]>
Commit | Line | Data |
---|---|---|
71712b27 GM |
1 | /********************************************************************** |
2 | * Copyright (c) 2013, 2014 Pieter Wuille * | |
3 | * Distributed under the MIT software license, see the accompanying * | |
4 | * file COPYING or http://www.opensource.org/licenses/mit-license.php.* | |
5 | **********************************************************************/ | |
0a433ea2 | 6 | |
7a4b7691 PW |
7 | #ifndef _SECP256K1_GROUP_IMPL_H_ |
8 | #define _SECP256K1_GROUP_IMPL_H_ | |
9 | ||
f11ff5be | 10 | #include <string.h> |
607884fc | 11 | |
11ab5622 PW |
12 | #include "num.h" |
13 | #include "field.h" | |
14 | #include "group.h" | |
607884fc | 15 | |
6efd6e77 GM |
16 | /** Generator for secp256k1, value 'g' defined in |
17 | * "Standards for Efficient Cryptography" (SEC2) 2.7.1. | |
18 | */ | |
443cd4b8 PW |
19 | static const secp256k1_ge_t secp256k1_ge_const_g = SECP256K1_GE_CONST( |
20 | 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, | |
21 | 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL, | |
22 | 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, | |
23 | 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL | |
24 | ); | |
4732d260 | 25 | |
4f9791ab PD |
26 | static void secp256k1_ge_set_gej_zinv(secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zi) { |
27 | secp256k1_fe_t zi2; | |
28 | secp256k1_fe_t zi3; | |
29 | secp256k1_fe_sqr(&zi2, zi); | |
30 | secp256k1_fe_mul(&zi3, &zi2, zi); | |
31 | secp256k1_fe_mul(&r->x, &a->x, &zi2); | |
32 | secp256k1_fe_mul(&r->y, &a->y, &zi3); | |
33 | r->infinity = a->infinity; | |
34 | } | |
35 | ||
a4a43d75 | 36 | static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) { |
f11ff5be | 37 | r->infinity = 1; |
607884fc PW |
38 | } |
39 | ||
a4a43d75 | 40 | static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { |
f11ff5be PW |
41 | r->infinity = 0; |
42 | r->x = *x; | |
43 | r->y = *y; | |
607884fc PW |
44 | } |
45 | ||
a4a43d75 | 46 | static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) { |
f11ff5be | 47 | return a->infinity; |
607884fc PW |
48 | } |
49 | ||
a4a43d75 | 50 | static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) { |
39bd94d8 | 51 | *r = *a; |
0295f0a3 | 52 | secp256k1_fe_normalize_weak(&r->y); |
39bd94d8 PW |
53 | secp256k1_fe_negate(&r->y, &r->y, 1); |
54 | } | |
55 | ||
a4a43d75 | 56 | static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) { |
f735446c | 57 | secp256k1_fe_t z2, z3; |
da55986f PW |
58 | r->infinity = a->infinity; |
59 | secp256k1_fe_inv(&a->z, &a->z); | |
f735446c GM |
60 | secp256k1_fe_sqr(&z2, &a->z); |
61 | secp256k1_fe_mul(&z3, &a->z, &z2); | |
da55986f PW |
62 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
63 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
64 | secp256k1_fe_set_int(&a->z, 1); | |
65 | r->x = a->x; | |
66 | r->y = a->y; | |
67 | } | |
68 | ||
a4a43d75 | 69 | static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) { |
f735446c | 70 | secp256k1_fe_t z2, z3; |
1136bedb PW |
71 | r->infinity = a->infinity; |
72 | if (a->infinity) { | |
73 | return; | |
74 | } | |
f11ff5be | 75 | secp256k1_fe_inv_var(&a->z, &a->z); |
f735446c GM |
76 | secp256k1_fe_sqr(&z2, &a->z); |
77 | secp256k1_fe_mul(&z3, &a->z, &z2); | |
f11ff5be PW |
78 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
79 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
80 | secp256k1_fe_set_int(&a->z, 1); | |
f11ff5be PW |
81 | r->x = a->x; |
82 | r->y = a->y; | |
607884fc PW |
83 | } |
84 | ||
995c5487 | 85 | static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const callback_t *cb) { |
f735446c GM |
86 | secp256k1_fe_t *az; |
87 | secp256k1_fe_t *azi; | |
88 | size_t i; | |
65a14abb | 89 | size_t count = 0; |
995c5487 | 90 | az = (secp256k1_fe_t *)checked_malloc(cb, sizeof(secp256k1_fe_t) * len); |
f735446c | 91 | for (i = 0; i < len; i++) { |
f16be77f PD |
92 | if (!a[i].infinity) { |
93 | az[count++] = a[i].z; | |
94 | } | |
95 | } | |
96 | ||
995c5487 | 97 | azi = (secp256k1_fe_t *)checked_malloc(cb, sizeof(secp256k1_fe_t) * count); |
