]> Git Repo - qemu.git/blame - target-arm/helper.c
Implement (very) basic Thumb2-EE support. This doesn't actually implement
[qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31
FB
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4
5#include "cpu.h"
6#include "exec-all.h"
9ee6e8bb 7#include "gdbstub.h"
b26eefb6 8#include "helpers.h"
ca10f867 9#include "qemu-common.h"
9ee6e8bb
PB
10
11static uint32_t cortexa8_cp15_c0_c1[8] =
12{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
13
14static uint32_t cortexa8_cp15_c0_c2[8] =
15{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
16
17static uint32_t mpcore_cp15_c0_c1[8] =
18{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
19
20static uint32_t mpcore_cp15_c0_c2[8] =
21{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
22
23static uint32_t arm1136_cp15_c0_c1[8] =
24{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
25
26static uint32_t arm1136_cp15_c0_c2[8] =
27{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
b5ff1b31 28
aaed909a
FB
29static uint32_t cpu_arm_find_by_name(const char *name);
30
f3d6b95e
PB
31static inline void set_feature(CPUARMState *env, int feature)
32{
33 env->features |= 1u << feature;
34}
35
36static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
37{
38 env->cp15.c0_cpuid = id;
39 switch (id) {
40 case ARM_CPUID_ARM926:
41 set_feature(env, ARM_FEATURE_VFP);
42 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
c1713132 43 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 44 env->cp15.c1_sys = 0x00090078;
f3d6b95e 45 break;
ce819861
PB
46 case ARM_CPUID_ARM946:
47 set_feature(env, ARM_FEATURE_MPU);
48 env->cp15.c0_cachetype = 0x0f004006;
610c3c8a 49 env->cp15.c1_sys = 0x00000078;
ce819861 50 break;
f3d6b95e
PB
51 case ARM_CPUID_ARM1026:
52 set_feature(env, ARM_FEATURE_VFP);
53 set_feature(env, ARM_FEATURE_AUXCR);
54 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
c1713132 55 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 56 env->cp15.c1_sys = 0x00090078;
c1713132 57 break;
827df9f3 58 case ARM_CPUID_ARM1136_R2:
9ee6e8bb
PB
59 case ARM_CPUID_ARM1136:
60 set_feature(env, ARM_FEATURE_V6);
61 set_feature(env, ARM_FEATURE_VFP);
62 set_feature(env, ARM_FEATURE_AUXCR);
63 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
64 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
65 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
66 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 67 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
9ee6e8bb
PB
68 env->cp15.c0_cachetype = 0x1dd20d2;
69 break;
70 case ARM_CPUID_ARM11MPCORE:
71 set_feature(env, ARM_FEATURE_V6);
72 set_feature(env, ARM_FEATURE_V6K);
73 set_feature(env, ARM_FEATURE_VFP);
74 set_feature(env, ARM_FEATURE_AUXCR);
75 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
76 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
77 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
78 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 79 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
9ee6e8bb
PB
80 env->cp15.c0_cachetype = 0x1dd20d2;
81 break;
82 case ARM_CPUID_CORTEXA8:
83 set_feature(env, ARM_FEATURE_V6);
84 set_feature(env, ARM_FEATURE_V6K);
85 set_feature(env, ARM_FEATURE_V7);
86 set_feature(env, ARM_FEATURE_AUXCR);
87 set_feature(env, ARM_FEATURE_THUMB2);
88 set_feature(env, ARM_FEATURE_VFP);
89 set_feature(env, ARM_FEATURE_VFP3);
90 set_feature(env, ARM_FEATURE_NEON);
fe1479c3 91 set_feature(env, ARM_FEATURE_THUMB2EE);
9ee6e8bb
PB
92 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
93 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
94 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
95 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 96 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
9ee6e8bb
PB
97 env->cp15.c0_cachetype = 0x1dd20d2;
98 break;
99 case ARM_CPUID_CORTEXM3:
100 set_feature(env, ARM_FEATURE_V6);
101 set_feature(env, ARM_FEATURE_THUMB2);
102 set_feature(env, ARM_FEATURE_V7);
103 set_feature(env, ARM_FEATURE_M);
104 set_feature(env, ARM_FEATURE_DIV);
105 break;
106 case ARM_CPUID_ANY: /* For userspace emulation. */
107 set_feature(env, ARM_FEATURE_V6);
108 set_feature(env, ARM_FEATURE_V6K);
109 set_feature(env, ARM_FEATURE_V7);
110 set_feature(env, ARM_FEATURE_THUMB2);
111 set_feature(env, ARM_FEATURE_VFP);
112 set_feature(env, ARM_FEATURE_VFP3);
113 set_feature(env, ARM_FEATURE_NEON);
fe1479c3 114 set_feature(env, ARM_FEATURE_THUMB2EE);
9ee6e8bb
PB
115 set_feature(env, ARM_FEATURE_DIV);
116 break;
c3d2689d
AZ
117 case ARM_CPUID_TI915T:
118 case ARM_CPUID_TI925T:
119 set_feature(env, ARM_FEATURE_OMAPCP);
120 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
121 env->cp15.c0_cachetype = 0x5109149;
122 env->cp15.c1_sys = 0x00000070;
123 env->cp15.c15_i_max = 0x000;
124 env->cp15.c15_i_min = 0xff0;
125 break;
c1713132
AZ
126 case ARM_CPUID_PXA250:
127 case ARM_CPUID_PXA255:
128 case ARM_CPUID_PXA260:
129 case ARM_CPUID_PXA261:
130 case ARM_CPUID_PXA262:
131 set_feature(env, ARM_FEATURE_XSCALE);
132 /* JTAG_ID is ((id << 28) | 0x09265013) */
133 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 134 env->cp15.c1_sys = 0x00000078;
c1713132
AZ
135 break;
136 case ARM_CPUID_PXA270_A0:
137 case ARM_CPUID_PXA270_A1:
138 case ARM_CPUID_PXA270_B0:
139 case ARM_CPUID_PXA270_B1:
140 case ARM_CPUID_PXA270_C0:
141 case ARM_CPUID_PXA270_C5:
142 set_feature(env, ARM_FEATURE_XSCALE);
143 /* JTAG_ID is ((id << 28) | 0x09265013) */
18c9b560
AZ
144 set_feature(env, ARM_FEATURE_IWMMXT);
145 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
c1713132 146 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 147 env->cp15.c1_sys = 0x00000078;
f3d6b95e
PB
148 break;
149 default:
150 cpu_abort(env, "Bad CPU ID: %x\n", id);
151 break;
152 }
153}
154
40f137e1
PB
155void cpu_reset(CPUARMState *env)
156{
f3d6b95e
PB
157 uint32_t id;
158 id = env->cp15.c0_cpuid;
159 memset(env, 0, offsetof(CPUARMState, breakpoints));
160 if (id)
161 cpu_reset_model_id(env, id);
40f137e1
PB
162#if defined (CONFIG_USER_ONLY)
163 env->uncached_cpsr = ARM_CPU_MODE_USR;
164 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
165#else
166 /* SVC mode with interrupts disabled. */
167 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
9ee6e8bb
PB
168 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
169 clear at reset. */
170 if (IS_M(env))
171 env->uncached_cpsr &= ~CPSR_I;
40f137e1 172 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
b2fa1797 173 env->cp15.c2_base_mask = 0xffffc000u;
40f137e1
PB
174#endif
175 env->regs[15] = 0;
f3d6b95e 176 tlb_flush(env, 1);
40f137e1
PB
177}
178
56aebc89
PB
179static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
180{
181 int nregs;
182
183 /* VFP data registers are always little-endian. */
184 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
185 if (reg < nregs) {
186 stfq_le_p(buf, env->vfp.regs[reg]);
187 return 8;
188 }
189 if (arm_feature(env, ARM_FEATURE_NEON)) {
190 /* Aliases for Q regs. */
191 nregs += 16;
192 if (reg < nregs) {
193 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
194 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
195 return 16;
196 }
197 }
198 switch (reg - nregs) {
199 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
200 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
201 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
202 }
203 return 0;
204}
205
206static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
207{
208 int nregs;
209
210 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
211 if (reg < nregs) {
212 env->vfp.regs[reg] = ldfq_le_p(buf);
213 return 8;
214 }
215 if (arm_feature(env, ARM_FEATURE_NEON)) {
216 nregs += 16;
217 if (reg < nregs) {
218 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
219 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
220 return 16;
221 }
222 }
223 switch (reg - nregs) {
224 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
225 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
226 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
227 }
228 return 0;
229}
230
aaed909a 231CPUARMState *cpu_arm_init(const char *cpu_model)
40f137e1
PB
232{
233 CPUARMState *env;
aaed909a 234 uint32_t id;
b26eefb6 235 static int inited = 0;
40f137e1 236
aaed909a
FB
237 id = cpu_arm_find_by_name(cpu_model);
238 if (id == 0)
239 return NULL;
40f137e1
PB
240 env = qemu_mallocz(sizeof(CPUARMState));
241 if (!env)
242 return NULL;
243 cpu_exec_init(env);
b26eefb6
PB
244 if (!inited) {
245 inited = 1;
246 arm_translate_init();
