]>
Commit | Line | Data |
---|---|---|
71712b27 GM |
1 | /********************************************************************** |
2 | * Copyright (c) 2013, 2014 Pieter Wuille * | |
3 | * Distributed under the MIT software license, see the accompanying * | |
4 | * file COPYING or http://www.opensource.org/licenses/mit-license.php.* | |
5 | **********************************************************************/ | |
0a433ea2 | 6 | |
abe2d3e8 DR |
7 | #ifndef SECP256K1_GROUP_IMPL_H |
8 | #define SECP256K1_GROUP_IMPL_H | |
7a4b7691 | 9 | |
11ab5622 PW |
10 | #include "num.h" |
11 | #include "field.h" | |
12 | #include "group.h" | |
607884fc | 13 | |
83836a95 AP |
14 | /* These points can be generated in sage as follows: |
15 | * | |
16 | * 0. Setup a worksheet with the following parameters. | |
17 | * b = 4 # whatever CURVE_B will be set to | |
18 | * F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F) | |
19 | * C = EllipticCurve ([F (0), F (b)]) | |
20 | * | |
21 | * 1. Determine all the small orders available to you. (If there are | |
22 | * no satisfactory ones, go back and change b.) | |
23 | * print C.order().factor(limit=1000) | |
24 | * | |
25 | * 2. Choose an order as one of the prime factors listed in the above step. | |
26 | * (You can also multiply some to get a composite order, though the | |
27 | * tests will crash trying to invert scalars during signing.) We take a | |
28 | * random point and scale it to drop its order to the desired value. | |
29 | * There is some probability this won't work; just try again. | |
30 | * order = 199 | |
31 | * P = C.random_point() | |
32 | * P = (int(P.order()) / int(order)) * P | |
33 | * assert(P.order() == order) | |
34 | * | |
35 | * 3. Print the values. You'll need to use a vim macro or something to | |
36 | * split the hex output into 4-byte chunks. | |
37 | * print "%x %x" % P.xy() | |
38 | */ | |
20b8877b AP |
39 | #if defined(EXHAUSTIVE_TEST_ORDER) |
40 | # if EXHAUSTIVE_TEST_ORDER == 199 | |
41 | const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( | |
42 | 0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069, | |
43 | 0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18, | |
44 | 0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868, | |
45 | 0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED | |
46 | ); | |
83836a95 AP |
47 | |
48 | const int CURVE_B = 4; | |
49 | # elif EXHAUSTIVE_TEST_ORDER == 13 | |
50 | const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( | |
51 | 0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0, | |
52 | 0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15, | |
53 | 0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e, | |
54 | 0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac | |
55 | ); | |
56 | const int CURVE_B = 2; | |
20b8877b AP |
57 | # else |
58 | # error No known generator for the specified exhaustive test group order. | |
59 | # endif | |
60 | #else | |
6efd6e77 GM |
61 | /** Generator for secp256k1, value 'g' defined in |
62 | * "Standards for Efficient Cryptography" (SEC2) 2.7.1. | |
63 | */ | |
dd891e0e | 64 | static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( |
443cd4b8 PW |
65 | 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, |
66 | 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL, | |
67 | 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, | |
68 | 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL | |
69 | ); | |
83836a95 AP |
70 | |
71 | const int CURVE_B = 7; | |
20b8877b | 72 | #endif |
4732d260 | 73 | |
dd891e0e | 74 | static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { |
7d893f49 | 75 | secp256k1_fe zi2; |
dd891e0e | 76 | secp256k1_fe zi3; |
4f9791ab PD |
77 | secp256k1_fe_sqr(&zi2, zi); |
78 | secp256k1_fe_mul(&zi3, &zi2, zi); | |
79 | secp256k1_fe_mul(&r->x, &a->x, &zi2); | |
80 | secp256k1_fe_mul(&r->y, &a->y, &zi3); | |
81 | r->infinity = a->infinity; | |
82 | } | |
83 | ||
