fieldname; | |
1083 | register int fieldno; | |
1084 | { | |
1085 | register value v; | |
1086 | struct symbol *sym; | |
1087 | char *phys_name; | |
1088 | ||
1089 | if (fieldno < 0) | |
1090 | { | |
dd3b648e | 1091 | /* Look for static field. */ |
71b16efa JK |
1092 | int i; |
1093 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1094 | if (! strcmp (TYPE_FIELD_NAME (type, i), fieldname)) | |
1095 | { | |
1096 | if (TYPE_FIELD_STATIC (type, i)) | |
dd3b648e | 1097 | { |
71b16efa JK |
1098 | fieldno = i; |
1099 | goto found; | |
dd3b648e | 1100 | } |
71b16efa JK |
1101 | else |
1102 | error ("field `%s' is not static", fieldname); | |
1103 | } | |
1104 | for (; i > 0; i--) | |
1105 | { | |
1106 | v = value_static_field (TYPE_BASECLASS (type, i), fieldname, -1); | |
1107 | if (v != 0) | |
1108 | return v; | |
dd3b648e RP |
1109 | } |
1110 | ||
71b16efa | 1111 | if (destructor_name_p (fieldname, type)) |
dd3b648e RP |
1112 | error ("Cannot get value of destructor"); |
1113 | ||
71b16efa | 1114 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
dd3b648e | 1115 | { |
71b16efa JK |
1116 | if (! strcmp (TYPE_FN_FIELDLIST_NAME (type, i), fieldname)) |
1117 | error ("Cannot get value of method \"%s\"", fieldname); | |
dd3b648e RP |
1118 | } |
1119 | error("there is no field named %s", fieldname); | |
1120 | } | |
1121 | ||
1122 | found: | |
1123 | phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
1124 | sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); | |
1125 | if (! sym) error ("Internal error: could not find physical static variable named %s", phys_name); | |
1126 | ||
1127 | type = TYPE_FIELD_TYPE (type, fieldno); | |
1128 | v = value_at (type, (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym)); | |
1129 | return v; | |
1130 | } | |
1131 | ||
1132 | /* Compute the address of the baseclass which is | |
1133 | the INDEXth baseclass of TYPE. The TYPE base | |
71b16efa JK |
1134 | of the object is at VALADDR. |
1135 | ||
1136 | If ERRP is non-NULL, set *ERRP to be the errno code of any error, | |
1137 | or 0 if no error. In that case the return value is not the address | |
1138 | of the baseclasss, but the address which could not be read | |
1139 | successfully. */ | |
dd3b648e RP |
1140 | |
1141 | char * | |
71b16efa | 1142 | baseclass_addr (type, index, valaddr, valuep, errp) |
dd3b648e RP |
1143 | struct type *type; |
1144 | int index; | |
1145 | char *valaddr; | |
1146 | value *valuep; | |
71b16efa | 1147 | int *errp; |
dd3b648e RP |
1148 | { |
1149 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1150 | ||
71b16efa JK |
1151 | if (errp) |
1152 | *errp = 0; | |
aec4cb91 | 1153 | |
dd3b648e RP |
1154 | if (BASETYPE_VIA_VIRTUAL (type, index)) |
1155 | { | |
1156 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1157 | register int i, len = TYPE_NFIELDS (type); | |
1158 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
1159 | char *vbase_name, *type_name = type_name_no_tag (basetype); | |
1160 | ||
1161 | if (TYPE_MAIN_VARIANT (basetype)) | |
1162 | basetype = TYPE_MAIN_VARIANT (basetype); | |
1163 | ||
1164 | vbase_name = (char *)alloca (strlen (type_name) + 8); | |
1165 | sprintf (vbase_name, "_vb$%s", type_name); | |
1166 | /* First look for the virtual baseclass pointer | |
1167 | in the fields. */ | |
1168 | for (i = n_baseclasses; i < len; i++) | |
1169 | { | |
1170 | if (! strcmp (vbase_name, TYPE_FIELD_NAME (type, i))) | |
1171 | { | |
71b16efa JK |
1172 | value val = allocate_value (basetype); |
1173 | CORE_ADDR addr; | |
1174 | int status; | |
1175 | ||
e1ce8aa5 JK |
1176 | addr |
1177 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
71b16efa JK |
1178 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
1179 | ||
1180 | status = target_read_memory (addr, | |
1181 | VALUE_CONTENTS_RAW (val), | |
1182 | TYPE_LENGTH (type)); | |
1183 | VALUE_LVAL (val) = lval_memory; | |
1184 | VALUE_ADDRESS (val) = addr; | |