247 }
248
01ba9816 249 env->cpu_model_str = cpu_model;
aaed909a 250 env->cp15.c0_cpuid = id;
40f137e1 251 cpu_reset(env);
56aebc89
PB
252 if (arm_feature(env, ARM_FEATURE_NEON)) {
253 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
254 51, "arm-neon.xml", 0);
255 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
256 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
257 35, "arm-vfp3.xml", 0);
258 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
259 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
260 19, "arm-vfp.xml", 0);
261 }
40f137e1
PB
262 return env;
263}
264
3371d272
PB
265struct arm_cpu_t {
266 uint32_t id;
267 const char *name;
268};
269
270static const struct arm_cpu_t arm_cpu_names[] = {
271 { ARM_CPUID_ARM926, "arm926"},
ce819861 272 { ARM_CPUID_ARM946, "arm946"},
3371d272 273 { ARM_CPUID_ARM1026, "arm1026"},
9ee6e8bb 274 { ARM_CPUID_ARM1136, "arm1136"},
827df9f3 275 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
9ee6e8bb
PB
276 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
277 { ARM_CPUID_CORTEXM3, "cortex-m3"},
278 { ARM_CPUID_CORTEXA8, "cortex-a8"},
c3d2689d 279 { ARM_CPUID_TI925T, "ti925t" },
c1713132
AZ
280 { ARM_CPUID_PXA250, "pxa250" },
281 { ARM_CPUID_PXA255, "pxa255" },
282 { ARM_CPUID_PXA260, "pxa260" },
283 { ARM_CPUID_PXA261, "pxa261" },
284 { ARM_CPUID_PXA262, "pxa262" },
285 { ARM_CPUID_PXA270, "pxa270" },
286 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
287 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
288 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
289 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
290 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
291 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
9ee6e8bb 292 { ARM_CPUID_ANY, "any"},
3371d272
PB
293 { 0, NULL}
294};
295
c732abe2 296void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
5adb4839
PB
297{
298 int i;
299
c732abe2 300 (*cpu_fprintf)(f, "Available CPUs:\n");
5adb4839 301 for (i = 0; arm_cpu_names[i].name; i++) {
c732abe2 302 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
5adb4839
PB
303 }
304}
305
aaed909a
FB
306/* return 0 if not found */
307static uint32_t cpu_arm_find_by_name(const char *name)
40f137e1 308{
3371d272
PB
309 int i;
310 uint32_t id;
311
312 id = 0;
3371d272
PB
313 for (i = 0; arm_cpu_names[i].name; i++) {
314 if (strcmp(name, arm_cpu_names[i].name) == 0) {
315 id = arm_cpu_names[i].id;
316 break;
317 }
318 }
aaed909a 319 return id;
40f137e1
PB
320}
321
322void cpu_arm_close(CPUARMState *env)
323{
324 free(env);
325}
326
2f4a40e5
AZ
327uint32_t cpsr_read(CPUARMState *env)
328{
329 int ZF;
6fbe23d5
PB
330 ZF = (env->ZF == 0);
331 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
332 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
333 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
334 | ((env->condexec_bits & 0xfc) << 8)
335 | (env->GE << 16);
336}
337
338void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
339{
2f4a40e5 340 if (mask & CPSR_NZCV) {
6fbe23d5
PB
341 env->ZF = (~val) & CPSR_Z;
342 env->NF = val;
2f4a40e5
AZ
343 env->CF = (val >> 29) & 1;
344 env->VF = (val << 3) & 0x80000000;
345 }
346 if (mask & CPSR_Q)
347 env->QF = ((val & CPSR_Q) != 0);
348 if (mask & CPSR_T)
349 env->thumb = ((val & CPSR_T) != 0);
350 if (mask & CPSR_IT_0_1) {
351 env->condexec_bits &= ~3;
352 env->condexec_bits |= (val >> 25) & 3;
353 }
354 if (mask & CPSR_IT_2_7) {
355 env->condexec_bits &= 3;
356 env->condexec_bits |= (val >> 8) & 0xfc;
357 }
358 if (mask & CPSR_GE) {
359 env->GE = (val >> 16) & 0xf;
360 }
361
362 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
363 switch_mode(env, val & CPSR_M);
364 }
365 mask &= ~CACHED_CPSR_BITS;
366 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
367}
368
b26eefb6
PB
369/* Sign/zero extend */
370uint32_t HELPER(sxtb16)(uint32_t x)
371{
372 uint32_t res;
373 res = (uint16_t)(int8_t)x;
374 res |= (uint32_t)(int8_t)(x >> 16) << 16;
375 return res;
376}
377
378uint32_t HELPER(uxtb16)(uint32_t x)
379{
380 uint32_t res;
381 res = (uint16_t)(uint8_t)x;
382 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
383 return res;
384}
385
f51bbbfe
PB
386uint32_t HELPER(clz)(uint32_t x)
387{
388 int count;
389 for (count = 32; x; count--)
390 x >>= 1;
391 return count;
392}
393
3670669c
PB
394int32_t HELPER(sdiv)(int32_t num, int32_t den)
395{
396 if (den == 0)
397 return 0;
398 return num / den;
399}
400
401uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
402{
403 if (den == 0)
404 return 0;
405 return num / den;
406}
407
408uint32_t HELPER(rbit)(uint32_t x)
409{
410 x = ((x & 0xff000000) >> 24)
411 | ((x & 0x00ff0000) >> 8)
412 | ((x & 0x0000ff00) << 8)
413 | ((x & 0x000000ff) << 24);
414 x = ((x & 0xf0f0f0f0) >> 4)
415 | ((x & 0x0f0f0f0f) << 4);
416 x = ((x & 0x88888888) >> 3)
417 | ((x & 0x44444444) >> 1)
418 | ((x & 0x22222222) << 1)
419 | ((x & 0x11111111) << 3);
420 return x;
421}
422
ad69471c
PB
423uint32_t HELPER(abs)(uint32_t x)
424{
425 return ((int32_t)x < 0) ? -x : x;
426}
427
5fafdf24 428#if defined(CONFIG_USER_ONLY)
b5ff1b31
FB
429
430void do_interrupt (CPUState *env)
431{
432 env->exception_index = -1;
433}
434
9ee6e8bb
PB
435/* Structure used to record exclusive memory locations. */
436typedef struct mmon_state {
437 struct mmon_state *next;
438 CPUARMState *cpu_env;
439 uint32_t addr;
440} mmon_state;
441
442/* Chain of current locks. */
443static mmon_state* mmon_head = NULL;
444
b5ff1b31 445int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
6ebbf390 446 int mmu_idx, int is_softmmu)
b5ff1b31
FB
447{
448 if (rw == 2) {
449 env->exception_index = EXCP_PREFETCH_ABORT;
450 env->cp15.c6_insn = address;
451 } else {
452 env->exception_index = EXCP_DATA_ABORT;
453 env->cp15.c6_data = address;
454 }
455 return 1;
456}
457
9ee6e8bb
PB
458static void allocate_mmon_state(CPUState *env)
459{
460 env->mmon_entry = malloc(sizeof (mmon_state));
461 if (!env->mmon_entry)
462 abort();
463 memset (env->mmon_entry, 0, sizeof (mmon_state));
464 env->mmon_entry->cpu_env = env;
465 mmon_head = env->mmon_entry;
466}
467
468/* Flush any monitor locks for the specified address. */
469static void flush_mmon(uint32_t addr)
470{
471 mmon_state *mon;
472
473 for (mon = mmon_head; mon; mon = mon->next)
474 {
475 if (mon->addr != addr)
476 continue;
477
478 mon->addr = 0;
479 break;
480 }
481}
482
483/* Mark an address for exclusive access. */
8f8e3aa4 484void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
9ee6e8bb
PB
485{
486 if (!env->mmon_entry)
487 allocate_mmon_state(env);
488 /* Clear any previous locks. */
489 flush_mmon(addr);
490 env->mmon_entry->addr = addr;
491}
492
493/* Test if an exclusive address is still exclusive. Returns zero
494 if the address is still exclusive. */
8f8e3aa4 495uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
9ee6e8bb
PB
496{
497 int res;
498
499 if (!env->mmon_entry)
500 return 1;
501 if (env->mmon_entry->addr == addr)
502 res = 0;
503 else
504 res = 1;
505 flush_mmon(addr);
506 return res;
507}
508
8f8e3aa4 509void HELPER(clrex)(CPUState *env)
9ee6e8bb
PB
510{
511 if (!(env->mmon_entry && env->mmon_entry->addr))
512 return;
513 flush_mmon(env->mmon_entry->addr);
514}
515
9b3c35e0 516target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
b5ff1b31
FB
517{
518 return addr;
519}
520
521/* These should probably raise undefined insn exceptions. */
8984bd2e 522void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
c1713132
AZ
523{
524 int op1 = (insn >> 8) & 0xf;
525 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
526 return;
527}
528
8984bd2e 529uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
c1713132
AZ
530{
531 int op1 = (insn >> 8) & 0xf;
532 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
533 return 0;
534}
535
8984bd2e 536void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
b5ff1b31
FB
537{
538 cpu_abort(env, "cp15 insn %08x\n", insn);
539}
540
8984bd2e 541uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
b5ff1b31
FB
542{
543 cpu_abort(env, "cp15 insn %08x\n", insn);
544 return 0;
545}
546
9ee6e8bb 547/* These should probably raise undefined insn exceptions. */
8984bd2e 548void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
549{
550 cpu_abort(env, "v7m_mrs %d\n", reg);
551}
552
8984bd2e 553uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
9ee6e8bb
PB
554{
555 cpu_abort(env, "v7m_mrs %d\n", reg);
556 return 0;
557}
558
b5ff1b31
FB
559void switch_mode(CPUState *env, int mode)
560{
561 if (mode != ARM_CPU_MODE_USR)
562 cpu_abort(env, "Tried to switch out of user mode\n");