dd891e0e | 84 | static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) { |
f11ff5be PW |
85 | r->infinity = 0; |
86 | r->x = *x; | |
87 | r->y = *y; | |
607884fc PW |
88 | } |
89 | ||
dd891e0e | 90 | static int secp256k1_ge_is_infinity(const secp256k1_ge *a) { |
f11ff5be | 91 | return a->infinity; |
607884fc PW |
92 | } |
93 | ||
dd891e0e | 94 | static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) { |
39bd94d8 | 95 | *r = *a; |
0295f0a3 | 96 | secp256k1_fe_normalize_weak(&r->y); |
39bd94d8 PW |
97 | secp256k1_fe_negate(&r->y, &r->y, 1); |
98 | } | |
99 | ||
dd891e0e PW |
100 | static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { |
101 | secp256k1_fe z2, z3; | |
da55986f PW |
102 | r->infinity = a->infinity; |
103 | secp256k1_fe_inv(&a->z, &a->z); | |
f735446c GM |
104 | secp256k1_fe_sqr(&z2, &a->z); |
105 | secp256k1_fe_mul(&z3, &a->z, &z2); | |
da55986f PW |
106 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
107 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
108 | secp256k1_fe_set_int(&a->z, 1); | |
109 | r->x = a->x; | |
110 | r->y = a->y; | |
111 | } | |
112 | ||
dd891e0e PW |
113 | static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { |
114 | secp256k1_fe z2, z3; | |
1136bedb PW |
115 | r->infinity = a->infinity; |
116 | if (a->infinity) { | |
117 | return; | |
118 | } | |
f11ff5be | 119 | secp256k1_fe_inv_var(&a->z, &a->z); |
f735446c GM |
120 | secp256k1_fe_sqr(&z2, &a->z); |
121 | secp256k1_fe_mul(&z3, &a->z, &z2); | |
f11ff5be PW |
122 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
123 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
124 | secp256k1_fe_set_int(&a->z, 1); | |
f11ff5be PW |
125 | r->x = a->x; |
126 | r->y = a->y; | |
607884fc PW |
127 | } |
128 | ||
541b7839 | 129 | static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) { |
dd891e0e PW |
130 | secp256k1_fe *az; |
131 | secp256k1_fe *azi; | |
f735446c | 132 | size_t i; |
65a14abb | 133 | size_t count = 0; |
dd891e0e | 134 | az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len); |
f735446c | 135 | for (i = 0; i < len; i++) { |
f16be77f PD |
136 | if (!a[i].infinity) { |
137 | az[count++] = a[i].z; | |
138 | } | |
139 | } | |
140 | ||
dd891e0e | 141 | azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count); |
7d893f49 | 142 | secp256k1_fe_inv_all_var(azi, az, count); |
f461b769 | 143 | free(az); |
f16be77f PD |
144 | |
145 | count = 0; | |
f735446c | 146 | for (i = 0; i < len; i++) { |
f16be77f PD |
147 | r[i].infinity = a[i].infinity; |
148 | if (!a[i].infinity) { | |
4f9791ab | 149 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]); |
f16be77f PD |
150 | } |
151 | } | |
f461b769 | 152 | free(azi); |
f16be77f PD |
153 | } |
154 | ||
353c1bf0 | 155 | static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) { |
4f9791ab | 156 | size_t i = len - 1; |
dd891e0e | 157 | secp256k1_fe zi; |
4f9791ab | 158 | |
912f203f GM |
159 | if (len > 0) { |
160 | /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */ | |
161 | secp256k1_fe_inv(&zi, &a[i].z); | |
4f9791ab | 162 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); |
912f203f GM |
163 | |
164 | /* Work out way backwards, using the z-ratios to scale the x/y values. */ | |
165 | while (i > 0) { | |
166 | secp256k1_fe_mul(&zi, &zi, &zr[i]); | |
167 | i--; | |
168 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); | |
169 | } | |
4f9791ab PD |
170 | } |
171 | } | |
172 | ||
dd891e0e | 173 | static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) { |
4f9791ab | 174 | size_t i = len - 1; |
dd891e0e | 175 | secp256k1_fe zs; |
4f9791ab | 176 | |
912f203f GM |
177 | if (len > 0) { |
178 | /* The z of the final point gives us the "global Z" for the table. */ | |
179 | r[i].x = a[i].x; | |
180 | r[i].y = a[i].y; | |
181 | *globalz = a[i].z; | |
182 | r[i].infinity = 0; | |
183 | zs = zr[i]; | |
184 | ||
185 | /* Work our way backwards, using the z-ratios to scale the x/y values. */ | |
186 | while (i > 0) { | |
187 | if (i != len - 1) { | |