1185 | ||
1186 | if (status != 0) | |
1187 | { | |
1188 | if (valuep) | |
1189 | *valuep = NULL; | |
1190 | release_value (val); | |
1191 | value_free (val); | |
1192 | if (errp) | |
1193 | *errp = status; | |
1194 | return (char *)addr; | |
1195 | } | |
1196 | else | |
1197 | { | |
1198 | if (valuep) | |
1199 | *valuep = val; | |
1200 | return (char *) VALUE_CONTENTS (val); | |
1201 | } | |
dd3b648e RP |
1202 | } |
1203 | } | |
1204 | /* Not in the fields, so try looking through the baseclasses. */ | |
1205 | for (i = index+1; i < n_baseclasses; i++) | |
1206 | { | |
1207 | char *baddr; | |
1208 | ||
e1ce8aa5 | 1209 | baddr = baseclass_addr (type, i, valaddr, valuep, errp); |
dd3b648e RP |
1210 | if (baddr) |
1211 | return baddr; | |
1212 | } | |
1213 | /* Not found. */ | |
1214 | if (valuep) | |
1215 | *valuep = 0; | |
1216 | return 0; | |
1217 | } | |
1218 | ||
1219 | /* Baseclass is easily computed. */ | |
1220 | if (valuep) | |
1221 | *valuep = 0; | |
1222 | return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1223 | } | |
1224 | ||
1225 | /* Ugly hack to convert method stubs into method types. | |
1226 | ||
1227 | He ain't kiddin'. This demangles the name of the method into a string | |
1228 | including argument types, parses out each argument type, generates | |
1229 | a string casting a zero to that type, evaluates the string, and stuffs | |
1230 | the resulting type into an argtype vector!!! Then it knows the type | |
1231 | of the whole function (including argument types for overloading), | |
1232 | which info used to be in the stab's but was removed to hack back | |
1233 | the space required for them. */ | |
1234 | void | |
1235 | check_stub_method (type, i, j) | |
1236 | struct type *type; | |
1237 | int i, j; | |
1238 | { | |
1239 | extern char *gdb_mangle_typename (), *strchr (); | |
1240 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
71b16efa | 1241 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
dd3b648e | 1242 | char *inner_name = gdb_mangle_typename (type); |
71b16efa JK |
1243 | int mangled_name_len = (strlen (field_name) |
1244 | + strlen (inner_name) | |
1245 | + strlen (TYPE_FN_FIELD_PHYSNAME (f, j)) | |
1246 | + 1); | |
1247 | char *mangled_name; | |
1248 | char *demangled_name; | |
dd3b648e RP |
1249 | char *argtypetext, *p; |
1250 | int depth = 0, argcount = 1; | |
1251 | struct type **argtypes; | |
1252 | ||
71b16efa JK |
1253 | if (OPNAME_PREFIX_P (field_name)) |
1254 | { | |
1255 | char *opname = cplus_mangle_opname (field_name + 3); | |
e1ce8aa5 JK |
1256 | if (opname == NULL) |
1257 | error ("No mangling for \"%s\"", field_name); | |
71b16efa JK |
1258 | mangled_name_len += strlen (opname); |
1259 | mangled_name = (char *)xmalloc (mangled_name_len); | |
1260 | ||
1261 | strncpy (mangled_name, field_name, 3); | |
1262 | mangled_name[3] = '\0'; | |
1263 | strcat (mangled_name, opname); | |
1264 | } | |
1265 | else | |
1266 | { | |
1267 | mangled_name = (char *)xmalloc (mangled_name_len); | |
1268 | strcpy (mangled_name, TYPE_FN_FIELDLIST_NAME (type, i)); | |
1269 | } | |
dd3b648e RP |
1270 | strcat (mangled_name, inner_name); |
1271 | strcat (mangled_name, TYPE_FN_FIELD_PHYSNAME (f, j)); | |
1272 | demangled_name = cplus_demangle (mangled_name, 0); | |
1273 | ||
1274 | /* Now, read in the parameters that define this type. */ | |
1275 | argtypetext = strchr (demangled_name, '(') + 1; | |
1276 | p = argtypetext; | |
1277 | while (*p) | |
1278 | { | |
1279 | if (*p == '(') | |
1280 | depth += 1; | |
1281 | else if (*p == ')') | |
1282 | depth -= 1; | |
1283 | else if (*p == ',' && depth == 0) | |
1284 | argcount += 1; | |
1285 | ||
1286 | p += 1; | |
1287 | } | |
1288 | /* We need one more slot for the void [...] or NULL [end of arglist] */ | |
1289 | argtypes = (struct type **)xmalloc ((argcount+1) * sizeof (struct type *)); | |
1290 | p = argtypetext; | |
1291 | argtypes[0] = lookup_pointer_type (type); | |
