]> Git Repo - qemu.git/blame - target-arm/helper.c
target-arm: Move MVFR* setup to per cpu init fns
[qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31 1#include "cpu.h"
9ee6e8bb 2#include "gdbstub.h"
7b59220e 3#include "helper.h"
7bbcb0af 4#include "host-utils.h"
4f78c9ad 5#if !defined(CONFIG_USER_ONLY)
983fe826 6#include "hw/loader.h"
4f78c9ad 7#endif
0b03bdfc
PM
8#include "sysemu.h"
9
10static uint32_t cortexa15_cp15_c0_c1[8] = {
11 0x00001131, 0x00011011, 0x02010555, 0x00000000,
12 0x10201105, 0x20000000, 0x01240000, 0x02102211
13};
14
15static uint32_t cortexa15_cp15_c0_c2[8] = {
16 0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0
17};
9ee6e8bb 18
10055562
PB
19static uint32_t cortexa9_cp15_c0_c1[8] =
20{ 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
21
22static uint32_t cortexa9_cp15_c0_c2[8] =
23{ 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
24
9ee6e8bb
PB
25static uint32_t cortexa8_cp15_c0_c1[8] =
26{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
27
28static uint32_t cortexa8_cp15_c0_c2[8] =
29{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
30
31static uint32_t mpcore_cp15_c0_c1[8] =
32{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
33
34static uint32_t mpcore_cp15_c0_c2[8] =
35{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
36
37static uint32_t arm1136_cp15_c0_c1[8] =
38{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
39
40static uint32_t arm1136_cp15_c0_c2[8] =
41{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
b5ff1b31 42
7807eed9
JI
43static uint32_t arm1176_cp15_c0_c1[8] =
44{ 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
45
46static uint32_t arm1176_cp15_c0_c2[8] =
47{ 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
48
f3d6b95e
PB
49static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
50{
f3d6b95e
PB
51 switch (id) {
52 case ARM_CPUID_ARM926:
c1713132 53 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 54 env->cp15.c1_sys = 0x00090078;
f3d6b95e 55 break;
ce819861 56 case ARM_CPUID_ARM946:
ce819861 57 env->cp15.c0_cachetype = 0x0f004006;
610c3c8a 58 env->cp15.c1_sys = 0x00000078;
ce819861 59 break;
f3d6b95e 60 case ARM_CPUID_ARM1026:
c1713132 61 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 62 env->cp15.c1_sys = 0x00090078;
c1713132 63 break;
9ee6e8bb 64 case ARM_CPUID_ARM1136:
906879a9 65 /* This is the 1136 r1, which is a v6K core */
906879a9
PM
66 case ARM_CPUID_ARM1136_R2:
67 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
68 * older core than plain "arm1136". In particular this does not
69 * have the v6K features.
70 */
906879a9
PM
71 /* These ID register values are correct for 1136 but may be wrong
72 * for 1136_r2 (in particular r0p2 does not actually implement most
73 * of the ID registers).
74 */
9ee6e8bb 75 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 76 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
9ee6e8bb 77 env->cp15.c0_cachetype = 0x1dd20d2;
16440c5f 78 env->cp15.c1_sys = 0x00050078;
9ee6e8bb 79 break;
7807eed9 80 case ARM_CPUID_ARM1176:
7807eed9
JI
81 memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
82 memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
83 env->cp15.c0_cachetype = 0x1dd20d2;
84 env->cp15.c1_sys = 0x00050078;
85 break;
9ee6e8bb 86 case ARM_CPUID_ARM11MPCORE:
9ee6e8bb 87 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 88 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
9ee6e8bb
PB
89 env->cp15.c0_cachetype = 0x1dd20d2;
90 break;
91 case ARM_CPUID_CORTEXA8:
9ee6e8bb 92 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 93 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
a49ea279
PB
94 env->cp15.c0_cachetype = 0x82048004;
95 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
96 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
97 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
98 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
9c486ad6 99 env->cp15.c1_sys = 0x00c50078;
9ee6e8bb 100 break;
10055562 101 case ARM_CPUID_CORTEXA9:
10055562
PB
102 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
103 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
104 env->cp15.c0_cachetype = 0x80038003;
105 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
106 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
107 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
16440c5f 108 env->cp15.c1_sys = 0x00c50078;
10055562 109 break;
0b03bdfc 110 case ARM_CPUID_CORTEXA15:
0b03bdfc
PM
111 memcpy(env->cp15.c0_c1, cortexa15_cp15_c0_c1, 8 * sizeof(uint32_t));
112 memcpy(env->cp15.c0_c2, cortexa15_cp15_c0_c2, 8 * sizeof(uint32_t));
113 env->cp15.c0_cachetype = 0x8444c004;
114 env->cp15.c0_clid = 0x0a200023;
115 env->cp15.c0_ccsid[0] = 0x701fe00a; /* 32K L1 dcache */
116 env->cp15.c0_ccsid[1] = 0x201fe00a; /* 32K L1 icache */
117 env->cp15.c0_ccsid[2] = 0x711fe07a; /* 4096K L2 unified cache */
118 env->cp15.c1_sys = 0x00c50078;
119 break;
9ee6e8bb 120 case ARM_CPUID_CORTEXM3:
9ee6e8bb
PB
121 break;
122 case ARM_CPUID_ANY: /* For userspace emulation. */
9ee6e8bb 123 break;
c3d2689d
AZ
124 case ARM_CPUID_TI915T:
125 case ARM_CPUID_TI925T:
c3d2689d
AZ
126 env->cp15.c0_cachetype = 0x5109149;
127 env->cp15.c1_sys = 0x00000070;
128 env->cp15.c15_i_max = 0x000;
129 env->cp15.c15_i_min = 0xff0;
130 break;
c1713132
AZ
131 case ARM_CPUID_PXA250:
132 case ARM_CPUID_PXA255:
133 case ARM_CPUID_PXA260:
134 case ARM_CPUID_PXA261:
135 case ARM_CPUID_PXA262:
c1713132
AZ
136 /* JTAG_ID is ((id << 28) | 0x09265013) */
137 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 138 env->cp15.c1_sys = 0x00000078;
c1713132
AZ
139 break;
140 case ARM_CPUID_PXA270_A0:
141 case ARM_CPUID_PXA270_A1:
142 case ARM_CPUID_PXA270_B0:
143 case ARM_CPUID_PXA270_B1:
144 case ARM_CPUID_PXA270_C0:
145 case ARM_CPUID_PXA270_C5:
c1713132 146 /* JTAG_ID is ((id << 28) | 0x09265013) */
18c9b560 147 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
c1713132 148 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 149 env->cp15.c1_sys = 0x00000078;
f3d6b95e 150 break;
5bc95aa2
DES
151 case ARM_CPUID_SA1100:
152 case ARM_CPUID_SA1110:
5bc95aa2
DES
153 env->cp15.c1_sys = 0x00000070;
154 break;
f3d6b95e
PB
155 default:
156 cpu_abort(env, "Bad CPU ID: %x\n", id);
157 break;
158 }
906879a9 159
f3d6b95e
PB
160}
161
dec9c2d4
AF
162/* TODO Move contents into arm_cpu_reset() in cpu.c,
163 * once cpu_reset_model_id() is eliminated,
164 * and then forward to cpu_reset() here.
165 */
1bba0dc9 166void cpu_state_reset(CPUARMState *env)
40f137e1 167{
f3d6b95e 168 uint32_t id;
5fe91019 169 uint32_t tmp = 0;
777dc784 170 ARMCPU *cpu = arm_env_get_cpu(env);
eca1bdf4
AL
171
172 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
173 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
174 log_cpu_state(env, 0);
175 }
176
777dc784 177 id = cpu->midr;
5fe91019 178 tmp = env->cp15.c15_config_base_address;
f3d6b95e
PB
179 memset(env, 0, offsetof(CPUARMState, breakpoints));
180 if (id)
181 cpu_reset_model_id(env, id);
5fe91019 182 env->cp15.c15_config_base_address = tmp;
777dc784 183 env->cp15.c0_cpuid = cpu->midr;
325b3cef 184 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
bd35c355
PM
185 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
186 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
325b3cef 187
40f137e1
PB
188#if defined (CONFIG_USER_ONLY)
189 env->uncached_cpsr = ARM_CPU_MODE_USR;
3a807dec 190 /* For user mode we must enable access to coprocessors */
40f137e1 191 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
3a807dec
PM
192 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
193 env->cp15.c15_cpar = 3;
194 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
195 env->cp15.c15_cpar = 1;
196 }
40f137e1
PB
197#else
198 /* SVC mode with interrupts disabled. */
199 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
9ee6e8bb 200 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
983fe826
PB
201 clear at reset. Initial SP and PC are loaded from ROM. */
202 if (IS_M(env)) {
203 uint32_t pc;
204 uint8_t *rom;
9ee6e8bb 205 env->uncached_cpsr &= ~CPSR_I;
983fe826
PB
206 rom = rom_ptr(0);
207 if (rom) {
208 /* We should really use ldl_phys here, in case the guest
209 modified flash and reset itself. However images
297d1b4e 210 loaded via -kernel have not been copied yet, so load the
983fe826
PB
211 values directly from there. */
212 env->regs[13] = ldl_p(rom);
213 pc = ldl_p(rom + 4);
214 env->thumb = pc & 1;
215 env->regs[15] = pc & ~1;
216 }
217 }
40f137e1 218 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
b2fa1797 219 env->cp15.c2_base_mask = 0xffffc000u;
74594c9d
PM
220 /* v7 performance monitor control register: same implementor
221 * field as main ID register, and we implement no event counters.
222 */
223 env->cp15.c9_pmcr = (id & 0xff000000);
40f137e1 224#endif
3a492f3a
PM
225 set_flush_to_zero(1, &env->vfp.standard_fp_status);
226 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
227 set_default_nan_mode(1, &env->vfp.standard_fp_status);
9df38c47
PM
228 set_float_detect_tininess(float_tininess_before_rounding,
229 &env->vfp.fp_status);
230 set_float_detect_tininess(float_tininess_before_rounding,
231 &env->vfp.standard_fp_status);
f3d6b95e 232 tlb_flush(env, 1);
0ecb72a5 233 /* Reset is a state change for some CPUARMState fields which we
a84fac14
PM
234 * bake assumptions about into translated code, so we need to
235 * tb_flush().
236 */
237 tb_flush(env);
40f137e1
PB
238}
239
0ecb72a5 240static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
241{
242 int nregs;
243
244 /* VFP data registers are always little-endian. */
245 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
246 if (reg < nregs) {
247 stfq_le_p(buf, env->vfp.regs[reg]);
248 return 8;
249 }
250 if (arm_feature(env, ARM_FEATURE_NEON)) {
251 /* Aliases for Q regs. */
252 nregs += 16;
253 if (reg < nregs) {
254 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
255 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
256 return 16;
257 }
258 }
259 switch (reg - nregs) {
260 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
261 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
262 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
263 }
264 return 0;
265}
266
0ecb72a5 267static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
268{
269 int nregs;
270
271 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
272 if (reg < nregs) {
273 env->vfp.regs[reg] = ldfq_le_p(buf);
274 return 8;
275 }
276 if (arm_feature(env, ARM_FEATURE_NEON)) {
277 nregs += 16;
278 if (reg < nregs) {
279 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
280 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
281 return 16;
282 }
283 }
284 switch (reg - nregs) {
285 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
286 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 287 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
288 }
289 return 0;
290}
291
aaed909a 292CPUARMState *cpu_arm_init(const char *cpu_model)
40f137e1 293{
dec9c2d4 294 ARMCPU *cpu;
40f137e1 295 CPUARMState *env;
b26eefb6 296 static int inited = 0;
40f137e1 297
777dc784 298 if (!object_class_by_name(cpu_model)) {
aaed909a 299 return NULL;
777dc784
PM
300 }
301 cpu = ARM_CPU(object_new(cpu_model));
dec9c2d4 302 env = &cpu->env;
777dc784 303 env->cpu_model_str = cpu_model;
581be094 304 arm_cpu_realize(cpu);
777dc784 305
f4fc247b 306 if (tcg_enabled() && !inited) {
b26eefb6
PB
307 inited = 1;
308 arm_translate_init();
309 }
310
1bba0dc9 311 cpu_state_reset(env);
56aebc89
PB
312 if (arm_feature(env, ARM_FEATURE_NEON)) {
313 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
314 51, "arm-neon.xml", 0);
315 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
316 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
317 35, "arm-vfp3.xml", 0);
318 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
319 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
320 19, "arm-vfp.xml", 0);
321 }
0bf46a40 322 qemu_init_vcpu(env);
40f137e1
PB
323 return env;
324}
325
777dc784
PM
326typedef struct ARMCPUListState {
327 fprintf_function cpu_fprintf;
328 FILE *file;
329} ARMCPUListState;
3371d272 330
777dc784
PM
331/* Sort alphabetically by type name, except for "any". */
332static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 333{
777dc784
PM
334 ObjectClass *class_a = (ObjectClass *)a;
335 ObjectClass *class_b = (ObjectClass *)b;
336 const char *name_a, *name_b;
5adb4839 337
777dc784
PM
338 name_a = object_class_get_name(class_a);
339 name_b = object_class_get_name(class_b);
340 if (strcmp(name_a, "any") == 0) {
341 return 1;
342 } else if (strcmp(name_b, "any") == 0) {
343 return -1;
344 } else {
345 return strcmp(name_a, name_b);
5adb4839
PB
346 }
347}
348
777dc784 349static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 350{
777dc784
PM
351 ObjectClass *oc = data;
352 ARMCPUListState *s = user_data;
3371d272 353
777dc784
PM
354 (*s->cpu_fprintf)(s->file, " %s\n",
355 object_class_get_name(oc));
356}
357
358void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
359{
360 ARMCPUListState s = {
361 .file = f,
362 .cpu_fprintf = cpu_fprintf,
363 };
364 GSList *list;
365
366 list = object_class_get_list(TYPE_ARM_CPU, false);
367 list = g_slist_sort(list, arm_cpu_list_compare);
368 (*cpu_fprintf)(f, "Available CPUs:\n");
369 g_slist_foreach(list, arm_cpu_list_entry, &s);
370 g_slist_free(list);
40f137e1
PB
371}
372
0ecb72a5 373static int bad_mode_switch(CPUARMState *env, int mode)
37064a8b
PM
374{
375 /* Return true if it is not valid for us to switch to
376 * this CPU mode (ie all the UNPREDICTABLE cases in
377 * the ARM ARM CPSRWriteByInstr pseudocode).