188 | secp256k1_fe_mul(&zs, &zs, &zr[i]); | |
189 | } | |
190 | i--; | |
191 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs); | |
4f9791ab | 192 | } |
4f9791ab PD |
193 | } |
194 | } | |
195 | ||
dd891e0e | 196 | static void secp256k1_gej_set_infinity(secp256k1_gej *r) { |
f11ff5be | 197 | r->infinity = 1; |
20b8877b AP |
198 | secp256k1_fe_clear(&r->x); |
199 | secp256k1_fe_clear(&r->y); | |
200 | secp256k1_fe_clear(&r->z); | |
201 | } | |
202 | ||
dd891e0e | 203 | static void secp256k1_gej_clear(secp256k1_gej *r) { |
2f6c8019 GM |
204 | r->infinity = 0; |
205 | secp256k1_fe_clear(&r->x); | |
206 | secp256k1_fe_clear(&r->y); | |
207 | secp256k1_fe_clear(&r->z); | |
208 | } | |
209 | ||
dd891e0e | 210 | static void secp256k1_ge_clear(secp256k1_ge *r) { |
2f6c8019 GM |
211 | r->infinity = 0; |
212 | secp256k1_fe_clear(&r->x); | |
213 | secp256k1_fe_clear(&r->y); | |
214 | } | |
215 | ||
926836ad | 216 | static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) { |
dd891e0e | 217 | secp256k1_fe x2, x3, c; |
f11ff5be | 218 | r->x = *x; |
f735446c GM |
219 | secp256k1_fe_sqr(&x2, x); |
220 | secp256k1_fe_mul(&x3, x, &x2); | |
eb0be8ee | 221 | r->infinity = 0; |
83836a95 | 222 | secp256k1_fe_set_int(&c, CURVE_B); |
f11ff5be | 223 | secp256k1_fe_add(&c, &x3); |
926836ad | 224 | return secp256k1_fe_sqrt(&r->y, &c); |
64666251 PW |
225 | } |
226 | ||
227 | static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { | |
926836ad | 228 | if (!secp256k1_ge_set_xquad(r, x)) { |
09ca4f32 | 229 | return 0; |
26320197 | 230 | } |
39bd94d8 | 231 | secp256k1_fe_normalize_var(&r->y); |
26320197 | 232 | if (secp256k1_fe_is_odd(&r->y) != odd) { |
f11ff5be | 233 | secp256k1_fe_negate(&r->y, &r->y, 1); |
26320197 | 234 | } |
09ca4f32 | 235 | return 1; |
64666251 | 236 | |
910d0de4 | 237 | } |
607884fc | 238 | |
dd891e0e | 239 | static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { |
f11ff5be PW |
240 | r->infinity = a->infinity; |
241 | r->x = a->x; | |
242 | r->y = a->y; | |
243 | secp256k1_fe_set_int(&r->z, 1); | |
910d0de4 | 244 | } |
607884fc | 245 | |
dd891e0e PW |
246 | static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) { |
247 | secp256k1_fe r, r2; | |
ce7eb6fb | 248 | VERIFY_CHECK(!a->infinity); |
f735446c GM |
249 | secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); |
250 | r2 = a->x; secp256k1_fe_normalize_weak(&r2); | |
d7174edf | 251 | return secp256k1_fe_equal_var(&r, &r2); |
910d0de4 | 252 | } |
607884fc | 253 | |
dd891e0e | 254 | static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) { |
f11ff5be PW |
255 | r->infinity = a->infinity; |
256 | r->x = a->x; | |
257 | r->y = a->y; | |
258 | r->z = a->z; | |
0295f0a3 | 259 | secp256k1_fe_normalize_weak(&r->y); |
f11ff5be | 260 | secp256k1_fe_negate(&r->y, &r->y, 1); |
607884fc PW |
261 | } |
262 | ||
dd891e0e | 263 | static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { |
f11ff5be | 264 | return a->infinity; |
0a07e62f PW |
265 | } |
266 | ||
dd891e0e PW |
267 | static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) { |
268 | secp256k1_fe y2, x3, z2, z6; | |
26320197 | 269 | if (a->infinity) { |
eb0be8ee | 270 | return 0; |
26320197 | 271 | } |
71712b27 GM |
272 | /** y^2 = x^3 + 7 |
273 | * (Y/Z^3)^2 = (X/Z^2)^3 + 7 | |
274 | * Y^2 / Z^6 = X^3 / Z^6 + 7 | |
275 | * Y^2 = X^3 + 7*Z^6 | |
276 | */ | |
f735446c GM |
277 | secp256k1_fe_sqr(&y2, &a->y); |
278 | secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
279 | secp256k1_fe_sqr(&z2, &a->z); | |
280 | secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); | |
83836a95 | 281 | secp256k1_fe_mul_int(&z6, CURVE_B); |
910d0de4 | 282 | secp256k1_fe_add(&x3, &z6); |
d7174edf PW |
283 | secp256k1_fe_normalize_weak(&x3); |
284 | return secp256k1_fe_equal_var(&y2, &x3); | |
607884fc PW |
285 | } |
286 | ||
dd891e0e PW |
287 | static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { |
288 | secp256k1_fe y2, x3, c; | |
26320197 | 289 | if (a->infinity) { |
