]> Git Repo - secp256k1.git/blame - src/group_impl.h
Merge pull request #347
[secp256k1.git] / src / group_impl.h
CommitLineData
71712b27
GM
1/**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
0a433ea2 6
7a4b7691
PW
7#ifndef _SECP256K1_GROUP_IMPL_H_
8#define _SECP256K1_GROUP_IMPL_H_
9
f11ff5be 10#include <string.h>
607884fc 11
11ab5622
PW
12#include "num.h"
13#include "field.h"
14#include "group.h"
607884fc 15
6efd6e77
GM
16/** Generator for secp256k1, value 'g' defined in
17 * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
18 */
dd891e0e 19static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
443cd4b8
PW
20 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
21 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
22 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
23 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
24);
4732d260 25
dd891e0e
PW
26static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
27 secp256k1_fe zi2;
28 secp256k1_fe zi3;
4f9791ab
PD
29 secp256k1_fe_sqr(&zi2, zi);
30 secp256k1_fe_mul(&zi3, &zi2, zi);
31 secp256k1_fe_mul(&r->x, &a->x, &zi2);
32 secp256k1_fe_mul(&r->y, &a->y, &zi3);
33 r->infinity = a->infinity;
34}
35
dd891e0e 36static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
f11ff5be
PW
37 r->infinity = 0;
38 r->x = *x;
39 r->y = *y;
607884fc
PW
40}
41
dd891e0e 42static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
f11ff5be 43 return a->infinity;
607884fc
PW
44}
45
dd891e0e 46static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
39bd94d8 47 *r = *a;
0295f0a3 48 secp256k1_fe_normalize_weak(&r->y);
39bd94d8
PW
49 secp256k1_fe_negate(&r->y, &r->y, 1);
50}
51
dd891e0e
PW
52static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
53 secp256k1_fe z2, z3;
da55986f
PW
54 r->infinity = a->infinity;
55 secp256k1_fe_inv(&a->z, &a->z);
f735446c
GM
56 secp256k1_fe_sqr(&z2, &a->z);
57 secp256k1_fe_mul(&z3, &a->z, &z2);
da55986f
PW
58 secp256k1_fe_mul(&a->x, &a->x, &z2);
59 secp256k1_fe_mul(&a->y, &a->y, &z3);
60 secp256k1_fe_set_int(&a->z, 1);
61 r->x = a->x;
62 r->y = a->y;
63}
64
dd891e0e
PW
65static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
66 secp256k1_fe z2, z3;
1136bedb
PW
67 r->infinity = a->infinity;
68 if (a->infinity) {
69 return;
70 }
f11ff5be 71 secp256k1_fe_inv_var(&a->z, &a->z);
f735446c
GM
72 secp256k1_fe_sqr(&z2, &a->z);
73 secp256k1_fe_mul(&z3, &a->z, &z2);
f11ff5be
PW
74 secp256k1_fe_mul(&a->x, &a->x, &z2);
75 secp256k1_fe_mul(&a->y, &a->y, &z3);
76 secp256k1_fe_set_int(&a->z, 1);
f11ff5be
PW
77 r->x = a->x;
78 r->y = a->y;
607884fc
PW
79}
80
dd891e0e
PW
81static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) {
82 secp256k1_fe *az;
83 secp256k1_fe *azi;
f735446c 84 size_t i;
65a14abb 85 size_t count = 0;
dd891e0e 86 az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
f735446c 87 for (i = 0; i < len; i++) {
f16be77f
PD
88 if (!a[i].infinity) {
89 az[count++] = a[i].z;
90 }
91 }
92
dd891e0e 93 azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
f16be77f 94 secp256k1_fe_inv_all_var(count, azi, az);
f461b769 95 free(az);
f16be77f
PD
96
97 count = 0;
f735446c 98 for (i = 0; i < len; i++) {
f16be77f
PD
99 r[i].infinity = a[i].infinity;
100 if (!a[i].infinity) {
4f9791ab 101 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
f16be77f
PD
102 }
103 }
f461b769 104 free(azi);
f16be77f
PD
105}
106
dd891e0e 107static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) {
4f9791ab 108 size_t i = len - 1;
dd891e0e 109 secp256k1_fe zi;
4f9791ab 110
912f203f
GM
111 if (len > 0) {
112 /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
113 secp256k1_fe_inv(&zi, &a[i].z);
4f9791ab 114 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
