]>
Commit | Line | Data |
---|---|---|
71712b27 GM |
1 | /********************************************************************** |
2 | * Copyright (c) 2013, 2014 Pieter Wuille * | |
3 | * Distributed under the MIT software license, see the accompanying * | |
4 | * file COPYING or http://www.opensource.org/licenses/mit-license.php.* | |
5 | **********************************************************************/ | |
0a433ea2 | 6 | |
7a4b7691 PW |
7 | #ifndef _SECP256K1_GROUP_IMPL_H_ |
8 | #define _SECP256K1_GROUP_IMPL_H_ | |
9 | ||
f11ff5be | 10 | #include <string.h> |
607884fc | 11 | |
11ab5622 PW |
12 | #include "num.h" |
13 | #include "field.h" | |
14 | #include "group.h" | |
607884fc | 15 | |
4732d260 PW |
16 | static const secp256k1_ge_t secp256k1_ge_const_g = { |
17 | SECP256K1_FE_CONST( | |
18 | 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, | |
19 | 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL | |
20 | ), | |
21 | SECP256K1_FE_CONST( | |
22 | 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, | |
23 | 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL | |
24 | ), | |
25 | 0 | |
26 | }; | |
27 | ||
a4a43d75 | 28 | static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) { |
f11ff5be | 29 | r->infinity = 1; |
607884fc PW |
30 | } |
31 | ||
a4a43d75 | 32 | static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { |
f11ff5be PW |
33 | r->infinity = 0; |
34 | r->x = *x; | |
35 | r->y = *y; | |
607884fc PW |
36 | } |
37 | ||
a4a43d75 | 38 | static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) { |
f11ff5be | 39 | return a->infinity; |
607884fc PW |
40 | } |
41 | ||
a4a43d75 | 42 | static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) { |
39bd94d8 | 43 | *r = *a; |
0295f0a3 | 44 | secp256k1_fe_normalize_weak(&r->y); |
39bd94d8 PW |
45 | secp256k1_fe_negate(&r->y, &r->y, 1); |
46 | } | |
47 | ||
0768bd55 PW |
48 | static void secp256k1_ge_get_hex(char *r131, const secp256k1_ge_t *a) { |
49 | r131[0] = '('; | |
50 | secp256k1_fe_get_hex(r131 + 1, &a->x); | |
51 | r131[65] = ','; | |
52 | secp256k1_fe_get_hex(r131 + 66, &a->y); | |
53 | r131[130] = ')'; | |
f11ff5be PW |
54 | } |
55 | ||
a4a43d75 | 56 | static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) { |
f735446c | 57 | secp256k1_fe_t z2, z3; |
da55986f PW |
58 | r->infinity = a->infinity; |
59 | secp256k1_fe_inv(&a->z, &a->z); | |
f735446c GM |
60 | secp256k1_fe_sqr(&z2, &a->z); |
61 | secp256k1_fe_mul(&z3, &a->z, &z2); | |
da55986f PW |
62 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
63 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
64 | secp256k1_fe_set_int(&a->z, 1); | |
65 | r->x = a->x; | |
66 | r->y = a->y; | |
67 | } | |
68 | ||
a4a43d75 | 69 | static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) { |
f735446c | 70 | secp256k1_fe_t z2, z3; |
1136bedb PW |
71 | r->infinity = a->infinity; |
72 | if (a->infinity) { | |
73 | return; | |
74 | } | |
f11ff5be | 75 | secp256k1_fe_inv_var(&a->z, &a->z); |
f735446c GM |
76 | secp256k1_fe_sqr(&z2, &a->z); |
77 | secp256k1_fe_mul(&z3, &a->z, &z2); | |
f11ff5be PW |
78 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
79 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
80 | secp256k1_fe_set_int(&a->z, 1); | |
f11ff5be PW |
81 | r->x = a->x; |
82 | r->y = a->y; | |
607884fc PW |
83 | } |
84 | ||
3627437d | 85 | static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a) { |
f735446c GM |
86 | secp256k1_fe_t *az; |
87 | secp256k1_fe_t *azi; | |
88 | size_t i; | |
65a14abb | 89 | size_t count = 0; |
f735446c GM |
90 | az = checked_malloc(sizeof(secp256k1_fe_t) * len); |
91 | for (i = 0; i < len; i++) { | |
f16be77f PD |
92 | if (!a[i].infinity) { |
93 | az[count++] = a[i].z; | |
94 | } | |
95 | } | |
96 | ||
f735446c | 97 | azi = checked_malloc(sizeof(secp256k1_fe_t) * count); |
f16be77f | 98 | secp256k1_fe_inv_all_var(count, azi, az); |
f461b769 | 99 | free(az); |
f16be77f PD |
100 | |
101 | count = 0; | |