764332d0 | 290 | return 0; |
26320197 | 291 | } |
71712b27 | 292 | /* y^2 = x^3 + 7 */ |
f735446c GM |
293 | secp256k1_fe_sqr(&y2, &a->y); |
294 | secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
83836a95 | 295 | secp256k1_fe_set_int(&c, CURVE_B); |
764332d0 | 296 | secp256k1_fe_add(&x3, &c); |
d7174edf PW |
297 | secp256k1_fe_normalize_weak(&x3); |
298 | return secp256k1_fe_equal_var(&y2, &x3); | |
764332d0 PW |
299 | } |
300 | ||
dd891e0e | 301 | static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { |
8ec49d8a AP |
302 | /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate. |
303 | * | |
304 | * Note that there is an implementation described at | |
305 | * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l | |
306 | * which trades a multiply for a square, but in practice this is actually slower, | |
307 | * mainly because it requires more normalizations. | |
308 | */ | |
dd891e0e | 309 | secp256k1_fe t1,t2,t3,t4; |
3627437d GM |
310 | /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, |
311 | * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have | |
312 | * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. | |
7d893f49 | 313 | * |
e72e93ad AP |
314 | * Having said this, if this function receives a point on a sextic twist, e.g. by |
315 | * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6, | |
316 | * since -6 does have a cube root mod p. For this point, this function will not set | |
317 | * the infinity flag even though the point doubles to infinity, and the result | |
318 | * point will be gibberish (z = 0 but infinity = 0). | |
3627437d | 319 | */ |
f7dc1c65 PW |
320 | r->infinity = a->infinity; |
321 | if (r->infinity) { | |
2b199de8 | 322 | if (rzr != NULL) { |
4f9791ab PD |
323 | secp256k1_fe_set_int(rzr, 1); |
324 | } | |
607884fc PW |
325 | return; |
326 | } | |
327 | ||
2b199de8 | 328 | if (rzr != NULL) { |
4f9791ab PD |
329 | *rzr = a->y; |
330 | secp256k1_fe_normalize_weak(rzr); | |
331 | secp256k1_fe_mul_int(rzr, 2); | |
332 | } | |
333 | ||
be82e92f | 334 | secp256k1_fe_mul(&r->z, &a->z, &a->y); |
71712b27 | 335 | secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ |
f11ff5be | 336 | secp256k1_fe_sqr(&t1, &a->x); |
71712b27 GM |
337 | secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ |
338 | secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ | |
f7dc1c65 | 339 | secp256k1_fe_sqr(&t3, &a->y); |
71712b27 | 340 | secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ |
910d0de4 | 341 | secp256k1_fe_sqr(&t4, &t3); |
71712b27 | 342 | secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ |
be82e92f | 343 | secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ |
f11ff5be | 344 | r->x = t3; |
71712b27 GM |
345 | secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ |
346 | secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ | |
347 | secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ | |
348 | secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ | |
349 | secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ | |
350 | secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ | |
351 | secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ | |
352 | secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ | |
353 | secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ | |
607884fc PW |
354 | } |
355 | ||
dd891e0e | 356 | static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { |
44015000 AP |
357 | VERIFY_CHECK(!secp256k1_gej_is_infinity(a)); |
358 | secp256k1_gej_double_var(r, a, rzr); | |
359 | } | |
360 | ||
dd891e0e | 361 | static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { |
d61e8995 | 362 | /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */ |
dd891e0e | 363 | secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
4f9791ab | 364 | |
f11ff5be | 365 | if (a->infinity) { |
4f9791ab | 366 | VERIFY_CHECK(rzr == NULL); |
f11ff5be | 367 | *r = *b; |
607884fc PW |
368 | return; |
369 | } | |