f16be77f | 98 | secp256k1_fe_inv_all_var(count, azi, az); |
f461b769 | 99 | free(az); |
f16be77f PD |
100 | |
101 | count = 0; | |
f735446c | 102 | for (i = 0; i < len; i++) { |
f16be77f PD |
103 | r[i].infinity = a[i].infinity; |
104 | if (!a[i].infinity) { | |
4f9791ab | 105 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]); |
f16be77f PD |
106 | } |
107 | } | |
f461b769 | 108 | free(azi); |
f16be77f PD |
109 | } |
110 | ||
4f9791ab PD |
111 | static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zr) { |
112 | size_t i = len - 1; | |
113 | secp256k1_fe_t zi; | |
114 | ||
912f203f GM |
115 | if (len > 0) { |
116 | /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */ | |
117 | secp256k1_fe_inv(&zi, &a[i].z); | |
4f9791ab | 118 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); |
912f203f GM |
119 | |
120 | /* Work out way backwards, using the z-ratios to scale the x/y values. */ | |
121 | while (i > 0) { | |
122 | secp256k1_fe_mul(&zi, &zi, &zr[i]); | |
123 | i--; | |
124 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); | |
125 | } | |
4f9791ab PD |
126 | } |
127 | } | |
128 | ||
129 | static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge_t *r, secp256k1_fe_t *globalz, const secp256k1_gej_t *a, const secp256k1_fe_t *zr) { | |
130 | size_t i = len - 1; | |
131 | secp256k1_fe_t zs; | |
132 | ||
912f203f GM |
133 | if (len > 0) { |
134 | /* The z of the final point gives us the "global Z" for the table. */ | |
135 | r[i].x = a[i].x; | |
136 | r[i].y = a[i].y; | |
137 | *globalz = a[i].z; | |
138 | r[i].infinity = 0; | |
139 | zs = zr[i]; | |
140 | ||
141 | /* Work our way backwards, using the z-ratios to scale the x/y values. */ | |
142 | while (i > 0) { | |
143 | if (i != len - 1) { | |
144 | secp256k1_fe_mul(&zs, &zs, &zr[i]); | |
145 | } | |
146 | i--; | |
147 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs); | |
4f9791ab | 148 | } |
4f9791ab PD |
149 | } |
150 | } | |
151 | ||
a4a43d75 | 152 | static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) { |
f11ff5be | 153 | r->infinity = 1; |
9338dbf7 PW |
154 | secp256k1_fe_set_int(&r->x, 0); |
155 | secp256k1_fe_set_int(&r->y, 0); | |
156 | secp256k1_fe_set_int(&r->z, 0); | |
607884fc PW |
157 | } |
158 | ||
a4a43d75 | 159 | static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { |
f11ff5be PW |
160 | r->infinity = 0; |
161 | r->x = *x; | |
162 | r->y = *y; | |
163 | secp256k1_fe_set_int(&r->z, 1); | |
607884fc PW |
164 | } |
165 | ||
a4a43d75 | 166 | static void secp256k1_gej_clear(secp256k1_gej_t *r) { |
2f6c8019 GM |
167 | r->infinity = 0; |
168 | secp256k1_fe_clear(&r->x); | |
169 | secp256k1_fe_clear(&r->y); | |
170 | secp256k1_fe_clear(&r->z); | |
171 | } | |
172 | ||
a4a43d75 | 173 | static void secp256k1_ge_clear(secp256k1_ge_t *r) { |
2f6c8019 GM |
174 | r->infinity = 0; |
175 | secp256k1_fe_clear(&r->x); | |
176 | secp256k1_fe_clear(&r->y); | |
177 | } | |
178 | ||
39bd94d8 | 179 | static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) { |
f735446c | 180 | secp256k1_fe_t x2, x3, c; |
f11ff5be | 181 | r->x = *x; |
f735446c GM |
182 | secp256k1_fe_sqr(&x2, x); |
183 | secp256k1_fe_mul(&x3, x, &x2); | |
eb0be8ee | 184 | r->infinity = 0; |
f735446c | 185 | secp256k1_fe_set_int(&c, 7); |
f11ff5be | 186 | secp256k1_fe_add(&c, &x3); |
26320197 | 187 | if (!secp256k1_fe_sqrt_var(&r->y, &c)) { |
09ca4f32 | 188 | return 0; |
26320197 | 189 | } |
39bd94d8 | 190 | secp256k1_fe_normalize_var(&r->y); |
26320197 | 191 | if (secp256k1_fe_is_odd(&r->y) != odd) { |
f11ff5be | 192 | secp256k1_fe_negate(&r->y, &r->y, 1); |
26320197 | 193 | } |
09ca4f32 | 194 | return 1; |
910d0de4 | 195 | } |
607884fc | 196 | |
a4a43d75 | 197 | static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) { |
f11ff5be PW |
198 | r->infinity = a->infinity; |
199 | r->x = a->x; | |
200 | r->y = a->y; | |
201 | secp256k1_fe_set_int(&r->z, 1); | |
910d0de4 | 202 | } |
607884fc | 203 | |
ce7eb6fb | 204 | static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) { |
f735446c | 205 | secp256k1_fe_t r, r2; |
