]> Git Repo - qemu.git/blame - target-arm/helper.c
target-arm: Drop cpu_reset_model_id()
[qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31 1#include "cpu.h"
9ee6e8bb 2#include "gdbstub.h"
7b59220e 3#include "helper.h"
7bbcb0af 4#include "host-utils.h"
4f78c9ad 5#if !defined(CONFIG_USER_ONLY)
983fe826 6#include "hw/loader.h"
4f78c9ad 7#endif
0b03bdfc
PM
8#include "sysemu.h"
9
dec9c2d4
AF
10/* TODO Move contents into arm_cpu_reset() in cpu.c,
11 * once cpu_reset_model_id() is eliminated,
12 * and then forward to cpu_reset() here.
13 */
1bba0dc9 14void cpu_state_reset(CPUARMState *env)
40f137e1 15{
5fe91019 16 uint32_t tmp = 0;
777dc784 17 ARMCPU *cpu = arm_env_get_cpu(env);
eca1bdf4
AL
18
19 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
20 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
21 log_cpu_state(env, 0);
22 }
23
5fe91019 24 tmp = env->cp15.c15_config_base_address;
f3d6b95e 25 memset(env, 0, offsetof(CPUARMState, breakpoints));
5fe91019 26 env->cp15.c15_config_base_address = tmp;
777dc784 27 env->cp15.c0_cpuid = cpu->midr;
325b3cef 28 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
bd35c355
PM
29 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
30 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
64e1671f 31 env->cp15.c0_cachetype = cpu->ctr;
0ca7e01c 32 env->cp15.c1_sys = cpu->reset_sctlr;
2e4d7e3e
PM
33 env->cp15.c0_c1[0] = cpu->id_pfr0;
34 env->cp15.c0_c1[1] = cpu->id_pfr1;
35 env->cp15.c0_c1[2] = cpu->id_dfr0;
36 env->cp15.c0_c1[3] = cpu->id_afr0;
37 env->cp15.c0_c1[4] = cpu->id_mmfr0;
38 env->cp15.c0_c1[5] = cpu->id_mmfr1;
39 env->cp15.c0_c1[6] = cpu->id_mmfr2;
40 env->cp15.c0_c1[7] = cpu->id_mmfr3;
41 env->cp15.c0_c2[0] = cpu->id_isar0;
42 env->cp15.c0_c2[1] = cpu->id_isar1;
43 env->cp15.c0_c2[2] = cpu->id_isar2;
44 env->cp15.c0_c2[3] = cpu->id_isar3;
45 env->cp15.c0_c2[4] = cpu->id_isar4;
46 env->cp15.c0_c2[5] = cpu->id_isar5;
8092d2f0 47 env->cp15.c15_i_min = 0xff0;
85df3786
PM
48 env->cp15.c0_clid = cpu->clidr;
49 memcpy(env->cp15.c0_ccsid, cpu->ccsidr, ARRAY_SIZE(cpu->ccsidr));
325b3cef 50
0cc892fd
PM
51 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
52 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
53 }
54
40f137e1
PB
55#if defined (CONFIG_USER_ONLY)
56 env->uncached_cpsr = ARM_CPU_MODE_USR;
3a807dec 57 /* For user mode we must enable access to coprocessors */
40f137e1 58 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
3a807dec
PM
59 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
60 env->cp15.c15_cpar = 3;
61 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
62 env->cp15.c15_cpar = 1;
63 }
40f137e1
PB
64#else
65 /* SVC mode with interrupts disabled. */
66 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
9ee6e8bb 67 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
983fe826
PB
68 clear at reset. Initial SP and PC are loaded from ROM. */
69 if (IS_M(env)) {
70 uint32_t pc;
71 uint8_t *rom;
9ee6e8bb 72 env->uncached_cpsr &= ~CPSR_I;
983fe826
PB
73 rom = rom_ptr(0);
74 if (rom) {
75 /* We should really use ldl_phys here, in case the guest
76 modified flash and reset itself. However images
297d1b4e 77 loaded via -kernel have not been copied yet, so load the
983fe826
PB
78 values directly from there. */
79 env->regs[13] = ldl_p(rom);
80 pc = ldl_p(rom + 4);
81 env->thumb = pc & 1;
82 env->regs[15] = pc & ~1;
83 }
84 }
40f137e1 85 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
b2fa1797 86 env->cp15.c2_base_mask = 0xffffc000u;
74594c9d
PM
87 /* v7 performance monitor control register: same implementor
88 * field as main ID register, and we implement no event counters.
89 */
caa1d077 90 env->cp15.c9_pmcr = (cpu->midr & 0xff000000);
40f137e1 91#endif
3a492f3a
PM
92 set_flush_to_zero(1, &env->vfp.standard_fp_status);
93 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
94 set_default_nan_mode(1, &env->vfp.standard_fp_status);
9df38c47
PM
95 set_float_detect_tininess(float_tininess_before_rounding,
96 &env->vfp.fp_status);
97 set_float_detect_tininess(float_tininess_before_rounding,
98 &env->vfp.standard_fp_status);
f3d6b95e 99 tlb_flush(env, 1);
0ecb72a5 100 /* Reset is a state change for some CPUARMState fields which we
a84fac14
PM
101 * bake assumptions about into translated code, so we need to
102 * tb_flush().
103 */
104 tb_flush(env);
40f137e1
PB
105}
106
0ecb72a5 107static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
108{
109 int nregs;
110
111 /* VFP data registers are always little-endian. */
112 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
113 if (reg < nregs) {
114 stfq_le_p(buf, env->vfp.regs[reg]);
115 return 8;
116 }
117 if (arm_feature(env, ARM_FEATURE_NEON)) {
118 /* Aliases for Q regs. */
119 nregs += 16;
120 if (reg < nregs) {
121 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
122 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
123 return 16;
124 }
125 }
126 switch (reg - nregs) {
127 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
128 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
129 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
130 }
131 return 0;
132}
133
0ecb72a5 134static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
135{
136 int nregs;
137
138 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
139 if (reg < nregs) {
140 env->vfp.regs[reg] = ldfq_le_p(buf);
141 return 8;
142 }
143 if (arm_feature(env, ARM_FEATURE_NEON)) {
144 nregs += 16;
145 if (reg < nregs) {
146 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
147 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
148 return 16;
149 }
150 }
151 switch (reg - nregs) {
152 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
153 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 154 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
155 }
156 return 0;
157}
158
aaed909a 159CPUARMState *cpu_arm_init(const char *cpu_model)
40f137e1 160{
dec9c2d4 161 ARMCPU *cpu;
40f137e1 162 CPUARMState *env;
b26eefb6 163 static int inited = 0;
40f137e1 164
777dc784 165 if (!object_class_by_name(cpu_model)) {
aaed909a 166 return NULL;
777dc784
PM
167 }
168 cpu = ARM_CPU(object_new(cpu_model));
dec9c2d4 169 env = &cpu->env;
777dc784 170 env->cpu_model_str = cpu_model;
581be094 171 arm_cpu_realize(cpu);
777dc784 172
f4fc247b 173 if (tcg_enabled() && !inited) {
b26eefb6
PB
174 inited = 1;
175 arm_translate_init();
176 }
177
1bba0dc9 178 cpu_state_reset(env);
56aebc89
PB
179 if (arm_feature(env, ARM_FEATURE_NEON)) {
180 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
181 51, "arm-neon.xml", 0);
182 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
183 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
184 35, "arm-vfp3.xml", 0);
185 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
186 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
187 19, "arm-vfp.xml", 0);
188 }
0bf46a40 189 qemu_init_vcpu(env);
40f137e1
PB
190 return env;
191}
192
777dc784
PM
193typedef struct ARMCPUListState {
194 fprintf_function cpu_fprintf;
195 FILE *file;
196} ARMCPUListState;
3371d272 197
777dc784
PM
198/* Sort alphabetically by type name, except for "any". */
199static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 200{
777dc784
PM
201 ObjectClass *class_a = (ObjectClass *)a;
202 ObjectClass *class_b = (ObjectClass *)b;
203 const char *name_a, *name_b;
5adb4839 204
777dc784
PM
205 name_a = object_class_get_name(class_a);
206 name_b = object_class_get_name(class_b);
207 if (strcmp(name_a, "any") == 0) {
208 return 1;
209 } else if (strcmp(name_b, "any") == 0) {
210 return -1;
211 } else {
212 return strcmp(name_a, name_b);
5adb4839
PB
213 }
214}
215
777dc784 216static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 217{
777dc784
PM
218 ObjectClass *oc = data;
219 ARMCPUListState *s = user_data;
3371d272 220
777dc784
PM
221 (*s->cpu_fprintf)(s->file, " %s\n",
222 object_class_get_name(oc));
223}
224
225void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
226{
227 ARMCPUListState s = {
228 .file = f,
229 .cpu_fprintf = cpu_fprintf,
230 };
231 GSList *list;
232
233 list = object_class_get_list(TYPE_ARM_CPU, false);
234 list = g_slist_sort(list, arm_cpu_list_compare);
235 (*cpu_fprintf)(f, "Available CPUs:\n");
236 g_slist_foreach(list, arm_cpu_list_entry, &s);
237 g_slist_free(list);
40f137e1
PB
238}
239
0ecb72a5 240static int bad_mode_switch(CPUARMState *env, int mode)
37064a8b
PM
241{
242 /* Return true if it is not valid for us to switch to
243 * this CPU mode (ie all the UNPREDICTABLE cases in
244 * the ARM ARM CPSRWriteByInstr pseudocode).
245 */
246 switch (mode) {
247 case ARM_CPU_MODE_USR:
248 case ARM_CPU_MODE_SYS:
249 case ARM_CPU_MODE_SVC:
250 case ARM_CPU_MODE_ABT:
251 case ARM_CPU_MODE_UND:
252 case ARM_CPU_MODE_IRQ:
253 case ARM_CPU_MODE_FIQ:
254 return 0;
255 default:
256 return 1;
257 }
258}
259
2f4a40e5
AZ
260uint32_t cpsr_read(CPUARMState *env)
261{
262 int ZF;
6fbe23d5
PB
263 ZF = (env->ZF == 0);
264 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
265 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
266 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
267 | ((env->condexec_bits & 0xfc) << 8)
268 | (env->GE << 16);
269}
270
271void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
272{
2f4a40e5 273 if (mask & CPSR_NZCV) {
6fbe23d5
PB
274 env->ZF = (~val) & CPSR_Z;
275 env->NF = val;
2f4a40e5
AZ
276 env->CF = (val >> 29) & 1;
277 env->VF = (val << 3) & 0x80000000;
278 }
279 if (mask & CPSR_Q)
280 env->QF = ((val & CPSR_Q) != 0);
281 if (mask & CPSR_T)
282 env->thumb = ((val & CPSR_T) != 0);
283 if (mask & CPSR_IT_0_1) {
284 env->condexec_bits &= ~3;
285 env->condexec_bits |= (val >> 25) & 3;
286 }
287 if (mask & CPSR_IT_2_7) {
288 env->condexec_bits &= 3;
289 env->condexec_bits |= (val >> 8) & 0xfc;
290 }
291 if (mask & CPSR_GE) {
292 env->GE = (val >> 16) & 0xf;
293 }
294
295 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
37064a8b
PM
296 if (bad_mode_switch(env, val & CPSR_M)) {
297 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
298 * We choose to ignore the attempt and leave the CPSR M field
299 * untouched.