4f9791ab | 370 | |
f11ff5be | 371 | if (b->infinity) { |
2b199de8 | 372 | if (rzr != NULL) { |
4f9791ab PD |
373 | secp256k1_fe_set_int(rzr, 1); |
374 | } | |
f11ff5be | 375 | *r = *a; |
607884fc PW |
376 | return; |
377 | } | |
4f9791ab | 378 | |
eb0be8ee | 379 | r->infinity = 0; |
f735446c GM |
380 | secp256k1_fe_sqr(&z22, &b->z); |
381 | secp256k1_fe_sqr(&z12, &a->z); | |
382 | secp256k1_fe_mul(&u1, &a->x, &z22); | |
383 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
384 | secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); | |
385 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
386 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
387 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
49ee0dbe PD |
388 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
389 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
4f9791ab | 390 | secp256k1_gej_double_var(r, a, rzr); |
607884fc | 391 | } else { |
2b199de8 | 392 | if (rzr != NULL) { |
4f9791ab PD |
393 | secp256k1_fe_set_int(rzr, 0); |
394 | } | |
eb0be8ee | 395 | r->infinity = 1; |
607884fc PW |
396 | } |
397 | return; | |
398 | } | |
f735446c GM |
399 | secp256k1_fe_sqr(&i2, &i); |
400 | secp256k1_fe_sqr(&h2, &h); | |
401 | secp256k1_fe_mul(&h3, &h, &h2); | |
4f9791ab | 402 | secp256k1_fe_mul(&h, &h, &b->z); |
2b199de8 | 403 | if (rzr != NULL) { |
4f9791ab PD |
404 | *rzr = h; |
405 | } | |
406 | secp256k1_fe_mul(&r->z, &a->z, &h); | |
f735446c | 407 | secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
408 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
409 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 410 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 411 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
412 | } |
413 | ||
dd891e0e | 414 | static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) { |
d61e8995 | 415 | /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ |
dd891e0e | 416 | secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
f11ff5be | 417 | if (a->infinity) { |
2d5a186c PD |
418 | VERIFY_CHECK(rzr == NULL); |
419 | secp256k1_gej_set_ge(r, b); | |
607884fc PW |
420 | return; |
421 | } | |
f11ff5be | 422 | if (b->infinity) { |
2b199de8 | 423 | if (rzr != NULL) { |
2d5a186c PD |
424 | secp256k1_fe_set_int(rzr, 1); |
425 | } | |
f11ff5be | 426 | *r = *a; |
607884fc PW |
427 | return; |
428 | } | |
eb0be8ee | 429 | r->infinity = 0; |
4f9791ab | 430 | |
f735446c GM |
431 | secp256k1_fe_sqr(&z12, &a->z); |
432 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); | |
433 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
434 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); | |
435 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
436 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
437 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
49ee0dbe PD |
438 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
439 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
2d5a186c | 440 | secp256k1_gej_double_var(r, a, rzr); |
4f9791ab | 441 | } else { |
2b199de8 | 442 | if (rzr != NULL) { |
2d5a186c PD |
443 | secp256k1_fe_set_int(rzr, 0); |
444 | } | |
4f9791ab PD |
445 | r->infinity = 1; |
446 | } | |
447 | return; | |
448 | } | |
449 | secp256k1_fe_sqr(&i2, &i); | |
450 | secp256k1_fe_sqr(&h2, &h); | |
451 | secp256k1_fe_mul(&h3, &h, &h2); | |
2b199de8 | 452 | if (rzr != NULL) { |
2d5a186c PD |
453 | *rzr = h; |
454 | } | |
455 | secp256k1_fe_mul(&r->z, &a->z, &h); | |
4f9791ab PD |
456 | secp256k1_fe_mul(&t, &u1, &h2); |
457 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); | |
458 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
459 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); | |
460 | secp256k1_fe_add(&r->y, &h3); | |
461 | } | |
462 | ||
dd891e0e | 463 | static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) { |
4f9791ab | 464 | /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ |
dd891e0e | 465 | secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