378 */
379 switch (mode) {
380 case ARM_CPU_MODE_USR:
381 case ARM_CPU_MODE_SYS:
382 case ARM_CPU_MODE_SVC:
383 case ARM_CPU_MODE_ABT:
384 case ARM_CPU_MODE_UND:
385 case ARM_CPU_MODE_IRQ:
386 case ARM_CPU_MODE_FIQ:
387 return 0;
388 default:
389 return 1;
390 }
391}
392
2f4a40e5
AZ
393uint32_t cpsr_read(CPUARMState *env)
394{
395 int ZF;
6fbe23d5
PB
396 ZF = (env->ZF == 0);
397 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
398 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
399 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
400 | ((env->condexec_bits & 0xfc) << 8)
401 | (env->GE << 16);
402}
403
404void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
405{
2f4a40e5 406 if (mask & CPSR_NZCV) {
6fbe23d5
PB
407 env->ZF = (~val) & CPSR_Z;
408 env->NF = val;
2f4a40e5
AZ
409 env->CF = (val >> 29) & 1;
410 env->VF = (val << 3) & 0x80000000;
411 }
412 if (mask & CPSR_Q)
413 env->QF = ((val & CPSR_Q) != 0);
414 if (mask & CPSR_T)
415 env->thumb = ((val & CPSR_T) != 0);
416 if (mask & CPSR_IT_0_1) {
417 env->condexec_bits &= ~3;
418 env->condexec_bits |= (val >> 25) & 3;
419 }
420 if (mask & CPSR_IT_2_7) {
421 env->condexec_bits &= 3;
422 env->condexec_bits |= (val >> 8) & 0xfc;
423 }
424 if (mask & CPSR_GE) {
425 env->GE = (val >> 16) & 0xf;
426 }
427
428 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
37064a8b
PM
429 if (bad_mode_switch(env, val & CPSR_M)) {
430 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
431 * We choose to ignore the attempt and leave the CPSR M field
432 * untouched.
433 */
434 mask &= ~CPSR_M;
435 } else {
436 switch_mode(env, val & CPSR_M);
437 }
2f4a40e5
AZ
438 }
439 mask &= ~CACHED_CPSR_BITS;
440 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
441}
442
b26eefb6
PB
443/* Sign/zero extend */
444uint32_t HELPER(sxtb16)(uint32_t x)
445{
446 uint32_t res;
447 res = (uint16_t)(int8_t)x;
448 res |= (uint32_t)(int8_t)(x >> 16) << 16;
449 return res;
450}
451
452uint32_t HELPER(uxtb16)(uint32_t x)
453{
454 uint32_t res;
455 res = (uint16_t)(uint8_t)x;
456 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
457 return res;
458}
459
f51bbbfe
PB
460uint32_t HELPER(clz)(uint32_t x)
461{
7bbcb0af 462 return clz32(x);
f51bbbfe
PB
463}
464
3670669c
PB
465int32_t HELPER(sdiv)(int32_t num, int32_t den)
466{
467 if (den == 0)
468 return 0;
686eeb93
AJ
469 if (num == INT_MIN && den == -1)
470 return INT_MIN;
3670669c
PB
471 return num / den;
472}
473
474uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
475{
476 if (den == 0)
477 return 0;
478 return num / den;
479}
480
481uint32_t HELPER(rbit)(uint32_t x)
482{
483 x = ((x & 0xff000000) >> 24)
484 | ((x & 0x00ff0000) >> 8)
485 | ((x & 0x0000ff00) << 8)
486 | ((x & 0x000000ff) << 24);
487 x = ((x & 0xf0f0f0f0) >> 4)
488 | ((x & 0x0f0f0f0f) << 4);
489 x = ((x & 0x88888888) >> 3)
490 | ((x & 0x44444444) >> 1)
491 | ((x & 0x22222222) << 1)
492 | ((x & 0x11111111) << 3);
493 return x;
494}
495
ad69471c
PB
496uint32_t HELPER(abs)(uint32_t x)
497{
498 return ((int32_t)x < 0) ? -x : x;
499}
500
5fafdf24 501#if defined(CONFIG_USER_ONLY)
b5ff1b31 502
0ecb72a5 503void do_interrupt (CPUARMState *env)
b5ff1b31
FB
504{
505 env->exception_index = -1;
506}
507
0ecb72a5 508int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 509 int mmu_idx)
b5ff1b31
FB
510{
511 if (rw == 2) {
512 env->exception_index = EXCP_PREFETCH_ABORT;
513 env->cp15.c6_insn = address;
514 } else {
515 env->exception_index = EXCP_DATA_ABORT;
516 env->cp15.c6_data = address;
517 }
518 return 1;
519}
520
b5ff1b31 521/* These should probably raise undefined insn exceptions. */
0ecb72a5 522void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
c1713132
AZ
523{
524 int op1 = (insn >> 8) & 0xf;
525 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
526 return;
527}
528
0ecb72a5 529uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
c1713132
AZ
530{
531 int op1 = (insn >> 8) & 0xf;
532 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
533 return 0;
534}
535
0ecb72a5 536void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
b5ff1b31
FB
537{
538 cpu_abort(env, "cp15 insn %08x\n", insn);
539}
540
0ecb72a5 541uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
b5ff1b31
FB
542{
543 cpu_abort(env, "cp15 insn %08x\n", insn);
b5ff1b31
FB
544}
545
9ee6e8bb 546/* These should probably raise undefined insn exceptions. */
0ecb72a5 547void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
548{
549 cpu_abort(env, "v7m_mrs %d\n", reg);
550}
551
0ecb72a5 552uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
553{
554 cpu_abort(env, "v7m_mrs %d\n", reg);
555 return 0;
556}
557
0ecb72a5 558void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
559{
560 if (mode != ARM_CPU_MODE_USR)
561 cpu_abort(env, "Tried to switch out of user mode\n");
562}
563
0ecb72a5 564void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
565{
566 cpu_abort(env, "banked r13 write\n");
567}
568
0ecb72a5 569uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb
PB
570{
571 cpu_abort(env, "banked r13 read\n");
572 return 0;
573}
574
b5ff1b31
FB
575#else
576
577/* Map CPU modes onto saved register banks. */
0ecb72a5 578static inline int bank_number(CPUARMState *env, int mode)
b5ff1b31
FB
579{
580 switch (mode) {
581 case ARM_CPU_MODE_USR:
582 case ARM_CPU_MODE_SYS:
583 return 0;
584 case ARM_CPU_MODE_SVC:
585 return 1;
586 case ARM_CPU_MODE_ABT:
587 return 2;
588 case ARM_CPU_MODE_UND:
589 return 3;
590 case ARM_CPU_MODE_IRQ:
591 return 4;
592 case ARM_CPU_MODE_FIQ:
593 return 5;
594 }
1b9e01c1 595 cpu_abort(env, "Bad mode %x\n", mode);
b5ff1b31
FB
596 return -1;
597}
598
0ecb72a5 599void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
600{
601 int old_mode;
602 int i;
603
604 old_mode = env->uncached_cpsr & CPSR_M;
605 if (mode == old_mode)
606 return;
607
608 if (old_mode == ARM_CPU_MODE_FIQ) {
609 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 610 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
611 } else if (mode == ARM_CPU_MODE_FIQ) {
612 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 613 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
614 }
615
1b9e01c1 616 i = bank_number(env, old_mode);
b5ff1b31
FB
617 env->banked_r13[i] = env->regs[13];
618 env->banked_r14[i] = env->regs[14];
619 env->banked_spsr[i] = env->spsr;
620
1b9e01c1 621 i = bank_number(env, mode);
b5ff1b31
FB
622 env->regs[13] = env->banked_r13[i];
623 env->regs[14] = env->banked_r14[i];
624 env->spsr = env->banked_spsr[i];
625}
626
9ee6e8bb
PB
627static void v7m_push(CPUARMState *env, uint32_t val)
628{
629 env->regs[13] -= 4;
630 stl_phys(env->regs[13], val);
631}
632
633static uint32_t v7m_pop(CPUARMState *env)
634{
635 uint32_t val;
636 val = ldl_phys(env->regs[13]);
637 env->regs[13] += 4;
638 return val;
639}
640
641/* Switch to V7M main or process stack pointer. */
642static void switch_v7m_sp(CPUARMState *env, int process)
643{
644 uint32_t tmp;
645 if (env->v7m.current_sp != process) {
646 tmp = env->v7m.other_sp;
647 env->v7m.other_sp = env->regs[13];
648 env->regs[13] = tmp;
649 env->v7m.current_sp = process;
650 }
651}
652
653static void do_v7m_exception_exit(CPUARMState *env)
654{
655 uint32_t type;
656 uint32_t xpsr;
657
658 type = env->regs[15];
659 if (env->v7m.exception != 0)
983fe826 660 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
661
662 /* Switch to the target stack. */
663 switch_v7m_sp(env, (type & 4) != 0);
664 /* Pop registers. */
665 env->regs[0] = v7m_pop(env);
666 env->regs[1] = v7m_pop(env);
667 env->regs[2] = v7m_pop(env);
668 env->regs[3] = v7m_pop(env);
669 env->regs[12] = v7m_pop(env);
670 env->regs[14] = v7m_pop(env);
671 env->regs[15] = v7m_pop(env);
672 xpsr = v7m_pop(env);
673 xpsr_write(env, xpsr, 0xfffffdff);
674 /* Undo stack alignment. */
675 if (xpsr & 0x200)
676 env->regs[13] |= 4;
677 /* ??? The exception return type specifies Thread/Handler mode. However
678 this is also implied by the xPSR value. Not sure what to do
679 if there is a mismatch. */
680 /* ??? Likewise for mismatches between the CONTROL register and the stack
681 pointer. */
682}
683
2b3ea315 684static void do_interrupt_v7m(CPUARMState *env)
9ee6e8bb
PB
685{
686 uint32_t xpsr = xpsr_read(env);
687 uint32_t lr;
688 uint32_t addr;
689
690 lr = 0xfffffff1;
691 if (env->v7m.current_sp)
692 lr |= 4;
693 if (env->v7m.exception == 0)
694 lr |= 8;
695
696 /* For exceptions we just mark as pending on the NVIC, and let that
697 handle it. */
698 /* TODO: Need to escalate if the current priority is higher than the
699 one we're raising. */
700 switch (env->exception_index) {
701 case EXCP_UDEF:
983fe826 702 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
703 return;
704 case EXCP_SWI:
705 env->regs[15] += 2;
983fe826 706 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
707 return;
708 case EXCP_PREFETCH_ABORT:
709 case EXCP_DATA_ABORT:
983fe826 710 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
711 return;
712 case EXCP_BKPT:
2ad207d4
PB
713 if (semihosting_enabled) {
714 int nr;
d8fd2954 715 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
2ad207d4
PB
716 if (nr == 0xab) {
717 env->regs[15] += 2;
718 env->regs[0] = do_arm_semihosting(env);
719 return;
720 }
721 }
983fe826 722 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
723 return;
724 case EXCP_IRQ:
983fe826 725 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
726 break;
727 case EXCP_EXCEPTION_EXIT:
728 do_v7m_exception_exit(env);
729 return;
730 default:
731 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
732 return; /* Never happens. Keep compiler happy. */
733 }
734
735 /* Align stack pointer. */
736 /* ??? Should only do this if Configuration Control Register
737 STACKALIGN bit is set. */
738 if (env->regs[13] & 4) {
ab19b0ec 739 env->regs[13] -= 4;
9ee6e8bb
PB
740 xpsr |= 0x200;
741 }
6c95676b 742 /* Switch to the handler mode. */
9ee6e8bb
PB
743 v7m_push(env, xpsr);
744 v7m_push(env, env->regs[15]);
745 v7m_push(env, env->regs[14]);
746 v7m_push(env, env->regs[12]);
747 v7m_push(env, env->regs[3]);
748 v7m_push(env, env->regs[2]);
749 v7m_push(env, env->regs[1]);
750 v7m_push(env, env->regs[0]);
751 switch_v7m_sp(env, 0);
c98d174c
PM
752 /* Clear IT bits */
753 env->condexec_bits = 0;
9ee6e8bb
PB
754 env->regs[14] = lr;
755 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
756 env->regs[15] = addr & 0xfffffffe;
757 env->thumb = addr & 1;
758}
759
b5ff1b31
FB
760/* Handle a CPU exception. */
761void do_interrupt(CPUARMState *env)
762{
763 uint32_t addr;
764 uint32_t mask;
765 int new_mode;
766 uint32_t offset;
767
9ee6e8bb
PB
768 if (IS_M(env)) {
769 do_interrupt_v7m(env);
770 return;
771 }
b5ff1b31
FB
772 /* TODO: Vectored interrupt controller. */
773 switch (env->exception_index) {
774 case EXCP_UDEF:
775 new_mode = ARM_CPU_MODE_UND;
776 addr = 0x04;
777 mask = CPSR_I;
778 if (env->thumb)
779 offset = 2;
780 else
781 offset = 4;
782 break;
783 case EXCP_SWI:
8e71621f
PB
784 if (semihosting_enabled) {
785 /* Check for semihosting interrupt. */
786 if (env->thumb) {
d8fd2954 787 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
8e71621f 788 } else {
d8fd2954
PB
789 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
790 & 0xffffff;
8e71621f
PB
791 }
792 /* Only intercept calls from privileged modes, to provide some
793 semblance of security. */
794 if (((mask == 0x123456 && !env->thumb)
795 || (mask == 0xab && env->thumb))
796 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
797 env->regs[0] = do_arm_semihosting(env);
798 return;