300 */
301 mask &= ~CPSR_M;
302 } else {
303 switch_mode(env, val & CPSR_M);
304 }
2f4a40e5
AZ
305 }
306 mask &= ~CACHED_CPSR_BITS;
307 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
308}
309
b26eefb6
PB
310/* Sign/zero extend */
311uint32_t HELPER(sxtb16)(uint32_t x)
312{
313 uint32_t res;
314 res = (uint16_t)(int8_t)x;
315 res |= (uint32_t)(int8_t)(x >> 16) << 16;
316 return res;
317}
318
319uint32_t HELPER(uxtb16)(uint32_t x)
320{
321 uint32_t res;
322 res = (uint16_t)(uint8_t)x;
323 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
324 return res;
325}
326
f51bbbfe
PB
327uint32_t HELPER(clz)(uint32_t x)
328{
7bbcb0af 329 return clz32(x);
f51bbbfe
PB
330}
331
3670669c
PB
332int32_t HELPER(sdiv)(int32_t num, int32_t den)
333{
334 if (den == 0)
335 return 0;
686eeb93
AJ
336 if (num == INT_MIN && den == -1)
337 return INT_MIN;
3670669c
PB
338 return num / den;
339}
340
341uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
342{
343 if (den == 0)
344 return 0;
345 return num / den;
346}
347
348uint32_t HELPER(rbit)(uint32_t x)
349{
350 x = ((x & 0xff000000) >> 24)
351 | ((x & 0x00ff0000) >> 8)
352 | ((x & 0x0000ff00) << 8)
353 | ((x & 0x000000ff) << 24);
354 x = ((x & 0xf0f0f0f0) >> 4)
355 | ((x & 0x0f0f0f0f) << 4);
356 x = ((x & 0x88888888) >> 3)
357 | ((x & 0x44444444) >> 1)
358 | ((x & 0x22222222) << 1)
359 | ((x & 0x11111111) << 3);
360 return x;
361}
362
ad69471c
PB
363uint32_t HELPER(abs)(uint32_t x)
364{
365 return ((int32_t)x < 0) ? -x : x;
366}
367
5fafdf24 368#if defined(CONFIG_USER_ONLY)
b5ff1b31 369
0ecb72a5 370void do_interrupt (CPUARMState *env)
b5ff1b31
FB
371{
372 env->exception_index = -1;
373}
374
0ecb72a5 375int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 376 int mmu_idx)
b5ff1b31
FB
377{
378 if (rw == 2) {
379 env->exception_index = EXCP_PREFETCH_ABORT;
380 env->cp15.c6_insn = address;
381 } else {
382 env->exception_index = EXCP_DATA_ABORT;
383 env->cp15.c6_data = address;
384 }
385 return 1;
386}
387
b5ff1b31 388/* These should probably raise undefined insn exceptions. */
0ecb72a5 389void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
c1713132
AZ
390{
391 int op1 = (insn >> 8) & 0xf;
392 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
393 return;
394}
395
0ecb72a5 396uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
c1713132
AZ
397{
398 int op1 = (insn >> 8) & 0xf;
399 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
400 return 0;
401}
402
0ecb72a5 403void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
b5ff1b31
FB
404{
405 cpu_abort(env, "cp15 insn %08x\n", insn);
406}
407
0ecb72a5 408uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
b5ff1b31
FB
409{
410 cpu_abort(env, "cp15 insn %08x\n", insn);
b5ff1b31
FB
411}
412
9ee6e8bb 413/* These should probably raise undefined insn exceptions. */
0ecb72a5 414void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
415{
416 cpu_abort(env, "v7m_mrs %d\n", reg);
417}
418
0ecb72a5 419uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
420{
421 cpu_abort(env, "v7m_mrs %d\n", reg);
422 return 0;
423}
424
0ecb72a5 425void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
426{
427 if (mode != ARM_CPU_MODE_USR)
428 cpu_abort(env, "Tried to switch out of user mode\n");
429}
430
0ecb72a5 431void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
432{
433 cpu_abort(env, "banked r13 write\n");
434}
435
0ecb72a5 436uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb
PB
437{
438 cpu_abort(env, "banked r13 read\n");
439 return 0;
440}
441
b5ff1b31
FB
442#else
443
444/* Map CPU modes onto saved register banks. */
0ecb72a5 445static inline int bank_number(CPUARMState *env, int mode)
b5ff1b31
FB
446{
447 switch (mode) {
448 case ARM_CPU_MODE_USR:
449 case ARM_CPU_MODE_SYS:
450 return 0;
451 case ARM_CPU_MODE_SVC:
452 return 1;
453 case ARM_CPU_MODE_ABT:
454 return 2;
455 case ARM_CPU_MODE_UND:
456 return 3;
457 case ARM_CPU_MODE_IRQ:
458 return 4;
459 case ARM_CPU_MODE_FIQ:
460 return 5;
461 }
1b9e01c1 462 cpu_abort(env, "Bad mode %x\n", mode);
b5ff1b31
FB
463 return -1;
464}
465
0ecb72a5 466void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
467{
468 int old_mode;
469 int i;
470
471 old_mode = env->uncached_cpsr & CPSR_M;
472 if (mode == old_mode)
473 return;
474
475 if (old_mode == ARM_CPU_MODE_FIQ) {
476 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 477 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
478 } else if (mode == ARM_CPU_MODE_FIQ) {
479 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 480 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
481 }
482
1b9e01c1 483 i = bank_number(env, old_mode);
b5ff1b31
FB
484 env->banked_r13[i] = env->regs[13];
485 env->banked_r14[i] = env->regs[14];
486 env->banked_spsr[i] = env->spsr;
487
1b9e01c1 488 i = bank_number(env, mode);
b5ff1b31
FB
489 env->regs[13] = env->banked_r13[i];
490 env->regs[14] = env->banked_r14[i];
491 env->spsr = env->banked_spsr[i];
492}
493
9ee6e8bb
PB
494static void v7m_push(CPUARMState *env, uint32_t val)
495{
496 env->regs[13] -= 4;
497 stl_phys(env->regs[13], val);
498}
499
500static uint32_t v7m_pop(CPUARMState *env)
501{
502 uint32_t val;
503 val = ldl_phys(env->regs[13]);
504 env->regs[13] += 4;
505 return val;
506}
507
508/* Switch to V7M main or process stack pointer. */
509static void switch_v7m_sp(CPUARMState *env, int process)
510{
511 uint32_t tmp;
512 if (env->v7m.current_sp != process) {
513 tmp = env->v7m.other_sp;
514 env->v7m.other_sp = env->regs[13];
515 env->regs[13] = tmp;
516 env->v7m.current_sp = process;
517 }
518}
519
520static void do_v7m_exception_exit(CPUARMState *env)
521{
522 uint32_t type;
523 uint32_t xpsr;
524
525 type = env->regs[15];
526 if (env->v7m.exception != 0)
983fe826 527 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
528
529 /* Switch to the target stack. */
530 switch_v7m_sp(env, (type & 4) != 0);
531 /* Pop registers. */
532 env->regs[0] = v7m_pop(env);
533 env->regs[1] = v7m_pop(env);
534 env->regs[2] = v7m_pop(env);
535 env->regs[3] = v7m_pop(env);
536 env->regs[12] = v7m_pop(env);
537 env->regs[14] = v7m_pop(env);
538 env->regs[15] = v7m_pop(env);
539 xpsr = v7m_pop(env);
540 xpsr_write(env, xpsr, 0xfffffdff);
541 /* Undo stack alignment. */
542 if (xpsr & 0x200)
543 env->regs[13] |= 4;
544 /* ??? The exception return type specifies Thread/Handler mode. However
545 this is also implied by the xPSR value. Not sure what to do
546 if there is a mismatch. */
547 /* ??? Likewise for mismatches between the CONTROL register and the stack
548 pointer. */
549}
550
2b3ea315 551static void do_interrupt_v7m(CPUARMState *env)
9ee6e8bb
PB
552{
553 uint32_t xpsr = xpsr_read(env);
554 uint32_t lr;
555 uint32_t addr;
556
557 lr = 0xfffffff1;
558 if (env->v7m.current_sp)
559 lr |= 4;
560 if (env->v7m.exception == 0)
561 lr |= 8;
562
563 /* For exceptions we just mark as pending on the NVIC, and let that
564 handle it. */
565 /* TODO: Need to escalate if the current priority is higher than the
566 one we're raising. */
567 switch (env->exception_index) {
568 case EXCP_UDEF:
983fe826 569 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
570 return;
571 case EXCP_SWI:
572 env->regs[15] += 2;
983fe826 573 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
574 return;
575 case EXCP_PREFETCH_ABORT:
576 case EXCP_DATA_ABORT:
983fe826 577 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
578 return;
579 case EXCP_BKPT:
2ad207d4
PB
580 if (semihosting_enabled) {
581 int nr;
d8fd2954 582 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
2ad207d4
PB
583 if (nr == 0xab) {
584 env->regs[15] += 2;
585 env->regs[0] = do_arm_semihosting(env);
586 return;
587 }
588 }
983fe826 589 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
590 return;
591 case EXCP_IRQ:
983fe826 592 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
593 break;
594 case EXCP_EXCEPTION_EXIT:
595 do_v7m_exception_exit(env);
596 return;
597 default:
598 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
599 return; /* Never happens. Keep compiler happy. */
600 }
601
602 /* Align stack pointer. */
603 /* ??? Should only do this if Configuration Control Register
604 STACKALIGN bit is set. */
605 if (env->regs[13] & 4) {
ab19b0ec 606 env->regs[13] -= 4;
9ee6e8bb
PB
607 xpsr |= 0x200;
608 }
6c95676b 609 /* Switch to the handler mode. */
9ee6e8bb
PB
610 v7m_push(env, xpsr);
611 v7m_push(env, env->regs[15]);
612 v7m_push(env, env->regs[14]);
613 v7m_push(env, env->regs[12]);
614 v7m_push(env, env->regs[3]);
615 v7m_push(env, env->regs[2]);
616 v7m_push(env, env->regs[1]);
617 v7m_push(env, env->regs[0]);
618 switch_v7m_sp(env, 0);
c98d174c
PM
619 /* Clear IT bits */
620 env->condexec_bits = 0;
9ee6e8bb
PB
621 env->regs[14] = lr;
622 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
623 env->regs[15] = addr & 0xfffffffe;
624 env->thumb = addr & 1;
625}
626
b5ff1b31
FB
627/* Handle a CPU exception. */
628void do_interrupt(CPUARMState *env)
629{
630 uint32_t addr;
631 uint32_t mask;
632 int new_mode;
633 uint32_t offset;
634
9ee6e8bb
PB
635 if (IS_M(env)) {
636 do_interrupt_v7m(env);
637 return;
638 }
b5ff1b31
FB
639 /* TODO: Vectored interrupt controller. */
640 switch (env->exception_index) {
641 case EXCP_UDEF:
642 new_mode = ARM_CPU_MODE_UND;
643 addr = 0x04;
644 mask = CPSR_I;
645 if (env->thumb)
646 offset = 2;
647 else
648 offset = 4;
649 break;
650 case EXCP_SWI:
8e71621f
PB
651 if (semihosting_enabled) {
652 /* Check for semihosting interrupt. */
653 if (env->thumb) {
d8fd2954 654 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
8e71621f 655 } else {
d8fd2954
PB
656 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
657 & 0xffffff;
8e71621f
PB
658 }
659 /* Only intercept calls from privileged modes, to provide some
660 semblance of security. */
661 if (((mask == 0x123456 && !env->thumb)
662 || (mask == 0xab && env->thumb))
663 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
664 env->regs[0] = do_arm_semihosting(env);
665 return;
666 }
667 }
b5ff1b31
FB
668 new_mode = ARM_CPU_MODE_SVC;
669 addr = 0x08;
670 mask = CPSR_I;
601d70b9 671 /* The PC already points to the next instruction. */
b5ff1b31
FB
672 offset = 0;
673 break;
06c949e6 674 case EXCP_BKPT:
9ee6e8bb 675 /* See if this is a semihosting syscall. */
2ad207d4 676 if (env->thumb && semihosting_enabled) {
d8fd2954 677 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
9ee6e8bb
PB
678 if (mask == 0xab
679 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
680 env->regs[15] += 2;
681 env->regs[0] = do_arm_semihosting(env);
682 return;
683 }
684 }
81c05daf 685 env->cp15.c5_insn = 2;
9ee6e8bb
PB
686 /* Fall through to prefetch abort. */
687 case EXCP_PREFETCH_ABORT:
b5ff1b31
FB
688 new_mode = ARM_CPU_MODE_ABT;
689 addr = 0x0c;
690 mask = CPSR_A | CPSR_I;
691 offset = 4;
692 break;
693 case EXCP_DATA_ABORT:
694 new_mode = ARM_CPU_MODE_ABT;
695 addr = 0x10;
696 mask = CPSR_A | CPSR_I;
697 offset = 8;
698 break;
699 case EXCP_IRQ:
700 new_mode = ARM_CPU_MODE_IRQ;
701 addr = 0x18;
702 /* Disable IRQ and imprecise data aborts. */
703 mask = CPSR_A | CPSR_I;
704 offset = 4;
705 break;
706 case EXCP_FIQ:
707 new_mode = ARM_CPU_MODE_FIQ;
708 addr = 0x1c;
709 /* Disable FIQ, IRQ and imprecise data aborts. */
710 mask = CPSR_A | CPSR_I | CPSR_F;
711 offset = 4;
712 break;
713 default:
714 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
715 return; /* Never happens. Keep compiler happy. */
716 }
717 /* High vectors. */
718 if (env->cp15.c1_sys & (1 << 13)) {
719 addr += 0xffff0000;
720 }
721 switch_mode (env, new_mode);
722 env->spsr = cpsr_read(env);
9ee6e8bb
PB
723 /* Clear IT bits. */
724 env->condexec_bits = 0;
30a8cac1 725 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 726 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
b5ff1b31 727 env->uncached_cpsr |= mask;
be5e7a76
DES
728 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
729 * and we should just guard the thumb mode on V4 */
730 if (arm_feature(env, ARM_FEATURE_V4T)) {
731 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
732 }
b5ff1b31
FB
733 env->regs[14] = env->regs[15] + offset;
734 env->regs[15] = addr;
735 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
736}
737
738/* Check section/page access permissions.