4f9791ab PD |
466 | |
467 | if (b->infinity) { | |
468 | *r = *a; | |
469 | return; | |
470 | } | |
471 | if (a->infinity) { | |
dd891e0e | 472 | secp256k1_fe bzinv2, bzinv3; |
4f9791ab PD |
473 | r->infinity = b->infinity; |
474 | secp256k1_fe_sqr(&bzinv2, bzinv); | |
475 | secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); | |
476 | secp256k1_fe_mul(&r->x, &b->x, &bzinv2); | |
477 | secp256k1_fe_mul(&r->y, &b->y, &bzinv3); | |
478 | secp256k1_fe_set_int(&r->z, 1); | |
479 | return; | |
480 | } | |
481 | r->infinity = 0; | |
482 | ||
483 | /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to | |
484 | * secp256k1's isomorphism we can multiply the Z coordinates on both sides | |
485 | * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). | |
486 | * This means that (rx,ry,rz) can be calculated as | |
487 | * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. | |
488 | * The variable az below holds the modified Z coordinate for a, which is used | |
489 | * for the computation of rx and ry, but not for rz. | |
490 | */ | |
491 | secp256k1_fe_mul(&az, &a->z, bzinv); | |
492 | ||
493 | secp256k1_fe_sqr(&z12, &az); | |
494 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); | |
495 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
496 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); | |
497 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); | |
498 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
499 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
500 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { | |
501 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
502 | secp256k1_gej_double_var(r, a, NULL); | |
607884fc | 503 | } else { |
eb0be8ee | 504 | r->infinity = 1; |
607884fc PW |
505 | } |
506 | return; | |
507 | } | |
f735446c GM |
508 | secp256k1_fe_sqr(&i2, &i); |
509 | secp256k1_fe_sqr(&h2, &h); | |
510 | secp256k1_fe_mul(&h3, &h, &h2); | |
f11ff5be | 511 | r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); |
f735446c | 512 | secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
513 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
514 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 515 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 516 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
517 | } |
518 | ||
4f9791ab | 519 | |
dd891e0e | 520 | static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { |
5a43124c | 521 | /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */ |
dd891e0e PW |
522 | static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); |
523 | secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; | |
524 | secp256k1_fe m_alt, rr_alt; | |
5de4c5df | 525 | int infinity, degenerate; |
9338dbf7 PW |
526 | VERIFY_CHECK(!b->infinity); |
527 | VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); | |
528 | ||
71712b27 GM |
529 | /** In: |
530 | * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. | |
531 | * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. | |
532 | * we find as solution for a unified addition/doubling formula: | |
533 | * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. | |
534 | * x3 = lambda^2 - (x1 + x2) | |
535 | * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). | |
536 | * | |
537 | * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: | |
538 | * U1 = X1*Z2^2, U2 = X2*Z1^2 | |
2a54f9bc | 539 | * S1 = Y1*Z2^3, S2 = Y2*Z1^3 |
71712b27 GM |
540 | * Z = Z1*Z2 |
541 | * T = U1+U2 | |
542 | * M = S1+S2 | |
543 | * Q = T*M^2 | |
544 | * R = T^2-U1*U2 | |
545 | * X3 = 4*(R^2-Q) | |
546 | * Y3 = 4*(R*(3*Q-2*R^2)-M^4) | |
547 | * Z3 = 2*M*Z | |
548 | * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) | |
5de4c5df AP |
549 | * |
550 | * This formula has the benefit of being the same for both addition | |
551 | * of distinct points and doubling. However, it breaks down in the | |
552 | * case that either point is infinity, or that y1 = -y2. We handle | |