ce7eb6fb | 206 | VERIFY_CHECK(!a->infinity); |
f735446c GM |
207 | secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); |
208 | r2 = a->x; secp256k1_fe_normalize_weak(&r2); | |
d7174edf | 209 | return secp256k1_fe_equal_var(&r, &r2); |
910d0de4 | 210 | } |
607884fc | 211 | |
0295f0a3 | 212 | static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) { |
f11ff5be PW |
213 | r->infinity = a->infinity; |
214 | r->x = a->x; | |
215 | r->y = a->y; | |
216 | r->z = a->z; | |
0295f0a3 | 217 | secp256k1_fe_normalize_weak(&r->y); |
f11ff5be | 218 | secp256k1_fe_negate(&r->y, &r->y, 1); |
607884fc PW |
219 | } |
220 | ||
a4a43d75 | 221 | static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) { |
f11ff5be | 222 | return a->infinity; |
0a07e62f PW |
223 | } |
224 | ||
39bd94d8 | 225 | static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) { |
f735446c | 226 | secp256k1_fe_t y2, x3, z2, z6; |
26320197 | 227 | if (a->infinity) { |
eb0be8ee | 228 | return 0; |
26320197 | 229 | } |
71712b27 GM |
230 | /** y^2 = x^3 + 7 |
231 | * (Y/Z^3)^2 = (X/Z^2)^3 + 7 | |
232 | * Y^2 / Z^6 = X^3 / Z^6 + 7 | |
233 | * Y^2 = X^3 + 7*Z^6 | |
234 | */ | |
f735446c GM |
235 | secp256k1_fe_sqr(&y2, &a->y); |
236 | secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
237 | secp256k1_fe_sqr(&z2, &a->z); | |
238 | secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); | |
910d0de4 PW |
239 | secp256k1_fe_mul_int(&z6, 7); |
240 | secp256k1_fe_add(&x3, &z6); | |
d7174edf PW |
241 | secp256k1_fe_normalize_weak(&x3); |
242 | return secp256k1_fe_equal_var(&y2, &x3); | |
607884fc PW |
243 | } |
244 | ||
39bd94d8 | 245 | static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) { |
f735446c | 246 | secp256k1_fe_t y2, x3, c; |
26320197 | 247 | if (a->infinity) { |
764332d0 | 248 | return 0; |
26320197 | 249 | } |
71712b27 | 250 | /* y^2 = x^3 + 7 */ |
f735446c GM |
251 | secp256k1_fe_sqr(&y2, &a->y); |
252 | secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
253 | secp256k1_fe_set_int(&c, 7); | |
764332d0 | 254 | secp256k1_fe_add(&x3, &c); |
d7174edf PW |
255 | secp256k1_fe_normalize_weak(&x3); |
256 | return secp256k1_fe_equal_var(&y2, &x3); | |
764332d0 PW |
257 | } |
258 | ||
4f9791ab | 259 | static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr) { |
d61e8995 | 260 | /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */ |
f735446c | 261 | secp256k1_fe_t t1,t2,t3,t4; |
3627437d GM |
262 | /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, |
263 | * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have | |
264 | * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. | |
265 | */ | |
f7dc1c65 PW |
266 | r->infinity = a->infinity; |
267 | if (r->infinity) { | |
4f9791ab PD |
268 | if (rzr) { |
269 | secp256k1_fe_set_int(rzr, 1); | |
270 | } | |
607884fc PW |
271 | return; |
272 | } | |
273 | ||
4f9791ab PD |
274 | if (rzr) { |
275 | *rzr = a->y; | |
276 | secp256k1_fe_normalize_weak(rzr); | |
277 | secp256k1_fe_mul_int(rzr, 2); | |
278 | } | |
279 | ||
be82e92f | 280 | secp256k1_fe_mul(&r->z, &a->z, &a->y); |
71712b27 | 281 | secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ |
f11ff5be | 282 | secp256k1_fe_sqr(&t1, &a->x); |
71712b27 GM |
283 | secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ |
284 | secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ | |
f7dc1c65 | 285 | secp256k1_fe_sqr(&t3, &a->y); |
71712b27 | 286 | secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ |
910d0de4 | 287 | secp256k1_fe_sqr(&t4, &t3); |
71712b27 | 288 | secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ |
be82e92f | 289 | secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ |
f11ff5be | 290 | r->x = t3; |
71712b27 GM |
291 | secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ |
292 | secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ | |
293 | secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ | |
294 | secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ | |
295 | secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ | |
296 | secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ | |
297 | secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ | |
298 | secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ | |
299 | secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ | |
607884fc PW |
300 | } |
301 | ||
44015000 AP |
302 | static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr) { |
303 | VERIFY_CHECK(!secp256k1_gej_is_infinity(a)); | |
304 | secp256k1_gej_double_var(r, a, rzr); | |
305 | } | |
306 | ||
4f9791ab | 307 | static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b, secp256k1_fe_t *rzr) { |
d61e8995 | 308 | /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */ |
f735446c | 309 | secp256k1_fe_t z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
4f9791ab | 310 | |
f11ff5be | 311 | if (a->infinity) { |
4f9791ab | 312 | VERIFY_CHECK(rzr == NULL); |
f11ff5be | 313 | *r = *b; |
607884fc PW |
314 | return; |
315 | } | |
4f9791ab | 316 | |
f11ff5be | 317 | if (b->infinity) { |
4f9791ab PD |
318 | if (rzr) { |
319 | secp256k1_fe_set_int(rzr, 1); | |
320 | } | |
f11ff5be | 321 | *r = *a; |
607884fc PW |
322 | return; |
323 | } | |
4f9791ab | 324 | |
eb0be8ee | 325 | r->infinity = 0; |
f735446c GM |
326 | secp256k1_fe_sqr(&z22, &b->z); |
327 | secp256k1_fe_sqr(&z12, &a->z); | |
328 | secp256k1_fe_mul(&u1, &a->x, &z22); | |
329 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
330 | secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); | |
331 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
332 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
333 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
49ee0dbe PD |
334 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
335 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
4f9791ab | 336 | secp256k1_gej_double_var(r, a, rzr); |
607884fc | 337 | } else { |
4f9791ab PD |
338 | if (rzr) { |
339 | secp256k1_fe_set_int(rzr, 0); | |
340 | } | |
eb0be8ee | 341 | r->infinity = 1; |
607884fc PW |
342 | } |
343 | return; | |
344 | } | |
f735446c GM |
345 | secp256k1_fe_sqr(&i2, &i); |
346 | secp256k1_fe_sqr(&h2, &h); | |
347 | secp256k1_fe_mul(&h3, &h, &h2); | |
4f9791ab PD |
348 | secp256k1_fe_mul(&h, &h, &b->z); |
349 | if (rzr) { | |
350 | *rzr = h; | |
351 | } | |
352 | secp256k1_fe_mul(&r->z, &a->z, &h); | |
f735446c | 353 | secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
354 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
355 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 356 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 357 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
358 | } |
359 | ||
2d5a186c | 360 | static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, secp256k1_fe_t *rzr) { |
d61e8995 | 361 | /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ |
f735446c | 362 | secp256k1_fe_t z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
f11ff5be | 363 | if (a->infinity) { |
2d5a186c PD |
364 | VERIFY_CHECK(rzr == NULL); |
365 | secp256k1_gej_set_ge(r, b); | |
607884fc PW |
366 | return; |
367 | } | |
f11ff5be | 368 | if (b->infinity) { |
2d5a186c PD |
369 | if (rzr) { |
370 | secp256k1_fe_set_int(rzr, 1); | |
371 | } | |
f11ff5be | 372 | *r = *a; |
607884fc PW |
373 | return; |
374 | } | |
eb0be8ee | 375 | r->infinity = 0; |
4f9791ab | 376 | |
f735446c GM |
377 | secp256k1_fe_sqr(&z12, &a->z); |
378 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); | |
379 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
380 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); | |
381 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
382 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
383 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
49ee0dbe PD |
384 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
385 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
2d5a186c | 386 | secp256k1_gej_double_var(r, a, rzr); |
4f9791ab | 387 | } else { |
2d5a186c PD |
388 | if (rzr) { |
389 | secp256k1_fe_set_int(rzr, 0); | |
390 | } | |
4f9791ab PD |
391 | r->infinity = 1; |
392 | } | |
393 | return; | |