739 Returns the page protection flags, or zero if the access is not
740 permitted. */
0ecb72a5 741static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
dd4ebc2e 742 int access_type, int is_user)
b5ff1b31 743{
9ee6e8bb
PB
744 int prot_ro;
745
dd4ebc2e 746 if (domain_prot == 3) {
b5ff1b31 747 return PAGE_READ | PAGE_WRITE;
dd4ebc2e 748 }
b5ff1b31 749
9ee6e8bb
PB
750 if (access_type == 1)
751 prot_ro = 0;
752 else
753 prot_ro = PAGE_READ;
754
b5ff1b31
FB
755 switch (ap) {
756 case 0:
78600320 757 if (access_type == 1)
b5ff1b31
FB
758 return 0;
759 switch ((env->cp15.c1_sys >> 8) & 3) {
760 case 1:
761 return is_user ? 0 : PAGE_READ;
762 case 2:
763 return PAGE_READ;
764 default:
765 return 0;
766 }
767 case 1:
768 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
769 case 2:
770 if (is_user)
9ee6e8bb 771 return prot_ro;
b5ff1b31
FB
772 else
773 return PAGE_READ | PAGE_WRITE;
774 case 3:
775 return PAGE_READ | PAGE_WRITE;
d4934d18 776 case 4: /* Reserved. */
9ee6e8bb
PB
777 return 0;
778 case 5:
779 return is_user ? 0 : prot_ro;
780 case 6:
781 return prot_ro;
d4934d18 782 case 7:
0ab06d83 783 if (!arm_feature (env, ARM_FEATURE_V6K))
d4934d18
PB
784 return 0;
785 return prot_ro;
b5ff1b31
FB
786 default:
787 abort();
788 }
789}
790
0ecb72a5 791static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
b2fa1797
PB
792{
793 uint32_t table;
794
795 if (address & env->cp15.c2_mask)
796 table = env->cp15.c2_base1 & 0xffffc000;
797 else
798 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
799
800 table |= (address >> 18) & 0x3ffc;
801 return table;
802}
803
0ecb72a5 804static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
d4c430a8
PB
805 int is_user, uint32_t *phys_ptr, int *prot,
806 target_ulong *page_size)
b5ff1b31
FB
807{
808 int code;
809 uint32_t table;
810 uint32_t desc;
811 int type;
812 int ap;
813 int domain;
dd4ebc2e 814 int domain_prot;
b5ff1b31
FB
815 uint32_t phys_addr;
816
9ee6e8bb
PB
817 /* Pagetable walk. */
818 /* Lookup l1 descriptor. */
b2fa1797 819 table = get_level1_table_address(env, address);
9ee6e8bb
PB
820 desc = ldl_phys(table);
821 type = (desc & 3);
dd4ebc2e
JCD
822 domain = (desc >> 5) & 0x0f;
823 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
9ee6e8bb 824 if (type == 0) {
601d70b9 825 /* Section translation fault. */
9ee6e8bb
PB
826 code = 5;
827 goto do_fault;
828 }
dd4ebc2e 829 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
830 if (type == 2)
831 code = 9; /* Section domain fault. */
832 else
833 code = 11; /* Page domain fault. */
834 goto do_fault;
835 }
836 if (type == 2) {
837 /* 1Mb section. */
838 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
839 ap = (desc >> 10) & 3;
840 code = 13;
d4c430a8 841 *page_size = 1024 * 1024;
9ee6e8bb
PB
842 } else {
843 /* Lookup l2 entry. */
844 if (type == 1) {
845 /* Coarse pagetable. */
846 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
847 } else {
848 /* Fine pagetable. */
849 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
850 }
851 desc = ldl_phys(table);
852 switch (desc & 3) {
853 case 0: /* Page translation fault. */
854 code = 7;
855 goto do_fault;
856 case 1: /* 64k page. */
857 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
858 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 859 *page_size = 0x10000;
ce819861 860 break;
9ee6e8bb
PB
861 case 2: /* 4k page. */
862 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
863 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 864 *page_size = 0x1000;
ce819861 865 break;
9ee6e8bb
PB
866 case 3: /* 1k page. */
867 if (type == 1) {
868 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
869 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
870 } else {
871 /* Page translation fault. */
872 code = 7;
873 goto do_fault;
874 }
875 } else {
876 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
877 }
878 ap = (desc >> 4) & 3;
d4c430a8 879 *page_size = 0x400;
ce819861
PB
880 break;
881 default:
9ee6e8bb
PB
882 /* Never happens, but compiler isn't smart enough to tell. */
883 abort();
ce819861 884 }
9ee6e8bb
PB
885 code = 15;
886 }
dd4ebc2e 887 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
9ee6e8bb
PB
888 if (!*prot) {
889 /* Access permission fault. */
890 goto do_fault;
891 }
3ad493fc 892 *prot |= PAGE_EXEC;
9ee6e8bb
PB
893 *phys_ptr = phys_addr;
894 return 0;
895do_fault:
896 return code | (domain << 4);
897}
898
0ecb72a5 899static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
d4c430a8
PB
900 int is_user, uint32_t *phys_ptr, int *prot,
901 target_ulong *page_size)
9ee6e8bb
PB
902{
903 int code;
904 uint32_t table;
905 uint32_t desc;
906 uint32_t xn;
907 int type;
908 int ap;
909 int domain;
dd4ebc2e 910 int domain_prot;
9ee6e8bb
PB
911 uint32_t phys_addr;
912
913 /* Pagetable walk. */
914 /* Lookup l1 descriptor. */
b2fa1797 915 table = get_level1_table_address(env, address);
9ee6e8bb
PB
916 desc = ldl_phys(table);
917 type = (desc & 3);
918 if (type == 0) {
601d70b9 919 /* Section translation fault. */
9ee6e8bb
PB
920 code = 5;
921 domain = 0;
922 goto do_fault;
923 } else if (type == 2 && (desc & (1 << 18))) {
924 /* Supersection. */
925 domain = 0;
b5ff1b31 926 } else {
9ee6e8bb 927 /* Section or page. */
dd4ebc2e 928 domain = (desc >> 5) & 0x0f;
9ee6e8bb 929 }
dd4ebc2e
JCD
930 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
931 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
932 if (type == 2)
933 code = 9; /* Section domain fault. */
934 else
935 code = 11; /* Page domain fault. */
936 goto do_fault;
937 }
938 if (type == 2) {
939 if (desc & (1 << 18)) {
940 /* Supersection. */
941 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
d4c430a8 942 *page_size = 0x1000000;
b5ff1b31 943 } else {
9ee6e8bb
PB
944 /* Section. */
945 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 946 *page_size = 0x100000;
b5ff1b31 947 }
9ee6e8bb
PB
948 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
949 xn = desc & (1 << 4);
950 code = 13;
951 } else {
952 /* Lookup l2 entry. */
953 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
954 desc = ldl_phys(table);
955 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
956 switch (desc & 3) {
957 case 0: /* Page translation fault. */
958 code = 7;
b5ff1b31 959 goto do_fault;
9ee6e8bb
PB
960 case 1: /* 64k page. */
961 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
962 xn = desc & (1 << 15);
d4c430a8 963 *page_size = 0x10000;
9ee6e8bb
PB
964 break;
965 case 2: case 3: /* 4k page. */
966 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
967 xn = desc & 1;
d4c430a8 968 *page_size = 0x1000;
9ee6e8bb
PB
969 break;
970 default:
971 /* Never happens, but compiler isn't smart enough to tell. */
972 abort();
b5ff1b31 973 }
9ee6e8bb
PB
974 code = 15;
975 }
dd4ebc2e 976 if (domain_prot == 3) {
c0034328
JR
977 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
978 } else {
979 if (xn && access_type == 2)
980 goto do_fault;
9ee6e8bb 981
c0034328
JR
982 /* The simplified model uses AP[0] as an access control bit. */
983 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
984 /* Access flag fault. */
985 code = (code == 15) ? 6 : 3;
986 goto do_fault;
987 }
dd4ebc2e 988 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
c0034328
JR
989 if (!*prot) {
990 /* Access permission fault. */
991 goto do_fault;
992 }
993 if (!xn) {
994 *prot |= PAGE_EXEC;
995 }
3ad493fc 996 }
9ee6e8bb 997 *phys_ptr = phys_addr;
b5ff1b31
FB
998 return 0;
999do_fault:
1000 return code | (domain << 4);
1001}
1002
0ecb72a5 1003static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
9ee6e8bb
PB
1004 int is_user, uint32_t *phys_ptr, int *prot)
1005{
1006 int n;
1007 uint32_t mask;
1008 uint32_t base;
1009
1010 *phys_ptr = address;
1011 for (n = 7; n >= 0; n--) {
1012 base = env->cp15.c6_region[n];
1013 if ((base & 1) == 0)
1014 continue;
1015 mask = 1 << ((base >> 1) & 0x1f);
1016 /* Keep this shift separate from the above to avoid an
1017 (undefined) << 32. */
1018 mask = (mask << 1) - 1;
1019 if (((base ^ address) & ~mask) == 0)
1020 break;
1021 }
1022 if (n < 0)
1023 return 2;
1024
1025 if (access_type == 2) {
1026 mask = env->cp15.c5_insn;
1027 } else {
1028 mask = env->cp15.c5_data;
1029 }
1030 mask = (mask >> (n * 4)) & 0xf;
1031 switch (mask) {
1032 case 0:
1033 return 1;
1034 case 1:
1035 if (is_user)
1036 return 1;
1037 *prot = PAGE_READ | PAGE_WRITE;
1038 break;
1039 case 2:
1040 *prot = PAGE_READ;
1041 if (!is_user)
1042 *prot |= PAGE_WRITE;
1043 break;
1044 case 3:
1045 *prot = PAGE_READ | PAGE_WRITE;
1046 break;
1047 case 5:
1048 if (is_user)
1049 return 1;
1050 *prot = PAGE_READ;
1051 break;
1052 case 6:
1053 *prot = PAGE_READ;
1054 break;
1055 default:
1056 /* Bad permission. */
1057 return 1;
1058 }
3ad493fc 1059 *prot |= PAGE_EXEC;
9ee6e8bb
PB
1060 return 0;
1061}
1062
0ecb72a5 1063static inline int get_phys_addr(CPUARMState *env, uint32_t address,
9ee6e8bb 1064 int access_type, int is_user,
d4c430a8
PB
1065 uint32_t *phys_ptr, int *prot,
1066 target_ulong *page_size)
9ee6e8bb
PB
1067{
1068 /* Fast Context Switch Extension. */
1069 if (address < 0x02000000)
1070 address += env->cp15.c13_fcse;
1071
1072 if ((env->cp15.c1_sys & 1) == 0) {
1073 /* MMU/MPU disabled. */
1074 *phys_ptr = address;
3ad493fc 1075 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 1076 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1077 return 0;
1078 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
d4c430a8 1079 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1080 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1081 prot);
1082 } else if (env->cp15.c1_sys & (1 << 23)) {
1083 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
d4c430a8 1084 prot, page_size);
9ee6e8bb
PB
1085 } else {
1086 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
d4c430a8 1087 prot, page_size);
9ee6e8bb
PB
1088 }
1089}
1090
0ecb72a5 1091int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
97b348e7 1092 int access_type, int mmu_idx)
b5ff1b31
FB
1093{
1094 uint32_t phys_addr;
d4c430a8 1095 target_ulong page_size;
b5ff1b31 1096 int prot;
6ebbf390 1097 int ret, is_user;
b5ff1b31 1098
6ebbf390 1099 is_user = mmu_idx == MMU_USER_IDX;
d4c430a8
PB
1100 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1101 &page_size);
b5ff1b31
FB
1102 if (ret == 0) {
1103 /* Map a single [sub]page. */
1104 phys_addr &= ~(uint32_t)0x3ff;
1105 address &= ~(uint32_t)0x3ff;
3ad493fc 1106 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
d4c430a8 1107 return 0;
b5ff1b31
FB
1108 }
1109
1110 if (access_type == 2) {
1111 env->cp15.c5_insn = ret;
1112 env->cp15.c6_insn = address;
1113 env->exception_index = EXCP_PREFETCH_ABORT;
1114 } else {
1115 env->cp15.c5_data = ret;
9ee6e8bb
PB
1116 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1117 env->cp15.c5_data |= (1 << 11);
b5ff1b31
FB
1118 env->cp15.c6_data = address;
1119 env->exception_index = EXCP_DATA_ABORT;
1120 }
1121 return 1;
1122}
1123
0ecb72a5 1124target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
b5ff1b31
FB
1125{
1126 uint32_t phys_addr;
d4c430a8 1127 target_ulong page_size;
b5ff1b31
FB
1128 int prot;
1129 int ret;
1130
d4c430a8 1131 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
b5ff1b31
FB
1132