553 | * these cases in the following ways: | |
554 | * | |
555 | * - If b is infinity we simply bail by means of a VERIFY_CHECK. | |
556 | * | |
557 | * - If a is infinity, we detect this, and at the end of the | |
558 | * computation replace the result (which will be meaningless, | |
559 | * but we compute to be constant-time) with b.x : b.y : 1. | |
560 | * | |
561 | * - If a = -b, we have y1 = -y2, which is a degenerate case. | |
562 | * But here the answer is infinity, so we simply set the | |
563 | * infinity flag of the result, overriding the computed values | |
564 | * without even needing to cmov. | |
565 | * | |
566 | * - If y1 = -y2 but x1 != x2, which does occur thanks to certain | |
567 | * properties of our curve (specifically, 1 has nontrivial cube | |
568 | * roots in our field, and the curve equation has no x coefficient) | |
569 | * then the answer is not infinity but also not given by the above | |
570 | * equation. In this case, we cmov in place an alternate expression | |
571 | * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these | |
572 | * expressions for lambda are defined, they are equal, and can be | |
573 | * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) | |
574 | * then substitution of x^3 + 7 for y^2 (using the curve equation). | |
575 | * For all pairs of nonzero points (a, b) at least one is defined, | |
576 | * so this covers everything. | |
71712b27 GM |
577 | */ |
578 | ||
f735446c GM |
579 | secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ |
580 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ | |
581 | secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ | |
582 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ | |
81e45ff9 | 583 | secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ |
f735446c | 584 | secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ |
f735446c GM |
585 | t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ |
586 | m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ | |
bcf2fcfd | 587 | secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ |
a5d796e0 | 588 | secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */ |
7d054cd0 PD |
589 | secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */ |
590 | secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */ | |
5de4c5df AP |
591 | /** If lambda = R/M = 0/0 we have a problem (except in the "trivial" |
592 | * case that Z = z1z2 = 0, and this is special-cased later on). */ | |
593 | degenerate = secp256k1_fe_normalizes_to_zero(&m) & | |
594 | secp256k1_fe_normalizes_to_zero(&rr); | |
595 | /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. | |
596 | * This means either x1 == beta*x2 or beta*x1 == x2, where beta is | |
597 | * a nontrivial cube root of one. In either case, an alternate | |
598 | * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), | |
599 | * so we set R/M equal to this. */ | |
5a43124c PD |
600 | rr_alt = s1; |
601 | secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */ | |
a5d796e0 | 602 | secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */ |
5de4c5df AP |
603 | |
604 | secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); | |
605 | secp256k1_fe_cmov(&m_alt, &m, !degenerate); | |
606 | /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0. | |
607 | * From here on out Ralt and Malt represent the numerator | |
608 | * and denominator of lambda; R and M represent the explicit | |
609 | * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ | |
610 | secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ | |
611 | secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */ | |
612 | /* These two lines use the observation that either M == Malt or M == 0, | |
613 | * so M^3 * Malt is either Malt^4 (which is computed by squaring), or | |
614 | * zero (which is "computed" by cmov). So the cost is one squaring | |
615 | * versus two multiplications. */ | |
55e7fc32 PD |