1292 | argcount = 1; | |
1293 | ||
1294 | if (*p != ')') /* () means no args, skip while */ | |
1295 | { | |
1296 | while (*p) | |
1297 | { | |
1298 | if (*p == '(') | |
1299 | depth += 1; | |
1300 | else if (*p == ')') | |
1301 | depth -= 1; | |
1302 | ||
1303 | if (depth <= 0 && (*p == ',' || *p == ')')) | |
1304 | { | |
1305 | char *tmp = (char *)alloca (p - argtypetext + 4); | |
1306 | value val; | |
1307 | tmp[0] = '('; | |
1308 | bcopy (argtypetext, tmp+1, p - argtypetext); | |
1309 | tmp[p-argtypetext+1] = ')'; | |
1310 | tmp[p-argtypetext+2] = '0'; | |
1311 | tmp[p-argtypetext+3] = '\0'; | |
1312 | val = parse_and_eval (tmp); | |
1313 | argtypes[argcount] = VALUE_TYPE (val); | |
1314 | argcount += 1; | |
1315 | argtypetext = p + 1; | |
1316 | } | |
1317 | p += 1; | |
1318 | } | |
1319 | } | |
1320 | ||
1321 | if (p[-2] != '.') /* ... */ | |
1322 | argtypes[argcount] = builtin_type_void; /* Ellist terminator */ | |
1323 | else | |
1324 | argtypes[argcount] = NULL; /* List terminator */ | |
1325 | ||
1326 | free (demangled_name); | |
aec4cb91 | 1327 | |
71b16efa JK |
1328 | type = lookup_method_type (type, TYPE_TARGET_TYPE (TYPE_FN_FIELD_TYPE (f, j)), argtypes); |
1329 | /* Free the stub type...it's no longer needed. */ | |
1330 | free (TYPE_FN_FIELD_TYPE (f, j)); | |
dd3b648e | 1331 | TYPE_FN_FIELD_PHYSNAME (f, j) = mangled_name; |
71b16efa | 1332 | TYPE_FN_FIELD_TYPE (f, j) = type; |
dd3b648e RP |
1333 | } |
1334 | \f | |
1335 | long | |
1336 | unpack_field_as_long (type, valaddr, fieldno) | |
1337 | struct type *type; | |
1338 | char *valaddr; | |
1339 | int fieldno; | |
1340 | { | |
1341 | long val; | |
1342 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
1343 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
1344 | ||
1345 | bcopy (valaddr + bitpos / 8, &val, sizeof val); | |
1346 | SWAP_TARGET_AND_HOST (&val, sizeof val); | |
1347 | ||
1348 | /* Extracting bits depends on endianness of the machine. */ | |
122ad9ab | 1349 | #if BITS_BIG_ENDIAN |
dd3b648e RP |
1350 | val = val >> (sizeof val * 8 - bitpos % 8 - bitsize); |
1351 | #else | |
1352 | val = val >> (bitpos % 8); | |
1353 | #endif | |
1354 | ||
c3a21801 JG |
1355 | if (bitsize < 8 * sizeof (val)) |
1356 | val &= (((unsigned long)1) << bitsize) - 1; | |
dd3b648e RP |
1357 | return val; |
1358 | } | |
1359 | ||
3f2e006b JG |
1360 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1361 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1362 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1363 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1364 | ||
dd3b648e RP |
1365 | void |
1366 | modify_field (addr, fieldval, bitpos, bitsize) | |
1367 | char *addr; | |
1368 | int fieldval; | |
1369 | int bitpos, bitsize; | |
1370 | { | |
1371 | long oword; | |
1372 | ||
c3a21801 JG |
1373 | /* Reject values too big to fit in the field in question, |
1374 | otherwise adjoining fields may be corrupted. */ | |
1375 | if ((0 != fieldval & ~((1<<bitsize)-1)) | |
1376 | && bitsize < 8 * sizeof (fieldval)) | |
dd3b648e RP |
1377 | error ("Value %d does not fit in %d bits.", fieldval, bitsize); |
1378 | ||
1379 | bcopy (addr, &oword, sizeof oword); | |
3f2e006b | 1380 | SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */ |
dd3b648e | 1381 | |
3f2e006b | 1382 | /* Shifting for bit field depends on endianness of the target machine. */ |
122ad9ab | 1383 | #if BITS_BIG_ENDIAN |
dd3b648e RP |
1384 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; |
1385 | #endif | |
1386 | ||
c3a21801 JG |
1387 | /* Mask out old value, while avoiding shifts >= longword size */ |
1388 | if (bitsize < 8 * sizeof (oword)) | |
1389 | oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos); | |
1390 | else | |
1391 | oword &= ~((-1) << bitpos); | |
dd3b648e | 1392 | oword |= fieldval << bitpos; |
3f2e006b JG |
1393 | |
1394 | SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */ | |
dd3b648e RP |