1133 if (ret != 0)
1134 return -1;
1135
1136 return phys_addr;
1137}
1138
0ecb72a5 1139void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
c1713132
AZ
1140{
1141 int cp_num = (insn >> 8) & 0xf;
1142 int cp_info = (insn >> 5) & 7;
1143 int src = (insn >> 16) & 0xf;
1144 int operand = insn & 0xf;
1145
1146 if (env->cp[cp_num].cp_write)
1147 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1148 cp_info, src, operand, val);
1149}
1150
0ecb72a5 1151uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
c1713132
AZ
1152{
1153 int cp_num = (insn >> 8) & 0xf;
1154 int cp_info = (insn >> 5) & 7;
1155 int dest = (insn >> 16) & 0xf;
1156 int operand = insn & 0xf;
1157
1158 if (env->cp[cp_num].cp_read)
1159 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1160 cp_info, dest, operand);
1161 return 0;
1162}
1163
ce819861
PB
1164/* Return basic MPU access permission bits. */
1165static uint32_t simple_mpu_ap_bits(uint32_t val)
1166{
1167 uint32_t ret;
1168 uint32_t mask;
1169 int i;
1170 ret = 0;
1171 mask = 3;
1172 for (i = 0; i < 16; i += 2) {
1173 ret |= (val >> i) & mask;
1174 mask <<= 2;
1175 }
1176 return ret;
1177}
1178
1179/* Pad basic MPU access permission bits to extended format. */
1180static uint32_t extended_mpu_ap_bits(uint32_t val)
1181{
1182 uint32_t ret;
1183 uint32_t mask;
1184 int i;
1185 ret = 0;
1186 mask = 3;
1187 for (i = 0; i < 16; i += 2) {
1188 ret |= (val & mask) << i;
1189 mask <<= 2;
1190 }
1191 return ret;
1192}
1193
0ecb72a5 1194void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
b5ff1b31 1195{
9ee6e8bb
PB
1196 int op1;
1197 int op2;
1198 int crm;
b5ff1b31 1199
9ee6e8bb 1200 op1 = (insn >> 21) & 7;
b5ff1b31 1201 op2 = (insn >> 5) & 7;
ce819861 1202 crm = insn & 0xf;
b5ff1b31 1203 switch ((insn >> 16) & 0xf) {
9ee6e8bb 1204 case 0:
9ee6e8bb 1205 /* ID codes. */
610c3c8a
AZ
1206 if (arm_feature(env, ARM_FEATURE_XSCALE))
1207 break;
c3d2689d
AZ
1208 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1209 break;
a49ea279
PB
1210 if (arm_feature(env, ARM_FEATURE_V7)
1211 && op1 == 2 && crm == 0 && op2 == 0) {
1212 env->cp15.c0_cssel = val & 0xf;
1213 break;
1214 }
b5ff1b31
FB
1215 goto bad_reg;
1216 case 1: /* System configuration. */
2be27624
RH
1217 if (arm_feature(env, ARM_FEATURE_V7)
1218 && op1 == 0 && crm == 1 && op2 == 0) {
1219 env->cp15.c1_scr = val;
1220 break;
1221 }
c3d2689d
AZ
1222 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1223 op2 = 0;
b5ff1b31
FB
1224 switch (op2) {
1225 case 0:
ce819861 1226 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
c1713132 1227 env->cp15.c1_sys = val;
b5ff1b31
FB
1228 /* ??? Lots of these bits are not implemented. */
1229 /* This may enable/disable the MMU, so do a TLB flush. */
1230 tlb_flush(env, 1);
1231 break;
61cc8701 1232 case 1: /* Auxiliary control register. */
610c3c8a
AZ
1233 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1234 env->cp15.c1_xscaleauxcr = val;
c1713132 1235 break;
610c3c8a 1236 }
9ee6e8bb
PB
1237 /* Not implemented. */
1238 break;
b5ff1b31 1239 case 2:
610c3c8a
AZ
1240 if (arm_feature(env, ARM_FEATURE_XSCALE))
1241 goto bad_reg;
4be27dbb
PB
1242 if (env->cp15.c1_coproc != val) {
1243 env->cp15.c1_coproc = val;
1244 /* ??? Is this safe when called from within a TB? */
1245 tb_flush(env);
1246 }
c1713132 1247 break;
b5ff1b31
FB
1248 default:
1249 goto bad_reg;
1250 }
1251 break;
ce819861
PB
1252 case 2: /* MMU Page table control / MPU cache control. */
1253 if (arm_feature(env, ARM_FEATURE_MPU)) {
1254 switch (op2) {
1255 case 0:
1256 env->cp15.c2_data = val;
1257 break;
1258 case 1:
1259 env->cp15.c2_insn = val;
1260 break;
1261 default:
1262 goto bad_reg;
1263 }
1264 } else {
9ee6e8bb
PB
1265 switch (op2) {
1266 case 0:
1267 env->cp15.c2_base0 = val;
1268 break;
1269 case 1:
1270 env->cp15.c2_base1 = val;
1271 break;
1272 case 2:
b2fa1797
PB
1273 val &= 7;
1274 env->cp15.c2_control = val;
9ee6e8bb 1275 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
b2fa1797 1276 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
9ee6e8bb
PB
1277 break;
1278 default:
1279 goto bad_reg;
1280 }
ce819861 1281 }
b5ff1b31 1282 break;
ce819861 1283 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31 1284 env->cp15.c3 = val;
405ee3ad 1285 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
b5ff1b31
FB
1286 break;
1287 case 4: /* Reserved. */
1288 goto bad_reg;
ce819861 1289 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1290 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1291 op2 = 0;
b5ff1b31
FB
1292 switch (op2) {
1293 case 0:
ce819861
PB
1294 if (arm_feature(env, ARM_FEATURE_MPU))
1295 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1296 env->cp15.c5_data = val;
1297 break;
1298 case 1:
ce819861
PB
1299 if (arm_feature(env, ARM_FEATURE_MPU))
1300 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1301 env->cp15.c5_insn = val;
1302 break;
ce819861
PB
1303 case 2:
1304 if (!arm_feature(env, ARM_FEATURE_MPU))
1305 goto bad_reg;
1306 env->cp15.c5_data = val;
b5ff1b31 1307 break;
ce819861
PB
1308 case 3:
1309 if (!arm_feature(env, ARM_FEATURE_MPU))
1310 goto bad_reg;
1311 env->cp15.c5_insn = val;
b5ff1b31
FB
1312 break;
1313 default:
1314 goto bad_reg;
1315 }
1316 break;
ce819861
PB
1317 case 6: /* MMU Fault address / MPU base/size. */
1318 if (arm_feature(env, ARM_FEATURE_MPU)) {
1319 if (crm >= 8)
1320 goto bad_reg;
1321 env->cp15.c6_region[crm] = val;
1322 } else {
c3d2689d
AZ
1323 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1324 op2 = 0;
ce819861
PB
1325 switch (op2) {
1326 case 0:
1327 env->cp15.c6_data = val;
1328 break;
9ee6e8bb
PB
1329 case 1: /* ??? This is WFAR on armv6 */
1330 case 2:
ce819861
PB
1331 env->cp15.c6_insn = val;
1332 break;
1333 default:
1334 goto bad_reg;
1335 }
1336 }
1337 break;
b5ff1b31 1338 case 7: /* Cache control. */
c3d2689d
AZ
1339 env->cp15.c15_i_max = 0x000;
1340 env->cp15.c15_i_min = 0xff0;
f8bf8606
AL
1341 if (op1 != 0) {
1342 goto bad_reg;
1343 }
1344 /* No cache, so nothing to do except VA->PA translations. */
906879a9 1345 if (arm_feature(env, ARM_FEATURE_VAPA)) {
f8bf8606
AL
1346 switch (crm) {
1347 case 4:
1348 if (arm_feature(env, ARM_FEATURE_V7)) {
1349 env->cp15.c7_par = val & 0xfffff6ff;
1350 } else {
1351 env->cp15.c7_par = val & 0xfffff1ff;
1352 }
1353 break;
1354 case 8: {
1355 uint32_t phys_addr;
1356 target_ulong page_size;
1357 int prot;
1358 int ret, is_user = op2 & 2;
1359 int access_type = op2 & 1;
1360
1361 if (op2 & 4) {
1362 /* Other states are only available with TrustZone */
1363 goto bad_reg;
1364 }
1365 ret = get_phys_addr(env, val, access_type, is_user,
1366 &phys_addr, &prot, &page_size);
1367 if (ret == 0) {
1368 /* We do not set any attribute bits in the PAR */
1369 if (page_size == (1 << 24)
1370 && arm_feature(env, ARM_FEATURE_V7)) {
1371 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1372 } else {
1373 env->cp15.c7_par = phys_addr & 0xfffff000;
1374 }
1375 } else {
1376 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1377 ((ret & (12 << 1)) >> 6) |
1378 ((ret & 0xf) << 1) | 1;
1379 }
1380 break;
1381 }
1382 }
1383 }
b5ff1b31
FB
1384 break;
1385 case 8: /* MMU TLB control. */
1386 switch (op2) {
dc8714ca
PM
1387 case 0: /* Invalidate all (TLBIALL) */
1388 tlb_flush(env, 1);
b5ff1b31 1389 break;
dc8714ca 1390 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
d4c430a8 1391 tlb_flush_page(env, val & TARGET_PAGE_MASK);
b5ff1b31 1392 break;
dc8714ca 1393 case 2: /* Invalidate by ASID (TLBIASID) */
9ee6e8bb
PB
1394 tlb_flush(env, val == 0);
1395 break;
dc8714ca
PM
1396 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1397 tlb_flush_page(env, val & TARGET_PAGE_MASK);
9ee6e8bb 1398 break;
b5ff1b31
FB
1399 default:
1400 goto bad_reg;
1401 }
1402 break;
ce819861 1403 case 9:
c3d2689d
AZ
1404 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1405 break;
5bc95aa2
DES
1406 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1407 break; /* Ignore ReadBuffer access */
ce819861
PB
1408 switch (crm) {
1409 case 0: /* Cache lockdown. */
9ee6e8bb
PB
1410 switch (op1) {
1411 case 0: /* L1 cache. */
1412 switch (op2) {
1413 case 0:
1414 env->cp15.c9_data = val;
1415 break;
1416 case 1:
1417 env->cp15.c9_insn = val;
1418 break;
1419 default:
1420 goto bad_reg;
1421 }
1422 break;
1423 case 1: /* L2 cache. */
1424 /* Ignore writes to L2 lockdown/auxiliary registers. */
1425 break;
1426 default:
1427 goto bad_reg;
1428 }
1429 break;
ce819861
PB
1430 case 1: /* TCM memory region registers. */
1431 /* Not implemented. */
1432 goto bad_reg;
74594c9d
PM
1433 case 12: /* Performance monitor control */
1434 /* Performance monitors are implementation defined in v7,
1435 * but with an ARM recommended set of registers, which we
1436 * follow (although we don't actually implement any counters)
1437 */
1438 if (!arm_feature(env, ARM_FEATURE_V7)) {
1439 goto bad_reg;
1440 }
1441 switch (op2) {
1442 case 0: /* performance monitor control register */
1443 /* only the DP, X, D and E bits are writable */
1444 env->cp15.c9_pmcr &= ~0x39;
1445 env->cp15.c9_pmcr |= (val & 0x39);
1446 break;
1447 case 1: /* Count enable set register */
1448 val &= (1 << 31);
1449 env->cp15.c9_pmcnten |= val;
1450 break;
1451 case 2: /* Count enable clear */
1452 val &= (1 << 31);
1453 env->cp15.c9_pmcnten &= ~val;
1454 break;
1455 case 3: /* Overflow flag status */
1456 env->cp15.c9_pmovsr &= ~val;
1457 break;
1458 case 4: /* Software increment */
1459 /* RAZ/WI since we don't implement the software-count event */
1460 break;
1461 case 5: /* Event counter selection register */
1462 /* Since we don't implement any events, writing to this register
1463 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1464 */
1465 break;
1466 default:
1467 goto bad_reg;
1468 }
1469 break;
1470 case 13: /* Performance counters */
1471 if (!arm_feature(env, ARM_FEATURE_V7)) {
1472 goto bad_reg;
1473 }
1474 switch (op2) {
1475 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1476 break;
1477 case 1: /* Event type select */
1478 env->cp15.c9_pmxevtyper = val & 0xff;
1479 break;
1480 case 2: /* Event count register */
1481 /* Unimplemented (we have no events), RAZ/WI */
1482 break;
1483 default:
1484 goto bad_reg;
1485 }
1486 break;
1487 case 14: /* Performance monitor control */
1488 if (!arm_feature(env, ARM_FEATURE_V7)) {
1489 goto bad_reg;
1490 }
1491 switch (op2) {
1492 case 0: /* user enable */
1493 env->cp15.c9_pmuserenr = val & 1;
1494 /* changes access rights for cp registers, so flush tbs */
1495 tb_flush(env);
1496 break;
1497 case 1: /* interrupt enable set */
1498 /* We have no event counters so only the C bit can be changed */
1499 val &= (1 << 31);
1500 env->cp15.c9_pminten |= val;
1501 break;
1502 case 2: /* interrupt enable clear */
1503 val &= (1 << 31);
1504 env->cp15.c9_pminten &= ~val;
1505 break;
1506 }
1507 break;
b5ff1b31
FB
1508 default:
1509 goto bad_reg;
1510 }
1511 break;
1512 case 10: /* MMU TLB lockdown. */
1513 /* ??? TLB lockdown not implemented. */
1514 break;
b5ff1b31
FB
1515 case 12: /* Reserved. */
1516 goto bad_reg;
1517 case 13: /* Process ID. */
1518 switch (op2) {
1519 case 0:
d07edbfa
PB
1520 /* Unlike real hardware the qemu TLB uses virtual addresses,
1521 not modified virtual addresses, so this causes a TLB flush.