563}
564
b0109805 565void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
566{
567 cpu_abort(env, "banked r13 write\n");
568}
569
b0109805 570uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
9ee6e8bb
PB
571{
572 cpu_abort(env, "banked r13 read\n");
573 return 0;
574}
575
b5ff1b31
FB
576#else
577
8e71621f
PB
578extern int semihosting_enabled;
579
b5ff1b31
FB
580/* Map CPU modes onto saved register banks. */
581static inline int bank_number (int mode)
582{
583 switch (mode) {
584 case ARM_CPU_MODE_USR:
585 case ARM_CPU_MODE_SYS:
586 return 0;
587 case ARM_CPU_MODE_SVC:
588 return 1;
589 case ARM_CPU_MODE_ABT:
590 return 2;
591 case ARM_CPU_MODE_UND:
592 return 3;
593 case ARM_CPU_MODE_IRQ:
594 return 4;
595 case ARM_CPU_MODE_FIQ:
596 return 5;
597 }
598 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
599 return -1;
600}
601
602void switch_mode(CPUState *env, int mode)
603{
604 int old_mode;
605 int i;
606
607 old_mode = env->uncached_cpsr & CPSR_M;
608 if (mode == old_mode)
609 return;
610
611 if (old_mode == ARM_CPU_MODE_FIQ) {
612 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 613 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
614 } else if (mode == ARM_CPU_MODE_FIQ) {
615 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 616 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
617 }
618
619 i = bank_number(old_mode);
620 env->banked_r13[i] = env->regs[13];
621 env->banked_r14[i] = env->regs[14];
622 env->banked_spsr[i] = env->spsr;
623
624 i = bank_number(mode);
625 env->regs[13] = env->banked_r13[i];
626 env->regs[14] = env->banked_r14[i];
627 env->spsr = env->banked_spsr[i];
628}
629
9ee6e8bb
PB
630static void v7m_push(CPUARMState *env, uint32_t val)
631{
632 env->regs[13] -= 4;
633 stl_phys(env->regs[13], val);
634}
635
636static uint32_t v7m_pop(CPUARMState *env)
637{
638 uint32_t val;
639 val = ldl_phys(env->regs[13]);
640 env->regs[13] += 4;
641 return val;
642}
643
644/* Switch to V7M main or process stack pointer. */
645static void switch_v7m_sp(CPUARMState *env, int process)
646{
647 uint32_t tmp;
648 if (env->v7m.current_sp != process) {
649 tmp = env->v7m.other_sp;
650 env->v7m.other_sp = env->regs[13];
651 env->regs[13] = tmp;
652 env->v7m.current_sp = process;
653 }
654}
655
656static void do_v7m_exception_exit(CPUARMState *env)
657{
658 uint32_t type;
659 uint32_t xpsr;
660
661 type = env->regs[15];
662 if (env->v7m.exception != 0)
663 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
664
665 /* Switch to the target stack. */
666 switch_v7m_sp(env, (type & 4) != 0);
667 /* Pop registers. */
668 env->regs[0] = v7m_pop(env);
669 env->regs[1] = v7m_pop(env);
670 env->regs[2] = v7m_pop(env);
671 env->regs[3] = v7m_pop(env);
672 env->regs[12] = v7m_pop(env);
673 env->regs[14] = v7m_pop(env);
674 env->regs[15] = v7m_pop(env);
675 xpsr = v7m_pop(env);
676 xpsr_write(env, xpsr, 0xfffffdff);
677 /* Undo stack alignment. */
678 if (xpsr & 0x200)
679 env->regs[13] |= 4;
680 /* ??? The exception return type specifies Thread/Handler mode. However
681 this is also implied by the xPSR value. Not sure what to do
682 if there is a mismatch. */
683 /* ??? Likewise for mismatches between the CONTROL register and the stack
684 pointer. */
685}
686
687void do_interrupt_v7m(CPUARMState *env)
688{
689 uint32_t xpsr = xpsr_read(env);
690 uint32_t lr;
691 uint32_t addr;
692
693 lr = 0xfffffff1;
694 if (env->v7m.current_sp)
695 lr |= 4;
696 if (env->v7m.exception == 0)
697 lr |= 8;
698
699 /* For exceptions we just mark as pending on the NVIC, and let that
700 handle it. */
701 /* TODO: Need to escalate if the current priority is higher than the
702 one we're raising. */
703 switch (env->exception_index) {
704 case EXCP_UDEF:
705 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
706 return;
707 case EXCP_SWI:
708 env->regs[15] += 2;
709 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
710 return;
711 case EXCP_PREFETCH_ABORT:
712 case EXCP_DATA_ABORT:
713 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
714 return;
715 case EXCP_BKPT:
2ad207d4
PB
716 if (semihosting_enabled) {
717 int nr;
718 nr = lduw_code(env->regs[15]) & 0xff;
719 if (nr == 0xab) {
720 env->regs[15] += 2;
721 env->regs[0] = do_arm_semihosting(env);
722 return;
723 }
724 }
9ee6e8bb
PB
725 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
726 return;
727 case EXCP_IRQ:
728 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
729 break;
730 case EXCP_EXCEPTION_EXIT:
731 do_v7m_exception_exit(env);
732 return;
733 default:
734 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
735 return; /* Never happens. Keep compiler happy. */
736 }
737
738 /* Align stack pointer. */
739 /* ??? Should only do this if Configuration Control Register
740 STACKALIGN bit is set. */
741 if (env->regs[13] & 4) {
ab19b0ec 742 env->regs[13] -= 4;
9ee6e8bb
PB
743 xpsr |= 0x200;
744 }
6c95676b 745 /* Switch to the handler mode. */
9ee6e8bb
PB
746 v7m_push(env, xpsr);
747 v7m_push(env, env->regs[15]);
748 v7m_push(env, env->regs[14]);
749 v7m_push(env, env->regs[12]);
750 v7m_push(env, env->regs[3]);
751 v7m_push(env, env->regs[2]);
752 v7m_push(env, env->regs[1]);
753 v7m_push(env, env->regs[0]);
754 switch_v7m_sp(env, 0);
755 env->uncached_cpsr &= ~CPSR_IT;
756 env->regs[14] = lr;
757 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
758 env->regs[15] = addr & 0xfffffffe;
759 env->thumb = addr & 1;
760}
761
b5ff1b31
FB
762/* Handle a CPU exception. */
763void do_interrupt(CPUARMState *env)
764{
765 uint32_t addr;
766 uint32_t mask;
767 int new_mode;
768 uint32_t offset;
769
9ee6e8bb
PB
770 if (IS_M(env)) {
771 do_interrupt_v7m(env);
772 return;
773 }
b5ff1b31
FB
774 /* TODO: Vectored interrupt controller. */
775 switch (env->exception_index) {
776 case EXCP_UDEF:
777 new_mode = ARM_CPU_MODE_UND;
778 addr = 0x04;
779 mask = CPSR_I;
780 if (env->thumb)
781 offset = 2;
782 else
783 offset = 4;
784 break;
785 case EXCP_SWI:
8e71621f
PB
786 if (semihosting_enabled) {
787 /* Check for semihosting interrupt. */
788 if (env->thumb) {
789 mask = lduw_code(env->regs[15] - 2) & 0xff;
790 } else {
791 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
792 }
793 /* Only intercept calls from privileged modes, to provide some
794 semblance of security. */
795 if (((mask == 0x123456 && !env->thumb)
796 || (mask == 0xab && env->thumb))
797 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
798 env->regs[0] = do_arm_semihosting(env);
799 return;
800 }
801 }
b5ff1b31
FB
802 new_mode = ARM_CPU_MODE_SVC;
803 addr = 0x08;
804 mask = CPSR_I;
601d70b9 805 /* The PC already points to the next instruction. */
b5ff1b31
FB
806 offset = 0;
807 break;
06c949e6 808 case EXCP_BKPT:
9ee6e8bb 809 /* See if this is a semihosting syscall. */
2ad207d4 810 if (env->thumb && semihosting_enabled) {
9ee6e8bb
PB
811 mask = lduw_code(env->regs[15]) & 0xff;
812 if (mask == 0xab
813 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
814 env->regs[15] += 2;
815 env->regs[0] = do_arm_semihosting(env);
816 return;
817 }
818 }
819 /* Fall through to prefetch abort. */
820 case EXCP_PREFETCH_ABORT:
b5ff1b31
FB
821 new_mode = ARM_CPU_MODE_ABT;
822 addr = 0x0c;
823 mask = CPSR_A | CPSR_I;
824 offset = 4;
825 break;
826 case EXCP_DATA_ABORT:
827 new_mode = ARM_CPU_MODE_ABT;
828 addr = 0x10;
829 mask = CPSR_A | CPSR_I;
830 offset = 8;
831 break;
832 case EXCP_IRQ:
833 new_mode = ARM_CPU_MODE_IRQ;
834 addr = 0x18;
835 /* Disable IRQ and imprecise data aborts. */
836 mask = CPSR_A | CPSR_I;
837 offset = 4;
838 break;
839 case EXCP_FIQ:
840 new_mode = ARM_CPU_MODE_FIQ;
841 addr = 0x1c;
842 /* Disable FIQ, IRQ and imprecise data aborts. */
843 mask = CPSR_A | CPSR_I | CPSR_F;
844 offset = 4;
845 break;
846 default:
847 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
848 return; /* Never happens. Keep compiler happy. */
849 }
850 /* High vectors. */
851 if (env->cp15.c1_sys & (1 << 13)) {
852 addr += 0xffff0000;
853 }
854 switch_mode (env, new_mode);
855 env->spsr = cpsr_read(env);
9ee6e8bb
PB
856 /* Clear IT bits. */
857 env->condexec_bits = 0;
6d7e6326 858 /* Switch to the new mode, and switch to Arm mode. */
b5ff1b31 859 /* ??? Thumb interrupt handlers not implemented. */
6d7e6326 860 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
b5ff1b31 861 env->uncached_cpsr |= mask;
6d7e6326 862 env->thumb = 0;
b5ff1b31
FB
863 env->regs[14] = env->regs[15] + offset;
864 env->regs[15] = addr;
865 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
866}
867
868/* Check section/page access permissions.
