]>
Commit | Line | Data |
---|---|---|
71712b27 GM |
1 | /********************************************************************** |
2 | * Copyright (c) 2013, 2014 Pieter Wuille * | |
3 | * Distributed under the MIT software license, see the accompanying * | |
4 | * file COPYING or http://www.opensource.org/licenses/mit-license.php.* | |
5 | **********************************************************************/ | |
0a433ea2 | 6 | |
7a4b7691 PW |
7 | #ifndef _SECP256K1_GROUP_IMPL_H_ |
8 | #define _SECP256K1_GROUP_IMPL_H_ | |
9 | ||
11ab5622 PW |
10 | #include "num.h" |
11 | #include "field.h" | |
12 | #include "group.h" | |
607884fc | 13 | |
6efd6e77 GM |
14 | /** Generator for secp256k1, value 'g' defined in |
15 | * "Standards for Efficient Cryptography" (SEC2) 2.7.1. | |
16 | */ | |
dd891e0e | 17 | static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( |
443cd4b8 PW |
18 | 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, |
19 | 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL, | |
20 | 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, | |
21 | 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL | |
22 | ); | |
4732d260 | 23 | |
dd891e0e | 24 | static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { |
7d893f49 | 25 | secp256k1_fe zi2; |
dd891e0e | 26 | secp256k1_fe zi3; |
4f9791ab PD |
27 | secp256k1_fe_sqr(&zi2, zi); |
28 | secp256k1_fe_mul(&zi3, &zi2, zi); | |
29 | secp256k1_fe_mul(&r->x, &a->x, &zi2); | |
30 | secp256k1_fe_mul(&r->y, &a->y, &zi3); | |
31 | r->infinity = a->infinity; | |
32 | } | |
33 | ||
dd891e0e | 34 | static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) { |
f11ff5be PW |
35 | r->infinity = 0; |
36 | r->x = *x; | |
37 | r->y = *y; | |
607884fc PW |
38 | } |
39 | ||
dd891e0e | 40 | static int secp256k1_ge_is_infinity(const secp256k1_ge *a) { |
f11ff5be | 41 | return a->infinity; |
607884fc PW |
42 | } |
43 | ||
dd891e0e | 44 | static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) { |
39bd94d8 | 45 | *r = *a; |
0295f0a3 | 46 | secp256k1_fe_normalize_weak(&r->y); |
39bd94d8 PW |
47 | secp256k1_fe_negate(&r->y, &r->y, 1); |
48 | } | |
49 | ||
dd891e0e PW |
50 | static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { |
51 | secp256k1_fe z2, z3; | |
da55986f PW |
52 | r->infinity = a->infinity; |
53 | secp256k1_fe_inv(&a->z, &a->z); | |
f735446c GM |
54 | secp256k1_fe_sqr(&z2, &a->z); |
55 | secp256k1_fe_mul(&z3, &a->z, &z2); | |
da55986f PW |
56 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
57 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
58 | secp256k1_fe_set_int(&a->z, 1); | |
59 | r->x = a->x; | |
60 | r->y = a->y; | |
61 | } | |
62 | ||
dd891e0e PW |
63 | static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { |
64 | secp256k1_fe z2, z3; | |
1136bedb PW |
65 | r->infinity = a->infinity; |
66 | if (a->infinity) { | |
67 | return; | |
68 | } | |
f11ff5be | 69 | secp256k1_fe_inv_var(&a->z, &a->z); |
f735446c GM |
70 | secp256k1_fe_sqr(&z2, &a->z); |
71 | secp256k1_fe_mul(&z3, &a->z, &z2); | |
f11ff5be PW |
72 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
73 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
74 | secp256k1_fe_set_int(&a->z, 1); | |
f11ff5be PW |
75 | r->x = a->x; |
76 | r->y = a->y; | |
607884fc PW |
77 | } |
78 | ||
541b7839 | 79 | static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) { |
dd891e0e PW |
80 | secp256k1_fe *az; |
81 | secp256k1_fe *azi; | |
f735446c | 82 | size_t i; |
65a14abb | 83 | size_t count = 0; |
dd891e0e | 84 | az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len); |
f735446c | 85 | for (i = 0; i < len; i++) { |
f16be77f PD |
86 | if (!a[i].infinity) { |
87 | az[count++] = a[i].z; | |
88 | } | |
89 | } | |
90 | ||
dd891e0e | 91 | azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count); |
7d893f49 | 92 | secp256k1_fe_inv_all_var(azi, az, count); |
f461b769 | 93 | free(az); |
f16be77f PD |
94 | |
95 | count = 0; | |
f735446c | 96 | for (i = 0; i < len; i++) { |
f16be77f PD |
97 | r[i].infinity = a[i].infinity; |
98 | if (!a[i].infinity) { | |
4f9791ab | 99 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]); |
f16be77f PD |
100 | } |
101 | } | |