799 }
800 }
b5ff1b31
FB
801 new_mode = ARM_CPU_MODE_SVC;
802 addr = 0x08;
803 mask = CPSR_I;
601d70b9 804 /* The PC already points to the next instruction. */
b5ff1b31
FB
805 offset = 0;
806 break;
06c949e6 807 case EXCP_BKPT:
9ee6e8bb 808 /* See if this is a semihosting syscall. */
2ad207d4 809 if (env->thumb && semihosting_enabled) {
d8fd2954 810 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
9ee6e8bb
PB
811 if (mask == 0xab
812 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
813 env->regs[15] += 2;
814 env->regs[0] = do_arm_semihosting(env);
815 return;
816 }
817 }
81c05daf 818 env->cp15.c5_insn = 2;
9ee6e8bb
PB
819 /* Fall through to prefetch abort. */
820 case EXCP_PREFETCH_ABORT:
b5ff1b31
FB
821 new_mode = ARM_CPU_MODE_ABT;
822 addr = 0x0c;
823 mask = CPSR_A | CPSR_I;
824 offset = 4;
825 break;
826 case EXCP_DATA_ABORT:
827 new_mode = ARM_CPU_MODE_ABT;
828 addr = 0x10;
829 mask = CPSR_A | CPSR_I;
830 offset = 8;
831 break;
832 case EXCP_IRQ:
833 new_mode = ARM_CPU_MODE_IRQ;
834 addr = 0x18;
835 /* Disable IRQ and imprecise data aborts. */
836 mask = CPSR_A | CPSR_I;
837 offset = 4;
838 break;
839 case EXCP_FIQ:
840 new_mode = ARM_CPU_MODE_FIQ;
841 addr = 0x1c;
842 /* Disable FIQ, IRQ and imprecise data aborts. */
843 mask = CPSR_A | CPSR_I | CPSR_F;
844 offset = 4;
845 break;
846 default:
847 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
848 return; /* Never happens. Keep compiler happy. */
849 }
850 /* High vectors. */
851 if (env->cp15.c1_sys & (1 << 13)) {
852 addr += 0xffff0000;
853 }
854 switch_mode (env, new_mode);
855 env->spsr = cpsr_read(env);
9ee6e8bb
PB
856 /* Clear IT bits. */
857 env->condexec_bits = 0;
30a8cac1 858 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 859 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
b5ff1b31 860 env->uncached_cpsr |= mask;
be5e7a76
DES
861 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
862 * and we should just guard the thumb mode on V4 */
863 if (arm_feature(env, ARM_FEATURE_V4T)) {
864 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
865 }
b5ff1b31
FB
866 env->regs[14] = env->regs[15] + offset;
867 env->regs[15] = addr;
868 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
869}
870
871/* Check section/page access permissions.
872 Returns the page protection flags, or zero if the access is not
873 permitted. */
0ecb72a5 874static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
dd4ebc2e 875 int access_type, int is_user)
b5ff1b31 876{
9ee6e8bb
PB
877 int prot_ro;
878
dd4ebc2e 879 if (domain_prot == 3) {
b5ff1b31 880 return PAGE_READ | PAGE_WRITE;
dd4ebc2e 881 }
b5ff1b31 882
9ee6e8bb
PB
883 if (access_type == 1)
884 prot_ro = 0;
885 else
886 prot_ro = PAGE_READ;
887
b5ff1b31
FB
888 switch (ap) {
889 case 0:
78600320 890 if (access_type == 1)
b5ff1b31
FB
891 return 0;
892 switch ((env->cp15.c1_sys >> 8) & 3) {
893 case 1:
894 return is_user ? 0 : PAGE_READ;
895 case 2:
896 return PAGE_READ;
897 default:
898 return 0;
899 }
900 case 1:
901 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
902 case 2:
903 if (is_user)
9ee6e8bb 904 return prot_ro;
b5ff1b31
FB
905 else
906 return PAGE_READ | PAGE_WRITE;
907 case 3:
908 return PAGE_READ | PAGE_WRITE;
d4934d18 909 case 4: /* Reserved. */
9ee6e8bb
PB
910 return 0;
911 case 5:
912 return is_user ? 0 : prot_ro;
913 case 6:
914 return prot_ro;
d4934d18 915 case 7:
0ab06d83 916 if (!arm_feature (env, ARM_FEATURE_V6K))
d4934d18
PB
917 return 0;
918 return prot_ro;
b5ff1b31
FB
919 default:
920 abort();
921 }
922}
923
0ecb72a5 924static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
b2fa1797
PB
925{
926 uint32_t table;
927
928 if (address & env->cp15.c2_mask)
929 table = env->cp15.c2_base1 & 0xffffc000;
930 else
931 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
932
933 table |= (address >> 18) & 0x3ffc;
934 return table;
935}
936
0ecb72a5 937static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
d4c430a8
PB
938 int is_user, uint32_t *phys_ptr, int *prot,
939 target_ulong *page_size)
b5ff1b31
FB
940{
941 int code;
942 uint32_t table;
943 uint32_t desc;
944 int type;
945 int ap;
946 int domain;
dd4ebc2e 947 int domain_prot;
b5ff1b31
FB
948 uint32_t phys_addr;
949
9ee6e8bb
PB
950 /* Pagetable walk. */
951 /* Lookup l1 descriptor. */
b2fa1797 952 table = get_level1_table_address(env, address);
9ee6e8bb
PB
953 desc = ldl_phys(table);
954 type = (desc & 3);
dd4ebc2e
JCD
955 domain = (desc >> 5) & 0x0f;
956 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
9ee6e8bb 957 if (type == 0) {
601d70b9 958 /* Section translation fault. */
9ee6e8bb
PB
959 code = 5;
960 goto do_fault;
961 }
dd4ebc2e 962 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
963 if (type == 2)
964 code = 9; /* Section domain fault. */
965 else
966 code = 11; /* Page domain fault. */
967 goto do_fault;
968 }
969 if (type == 2) {
970 /* 1Mb section. */
971 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
972 ap = (desc >> 10) & 3;
973 code = 13;
d4c430a8 974 *page_size = 1024 * 1024;
9ee6e8bb
PB
975 } else {
976 /* Lookup l2 entry. */
977 if (type == 1) {
978 /* Coarse pagetable. */
979 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
980 } else {
981 /* Fine pagetable. */
982 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
983 }
984 desc = ldl_phys(table);
985 switch (desc & 3) {
986 case 0: /* Page translation fault. */
987 code = 7;
988 goto do_fault;
989 case 1: /* 64k page. */
990 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
991 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 992 *page_size = 0x10000;
ce819861 993 break;
9ee6e8bb
PB
994 case 2: /* 4k page. */
995 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
996 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 997 *page_size = 0x1000;
ce819861 998 break;
9ee6e8bb
PB
999 case 3: /* 1k page. */
1000 if (type == 1) {
1001 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1002 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1003 } else {
1004 /* Page translation fault. */
1005 code = 7;
1006 goto do_fault;
1007 }
1008 } else {
1009 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1010 }
1011 ap = (desc >> 4) & 3;
d4c430a8 1012 *page_size = 0x400;
ce819861
PB
1013 break;
1014 default:
9ee6e8bb
PB
1015 /* Never happens, but compiler isn't smart enough to tell. */
1016 abort();
ce819861 1017 }
9ee6e8bb
PB
1018 code = 15;
1019 }
dd4ebc2e 1020 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
9ee6e8bb
PB
1021 if (!*prot) {
1022 /* Access permission fault. */
1023 goto do_fault;
1024 }
3ad493fc 1025 *prot |= PAGE_EXEC;
9ee6e8bb
PB
1026 *phys_ptr = phys_addr;
1027 return 0;
1028do_fault:
1029 return code | (domain << 4);
1030}
1031
0ecb72a5 1032static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
d4c430a8
PB
1033 int is_user, uint32_t *phys_ptr, int *prot,
1034 target_ulong *page_size)
9ee6e8bb
PB
1035{
1036 int code;
1037 uint32_t table;
1038 uint32_t desc;
1039 uint32_t xn;
1040 int type;
1041 int ap;
1042 int domain;
dd4ebc2e 1043 int domain_prot;
9ee6e8bb
PB
1044 uint32_t phys_addr;
1045
1046 /* Pagetable walk. */
1047 /* Lookup l1 descriptor. */
b2fa1797 1048 table = get_level1_table_address(env, address);
9ee6e8bb
PB
1049 desc = ldl_phys(table);
1050 type = (desc & 3);
1051 if (type == 0) {
601d70b9 1052 /* Section translation fault. */
9ee6e8bb
PB
1053 code = 5;
1054 domain = 0;
1055 goto do_fault;
1056 } else if (type == 2 && (desc & (1 << 18))) {
1057 /* Supersection. */
1058 domain = 0;
b5ff1b31 1059 } else {
9ee6e8bb 1060 /* Section or page. */
dd4ebc2e 1061 domain = (desc >> 5) & 0x0f;
9ee6e8bb 1062 }
dd4ebc2e
JCD
1063 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1064 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
1065 if (type == 2)
1066 code = 9; /* Section domain fault. */
1067 else
1068 code = 11; /* Page domain fault. */
1069 goto do_fault;
1070 }
1071 if (type == 2) {
1072 if (desc & (1 << 18)) {
1073 /* Supersection. */
1074 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
d4c430a8 1075 *page_size = 0x1000000;
b5ff1b31 1076 } else {
9ee6e8bb
PB
1077 /* Section. */
1078 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 1079 *page_size = 0x100000;
b5ff1b31 1080 }
9ee6e8bb
PB
1081 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1082 xn = desc & (1 << 4);
1083 code = 13;
1084 } else {
1085 /* Lookup l2 entry. */
1086 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1087 desc = ldl_phys(table);
1088 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1089 switch (desc & 3) {
1090 case 0: /* Page translation fault. */
1091 code = 7;
b5ff1b31 1092 goto do_fault;
9ee6e8bb
PB
1093 case 1: /* 64k page. */
1094 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1095 xn = desc & (1 << 15);
d4c430a8 1096 *page_size = 0x10000;
9ee6e8bb
PB
1097 break;
1098 case 2: case 3: /* 4k page. */
1099 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1100 xn = desc & 1;
d4c430a8 1101 *page_size = 0x1000;
9ee6e8bb
PB
1102 break;
1103 default:
1104 /* Never happens, but compiler isn't smart enough to tell. */
1105 abort();
b5ff1b31 1106 }
9ee6e8bb
PB
1107 code = 15;
1108 }
dd4ebc2e 1109 if (domain_prot == 3) {
c0034328
JR
1110 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1111 } else {
1112 if (xn && access_type == 2)
1113 goto do_fault;
9ee6e8bb 1114
c0034328
JR
1115 /* The simplified model uses AP[0] as an access control bit. */
1116 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1117 /* Access flag fault. */
1118 code = (code == 15) ? 6 : 3;
1119 goto do_fault;
1120 }
dd4ebc2e 1121 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
c0034328
JR
1122 if (!*prot) {
1123 /* Access permission fault. */
1124 goto do_fault;
1125 }
1126 if (!xn) {
1127 *prot |= PAGE_EXEC;
1128 }
3ad493fc 1129 }
9ee6e8bb 1130 *phys_ptr = phys_addr;
b5ff1b31
FB
1131 return 0;
1132do_fault:
1133 return code | (domain << 4);
1134}
1135
0ecb72a5 1136static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
9ee6e8bb
PB
1137 int is_user, uint32_t *phys_ptr, int *prot)
1138{
1139 int n;
1140 uint32_t mask;
1141 uint32_t base;
1142
1143 *phys_ptr = address;
1144 for (n = 7; n >= 0; n--) {
1145 base = env->cp15.c6_region[n];
1146 if ((base & 1) == 0)
1147 continue;
1148 mask = 1 << ((base >> 1) & 0x1f);
1149 /* Keep this shift separate from the above to avoid an
1150 (undefined) << 32. */
1151 mask = (mask << 1) - 1;
1152 if (((base ^ address) & ~mask) == 0)
1153 break;
1154 }
1155 if (n < 0)
1156 return 2;
1157
1158 if (access_type == 2) {
1159 mask = env->cp15.c5_insn;
1160 } else {
1161 mask = env->cp15.c5_data;
1162 }
1163 mask = (mask >> (n * 4)) & 0xf;
1164 switch (mask) {
1165 case 0:
1166 return 1;
1167 case 1:
1168 if (is_user)
1169 return 1;
1170 *prot = PAGE_READ | PAGE_WRITE;
1171 break;
1172 case 2:
1173 *prot = PAGE_READ;
1174 if (!is_user)
1175 *prot |= PAGE_WRITE;
1176 break;
1177 case 3:
1178 *prot = PAGE_READ | PAGE_WRITE;
1179 break;
1180 case 5:
1181 if (is_user)
1182 return 1;
1183 *prot = PAGE_READ;
1184 break;
1185 case 6:
1186 *prot = PAGE_READ;
1187 break;
1188 default:
1189 /* Bad permission. */
1190 return 1;
1191 }
3ad493fc 1192 *prot |= PAGE_EXEC;
9ee6e8bb
PB
1193 return 0;
1194}
1195
0ecb72a5 1196static inline int get_phys_addr(CPUARMState *env, uint32_t address,
9ee6e8bb 1197 int access_type, int is_user,
d4c430a8
PB
1198 uint32_t *phys_ptr, int *prot,
1199 target_ulong *page_size)
9ee6e8bb
PB
1200{
1201 /* Fast Context Switch Extension. */
1202 if (address < 0x02000000)
1203 address += env->cp15.c13_fcse;