869 Returns the page protection flags, or zero if the access is not
870 permitted. */
871static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
872 int is_user)
873{
9ee6e8bb
PB
874 int prot_ro;
875
b5ff1b31
FB
876 if (domain == 3)
877 return PAGE_READ | PAGE_WRITE;
878
9ee6e8bb
PB
879 if (access_type == 1)
880 prot_ro = 0;
881 else
882 prot_ro = PAGE_READ;
883
b5ff1b31
FB
884 switch (ap) {
885 case 0:
78600320 886 if (access_type == 1)
b5ff1b31
FB
887 return 0;
888 switch ((env->cp15.c1_sys >> 8) & 3) {
889 case 1:
890 return is_user ? 0 : PAGE_READ;
891 case 2:
892 return PAGE_READ;
893 default:
894 return 0;
895 }
896 case 1:
897 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
898 case 2:
899 if (is_user)
9ee6e8bb 900 return prot_ro;
b5ff1b31
FB
901 else
902 return PAGE_READ | PAGE_WRITE;
903 case 3:
904 return PAGE_READ | PAGE_WRITE;
d4934d18 905 case 4: /* Reserved. */
9ee6e8bb
PB
906 return 0;
907 case 5:
908 return is_user ? 0 : prot_ro;
909 case 6:
910 return prot_ro;
d4934d18
PB
911 case 7:
912 if (!arm_feature (env, ARM_FEATURE_V7))
913 return 0;
914 return prot_ro;
b5ff1b31
FB
915 default:
916 abort();
917 }
918}
919
b2fa1797
PB
920static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
921{
922 uint32_t table;
923
924 if (address & env->cp15.c2_mask)
925 table = env->cp15.c2_base1 & 0xffffc000;
926 else
927 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
928
929 table |= (address >> 18) & 0x3ffc;
930 return table;
931}
932
9ee6e8bb
PB
933static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
934 int is_user, uint32_t *phys_ptr, int *prot)
b5ff1b31
FB
935{
936 int code;
937 uint32_t table;
938 uint32_t desc;
939 int type;
940 int ap;
941 int domain;
942 uint32_t phys_addr;
943
9ee6e8bb
PB
944 /* Pagetable walk. */
945 /* Lookup l1 descriptor. */
b2fa1797 946 table = get_level1_table_address(env, address);
9ee6e8bb
PB
947 desc = ldl_phys(table);
948 type = (desc & 3);
949 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
950 if (type == 0) {
601d70b9 951 /* Section translation fault. */
9ee6e8bb
PB
952 code = 5;
953 goto do_fault;
954 }
955 if (domain == 0 || domain == 2) {
956 if (type == 2)
957 code = 9; /* Section domain fault. */
958 else
959 code = 11; /* Page domain fault. */
960 goto do_fault;
961 }
962 if (type == 2) {
963 /* 1Mb section. */
964 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
965 ap = (desc >> 10) & 3;
966 code = 13;
967 } else {
968 /* Lookup l2 entry. */
969 if (type == 1) {
970 /* Coarse pagetable. */
971 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
972 } else {
973 /* Fine pagetable. */
974 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
975 }
976 desc = ldl_phys(table);
977 switch (desc & 3) {
978 case 0: /* Page translation fault. */
979 code = 7;
980 goto do_fault;
981 case 1: /* 64k page. */
982 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
983 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
ce819861 984 break;
9ee6e8bb
PB
985 case 2: /* 4k page. */
986 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
987 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
ce819861 988 break;
9ee6e8bb
PB
989 case 3: /* 1k page. */
990 if (type == 1) {
991 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
992 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
993 } else {
994 /* Page translation fault. */
995 code = 7;
996 goto do_fault;
997 }
998 } else {
999 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1000 }
1001 ap = (desc >> 4) & 3;
ce819861
PB
1002 break;
1003 default:
9ee6e8bb
PB
1004 /* Never happens, but compiler isn't smart enough to tell. */
1005 abort();
ce819861 1006 }
9ee6e8bb
PB
1007 code = 15;
1008 }
1009 *prot = check_ap(env, ap, domain, access_type, is_user);
1010 if (!*prot) {
1011 /* Access permission fault. */
1012 goto do_fault;
1013 }
1014 *phys_ptr = phys_addr;
1015 return 0;
1016do_fault:
1017 return code | (domain << 4);
1018}
1019
1020static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1021 int is_user, uint32_t *phys_ptr, int *prot)
1022{
1023 int code;
1024 uint32_t table;
1025 uint32_t desc;
1026 uint32_t xn;
1027 int type;
1028 int ap;
1029 int domain;
1030 uint32_t phys_addr;
1031
1032 /* Pagetable walk. */
1033 /* Lookup l1 descriptor. */
b2fa1797 1034 table = get_level1_table_address(env, address);
9ee6e8bb
PB
1035 desc = ldl_phys(table);
1036 type = (desc & 3);
1037 if (type == 0) {
601d70b9 1038 /* Section translation fault. */
9ee6e8bb
PB
1039 code = 5;
1040 domain = 0;
1041 goto do_fault;
1042 } else if (type == 2 && (desc & (1 << 18))) {
1043 /* Supersection. */
1044 domain = 0;
b5ff1b31 1045 } else {
9ee6e8bb
PB
1046 /* Section or page. */
1047 domain = (desc >> 4) & 0x1e;
1048 }
1049 domain = (env->cp15.c3 >> domain) & 3;
1050 if (domain == 0 || domain == 2) {
1051 if (type == 2)
1052 code = 9; /* Section domain fault. */
1053 else
1054 code = 11; /* Page domain fault. */
1055 goto do_fault;
1056 }
1057 if (type == 2) {
1058 if (desc & (1 << 18)) {
1059 /* Supersection. */
1060 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
b5ff1b31 1061 } else {
9ee6e8bb
PB
1062 /* Section. */
1063 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
b5ff1b31 1064 }
9ee6e8bb
PB
1065 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1066 xn = desc & (1 << 4);
1067 code = 13;
1068 } else {
1069 /* Lookup l2 entry. */
1070 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1071 desc = ldl_phys(table);
1072 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1073 switch (desc & 3) {
1074 case 0: /* Page translation fault. */
1075 code = 7;
b5ff1b31 1076 goto do_fault;
9ee6e8bb
PB
1077 case 1: /* 64k page. */
1078 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1079 xn = desc & (1 << 15);
1080 break;
1081 case 2: case 3: /* 4k page. */
1082 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1083 xn = desc & 1;
1084 break;
1085 default:
1086 /* Never happens, but compiler isn't smart enough to tell. */
1087 abort();
b5ff1b31 1088 }
9ee6e8bb
PB
1089 code = 15;
1090 }
1091 if (xn && access_type == 2)
1092 goto do_fault;
1093
d4934d18
PB
1094 /* The simplified model uses AP[0] as an access control bit. */
1095 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1096 /* Access flag fault. */
1097 code = (code == 15) ? 6 : 3;
1098 goto do_fault;
1099 }
9ee6e8bb
PB
1100 *prot = check_ap(env, ap, domain, access_type, is_user);
1101 if (!*prot) {
1102 /* Access permission fault. */
1103 goto do_fault;
b5ff1b31 1104 }
9ee6e8bb 1105 *phys_ptr = phys_addr;
b5ff1b31
FB
1106 return 0;
1107do_fault:
1108 return code | (domain << 4);
1109}
1110
9ee6e8bb
PB
1111static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1112 int is_user, uint32_t *phys_ptr, int *prot)
1113{
1114 int n;
1115 uint32_t mask;
1116 uint32_t base;
1117
1118 *phys_ptr = address;
1119 for (n = 7; n >= 0; n--) {
1120 base = env->cp15.c6_region[n];
1121 if ((base & 1) == 0)
1122 continue;
1123 mask = 1 << ((base >> 1) & 0x1f);
1124 /* Keep this shift separate from the above to avoid an
1125 (undefined) << 32. */
1126 mask = (mask << 1) - 1;
1127 if (((base ^ address) & ~mask) == 0)
1128 break;
1129 }
1130 if (n < 0)
1131 return 2;
1132
1133 if (access_type == 2) {
1134 mask = env->cp15.c5_insn;
1135 } else {
1136 mask = env->cp15.c5_data;
1137 }
1138 mask = (mask >> (n * 4)) & 0xf;
1139 switch (mask) {
1140 case 0:
1141 return 1;
1142 case 1:
1143 if (is_user)
1144 return 1;
1145 *prot = PAGE_READ | PAGE_WRITE;
1146 break;
1147 case 2:
1148 *prot = PAGE_READ;
1149 if (!is_user)
1150 *prot |= PAGE_WRITE;
1151 break;
1152 case 3:
1153 *prot = PAGE_READ | PAGE_WRITE;
1154 break;
1155 case 5:
1156 if (is_user)
1157 return 1;
1158 *prot = PAGE_READ;
1159 break;
1160 case 6:
1161 *prot = PAGE_READ;
1162 break;
1163 default:
1164 /* Bad permission. */
1165 return 1;
1166 }
1167 return 0;
1168}
1169
1170static inline int get_phys_addr(CPUState *env, uint32_t address,
1171 int access_type, int is_user,
1172 uint32_t *phys_ptr, int *prot)
1173{
1174 /* Fast Context Switch Extension. */
1175 if (address < 0x02000000)
1176 address += env->cp15.c13_fcse;
1177
1178 if ((env->cp15.c1_sys & 1) == 0) {
1179 /* MMU/MPU disabled. */
1180 *phys_ptr = address;
1181 *prot = PAGE_READ | PAGE_WRITE;
1182 return 0;
1183 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1184 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1185 prot);
1186 } else if (env->cp15.c1_sys & (1 << 23)) {
1187 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1188 prot);
1189 } else {
1190 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1191 prot);
1192 }
1193}
1194
b5ff1b31 1195int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
6ebbf390 1196 int access_type, int mmu_idx, int is_softmmu)
b5ff1b31
FB
1197{
1198 uint32_t phys_addr;
1199 int prot;
6ebbf390 1200 int ret, is_user;
b5ff1b31 1201
6ebbf390 1202 is_user = mmu_idx == MMU_USER_IDX;
b5ff1b31
FB
1203 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1204 if (ret == 0) {
1205 /* Map a single [sub]page. */
1206 phys_addr &= ~(uint32_t)0x3ff;
1207 address &= ~(uint32_t)0x3ff;
6ebbf390 1208 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
b5ff1b31
FB
1209 is_softmmu);
1210 }
1211
1212 if (access_type == 2) {
1213 env->cp15.c5_insn = ret;
1214 env->cp15.c6_insn = address;
1215 env->exception_index = EXCP_PREFETCH_ABORT;
1216 } else {
1217 env->cp15.c5_data = ret;
9ee6e8bb
PB
1218 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1219 env->cp15.c5_data |= (1 << 11);
b5ff1b31
FB
1220 env->cp15.c6_data = address;
1221 env->exception_index = EXCP_DATA_ABORT;
1222 }
1223 return 1;
1224}
1225
9b3c35e0 1226target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
b5ff1b31
FB
1227{
1228 uint32_t phys_addr;
1229 int prot;
1230 int ret;
1231
1232 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1233
1234 if (ret != 0)
1235 return -1;
1236
1237 return phys_addr;
1238}
1239
9ee6e8bb
PB
1240/* Not really implemented. Need to figure out a sane way of doing this.