f461b769 | 102 | free(azi); |
f16be77f PD |
103 | } |
104 | ||
353c1bf0 | 105 | static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) { |
4f9791ab | 106 | size_t i = len - 1; |
dd891e0e | 107 | secp256k1_fe zi; |
4f9791ab | 108 | |
912f203f GM |
109 | if (len > 0) { |
110 | /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */ | |
111 | secp256k1_fe_inv(&zi, &a[i].z); | |
4f9791ab | 112 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); |
912f203f GM |
113 | |
114 | /* Work out way backwards, using the z-ratios to scale the x/y values. */ | |
115 | while (i > 0) { | |
116 | secp256k1_fe_mul(&zi, &zi, &zr[i]); | |
117 | i--; | |
118 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); | |
119 | } | |
4f9791ab PD |
120 | } |
121 | } | |
122 | ||
dd891e0e | 123 | static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) { |
4f9791ab | 124 | size_t i = len - 1; |
dd891e0e | 125 | secp256k1_fe zs; |
4f9791ab | 126 | |
912f203f GM |
127 | if (len > 0) { |
128 | /* The z of the final point gives us the "global Z" for the table. */ | |
129 | r[i].x = a[i].x; | |
130 | r[i].y = a[i].y; | |
131 | *globalz = a[i].z; | |
132 | r[i].infinity = 0; | |
133 | zs = zr[i]; | |
134 | ||
135 | /* Work our way backwards, using the z-ratios to scale the x/y values. */ | |
136 | while (i > 0) { | |
137 | if (i != len - 1) { | |
138 | secp256k1_fe_mul(&zs, &zs, &zr[i]); | |
139 | } | |
140 | i--; | |
141 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs); | |
4f9791ab | 142 | } |
4f9791ab PD |
143 | } |
144 | } | |
145 | ||
dd891e0e | 146 | static void secp256k1_gej_set_infinity(secp256k1_gej *r) { |
f11ff5be | 147 | r->infinity = 1; |
9338dbf7 PW |
148 | secp256k1_fe_set_int(&r->x, 0); |
149 | secp256k1_fe_set_int(&r->y, 0); | |
150 | secp256k1_fe_set_int(&r->z, 0); | |
607884fc PW |
151 | } |
152 | ||
dd891e0e | 153 | static void secp256k1_gej_clear(secp256k1_gej *r) { |
2f6c8019 GM |
154 | r->infinity = 0; |
155 | secp256k1_fe_clear(&r->x); | |
156 | secp256k1_fe_clear(&r->y); | |
157 | secp256k1_fe_clear(&r->z); | |
158 | } | |
159 | ||
dd891e0e | 160 | static void secp256k1_ge_clear(secp256k1_ge *r) { |
2f6c8019 GM |
161 | r->infinity = 0; |
162 | secp256k1_fe_clear(&r->x); | |
163 | secp256k1_fe_clear(&r->y); | |
164 | } | |
165 | ||
926836ad | 166 | static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) { |
dd891e0e | 167 | secp256k1_fe x2, x3, c; |
f11ff5be | 168 | r->x = *x; |
f735446c GM |
169 | secp256k1_fe_sqr(&x2, x); |
170 | secp256k1_fe_mul(&x3, x, &x2); | |
eb0be8ee | 171 | r->infinity = 0; |
f735446c | 172 | secp256k1_fe_set_int(&c, 7); |
f11ff5be | 173 | secp256k1_fe_add(&c, &x3); |
926836ad | 174 | return secp256k1_fe_sqrt(&r->y, &c); |
64666251 PW |
175 | } |
176 | ||
177 | static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { | |
926836ad | 178 | if (!secp256k1_ge_set_xquad(r, x)) { |
09ca4f32 | 179 | return 0; |
26320197 | 180 | } |
39bd94d8 | 181 | secp256k1_fe_normalize_var(&r->y); |
26320197 | 182 | if (secp256k1_fe_is_odd(&r->y) != odd) { |
f11ff5be | 183 | secp256k1_fe_negate(&r->y, &r->y, 1); |
26320197 | 184 | } |
09ca4f32 | 185 | return 1; |
64666251 | 186 | |
910d0de4 | 187 | } |
607884fc | 188 | |
dd891e0e | 189 | static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { |
f11ff5be PW |
190 | r->infinity = a->infinity; |
191 | r->x = a->x; | |
192 | r->y = a->y; | |
193 | secp256k1_fe_set_int(&r->z, 1); | |
910d0de4 | 194 | } |
607884fc | 195 | |
dd891e0e PW |
196 | static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) { |
197 | secp256k1_fe r, r2; | |
ce7eb6fb | 198 | VERIFY_CHECK(!a->infinity); |
f735446c GM |
199 | secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); |
200 | r2 = a->x; secp256k1_fe_normalize_weak(&r2); | |
d7174edf | 201 | return secp256k1_fe_equal_var(&r, &r2); |
910d0de4 | 202 | } |
607884fc | 203 | |
dd891e0e | 204 | static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) { |
f11ff5be PW |
205 | r->infinity = a->infinity; |
206 | r->x = a->x; | |
207 | r->y = a->y; | |
208 | r->z = a->z; | |
0295f0a3 | 209 | secp256k1_fe_normalize_weak(&r->y); |
f11ff5be | 210 | secp256k1_fe_negate(&r->y, &r->y, 1); |
607884fc PW |
211 | } |
212 | ||