912f203f
GM
115
116 /* Work out way backwards, using the z-ratios to scale the x/y values. */
117 while (i > 0) {
118 secp256k1_fe_mul(&zi, &zi, &zr[i]);
119 i--;
120 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
121 }
4f9791ab
PD
122 }
123}
124
dd891e0e 125static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
4f9791ab 126 size_t i = len - 1;
dd891e0e 127 secp256k1_fe zs;
4f9791ab 128
912f203f
GM
129 if (len > 0) {
130 /* The z of the final point gives us the "global Z" for the table. */
131 r[i].x = a[i].x;
132 r[i].y = a[i].y;
133 *globalz = a[i].z;
134 r[i].infinity = 0;
135 zs = zr[i];
136
137 /* Work our way backwards, using the z-ratios to scale the x/y values. */
138 while (i > 0) {
139 if (i != len - 1) {
140 secp256k1_fe_mul(&zs, &zs, &zr[i]);
141 }
142 i--;
143 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
4f9791ab 144 }
4f9791ab
PD
145 }
146}
147
dd891e0e 148static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
f11ff5be 149 r->infinity = 1;
9338dbf7
PW
150 secp256k1_fe_set_int(&r->x, 0);
151 secp256k1_fe_set_int(&r->y, 0);
152 secp256k1_fe_set_int(&r->z, 0);
607884fc
PW
153}
154
dd891e0e 155static void secp256k1_gej_clear(secp256k1_gej *r) {
2f6c8019
GM
156 r->infinity = 0;
157 secp256k1_fe_clear(&r->x);
158 secp256k1_fe_clear(&r->y);
159 secp256k1_fe_clear(&r->z);
160}
161
dd891e0e 162static void secp256k1_ge_clear(secp256k1_ge *r) {
2f6c8019
GM
163 r->infinity = 0;
164 secp256k1_fe_clear(&r->x);
165 secp256k1_fe_clear(&r->y);
166}
167
dd891e0e
PW
168static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
169 secp256k1_fe x2, x3, c;
f11ff5be 170 r->x = *x;
f735446c
GM
171 secp256k1_fe_sqr(&x2, x);
172 secp256k1_fe_mul(&x3, x, &x2);
eb0be8ee 173 r->infinity = 0;
f735446c 174 secp256k1_fe_set_int(&c, 7);
f11ff5be 175 secp256k1_fe_add(&c, &x3);
26320197 176 if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
09ca4f32 177 return 0;
26320197 178 }
39bd94d8 179 secp256k1_fe_normalize_var(&r->y);
26320197 180 if (secp256k1_fe_is_odd(&r->y) != odd) {
f11ff5be 181 secp256k1_fe_negate(&r->y, &r->y, 1);
26320197 182 }
09ca4f32 183 return 1;
910d0de4 184}
607884fc 185
dd891e0e 186static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
f11ff5be
PW
187 r->infinity = a->infinity;
188 r->x = a->x;
189 r->y = a->y;
190 secp256k1_fe_set_int(&r->z, 1);
910d0de4 191}
607884fc 192
dd891e0e
PW
193static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
194 secp256k1_fe r, r2;
ce7eb6fb 195 VERIFY_CHECK(!a->infinity);
f735446c
GM
196 secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
197 r2 = a->x; secp256k1_fe_normalize_weak(&r2);
d7174edf 198 return secp256k1_fe_equal_var(&r, &r2);
910d0de4 199}
607884fc 200
dd891e0e 201static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
f11ff5be
PW
202 r->infinity = a->infinity;
203 r->x = a->x;
204 r->y = a->y;
205 r->z = a->z;
0295f0a3 206 secp256k1_fe_normalize_weak(&r->y);
f11ff5be 207 secp256k1_fe_negate(&r->y, &r->y, 1);
607884fc
PW
208}
209
dd891e0e 210static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
f11ff5be 211 return a->infinity;
0a07e62f
PW
212}
213
dd891e0e
PW
214static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
215 secp256k1_fe y2, x3, z2, z6;
26320197 216 if (a->infinity) {
eb0be8ee 217 return 0;
26320197 218 }
71712b27
GM
219 /** y^2 = x^3 + 7
220 * (Y/Z^3)^2 = (X/Z^2)^3 + 7
221 * Y^2 / Z^6 = X^3 / Z^6 + 7
222 * Y^2 = X^3 + 7*Z^6
223 */
f735446c
GM
224 secp256k1_fe_sqr(&y2, &a->y);
225 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
226 secp256k1_fe_sqr(&z2, &a->z);
227 secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
910d0de4
PW
228 secp256k1_fe_mul_int(&z6, 7);
229 secp256k1_fe_add(&x3, &z6);
d7174edf
PW