1241 Maybe add generic watchpoint support and use that. */
1242
8f8e3aa4 1243void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
9ee6e8bb
PB
1244{
1245 env->mmon_addr = addr;
1246}
1247
8f8e3aa4 1248uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
9ee6e8bb
PB
1249{
1250 return (env->mmon_addr != addr);
1251}
1252
8f8e3aa4 1253void HELPER(clrex)(CPUState *env)
9ee6e8bb
PB
1254{
1255 env->mmon_addr = -1;
1256}
1257
8984bd2e 1258void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
c1713132
AZ
1259{
1260 int cp_num = (insn >> 8) & 0xf;
1261 int cp_info = (insn >> 5) & 7;
1262 int src = (insn >> 16) & 0xf;
1263 int operand = insn & 0xf;
1264
1265 if (env->cp[cp_num].cp_write)
1266 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1267 cp_info, src, operand, val);
1268}
1269
8984bd2e 1270uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
c1713132
AZ
1271{
1272 int cp_num = (insn >> 8) & 0xf;
1273 int cp_info = (insn >> 5) & 7;
1274 int dest = (insn >> 16) & 0xf;
1275 int operand = insn & 0xf;
1276
1277 if (env->cp[cp_num].cp_read)
1278 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1279 cp_info, dest, operand);
1280 return 0;
1281}
1282
ce819861
PB
1283/* Return basic MPU access permission bits. */
1284static uint32_t simple_mpu_ap_bits(uint32_t val)
1285{
1286 uint32_t ret;
1287 uint32_t mask;
1288 int i;
1289 ret = 0;
1290 mask = 3;
1291 for (i = 0; i < 16; i += 2) {
1292 ret |= (val >> i) & mask;
1293 mask <<= 2;
1294 }
1295 return ret;
1296}
1297
1298/* Pad basic MPU access permission bits to extended format. */
1299static uint32_t extended_mpu_ap_bits(uint32_t val)
1300{
1301 uint32_t ret;
1302 uint32_t mask;
1303 int i;
1304 ret = 0;
1305 mask = 3;
1306 for (i = 0; i < 16; i += 2) {
1307 ret |= (val & mask) << i;
1308 mask <<= 2;
1309 }
1310 return ret;
1311}
1312
8984bd2e 1313void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
b5ff1b31 1314{
9ee6e8bb
PB
1315 int op1;
1316 int op2;
1317 int crm;
b5ff1b31 1318
9ee6e8bb 1319 op1 = (insn >> 21) & 7;
b5ff1b31 1320 op2 = (insn >> 5) & 7;
ce819861 1321 crm = insn & 0xf;
b5ff1b31 1322 switch ((insn >> 16) & 0xf) {
9ee6e8bb
PB
1323 case 0:
1324 if (((insn >> 21) & 7) == 2) {
1325 /* ??? Select cache level. Ignore. */
1326 return;
1327 }
1328 /* ID codes. */
610c3c8a
AZ
1329 if (arm_feature(env, ARM_FEATURE_XSCALE))
1330 break;
c3d2689d
AZ
1331 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1332 break;
b5ff1b31
FB
1333 goto bad_reg;
1334 case 1: /* System configuration. */
c3d2689d
AZ
1335 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1336 op2 = 0;
b5ff1b31
FB
1337 switch (op2) {
1338 case 0:
ce819861 1339 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
c1713132 1340 env->cp15.c1_sys = val;
b5ff1b31
FB
1341 /* ??? Lots of these bits are not implemented. */
1342 /* This may enable/disable the MMU, so do a TLB flush. */
1343 tlb_flush(env, 1);
1344 break;
9ee6e8bb 1345 case 1: /* Auxiliary cotrol register. */
610c3c8a
AZ
1346 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1347 env->cp15.c1_xscaleauxcr = val;
c1713132 1348 break;
610c3c8a 1349 }
9ee6e8bb
PB
1350 /* Not implemented. */
1351 break;
b5ff1b31 1352 case 2:
610c3c8a
AZ
1353 if (arm_feature(env, ARM_FEATURE_XSCALE))
1354 goto bad_reg;
4be27dbb
PB
1355 if (env->cp15.c1_coproc != val) {
1356 env->cp15.c1_coproc = val;
1357 /* ??? Is this safe when called from within a TB? */
1358 tb_flush(env);
1359 }
c1713132 1360 break;
b5ff1b31
FB
1361 default:
1362 goto bad_reg;
1363 }
1364 break;
ce819861
PB
1365 case 2: /* MMU Page table control / MPU cache control. */
1366 if (arm_feature(env, ARM_FEATURE_MPU)) {
1367 switch (op2) {
1368 case 0:
1369 env->cp15.c2_data = val;
1370 break;
1371 case 1:
1372 env->cp15.c2_insn = val;
1373 break;
1374 default:
1375 goto bad_reg;
1376 }
1377 } else {
9ee6e8bb
PB
1378 switch (op2) {
1379 case 0:
1380 env->cp15.c2_base0 = val;
1381 break;
1382 case 1:
1383 env->cp15.c2_base1 = val;
1384 break;
1385 case 2:
b2fa1797
PB
1386 val &= 7;
1387 env->cp15.c2_control = val;
9ee6e8bb 1388 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
b2fa1797 1389 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
9ee6e8bb
PB
1390 break;
1391 default:
1392 goto bad_reg;
1393 }
ce819861 1394 }
b5ff1b31 1395 break;
ce819861 1396 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31 1397 env->cp15.c3 = val;
405ee3ad 1398 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
b5ff1b31
FB
1399 break;
1400 case 4: /* Reserved. */
1401 goto bad_reg;
ce819861 1402 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1403 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1404 op2 = 0;
b5ff1b31
FB
1405 switch (op2) {
1406 case 0:
ce819861
PB
1407 if (arm_feature(env, ARM_FEATURE_MPU))
1408 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1409 env->cp15.c5_data = val;
1410 break;
1411 case 1:
ce819861
PB
1412 if (arm_feature(env, ARM_FEATURE_MPU))
1413 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1414 env->cp15.c5_insn = val;
1415 break;
ce819861
PB
1416 case 2:
1417 if (!arm_feature(env, ARM_FEATURE_MPU))
1418 goto bad_reg;
1419 env->cp15.c5_data = val;
b5ff1b31 1420 break;
ce819861
PB
1421 case 3:
1422 if (!arm_feature(env, ARM_FEATURE_MPU))
1423 goto bad_reg;
1424 env->cp15.c5_insn = val;
b5ff1b31
FB
1425 break;
1426 default:
1427 goto bad_reg;
1428 }
1429 break;
ce819861
PB
1430 case 6: /* MMU Fault address / MPU base/size. */
1431 if (arm_feature(env, ARM_FEATURE_MPU)) {
1432 if (crm >= 8)
1433 goto bad_reg;
1434 env->cp15.c6_region[crm] = val;
1435 } else {
c3d2689d
AZ
1436 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1437 op2 = 0;
ce819861
PB
1438 switch (op2) {
1439 case 0:
1440 env->cp15.c6_data = val;
1441 break;
9ee6e8bb
PB
1442 case 1: /* ??? This is WFAR on armv6 */
1443 case 2:
ce819861
PB
1444 env->cp15.c6_insn = val;
1445 break;
1446 default:
1447 goto bad_reg;
1448 }
1449 }
1450 break;
b5ff1b31 1451 case 7: /* Cache control. */
c3d2689d
AZ
1452 env->cp15.c15_i_max = 0x000;
1453 env->cp15.c15_i_min = 0xff0;
b5ff1b31 1454 /* No cache, so nothing to do. */
9ee6e8bb 1455 /* ??? MPCore has VA to PA translation functions. */
b5ff1b31
FB
1456 break;
1457 case 8: /* MMU TLB control. */
1458 switch (op2) {
1459 case 0: /* Invalidate all. */
1460 tlb_flush(env, 0);
1461 break;
1462 case 1: /* Invalidate single TLB entry. */
1463#if 0
1464 /* ??? This is wrong for large pages and sections. */
1465 /* As an ugly hack to make linux work we always flush a 4K
1466 pages. */
1467 val &= 0xfffff000;
1468 tlb_flush_page(env, val);
1469 tlb_flush_page(env, val + 0x400);
1470 tlb_flush_page(env, val + 0x800);
1471 tlb_flush_page(env, val + 0xc00);
1472#else
1473 tlb_flush(env, 1);
1474#endif
1475 break;
9ee6e8bb
PB
1476 case 2: /* Invalidate on ASID. */
1477 tlb_flush(env, val == 0);
1478 break;
1479 case 3: /* Invalidate single entry on MVA. */
1480 /* ??? This is like case 1, but ignores ASID. */
1481 tlb_flush(env, 1);
1482 break;
b5ff1b31
FB
1483 default:
1484 goto bad_reg;
1485 }
1486 break;
ce819861 1487 case 9:
c3d2689d
AZ