dd891e0e | 213 | static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { |
f11ff5be | 214 | return a->infinity; |
0a07e62f PW |
215 | } |
216 | ||
dd891e0e PW |
217 | static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) { |
218 | secp256k1_fe y2, x3, z2, z6; | |
26320197 | 219 | if (a->infinity) { |
eb0be8ee | 220 | return 0; |
26320197 | 221 | } |
71712b27 GM |
222 | /** y^2 = x^3 + 7 |
223 | * (Y/Z^3)^2 = (X/Z^2)^3 + 7 | |
224 | * Y^2 / Z^6 = X^3 / Z^6 + 7 | |
225 | * Y^2 = X^3 + 7*Z^6 | |
226 | */ | |
f735446c GM |
227 | secp256k1_fe_sqr(&y2, &a->y); |
228 | secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
229 | secp256k1_fe_sqr(&z2, &a->z); | |
230 | secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); | |
910d0de4 PW |
231 | secp256k1_fe_mul_int(&z6, 7); |
232 | secp256k1_fe_add(&x3, &z6); | |
d7174edf PW |
233 | secp256k1_fe_normalize_weak(&x3); |
234 | return secp256k1_fe_equal_var(&y2, &x3); | |
607884fc PW |
235 | } |
236 | ||
dd891e0e PW |
237 | static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { |
238 | secp256k1_fe y2, x3, c; | |
26320197 | 239 | if (a->infinity) { |
764332d0 | 240 | return 0; |
26320197 | 241 | } |
71712b27 | 242 | /* y^2 = x^3 + 7 */ |
f735446c GM |
243 | secp256k1_fe_sqr(&y2, &a->y); |
244 | secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
245 | secp256k1_fe_set_int(&c, 7); | |
764332d0 | 246 | secp256k1_fe_add(&x3, &c); |
d7174edf PW |
247 | secp256k1_fe_normalize_weak(&x3); |
248 | return secp256k1_fe_equal_var(&y2, &x3); | |
764332d0 PW |
249 | } |
250 | ||
dd891e0e | 251 | static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { |
8ec49d8a AP |
252 | /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate. |
253 | * | |
254 | * Note that there is an implementation described at | |
255 | * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l | |
256 | * which trades a multiply for a square, but in practice this is actually slower, | |
257 | * mainly because it requires more normalizations. | |
258 | */ | |
dd891e0e | 259 | secp256k1_fe t1,t2,t3,t4; |
3627437d GM |
260 | /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, |
261 | * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have | |
262 | * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. | |
7d893f49 | 263 | * |
e72e93ad AP |
264 | * Having said this, if this function receives a point on a sextic twist, e.g. by |
265 | * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6, | |
266 | * since -6 does have a cube root mod p. For this point, this function will not set | |
267 | * the infinity flag even though the point doubles to infinity, and the result | |
268 | * point will be gibberish (z = 0 but infinity = 0). | |
3627437d | 269 | */ |
f7dc1c65 PW |
270 | r->infinity = a->infinity; |
271 | if (r->infinity) { | |
2b199de8 | 272 | if (rzr != NULL) { |
4f9791ab PD |
273 | secp256k1_fe_set_int(rzr, 1); |
274 | } | |
607884fc PW |
275 | return; |
276 | } | |
277 | ||
2b199de8 | 278 | if (rzr != NULL) { |
4f9791ab PD |
279 | *rzr = a->y; |
280 | secp256k1_fe_normalize_weak(rzr); | |
281 | secp256k1_fe_mul_int(rzr, 2); | |
282 | } | |
283 | ||
be82e92f | 284 | secp256k1_fe_mul(&r->z, &a->z, &a->y); |
71712b27 | 285 | secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ |
f11ff5be | 286 | secp256k1_fe_sqr(&t1, &a->x); |
71712b27 GM |
287 | secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ |
288 | secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ | |
f7dc1c65 | 289 | secp256k1_fe_sqr(&t3, &a->y); |
71712b27 | 290 | secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ |
910d0de4 | 291 | secp256k1_fe_sqr(&t4, &t3); |
71712b27 | 292 | secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ |
be82e92f | 293 | secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ |
f11ff5be | 294 | r->x = t3; |
71712b27 GM |
295 | secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ |
296 | secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ | |
297 | secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ | |
298 | secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ | |
299 | secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ | |
300 | secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ | |
301 | secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ | |
302 | secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ | |
303 | secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ | |
607884fc PW |
304 | } |
305 | ||
dd891e0e | 306 | static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { |
44015000 AP |
307 | VERIFY_CHECK(!secp256k1_gej_is_infinity(a)); |
308 | secp256k1_gej_double_var(r, a, rzr); | |
309 | } | |
310 | ||
dd891e0e | 311 | static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { |
d61e8995 | 312 | /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */ |
dd891e0e | 313 | secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
4f9791ab | 314 | |
f11ff5be | 315 | if (a->infinity) { |
4f9791ab | 316 | VERIFY_CHECK(rzr == NULL); |
f11ff5be | 317 | *r = *b; |
607884fc PW |
318 | return; |
319 | } | |
4f9791ab | 320 | |
f11ff5be | 321 | if (b->infinity) { |
2b199de8 | 322 | if (rzr != NULL) { |
4f9791ab PD |
323 | secp256k1_fe_set_int(rzr, 1); |
324 | } | |
f11ff5be | 325 | *r = *a; |
607884fc PW |
326 | return; |
327 | } | |
4f9791ab | 328 | |
eb0be8ee | 329 | r->infinity = 0; |
f735446c GM |
330 | secp256k1_fe_sqr(&z22, &b->z); |
331 | secp256k1_fe_sqr(&z12, &a->z); | |
332 | secp256k1_fe_mul(&u1, &a->x, &z22); | |
333 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
334 | secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); | |
335 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
336 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
337 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
49ee0dbe PD |
338 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
339 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
4f9791ab | 340 | secp256k1_gej_double_var(r, a, rzr); |
607884fc | 341 | } else { |
2b199de8 | 342 | if (rzr != NULL) { |
4f9791ab PD |
343 | secp256k1_fe_set_int(rzr, 0); |
344 | } | |
eb0be8ee | 345 | r->infinity = 1; |
607884fc PW |
346 | } |
347 | return; | |
348 | } | |
f735446c GM |
349 | secp256k1_fe_sqr(&i2, &i); |
350 | secp256k1_fe_sqr(&h2, &h); | |
351 | secp256k1_fe_mul(&h3, &h, &h2); | |
4f9791ab | 352 | secp256k1_fe_mul(&h, &h, &b->z); |
2b199de8 | 353 | if (rzr != NULL) { |
4f9791ab PD |
354 | *rzr = h; |
355 | } | |
356 | secp256k1_fe_mul(&r->z, &a->z, &h); | |
f735446c | 357 | secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
358 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
359 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 360 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 361 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
362 | } |
363 | ||
dd891e0e | 364 | static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) { |
d61e8995 | 365 | /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ |
dd891e0e | 366 | secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
f11ff5be | 367 | if (a->infinity) { |
2d5a186c PD |
368 | VERIFY_CHECK(rzr == NULL); |
369 | secp256k1_gej_set_ge(r, b); | |
607884fc PW |
370 | return; |
371 | } | |
f11ff5be | 372 | if (b->infinity) { |
2b199de8 | 373 | if (rzr != NULL) { |
2d5a186c PD |
374 | secp256k1_fe_set_int(rzr, 1); |
375 | } | |
f11ff5be | 376 | *r = *a; |
607884fc PW |
377 | return; |
378 | } | |
eb0be8ee | 379 | r->infinity = 0; |
4f9791ab | 380 | |
f735446c GM |
381 | secp256k1_fe_sqr(&z12, &a->z); |
382 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); | |
383 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
384 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); | |
385 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
386 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
387 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
49ee0dbe PD |
388 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
389 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
2d5a186c | 390 | secp256k1_gej_double_var(r, a, rzr); |
4f9791ab | 391 | } else { |
2b199de8 | 392 | if (rzr != NULL) { |
2d5a186c PD |
393 | secp256k1_fe_set_int(rzr, 0); |
394 | } | |
4f9791ab PD |
395 | r->infinity = 1; |
396 | } | |
397 | return; | |
398 | } | |
399 | secp256k1_fe_sqr(&i2, &i); | |
400 | secp256k1_fe_sqr(&h2, &h); | |