1204
1205 if ((env->cp15.c1_sys & 1) == 0) {
1206 /* MMU/MPU disabled. */
1207 *phys_ptr = address;
3ad493fc 1208 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 1209 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1210 return 0;
1211 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
d4c430a8 1212 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1213 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1214 prot);
1215 } else if (env->cp15.c1_sys & (1 << 23)) {
1216 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
d4c430a8 1217 prot, page_size);
9ee6e8bb
PB
1218 } else {
1219 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
d4c430a8 1220 prot, page_size);
9ee6e8bb
PB
1221 }
1222}
1223
0ecb72a5 1224int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
97b348e7 1225 int access_type, int mmu_idx)
b5ff1b31
FB
1226{
1227 uint32_t phys_addr;
d4c430a8 1228 target_ulong page_size;
b5ff1b31 1229 int prot;
6ebbf390 1230 int ret, is_user;
b5ff1b31 1231
6ebbf390 1232 is_user = mmu_idx == MMU_USER_IDX;
d4c430a8
PB
1233 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1234 &page_size);
b5ff1b31
FB
1235 if (ret == 0) {
1236 /* Map a single [sub]page. */
1237 phys_addr &= ~(uint32_t)0x3ff;
1238 address &= ~(uint32_t)0x3ff;
3ad493fc 1239 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
d4c430a8 1240 return 0;
b5ff1b31
FB
1241 }
1242
1243 if (access_type == 2) {
1244 env->cp15.c5_insn = ret;
1245 env->cp15.c6_insn = address;
1246 env->exception_index = EXCP_PREFETCH_ABORT;
1247 } else {
1248 env->cp15.c5_data = ret;
9ee6e8bb
PB
1249 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1250 env->cp15.c5_data |= (1 << 11);
b5ff1b31
FB
1251 env->cp15.c6_data = address;
1252 env->exception_index = EXCP_DATA_ABORT;
1253 }
1254 return 1;
1255}
1256
0ecb72a5 1257target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
b5ff1b31
FB
1258{
1259 uint32_t phys_addr;
d4c430a8 1260 target_ulong page_size;
b5ff1b31
FB
1261 int prot;
1262 int ret;
1263
d4c430a8 1264 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
b5ff1b31
FB
1265
1266 if (ret != 0)
1267 return -1;
1268
1269 return phys_addr;
1270}
1271
0ecb72a5 1272void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
c1713132
AZ
1273{
1274 int cp_num = (insn >> 8) & 0xf;
1275 int cp_info = (insn >> 5) & 7;
1276 int src = (insn >> 16) & 0xf;
1277 int operand = insn & 0xf;
1278
1279 if (env->cp[cp_num].cp_write)
1280 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1281 cp_info, src, operand, val);
1282}
1283
0ecb72a5 1284uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
c1713132
AZ
1285{
1286 int cp_num = (insn >> 8) & 0xf;
1287 int cp_info = (insn >> 5) & 7;
1288 int dest = (insn >> 16) & 0xf;
1289 int operand = insn & 0xf;
1290
1291 if (env->cp[cp_num].cp_read)
1292 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1293 cp_info, dest, operand);
1294 return 0;
1295}
1296
ce819861
PB
1297/* Return basic MPU access permission bits. */
1298static uint32_t simple_mpu_ap_bits(uint32_t val)
1299{
1300 uint32_t ret;
1301 uint32_t mask;
1302 int i;
1303 ret = 0;
1304 mask = 3;
1305 for (i = 0; i < 16; i += 2) {
1306 ret |= (val >> i) & mask;
1307 mask <<= 2;
1308 }
1309 return ret;
1310}
1311
1312/* Pad basic MPU access permission bits to extended format. */
1313static uint32_t extended_mpu_ap_bits(uint32_t val)
1314{
1315 uint32_t ret;
1316 uint32_t mask;
1317 int i;
1318 ret = 0;
1319 mask = 3;
1320 for (i = 0; i < 16; i += 2) {
1321 ret |= (val & mask) << i;
1322 mask <<= 2;
1323 }
1324 return ret;
1325}
1326
0ecb72a5 1327void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
b5ff1b31 1328{
9ee6e8bb
PB
1329 int op1;
1330 int op2;
1331 int crm;
b5ff1b31 1332
9ee6e8bb 1333 op1 = (insn >> 21) & 7;
b5ff1b31 1334 op2 = (insn >> 5) & 7;
ce819861 1335 crm = insn & 0xf;
b5ff1b31 1336 switch ((insn >> 16) & 0xf) {
9ee6e8bb 1337 case 0:
9ee6e8bb 1338 /* ID codes. */
610c3c8a
AZ
1339 if (arm_feature(env, ARM_FEATURE_XSCALE))
1340 break;
c3d2689d
AZ
1341 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1342 break;
a49ea279
PB
1343 if (arm_feature(env, ARM_FEATURE_V7)
1344 && op1 == 2 && crm == 0 && op2 == 0) {
1345 env->cp15.c0_cssel = val & 0xf;
1346 break;
1347 }
b5ff1b31
FB
1348 goto bad_reg;
1349 case 1: /* System configuration. */
2be27624
RH
1350 if (arm_feature(env, ARM_FEATURE_V7)
1351 && op1 == 0 && crm == 1 && op2 == 0) {
1352 env->cp15.c1_scr = val;
1353 break;
1354 }
c3d2689d
AZ
1355 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1356 op2 = 0;
b5ff1b31
FB
1357 switch (op2) {
1358 case 0:
ce819861 1359 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
c1713132 1360 env->cp15.c1_sys = val;
b5ff1b31
FB
1361 /* ??? Lots of these bits are not implemented. */
1362 /* This may enable/disable the MMU, so do a TLB flush. */
1363 tlb_flush(env, 1);
1364 break;
61cc8701 1365 case 1: /* Auxiliary control register. */
610c3c8a
AZ
1366 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1367 env->cp15.c1_xscaleauxcr = val;
c1713132 1368 break;
610c3c8a 1369 }
9ee6e8bb
PB
1370 /* Not implemented. */
1371 break;
b5ff1b31 1372 case 2:
610c3c8a
AZ
1373 if (arm_feature(env, ARM_FEATURE_XSCALE))
1374 goto bad_reg;
4be27dbb
PB
1375 if (env->cp15.c1_coproc != val) {
1376 env->cp15.c1_coproc = val;
1377 /* ??? Is this safe when called from within a TB? */
1378 tb_flush(env);
1379 }
c1713132 1380 break;
b5ff1b31
FB
1381 default:
1382 goto bad_reg;
1383 }
1384 break;
ce819861
PB
1385 case 2: /* MMU Page table control / MPU cache control. */
1386 if (arm_feature(env, ARM_FEATURE_MPU)) {
1387 switch (op2) {
1388 case 0:
1389 env->cp15.c2_data = val;
1390 break;
1391 case 1:
1392 env->cp15.c2_insn = val;
1393 break;
1394 default:
1395 goto bad_reg;
1396 }
1397 } else {
9ee6e8bb
PB
1398 switch (op2) {
1399 case 0:
1400 env->cp15.c2_base0 = val;
1401 break;
1402 case 1:
1403 env->cp15.c2_base1 = val;
1404 break;
1405 case 2:
b2fa1797
PB
1406 val &= 7;
1407 env->cp15.c2_control = val;
9ee6e8bb 1408 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
b2fa1797 1409 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
9ee6e8bb
PB
1410 break;
1411 default:
1412 goto bad_reg;
1413 }
ce819861 1414 }
b5ff1b31 1415 break;
ce819861 1416 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31 1417 env->cp15.c3 = val;
405ee3ad 1418 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
b5ff1b31
FB
1419 break;
1420 case 4: /* Reserved. */
1421 goto bad_reg;
ce819861 1422 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1423 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1424 op2 = 0;
b5ff1b31
FB
1425 switch (op2) {
1426 case 0:
ce819861
PB
1427 if (arm_feature(env, ARM_FEATURE_MPU))
1428 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1429 env->cp15.c5_data = val;
1430 break;
1431 case 1:
ce819861
PB
1432 if (arm_feature(env, ARM_FEATURE_MPU))
1433 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1434 env->cp15.c5_insn = val;
1435 break;
ce819861
PB
1436 case 2:
1437 if (!arm_feature(env, ARM_FEATURE_MPU))
1438 goto bad_reg;
1439 env->cp15.c5_data = val;
b5ff1b31 1440 break;
ce819861
PB
1441 case 3:
1442 if (!arm_feature(env, ARM_FEATURE_MPU))
1443 goto bad_reg;
1444 env->cp15.c5_insn = val;
b5ff1b31
FB
1445 break;
1446 default:
1447 goto bad_reg;
1448 }
1449 break;
ce819861
PB
1450 case 6: /* MMU Fault address / MPU base/size. */
1451 if (arm_feature(env, ARM_FEATURE_MPU)) {
1452 if (crm >= 8)
1453 goto bad_reg;
1454 env->cp15.c6_region[crm] = val;
1455 } else {
c3d2689d
AZ
1456 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1457 op2 = 0;
ce819861
PB
1458 switch (op2) {
1459 case 0:
1460 env->cp15.c6_data = val;
1461 break;
9ee6e8bb
PB
1462 case 1: /* ??? This is WFAR on armv6 */
1463 case 2:
ce819861
PB
1464 env->cp15.c6_insn = val;
1465 break;
1466 default:
1467 goto bad_reg;
1468 }
1469 }
1470 break;
b5ff1b31 1471 case 7: /* Cache control. */
c3d2689d
AZ
1472 env->cp15.c15_i_max = 0x000;
1473 env->cp15.c15_i_min = 0xff0;
f8bf8606
AL
1474 if (op1 != 0) {
1475 goto bad_reg;
1476 }
1477 /* No cache, so nothing to do except VA->PA translations. */
906879a9 1478 if (arm_feature(env, ARM_FEATURE_VAPA)) {
f8bf8606
AL
1479 switch (crm) {
1480 case 4:
1481 if (arm_feature(env, ARM_FEATURE_V7)) {
1482 env->cp15.c7_par = val & 0xfffff6ff;
1483 } else {
1484 env->cp15.c7_par = val & 0xfffff1ff;
1485 }
1486 break;
1487 case 8: {
1488 uint32_t phys_addr;
1489 target_ulong page_size;
1490 int prot;
1491 int ret, is_user = op2 & 2;
1492 int access_type = op2 & 1;
1493
1494 if (op2 & 4) {
1495 /* Other states are only available with TrustZone */
1496 goto bad_reg;
1497 }
1498 ret = get_phys_addr(env, val, access_type, is_user,
1499 &phys_addr, &prot, &page_size);
1500 if (ret == 0) {
1501 /* We do not set any attribute bits in the PAR */
1502 if (page_size == (1 << 24)
1503 && arm_feature(env, ARM_FEATURE_V7)) {
1504 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1505 } else {
1506 env->cp15.c7_par = phys_addr & 0xfffff000;
1507 }
1508 } else {
1509 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1510 ((ret & (12 << 1)) >> 6) |
1511 ((ret & 0xf) << 1) | 1;
1512 }
1513 break;
1514 }
1515 }
1516 }
b5ff1b31
FB
1517 break;
1518 case 8: /* MMU TLB control. */
1519 switch (op2) {
dc8714ca
PM
1520 case 0: /* Invalidate all (TLBIALL) */
1521 tlb_flush(env, 1);
b5ff1b31 1522 break;
dc8714ca 1523 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
d4c430a8 1524 tlb_flush_page(env, val & TARGET_PAGE_MASK);
b5ff1b31 1525 break;
dc8714ca 1526 case 2: /* Invalidate by ASID (TLBIASID) */
9ee6e8bb
PB
1527 tlb_flush(env, val == 0);
1528 break;
dc8714ca
PM
1529 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1530 tlb_flush_page(env, val & TARGET_PAGE_MASK);
9ee6e8bb 1531 break;
b5ff1b31
FB
1532 default:
1533 goto bad_reg;
1534 }
1535 break;
ce819861 1536 case 9:
c3d2689d
AZ
1537 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1538 break;
5bc95aa2
DES
1539 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1540 break; /* Ignore ReadBuffer access */
ce819861
PB
1541 switch (crm) {
1542 case 0: /* Cache lockdown. */
9ee6e8bb
PB
1543 switch (op1) {
1544 case 0: /* L1 cache. */
1545 switch (op2) {
1546 case 0:
1547 env->cp15.c9_data = val;
1548 break;
1549 case 1:
1550 env->cp15.c9_insn = val;
1551 break;
1552 default:
1553 goto bad_reg;
1554 }
1555 break;
1556 case 1: /* L2 cache. */
1557 /* Ignore writes to L2 lockdown/auxiliary registers. */
1558 break;
1559 default:
1560 goto bad_reg;
1561 }
1562 break;
ce819861
PB
1563 case 1: /* TCM memory region registers. */
1564 /* Not implemented. */
1565 goto bad_reg;
74594c9d
PM
1566 case 12: /* Performance monitor control */
1567 /* Performance monitors are implementation defined in v7,
1568 * but with an ARM recommended set of registers, which we
1569 * follow (although we don't actually implement any counters)
1570 */
1571 if (!arm_feature(env, ARM_FEATURE_V7)) {
1572 goto bad_reg;
1573 }
1574 switch (op2) {
1575 case 0: /* performance monitor control register */
1576 /* only the DP, X, D and E bits are writable */
1577 env->cp15.c9_pmcr &= ~0x39;
1578 env->cp15.c9_pmcr |= (val & 0x39);
1579 break;
1580 case 1: /* Count enable set register */
1581 val &= (1 << 31);
1582 env->cp15.c9_pmcnten |= val;
1583 break;
1584 case 2: /* Count enable clear */
1585 val &= (1 << 31);
1586 env->cp15.c9_pmcnten &= ~val;
1587 break;
1588 case 3: /* Overflow flag status */
1589 env->cp15.c9_pmovsr &= ~val;
1590 break;
1591 case 4: /* Software increment */
