]> Git Repo - secp256k1.git/blame - src/group_impl.h
Merge pull request #313
[secp256k1.git] / src / group_impl.h
CommitLineData
71712b27
GM
1/**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
0a433ea2 6
7a4b7691
PW
7#ifndef _SECP256K1_GROUP_IMPL_H_
8#define _SECP256K1_GROUP_IMPL_H_
9
f11ff5be 10#include <string.h>
607884fc 11
11ab5622
PW
12#include "num.h"
13#include "field.h"
14#include "group.h"
607884fc 15
6efd6e77
GM
16/** Generator for secp256k1, value 'g' defined in
17 * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
18 */
443cd4b8
PW
19static const secp256k1_ge_t secp256k1_ge_const_g = SECP256K1_GE_CONST(
20 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
21 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
22 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
23 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
24);
4732d260 25
4f9791ab
PD
26static void secp256k1_ge_set_gej_zinv(secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zi) {
27 secp256k1_fe_t zi2;
28 secp256k1_fe_t zi3;
29 secp256k1_fe_sqr(&zi2, zi);
30 secp256k1_fe_mul(&zi3, &zi2, zi);
31 secp256k1_fe_mul(&r->x, &a->x, &zi2);
32 secp256k1_fe_mul(&r->y, &a->y, &zi3);
33 r->infinity = a->infinity;
34}
35
a4a43d75 36static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) {
f11ff5be 37 r->infinity = 1;
607884fc
PW
38}
39
a4a43d75 40static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
f11ff5be
PW
41 r->infinity = 0;
42 r->x = *x;
43 r->y = *y;
607884fc
PW
44}
45
a4a43d75 46static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) {
f11ff5be 47 return a->infinity;
607884fc
PW
48}
49
a4a43d75 50static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
39bd94d8 51 *r = *a;
0295f0a3 52 secp256k1_fe_normalize_weak(&r->y);
39bd94d8
PW
53 secp256k1_fe_negate(&r->y, &r->y, 1);
54}
55
a4a43d75 56static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) {
f735446c 57 secp256k1_fe_t z2, z3;
da55986f
PW
58 r->infinity = a->infinity;
59 secp256k1_fe_inv(&a->z, &a->z);
f735446c
GM
60 secp256k1_fe_sqr(&z2, &a->z);
61 secp256k1_fe_mul(&z3, &a->z, &z2);
da55986f
PW
62 secp256k1_fe_mul(&a->x, &a->x, &z2);
63 secp256k1_fe_mul(&a->y, &a->y, &z3);
64 secp256k1_fe_set_int(&a->z, 1);
65 r->x = a->x;
66 r->y = a->y;
67}
68
a4a43d75 69static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) {
f735446c 70 secp256k1_fe_t z2, z3;
1136bedb
PW
71 r->infinity = a->infinity;
72 if (a->infinity) {
73 return;
74 }
f11ff5be 75 secp256k1_fe_inv_var(&a->z, &a->z);
f735446c
GM
76 secp256k1_fe_sqr(&z2, &a->z);
77 secp256k1_fe_mul(&z3, &a->z, &z2);
f11ff5be
PW
78 secp256k1_fe_mul(&a->x, &a->x, &z2);
79 secp256k1_fe_mul(&a->y, &a->y, &z3);
80 secp256k1_fe_set_int(&a->z, 1);
f11ff5be
PW
81 r->x = a->x;
82 r->y = a->y;
607884fc
PW
83}
84
995c5487 85static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const callback_t *cb) {
f735446c
GM
86 secp256k1_fe_t *az;
87 secp256k1_fe_t *azi;
88 size_t i;
65a14abb 89 size_t count = 0;
995c5487 90 az = (secp256k1_fe_t *)checked_malloc(cb, sizeof(secp256k1_fe_t) * len);
f735446c 91 for (i = 0; i < len; i++) {
f16be77f
PD
92 if (!a[i].infinity) {
93 az[count++] = a[i].z;
94 }
95 }
96
995c5487 97 azi = (secp256k1_fe_t *)checked_malloc(cb, sizeof(secp256k1_fe_t) * count);
f16be77f 98 secp256k1_fe_inv_all_var(count, azi, az);
f461b769 99 free(az);
f16be77f
PD
100
101 count = 0;
f735446c 102 for (i = 0; i < len; i++) {
f16be77f
PD
103 r[i].infinity = a[i].infinity;
104 if (!a[i].infinity) {
4f9791ab 105 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
f16be77f
PD
106 }
107 }
f461b769 108 free(azi);
f16be77f
PD
109}
110
4f9791ab
PD
111static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zr) {
112 size_t i = len - 1;
113 secp256k1_fe_t zi;
114
912f203f
GM
115 if (len > 0) {
116 /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