1488 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1489 break;
ce819861
PB
1490 switch (crm) {
1491 case 0: /* Cache lockdown. */
9ee6e8bb
PB
1492 switch (op1) {
1493 case 0: /* L1 cache. */
1494 switch (op2) {
1495 case 0:
1496 env->cp15.c9_data = val;
1497 break;
1498 case 1:
1499 env->cp15.c9_insn = val;
1500 break;
1501 default:
1502 goto bad_reg;
1503 }
1504 break;
1505 case 1: /* L2 cache. */
1506 /* Ignore writes to L2 lockdown/auxiliary registers. */
1507 break;
1508 default:
1509 goto bad_reg;
1510 }
1511 break;
ce819861
PB
1512 case 1: /* TCM memory region registers. */
1513 /* Not implemented. */
1514 goto bad_reg;
b5ff1b31
FB
1515 default:
1516 goto bad_reg;
1517 }
1518 break;
1519 case 10: /* MMU TLB lockdown. */
1520 /* ??? TLB lockdown not implemented. */
1521 break;
b5ff1b31
FB
1522 case 12: /* Reserved. */
1523 goto bad_reg;
1524 case 13: /* Process ID. */
1525 switch (op2) {
1526 case 0:
d07edbfa
PB
1527 /* Unlike real hardware the qemu TLB uses virtual addresses,
1528 not modified virtual addresses, so this causes a TLB flush.
1529 */
1530 if (env->cp15.c13_fcse != val)
1531 tlb_flush(env, 1);
1532 env->cp15.c13_fcse = val;
b5ff1b31
FB
1533 break;
1534 case 1:
d07edbfa 1535 /* This changes the ASID, so do a TLB flush. */
ce819861
PB
1536 if (env->cp15.c13_context != val
1537 && !arm_feature(env, ARM_FEATURE_MPU))
d07edbfa
PB
1538 tlb_flush(env, 0);
1539 env->cp15.c13_context = val;
b5ff1b31 1540 break;
9ee6e8bb
PB
1541 case 2:
1542 env->cp15.c13_tls1 = val;
1543 break;
1544 case 3:
1545 env->cp15.c13_tls2 = val;
1546 break;
1547 case 4:
1548 env->cp15.c13_tls3 = val;
1549 break;
b5ff1b31
FB
1550 default:
1551 goto bad_reg;
1552 }
1553 break;
1554 case 14: /* Reserved. */
1555 goto bad_reg;
1556 case 15: /* Implementation specific. */
c1713132 1557 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
ce819861 1558 if (op2 == 0 && crm == 1) {
2e23213f
AZ
1559 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1560 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1561 tb_flush(env);
1562 env->cp15.c15_cpar = val & 0x3fff;
1563 }
c1713132
AZ
1564 break;
1565 }
1566 goto bad_reg;
1567 }
c3d2689d
AZ
1568 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1569 switch (crm) {
1570 case 0:
1571 break;
1572 case 1: /* Set TI925T configuration. */
1573 env->cp15.c15_ticonfig = val & 0xe7;
1574 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1575 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1576 break;
1577 case 2: /* Set I_max. */
1578 env->cp15.c15_i_max = val;
1579 break;
1580 case 3: /* Set I_min. */
1581 env->cp15.c15_i_min = val;
1582 break;
1583 case 4: /* Set thread-ID. */
1584 env->cp15.c15_threadid = val & 0xffff;
1585 break;
1586 case 8: /* Wait-for-interrupt (deprecated). */
1587 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1588 break;
1589 default:
1590 goto bad_reg;
1591 }
1592 }
b5ff1b31
FB
1593 break;
1594 }
1595 return;
1596bad_reg:
1597 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1598 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1599 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1600}
1601
8984bd2e 1602uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
b5ff1b31 1603{
9ee6e8bb
PB
1604 int op1;
1605 int op2;
1606 int crm;
b5ff1b31 1607
9ee6e8bb 1608 op1 = (insn >> 21) & 7;
b5ff1b31 1609 op2 = (insn >> 5) & 7;
c3d2689d 1610 crm = insn & 0xf;
b5ff1b31
FB
1611 switch ((insn >> 16) & 0xf) {
1612 case 0: /* ID codes. */
9ee6e8bb
PB
1613 switch (op1) {
1614 case 0:
1615 switch (crm) {
1616 case 0:
1617 switch (op2) {
1618 case 0: /* Device ID. */
1619 return env->cp15.c0_cpuid;
1620 case 1: /* Cache Type. */
1621 return env->cp15.c0_cachetype;
1622 case 2: /* TCM status. */
1623 return 0;
1624 case 3: /* TLB type register. */
1625 return 0; /* No lockable TLB entries. */
1626 case 5: /* CPU ID */
1627 return env->cpu_index;
1628 default:
1629 goto bad_reg;
1630 }
1631 case 1:
1632 if (!arm_feature(env, ARM_FEATURE_V6))
1633 goto bad_reg;
1634 return env->cp15.c0_c1[op2];
1635 case 2:
1636 if (!arm_feature(env, ARM_FEATURE_V6))
1637 goto bad_reg;
1638 return env->cp15.c0_c2[op2];
1639 case 3: case 4: case 5: case 6: case 7:
1640 return 0;
1641 default:
1642 goto bad_reg;
1643 }
1644 case 1:
1645 /* These registers aren't documented on arm11 cores. However
1646 Linux looks at them anyway. */
1647 if (!arm_feature(env, ARM_FEATURE_V6))
1648 goto bad_reg;
1649 if (crm != 0)
1650 goto bad_reg;
610c3c8a
AZ
1651 if (arm_feature(env, ARM_FEATURE_XSCALE))
1652 goto bad_reg;
b5ff1b31 1653 return 0;
9ee6e8bb
PB
1654 default:
1655 goto bad_reg;
b5ff1b31
FB
1656 }
1657 case 1: /* System configuration. */
c3d2689d
AZ
1658 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1659 op2 = 0;
b5ff1b31
FB
1660 switch (op2) {
1661 case 0: /* Control register. */
1662 return env->cp15.c1_sys;
1663 case 1: /* Auxiliary control register. */
c1713132 1664 if (arm_feature(env, ARM_FEATURE_XSCALE))
610c3c8a 1665 return env->cp15.c1_xscaleauxcr;
9ee6e8bb
PB
1666 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1667 goto bad_reg;
1668 switch (ARM_CPUID(env)) {
1669 case ARM_CPUID_ARM1026:
1670 return 1;
1671 case ARM_CPUID_ARM1136:
827df9f3 1672 case ARM_CPUID_ARM1136_R2:
9ee6e8bb
PB
1673 return 7;
1674 case ARM_CPUID_ARM11MPCORE:
1675 return 1;
1676 case ARM_CPUID_CORTEXA8:
1677 return 0;
1678 default:
1679 goto bad_reg;
1680 }
b5ff1b31 1681 case 2: /* Coprocessor access register. */
610c3c8a
AZ
1682 if (arm_feature(env, ARM_FEATURE_XSCALE))
1683 goto bad_reg;
b5ff1b31
FB
1684 return env->cp15.c1_coproc;
1685 default:
1686 goto bad_reg;
1687 }
ce819861
PB
1688 case 2: /* MMU Page table control / MPU cache control. */
1689 if (arm_feature(env, ARM_FEATURE_MPU)) {
1690 switch (op2) {
1691 case 0:
1692 return env->cp15.c2_data;
1693 break;
1694 case 1:
1695 return env->cp15.c2_insn;
1696 break;
1697 default:
1698 goto bad_reg;
1699 }
1700 } else {
9ee6e8bb
PB
1701 switch (op2) {
1702 case 0:
1703 return env->cp15.c2_base0;
1704 case 1:
1705 return env->cp15.c2_base1;
1706 case 2:
b2fa1797 1707 return env->cp15.c2_control;
9ee6e8bb
PB
1708 default:
1709 goto bad_reg;
1710 }
1711 }
ce819861 1712 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31
FB
1713 return env->cp15.c3;
1714 case 4: /* Reserved. */
1715 goto bad_reg;
ce819861 1716 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1717 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1718 op2 = 0;
b5ff1b31
FB
1719 switch (op2) {
1720 case 0:
ce819861
PB
1721 if (arm_feature(env, ARM_FEATURE_MPU))
1722 return simple_mpu_ap_bits(env->cp15.c5_data);
b5ff1b31
FB
1723 return env->cp15.c5_data;
1724 case 1:
ce819861
PB
1725 if (arm_feature(env, ARM_FEATURE_MPU))
1726 return simple_mpu_ap_bits(env->cp15.c5_data);
1727 return env->cp15.c5_insn;
1728 case 2:
1729 if (!arm_feature(env, ARM_FEATURE_MPU))
1730 goto bad_reg;
1731 return env->cp15.c5_data;
1732 case 3:
1733 if (!arm_feature(env, ARM_FEATURE_MPU))
1734 goto bad_reg;
b5ff1b31
FB
1735 return env->cp15.c5_insn;
1736 default:
1737 goto bad_reg;
1738 }
9ee6e8bb 1739 case 6: /* MMU Fault address. */