1592 /* RAZ/WI since we don't implement the software-count event */
1593 break;
1594 case 5: /* Event counter selection register */
1595 /* Since we don't implement any events, writing to this register
1596 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1597 */
1598 break;
1599 default:
1600 goto bad_reg;
1601 }
1602 break;
1603 case 13: /* Performance counters */
1604 if (!arm_feature(env, ARM_FEATURE_V7)) {
1605 goto bad_reg;
1606 }
1607 switch (op2) {
1608 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1609 break;
1610 case 1: /* Event type select */
1611 env->cp15.c9_pmxevtyper = val & 0xff;
1612 break;
1613 case 2: /* Event count register */
1614 /* Unimplemented (we have no events), RAZ/WI */
1615 break;
1616 default:
1617 goto bad_reg;
1618 }
1619 break;
1620 case 14: /* Performance monitor control */
1621 if (!arm_feature(env, ARM_FEATURE_V7)) {
1622 goto bad_reg;
1623 }
1624 switch (op2) {
1625 case 0: /* user enable */
1626 env->cp15.c9_pmuserenr = val & 1;
1627 /* changes access rights for cp registers, so flush tbs */
1628 tb_flush(env);
1629 break;
1630 case 1: /* interrupt enable set */
1631 /* We have no event counters so only the C bit can be changed */
1632 val &= (1 << 31);
1633 env->cp15.c9_pminten |= val;
1634 break;
1635 case 2: /* interrupt enable clear */
1636 val &= (1 << 31);
1637 env->cp15.c9_pminten &= ~val;
1638 break;
1639 }
1640 break;
b5ff1b31
FB
1641 default:
1642 goto bad_reg;
1643 }
1644 break;
1645 case 10: /* MMU TLB lockdown. */
1646 /* ??? TLB lockdown not implemented. */
1647 break;
b5ff1b31
FB
1648 case 12: /* Reserved. */
1649 goto bad_reg;
1650 case 13: /* Process ID. */
1651 switch (op2) {
1652 case 0:
d07edbfa
PB
1653 /* Unlike real hardware the qemu TLB uses virtual addresses,
1654 not modified virtual addresses, so this causes a TLB flush.
1655 */
1656 if (env->cp15.c13_fcse != val)
1657 tlb_flush(env, 1);
1658 env->cp15.c13_fcse = val;
b5ff1b31
FB
1659 break;
1660 case 1:
d07edbfa 1661 /* This changes the ASID, so do a TLB flush. */
ce819861
PB
1662 if (env->cp15.c13_context != val
1663 && !arm_feature(env, ARM_FEATURE_MPU))
d07edbfa
PB
1664 tlb_flush(env, 0);
1665 env->cp15.c13_context = val;
b5ff1b31
FB
1666 break;
1667 default:
1668 goto bad_reg;
1669 }
1670 break;
0383ac00
PM
1671 case 14: /* Generic timer */
1672 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1673 /* Dummy implementation: RAZ/WI for all */
1674 break;
1675 }
b5ff1b31
FB
1676 goto bad_reg;
1677 case 15: /* Implementation specific. */
c1713132 1678 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
ce819861 1679 if (op2 == 0 && crm == 1) {
2e23213f
AZ
1680 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1681 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1682 tb_flush(env);
1683 env->cp15.c15_cpar = val & 0x3fff;
1684 }
c1713132
AZ
1685 break;
1686 }
1687 goto bad_reg;
1688 }
c3d2689d
AZ
1689 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1690 switch (crm) {
1691 case 0:
1692 break;
1693 case 1: /* Set TI925T configuration. */
1694 env->cp15.c15_ticonfig = val & 0xe7;
1695 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1696 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1697 break;
1698 case 2: /* Set I_max. */
1699 env->cp15.c15_i_max = val;
1700 break;
1701 case 3: /* Set I_min. */
1702 env->cp15.c15_i_min = val;
1703 break;
1704 case 4: /* Set thread-ID. */
1705 env->cp15.c15_threadid = val & 0xffff;
1706 break;
1707 case 8: /* Wait-for-interrupt (deprecated). */
1708 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1709 break;
1710 default:
1711 goto bad_reg;
1712 }
1713 }
7da362d0
ML
1714 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1715 switch (crm) {
1716 case 0:
1717 if ((op1 == 0) && (op2 == 0)) {
1718 env->cp15.c15_power_control = val;
1719 } else if ((op1 == 0) && (op2 == 1)) {
1720 env->cp15.c15_diagnostic = val;
1721 } else if ((op1 == 0) && (op2 == 2)) {
1722 env->cp15.c15_power_diagnostic = val;
1723 }
1724 default:
1725 break;
1726 }
1727 }
b5ff1b31
FB
1728 break;
1729 }
1730 return;
1731bad_reg:
1732 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1733 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1734 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1735}
1736
0ecb72a5 1737uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
b5ff1b31 1738{
9ee6e8bb
PB
1739 int op1;
1740 int op2;
1741 int crm;
b5ff1b31 1742
9ee6e8bb 1743 op1 = (insn >> 21) & 7;
b5ff1b31 1744 op2 = (insn >> 5) & 7;
c3d2689d 1745 crm = insn & 0xf;
b5ff1b31
FB
1746 switch ((insn >> 16) & 0xf) {
1747 case 0: /* ID codes. */
9ee6e8bb
PB
1748 switch (op1) {
1749 case 0:
1750 switch (crm) {
1751 case 0:
1752 switch (op2) {
1753 case 0: /* Device ID. */
1754 return env->cp15.c0_cpuid;
1755 case 1: /* Cache Type. */
1756 return env->cp15.c0_cachetype;
1757 case 2: /* TCM status. */
1758 return 0;
1759 case 3: /* TLB type register. */
1760 return 0; /* No lockable TLB entries. */
607b4b08
PM
1761 case 5: /* MPIDR */
1762 /* The MPIDR was standardised in v7; prior to
1763 * this it was implemented only in the 11MPCore.
1764 * For all other pre-v7 cores it does not exist.
1765 */
1766 if (arm_feature(env, ARM_FEATURE_V7) ||
1767 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1768 int mpidr = env->cpu_index;
1769 /* We don't support setting cluster ID ([8..11])
1770 * so these bits always RAZ.
1771 */
1772 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1773 mpidr |= (1 << 31);
1774 /* Cores which are uniprocessor (non-coherent)
1775 * but still implement the MP extensions set
1776 * bit 30. (For instance, A9UP.) However we do
1777 * not currently model any of those cores.
1778 */
1779 }
1780 return mpidr;
10055562 1781 }
607b4b08 1782 /* otherwise fall through to the unimplemented-reg case */
9ee6e8bb
PB
1783 default:
1784 goto bad_reg;
1785 }
1786 case 1:
1787 if (!arm_feature(env, ARM_FEATURE_V6))
1788 goto bad_reg;
1789 return env->cp15.c0_c1[op2];
1790 case 2:
1791 if (!arm_feature(env, ARM_FEATURE_V6))
1792 goto bad_reg;
1793 return env->cp15.c0_c2[op2];
1794 case 3: case 4: case 5: case 6: case 7:
1795 return 0;
1796 default:
1797 goto bad_reg;
1798 }
1799 case 1:
1800 /* These registers aren't documented on arm11 cores. However
1801 Linux looks at them anyway. */
1802 if (!arm_feature(env, ARM_FEATURE_V6))
1803 goto bad_reg;
1804 if (crm != 0)
1805 goto bad_reg;
a49ea279
PB
1806 if (!arm_feature(env, ARM_FEATURE_V7))
1807 return 0;
1808
1809 switch (op2) {
1810 case 0:
1811 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1812 case 1:
1813 return env->cp15.c0_clid;
1814 case 7:
1815 return 0;
1816 }
1817 goto bad_reg;
1818 case 2:
1819 if (op2 != 0 || crm != 0)
610c3c8a 1820 goto bad_reg;
a49ea279 1821 return env->cp15.c0_cssel;
9ee6e8bb
PB
1822 default:
1823 goto bad_reg;
b5ff1b31
FB
1824 }
1825 case 1: /* System configuration. */
2be27624
RH
1826 if (arm_feature(env, ARM_FEATURE_V7)
1827 && op1 == 0 && crm == 1 && op2 == 0) {
1828 return env->cp15.c1_scr;
1829 }
c3d2689d
AZ
1830 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1831 op2 = 0;
b5ff1b31
FB
1832 switch (op2) {
1833 case 0: /* Control register. */
1834 return env->cp15.c1_sys;
1835 case 1: /* Auxiliary control register. */
c1713132 1836 if (arm_feature(env, ARM_FEATURE_XSCALE))
610c3c8a 1837 return env->cp15.c1_xscaleauxcr;
9ee6e8bb
PB
1838 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1839 goto bad_reg;
1840 switch (ARM_CPUID(env)) {
1841 case ARM_CPUID_ARM1026:
1842 return 1;
1843 case ARM_CPUID_ARM1136:
827df9f3 1844 case ARM_CPUID_ARM1136_R2:
7807eed9 1845 case ARM_CPUID_ARM1176:
9ee6e8bb
PB
1846 return 7;
1847 case ARM_CPUID_ARM11MPCORE:
1848 return 1;
1849 case ARM_CPUID_CORTEXA8:
533d177a 1850 return 2;
10055562 1851 case ARM_CPUID_CORTEXA9:
0b03bdfc 1852 case ARM_CPUID_CORTEXA15:
10055562 1853 return 0;
9ee6e8bb
PB
1854 default:
1855 goto bad_reg;
1856 }
b5ff1b31 1857 case 2: /* Coprocessor access register. */
610c3c8a
AZ
1858 if (arm_feature(env, ARM_FEATURE_XSCALE))
1859 goto bad_reg;
b5ff1b31
FB
1860 return env->cp15.c1_coproc;
1861 default:
1862 goto bad_reg;
1863 }
ce819861
PB
1864 case 2: /* MMU Page table control / MPU cache control. */
1865 if (arm_feature(env, ARM_FEATURE_MPU)) {
1866 switch (op2) {
1867 case 0:
1868 return env->cp15.c2_data;
1869 break;
1870 case 1:
1871 return env->cp15.c2_insn;
1872 break;
1873 default:
1874 goto bad_reg;
1875 }
1876 } else {
9ee6e8bb
PB
1877 switch (op2) {
1878 case 0:
1879 return env->cp15.c2_base0;
1880 case 1:
1881 return env->cp15.c2_base1;
1882 case 2:
b2fa1797 1883 return env->cp15.c2_control;
9ee6e8bb
PB
1884 default:
1885 goto bad_reg;
1886 }
1887 }
ce819861 1888 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31
FB
1889 return env->cp15.c3;
1890 case 4: /* Reserved. */
1891 goto bad_reg;
ce819861 1892 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1893 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1894 op2 = 0;
b5ff1b31
FB
1895 switch (op2) {
1896 case 0:
ce819861
PB
1897 if (arm_feature(env, ARM_FEATURE_MPU))
1898 return simple_mpu_ap_bits(env->cp15.c5_data);
b5ff1b31
FB
1899 return env->cp15.c5_data;
1900 case 1:
ce819861 1901 if (arm_feature(env, ARM_FEATURE_MPU))
4de47793 1902 return simple_mpu_ap_bits(env->cp15.c5_insn);
ce819861
PB
1903 return env->cp15.c5_insn;
1904 case 2:
1905 if (!arm_feature(env, ARM_FEATURE_MPU))
1906 goto bad_reg;
1907 return env->cp15.c5_data;
1908 case 3:
1909 if (!arm_feature(env, ARM_FEATURE_MPU))
1910 goto bad_reg;
b5ff1b31
FB
1911 return env->cp15.c5_insn;
1912 default:
1913 goto bad_reg;
1914 }
9ee6e8bb 1915 case 6: /* MMU Fault address. */
ce819861 1916 if (arm_feature(env, ARM_FEATURE_MPU)) {
9ee6e8bb 1917 if (crm >= 8)
ce819861 1918 goto bad_reg;
9ee6e8bb 1919 return env->cp15.c6_region[crm];
ce819861 1920 } else {
c3d2689d
AZ
1921 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1922 op2 = 0;
9ee6e8bb
PB
1923 switch (op2) {
1924 case 0:
1925 return env->cp15.c6_data;
1926 case 1:
1927 if (arm_feature(env, ARM_FEATURE_V6)) {
1928 /* Watchpoint Fault Adrress. */
1929 return 0; /* Not implemented. */
1930 } else {
1931 /* Instruction Fault Adrress. */
1932 /* Arm9 doesn't have an IFAR, but implementing it anyway
1933 shouldn't do any harm. */
1934 return env->cp15.c6_insn;
1935 }
1936 case 2:
1937 if (arm_feature(env, ARM_FEATURE_V6)) {
1938 /* Instruction Fault Adrress. */
1939 return env->cp15.c6_insn;
1940 } else {
1941 goto bad_reg;
1942 }
1943 default:
1944 goto bad_reg;
1945 }
b5ff1b31
FB
1946 }
1947 case 7: /* Cache control. */
f8bf8606
AL
1948 if (crm == 4 && op1 == 0 && op2 == 0) {
1949 return env->cp15.c7_par;
1950 }
6fbe23d5
PB
1951 /* FIXME: Should only clear Z flag if destination is r15. */
1952 env->ZF = 0;
b5ff1b31
FB
1953 return 0;
1954 case 8: /* MMU TLB control. */
1955 goto bad_reg;
74594c9d
PM
1956 case 9:
1957 switch (crm) {
1958 case 0: /* Cache lockdown */
1959 switch (op1) {
1960 case 0: /* L1 cache. */
1961 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1962 return 0;
1963 }
1964 switch (op2) {
1965 case 0:
1966 return env->cp15.c9_data;
1967 case 1:
1968 return env->cp15.c9_insn;
1969 default:
1970 goto bad_reg;
1971 }
1972 case 1: /* L2 cache */
0b03bdfc
PM
1973 /* L2 Lockdown and Auxiliary control. */
1974 switch (op2) {
1975 case 0:
1976 /* L2 cache lockdown (A8 only) */
1977 return 0;
1978 case 2:
1979 /* L2 cache auxiliary control (A8) or control (A15) */
1980 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
1981 /* Linux wants the number of processors from here.