1522 */
1523 if (env->cp15.c13_fcse != val)
1524 tlb_flush(env, 1);
1525 env->cp15.c13_fcse = val;
b5ff1b31
FB
1526 break;
1527 case 1:
d07edbfa 1528 /* This changes the ASID, so do a TLB flush. */
ce819861
PB
1529 if (env->cp15.c13_context != val
1530 && !arm_feature(env, ARM_FEATURE_MPU))
d07edbfa
PB
1531 tlb_flush(env, 0);
1532 env->cp15.c13_context = val;
b5ff1b31
FB
1533 break;
1534 default:
1535 goto bad_reg;
1536 }
1537 break;
0383ac00
PM
1538 case 14: /* Generic timer */
1539 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1540 /* Dummy implementation: RAZ/WI for all */
1541 break;
1542 }
b5ff1b31
FB
1543 goto bad_reg;
1544 case 15: /* Implementation specific. */
c1713132 1545 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
ce819861 1546 if (op2 == 0 && crm == 1) {
2e23213f
AZ
1547 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1548 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1549 tb_flush(env);
1550 env->cp15.c15_cpar = val & 0x3fff;
1551 }
c1713132
AZ
1552 break;
1553 }
1554 goto bad_reg;
1555 }
c3d2689d
AZ
1556 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1557 switch (crm) {
1558 case 0:
1559 break;
1560 case 1: /* Set TI925T configuration. */
1561 env->cp15.c15_ticonfig = val & 0xe7;
1562 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1563 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1564 break;
1565 case 2: /* Set I_max. */
1566 env->cp15.c15_i_max = val;
1567 break;
1568 case 3: /* Set I_min. */
1569 env->cp15.c15_i_min = val;
1570 break;
1571 case 4: /* Set thread-ID. */
1572 env->cp15.c15_threadid = val & 0xffff;
1573 break;
1574 case 8: /* Wait-for-interrupt (deprecated). */
1575 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1576 break;
1577 default:
1578 goto bad_reg;
1579 }
1580 }
7da362d0
ML
1581 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1582 switch (crm) {
1583 case 0:
1584 if ((op1 == 0) && (op2 == 0)) {
1585 env->cp15.c15_power_control = val;
1586 } else if ((op1 == 0) && (op2 == 1)) {
1587 env->cp15.c15_diagnostic = val;
1588 } else if ((op1 == 0) && (op2 == 2)) {
1589 env->cp15.c15_power_diagnostic = val;
1590 }
1591 default:
1592 break;
1593 }
1594 }
b5ff1b31
FB
1595 break;
1596 }
1597 return;
1598bad_reg:
1599 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1600 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1601 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1602}
1603
0ecb72a5 1604uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
b5ff1b31 1605{
9ee6e8bb
PB
1606 int op1;
1607 int op2;
1608 int crm;
b5ff1b31 1609
9ee6e8bb 1610 op1 = (insn >> 21) & 7;
b5ff1b31 1611 op2 = (insn >> 5) & 7;
c3d2689d 1612 crm = insn & 0xf;
b5ff1b31
FB
1613 switch ((insn >> 16) & 0xf) {
1614 case 0: /* ID codes. */
9ee6e8bb
PB
1615 switch (op1) {
1616 case 0:
1617 switch (crm) {
1618 case 0:
1619 switch (op2) {
1620 case 0: /* Device ID. */
1621 return env->cp15.c0_cpuid;
1622 case 1: /* Cache Type. */
1623 return env->cp15.c0_cachetype;
1624 case 2: /* TCM status. */
1625 return 0;
1626 case 3: /* TLB type register. */
1627 return 0; /* No lockable TLB entries. */
607b4b08
PM
1628 case 5: /* MPIDR */
1629 /* The MPIDR was standardised in v7; prior to
1630 * this it was implemented only in the 11MPCore.
1631 * For all other pre-v7 cores it does not exist.
1632 */
1633 if (arm_feature(env, ARM_FEATURE_V7) ||
1634 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1635 int mpidr = env->cpu_index;
1636 /* We don't support setting cluster ID ([8..11])
1637 * so these bits always RAZ.
1638 */
1639 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1640 mpidr |= (1 << 31);
1641 /* Cores which are uniprocessor (non-coherent)
1642 * but still implement the MP extensions set
1643 * bit 30. (For instance, A9UP.) However we do
1644 * not currently model any of those cores.
1645 */
1646 }
1647 return mpidr;
10055562 1648 }
607b4b08 1649 /* otherwise fall through to the unimplemented-reg case */
9ee6e8bb
PB
1650 default:
1651 goto bad_reg;
1652 }
1653 case 1:
1654 if (!arm_feature(env, ARM_FEATURE_V6))
1655 goto bad_reg;
1656 return env->cp15.c0_c1[op2];
1657 case 2:
1658 if (!arm_feature(env, ARM_FEATURE_V6))
1659 goto bad_reg;
1660 return env->cp15.c0_c2[op2];
1661 case 3: case 4: case 5: case 6: case 7:
1662 return 0;
1663 default:
1664 goto bad_reg;
1665 }
1666 case 1:
1667 /* These registers aren't documented on arm11 cores. However
1668 Linux looks at them anyway. */
1669 if (!arm_feature(env, ARM_FEATURE_V6))
1670 goto bad_reg;
1671 if (crm != 0)
1672 goto bad_reg;
a49ea279
PB
1673 if (!arm_feature(env, ARM_FEATURE_V7))
1674 return 0;
1675
1676 switch (op2) {
1677 case 0:
1678 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1679 case 1:
1680 return env->cp15.c0_clid;
1681 case 7:
1682 return 0;
1683 }
1684 goto bad_reg;
1685 case 2:
1686 if (op2 != 0 || crm != 0)
610c3c8a 1687 goto bad_reg;
a49ea279 1688 return env->cp15.c0_cssel;
9ee6e8bb
PB
1689 default:
1690 goto bad_reg;
b5ff1b31
FB
1691 }
1692 case 1: /* System configuration. */
2be27624
RH
1693 if (arm_feature(env, ARM_FEATURE_V7)
1694 && op1 == 0 && crm == 1 && op2 == 0) {
1695 return env->cp15.c1_scr;
1696 }
c3d2689d
AZ
1697 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1698 op2 = 0;
b5ff1b31
FB
1699 switch (op2) {
1700 case 0: /* Control register. */
1701 return env->cp15.c1_sys;
1702 case 1: /* Auxiliary control register. */
c1713132 1703 if (arm_feature(env, ARM_FEATURE_XSCALE))
610c3c8a 1704 return env->cp15.c1_xscaleauxcr;
9ee6e8bb
PB
1705 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1706 goto bad_reg;
1707 switch (ARM_CPUID(env)) {
1708 case ARM_CPUID_ARM1026:
1709 return 1;
1710 case ARM_CPUID_ARM1136:
827df9f3 1711 case ARM_CPUID_ARM1136_R2:
7807eed9 1712 case ARM_CPUID_ARM1176:
9ee6e8bb
PB
1713 return 7;
1714 case ARM_CPUID_ARM11MPCORE:
1715 return 1;
1716 case ARM_CPUID_CORTEXA8:
533d177a 1717 return 2;
10055562 1718 case ARM_CPUID_CORTEXA9:
0b03bdfc 1719 case ARM_CPUID_CORTEXA15:
10055562 1720 return 0;
9ee6e8bb
PB
1721 default:
1722 goto bad_reg;
1723 }
b5ff1b31 1724 case 2: /* Coprocessor access register. */
610c3c8a
AZ
1725 if (arm_feature(env, ARM_FEATURE_XSCALE))
1726 goto bad_reg;
b5ff1b31
FB
1727 return env->cp15.c1_coproc;
1728 default:
1729 goto bad_reg;
1730 }
ce819861
PB
1731 case 2: /* MMU Page table control / MPU cache control. */
1732 if (arm_feature(env, ARM_FEATURE_MPU)) {
1733 switch (op2) {
1734 case 0:
1735 return env->cp15.c2_data;
1736 break;
1737 case 1:
1738 return env->cp15.c2_insn;
1739 break;
1740 default:
1741 goto bad_reg;
1742 }
1743 } else {
9ee6e8bb
PB
1744 switch (op2) {
1745 case 0:
1746 return env->cp15.c2_base0;
1747 case 1:
1748 return env->cp15.c2_base1;
1749 case 2:
b2fa1797 1750 return env->cp15.c2_control;
9ee6e8bb
PB
1751 default:
1752 goto bad_reg;
1753 }
1754 }
ce819861 1755 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31
FB
1756 return env->cp15.c3;
1757 case 4: /* Reserved. */
1758 goto bad_reg;
ce819861 1759 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1760 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1761 op2 = 0;
b5ff1b31
FB
1762 switch (op2) {
1763 case 0:
ce819861
PB
1764 if (arm_feature(env, ARM_FEATURE_MPU))
1765 return simple_mpu_ap_bits(env->cp15.c5_data);
b5ff1b31
FB
1766 return env->cp15.c5_data;
1767 case 1:
ce819861 1768 if (arm_feature(env, ARM_FEATURE_MPU))
4de47793 1769 return simple_mpu_ap_bits(env->cp15.c5_insn);
ce819861
PB
1770 return env->cp15.c5_insn;
1771 case 2:
1772 if (!arm_feature(env, ARM_FEATURE_MPU))
1773 goto bad_reg;
1774 return env->cp15.c5_data;
1775 case 3:
1776 if (!arm_feature(env, ARM_FEATURE_MPU))
1777 goto bad_reg;
b5ff1b31
FB
1778 return env->cp15.c5_insn;
1779 default:
1780 goto bad_reg;
1781 }
9ee6e8bb 1782 case 6: /* MMU Fault address. */
ce819861 1783 if (arm_feature(env, ARM_FEATURE_MPU)) {
9ee6e8bb 1784 if (crm >= 8)
ce819861 1785 goto bad_reg;
9ee6e8bb 1786 return env->cp15.c6_region[crm];
ce819861 1787 } else {
c3d2689d
AZ
1788 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1789 op2 = 0;
9ee6e8bb
PB
1790 switch (op2) {
1791 case 0:
1792 return env->cp15.c6_data;
1793 case 1:
1794 if (arm_feature(env, ARM_FEATURE_V6)) {
1795 /* Watchpoint Fault Adrress. */
1796 return 0; /* Not implemented. */
1797 } else {
1798 /* Instruction Fault Adrress. */
1799 /* Arm9 doesn't have an IFAR, but implementing it anyway
1800 shouldn't do any harm. */
1801 return env->cp15.c6_insn;
1802 }
1803 case 2:
1804 if (arm_feature(env, ARM_FEATURE_V6)) {
1805 /* Instruction Fault Adrress. */
1806 return env->cp15.c6_insn;
1807 } else {
1808 goto bad_reg;
1809 }
1810 default:
1811 goto bad_reg;
1812 }
b5ff1b31
FB
1813 }
1814 case 7: /* Cache control. */
f8bf8606
AL
1815 if (crm == 4 && op1 == 0 && op2 == 0) {
1816 return env->cp15.c7_par;
1817 }
6fbe23d5
PB
1818 /* FIXME: Should only clear Z flag if destination is r15. */
1819 env->ZF = 0;
b5ff1b31
FB
1820 return 0;
1821 case 8: /* MMU TLB control. */
1822 goto bad_reg;
74594c9d
PM
1823 case 9:
1824 switch (crm) {
1825 case 0: /* Cache lockdown */
1826 switch (op1) {
1827 case 0: /* L1 cache. */
1828 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1829 return 0;
1830 }
1831 switch (op2) {
1832 case 0:
1833 return env->cp15.c9_data;
1834 case 1:
1835 return env->cp15.c9_insn;
1836 default:
1837 goto bad_reg;
1838 }
1839 case 1: /* L2 cache */
0b03bdfc
PM
1840 /* L2 Lockdown and Auxiliary control. */
1841 switch (op2) {
1842 case 0:
1843 /* L2 cache lockdown (A8 only) */
1844 return 0;
1845 case 2:
1846 /* L2 cache auxiliary control (A8) or control (A15) */
1847 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
1848 /* Linux wants the number of processors from here.