230 secp256k1_fe_normalize_weak(&x3);
231 return secp256k1_fe_equal_var(&y2, &x3);
607884fc
PW
232}
233
dd891e0e
PW
234static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
235 secp256k1_fe y2, x3, c;
26320197 236 if (a->infinity) {
764332d0 237 return 0;
26320197 238 }
71712b27 239 /* y^2 = x^3 + 7 */
f735446c
GM
240 secp256k1_fe_sqr(&y2, &a->y);
241 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
242 secp256k1_fe_set_int(&c, 7);
764332d0 243 secp256k1_fe_add(&x3, &c);
d7174edf
PW
244 secp256k1_fe_normalize_weak(&x3);
245 return secp256k1_fe_equal_var(&y2, &x3);
764332d0
PW
246}
247
dd891e0e 248static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
d61e8995 249 /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
dd891e0e 250 secp256k1_fe t1,t2,t3,t4;
3627437d
GM
251 /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
252 * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
253 * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
254 */
f7dc1c65
PW
255 r->infinity = a->infinity;
256 if (r->infinity) {
2b199de8 257 if (rzr != NULL) {
4f9791ab
PD
258 secp256k1_fe_set_int(rzr, 1);
259 }
607884fc
PW
260 return;
261 }
262
2b199de8 263 if (rzr != NULL) {
4f9791ab
PD
264 *rzr = a->y;
265 secp256k1_fe_normalize_weak(rzr);
266 secp256k1_fe_mul_int(rzr, 2);
267 }
268
be82e92f 269 secp256k1_fe_mul(&r->z, &a->z, &a->y);
71712b27 270 secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
f11ff5be 271 secp256k1_fe_sqr(&t1, &a->x);
71712b27
GM
272 secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
273 secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
f7dc1c65 274 secp256k1_fe_sqr(&t3, &a->y);
71712b27 275 secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
910d0de4 276 secp256k1_fe_sqr(&t4, &t3);
71712b27 277 secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
be82e92f 278 secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
f11ff5be 279 r->x = t3;
71712b27
GM
280 secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
281 secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
282 secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
283 secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
284 secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
285 secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
286 secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
287 secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
288 secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
607884fc
PW
289}
290
dd891e0e 291static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
44015000
AP
292 VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
293 secp256k1_gej_double_var(r, a, rzr);
294}
295
dd891e0e 296static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
d61e8995 297 /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
dd891e0e 298 secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
4f9791ab 299
f11ff5be 300 if (a->infinity) {
4f9791ab 301 VERIFY_CHECK(rzr == NULL);
f11ff5be 302 *r = *b;
607884fc
PW
303 return;
304 }
4f9791ab 305
f11ff5be 306 if (b->infinity) {
2b199de8 307 if (rzr != NULL) {
4f9791ab
PD
308 secp256k1_fe_set_int(rzr, 1);
309 }
f11ff5be 310 *r = *a;
607884fc
PW
311 return;
312 }
4f9791ab 313
eb0be8ee 314 r->infinity = 0;
f735446c
GM
315 secp256k1_fe_sqr(&z22, &b->z);
316 secp256k1_fe_sqr(&z12, &a->z);
317 secp256k1_fe_mul(&u1, &a->x, &z22);
318 secp256k1_fe_mul(&u2, &b->x, &z12);
319 secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
320 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
321 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
322 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
49ee0dbe
PD
323 if (secp256k1_fe_normalizes_to_zero_var(&h)) {