1982 * Might as well set the interrupt-controller bit too.
1983 */
1984 return ((smp_cpus - 1) << 24) | (1 << 23);
1985 }
1986 return 0;
1987 case 3:
1988 /* L2 cache extended control (A15) */
1989 return 0;
1990 default:
74594c9d
PM
1991 goto bad_reg;
1992 }
74594c9d
PM
1993 default:
1994 goto bad_reg;
1995 }
1996 break;
1997 case 12: /* Performance monitor control */
1998 if (!arm_feature(env, ARM_FEATURE_V7)) {
1999 goto bad_reg;
2000 }
9ee6e8bb 2001 switch (op2) {
74594c9d
PM
2002 case 0: /* performance monitor control register */
2003 return env->cp15.c9_pmcr;
2004 case 1: /* count enable set */
2005 case 2: /* count enable clear */
2006 return env->cp15.c9_pmcnten;
2007 case 3: /* overflow flag status */
2008 return env->cp15.c9_pmovsr;
2009 case 4: /* software increment */
2010 case 5: /* event counter selection register */
2011 return 0; /* Unimplemented, RAZ/WI */
9ee6e8bb
PB
2012 default:
2013 goto bad_reg;
2014 }
74594c9d
PM
2015 case 13: /* Performance counters */
2016 if (!arm_feature(env, ARM_FEATURE_V7)) {
2017 goto bad_reg;
2018 }
2019 switch (op2) {
2020 case 1: /* Event type select */
2021 return env->cp15.c9_pmxevtyper;
2022 case 0: /* Cycle count register */
2023 case 2: /* Event count register */
2024 /* Unimplemented, so RAZ/WI */
2025 return 0;
2026 default:
9ee6e8bb 2027 goto bad_reg;
74594c9d
PM
2028 }
2029 case 14: /* Performance monitor control */
2030 if (!arm_feature(env, ARM_FEATURE_V7)) {
2031 goto bad_reg;
2032 }
2033 switch (op2) {
2034 case 0: /* user enable */
2035 return env->cp15.c9_pmuserenr;
2036 case 1: /* interrupt enable set */
2037 case 2: /* interrupt enable clear */
2038 return env->cp15.c9_pminten;
2039 default:
2040 goto bad_reg;
2041 }
b5ff1b31
FB
2042 default:
2043 goto bad_reg;
2044 }
74594c9d 2045 break;
b5ff1b31
FB
2046 case 10: /* MMU TLB lockdown. */
2047 /* ??? TLB lockdown not implemented. */
2048 return 0;
2049 case 11: /* TCM DMA control. */
2050 case 12: /* Reserved. */
2051 goto bad_reg;
2052 case 13: /* Process ID. */
2053 switch (op2) {
2054 case 0:
2055 return env->cp15.c13_fcse;
2056 case 1:
2057 return env->cp15.c13_context;
2058 default:
2059 goto bad_reg;
2060 }
0383ac00
PM
2061 case 14: /* Generic timer */
2062 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2063 /* Dummy implementation: RAZ/WI for all */
2064 return 0;
2065 }
b5ff1b31
FB
2066 goto bad_reg;
2067 case 15: /* Implementation specific. */
c1713132 2068 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
c3d2689d 2069 if (op2 == 0 && crm == 1)
c1713132
AZ
2070 return env->cp15.c15_cpar;
2071
2072 goto bad_reg;
2073 }
c3d2689d
AZ
2074 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2075 switch (crm) {
2076 case 0:
2077 return 0;
2078 case 1: /* Read TI925T configuration. */
2079 return env->cp15.c15_ticonfig;
2080 case 2: /* Read I_max. */
2081 return env->cp15.c15_i_max;
2082 case 3: /* Read I_min. */
2083 return env->cp15.c15_i_min;
2084 case 4: /* Read thread-ID. */
2085 return env->cp15.c15_threadid;
2086 case 8: /* TI925T_status */
2087 return 0;
2088 }
827df9f3
AZ
2089 /* TODO: Peripheral port remap register:
2090 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2091 * controller base address at $rn & ~0xfff and map size of
2092 * 0x200 << ($rn & 0xfff), when MMU is off. */
c3d2689d
AZ
2093 goto bad_reg;
2094 }
7da362d0
ML
2095 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
2096 switch (crm) {
2097 case 0:
2098 if ((op1 == 4) && (op2 == 0)) {
2099 /* The config_base_address should hold the value of
2100 * the peripheral base. ARM should get this from a CPU
2101 * object property, but that support isn't available in
2102 * December 2011. Default to 0 for now and board models
2103 * that care can set it by a private hook */
2104 return env->cp15.c15_config_base_address;
2105 } else if ((op1 == 0) && (op2 == 0)) {
2106 /* power_control should be set to maximum latency. Again,
2107 default to 0 and set by private hook */
2108 return env->cp15.c15_power_control;
2109 } else if ((op1 == 0) && (op2 == 1)) {
2110 return env->cp15.c15_diagnostic;
2111 } else if ((op1 == 0) && (op2 == 2)) {
2112 return env->cp15.c15_power_diagnostic;
2113 }
2114 break;
2115 case 1: /* NEON Busy */
2116 return 0;
2117 case 5: /* tlb lockdown */
2118 case 6:
2119 case 7:
2120 if ((op1 == 5) && (op2 == 2)) {
2121 return 0;
2122 }
2123 break;
2124 default:
2125 break;
2126 }
2127 goto bad_reg;
2128 }
b5ff1b31
FB
2129 return 0;
2130 }
2131bad_reg:
2132 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
2133 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2134 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
2135 return 0;
2136}
2137
0ecb72a5 2138void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 2139{
39ea3d4e
PM
2140 if ((env->uncached_cpsr & CPSR_M) == mode) {
2141 env->regs[13] = val;
2142 } else {
1b9e01c1 2143 env->banked_r13[bank_number(env, mode)] = val;
39ea3d4e 2144 }
9ee6e8bb
PB
2145}
2146
0ecb72a5 2147uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 2148{
39ea3d4e
PM
2149 if ((env->uncached_cpsr & CPSR_M) == mode) {
2150 return env->regs[13];
2151 } else {
1b9e01c1 2152 return env->banked_r13[bank_number(env, mode)];
39ea3d4e 2153 }
9ee6e8bb
PB
2154}
2155
0ecb72a5 2156uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
2157{
2158 switch (reg) {
2159 case 0: /* APSR */
2160 return xpsr_read(env) & 0xf8000000;
2161 case 1: /* IAPSR */
2162 return xpsr_read(env) & 0xf80001ff;
2163 case 2: /* EAPSR */
2164 return xpsr_read(env) & 0xff00fc00;
2165 case 3: /* xPSR */
2166 return xpsr_read(env) & 0xff00fdff;
2167 case 5: /* IPSR */
2168 return xpsr_read(env) & 0x000001ff;
2169 case 6: /* EPSR */
2170 return xpsr_read(env) & 0x0700fc00;
2171 case 7: /* IEPSR */
2172 return xpsr_read(env) & 0x0700edff;
2173 case 8: /* MSP */
2174 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2175 case 9: /* PSP */
2176 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2177 case 16: /* PRIMASK */
2178 return (env->uncached_cpsr & CPSR_I) != 0;
82845826
SH
2179 case 17: /* BASEPRI */
2180 case 18: /* BASEPRI_MAX */
9ee6e8bb 2181 return env->v7m.basepri;
82845826
SH
2182 case 19: /* FAULTMASK */
2183 return (env->uncached_cpsr & CPSR_F) != 0;
9ee6e8bb
PB
2184 case 20: /* CONTROL */
2185 return env->v7m.control;
2186 default:
2187 /* ??? For debugging only. */
2188 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2189 return 0;
2190 }
2191}
2192
0ecb72a5 2193void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
2194{
2195 switch (reg) {
2196 case 0: /* APSR */
2197 xpsr_write(env, val, 0xf8000000);
2198 break;
2199 case 1: /* IAPSR */
2200 xpsr_write(env, val, 0xf8000000);
2201 break;
2202 case 2: /* EAPSR */
2203 xpsr_write(env, val, 0xfe00fc00);
2204 break;
2205 case 3: /* xPSR */
2206 xpsr_write(env, val, 0xfe00fc00);
2207 break;
2208 case 5: /* IPSR */
2209 /* IPSR bits are readonly. */
2210 break;
2211 case 6: /* EPSR */
2212 xpsr_write(env, val, 0x0600fc00);
2213 break;
2214 case 7: /* IEPSR */
2215 xpsr_write(env, val, 0x0600fc00);
2216 break;
2217 case 8: /* MSP */
2218 if (env->v7m.current_sp)
2219 env->v7m.other_sp = val;
2220 else
2221 env->regs[13] = val;
2222 break;
2223 case 9: /* PSP */
2224 if (env->v7m.current_sp)
2225 env->regs[13] = val;
2226 else
2227 env->v7m.other_sp = val;
2228 break;
2229 case 16: /* PRIMASK */
2230 if (val & 1)
2231 env->uncached_cpsr |= CPSR_I;
2232 else
2233 env->uncached_cpsr &= ~CPSR_I;
2234 break;
82845826 2235 case 17: /* BASEPRI */
9ee6e8bb
PB
2236 env->v7m.basepri = val & 0xff;
2237 break;
82845826 2238 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
2239 val &= 0xff;
2240 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2241 env->v7m.basepri = val;
2242 break;
82845826
SH
2243 case 19: /* FAULTMASK */
2244 if (val & 1)
2245 env->uncached_cpsr |= CPSR_F;
2246 else
2247 env->uncached_cpsr &= ~CPSR_F;
2248 break;
9ee6e8bb
PB
2249 case 20: /* CONTROL */
2250 env->v7m.control = val & 3;
2251 switch_v7m_sp(env, (val & 2) != 0);
2252 break;
2253 default:
2254 /* ??? For debugging only. */
2255 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2256 return;
2257 }
2258}
2259
c1713132
AZ
2260void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2261 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2262 void *opaque)
2263{
2264 if (cpnum < 0 || cpnum > 14) {
2265 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2266 return;
2267 }
2268
2269 env->cp[cpnum].cp_read = cp_read;
2270 env->cp[cpnum].cp_write = cp_write;
2271 env->cp[cpnum].opaque = opaque;
2272}
2273
b5ff1b31 2274#endif
6ddbc6e4
PB
2275
2276/* Note that signed overflow is undefined in C. The following routines are
2277 careful to use unsigned types where modulo arithmetic is required.