117 secp256k1_fe_inv(&zi, &a[i].z);
4f9791ab 118 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
912f203f
GM
119
120 /* Work out way backwards, using the z-ratios to scale the x/y values. */
121 while (i > 0) {
122 secp256k1_fe_mul(&zi, &zi, &zr[i]);
123 i--;
124 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
125 }
4f9791ab
PD
126 }
127}
128
129static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge_t *r, secp256k1_fe_t *globalz, const secp256k1_gej_t *a, const secp256k1_fe_t *zr) {
130 size_t i = len - 1;
131 secp256k1_fe_t zs;
132
912f203f
GM
133 if (len > 0) {
134 /* The z of the final point gives us the "global Z" for the table. */
135 r[i].x = a[i].x;
136 r[i].y = a[i].y;
137 *globalz = a[i].z;
138 r[i].infinity = 0;
139 zs = zr[i];
140
141 /* Work our way backwards, using the z-ratios to scale the x/y values. */
142 while (i > 0) {
143 if (i != len - 1) {
144 secp256k1_fe_mul(&zs, &zs, &zr[i]);
145 }
146 i--;
147 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
4f9791ab 148 }
4f9791ab
PD
149 }
150}
151
a4a43d75 152static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) {
f11ff5be 153 r->infinity = 1;
9338dbf7
PW
154 secp256k1_fe_set_int(&r->x, 0);
155 secp256k1_fe_set_int(&r->y, 0);
156 secp256k1_fe_set_int(&r->z, 0);
607884fc
PW
157}
158
a4a43d75 159static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
f11ff5be
PW
160 r->infinity = 0;
161 r->x = *x;
162 r->y = *y;
163 secp256k1_fe_set_int(&r->z, 1);
607884fc
PW
164}
165
a4a43d75 166static void secp256k1_gej_clear(secp256k1_gej_t *r) {
2f6c8019
GM
167 r->infinity = 0;
168 secp256k1_fe_clear(&r->x);
169 secp256k1_fe_clear(&r->y);
170 secp256k1_fe_clear(&r->z);
171}
172
a4a43d75 173static void secp256k1_ge_clear(secp256k1_ge_t *r) {
2f6c8019
GM
174 r->infinity = 0;
175 secp256k1_fe_clear(&r->x);
176 secp256k1_fe_clear(&r->y);
177}
178
39bd94d8 179static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) {
f735446c 180 secp256k1_fe_t x2, x3, c;
f11ff5be 181 r->x = *x;
f735446c
GM
182 secp256k1_fe_sqr(&x2, x);
183 secp256k1_fe_mul(&x3, x, &x2);
eb0be8ee 184 r->infinity = 0;
f735446c 185 secp256k1_fe_set_int(&c, 7);
f11ff5be 186 secp256k1_fe_add(&c, &x3);
26320197 187 if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
09ca4f32 188 return 0;
26320197 189 }
39bd94d8 190 secp256k1_fe_normalize_var(&r->y);
26320197 191 if (secp256k1_fe_is_odd(&r->y) != odd) {
f11ff5be 192 secp256k1_fe_negate(&r->y, &r->y, 1);
26320197 193 }
09ca4f32 194 return 1;
910d0de4 195}
607884fc 196
a4a43d75 197static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) {
f11ff5be
PW
198 r->infinity = a->infinity;
199 r->x = a->x;
200 r->y = a->y;
201 secp256k1_fe_set_int(&r->z, 1);
910d0de4 202}
607884fc 203
ce7eb6fb 204static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) {
f735446c 205 secp256k1_fe_t r, r2;
ce7eb6fb 206 VERIFY_CHECK(!a->infinity);
f735446c
GM
207 secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
208 r2 = a->x; secp256k1_fe_normalize_weak(&r2);
d7174edf 209 return secp256k1_fe_equal_var(&r, &r2);
910d0de4 210}
607884fc 211
0295f0a3 212static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
f11ff5be
PW
213 r->infinity = a->infinity;
214 r->x = a->x;
215 r->y = a->y;
216 r->z = a->z;
0295f0a3 217 secp256k1_fe_normalize_weak(&r->y);
f11ff5be 218 secp256k1_fe_negate(&r->y, &r->y, 1);
607884fc
PW
219}
220
a4a43d75 221static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) {
f11ff5be 222 return a->infinity;
0a07e62f
PW
223}
224
39bd94d8 225static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) {
f735446c 226 secp256k1_fe_t y2, x3, z2, z6;
26320197 227 if (a->infinity) {
eb0be8ee 228 return 0;
26320197 229 }
71712b27
GM
230 /** y^2 = x^3 + 7
231 * (Y/Z^3)^2 = (X/Z^2)^3 + 7
232 * Y^2 / Z^6 = X^3 / Z^6 + 7
233 * Y^2 = X^3 + 7*Z^6
234 */
f735446c
GM