f735446c | 102 | for (i = 0; i < len; i++) { |
f16be77f PD |
103 | r[i].infinity = a[i].infinity; |
104 | if (!a[i].infinity) { | |
f735446c | 105 | secp256k1_fe_t zi2, zi3; |
f16be77f | 106 | secp256k1_fe_t *zi = &azi[count++]; |
f735446c GM |
107 | secp256k1_fe_sqr(&zi2, zi); |
108 | secp256k1_fe_mul(&zi3, &zi2, zi); | |
f16be77f PD |
109 | secp256k1_fe_mul(&r[i].x, &a[i].x, &zi2); |
110 | secp256k1_fe_mul(&r[i].y, &a[i].y, &zi3); | |
111 | } | |
112 | } | |
f461b769 | 113 | free(azi); |
f16be77f PD |
114 | } |
115 | ||
a4a43d75 | 116 | static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) { |
f11ff5be | 117 | r->infinity = 1; |
9338dbf7 PW |
118 | secp256k1_fe_set_int(&r->x, 0); |
119 | secp256k1_fe_set_int(&r->y, 0); | |
120 | secp256k1_fe_set_int(&r->z, 0); | |
607884fc PW |
121 | } |
122 | ||
a4a43d75 | 123 | static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { |
f11ff5be PW |
124 | r->infinity = 0; |
125 | r->x = *x; | |
126 | r->y = *y; | |
127 | secp256k1_fe_set_int(&r->z, 1); | |
607884fc PW |
128 | } |
129 | ||
a4a43d75 | 130 | static void secp256k1_gej_clear(secp256k1_gej_t *r) { |
2f6c8019 GM |
131 | r->infinity = 0; |
132 | secp256k1_fe_clear(&r->x); | |
133 | secp256k1_fe_clear(&r->y); | |
134 | secp256k1_fe_clear(&r->z); | |
135 | } | |
136 | ||
a4a43d75 | 137 | static void secp256k1_ge_clear(secp256k1_ge_t *r) { |
2f6c8019 GM |
138 | r->infinity = 0; |
139 | secp256k1_fe_clear(&r->x); | |
140 | secp256k1_fe_clear(&r->y); | |
141 | } | |
142 | ||
39bd94d8 | 143 | static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) { |
f735446c | 144 | secp256k1_fe_t x2, x3, c; |
f11ff5be | 145 | r->x = *x; |
f735446c GM |
146 | secp256k1_fe_sqr(&x2, x); |
147 | secp256k1_fe_mul(&x3, x, &x2); | |
eb0be8ee | 148 | r->infinity = 0; |
f735446c | 149 | secp256k1_fe_set_int(&c, 7); |
f11ff5be | 150 | secp256k1_fe_add(&c, &x3); |
39bd94d8 | 151 | if (!secp256k1_fe_sqrt_var(&r->y, &c)) |
09ca4f32 | 152 | return 0; |
39bd94d8 | 153 | secp256k1_fe_normalize_var(&r->y); |
f11ff5be PW |
154 | if (secp256k1_fe_is_odd(&r->y) != odd) |
155 | secp256k1_fe_negate(&r->y, &r->y, 1); | |
09ca4f32 | 156 | return 1; |
910d0de4 | 157 | } |
607884fc | 158 | |
a4a43d75 | 159 | static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) { |
f11ff5be PW |
160 | r->infinity = a->infinity; |
161 | r->x = a->x; | |
162 | r->y = a->y; | |
163 | secp256k1_fe_set_int(&r->z, 1); | |
910d0de4 | 164 | } |
607884fc | 165 | |
ce7eb6fb | 166 | static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) { |
f735446c | 167 | secp256k1_fe_t r, r2; |
ce7eb6fb | 168 | VERIFY_CHECK(!a->infinity); |
f735446c GM |
169 | secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); |
170 | r2 = a->x; secp256k1_fe_normalize_weak(&r2); | |
d7174edf | 171 | return secp256k1_fe_equal_var(&r, &r2); |
910d0de4 | 172 | } |
607884fc | 173 | |
0295f0a3 | 174 | static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) { |
f11ff5be PW |
175 | r->infinity = a->infinity; |
176 | r->x = a->x; | |
177 | r->y = a->y; | |
178 | r->z = a->z; | |
0295f0a3 | 179 | secp256k1_fe_normalize_weak(&r->y); |
f11ff5be | 180 | secp256k1_fe_negate(&r->y, &r->y, 1); |
607884fc PW |
181 | } |
182 | ||
a4a43d75 | 183 | static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) { |
f11ff5be | 184 | return a->infinity; |
0a07e62f PW |
185 | } |
186 | ||
39bd94d8 | 187 | static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) { |
f735446c | 188 | secp256k1_fe_t y2, x3, z2, z6; |
f11ff5be | 189 | if (a->infinity) |
eb0be8ee | 190 | return 0; |
71712b27 GM |
191 | /** y^2 = x^3 + 7 |
192 | * (Y/Z^3)^2 = (X/Z^2)^3 + 7 | |
193 | * Y^2 / Z^6 = X^3 / Z^6 + 7 | |
194 | * Y^2 = X^3 + 7*Z^6 | |
195 | */ | |
f735446c GM |
196 | secp256k1_fe_sqr(&y2, &a->y); |
197 | secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
198 | secp256k1_fe_sqr(&z2, &a->z); | |
199 | secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); | |
910d0de4 PW |
200 | secp256k1_fe_mul_int(&z6, 7); |