1849 * Might as well set the interrupt-controller bit too.
1850 */
1851 return ((smp_cpus - 1) << 24) | (1 << 23);
1852 }
1853 return 0;
1854 case 3:
1855 /* L2 cache extended control (A15) */
1856 return 0;
1857 default:
74594c9d
PM
1858 goto bad_reg;
1859 }
74594c9d
PM
1860 default:
1861 goto bad_reg;
1862 }
1863 break;
1864 case 12: /* Performance monitor control */
1865 if (!arm_feature(env, ARM_FEATURE_V7)) {
1866 goto bad_reg;
1867 }
9ee6e8bb 1868 switch (op2) {
74594c9d
PM
1869 case 0: /* performance monitor control register */
1870 return env->cp15.c9_pmcr;
1871 case 1: /* count enable set */
1872 case 2: /* count enable clear */
1873 return env->cp15.c9_pmcnten;
1874 case 3: /* overflow flag status */
1875 return env->cp15.c9_pmovsr;
1876 case 4: /* software increment */
1877 case 5: /* event counter selection register */
1878 return 0; /* Unimplemented, RAZ/WI */
9ee6e8bb
PB
1879 default:
1880 goto bad_reg;
1881 }
74594c9d
PM
1882 case 13: /* Performance counters */
1883 if (!arm_feature(env, ARM_FEATURE_V7)) {
1884 goto bad_reg;
1885 }
1886 switch (op2) {
1887 case 1: /* Event type select */
1888 return env->cp15.c9_pmxevtyper;
1889 case 0: /* Cycle count register */
1890 case 2: /* Event count register */
1891 /* Unimplemented, so RAZ/WI */
1892 return 0;
1893 default:
9ee6e8bb 1894 goto bad_reg;
74594c9d
PM
1895 }
1896 case 14: /* Performance monitor control */
1897 if (!arm_feature(env, ARM_FEATURE_V7)) {
1898 goto bad_reg;
1899 }
1900 switch (op2) {
1901 case 0: /* user enable */
1902 return env->cp15.c9_pmuserenr;
1903 case 1: /* interrupt enable set */
1904 case 2: /* interrupt enable clear */
1905 return env->cp15.c9_pminten;
1906 default:
1907 goto bad_reg;
1908 }
b5ff1b31
FB
1909 default:
1910 goto bad_reg;
1911 }
74594c9d 1912 break;
b5ff1b31
FB
1913 case 10: /* MMU TLB lockdown. */
1914 /* ??? TLB lockdown not implemented. */
1915 return 0;
1916 case 11: /* TCM DMA control. */
1917 case 12: /* Reserved. */
1918 goto bad_reg;
1919 case 13: /* Process ID. */
1920 switch (op2) {
1921 case 0:
1922 return env->cp15.c13_fcse;
1923 case 1:
1924 return env->cp15.c13_context;
1925 default:
1926 goto bad_reg;
1927 }
0383ac00
PM
1928 case 14: /* Generic timer */
1929 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1930 /* Dummy implementation: RAZ/WI for all */
1931 return 0;
1932 }
b5ff1b31
FB
1933 goto bad_reg;
1934 case 15: /* Implementation specific. */
c1713132 1935 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
c3d2689d 1936 if (op2 == 0 && crm == 1)
c1713132
AZ
1937 return env->cp15.c15_cpar;
1938
1939 goto bad_reg;
1940 }
c3d2689d
AZ
1941 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1942 switch (crm) {
1943 case 0:
1944 return 0;
1945 case 1: /* Read TI925T configuration. */
1946 return env->cp15.c15_ticonfig;
1947 case 2: /* Read I_max. */
1948 return env->cp15.c15_i_max;
1949 case 3: /* Read I_min. */
1950 return env->cp15.c15_i_min;
1951 case 4: /* Read thread-ID. */
1952 return env->cp15.c15_threadid;
1953 case 8: /* TI925T_status */
1954 return 0;
1955 }
827df9f3
AZ
1956 /* TODO: Peripheral port remap register:
1957 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1958 * controller base address at $rn & ~0xfff and map size of
1959 * 0x200 << ($rn & 0xfff), when MMU is off. */
c3d2689d
AZ
1960 goto bad_reg;
1961 }
7da362d0
ML
1962 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1963 switch (crm) {
1964 case 0:
1965 if ((op1 == 4) && (op2 == 0)) {
1966 /* The config_base_address should hold the value of
1967 * the peripheral base. ARM should get this from a CPU
1968 * object property, but that support isn't available in
1969 * December 2011. Default to 0 for now and board models
1970 * that care can set it by a private hook */
1971 return env->cp15.c15_config_base_address;
1972 } else if ((op1 == 0) && (op2 == 0)) {
1973 /* power_control should be set to maximum latency. Again,
1974 default to 0 and set by private hook */
1975 return env->cp15.c15_power_control;
1976 } else if ((op1 == 0) && (op2 == 1)) {
1977 return env->cp15.c15_diagnostic;
1978 } else if ((op1 == 0) && (op2 == 2)) {
1979 return env->cp15.c15_power_diagnostic;
1980 }
1981 break;
1982 case 1: /* NEON Busy */
1983 return 0;
1984 case 5: /* tlb lockdown */
1985 case 6:
1986 case 7:
1987 if ((op1 == 5) && (op2 == 2)) {
1988 return 0;
1989 }
1990 break;
1991 default:
1992 break;
1993 }
1994 goto bad_reg;
1995 }
b5ff1b31
FB
1996 return 0;
1997 }
1998bad_reg:
1999 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
2000 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2001 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
2002 return 0;
2003}
2004
0ecb72a5 2005void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 2006{
39ea3d4e
PM
2007 if ((env->uncached_cpsr & CPSR_M) == mode) {
2008 env->regs[13] = val;
2009 } else {
1b9e01c1 2010 env->banked_r13[bank_number(env, mode)] = val;
39ea3d4e 2011 }
9ee6e8bb
PB
2012}
2013
0ecb72a5 2014uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 2015{
39ea3d4e
PM
2016 if ((env->uncached_cpsr & CPSR_M) == mode) {
2017 return env->regs[13];
2018 } else {
1b9e01c1 2019 return env->banked_r13[bank_number(env, mode)];
39ea3d4e 2020 }
9ee6e8bb
PB
2021}
2022
0ecb72a5 2023uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
2024{
2025 switch (reg) {
2026 case 0: /* APSR */
2027 return xpsr_read(env) & 0xf8000000;
2028 case 1: /* IAPSR */
2029 return xpsr_read(env) & 0xf80001ff;
2030 case 2: /* EAPSR */
2031 return xpsr_read(env) & 0xff00fc00;
2032 case 3: /* xPSR */
2033 return xpsr_read(env) & 0xff00fdff;
2034 case 5: /* IPSR */
2035 return xpsr_read(env) & 0x000001ff;
2036 case 6: /* EPSR */
2037 return xpsr_read(env) & 0x0700fc00;
2038 case 7: /* IEPSR */
2039 return xpsr_read(env) & 0x0700edff;
2040 case 8: /* MSP */
2041 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2042 case 9: /* PSP */
2043 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2044 case 16: /* PRIMASK */
2045 return (env->uncached_cpsr & CPSR_I) != 0;
82845826
SH
2046 case 17: /* BASEPRI */
2047 case 18: /* BASEPRI_MAX */
9ee6e8bb 2048 return env->v7m.basepri;
82845826
SH
2049 case 19: /* FAULTMASK */
2050 return (env->uncached_cpsr & CPSR_F) != 0;
9ee6e8bb
PB
2051 case 20: /* CONTROL */
2052 return env->v7m.control;
2053 default:
2054 /* ??? For debugging only. */
2055 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2056 return 0;
2057 }
2058}
2059
0ecb72a5 2060void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
2061{
2062 switch (reg) {
2063 case 0: /* APSR */
2064 xpsr_write(env, val, 0xf8000000);
2065 break;
2066 case 1: /* IAPSR */
2067 xpsr_write(env, val, 0xf8000000);
2068 break;
2069 case 2: /* EAPSR */
2070 xpsr_write(env, val, 0xfe00fc00);
2071 break;
2072 case 3: /* xPSR */
2073 xpsr_write(env, val, 0xfe00fc00);
2074 break;
2075 case 5: /* IPSR */
2076 /* IPSR bits are readonly. */
2077 break;
2078 case 6: /* EPSR */
2079 xpsr_write(env, val, 0x0600fc00);
2080 break;
2081 case 7: /* IEPSR */
2082 xpsr_write(env, val, 0x0600fc00);
2083 break;
2084 case 8: /* MSP */
2085 if (env->v7m.current_sp)
2086 env->v7m.other_sp = val;
2087 else
2088 env->regs[13] = val;
2089 break;
2090 case 9: /* PSP */
2091 if (env->v7m.current_sp)
2092 env->regs[13] = val;
2093 else
2094 env->v7m.other_sp = val;
2095 break;
2096 case 16: /* PRIMASK */
2097 if (val & 1)
2098 env->uncached_cpsr |= CPSR_I;
2099 else
2100 env->uncached_cpsr &= ~CPSR_I;
2101 break;
82845826 2102 case 17: /* BASEPRI */
9ee6e8bb
PB
2103 env->v7m.basepri = val & 0xff;
2104 break;
82845826 2105 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
2106 val &= 0xff;
2107 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2108 env->v7m.basepri = val;
2109 break;
82845826
SH
2110 case 19: /* FAULTMASK */
2111 if (val & 1)
2112 env->uncached_cpsr |= CPSR_F;
2113 else
2114 env->uncached_cpsr &= ~CPSR_F;
2115 break;
9ee6e8bb
PB
2116 case 20: /* CONTROL */
2117 env->v7m.control = val & 3;
2118 switch_v7m_sp(env, (val & 2) != 0);
2119 break;
2120 default:
2121 /* ??? For debugging only. */
2122 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2123 return;
2124 }
2125}
2126
c1713132
AZ
2127void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2128 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2129 void *opaque)
2130{
2131 if (cpnum < 0 || cpnum > 14) {
2132 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2133 return;
2134 }
2135
2136 env->cp[cpnum].cp_read = cp_read;
2137 env->cp[cpnum].cp_write = cp_write;
2138 env->cp[cpnum].opaque = opaque;
2139}
2140
b5ff1b31 2141#endif
6ddbc6e4
PB
2142
2143/* Note that signed overflow is undefined in C. The following routines are
2144 careful to use unsigned types where modulo arithmetic is required.