401 | secp256k1_fe_mul(&h3, &h, &h2); | |
2b199de8 | 402 | if (rzr != NULL) { |
2d5a186c PD |
403 | *rzr = h; |
404 | } | |
405 | secp256k1_fe_mul(&r->z, &a->z, &h); | |
4f9791ab PD |
406 | secp256k1_fe_mul(&t, &u1, &h2); |
407 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); | |
408 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
409 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); | |
410 | secp256k1_fe_add(&r->y, &h3); | |
411 | } | |
412 | ||
dd891e0e | 413 | static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) { |
4f9791ab | 414 | /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ |
dd891e0e | 415 | secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; |
4f9791ab PD |
416 | |
417 | if (b->infinity) { | |
418 | *r = *a; | |
419 | return; | |
420 | } | |
421 | if (a->infinity) { | |
dd891e0e | 422 | secp256k1_fe bzinv2, bzinv3; |
4f9791ab PD |
423 | r->infinity = b->infinity; |
424 | secp256k1_fe_sqr(&bzinv2, bzinv); | |
425 | secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); | |
426 | secp256k1_fe_mul(&r->x, &b->x, &bzinv2); | |
427 | secp256k1_fe_mul(&r->y, &b->y, &bzinv3); | |
428 | secp256k1_fe_set_int(&r->z, 1); | |
429 | return; | |
430 | } | |
431 | r->infinity = 0; | |
432 | ||
433 | /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to | |
434 | * secp256k1's isomorphism we can multiply the Z coordinates on both sides | |
435 | * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). | |
436 | * This means that (rx,ry,rz) can be calculated as | |
437 | * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. | |
438 | * The variable az below holds the modified Z coordinate for a, which is used | |
439 | * for the computation of rx and ry, but not for rz. | |
440 | */ | |
441 | secp256k1_fe_mul(&az, &a->z, bzinv); | |
442 | ||
443 | secp256k1_fe_sqr(&z12, &az); | |
444 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); | |
445 | secp256k1_fe_mul(&u2, &b->x, &z12); | |
446 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); | |
447 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); | |
448 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
449 | secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
450 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { | |
451 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
452 | secp256k1_gej_double_var(r, a, NULL); | |
607884fc | 453 | } else { |
eb0be8ee | 454 | r->infinity = 1; |
607884fc PW |
455 | } |
456 | return; | |
457 | } | |
f735446c GM |
458 | secp256k1_fe_sqr(&i2, &i); |
459 | secp256k1_fe_sqr(&h2, &h); | |
460 | secp256k1_fe_mul(&h3, &h, &h2); | |
f11ff5be | 461 | r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); |
f735446c | 462 | secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
463 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
464 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 465 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 466 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
467 | } |
468 | ||
4f9791ab | 469 | |
dd891e0e | 470 | static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { |
5a43124c | 471 | /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */ |
dd891e0e PW |
472 | static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); |
473 | secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; | |
474 | secp256k1_fe m_alt, rr_alt; | |
5de4c5df | 475 | int infinity, degenerate; |
9338dbf7 PW |
476 | VERIFY_CHECK(!b->infinity); |
477 | VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); | |
478 | ||
71712b27 GM |
479 | /** In: |
480 | * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. | |
481 | * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. | |
482 | * we find as solution for a unified addition/doubling formula: | |
483 | * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. | |
484 | * x3 = lambda^2 - (x1 + x2) | |
485 | * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). | |
486 | * | |
487 | * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: | |
488 | * U1 = X1*Z2^2, U2 = X2*Z1^2 | |
2a54f9bc | 489 | * S1 = Y1*Z2^3, S2 = Y2*Z1^3 |
71712b27 GM |
490 | * Z = Z1*Z2 |
491 | * T = U1+U2 | |