235 secp256k1_fe_sqr(&y2, &a->y);
236 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
237 secp256k1_fe_sqr(&z2, &a->z);
238 secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
910d0de4
PW
239 secp256k1_fe_mul_int(&z6, 7);
240 secp256k1_fe_add(&x3, &z6);
d7174edf
PW
241 secp256k1_fe_normalize_weak(&x3);
242 return secp256k1_fe_equal_var(&y2, &x3);
607884fc
PW
243}
244
39bd94d8 245static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) {
f735446c 246 secp256k1_fe_t y2, x3, c;
26320197 247 if (a->infinity) {
764332d0 248 return 0;
26320197 249 }
71712b27 250 /* y^2 = x^3 + 7 */
f735446c
GM
251 secp256k1_fe_sqr(&y2, &a->y);
252 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
253 secp256k1_fe_set_int(&c, 7);
764332d0 254 secp256k1_fe_add(&x3, &c);
d7174edf
PW
255 secp256k1_fe_normalize_weak(&x3);
256 return secp256k1_fe_equal_var(&y2, &x3);
764332d0
PW
257}
258
4f9791ab 259static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr) {
d61e8995 260 /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
f735446c 261 secp256k1_fe_t t1,t2,t3,t4;
3627437d
GM
262 /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
263 * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
264 * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
265 */
f7dc1c65
PW
266 r->infinity = a->infinity;
267 if (r->infinity) {
4f9791ab
PD
268 if (rzr) {
269 secp256k1_fe_set_int(rzr, 1);
270 }
607884fc
PW
271 return;
272 }
273
4f9791ab
PD
274 if (rzr) {
275 *rzr = a->y;
276 secp256k1_fe_normalize_weak(rzr);
277 secp256k1_fe_mul_int(rzr, 2);
278 }
279
be82e92f 280 secp256k1_fe_mul(&r->z, &a->z, &a->y);
71712b27 281 secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
f11ff5be 282 secp256k1_fe_sqr(&t1, &a->x);
71712b27
GM
283 secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
284 secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
f7dc1c65 285 secp256k1_fe_sqr(&t3, &a->y);
71712b27 286 secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
910d0de4 287 secp256k1_fe_sqr(&t4, &t3);
71712b27 288 secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
be82e92f 289 secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
f11ff5be 290 r->x = t3;
71712b27
GM
291 secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
292 secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
293 secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
294 secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
295 secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
296 secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
297 secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
298 secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
299 secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
607884fc
PW
300}
301
44015000
AP
302static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr) {
303 VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
304 secp256k1_gej_double_var(r, a, rzr);
305}
306
4f9791ab 307static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b, secp256k1_fe_t *rzr) {
d61e8995 308 /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
f735446c 309 secp256k1_fe_t z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
4f9791ab 310
f11ff5be 311 if (a->infinity) {
4f9791ab 312 VERIFY_CHECK(rzr == NULL);
f11ff5be 313 *r = *b;
607884fc
PW
314 return;
315 }
4f9791ab 316
f11ff5be 317 if (b->infinity) {
4f9791ab
PD
318 if (rzr) {
319 secp256k1_fe_set_int(rzr, 1);
320 }
f11ff5be 321 *r = *a;
607884fc
PW
322 return;
323 }
4f9791ab 324
eb0be8ee 325 r->infinity = 0;
f735446c
GM
326 secp256k1_fe_sqr(&z22, &b->z);
327 secp256k1_fe_sqr(&z12, &a->z);
328 secp256k1_fe_mul(&u1, &a->x, &z22);
329 secp256k1_fe_mul(&u2, &b->x, &z12);
330 secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
331 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