2145 Failure to do so _will_ break on newer gcc. */
2146
2147/* Signed saturating arithmetic. */
2148
1654b2d6 2149/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
2150static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2151{
2152 uint16_t res;
2153
2154 res = a + b;
2155 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2156 if (a & 0x8000)
2157 res = 0x8000;
2158 else
2159 res = 0x7fff;
2160 }
2161 return res;
2162}
2163
1654b2d6 2164/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
2165static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2166{
2167 uint8_t res;
2168
2169 res = a + b;
2170 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2171 if (a & 0x80)
2172 res = 0x80;
2173 else
2174 res = 0x7f;
2175 }
2176 return res;
2177}
2178
1654b2d6 2179/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
2180static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2181{
2182 uint16_t res;
2183
2184 res = a - b;
2185 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2186 if (a & 0x8000)
2187 res = 0x8000;
2188 else
2189 res = 0x7fff;
2190 }
2191 return res;
2192}
2193
1654b2d6 2194/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
2195static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2196{
2197 uint8_t res;
2198
2199 res = a - b;
2200 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2201 if (a & 0x80)
2202 res = 0x80;
2203 else
2204 res = 0x7f;
2205 }
2206 return res;
2207}
2208
2209#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2210#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2211#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2212#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2213#define PFX q
2214
2215#include "op_addsub.h"
2216
2217/* Unsigned saturating arithmetic. */
460a09c1 2218static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
2219{
2220 uint16_t res;
2221 res = a + b;
2222 if (res < a)
2223 res = 0xffff;
2224 return res;
2225}
2226
460a09c1 2227static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 2228{
4c4fd3f8 2229 if (a > b)
6ddbc6e4
PB
2230 return a - b;
2231 else
2232 return 0;
2233}
2234
2235static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2236{
2237 uint8_t res;
2238 res = a + b;
2239 if (res < a)
2240 res = 0xff;
2241 return res;
2242}
2243
2244static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2245{
4c4fd3f8 2246 if (a > b)
6ddbc6e4
PB
2247 return a - b;
2248 else
2249 return 0;
2250}
2251
2252#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2253#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2254#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2255#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2256#define PFX uq
2257
2258#include "op_addsub.h"
2259
2260/* Signed modulo arithmetic. */
2261#define SARITH16(a, b, n, op) do { \
2262 int32_t sum; \
db6e2e65 2263 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
2264 RESULT(sum, n, 16); \
2265 if (sum >= 0) \
2266 ge |= 3 << (n * 2); \
2267 } while(0)
2268
2269#define SARITH8(a, b, n, op) do { \
2270 int32_t sum; \
db6e2e65 2271 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
2272 RESULT(sum, n, 8); \
2273 if (sum >= 0) \
2274 ge |= 1 << n; \
2275 } while(0)
2276
2277
2278#define ADD16(a, b, n) SARITH16(a, b, n, +)
2279#define SUB16(a, b, n) SARITH16(a, b, n, -)
2280#define ADD8(a, b, n) SARITH8(a, b, n, +)
2281#define SUB8(a, b, n) SARITH8(a, b, n, -)
2282#define PFX s
2283#define ARITH_GE
2284
2285#include "op_addsub.h"
2286
2287/* Unsigned modulo arithmetic. */
2288#define ADD16(a, b, n) do { \
2289 uint32_t sum; \
2290 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2291 RESULT(sum, n, 16); \
a87aa10b 2292 if ((sum >> 16) == 1) \
6ddbc6e4
PB
2293 ge |= 3 << (n * 2); \
2294 } while(0)
2295
2296#define ADD8(a, b, n) do { \
2297 uint32_t sum; \
2298 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2299 RESULT(sum, n, 8); \
a87aa10b
AZ
2300 if ((sum >> 8) == 1) \
2301 ge |= 1 << n; \
6ddbc6e4
PB
2302 } while(0)
2303
2304#define SUB16(a, b, n) do { \
2305 uint32_t sum; \
2306 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2307 RESULT(sum, n, 16); \
2308 if ((sum >> 16) == 0) \
2309 ge |= 3 << (n * 2); \
2310 } while(0)
2311
2312#define SUB8(a, b, n) do { \
2313 uint32_t sum; \
2314 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2315 RESULT(sum, n, 8); \
2316 if ((sum >> 8) == 0) \
a87aa10b 2317 ge |= 1 << n; \
6ddbc6e4
PB
2318 } while(0)
2319
2320#define PFX u
2321#define ARITH_GE
2322
2323#include "op_addsub.h"
2324
2325/* Halved signed arithmetic. */
2326#define ADD16(a, b, n) \
2327 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2328#define SUB16(a, b, n) \
2329 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2330#define ADD8(a, b, n) \
2331 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2332#define SUB8(a, b, n) \
2333 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2334#define PFX sh
2335
2336#include "op_addsub.h"
2337
2338/* Halved unsigned arithmetic. */
2339#define ADD16(a, b, n) \
2340 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2341#define SUB16(a, b, n) \
2342 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2343#define ADD8(a, b, n) \
2344 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2345#define SUB8(a, b, n) \
2346 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2347#define PFX uh
2348
2349#include "op_addsub.h"
2350
2351static inline uint8_t do_usad(uint8_t a, uint8_t b)
2352{
2353 if (a > b)
2354 return a - b;
2355 else
2356 return b - a;
2357}
2358
2359/* Unsigned sum of absolute byte differences. */
2360uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2361{
2362 uint32_t sum;
2363 sum = do_usad(a, b);
2364 sum += do_usad(a >> 8, b >> 8);
2365 sum += do_usad(a >> 16, b >>16);
2366 sum += do_usad(a >> 24, b >> 24);
2367 return sum;
2368}
2369
2370/* For ARMv6 SEL instruction. */
2371uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2372{
2373 uint32_t mask;
2374
2375 mask = 0;
2376 if (flags & 1)
2377 mask |= 0xff;
2378 if (flags & 2)
2379 mask |= 0xff00;
2380 if (flags & 4)
2381 mask |= 0xff0000;
2382 if (flags & 8)
2383 mask |= 0xff000000;
2384 return (a & mask) | (b & ~mask);
2385}
2386
5e3f878a
PB
2387uint32_t HELPER(logicq_cc)(uint64_t val)
2388{
2389 return (val >> 32) | (val != 0);
2390}
4373f3ce
PB
2391
2392/* VFP support. We follow the convention used for VFP instrunctions:
2393 Single precition routines have a "s" suffix, double precision a
2394 "d" suffix. */
2395
2396/* Convert host exception flags to vfp form. */
2397static inline int vfp_exceptbits_from_host(int host_bits)
2398{
2399 int target_bits = 0;
2400
2401 if (host_bits & float_flag_invalid)
2402 target_bits |= 1;
2403 if (host_bits & float_flag_divbyzero)
2404 target_bits |= 2;
2405 if (host_bits & float_flag_overflow)
2406 target_bits |= 4;
36802b6b 2407 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
2408 target_bits |= 8;
2409 if (host_bits & float_flag_inexact)
2410 target_bits |= 0x10;
cecd8504
PM
2411 if (host_bits & float_flag_input_denormal)
2412 target_bits |= 0x80;
4373f3ce
PB
2413 return target_bits;
2414}
2415
0ecb72a5 2416uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
2417{
2418 int i;
2419 uint32_t fpscr;
2420
2421 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2422 | (env->vfp.vec_len << 16)
2423 | (env->vfp.vec_stride << 20);
2424 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 2425 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
2426 fpscr |= vfp_exceptbits_from_host(i);
2427 return fpscr;
2428}
2429
0ecb72a5 2430uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
2431{
2432 return HELPER(vfp_get_fpscr)(env);
2433}
2434
4373f3ce
PB
2435/* Convert vfp exception flags to target form. */
2436static inline int vfp_exceptbits_to_host(int target_bits)
2437{
2438 int host_bits = 0;
2439
2440 if (target_bits & 1)
2441 host_bits |= float_flag_invalid;
2442 if (target_bits & 2)
2443 host_bits |= float_flag_divbyzero;
2444 if (target_bits & 4)
2445 host_bits |= float_flag_overflow;
2446 if (target_bits & 8)
2447 host_bits |= float_flag_underflow;
2448 if (target_bits & 0x10)
2449 host_bits |= float_flag_inexact;
cecd8504
PM
2450 if (target_bits & 0x80)
2451 host_bits |= float_flag_input_denormal;
4373f3ce
PB
2452 return host_bits;
2453}
2454
0ecb72a5 2455void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
2456{
2457 int i;
2458 uint32_t changed;
2459
2460 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2461 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2462 env->vfp.vec_len = (val >> 16) & 7;
2463 env->vfp.vec_stride = (val >> 20) & 3;
2464
2465 changed ^= val;
2466 if (changed & (3 << 22)) {
2467 i = (val >> 22) & 3;
2468 switch (i) {
2469 case 0:
2470 i = float_round_nearest_even;
2471 break;
2472 case 1:
2473 i = float_round_up;
2474 break;
2475 case 2:
2476 i = float_round_down;
2477 break;
2478 case 3:
2479 i = float_round_to_zero;
2480 break;
2481 }
2482 set_float_rounding_mode(i, &env->vfp.fp_status);
2483 }
cecd8504 2484 if (changed & (1 << 24)) {
fe76d976 2485 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
2486 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2487 }
5c7908ed
PB
2488 if (changed & (1 << 25))
2489 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 2490
b12c390b 2491 i = vfp_exceptbits_to_host(val);
4373f3ce 2492 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 2493 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
2494}
2495
0ecb72a5 2496void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
2497{
2498 HELPER(vfp_set_fpscr)(env, val);
2499}
2500
4373f3ce
PB
2501#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2502
2503#define VFP_BINOP(name) \
ae1857ec 2504float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 2505{ \
ae1857ec
PM
2506 float_status *fpst = fpstp; \
2507 return float32_ ## name(a, b, fpst); \
4373f3ce 2508} \
ae1857ec 2509float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 2510{ \
ae1857ec
PM
2511 float_status *fpst = fpstp; \
2512 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
2513}
2514VFP_BINOP(add)
2515VFP_BINOP(sub)
2516VFP_BINOP(mul)
2517VFP_BINOP(div)
2518#undef VFP_BINOP
2519
2520float32 VFP_HELPER(neg, s)(float32 a)
2521{
2522 return float32_chs(a);
2523}
2524
2525float64 VFP_HELPER(neg, d)(float64 a)
2526{
66230e0d 2527 return float64_chs(a);
4373f3ce
PB
2528}
2529
2530float32 VFP_HELPER(abs, s)(float32 a)
2531{
2532 return float32_abs(a);
2533}
2534
2535float64 VFP_HELPER(abs, d)(float64 a)
2536{
66230e0d 2537 return float64_abs(a);
4373f3ce
PB
2538}
2539
0ecb72a5 2540float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
2541{
2542 return float32_sqrt(a, &env->vfp.fp_status);
2543}
2544
0ecb72a5 2545float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
2546{
2547 return float64_sqrt(a, &env->vfp.fp_status);
2548}
2549
2550/* XXX: check quiet/signaling case */
2551#define DO_VFP_cmp(p, type) \
0ecb72a5 2552void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
2553{ \
2554 uint32_t flags; \
2555 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2556 case 0: flags = 0x6; break; \
2557 case -1: flags = 0x8; break; \
2558 case 1: flags = 0x2; break; \
2559 default: case 2: flags = 0x3; break; \
2560 } \
2561 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2562 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2563} \
0ecb72a5 2564void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
2565{ \
2566 uint32_t flags; \
2567 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2568 case 0: flags = 0x6; break; \
2569 case -1: flags = 0x8; break; \
2570 case 1: flags = 0x2; break; \
2571 default: case 2: flags = 0x3; break; \
2572 } \
2573 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2574 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2575}
2576DO_VFP_cmp(s, float32)
2577DO_VFP_cmp(d, float64)
2578#undef DO_VFP_cmp
2579
5500b06c 2580/* Integer to float and float to integer conversions */
4373f3ce 2581
5500b06c
PM
2582#define CONV_ITOF(name, fsz, sign) \
2583 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2584{ \
2585 float_status *fpst = fpstp; \
85836979 2586 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
2587}
2588
5500b06c
PM
2589#define CONV_FTOI(name, fsz, sign, round) \
2590uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2591{ \
2592 float_status *fpst = fpstp; \
2593 if (float##fsz##_is_any_nan(x)) { \
2594 float_raise(float_flag_invalid, fpst); \
2595 return 0; \
2596 } \
2597 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
2598}
2599
5500b06c
PM
2600#define FLOAT_CONVS(name, p, fsz, sign) \
2601CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2602CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2603CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 2604
5500b06c
PM
2605FLOAT_CONVS(si, s, 32, )
2606FLOAT_CONVS(si, d, 64, )
2607FLOAT_CONVS(ui, s, 32, u)
2608FLOAT_CONVS(ui, d, 64, u)
4373f3ce 2609
5500b06c
PM
2610#undef CONV_ITOF
2611#undef CONV_FTOI
2612#undef FLOAT_CONVS
4373f3ce
PB
2613
2614/* floating point conversion */
0ecb72a5 2615float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 2616{
2d627737
PM
2617 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2618 /* ARM requires that S<->D conversion of any kind of NaN generates
2619 * a quiet NaN by forcing the most significant frac bit to 1.