394 | } | |
395 | secp256k1_fe_sqr(&i2, &i); | |
396 | secp256k1_fe_sqr(&h2, &h); | |
397 | secp256k1_fe_mul(&h3, &h, &h2); | |
2d5a186c PD |
398 | if (rzr) { |
399 | *rzr = h; | |
400 | } | |
401 | secp256k1_fe_mul(&r->z, &a->z, &h); | |
4f9791ab PD |
402 | secp256k1_fe_mul(&t, &u1, &h2); |
403 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); | |
404 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
405 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); | |
406 | secp256k1_fe_add(&r->y, &h3); | |
407 | } | |
408 | ||
409 | static void secp256k1_gej_add_zinv_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, const secp256k1_fe_t *bzinv) { | |
410 | /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ | |
411 | secp256k1_fe_t az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; | |
412 | ||
413 | if (b->infinity) { | |
414 | *r = *a; | |
415 | return; | |
416 | } | |
417 | if (a->infinity) { | |
418 | secp256k1_fe_t bzinv2, bzinv3; | |
419 | r->infinity = b->infinity; | |
420 | secp256k1_fe_sqr(&bzinv2, bzinv); | |
421 | secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); | |
422 | secp256k1_fe_mul(&r->x, &b->x, &bzinv2); | |
423 | secp256k1_fe_mul(&r->y, &b->y, &bzinv3); | |
424 | secp256k1_fe_set_int(&r->z, 1); | |
425 | return; | |
426 | } | |
427 | r->infinity = 0; | |
428 | ||
429 | /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to | |
430 | * secp256k1's isomorphism we can multiply the Z coordinates on both sides | |
431 | * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). | |
432 | * This means that (rx,ry,rz) can be calculated as | |
433 | * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. | |
434 | * The variable az below holds the modified Z coordinate for a, which is used | |
435 | * for the computation of rx and ry, but not for rz. | |
436 | */ | |
437 | secp256k1_fe_mul(&az, &a->z, bzinv); | |
438 | ||
439 | secp256k1_fe_sqr(&z12, &az); | |
440 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); | |
441 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
442 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); | |
443 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); | |
444 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
445 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
446 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { | |
447 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
448 | secp256k1_gej_double_var(r, a, NULL); | |
607884fc | 449 | } else { |
eb0be8ee | 450 | r->infinity = 1; |
607884fc PW |
451 | } |
452 | return; | |
453 | } | |
f735446c GM |
454 | secp256k1_fe_sqr(&i2, &i); |
455 | secp256k1_fe_sqr(&h2, &h); | |
456 | secp256k1_fe_mul(&h3, &h, &h2); | |
f11ff5be | 457 | r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); |
f735446c | 458 | secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
459 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
460 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 461 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 462 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
463 | } |
464 | ||
4f9791ab | 465 | |
a4a43d75 | 466 | static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { |
5a43124c | 467 | /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */ |
bb0ea50d | 468 | static const secp256k1_fe_t fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); |
b28d02a5 | 469 | secp256k1_fe_t zz, u1, u2, s1, s2, t, tt, m, n, q, rr; |
5de4c5df AP |
470 | secp256k1_fe_t m_alt, rr_alt; |
471 | int infinity, degenerate; | |
9338dbf7 PW |
472 | VERIFY_CHECK(!b->infinity); |
473 | VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); | |
474 | ||
71712b27 GM |
475 | /** In: |
476 | * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. | |
477 | * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. | |
478 | * we find as solution for a unified addition/doubling formula: | |
479 | * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. | |
480 | * x3 = lambda^2 - (x1 + x2) | |
481 | * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). | |