324 if (secp256k1_fe_normalizes_to_zero_var(&i)) {
4f9791ab 325 secp256k1_gej_double_var(r, a, rzr);
607884fc 326 } else {
2b199de8 327 if (rzr != NULL) {
4f9791ab
PD
328 secp256k1_fe_set_int(rzr, 0);
329 }
eb0be8ee 330 r->infinity = 1;
607884fc
PW
331 }
332 return;
333 }
f735446c
GM
334 secp256k1_fe_sqr(&i2, &i);
335 secp256k1_fe_sqr(&h2, &h);
336 secp256k1_fe_mul(&h3, &h, &h2);
4f9791ab 337 secp256k1_fe_mul(&h, &h, &b->z);
2b199de8 338 if (rzr != NULL) {
4f9791ab
PD
339 *rzr = h;
340 }
341 secp256k1_fe_mul(&r->z, &a->z, &h);
f735446c 342 secp256k1_fe_mul(&t, &u1, &h2);
f11ff5be
PW
343 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
344 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
910d0de4 345 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
f11ff5be 346 secp256k1_fe_add(&r->y, &h3);
607884fc
PW
347}
348
dd891e0e 349static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
d61e8995 350 /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
dd891e0e 351 secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
f11ff5be 352 if (a->infinity) {
2d5a186c
PD
353 VERIFY_CHECK(rzr == NULL);
354 secp256k1_gej_set_ge(r, b);
607884fc
PW
355 return;
356 }
f11ff5be 357 if (b->infinity) {
2b199de8 358 if (rzr != NULL) {
2d5a186c
PD
359 secp256k1_fe_set_int(rzr, 1);
360 }
f11ff5be 361 *r = *a;
607884fc
PW
362 return;
363 }
eb0be8ee 364 r->infinity = 0;
4f9791ab 365
f735446c
GM
366 secp256k1_fe_sqr(&z12, &a->z);
367 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
368 secp256k1_fe_mul(&u2, &b->x, &z12);
369 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
370 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
371 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
372 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
49ee0dbe
PD
373 if (secp256k1_fe_normalizes_to_zero_var(&h)) {
374 if (secp256k1_fe_normalizes_to_zero_var(&i)) {
2d5a186c 375 secp256k1_gej_double_var(r, a, rzr);
4f9791ab 376 } else {
2b199de8 377 if (rzr != NULL) {
2d5a186c
PD
378 secp256k1_fe_set_int(rzr, 0);
379 }
4f9791ab
PD
380 r->infinity = 1;
381 }
382 return;
383 }
384 secp256k1_fe_sqr(&i2, &i);
385 secp256k1_fe_sqr(&h2, &h);
386 secp256k1_fe_mul(&h3, &h, &h2);
2b199de8 387 if (rzr != NULL) {
2d5a186c
PD
388 *rzr = h;
389 }
390 secp256k1_fe_mul(&r->z, &a->z, &h);
4f9791ab
PD
391 secp256k1_fe_mul(&t, &u1, &h2);
392 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
393 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
394 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
395 secp256k1_fe_add(&r->y, &h3);
396}
397
dd891e0e 398static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
4f9791ab 399 /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
dd891e0e 400 secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
4f9791ab
PD
401
402 if (b->infinity) {
403 *r = *a;
404 return;
405 }
406 if (a->infinity) {
dd891e0e 407 secp256k1_fe bzinv2, bzinv3;
4f9791ab
PD
408 r->infinity = b->infinity;
409 secp256k1_fe_sqr(&bzinv2, bzinv);
410 secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
411 secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
412 secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
413 secp256k1_fe_set_int(&r->z, 1);
414 return;
415 }
416 r->infinity = 0;
417
418 /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
419 * secp256k1's isomorphism we can multiply the Z coordinates on both sides
420 * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
421 * This means that (rx,ry,rz) can be calculated as
422 * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
423 * The variable az below holds the modified Z coordinate for a, which is used
424 * for the computation of rx and ry, but not for rz.