332 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
333 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
49ee0dbe
PD
334 if (secp256k1_fe_normalizes_to_zero_var(&h)) {
335 if (secp256k1_fe_normalizes_to_zero_var(&i)) {
4f9791ab 336 secp256k1_gej_double_var(r, a, rzr);
607884fc 337 } else {
4f9791ab
PD
338 if (rzr) {
339 secp256k1_fe_set_int(rzr, 0);
340 }
eb0be8ee 341 r->infinity = 1;
607884fc
PW
342 }
343 return;
344 }
f735446c
GM
345 secp256k1_fe_sqr(&i2, &i);
346 secp256k1_fe_sqr(&h2, &h);
347 secp256k1_fe_mul(&h3, &h, &h2);
4f9791ab
PD
348 secp256k1_fe_mul(&h, &h, &b->z);
349 if (rzr) {
350 *rzr = h;
351 }
352 secp256k1_fe_mul(&r->z, &a->z, &h);
f735446c 353 secp256k1_fe_mul(&t, &u1, &h2);
f11ff5be
PW
354 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
355 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
910d0de4 356 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
f11ff5be 357 secp256k1_fe_add(&r->y, &h3);
607884fc
PW
358}
359
2d5a186c 360static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, secp256k1_fe_t *rzr) {
d61e8995 361 /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
f735446c 362 secp256k1_fe_t z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
f11ff5be 363 if (a->infinity) {
2d5a186c
PD
364 VERIFY_CHECK(rzr == NULL);
365 secp256k1_gej_set_ge(r, b);
607884fc
PW
366 return;
367 }
f11ff5be 368 if (b->infinity) {
2d5a186c
PD
369 if (rzr) {
370 secp256k1_fe_set_int(rzr, 1);
371 }
f11ff5be 372 *r = *a;
607884fc
PW
373 return;
374 }
eb0be8ee 375 r->infinity = 0;
4f9791ab 376
f735446c
GM
377 secp256k1_fe_sqr(&z12, &a->z);
378 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
379 secp256k1_fe_mul(&u2, &b->x, &z12);
380 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
381 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
382 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
383 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
49ee0dbe
PD
384 if (secp256k1_fe_normalizes_to_zero_var(&h)) {
385 if (secp256k1_fe_normalizes_to_zero_var(&i)) {
2d5a186c 386 secp256k1_gej_double_var(r, a, rzr);
4f9791ab 387 } else {
2d5a186c
PD
388 if (rzr) {
389 secp256k1_fe_set_int(rzr, 0);
390 }
4f9791ab
PD
391 r->infinity = 1;
392 }
393 return;
394 }
395 secp256k1_fe_sqr(&i2, &i);
396 secp256k1_fe_sqr(&h2, &h);
397 secp256k1_fe_mul(&h3, &h, &h2);
2d5a186c
PD
398 if (rzr) {
399 *rzr = h;
400 }
401 secp256k1_fe_mul(&r->z, &a->z, &h);
4f9791ab
PD
402 secp256k1_fe_mul(&t, &u1, &h2);
403 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
404 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
405 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
406 secp256k1_fe_add(&r->y, &h3);
407}
408
409static void secp256k1_gej_add_zinv_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, const secp256k1_fe_t *bzinv) {
410 /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
411 secp256k1_fe_t az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
412
413 if (b->infinity) {
414 *r = *a;
415 return;
416 }
417 if (a->infinity) {
418 secp256k1_fe_t bzinv2, bzinv3;
419 r->infinity = b->infinity;
420 secp256k1_fe_sqr(&bzinv2, bzinv);
421 secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
422 secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
423 secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
424 secp256k1_fe_set_int(&r->z, 1);
425 return;
426 }
427 r->infinity = 0;
428
429 /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
430 * secp256k1's isomorphism we can multiply the Z coordinates on both sides
431 * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
432 * This means that (rx,ry,rz) can be calculated as
433 * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
434 * The variable az below holds the modified Z coordinate for a, which is used
435 * for the computation of rx and ry, but not for rz.