482 | * | |
483 | * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: | |
484 | * U1 = X1*Z2^2, U2 = X2*Z1^2 | |
2a54f9bc | 485 | * S1 = Y1*Z2^3, S2 = Y2*Z1^3 |
71712b27 GM |
486 | * Z = Z1*Z2 |
487 | * T = U1+U2 | |
488 | * M = S1+S2 | |
489 | * Q = T*M^2 | |
490 | * R = T^2-U1*U2 | |
491 | * X3 = 4*(R^2-Q) | |
492 | * Y3 = 4*(R*(3*Q-2*R^2)-M^4) | |
493 | * Z3 = 2*M*Z | |
494 | * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) | |
5de4c5df AP |
495 | * |
496 | * This formula has the benefit of being the same for both addition | |
497 | * of distinct points and doubling. However, it breaks down in the | |
498 | * case that either point is infinity, or that y1 = -y2. We handle | |
499 | * these cases in the following ways: | |
500 | * | |
501 | * - If b is infinity we simply bail by means of a VERIFY_CHECK. | |
502 | * | |
503 | * - If a is infinity, we detect this, and at the end of the | |
504 | * computation replace the result (which will be meaningless, | |
505 | * but we compute to be constant-time) with b.x : b.y : 1. | |
506 | * | |
507 | * - If a = -b, we have y1 = -y2, which is a degenerate case. | |
508 | * But here the answer is infinity, so we simply set the | |
509 | * infinity flag of the result, overriding the computed values | |
510 | * without even needing to cmov. | |
511 | * | |
512 | * - If y1 = -y2 but x1 != x2, which does occur thanks to certain | |
513 | * properties of our curve (specifically, 1 has nontrivial cube | |
514 | * roots in our field, and the curve equation has no x coefficient) | |
515 | * then the answer is not infinity but also not given by the above | |
516 | * equation. In this case, we cmov in place an alternate expression | |
517 | * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these | |
518 | * expressions for lambda are defined, they are equal, and can be | |
519 | * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) | |
520 | * then substitution of x^3 + 7 for y^2 (using the curve equation). | |
521 | * For all pairs of nonzero points (a, b) at least one is defined, | |
522 | * so this covers everything. | |
71712b27 GM |
523 | */ |
524 | ||
f735446c GM |
525 | secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ |
526 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ | |
527 | secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ | |
528 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ | |
81e45ff9 | 529 | secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ |
f735446c | 530 | secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ |
f735446c GM |
531 | t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ |
532 | m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ | |
bcf2fcfd | 533 | secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ |
a5d796e0 | 534 | secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */ |
7d054cd0 PD |
535 | secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */ |
536 | secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */ | |
5de4c5df AP |
537 | /** If lambda = R/M = 0/0 we have a problem (except in the "trivial" |
538 | * case that Z = z1z2 = 0, and this is special-cased later on). */ | |
539 | degenerate = secp256k1_fe_normalizes_to_zero(&m) & | |
540 | secp256k1_fe_normalizes_to_zero(&rr); | |
541 | /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. | |
542 | * This means either x1 == beta*x2 or beta*x1 == x2, where beta is | |
543 | * a nontrivial cube root of one. In either case, an alternate | |
544 | * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), | |
545 | * so we set R/M equal to this. */ | |
5a43124c PD |
546 | rr_alt = s1; |
547 | secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */ | |
a5d796e0 | 548 | secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */ |
5de4c5df AP |
549 | |
550 | secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); | |
551 | secp256k1_fe_cmov(&m_alt, &m, !degenerate); | |
552 | /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0. | |
553 | * From here on out Ralt and Malt represent the numerator | |