ce819861 1740 if (arm_feature(env, ARM_FEATURE_MPU)) {
9ee6e8bb 1741 if (crm >= 8)
ce819861 1742 goto bad_reg;
9ee6e8bb 1743 return env->cp15.c6_region[crm];
ce819861 1744 } else {
c3d2689d
AZ
1745 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1746 op2 = 0;
9ee6e8bb
PB
1747 switch (op2) {
1748 case 0:
1749 return env->cp15.c6_data;
1750 case 1:
1751 if (arm_feature(env, ARM_FEATURE_V6)) {
1752 /* Watchpoint Fault Adrress. */
1753 return 0; /* Not implemented. */
1754 } else {
1755 /* Instruction Fault Adrress. */
1756 /* Arm9 doesn't have an IFAR, but implementing it anyway
1757 shouldn't do any harm. */
1758 return env->cp15.c6_insn;
1759 }
1760 case 2:
1761 if (arm_feature(env, ARM_FEATURE_V6)) {
1762 /* Instruction Fault Adrress. */
1763 return env->cp15.c6_insn;
1764 } else {
1765 goto bad_reg;
1766 }
1767 default:
1768 goto bad_reg;
1769 }
b5ff1b31
FB
1770 }
1771 case 7: /* Cache control. */
6fbe23d5
PB
1772 /* FIXME: Should only clear Z flag if destination is r15. */
1773 env->ZF = 0;
b5ff1b31
FB
1774 return 0;
1775 case 8: /* MMU TLB control. */
1776 goto bad_reg;
1777 case 9: /* Cache lockdown. */
9ee6e8bb
PB
1778 switch (op1) {
1779 case 0: /* L1 cache. */
1780 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1781 return 0;
1782 switch (op2) {
1783 case 0:
1784 return env->cp15.c9_data;
1785 case 1:
1786 return env->cp15.c9_insn;
1787 default:
1788 goto bad_reg;
1789 }
1790 case 1: /* L2 cache */
1791 if (crm != 0)
1792 goto bad_reg;
1793 /* L2 Lockdown and Auxiliary control. */
c3d2689d 1794 return 0;
b5ff1b31
FB
1795 default:
1796 goto bad_reg;
1797 }
1798 case 10: /* MMU TLB lockdown. */
1799 /* ??? TLB lockdown not implemented. */
1800 return 0;
1801 case 11: /* TCM DMA control. */
1802 case 12: /* Reserved. */
1803 goto bad_reg;
1804 case 13: /* Process ID. */
1805 switch (op2) {
1806 case 0:
1807 return env->cp15.c13_fcse;
1808 case 1:
1809 return env->cp15.c13_context;
9ee6e8bb
PB
1810 case 2:
1811 return env->cp15.c13_tls1;
1812 case 3:
1813 return env->cp15.c13_tls2;
1814 case 4:
1815 return env->cp15.c13_tls3;
b5ff1b31
FB
1816 default:
1817 goto bad_reg;
1818 }
1819 case 14: /* Reserved. */
1820 goto bad_reg;
1821 case 15: /* Implementation specific. */
c1713132 1822 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
c3d2689d 1823 if (op2 == 0 && crm == 1)
c1713132
AZ
1824 return env->cp15.c15_cpar;
1825
1826 goto bad_reg;
1827 }
c3d2689d
AZ
1828 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1829 switch (crm) {
1830 case 0:
1831 return 0;
1832 case 1: /* Read TI925T configuration. */
1833 return env->cp15.c15_ticonfig;
1834 case 2: /* Read I_max. */
1835 return env->cp15.c15_i_max;
1836 case 3: /* Read I_min. */
1837 return env->cp15.c15_i_min;
1838 case 4: /* Read thread-ID. */
1839 return env->cp15.c15_threadid;
1840 case 8: /* TI925T_status */
1841 return 0;
1842 }
827df9f3
AZ
1843 /* TODO: Peripheral port remap register:
1844 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1845 * controller base address at $rn & ~0xfff and map size of
1846 * 0x200 << ($rn & 0xfff), when MMU is off. */
c3d2689d
AZ
1847 goto bad_reg;
1848 }
b5ff1b31
FB
1849 return 0;
1850 }
1851bad_reg:
1852 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1853 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1854 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1855 return 0;
1856}
1857
b0109805 1858void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
1859{
1860 env->banked_r13[bank_number(mode)] = val;
1861}
1862
b0109805 1863uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
9ee6e8bb
PB
1864{
1865 return env->banked_r13[bank_number(mode)];
1866}
1867
8984bd2e 1868uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
9ee6e8bb
PB
1869{
1870 switch (reg) {
1871 case 0: /* APSR */
1872 return xpsr_read(env) & 0xf8000000;
1873 case 1: /* IAPSR */
1874 return xpsr_read(env) & 0xf80001ff;
1875 case 2: /* EAPSR */
1876 return xpsr_read(env) & 0xff00fc00;
1877 case 3: /* xPSR */
1878 return xpsr_read(env) & 0xff00fdff;
1879 case 5: /* IPSR */
1880 return xpsr_read(env) & 0x000001ff;
1881 case 6: /* EPSR */
1882 return xpsr_read(env) & 0x0700fc00;
1883 case 7: /* IEPSR */
1884 return xpsr_read(env) & 0x0700edff;
1885 case 8: /* MSP */
1886 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1887 case 9: /* PSP */
1888 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1889 case 16: /* PRIMASK */
1890 return (env->uncached_cpsr & CPSR_I) != 0;
1891 case 17: /* FAULTMASK */
1892 return (env->uncached_cpsr & CPSR_F) != 0;
1893 case 18: /* BASEPRI */
1894 case 19: /* BASEPRI_MAX */
1895 return env->v7m.basepri;
1896 case 20: /* CONTROL */
1897 return env->v7m.control;
1898 default:
1899 /* ??? For debugging only. */
1900 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1901 return 0;
1902 }
1903}
1904
8984bd2e 1905void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
1906{
1907 switch (reg) {
1908 case 0: /* APSR */
1909 xpsr_write(env, val, 0xf8000000);
1910 break;
1911 case 1: /* IAPSR */
1912 xpsr_write(env, val, 0xf8000000);
1913 break;
1914 case 2: /* EAPSR */
1915 xpsr_write(env, val, 0xfe00fc00);
1916 break;
1917 case 3: /* xPSR */
1918 xpsr_write(env, val, 0xfe00fc00);
1919 break;
1920 case 5: /* IPSR */
1921 /* IPSR bits are readonly. */
1922 break;
1923 case 6: /* EPSR */
1924 xpsr_write(env, val, 0x0600fc00);
1925 break;
1926 case 7: /* IEPSR */
1927 xpsr_write(env, val, 0x0600fc00);
1928 break;
1929 case 8: /* MSP */
1930 if (env->v7m.current_sp)
1931 env->v7m.other_sp = val;
1932 else
1933 env->regs[13] = val;
1934 break;
1935 case 9: /* PSP */
1936 if (env->v7m.current_sp)
1937 env->regs[13] = val;
1938 else
1939 env->v7m.other_sp = val;
1940 break;
1941 case 16: /* PRIMASK */
1942 if (val & 1)
1943 env->uncached_cpsr |= CPSR_I;
1944 else
1945 env->uncached_cpsr &= ~CPSR_I;
1946 break;
1947 case 17: /* FAULTMASK */
1948 if (val & 1)
1949 env->uncached_cpsr |= CPSR_F;
1950 else
1951 env->uncached_cpsr &= ~CPSR_F;
1952 break;
1953 case 18: /* BASEPRI */
1954 env->v7m.basepri = val & 0xff;
1955 break;
1956 case 19: /* BASEPRI_MAX */
1957 val &= 0xff;
1958 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1959 env->v7m.basepri = val;
1960 break;
1961 case 20: /* CONTROL */
1962 env->v7m.control = val & 3;
1963 switch_v7m_sp(env, (val & 2) != 0);
1964 break;
1965 default:
1966 /* ??? For debugging only. */
1967 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1968 return;
1969 }
1970}
1971
c1713132
AZ
1972void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1973 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1974 void *opaque)
1975{
1976 if (cpnum < 0 || cpnum > 14) {
1977 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1978 return;
1979 }
1980
1981 env->cp[cpnum].cp_read = cp_read;
1982 env->cp[cpnum].cp_write = cp_write;
1983 env->cp[cpnum].opaque = opaque;
1984}
1985
b5ff1b31 1986#endif
6ddbc6e4
PB
1987
1988/* Note that signed overflow is undefined in C. The following routines are
1989 careful to use unsigned types where modulo arithmetic is required.