436 */
437 secp256k1_fe_mul(&az, &a->z, bzinv);
438
439 secp256k1_fe_sqr(&z12, &az);
440 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
441 secp256k1_fe_mul(&u2, &b->x, &z12);
442 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
443 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
444 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
445 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
446 if (secp256k1_fe_normalizes_to_zero_var(&h)) {
447 if (secp256k1_fe_normalizes_to_zero_var(&i)) {
448 secp256k1_gej_double_var(r, a, NULL);
607884fc 449 } else {
eb0be8ee 450 r->infinity = 1;
607884fc
PW
451 }
452 return;
453 }
f735446c
GM
454 secp256k1_fe_sqr(&i2, &i);
455 secp256k1_fe_sqr(&h2, &h);
456 secp256k1_fe_mul(&h3, &h, &h2);
f11ff5be 457 r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
f735446c 458 secp256k1_fe_mul(&t, &u1, &h2);
f11ff5be
PW
459 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
460 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
910d0de4 461 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
f11ff5be 462 secp256k1_fe_add(&r->y, &h3);
607884fc
PW
463}
464
4f9791ab 465
a4a43d75 466static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) {
5a43124c 467 /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
bb0ea50d 468 static const secp256k1_fe_t fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
b28d02a5 469 secp256k1_fe_t zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
5de4c5df
AP
470 secp256k1_fe_t m_alt, rr_alt;
471 int infinity, degenerate;
9338dbf7
PW
472 VERIFY_CHECK(!b->infinity);
473 VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
474
71712b27
GM
475 /** In:
476 * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
477 * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
478 * we find as solution for a unified addition/doubling formula:
479 * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
480 * x3 = lambda^2 - (x1 + x2)
481 * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
482 *
483 * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
484 * U1 = X1*Z2^2, U2 = X2*Z1^2
2a54f9bc 485 * S1 = Y1*Z2^3, S2 = Y2*Z1^3
71712b27
GM
486 * Z = Z1*Z2
487 * T = U1+U2
488 * M = S1+S2
489 * Q = T*M^2
490 * R = T^2-U1*U2
491 * X3 = 4*(R^2-Q)
492 * Y3 = 4*(R*(3*Q-2*R^2)-M^4)
493 * Z3 = 2*M*Z
494 * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
5de4c5df
AP
495 *
496 * This formula has the benefit of being the same for both addition
497 * of distinct points and doubling. However, it breaks down in the
498 * case that either point is infinity, or that y1 = -y2. We handle
499 * these cases in the following ways:
500 *
501 * - If b is infinity we simply bail by means of a VERIFY_CHECK.
502 *
503 * - If a is infinity, we detect this, and at the end of the
504 * computation replace the result (which will be meaningless,
505 * but we compute to be constant-time) with b.x : b.y : 1.
506 *
507 * - If a = -b, we have y1 = -y2, which is a degenerate case.
508 * But here the answer is infinity, so we simply set the
509 * infinity flag of the result, overriding the computed values
510 * without even needing to cmov.
511 *
512 * - If y1 = -y2 but x1 != x2, which does occur thanks to certain
513 * properties of our curve (specifically, 1 has nontrivial cube
514 * roots in our field, and the curve equation has no x coefficient)
515 * then the answer is not infinity but also not given by the above
516 * equation. In this case, we cmov in place an alternate expression
517 * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
518 * expressions for lambda are defined, they are equal, and can be
519 * obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
520 * then substitution of x^3 + 7 for y^2 (using the curve equation).