1395 | bcopy (&oword, addr, sizeof oword); |
1396 | } | |
1397 | \f | |
1398 | /* Convert C numbers into newly allocated values */ | |
1399 | ||
1400 | value | |
1401 | value_from_long (type, num) | |
1402 | struct type *type; | |
1403 | register LONGEST num; | |
1404 | { | |
1405 | register value val = allocate_value (type); | |
1406 | register enum type_code code = TYPE_CODE (type); | |
1407 | register int len = TYPE_LENGTH (type); | |
1408 | ||
1409 | if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM) | |
1410 | { | |
1411 | if (len == sizeof (char)) | |
1412 | * (char *) VALUE_CONTENTS_RAW (val) = num; | |
1413 | else if (len == sizeof (short)) | |
1414 | * (short *) VALUE_CONTENTS_RAW (val) = num; | |
1415 | else if (len == sizeof (int)) | |
1416 | * (int *) VALUE_CONTENTS_RAW (val) = num; | |
1417 | else if (len == sizeof (long)) | |
1418 | * (long *) VALUE_CONTENTS_RAW (val) = num; | |
1419 | #ifdef LONG_LONG | |
1420 | else if (len == sizeof (long long)) | |
1421 | * (long long *) VALUE_CONTENTS_RAW (val) = num; | |
1422 | #endif | |
1423 | else | |
1424 | error ("Integer type encountered with unexpected data length."); | |
1425 | } | |
1426 | else | |
1427 | error ("Unexpected type encountered for integer constant."); | |
1428 | ||
1429 | /* num was in host byte order. So now put the value's contents | |
1430 | into target byte order. */ | |
1431 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len); | |
1432 | ||
1433 | return val; | |
1434 | } | |
1435 | ||
1436 | value | |
1437 | value_from_double (type, num) | |
1438 | struct type *type; | |
1439 | double num; | |
1440 | { | |
1441 | register value val = allocate_value (type); | |
1442 | register enum type_code code = TYPE_CODE (type); | |
1443 | register int len = TYPE_LENGTH (type); | |
1444 | ||
1445 | if (code == TYPE_CODE_FLT) | |
1446 | { | |
1447 | if (len == sizeof (float)) | |
1448 | * (float *) VALUE_CONTENTS_RAW (val) = num; | |
1449 | else if (len == sizeof (double)) | |
1450 | * (double *) VALUE_CONTENTS_RAW (val) = num; | |
1451 | else | |
1452 | error ("Floating type encountered with unexpected data length."); | |
1453 | } | |
1454 | else | |
1455 | error ("Unexpected type encountered for floating constant."); | |
1456 | ||
1457 | /* num was in host byte order. So now put the value's contents | |
1458 | into target byte order. */ | |
1459 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len); | |
1460 | ||
1461 | return val; | |
1462 | } | |
1463 | \f | |
1464 | /* Deal with the value that is "about to be returned". */ | |
1465 | ||
1466 | /* Return the value that a function returning now | |
1467 | would be returning to its caller, assuming its type is VALTYPE. | |
1468 | RETBUF is where we look for what ought to be the contents | |
1469 | of the registers (in raw form). This is because it is often | |
1470 | desirable to restore old values to those registers | |
1471 | after saving the contents of interest, and then call | |
1472 | this function using the saved values. | |
1473 | struct_return is non-zero when the function in question is | |
1474 | using the structure return conventions on the machine in question; | |
1475 | 0 when it is using the value returning conventions (this often | |
1476 | means returning pointer to where structure is vs. returning value). */ | |
1477 | ||
1478 | value | |
1479 | value_being_returned (valtype, retbuf, struct_return) | |
1480 | register struct type *valtype; | |
1481 | char retbuf[REGISTER_BYTES]; | |
1482 | int struct_return; | |
1483 | /*ARGSUSED*/ | |
1484 | { | |
1485 | register value val; | |
1486 | CORE_ADDR addr; | |
1487 | ||
1488 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1489 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1490 | if (struct_return) { | |
1491 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1492 | if (!addr) | |
1493 | error ("Function return value unknown"); | |