425 */
426 secp256k1_fe_mul(&az, &a->z, bzinv);
427
428 secp256k1_fe_sqr(&z12, &az);
429 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
430 secp256k1_fe_mul(&u2, &b->x, &z12);
431 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
432 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
433 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
434 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
435 if (secp256k1_fe_normalizes_to_zero_var(&h)) {
436 if (secp256k1_fe_normalizes_to_zero_var(&i)) {
437 secp256k1_gej_double_var(r, a, NULL);
607884fc 438 } else {
eb0be8ee 439 r->infinity = 1;
607884fc
PW
440 }
441 return;
442 }
f735446c
GM
443 secp256k1_fe_sqr(&i2, &i);
444 secp256k1_fe_sqr(&h2, &h);
445 secp256k1_fe_mul(&h3, &h, &h2);
f11ff5be 446 r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
f735446c 447 secp256k1_fe_mul(&t, &u1, &h2);
f11ff5be
PW
448 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
449 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
910d0de4 450 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
f11ff5be 451 secp256k1_fe_add(&r->y, &h3);
607884fc
PW
452}
453
4f9791ab 454
dd891e0e 455static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
5a43124c 456 /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
dd891e0e
PW
457 static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
458 secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
459 secp256k1_fe m_alt, rr_alt;
5de4c5df 460 int infinity, degenerate;
9338dbf7
PW
461 VERIFY_CHECK(!b->infinity);
462 VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
463
71712b27
GM
464 /** In:
465 * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
466 * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
467 * we find as solution for a unified addition/doubling formula:
468 * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
469 * x3 = lambda^2 - (x1 + x2)
470 * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
471 *
472 * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
473 * U1 = X1*Z2^2, U2 = X2*Z1^2
2a54f9bc 474 * S1 = Y1*Z2^3, S2 = Y2*Z1^3
71712b27
GM
475 * Z = Z1*Z2
476 * T = U1+U2
477 * M = S1+S2
478 * Q = T*M^2
479 * R = T^2-U1*U2
480 * X3 = 4*(R^2-Q)
481 * Y3 = 4*(R*(3*Q-2*R^2)-M^4)
482 * Z3 = 2*M*Z
483 * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
5de4c5df
AP
484 *
485 * This formula has the benefit of being the same for both addition
486 * of distinct points and doubling. However, it breaks down in the
487 * case that either point is infinity, or that y1 = -y2. We handle
488 * these cases in the following ways:
489 *
490 * - If b is infinity we simply bail by means of a VERIFY_CHECK.
491 *
492 * - If a is infinity, we detect this, and at the end of the
493 * computation replace the result (which will be meaningless,
494 * but we compute to be constant-time) with b.x : b.y : 1.
495 *
496 * - If a = -b, we have y1 = -y2, which is a degenerate case.
497 * But here the answer is infinity, so we simply set the
498 * infinity flag of the result, overriding the computed values
499 * without even needing to cmov.
500 *
501 * - If y1 = -y2 but x1 != x2, which does occur thanks to certain
502 * properties of our curve (specifically, 1 has nontrivial cube
503 * roots in our field, and the curve equation has no x coefficient)
504 * then the answer is not infinity but also not given by the above
505 * equation. In this case, we cmov in place an alternate expression
506 * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
507 * expressions for lambda are defined, they are equal, and can be
508 * obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
509 * then substitution of x^3 + 7 for y^2 (using the curve equation).