521 * For all pairs of nonzero points (a, b) at least one is defined,
522 * so this covers everything.
71712b27
GM
523 */
524
f735446c
GM
525 secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
526 u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
527 secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
528 s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
81e45ff9 529 secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
f735446c 530 secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
f735446c
GM
531 t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
532 m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
bcf2fcfd 533 secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
a5d796e0 534 secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
7d054cd0
PD
535 secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
536 secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
5de4c5df
AP
537 /** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
538 * case that Z = z1z2 = 0, and this is special-cased later on). */
539 degenerate = secp256k1_fe_normalizes_to_zero(&m) &
540 secp256k1_fe_normalizes_to_zero(&rr);
541 /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
542 * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
543 * a nontrivial cube root of one. In either case, an alternate
544 * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
545 * so we set R/M equal to this. */
5a43124c
PD
546 rr_alt = s1;
547 secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
a5d796e0 548 secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
5de4c5df
AP
549
550 secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
551 secp256k1_fe_cmov(&m_alt, &m, !degenerate);
552 /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
553 * From here on out Ralt and Malt represent the numerator
554 * and denominator of lambda; R and M represent the explicit
555 * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
556 secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
557 secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
558 /* These two lines use the observation that either M == Malt or M == 0,
559 * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
560 * zero (which is "computed" by cmov). So the cost is one squaring
561 * versus two multiplications. */
55e7fc32
PD
562 secp256k1_fe_sqr(&n, &n);
563 secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
5de4c5df 564 secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
b28d02a5 565 secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
f735446c 566 infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
5de4c5df 567 secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
71712b27 568 secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
55e7fc32
PD
569 secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
570 secp256k1_fe_normalize_weak(&t);
571 r->x = t; /* r->x = Ralt^2-Q (1) */
bcf2fcfd 572 secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
55e7fc32 573 secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
5de4c5df 574 secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
55e7fc32
PD
575 secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
576 secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
0295f0a3 577 secp256k1_fe_normalize_weak(&r->y);
5de4c5df
AP
578 secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
579 secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
9338dbf7 580
a1d5ae15 581 /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
bb0ea50d
GM
582 secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
583 secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
584 secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
9338dbf7
PW
585 r->infinity = infinity;
586}
587
d2275795
GM
588static void secp256k1_gej_rescale(secp256k1_gej_t *r, const secp256k1_fe_t *s) {
589 /* Operations: 4 mul, 1 sqr */
590 secp256k1_fe_t zz;
591 VERIFY_CHECK(!secp256k1_fe_is_zero(s));
592 secp256k1_fe_sqr(&zz, s);
593 secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
594 secp256k1_fe_mul(&r->y, &r->y, &zz);
595 secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
596 secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
597}
598
e68d7208
PW
599static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) {
600 secp256k1_fe_t x, y;
601 VERIFY_CHECK(!a->infinity);
602 x = a->x;
603 secp256k1_fe_normalize(&x);
604 y = a->y;
605 secp256k1_fe_normalize(&y);
606 secp256k1_fe_to_storage(&r->x, &x);
607 secp256k1_fe_to_storage(&r->y, &y);
608}
609
610static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t *a) {
611 secp256k1_fe_from_storage(&r->x, &a->x);
612 secp256k1_fe_from_storage(&r->y, &a->y);
613 r->infinity = 0;
614}
615
55422b6a
PW
616static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag) {
617 secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
618 secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
619}
620
399c03f2 621#ifdef USE_ENDOMORPHISM
4f9791ab 622static void secp256k1_ge_mul_lambda(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
4732d260
PW
623 static const secp256k1_fe_t beta = SECP256K1_FE_CONST(
624 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
625 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
626 );
f11ff5be 627 *r = *a;
4732d260 628 secp256k1_fe_mul(&r->x, &r->x, &beta);
607884fc 629}
399c03f2 630#endif
607884fc 631
7a4b7691 632#endif
This page took 0.120965 seconds and 4 git commands to generate.