2278 Failure to do so _will_ break on newer gcc. */
2279
2280/* Signed saturating arithmetic. */
2281
1654b2d6 2282/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
2283static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2284{
2285 uint16_t res;
2286
2287 res = a + b;
2288 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2289 if (a & 0x8000)
2290 res = 0x8000;
2291 else
2292 res = 0x7fff;
2293 }
2294 return res;
2295}
2296
1654b2d6 2297/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
2298static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2299{
2300 uint8_t res;
2301
2302 res = a + b;
2303 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2304 if (a & 0x80)
2305 res = 0x80;
2306 else
2307 res = 0x7f;
2308 }
2309 return res;
2310}
2311
1654b2d6 2312/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
2313static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2314{
2315 uint16_t res;
2316
2317 res = a - b;
2318 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2319 if (a & 0x8000)
2320 res = 0x8000;
2321 else
2322 res = 0x7fff;
2323 }
2324 return res;
2325}
2326
1654b2d6 2327/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
2328static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2329{
2330 uint8_t res;
2331
2332 res = a - b;
2333 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2334 if (a & 0x80)
2335 res = 0x80;
2336 else
2337 res = 0x7f;
2338 }
2339 return res;
2340}
2341
2342#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2343#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2344#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2345#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2346#define PFX q
2347
2348#include "op_addsub.h"
2349
2350/* Unsigned saturating arithmetic. */
460a09c1 2351static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
2352{
2353 uint16_t res;
2354 res = a + b;
2355 if (res < a)
2356 res = 0xffff;
2357 return res;
2358}
2359
460a09c1 2360static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 2361{
4c4fd3f8 2362 if (a > b)
6ddbc6e4
PB
2363 return a - b;
2364 else
2365 return 0;
2366}
2367
2368static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2369{
2370 uint8_t res;
2371 res = a + b;
2372 if (res < a)
2373 res = 0xff;
2374 return res;
2375}
2376
2377static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2378{
4c4fd3f8 2379 if (a > b)
6ddbc6e4
PB
2380 return a - b;
2381 else
2382 return 0;
2383}
2384
2385#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2386#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2387#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2388#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2389#define PFX uq
2390
2391#include "op_addsub.h"
2392
2393/* Signed modulo arithmetic. */
2394#define SARITH16(a, b, n, op) do { \
2395 int32_t sum; \
db6e2e65 2396 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
2397 RESULT(sum, n, 16); \
2398 if (sum >= 0) \
2399 ge |= 3 << (n * 2); \
2400 } while(0)
2401
2402#define SARITH8(a, b, n, op) do { \
2403 int32_t sum; \
db6e2e65 2404 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
2405 RESULT(sum, n, 8); \
2406 if (sum >= 0) \
2407 ge |= 1 << n; \
2408 } while(0)
2409
2410
2411#define ADD16(a, b, n) SARITH16(a, b, n, +)
2412#define SUB16(a, b, n) SARITH16(a, b, n, -)
2413#define ADD8(a, b, n) SARITH8(a, b, n, +)
2414#define SUB8(a, b, n) SARITH8(a, b, n, -)
2415#define PFX s
2416#define ARITH_GE
2417
2418#include "op_addsub.h"
2419
2420/* Unsigned modulo arithmetic. */
2421#define ADD16(a, b, n) do { \
2422 uint32_t sum; \
2423 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2424 RESULT(sum, n, 16); \
a87aa10b 2425 if ((sum >> 16) == 1) \
6ddbc6e4
PB
2426 ge |= 3 << (n * 2); \
2427 } while(0)
2428
2429#define ADD8(a, b, n) do { \
2430 uint32_t sum; \
2431 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2432 RESULT(sum, n, 8); \
a87aa10b
AZ
2433 if ((sum >> 8) == 1) \
2434 ge |= 1 << n; \
6ddbc6e4
PB
2435 } while(0)
2436
2437#define SUB16(a, b, n) do { \
2438 uint32_t sum; \
2439 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2440 RESULT(sum, n, 16); \
2441 if ((sum >> 16) == 0) \
2442 ge |= 3 << (n * 2); \
2443 } while(0)
2444
2445#define SUB8(a, b, n) do { \
2446 uint32_t sum; \
2447 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2448 RESULT(sum, n, 8); \
2449 if ((sum >> 8) == 0) \
a87aa10b 2450 ge |= 1 << n; \
6ddbc6e4
PB
2451 } while(0)
2452
2453#define PFX u
2454#define ARITH_GE
2455
2456#include "op_addsub.h"
2457
2458/* Halved signed arithmetic. */
2459#define ADD16(a, b, n) \
2460 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2461#define SUB16(a, b, n) \
2462 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2463#define ADD8(a, b, n) \
2464 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2465#define SUB8(a, b, n) \
2466 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2467#define PFX sh
2468
2469#include "op_addsub.h"
2470
2471/* Halved unsigned arithmetic. */
2472#define ADD16(a, b, n) \
2473 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2474#define SUB16(a, b, n) \
2475 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2476#define ADD8(a, b, n) \
2477 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2478#define SUB8(a, b, n) \
2479 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2480#define PFX uh
2481
2482#include "op_addsub.h"
2483
2484static inline uint8_t do_usad(uint8_t a, uint8_t b)
2485{
2486 if (a > b)
2487 return a - b;
2488 else
2489 return b - a;
2490}
2491
2492/* Unsigned sum of absolute byte differences. */
2493uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2494{
2495 uint32_t sum;
2496 sum = do_usad(a, b);
2497 sum += do_usad(a >> 8, b >> 8);
2498 sum += do_usad(a >> 16, b >>16);
2499 sum += do_usad(a >> 24, b >> 24);
2500 return sum;
2501}
2502
2503/* For ARMv6 SEL instruction. */
2504uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2505{
2506 uint32_t mask;
2507
2508 mask = 0;
2509 if (flags & 1)
2510 mask |= 0xff;
2511 if (flags & 2)
2512 mask |= 0xff00;
2513 if (flags & 4)
2514 mask |= 0xff0000;
2515 if (flags & 8)
2516 mask |= 0xff000000;
2517 return (a & mask) | (b & ~mask);
2518}
2519
5e3f878a
PB
2520uint32_t HELPER(logicq_cc)(uint64_t val)
2521{
2522 return (val >> 32) | (val != 0);
2523}
4373f3ce
PB
2524
2525/* VFP support. We follow the convention used for VFP instrunctions:
2526 Single precition routines have a "s" suffix, double precision a
2527 "d" suffix. */
2528
2529/* Convert host exception flags to vfp form. */
2530static inline int vfp_exceptbits_from_host(int host_bits)
2531{
2532 int target_bits = 0;
2533
2534 if (host_bits & float_flag_invalid)
2535 target_bits |= 1;
2536 if (host_bits & float_flag_divbyzero)
2537 target_bits |= 2;
2538 if (host_bits & float_flag_overflow)
2539 target_bits |= 4;
36802b6b 2540 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
2541 target_bits |= 8;
2542 if (host_bits & float_flag_inexact)
2543 target_bits |= 0x10;
cecd8504
PM
2544 if (host_bits & float_flag_input_denormal)
2545 target_bits |= 0x80;
4373f3ce
PB
2546 return target_bits;
2547}
2548
0ecb72a5 2549uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
2550{
2551 int i;
2552 uint32_t fpscr;
2553
2554 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2555 | (env->vfp.vec_len << 16)
2556 | (env->vfp.vec_stride << 20);
2557 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 2558 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
2559 fpscr |= vfp_exceptbits_from_host(i);
2560 return fpscr;
2561}
2562
0ecb72a5 2563uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
2564{
2565 return HELPER(vfp_get_fpscr)(env);
2566}
2567
4373f3ce
PB
2568/* Convert vfp exception flags to target form. */
2569static inline int vfp_exceptbits_to_host(int target_bits)
2570{
2571 int host_bits = 0;
2572
2573 if (target_bits & 1)
2574 host_bits |= float_flag_invalid;
2575 if (target_bits & 2)
2576 host_bits |= float_flag_divbyzero;
2577 if (target_bits & 4)
2578 host_bits |= float_flag_overflow;
2579 if (target_bits & 8)
2580 host_bits |= float_flag_underflow;
2581 if (target_bits & 0x10)
2582 host_bits |= float_flag_inexact;
cecd8504
PM
2583 if (target_bits & 0x80)
2584 host_bits |= float_flag_input_denormal;
4373f3ce
PB
2585 return host_bits;
2586}
2587
0ecb72a5 2588void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
2589{
2590 int i;
2591 uint32_t changed;
2592
2593 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2594 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2595 env->vfp.vec_len = (val >> 16) & 7;
2596 env->vfp.vec_stride = (val >> 20) & 3;
2597
2598 changed ^= val;
2599 if (changed & (3 << 22)) {
2600 i = (val >> 22) & 3;
2601 switch (i) {
2602 case 0:
2603 i = float_round_nearest_even;
2604 break;
2605 case 1:
2606 i = float_round_up;
2607 break;
2608 case 2:
2609 i = float_round_down;
2610 break;
2611 case 3:
2612 i = float_round_to_zero;
2613 break;
2614 }
2615 set_float_rounding_mode(i, &env->vfp.fp_status);
2616 }
cecd8504 2617 if (changed & (1 << 24)) {
fe76d976 2618 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
2619 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2620 }
5c7908ed
PB
2621 if (changed & (1 << 25))
2622 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 2623
b12c390b 2624 i = vfp_exceptbits_to_host(val);
4373f3ce 2625 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 2626 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
2627}
2628
0ecb72a5 2629void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
2630{
2631 HELPER(vfp_set_fpscr)(env, val);
2632}
2633
4373f3ce
PB
2634#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2635
2636#define VFP_BINOP(name) \
ae1857ec 2637float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 2638{ \
ae1857ec
PM
2639 float_status *fpst = fpstp; \
2640 return float32_ ## name(a, b, fpst); \
4373f3ce 2641} \
ae1857ec 2642float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 2643{ \
ae1857ec
PM
2644 float_status *fpst = fpstp; \
2645 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
2646}
2647VFP_BINOP(add)
2648VFP_BINOP(sub)
2649VFP_BINOP(mul)
2650VFP_BINOP(div)
2651#undef VFP_BINOP
2652
2653float32 VFP_HELPER(neg, s)(float32 a)
2654{
2655 return float32_chs(a);
2656}
2657
2658float64 VFP_HELPER(neg, d)(float64 a)
2659{
66230e0d 2660 return float64_chs(a);
4373f3ce
PB
2661}
2662
2663float32 VFP_HELPER(abs, s)(float32 a)
2664{
2665 return float32_abs(a);
2666}
2667
2668float64 VFP_HELPER(abs, d)(float64 a)
2669{
66230e0d 2670 return float64_abs(a);
4373f3ce
PB
2671}
2672
0ecb72a5 2673float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
2674{
2675 return float32_sqrt(a, &env->vfp.fp_status);
2676}
2677
0ecb72a5 2678float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
2679{
2680 return float64_sqrt(a, &env->vfp.fp_status);
2681}
2682
2683/* XXX: check quiet/signaling case */
2684#define DO_VFP_cmp(p, type) \
0ecb72a5 2685void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
2686{ \
2687 uint32_t flags; \
2688 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2689 case 0: flags = 0x6; break; \
2690 case -1: flags = 0x8; break; \
2691 case 1: flags = 0x2; break; \
2692 default: case 2: flags = 0x3; break; \
2693 } \
2694 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2695 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2696} \
0ecb72a5 2697void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
2698{ \
2699 uint32_t flags; \
2700 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2701 case 0: flags = 0x6; break; \
2702 case -1: flags = 0x8; break; \
2703 case 1: flags = 0x2; break; \
2704 default: case 2: flags = 0x3; break; \
2705 } \
2706 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2707 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2708}
2709DO_VFP_cmp(s, float32)
2710DO_VFP_cmp(d, float64)
2711#undef DO_VFP_cmp
2712
5500b06c 2713/* Integer to float and float to integer conversions */
4373f3ce 2714
5500b06c
PM
2715#define CONV_ITOF(name, fsz, sign) \
2716 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2717{ \
2718 float_status *fpst = fpstp; \
85836979 2719 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
2720}
2721
5500b06c
PM
2722#define CONV_FTOI(name, fsz, sign, round) \
2723uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2724{ \
2725 float_status *fpst = fpstp; \
2726 if (float##fsz##_is_any_nan(x)) { \
2727 float_raise(float_flag_invalid, fpst); \
2728 return 0; \
2729 } \
2730 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
2731}
2732
5500b06c
PM
2733#define FLOAT_CONVS(name, p, fsz, sign) \
2734CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2735CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2736CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 2737
5500b06c
PM
2738FLOAT_CONVS(si, s, 32, )
2739FLOAT_CONVS(si, d, 64, )
2740FLOAT_CONVS(ui, s, 32, u)
2741FLOAT_CONVS(ui, d, 64, u)
4373f3ce 2742
5500b06c
PM
2743#undef CONV_ITOF
2744#undef CONV_FTOI
2745#undef FLOAT_CONVS
4373f3ce
PB
2746
2747/* floating point conversion */
0ecb72a5 2748float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 2749{
2d627737
PM
2750 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2751 /* ARM requires that S<->D conversion of any kind of NaN generates
2752 * a quiet NaN by forcing the most significant frac bit to 1.