2620 */
2621 return float64_maybe_silence_nan(r);
4373f3ce
PB
2622}
2623
0ecb72a5 2624float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 2625{
2d627737
PM
2626 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2627 /* ARM requires that S<->D conversion of any kind of NaN generates
2628 * a quiet NaN by forcing the most significant frac bit to 1.
2629 */
2630 return float32_maybe_silence_nan(r);
4373f3ce
PB
2631}
2632
2633/* VFP3 fixed point conversion. */
622465e1 2634#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
5500b06c
PM
2635float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2636 void *fpstp) \
4373f3ce 2637{ \
5500b06c 2638 float_status *fpst = fpstp; \
622465e1 2639 float##fsz tmp; \
5500b06c
PM
2640 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2641 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4373f3ce 2642} \
5500b06c
PM
2643uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2644 void *fpstp) \
4373f3ce 2645{ \
5500b06c 2646 float_status *fpst = fpstp; \
622465e1
PM
2647 float##fsz tmp; \
2648 if (float##fsz##_is_any_nan(x)) { \
5500b06c 2649 float_raise(float_flag_invalid, fpst); \
622465e1 2650 return 0; \
09d9487f 2651 } \
5500b06c
PM
2652 tmp = float##fsz##_scalbn(x, shift, fpst); \
2653 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
622465e1
PM
2654}
2655
2656VFP_CONV_FIX(sh, d, 64, int16, )
2657VFP_CONV_FIX(sl, d, 64, int32, )
2658VFP_CONV_FIX(uh, d, 64, uint16, u)
2659VFP_CONV_FIX(ul, d, 64, uint32, u)
2660VFP_CONV_FIX(sh, s, 32, int16, )
2661VFP_CONV_FIX(sl, s, 32, int32, )
2662VFP_CONV_FIX(uh, s, 32, uint16, u)
2663VFP_CONV_FIX(ul, s, 32, uint32, u)
4373f3ce
PB
2664#undef VFP_CONV_FIX
2665
60011498 2666/* Half precision conversions. */
0ecb72a5 2667static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 2668{
60011498 2669 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
2670 float32 r = float16_to_float32(make_float16(a), ieee, s);
2671 if (ieee) {
2672 return float32_maybe_silence_nan(r);
2673 }
2674 return r;
60011498
PB
2675}
2676
0ecb72a5 2677static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 2678{
60011498 2679 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
2680 float16 r = float32_to_float16(a, ieee, s);
2681 if (ieee) {
2682 r = float16_maybe_silence_nan(r);
2683 }
2684 return float16_val(r);
60011498
PB
2685}
2686
0ecb72a5 2687float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
2688{
2689 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2690}
2691
0ecb72a5 2692uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
2693{
2694 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2695}
2696
0ecb72a5 2697float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
2698{
2699 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2700}
2701
0ecb72a5 2702uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
2703{
2704 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2705}
2706
dda3ec49 2707#define float32_two make_float32(0x40000000)
6aae3df1
PM
2708#define float32_three make_float32(0x40400000)
2709#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 2710
0ecb72a5 2711float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 2712{
dda3ec49
PM
2713 float_status *s = &env->vfp.standard_fp_status;
2714 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2715 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
2716 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2717 float_raise(float_flag_input_denormal, s);
2718 }
dda3ec49
PM
2719 return float32_two;
2720 }
2721 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
2722}
2723
0ecb72a5 2724float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 2725{
71826966 2726 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
2727 float32 product;
2728 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2729 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
2730 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2731 float_raise(float_flag_input_denormal, s);
2732 }
6aae3df1 2733 return float32_one_point_five;
9ea62f57 2734 }
6aae3df1
PM
2735 product = float32_mul(a, b, s);
2736 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
2737}
2738
8f8e3aa4
PB
2739/* NEON helpers. */
2740
56bf4fe2
CL
2741/* Constants 256 and 512 are used in some helpers; we avoid relying on
2742 * int->float conversions at run-time. */
2743#define float64_256 make_float64(0x4070000000000000LL)
2744#define float64_512 make_float64(0x4080000000000000LL)
2745
fe0e4872
CL
2746/* The algorithm that must be used to calculate the estimate
2747 * is specified by the ARM ARM.
2748 */
0ecb72a5 2749static float64 recip_estimate(float64 a, CPUARMState *env)
fe0e4872 2750{
1146a817
PM
2751 /* These calculations mustn't set any fp exception flags,
2752 * so we use a local copy of the fp_status.
2753 */
2754 float_status dummy_status = env->vfp.standard_fp_status;
2755 float_status *s = &dummy_status;
fe0e4872
CL
2756 /* q = (int)(a * 512.0) */
2757 float64 q = float64_mul(float64_512, a, s);
2758 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2759
2760 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2761 q = int64_to_float64(q_int, s);
2762 q = float64_add(q, float64_half, s);
2763 q = float64_div(q, float64_512, s);
2764 q = float64_div(float64_one, q, s);
2765
2766 /* s = (int)(256.0 * r + 0.5) */
2767 q = float64_mul(q, float64_256, s);
2768 q = float64_add(q, float64_half, s);
2769 q_int = float64_to_int64_round_to_zero(q, s);
2770
2771 /* return (double)s / 256.0 */
2772 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2773}
2774
0ecb72a5 2775float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
4373f3ce 2776{
fe0e4872
CL
2777 float_status *s = &env->vfp.standard_fp_status;
2778 float64 f64;
2779 uint32_t val32 = float32_val(a);
2780
2781 int result_exp;
2782 int a_exp = (val32 & 0x7f800000) >> 23;
2783 int sign = val32 & 0x80000000;
2784
2785 if (float32_is_any_nan(a)) {
2786 if (float32_is_signaling_nan(a)) {
2787 float_raise(float_flag_invalid, s);
2788 }
2789 return float32_default_nan;
2790 } else if (float32_is_infinity(a)) {
2791 return float32_set_sign(float32_zero, float32_is_neg(a));
2792 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
2793 if (!float32_is_zero(a)) {
2794 float_raise(float_flag_input_denormal, s);
2795 }
fe0e4872
CL
2796 float_raise(float_flag_divbyzero, s);
2797 return float32_set_sign(float32_infinity, float32_is_neg(a));
2798 } else if (a_exp >= 253) {
2799 float_raise(float_flag_underflow, s);
2800 return float32_set_sign(float32_zero, float32_is_neg(a));
2801 }
2802
2803 f64 = make_float64((0x3feULL << 52)
2804 | ((int64_t)(val32 & 0x7fffff) << 29));
2805
2806 result_exp = 253 - a_exp;
2807
2808 f64 = recip_estimate(f64, env);
2809
2810 val32 = sign
2811 | ((result_exp & 0xff) << 23)
2812 | ((float64_val(f64) >> 29) & 0x7fffff);
2813 return make_float32(val32);
4373f3ce
PB
2814}
2815
e07be5d2
CL
2816/* The algorithm that must be used to calculate the estimate
2817 * is specified by the ARM ARM.
2818 */
0ecb72a5 2819static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
e07be5d2 2820{
1146a817
PM
2821 /* These calculations mustn't set any fp exception flags,
2822 * so we use a local copy of the fp_status.
2823 */
2824 float_status dummy_status = env->vfp.standard_fp_status;
2825 float_status *s = &dummy_status;
e07be5d2
CL
2826 float64 q;
2827 int64_t q_int;
2828
2829 if (float64_lt(a, float64_half, s)) {
2830 /* range 0.25 <= a < 0.5 */
2831
2832 /* a in units of 1/512 rounded down */
2833 /* q0 = (int)(a * 512.0); */
2834 q = float64_mul(float64_512, a, s);
2835 q_int = float64_to_int64_round_to_zero(q, s);
2836
2837 /* reciprocal root r */
2838 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2839 q = int64_to_float64(q_int, s);
2840 q = float64_add(q, float64_half, s);
2841 q = float64_div(q, float64_512, s);
2842 q = float64_sqrt(q, s);
2843 q = float64_div(float64_one, q, s);
2844 } else {
2845 /* range 0.5 <= a < 1.0 */
2846
2847 /* a in units of 1/256 rounded down */
2848 /* q1 = (int)(a * 256.0); */
2849 q = float64_mul(float64_256, a, s);
2850 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2851
2852 /* reciprocal root r */
2853 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2854 q = int64_to_float64(q_int, s);
2855 q = float64_add(q, float64_half, s);
2856 q = float64_div(q, float64_256, s);
2857 q = float64_sqrt(q, s);
2858 q = float64_div(float64_one, q, s);
2859 }
2860 /* r in units of 1/256 rounded to nearest */
2861 /* s = (int)(256.0 * r + 0.5); */
2862
2863 q = float64_mul(q, float64_256,s );
2864 q = float64_add(q, float64_half, s);
2865 q_int = float64_to_int64_round_to_zero(q, s);
2866
2867 /* return (double)s / 256.0;*/
2868 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2869}
2870
0ecb72a5 2871float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4373f3ce 2872{
e07be5d2
CL
2873 float_status *s = &env->vfp.standard_fp_status;
2874 int result_exp;
2875 float64 f64;
2876 uint32_t val;
2877 uint64_t val64;
2878
2879 val = float32_val(a);
2880
2881 if (float32_is_any_nan(a)) {
2882 if (float32_is_signaling_nan(a)) {
2883 float_raise(float_flag_invalid, s);
2884 }
2885 return float32_default_nan;
2886 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
2887 if (!float32_is_zero(a)) {
2888 float_raise(float_flag_input_denormal, s);
2889 }
e07be5d2
CL
2890 float_raise(float_flag_divbyzero, s);
2891 return float32_set_sign(float32_infinity, float32_is_neg(a));
2892 } else if (float32_is_neg(a)) {
2893 float_raise(float_flag_invalid, s);
2894 return float32_default_nan;
2895 } else if (float32_is_infinity(a)) {
2896 return float32_zero;
2897 }
2898
2899 /* Normalize to a double-precision value between 0.25 and 1.0,
2900 * preserving the parity of the exponent. */
2901 if ((val & 0x800000) == 0) {
2902 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2903 | (0x3feULL << 52)
2904 | ((uint64_t)(val & 0x7fffff) << 29));
2905 } else {
2906 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2907 | (0x3fdULL << 52)
2908 | ((uint64_t)(val & 0x7fffff) << 29));
2909 }
2910
2911 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
2912
2913 f64 = recip_sqrt_estimate(f64, env);
2914
2915 val64 = float64_val(f64);
2916
26cc6abf 2917 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
2918 | ((val64 >> 29) & 0x7fffff);
2919 return make_float32(val);
4373f3ce
PB
2920}
2921
0ecb72a5 2922uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4373f3ce 2923{
fe0e4872
CL
2924 float64 f64;
2925
2926 if ((a & 0x80000000) == 0) {
2927 return 0xffffffff;
2928 }
2929
2930 f64 = make_float64((0x3feULL << 52)
2931 | ((int64_t)(a & 0x7fffffff) << 21));
2932
2933 f64 = recip_estimate (f64, env);
2934
2935 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
2936}
2937
0ecb72a5 2938uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4373f3ce 2939{
e07be5d2
CL
2940 float64 f64;
2941
2942 if ((a & 0xc0000000) == 0) {
2943 return 0xffffffff;
2944 }
2945
2946 if (a & 0x80000000) {
2947 f64 = make_float64((0x3feULL << 52)
2948 | ((uint64_t)(a & 0x7fffffff) << 21));
2949 } else { /* bits 31-30 == '01' */
2950 f64 = make_float64((0x3fdULL << 52)
2951 | ((uint64_t)(a & 0x3fffffff) << 22));
2952 }
2953
2954 f64 = recip_sqrt_estimate(f64, env);
2955
2956 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 2957}
fe1479c3 2958
da97f52c
PM
2959/* VFPv4 fused multiply-accumulate */
2960float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
2961{
2962 float_status *fpst = fpstp;
2963 return float32_muladd(a, b, c, 0, fpst);
2964}
2965
2966float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
2967{
2968 float_status *fpst = fpstp;
2969 return float64_muladd(a, b, c, 0, fpst);
2970}
2971
0ecb72a5 2972void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
fe1479c3
PB
2973{
2974 val &= 1;
2975 if (env->teecr != val) {
2976 env->teecr = val;
2977 tb_flush(env);
2978 }
2979}
This page took 1.03469 seconds and 4 git commands to generate.