616 | secp256k1_fe_sqr(&n, &n); |
617 | secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ | |
5de4c5df | 618 | secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ |
b28d02a5 | 619 | secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */ |
f735446c | 620 | infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); |
5de4c5df | 621 | secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */ |
71712b27 | 622 | secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ |
55e7fc32 PD |
623 | secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */ |
624 | secp256k1_fe_normalize_weak(&t); | |
625 | r->x = t; /* r->x = Ralt^2-Q (1) */ | |
bcf2fcfd | 626 | secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */ |
55e7fc32 | 627 | secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */ |
5de4c5df | 628 | secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */ |
55e7fc32 PD |
629 | secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */ |
630 | secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */ | |
0295f0a3 | 631 | secp256k1_fe_normalize_weak(&r->y); |
5de4c5df AP |
632 | secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */ |
633 | secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */ | |
9338dbf7 | 634 | |
a1d5ae15 | 635 | /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */ |
bb0ea50d GM |
636 | secp256k1_fe_cmov(&r->x, &b->x, a->infinity); |
637 | secp256k1_fe_cmov(&r->y, &b->y, a->infinity); | |
638 | secp256k1_fe_cmov(&r->z, &fe_1, a->infinity); | |
9338dbf7 PW |
639 | r->infinity = infinity; |
640 | } | |
641 | ||
dd891e0e | 642 | static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) { |
d2275795 | 643 | /* Operations: 4 mul, 1 sqr */ |
dd891e0e | 644 | secp256k1_fe zz; |
d2275795 GM |
645 | VERIFY_CHECK(!secp256k1_fe_is_zero(s)); |
646 | secp256k1_fe_sqr(&zz, s); | |
647 | secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ | |
648 | secp256k1_fe_mul(&r->y, &r->y, &zz); | |
649 | secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ | |
650 | secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ | |
651 | } | |
652 | ||
dd891e0e PW |
653 | static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) { |
654 | secp256k1_fe x, y; | |
e68d7208 PW |
655 | VERIFY_CHECK(!a->infinity); |
656 | x = a->x; | |
657 | secp256k1_fe_normalize(&x); | |
658 | y = a->y; | |
659 | secp256k1_fe_normalize(&y); | |
660 | secp256k1_fe_to_storage(&r->x, &x); | |
661 | secp256k1_fe_to_storage(&r->y, &y); | |
662 | } | |
663 | ||
dd891e0e | 664 | static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) { |
e68d7208 PW |
665 | secp256k1_fe_from_storage(&r->x, &a->x); |
666 | secp256k1_fe_from_storage(&r->y, &a->y); | |
667 | r->infinity = 0; | |
668 | } | |
669 | ||
dd891e0e | 670 | static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { |
55422b6a PW |
671 | secp256k1_fe_storage_cmov(&r->x, &a->x, flag); |
672 | secp256k1_fe_storage_cmov(&r->y, &a->y, flag); | |
673 | } | |
674 | ||
399c03f2 | 675 | #ifdef USE_ENDOMORPHISM |
dd891e0e PW |
676 | static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { |
677 | static const secp256k1_fe beta = SECP256K1_FE_CONST( | |
4732d260 PW |
678 | 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, |
679 | 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul | |
680 | ); | |
f11ff5be | 681 | *r = *a; |
4732d260 | 682 | secp256k1_fe_mul(&r->x, &r->x, &beta); |
607884fc | 683 | } |
399c03f2 | 684 | #endif |
607884fc | 685 | |
e6e9805f PW |
686 | static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) { |
687 | secp256k1_fe yz; | |
688 | ||
689 | if (a->infinity) { | |
690 | return 0; | |
691 | } | |
692 | ||
693 | /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as | |
694 | * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z | |
695 | is */ | |
696 | secp256k1_fe_mul(&yz, &a->y, &a->z); | |
697 | return secp256k1_fe_is_quad_var(&yz); | |
698 | } | |
699 | ||
abe2d3e8 | 700 | #endif /* SECP256K1_GROUP_IMPL_H */ |