554 | * and denominator of lambda; R and M represent the explicit | |
555 | * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ | |
556 | secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ | |
557 | secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */ | |
558 | /* These two lines use the observation that either M == Malt or M == 0, | |
559 | * so M^3 * Malt is either Malt^4 (which is computed by squaring), or | |
560 | * zero (which is "computed" by cmov). So the cost is one squaring | |
561 | * versus two multiplications. */ | |
55e7fc32 PD |
562 | secp256k1_fe_sqr(&n, &n); |
563 | secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ | |
5de4c5df | 564 | secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ |
b28d02a5 | 565 | secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */ |
f735446c | 566 | infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); |
5de4c5df | 567 | secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */ |
71712b27 | 568 | secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ |
55e7fc32 PD |
569 | secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */ |
570 | secp256k1_fe_normalize_weak(&t); | |
571 | r->x = t; /* r->x = Ralt^2-Q (1) */ | |
bcf2fcfd | 572 | secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */ |
55e7fc32 | 573 | secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */ |
5de4c5df | 574 | secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */ |
55e7fc32 PD |
575 | secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */ |
576 | secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */ | |
0295f0a3 | 577 | secp256k1_fe_normalize_weak(&r->y); |
5de4c5df AP |
578 | secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */ |
579 | secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */ | |
9338dbf7 | 580 | |
a1d5ae15 | 581 | /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */ |
bb0ea50d GM |
582 | secp256k1_fe_cmov(&r->x, &b->x, a->infinity); |
583 | secp256k1_fe_cmov(&r->y, &b->y, a->infinity); | |
584 | secp256k1_fe_cmov(&r->z, &fe_1, a->infinity); | |
9338dbf7 PW |
585 | r->infinity = infinity; |
586 | } | |
587 | ||
d2275795 GM |
588 | static void secp256k1_gej_rescale(secp256k1_gej_t *r, const secp256k1_fe_t *s) { |
589 | /* Operations: 4 mul, 1 sqr */ | |
590 | secp256k1_fe_t zz; | |
591 | VERIFY_CHECK(!secp256k1_fe_is_zero(s)); | |
592 | secp256k1_fe_sqr(&zz, s); | |
593 | secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ | |
594 | secp256k1_fe_mul(&r->y, &r->y, &zz); | |
595 | secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ | |
596 | secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ | |
597 | } | |
598 | ||
e68d7208 PW |
599 | static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) { |
600 | secp256k1_fe_t x, y; | |
601 | VERIFY_CHECK(!a->infinity); | |
602 | x = a->x; | |
603 | secp256k1_fe_normalize(&x); | |
604 | y = a->y; | |
605 | secp256k1_fe_normalize(&y); | |
606 | secp256k1_fe_to_storage(&r->x, &x); | |
607 | secp256k1_fe_to_storage(&r->y, &y); | |
608 | } | |
609 | ||
610 | static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t *a) { | |
611 | secp256k1_fe_from_storage(&r->x, &a->x); | |
612 | secp256k1_fe_from_storage(&r->y, &a->y); | |
613 | r->infinity = 0; | |
614 | } | |
615 | ||
55422b6a PW |
616 | static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag) { |
617 | secp256k1_fe_storage_cmov(&r->x, &a->x, flag); | |
618 | secp256k1_fe_storage_cmov(&r->y, &a->y, flag); | |
619 | } | |
620 | ||
399c03f2 | 621 | #ifdef USE_ENDOMORPHISM |
4f9791ab | 622 | static void secp256k1_ge_mul_lambda(secp256k1_ge_t *r, const secp256k1_ge_t *a) { |
4732d260 PW |
623 | static const secp256k1_fe_t beta = SECP256K1_FE_CONST( |
624 | 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, | |
625 | 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul | |
626 | ); | |
f11ff5be | 627 | *r = *a; |
4732d260 | 628 | secp256k1_fe_mul(&r->x, &r->x, &beta); |
607884fc | 629 | } |
399c03f2 | 630 | #endif |
607884fc | 631 | |
7a4b7691 | 632 | #endif |