492 | * M = S1+S2 | |
493 | * Q = T*M^2 | |
494 | * R = T^2-U1*U2 | |
495 | * X3 = 4*(R^2-Q) | |
496 | * Y3 = 4*(R*(3*Q-2*R^2)-M^4) | |
497 | * Z3 = 2*M*Z | |
498 | * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) | |
5de4c5df AP |
499 | * |
500 | * This formula has the benefit of being the same for both addition | |
501 | * of distinct points and doubling. However, it breaks down in the | |
502 | * case that either point is infinity, or that y1 = -y2. We handle | |
503 | * these cases in the following ways: | |
504 | * | |
505 | * - If b is infinity we simply bail by means of a VERIFY_CHECK. | |
506 | * | |
507 | * - If a is infinity, we detect this, and at the end of the | |
508 | * computation replace the result (which will be meaningless, | |
509 | * but we compute to be constant-time) with b.x : b.y : 1. | |
510 | * | |
511 | * - If a = -b, we have y1 = -y2, which is a degenerate case. | |
512 | * But here the answer is infinity, so we simply set the | |
513 | * infinity flag of the result, overriding the computed values | |
514 | * without even needing to cmov. | |
515 | * | |
516 | * - If y1 = -y2 but x1 != x2, which does occur thanks to certain | |
517 | * properties of our curve (specifically, 1 has nontrivial cube | |
518 | * roots in our field, and the curve equation has no x coefficient) | |
519 | * then the answer is not infinity but also not given by the above | |
520 | * equation. In this case, we cmov in place an alternate expression | |
521 | * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these | |
522 | * expressions for lambda are defined, they are equal, and can be | |
523 | * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) | |
524 | * then substitution of x^3 + 7 for y^2 (using the curve equation). | |
525 | * For all pairs of nonzero points (a, b) at least one is defined, | |
526 | * so this covers everything. | |
71712b27 GM |
527 | */ |
528 | ||
f735446c GM |
529 | secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ |
530 | u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ | |
531 | secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ | |
532 | s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ | |
81e45ff9 | 533 | secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ |
f735446c | 534 | secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ |
f735446c GM |
535 | t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ |
536 | m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ | |
bcf2fcfd | 537 | secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ |
a5d796e0 | 538 | secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */ |
7d054cd0 PD |
539 | secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */ |
540 | secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */ | |
5de4c5df AP |
541 | /** If lambda = R/M = 0/0 we have a problem (except in the "trivial" |
542 | * case that Z = z1z2 = 0, and this is special-cased later on). */ | |
543 | degenerate = secp256k1_fe_normalizes_to_zero(&m) & | |
544 | secp256k1_fe_normalizes_to_zero(&rr); | |
545 | /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. | |
546 | * This means either x1 == beta*x2 or beta*x1 == x2, where beta is | |
547 | * a nontrivial cube root of one. In either case, an alternate | |
548 | * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), | |
549 | * so we set R/M equal to this. */ | |
5a43124c PD |
550 | rr_alt = s1; |
551 | secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */ | |
a5d796e0 | 552 | secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */ |
5de4c5df AP |
553 | |
554 | secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); | |
555 | secp256k1_fe_cmov(&m_alt, &m, !degenerate); | |
556 | /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0. | |
557 | * From here on out Ralt and Malt represent the numerator | |
558 | * and denominator of lambda; R and M represent the explicit | |
559 | * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ | |
560 | secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ | |
561 | secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */ | |
562 | /* These two lines use the observation that either M == Malt or M == 0, | |