201 | secp256k1_fe_add(&x3, &z6); | |
d7174edf PW |
202 | secp256k1_fe_normalize_weak(&x3); |
203 | return secp256k1_fe_equal_var(&y2, &x3); | |
607884fc PW |
204 | } |
205 | ||
39bd94d8 | 206 | static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) { |
f735446c | 207 | secp256k1_fe_t y2, x3, c; |
764332d0 PW |
208 | if (a->infinity) |
209 | return 0; | |
71712b27 | 210 | /* y^2 = x^3 + 7 */ |
f735446c GM |
211 | secp256k1_fe_sqr(&y2, &a->y); |
212 | secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
213 | secp256k1_fe_set_int(&c, 7); | |
764332d0 | 214 | secp256k1_fe_add(&x3, &c); |
d7174edf PW |
215 | secp256k1_fe_normalize_weak(&x3); |
216 | return secp256k1_fe_equal_var(&y2, &x3); | |
764332d0 PW |
217 | } |
218 | ||
a4a43d75 | 219 | static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a) { |
d61e8995 | 220 | /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */ |
f735446c | 221 | secp256k1_fe_t t1,t2,t3,t4; |
3627437d GM |
222 | /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, |
223 | * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have | |
224 | * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. | |
225 | */ | |
f7dc1c65 PW |
226 | r->infinity = a->infinity; |
227 | if (r->infinity) { | |
607884fc PW |
228 | return; |
229 | } | |
230 | ||
be82e92f | 231 | secp256k1_fe_mul(&r->z, &a->z, &a->y); |
71712b27 | 232 | secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ |
f11ff5be | 233 | secp256k1_fe_sqr(&t1, &a->x); |
71712b27 GM |
234 | secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ |
235 | secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ | |
f7dc1c65 | 236 | secp256k1_fe_sqr(&t3, &a->y); |
71712b27 | 237 | secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ |
910d0de4 | 238 | secp256k1_fe_sqr(&t4, &t3); |
71712b27 | 239 | secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ |
be82e92f | 240 | secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ |
f11ff5be | 241 | r->x = t3; |
71712b27 GM |
242 | secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ |
243 | secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ | |
244 | secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ | |
245 | secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ | |
246 | secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ | |
247 | secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ | |
248 | secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ | |
249 | secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ | |
250 | secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ | |
607884fc PW |
251 | } |
252 | ||
a4a43d75 | 253 | static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) { |
d61e8995 | 254 | /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */ |
f735446c | 255 | secp256k1_fe_t z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
f11ff5be PW |
256 | if (a->infinity) { |
257 | *r = *b; | |
607884fc PW |
258 | return; |
259 | } | |
f11ff5be PW |
260 | if (b->infinity) { |
261 | *r = *a; | |
607884fc PW |
262 | return; |
263 | } | |
eb0be8ee | 264 | r->infinity = 0; |
f735446c GM |
265 | secp256k1_fe_sqr(&z22, &b->z); |
266 | secp256k1_fe_sqr(&z12, &a->z); | |
267 | secp256k1_fe_mul(&u1, &a->x, &z22); | |
268 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
269 | secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); | |
270 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
271 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
272 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
49ee0dbe PD |
273 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
274 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
da55986f | 275 | secp256k1_gej_double_var(r, a); |
607884fc | 276 | } else { |
eb0be8ee | 277 | r->infinity = 1; |
607884fc PW |
278 | } |
279 | return; | |
280 | } | |
f735446c GM |
281 | secp256k1_fe_sqr(&i2, &i); |
282 | secp256k1_fe_sqr(&h2, &h); | |