1494 | return value_at (valtype, addr); | |
1495 | } | |
1496 | #endif | |
1497 | ||
1498 | val = allocate_value (valtype); | |
1499 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); | |
1500 | ||
1501 | return val; | |
1502 | } | |
1503 | ||
1504 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1505 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1506 | and TYPE is the type (which is known to be struct, union or array). | |
1507 | ||
1508 | On most machines, the struct convention is used unless we are | |
1509 | using gcc and the type is of a special size. */ | |
1510 | #if !defined (USE_STRUCT_CONVENTION) | |
1511 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
1512 | (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \ | |
1513 | || TYPE_LENGTH (value_type) == 2 \ | |
1514 | || TYPE_LENGTH (value_type) == 4 \ | |
1515 | || TYPE_LENGTH (value_type) == 8 \ | |
1516 | ) \ | |
1517 | )) | |
1518 | #endif | |
1519 | ||
1520 | /* Return true if the function specified is using the structure returning | |
1521 | convention on this machine to return arguments, or 0 if it is using | |
1522 | the value returning convention. FUNCTION is the value representing | |
1523 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1524 | is the type returned by the function. GCC_P is nonzero if compiled | |
1525 | with GCC. */ | |
1526 | ||
1527 | int | |
1528 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
1529 | value function; | |
1530 | CORE_ADDR funcaddr; | |
1531 | struct type *value_type; | |
1532 | int gcc_p; | |
1533 | /*ARGSUSED*/ | |
1534 | { | |
1535 | register enum type_code code = TYPE_CODE (value_type); | |
1536 | ||
1537 | if (code == TYPE_CODE_ERROR) | |
1538 | error ("Function return type unknown."); | |
1539 | ||
1540 | if (code == TYPE_CODE_STRUCT || | |
1541 | code == TYPE_CODE_UNION || | |
1542 | code == TYPE_CODE_ARRAY) | |
1543 | return USE_STRUCT_CONVENTION (gcc_p, value_type); | |
1544 | ||
1545 | return 0; | |
1546 | } | |
1547 | ||
1548 | /* Store VAL so it will be returned if a function returns now. | |
1549 | Does not verify that VAL's type matches what the current | |
1550 | function wants to return. */ | |
1551 | ||
1552 | void | |
1553 | set_return_value (val) | |
1554 | value val; | |
1555 | { | |
1556 | register enum type_code code = TYPE_CODE (VALUE_TYPE (val)); | |
1557 | double dbuf; | |
1558 | LONGEST lbuf; | |
1559 | ||
1560 | if (code == TYPE_CODE_ERROR) | |
1561 | error ("Function return type unknown."); | |
1562 | ||
1563 | if (code == TYPE_CODE_STRUCT | |
1564 | || code == TYPE_CODE_UNION) | |
1565 | error ("Specifying a struct or union return value is not supported."); | |
1566 | ||
1567 | /* FIXME, this is bogus. We don't know what the return conventions | |
1568 | are, or how values should be promoted.... */ | |
1569 | if (code == TYPE_CODE_FLT) | |
1570 | { | |
1571 | dbuf = value_as_double (val); | |
1572 | ||
1573 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf); | |
1574 | } | |
1575 | else | |
1576 | { | |
1577 | lbuf = value_as_long (val); | |
1578 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf); | |
1579 | } | |
1580 | } | |
1581 | \f | |
1582 | void | |
1583 | _initialize_values () | |
1584 | { | |
f266e564 | 1585 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1586 | "Debugger convenience (\"$foo\") variables.\n\ |
1587 | These variables are created when you assign them values;\n\ | |
1588 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1589 | A few convenience variables are given values automatically:\n\ | |
1590 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1591 | \"$__\" holds the contents of the last address examined with \"x\".", |
1592 | &showlist); | |
dd3b648e | 1593 | |
f266e564 JK |
1594 | add_cmd ("values", no_class, show_values, |
1595 | "Elements of value history around item number IDX (or last ten).", | |
1596 | &showlist); | |
dd3b648e | 1597 | } |