563 | * so M^3 * Malt is either Malt^4 (which is computed by squaring), or | |
564 | * zero (which is "computed" by cmov). So the cost is one squaring | |
565 | * versus two multiplications. */ | |
55e7fc32 PD |
566 | secp256k1_fe_sqr(&n, &n); |
567 | secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ | |
5de4c5df | 568 | secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ |
b28d02a5 | 569 | secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */ |
f735446c | 570 | infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); |
5de4c5df | 571 | secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */ |
71712b27 | 572 | secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ |
55e7fc32 PD |
573 | secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */ |
574 | secp256k1_fe_normalize_weak(&t); | |
575 | r->x = t; /* r->x = Ralt^2-Q (1) */ | |
bcf2fcfd | 576 | secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */ |
55e7fc32 | 577 | secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */ |
5de4c5df | 578 | secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */ |
55e7fc32 PD |
579 | secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */ |
580 | secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */ | |
0295f0a3 | 581 | secp256k1_fe_normalize_weak(&r->y); |
5de4c5df AP |
582 | secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */ |
583 | secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */ | |
9338dbf7 | 584 | |
a1d5ae15 | 585 | /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */ |
bb0ea50d GM |
586 | secp256k1_fe_cmov(&r->x, &b->x, a->infinity); |
587 | secp256k1_fe_cmov(&r->y, &b->y, a->infinity); | |
588 | secp256k1_fe_cmov(&r->z, &fe_1, a->infinity); | |
9338dbf7 PW |
589 | r->infinity = infinity; |
590 | } | |
591 | ||
dd891e0e | 592 | static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) { |
d2275795 | 593 | /* Operations: 4 mul, 1 sqr */ |
dd891e0e | 594 | secp256k1_fe zz; |
d2275795 GM |
595 | VERIFY_CHECK(!secp256k1_fe_is_zero(s)); |
596 | secp256k1_fe_sqr(&zz, s); | |
597 | secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ | |
598 | secp256k1_fe_mul(&r->y, &r->y, &zz); | |
599 | secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ | |
600 | secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ | |
601 | } | |
602 | ||
dd891e0e PW |
603 | static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) { |
604 | secp256k1_fe x, y; | |
e68d7208 PW |
605 | VERIFY_CHECK(!a->infinity); |
606 | x = a->x; | |
607 | secp256k1_fe_normalize(&x); | |
608 | y = a->y; | |
609 | secp256k1_fe_normalize(&y); | |
610 | secp256k1_fe_to_storage(&r->x, &x); | |
611 | secp256k1_fe_to_storage(&r->y, &y); | |
612 | } | |
613 | ||
dd891e0e | 614 | static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) { |
e68d7208 PW |
615 | secp256k1_fe_from_storage(&r->x, &a->x); |
616 | secp256k1_fe_from_storage(&r->y, &a->y); | |
617 | r->infinity = 0; | |
618 | } | |
619 | ||
dd891e0e | 620 | static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { |
55422b6a PW |
621 | secp256k1_fe_storage_cmov(&r->x, &a->x, flag); |
622 | secp256k1_fe_storage_cmov(&r->y, &a->y, flag); | |
623 | } | |
624 | ||
399c03f2 | 625 | #ifdef USE_ENDOMORPHISM |
dd891e0e PW |
626 | static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { |
627 | static const secp256k1_fe beta = SECP256K1_FE_CONST( | |
4732d260 PW |
628 | 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, |
629 | 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul | |
630 | ); | |
f11ff5be | 631 | *r = *a; |
4732d260 | 632 | secp256k1_fe_mul(&r->x, &r->x, &beta); |
607884fc | 633 | } |
399c03f2 | 634 | #endif |
607884fc | 635 | |
e6e9805f PW |
636 | static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) { |
637 | secp256k1_fe yz; | |
638 | ||
639 | if (a->infinity) { | |
640 | return 0; | |
641 | } | |
642 | ||
643 | /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as | |
644 | * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z | |
645 | is */ | |
646 | secp256k1_fe_mul(&yz, &a->y, &a->z); | |
647 | return secp256k1_fe_is_quad_var(&yz); | |
648 | } | |
649 | ||
7a4b7691 | 650 | #endif |