283 | secp256k1_fe_mul(&h3, &h, &h2); | |
f11ff5be | 284 | secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h); |
f735446c | 285 | secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
286 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
287 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 288 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 289 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
290 | } |
291 | ||
a4a43d75 | 292 | static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { |
d61e8995 | 293 | /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ |
f735446c | 294 | secp256k1_fe_t z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
f11ff5be PW |
295 | if (a->infinity) { |
296 | r->infinity = b->infinity; | |
297 | r->x = b->x; | |
298 | r->y = b->y; | |
299 | secp256k1_fe_set_int(&r->z, 1); | |
607884fc PW |
300 | return; |
301 | } | |
f11ff5be PW |
302 | if (b->infinity) { |
303 | *r = *a; | |
607884fc PW |
304 | return; |
305 | } | |
eb0be8ee | 306 | r->infinity = 0; |
f735446c GM |
307 | secp256k1_fe_sqr(&z12, &a->z); |
308 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); | |
309 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
310 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); | |
311 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
312 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
313 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
49ee0dbe PD |
314 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
315 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
da55986f | 316 | secp256k1_gej_double_var(r, a); |
607884fc | 317 | } else { |
eb0be8ee | 318 | r->infinity = 1; |
607884fc PW |
319 | } |
320 | return; | |
321 | } | |
f735446c GM |
322 | secp256k1_fe_sqr(&i2, &i); |
323 | secp256k1_fe_sqr(&h2, &h); | |
324 | secp256k1_fe_mul(&h3, &h, &h2); | |
f11ff5be | 325 | r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); |
f735446c | 326 | secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
327 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
328 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 329 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 330 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
331 | } |
332 | ||
a4a43d75 | 333 | static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { |
d61e8995 | 334 | /* Operations: 7 mul, 5 sqr, 5 normalize, 19 mul_int/add/negate */ |
f735446c GM |
335 | secp256k1_fe_t zz, u1, u2, s1, s2, z, t, m, n, q, rr; |
336 | int infinity; | |
9338dbf7 PW |
337 | VERIFY_CHECK(!b->infinity); |
338 | VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); | |
339 | ||
71712b27 GM |
340 | /** In: |
341 | * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. | |
342 | * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. | |
343 | * we find as solution for a unified addition/doubling formula: | |
344 | * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. | |
345 | * x3 = lambda^2 - (x1 + x2) | |
346 | * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). | |
347 | * | |
348 | * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: | |
349 | * U1 = X1*Z2^2, U2 = X2*Z1^2 | |
2a54f9bc | 350 | * S1 = Y1*Z2^3, S2 = Y2*Z1^3 |
71712b27 GM |
351 | * Z = Z1*Z2 |
352 | * T = U1+U2 | |
353 | * M = S1+S2 | |
354 | * Q = T*M^2 | |
355 | * R = T^2-U1*U2 | |
356 | * X3 = 4*(R^2-Q) | |
357 | * Y3 = 4*(R*(3*Q-2*R^2)-M^4) | |
358 | * Z3 = 2*M*Z | |
359 | * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) | |
360 | */ | |
361 | ||
f735446c GM |
362 | secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ |
363 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ | |
364 | secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ | |
365 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ | |
366 | secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z2^2 (1) */ | |
367 | secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ | |
368 | z = a->z; /* z = Z = Z1*Z2 (8) */ | |
369 | t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ | |
370 | m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ | |
371 | secp256k1_fe_sqr(&n, &m); /* n = M^2 (1) */ | |
372 | secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*M^2 (1) */ | |
373 | secp256k1_fe_sqr(&n, &n); /* n = M^4 (1) */ | |
374 | secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ | |
71712b27 GM |
375 | secp256k1_fe_mul(&t, &u1, &u2); secp256k1_fe_negate(&t, &t, 1); /* t = -U1*U2 (2) */ |
376 | secp256k1_fe_add(&rr, &t); /* rr = R = T^2-U1*U2 (3) */ | |
377 | secp256k1_fe_sqr(&t, &rr); /* t = R^2 (1) */ | |
378 | secp256k1_fe_mul(&r->z, &m, &z); /* r->z = M*Z (1) */ | |
f735446c | 379 | infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); |
71712b27 GM |
380 | secp256k1_fe_mul_int(&r->z, 2 * (1 - a->infinity)); /* r->z = Z3 = 2*M*Z (2) */ |
381 | r->x = t; /* r->x = R^2 (1) */ | |
382 | secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ | |
383 | secp256k1_fe_add(&r->x, &q); /* r->x = R^2-Q (3) */ | |
9338dbf7 | 384 | secp256k1_fe_normalize(&r->x); |
71712b27 GM |
385 | secp256k1_fe_mul_int(&q, 3); /* q = -3*Q (6) */ |
386 | secp256k1_fe_mul_int(&t, 2); /* t = 2*R^2 (2) */ | |
387 | secp256k1_fe_add(&t, &q); /* t = 2*R^2-3*Q (8) */ | |
388 | secp256k1_fe_mul(&t, &t, &rr); /* t = R*(2*R^2-3*Q) (1) */ | |
389 | secp256k1_fe_add(&t, &n); /* t = R*(2*R^2-3*Q)+M^4 (2) */ | |
390 | secp256k1_fe_negate(&r->y, &t, 2); /* r->y = R*(3*Q-2*R^2)-M^4 (3) */ | |
0295f0a3 | 391 | secp256k1_fe_normalize_weak(&r->y); |
71712b27 GM |
392 | secp256k1_fe_mul_int(&r->x, 4 * (1 - a->infinity)); /* r->x = X3 = 4*(R^2-Q) */ |
393 | secp256k1_fe_mul_int(&r->y, 4 * (1 - a->infinity)); /* r->y = Y3 = 4*R*(3*Q-2*R^2)-4*M^4 (4) */ | |
9338dbf7 | 394 | |
71712b27 GM |
395 | /** In case a->infinity == 1, the above code results in r->x, r->y, and r->z all equal to 0. |
396 | * Add b->x to x, b->y to y, and 1 to z in that case. | |
397 | */ | |
9338dbf7 PW |
398 | t = b->x; secp256k1_fe_mul_int(&t, a->infinity); |
399 | secp256k1_fe_add(&r->x, &t); | |
400 | t = b->y; secp256k1_fe_mul_int(&t, a->infinity); | |
401 | secp256k1_fe_add(&r->y, &t); | |
402 | secp256k1_fe_set_int(&t, a->infinity); | |
403 | secp256k1_fe_add(&r->z, &t); | |
404 | r->infinity = infinity; | |
405 | } | |
406 | ||
0768bd55 | 407 | static void secp256k1_gej_get_hex(char *r131, const secp256k1_gej_t *a) { |
f11ff5be PW |
408 | secp256k1_gej_t c = *a; |
409 | secp256k1_ge_t t; secp256k1_ge_set_gej(&t, &c); | |
0768bd55 | 410 | secp256k1_ge_get_hex(r131, &t); |
607884fc PW |
411 | } |
412 | ||
e68d7208 PW |
413 | static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) { |
414 | secp256k1_fe_t x, y; | |
415 | VERIFY_CHECK(!a->infinity); | |
416 | x = a->x; | |
417 | secp256k1_fe_normalize(&x); | |
418 | y = a->y; | |
419 | secp256k1_fe_normalize(&y); | |
420 | secp256k1_fe_to_storage(&r->x, &x); | |
421 | secp256k1_fe_to_storage(&r->y, &y); | |
422 | } | |
423 | ||
424 | static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t *a) { | |
425 | secp256k1_fe_from_storage(&r->x, &a->x); | |
426 | secp256k1_fe_from_storage(&r->y, &a->y); | |
427 | r->infinity = 0; | |
428 | } | |
429 | ||
55422b6a PW |
430 | static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag) { |
431 | secp256k1_fe_storage_cmov(&r->x, &a->x, flag); | |
432 | secp256k1_fe_storage_cmov(&r->y, &a->y, flag); | |
433 | } | |
434 | ||
399c03f2 | 435 | #ifdef USE_ENDOMORPHISM |
a4a43d75 | 436 | static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) { |
4732d260 PW |
437 | static const secp256k1_fe_t beta = SECP256K1_FE_CONST( |
438 | 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, | |
439 | 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul | |
440 | ); | |
f11ff5be | 441 | *r = *a; |
4732d260 | 442 | secp256k1_fe_mul(&r->x, &r->x, &beta); |
607884fc | 443 | } |
399c03f2 | 444 | #endif |
607884fc | 445 | |
7a4b7691 | 446 | #endif |