510 * For all pairs of nonzero points (a, b) at least one is defined,
511 * so this covers everything.
71712b27
GM
512 */
513
f735446c
GM
514 secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
515 u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
516 secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
517 s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
81e45ff9 518 secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
f735446c 519 secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
f735446c
GM
520 t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
521 m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
bcf2fcfd 522 secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
a5d796e0 523 secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
7d054cd0
PD
524 secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
525 secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
5de4c5df
AP
526 /** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
527 * case that Z = z1z2 = 0, and this is special-cased later on). */
528 degenerate = secp256k1_fe_normalizes_to_zero(&m) &
529 secp256k1_fe_normalizes_to_zero(&rr);
530 /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
531 * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
532 * a nontrivial cube root of one. In either case, an alternate
533 * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
534 * so we set R/M equal to this. */
5a43124c
PD
535 rr_alt = s1;
536 secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
a5d796e0 537 secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
5de4c5df
AP
538
539 secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
540 secp256k1_fe_cmov(&m_alt, &m, !degenerate);
541 /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
542 * From here on out Ralt and Malt represent the numerator
543 * and denominator of lambda; R and M represent the explicit
544 * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
545 secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
546 secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
547 /* These two lines use the observation that either M == Malt or M == 0,
548 * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
549 * zero (which is "computed" by cmov). So the cost is one squaring
550 * versus two multiplications. */
55e7fc32
PD
551 secp256k1_fe_sqr(&n, &n);
552 secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
5de4c5df 553 secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
b28d02a5 554 secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
f735446c 555 infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
5de4c5df 556 secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
71712b27 557 secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
55e7fc32
PD
558 secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
559 secp256k1_fe_normalize_weak(&t);
560 r->x = t; /* r->x = Ralt^2-Q (1) */
bcf2fcfd 561 secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
55e7fc32 562 secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
5de4c5df 563 secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
55e7fc32
PD
564 secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
565 secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
0295f0a3 566 secp256k1_fe_normalize_weak(&r->y);
5de4c5df
AP
567 secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
568 secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
9338dbf7 569
a1d5ae15 570 /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
bb0ea50d
GM
571 secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
572 secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
573 secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
9338dbf7
PW
574 r->infinity = infinity;
575}
576
dd891e0e 577static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
d2275795 578 /* Operations: 4 mul, 1 sqr */
dd891e0e 579 secp256k1_fe zz;
d2275795
GM
580 VERIFY_CHECK(!secp256k1_fe_is_zero(s));
581 secp256k1_fe_sqr(&zz, s);
582 secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
583 secp256k1_fe_mul(&r->y, &r->y, &zz);
584 secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
585 secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
586}
587
dd891e0e
PW
588static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
589 secp256k1_fe x, y;
e68d7208
PW
590 VERIFY_CHECK(!a->infinity);
591 x = a->x;
592 secp256k1_fe_normalize(&x);
593 y = a->y;
594 secp256k1_fe_normalize(&y);
595 secp256k1_fe_to_storage(&r->x, &x);
596 secp256k1_fe_to_storage(&r->y, &y);
597}
598
dd891e0e 599static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
e68d7208
PW
600 secp256k1_fe_from_storage(&r->x, &a->x);
601 secp256k1_fe_from_storage(&r->y, &a->y);
602 r->infinity = 0;
603}
604
dd891e0e 605static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
55422b6a
PW
606 secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
607 secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
608}
609
399c03f2 610#ifdef USE_ENDOMORPHISM
dd891e0e
PW
611static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
612 static const secp256k1_fe beta = SECP256K1_FE_CONST(
4732d260
PW
613 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
614 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
615 );
f11ff5be 616 *r = *a;
4732d260 617 secp256k1_fe_mul(&r->x, &r->x, &beta);
607884fc 618}
399c03f2 619#endif
607884fc 620
7a4b7691 621#endif
This page took 0.166335 seconds and 4 git commands to generate.