2753 */
2754 return float64_maybe_silence_nan(r);
4373f3ce
PB
2755}
2756
0ecb72a5 2757float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 2758{
2d627737
PM
2759 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2760 /* ARM requires that S<->D conversion of any kind of NaN generates
2761 * a quiet NaN by forcing the most significant frac bit to 1.
2762 */
2763 return float32_maybe_silence_nan(r);
4373f3ce
PB
2764}
2765
2766/* VFP3 fixed point conversion. */
622465e1 2767#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
5500b06c
PM
2768float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2769 void *fpstp) \
4373f3ce 2770{ \
5500b06c 2771 float_status *fpst = fpstp; \
622465e1 2772 float##fsz tmp; \
5500b06c
PM
2773 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2774 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4373f3ce 2775} \
5500b06c
PM
2776uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2777 void *fpstp) \
4373f3ce 2778{ \
5500b06c 2779 float_status *fpst = fpstp; \
622465e1
PM
2780 float##fsz tmp; \
2781 if (float##fsz##_is_any_nan(x)) { \
5500b06c 2782 float_raise(float_flag_invalid, fpst); \
622465e1 2783 return 0; \
09d9487f 2784 } \
5500b06c
PM
2785 tmp = float##fsz##_scalbn(x, shift, fpst); \
2786 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
622465e1
PM
2787}
2788
2789VFP_CONV_FIX(sh, d, 64, int16, )
2790VFP_CONV_FIX(sl, d, 64, int32, )
2791VFP_CONV_FIX(uh, d, 64, uint16, u)
2792VFP_CONV_FIX(ul, d, 64, uint32, u)
2793VFP_CONV_FIX(sh, s, 32, int16, )
2794VFP_CONV_FIX(sl, s, 32, int32, )
2795VFP_CONV_FIX(uh, s, 32, uint16, u)
2796VFP_CONV_FIX(ul, s, 32, uint32, u)
4373f3ce
PB
2797#undef VFP_CONV_FIX
2798
60011498 2799/* Half precision conversions. */
0ecb72a5 2800static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 2801{
60011498 2802 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
2803 float32 r = float16_to_float32(make_float16(a), ieee, s);
2804 if (ieee) {
2805 return float32_maybe_silence_nan(r);
2806 }
2807 return r;
60011498
PB
2808}
2809
0ecb72a5 2810static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 2811{
60011498 2812 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
2813 float16 r = float32_to_float16(a, ieee, s);
2814 if (ieee) {
2815 r = float16_maybe_silence_nan(r);
2816 }
2817 return float16_val(r);
60011498
PB
2818}
2819
0ecb72a5 2820float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
2821{
2822 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2823}
2824
0ecb72a5 2825uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
2826{
2827 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2828}
2829
0ecb72a5 2830float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
2831{
2832 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2833}
2834
0ecb72a5 2835uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
2836{
2837 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2838}
2839
dda3ec49 2840#define float32_two make_float32(0x40000000)
6aae3df1
PM
2841#define float32_three make_float32(0x40400000)
2842#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 2843
0ecb72a5 2844float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 2845{
dda3ec49
PM
2846 float_status *s = &env->vfp.standard_fp_status;
2847 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2848 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
2849 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2850 float_raise(float_flag_input_denormal, s);
2851 }
dda3ec49
PM
2852 return float32_two;
2853 }
2854 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
2855}
2856
0ecb72a5 2857float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 2858{
71826966 2859 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
2860 float32 product;
2861 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2862 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
2863 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2864 float_raise(float_flag_input_denormal, s);
2865 }
6aae3df1 2866 return float32_one_point_five;
9ea62f57 2867 }
6aae3df1
PM
2868 product = float32_mul(a, b, s);
2869 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
2870}
2871
8f8e3aa4
PB
2872/* NEON helpers. */
2873
56bf4fe2
CL
2874/* Constants 256 and 512 are used in some helpers; we avoid relying on
2875 * int->float conversions at run-time. */
2876#define float64_256 make_float64(0x4070000000000000LL)
2877#define float64_512 make_float64(0x4080000000000000LL)
2878
fe0e4872
CL
2879/* The algorithm that must be used to calculate the estimate
2880 * is specified by the ARM ARM.
2881 */
0ecb72a5 2882static float64 recip_estimate(float64 a, CPUARMState *env)
fe0e4872 2883{
1146a817
PM
2884 /* These calculations mustn't set any fp exception flags,
2885 * so we use a local copy of the fp_status.
2886 */
2887 float_status dummy_status = env->vfp.standard_fp_status;
2888 float_status *s = &dummy_status;
fe0e4872
CL
2889 /* q = (int)(a * 512.0) */
2890 float64 q = float64_mul(float64_512, a, s);
2891 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2892
2893 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2894 q = int64_to_float64(q_int, s);
2895 q = float64_add(q, float64_half, s);
2896 q = float64_div(q, float64_512, s);
2897 q = float64_div(float64_one, q, s);
2898
2899 /* s = (int)(256.0 * r + 0.5) */
2900 q = float64_mul(q, float64_256, s);
2901 q = float64_add(q, float64_half, s);
2902 q_int = float64_to_int64_round_to_zero(q, s);
2903
2904 /* return (double)s / 256.0 */
2905 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2906}
2907
0ecb72a5 2908float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
4373f3ce 2909{
fe0e4872
CL
2910 float_status *s = &env->vfp.standard_fp_status;
2911 float64 f64;
2912 uint32_t val32 = float32_val(a);
2913
2914 int result_exp;
2915 int a_exp = (val32 & 0x7f800000) >> 23;
2916 int sign = val32 & 0x80000000;
2917
2918 if (float32_is_any_nan(a)) {
2919 if (float32_is_signaling_nan(a)) {
2920 float_raise(float_flag_invalid, s);
2921 }
2922 return float32_default_nan;
2923 } else if (float32_is_infinity(a)) {
2924 return float32_set_sign(float32_zero, float32_is_neg(a));
2925 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
2926 if (!float32_is_zero(a)) {
2927 float_raise(float_flag_input_denormal, s);
2928 }
fe0e4872
CL
2929 float_raise(float_flag_divbyzero, s);
2930 return float32_set_sign(float32_infinity, float32_is_neg(a));
2931 } else if (a_exp >= 253) {
2932 float_raise(float_flag_underflow, s);
2933 return float32_set_sign(float32_zero, float32_is_neg(a));
2934 }
2935
2936 f64 = make_float64((0x3feULL << 52)
2937 | ((int64_t)(val32 & 0x7fffff) << 29));
2938
2939 result_exp = 253 - a_exp;
2940
2941 f64 = recip_estimate(f64, env);
2942
2943 val32 = sign
2944 | ((result_exp & 0xff) << 23)
2945 | ((float64_val(f64) >> 29) & 0x7fffff);
2946 return make_float32(val32);
4373f3ce
PB
2947}
2948
e07be5d2
CL
2949/* The algorithm that must be used to calculate the estimate
2950 * is specified by the ARM ARM.
2951 */
0ecb72a5 2952static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
e07be5d2 2953{
1146a817
PM
2954 /* These calculations mustn't set any fp exception flags,
2955 * so we use a local copy of the fp_status.
2956 */
2957 float_status dummy_status = env->vfp.standard_fp_status;
2958 float_status *s = &dummy_status;
e07be5d2
CL
2959 float64 q;
2960 int64_t q_int;
2961
2962 if (float64_lt(a, float64_half, s)) {
2963 /* range 0.25 <= a < 0.5 */
2964
2965 /* a in units of 1/512 rounded down */
2966 /* q0 = (int)(a * 512.0); */
2967 q = float64_mul(float64_512, a, s);
2968 q_int = float64_to_int64_round_to_zero(q, s);
2969
2970 /* reciprocal root r */
2971 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2972 q = int64_to_float64(q_int, s);
2973 q = float64_add(q, float64_half, s);
2974 q = float64_div(q, float64_512, s);
2975 q = float64_sqrt(q, s);
2976 q = float64_div(float64_one, q, s);
2977 } else {
2978 /* range 0.5 <= a < 1.0 */
2979
2980 /* a in units of 1/256 rounded down */
2981 /* q1 = (int)(a * 256.0); */
2982 q = float64_mul(float64_256, a, s);
2983 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2984
2985 /* reciprocal root r */
2986 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2987 q = int64_to_float64(q_int, s);
2988 q = float64_add(q, float64_half, s);
2989 q = float64_div(q, float64_256, s);
2990 q = float64_sqrt(q, s);
2991 q = float64_div(float64_one, q, s);
2992 }
2993 /* r in units of 1/256 rounded to nearest */
2994 /* s = (int)(256.0 * r + 0.5); */
2995
2996 q = float64_mul(q, float64_256,s );
2997 q = float64_add(q, float64_half, s);
2998 q_int = float64_to_int64_round_to_zero(q, s);
2999
3000 /* return (double)s / 256.0;*/
3001 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3002}
3003
0ecb72a5 3004float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4373f3ce 3005{
e07be5d2
CL
3006 float_status *s = &env->vfp.standard_fp_status;
3007 int result_exp;
3008 float64 f64;
3009 uint32_t val;
3010 uint64_t val64;
3011
3012 val = float32_val(a);
3013
3014 if (float32_is_any_nan(a)) {
3015 if (float32_is_signaling_nan(a)) {
3016 float_raise(float_flag_invalid, s);
3017 }
3018 return float32_default_nan;
3019 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
3020 if (!float32_is_zero(a)) {
3021 float_raise(float_flag_input_denormal, s);
3022 }
e07be5d2
CL
3023 float_raise(float_flag_divbyzero, s);
3024 return float32_set_sign(float32_infinity, float32_is_neg(a));
3025 } else if (float32_is_neg(a)) {
3026 float_raise(float_flag_invalid, s);
3027 return float32_default_nan;
3028 } else if (float32_is_infinity(a)) {
3029 return float32_zero;
3030 }
3031
3032 /* Normalize to a double-precision value between 0.25 and 1.0,
3033 * preserving the parity of the exponent. */
3034 if ((val & 0x800000) == 0) {
3035 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3036 | (0x3feULL << 52)
3037 | ((uint64_t)(val & 0x7fffff) << 29));
3038 } else {
3039 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3040 | (0x3fdULL << 52)
3041 | ((uint64_t)(val & 0x7fffff) << 29));
3042 }
3043
3044 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3045
3046 f64 = recip_sqrt_estimate(f64, env);
3047
3048 val64 = float64_val(f64);
3049
26cc6abf 3050 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
3051 | ((val64 >> 29) & 0x7fffff);
3052 return make_float32(val);
4373f3ce
PB
3053}
3054
0ecb72a5 3055uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4373f3ce 3056{
fe0e4872
CL
3057 float64 f64;
3058
3059 if ((a & 0x80000000) == 0) {
3060 return 0xffffffff;
3061 }
3062
3063 f64 = make_float64((0x3feULL << 52)
3064 | ((int64_t)(a & 0x7fffffff) << 21));
3065
3066 f64 = recip_estimate (f64, env);
3067
3068 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
3069}
3070
0ecb72a5 3071uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4373f3ce 3072{
e07be5d2
CL
3073 float64 f64;
3074
3075 if ((a & 0xc0000000) == 0) {
3076 return 0xffffffff;
3077 }
3078
3079 if (a & 0x80000000) {
3080 f64 = make_float64((0x3feULL << 52)
3081 | ((uint64_t)(a & 0x7fffffff) << 21));
3082 } else { /* bits 31-30 == '01' */
3083 f64 = make_float64((0x3fdULL << 52)
3084 | ((uint64_t)(a & 0x3fffffff) << 22));
3085 }
3086
3087 f64 = recip_sqrt_estimate(f64, env);
3088
3089 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 3090}
fe1479c3 3091
da97f52c
PM
3092/* VFPv4 fused multiply-accumulate */
3093float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3094{
3095 float_status *fpst = fpstp;
3096 return float32_muladd(a, b, c, 0, fpst);
3097}
3098
3099float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3100{
3101 float_status *fpst = fpstp;
3102 return float64_muladd(a, b, c, 0, fpst);
3103}
3104
0ecb72a5 3105void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
fe1479c3
PB
3106{
3107 val &= 1;
3108 if (env->teecr != val) {
3109 env->teecr = val;
3110 tb_flush(env);
3111 }
3112}
This page took 1.088737 seconds and 4 git commands to generate.