1990 Failure to do so _will_ break on newer gcc. */
1991
1992/* Signed saturating arithmetic. */
1993
1654b2d6 1994/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
1995static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1996{
1997 uint16_t res;
1998
1999 res = a + b;
2000 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2001 if (a & 0x8000)
2002 res = 0x8000;
2003 else
2004 res = 0x7fff;
2005 }
2006 return res;
2007}
2008
1654b2d6 2009/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
2010static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2011{
2012 uint8_t res;
2013
2014 res = a + b;
2015 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2016 if (a & 0x80)
2017 res = 0x80;
2018 else
2019 res = 0x7f;
2020 }
2021 return res;
2022}
2023
1654b2d6 2024/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
2025static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2026{
2027 uint16_t res;
2028
2029 res = a - b;
2030 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2031 if (a & 0x8000)
2032 res = 0x8000;
2033 else
2034 res = 0x7fff;
2035 }
2036 return res;
2037}
2038
1654b2d6 2039/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
2040static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2041{
2042 uint8_t res;
2043
2044 res = a - b;
2045 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2046 if (a & 0x80)
2047 res = 0x80;
2048 else
2049 res = 0x7f;
2050 }
2051 return res;
2052}
2053
2054#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2055#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2056#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2057#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2058#define PFX q
2059
2060#include "op_addsub.h"
2061
2062/* Unsigned saturating arithmetic. */
460a09c1 2063static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
2064{
2065 uint16_t res;
2066 res = a + b;
2067 if (res < a)
2068 res = 0xffff;
2069 return res;
2070}
2071
460a09c1 2072static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
2073{
2074 if (a < b)
2075 return a - b;
2076 else
2077 return 0;
2078}
2079
2080static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2081{
2082 uint8_t res;
2083 res = a + b;
2084 if (res < a)
2085 res = 0xff;
2086 return res;
2087}
2088
2089static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2090{
2091 if (a < b)
2092 return a - b;
2093 else
2094 return 0;
2095}
2096
2097#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2098#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2099#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2100#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2101#define PFX uq
2102
2103#include "op_addsub.h"
2104
2105/* Signed modulo arithmetic. */
2106#define SARITH16(a, b, n, op) do { \
2107 int32_t sum; \
2108 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2109 RESULT(sum, n, 16); \
2110 if (sum >= 0) \
2111 ge |= 3 << (n * 2); \
2112 } while(0)
2113
2114#define SARITH8(a, b, n, op) do { \
2115 int32_t sum; \
2116 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2117 RESULT(sum, n, 8); \
2118 if (sum >= 0) \
2119 ge |= 1 << n; \
2120 } while(0)
2121
2122
2123#define ADD16(a, b, n) SARITH16(a, b, n, +)
2124#define SUB16(a, b, n) SARITH16(a, b, n, -)
2125#define ADD8(a, b, n) SARITH8(a, b, n, +)
2126#define SUB8(a, b, n) SARITH8(a, b, n, -)
2127#define PFX s
2128#define ARITH_GE
2129
2130#include "op_addsub.h"
2131
2132/* Unsigned modulo arithmetic. */
2133#define ADD16(a, b, n) do { \
2134 uint32_t sum; \
2135 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2136 RESULT(sum, n, 16); \
a87aa10b 2137 if ((sum >> 16) == 1) \
6ddbc6e4
PB
2138 ge |= 3 << (n * 2); \
2139 } while(0)
2140
2141#define ADD8(a, b, n) do { \
2142 uint32_t sum; \
2143 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2144 RESULT(sum, n, 8); \
a87aa10b
AZ
2145 if ((sum >> 8) == 1) \
2146 ge |= 1 << n; \
6ddbc6e4
PB
2147 } while(0)
2148
2149#define SUB16(a, b, n) do { \
2150 uint32_t sum; \
2151 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2152 RESULT(sum, n, 16); \
2153 if ((sum >> 16) == 0) \
2154 ge |= 3 << (n * 2); \
2155 } while(0)
2156
2157#define SUB8(a, b, n) do { \
2158 uint32_t sum; \
2159 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2160 RESULT(sum, n, 8); \
2161 if ((sum >> 8) == 0) \
a87aa10b 2162 ge |= 1 << n; \
6ddbc6e4
PB
2163 } while(0)
2164
2165#define PFX u
2166#define ARITH_GE
2167
2168#include "op_addsub.h"
2169
2170/* Halved signed arithmetic. */
2171#define ADD16(a, b, n) \
2172 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2173#define SUB16(a, b, n) \
2174 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2175#define ADD8(a, b, n) \
2176 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2177#define SUB8(a, b, n) \
2178 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2179#define PFX sh
2180
2181#include "op_addsub.h"
2182
2183/* Halved unsigned arithmetic. */
2184#define ADD16(a, b, n) \
2185 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2186#define SUB16(a, b, n) \
2187 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2188#define ADD8(a, b, n) \
2189 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2190#define SUB8(a, b, n) \
2191 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2192#define PFX uh
2193
2194#include "op_addsub.h"
2195
2196static inline uint8_t do_usad(uint8_t a, uint8_t b)
2197{
2198 if (a > b)
2199 return a - b;
2200 else
2201 return b - a;
2202}
2203
2204/* Unsigned sum of absolute byte differences. */
2205uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2206{
2207 uint32_t sum;
2208 sum = do_usad(a, b);
2209 sum += do_usad(a >> 8, b >> 8);
2210 sum += do_usad(a >> 16, b >>16);
2211 sum += do_usad(a >> 24, b >> 24);
2212 return sum;
2213}
2214
2215/* For ARMv6 SEL instruction. */
2216uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2217{
2218 uint32_t mask;
2219
2220 mask = 0;
2221 if (flags & 1)
2222 mask |= 0xff;
2223 if (flags & 2)
2224 mask |= 0xff00;
2225 if (flags & 4)
2226 mask |= 0xff0000;
2227 if (flags & 8)
2228 mask |= 0xff000000;
2229 return (a & mask) | (b & ~mask);
2230}
2231
5e3f878a
PB
2232uint32_t HELPER(logicq_cc)(uint64_t val)
2233{
2234 return (val >> 32) | (val != 0);
2235}
4373f3ce
PB
2236
2237/* VFP support. We follow the convention used for VFP instrunctions:
2238 Single precition routines have a "s" suffix, double precision a
2239 "d" suffix. */
2240
2241/* Convert host exception flags to vfp form. */
2242static inline int vfp_exceptbits_from_host(int host_bits)
2243{
2244 int target_bits = 0;
2245
2246 if (host_bits & float_flag_invalid)
2247 target_bits |= 1;
2248 if (host_bits & float_flag_divbyzero)
2249 target_bits |= 2;
2250 if (host_bits & float_flag_overflow)
2251 target_bits |= 4;
2252 if (host_bits & float_flag_underflow)
2253 target_bits |= 8;
2254 if (host_bits & float_flag_inexact)
2255 target_bits |= 0x10;
2256 return target_bits;
2257}
2258
2259uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2260{
2261 int i;
2262 uint32_t fpscr;
2263
2264 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2265 | (env->vfp.vec_len << 16)
2266 | (env->vfp.vec_stride << 20);
2267 i = get_float_exception_flags(&env->vfp.fp_status);
2268 fpscr |= vfp_exceptbits_from_host(i);
2269 return fpscr;
2270}
2271
2272/* Convert vfp exception flags to target form. */
2273static inline int vfp_exceptbits_to_host(int target_bits)
2274{
2275 int host_bits = 0;
2276
2277 if (target_bits & 1)
2278 host_bits |= float_flag_invalid;
2279 if (target_bits & 2)
2280 host_bits |= float_flag_divbyzero;
2281 if (target_bits & 4)
2282 host_bits |= float_flag_overflow;
2283 if (target_bits & 8)
2284 host_bits |= float_flag_underflow;
2285 if (target_bits & 0x10)
2286 host_bits |= float_flag_inexact;
2287 return host_bits;
2288}
2289
2290void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2291{
2292 int i;
2293 uint32_t changed;
2294
2295 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2296 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2297 env->vfp.vec_len = (val >> 16) & 7;
2298 env->vfp.vec_stride = (val >> 20) & 3;
2299
2300 changed ^= val;
2301 if (changed & (3 << 22)) {
2302 i = (val >> 22) & 3;
2303 switch (i) {
2304 case 0:
2305 i = float_round_nearest_even;
2306 break;
2307 case 1:
2308 i = float_round_up;
2309 break;
2310 case 2:
2311 i = float_round_down;
2312 break;
2313 case 3:
2314 i = float_round_to_zero;
2315 break;
2316 }
2317 set_float_rounding_mode(i, &env->vfp.fp_status);
2318 }
2319
2320 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2321 set_float_exception_flags(i, &env->vfp.fp_status);
2322 /* XXX: FZ and DN are not implemented. */
2323}
2324
2325#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2326
2327#define VFP_BINOP(name) \
2328float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2329{ \
2330 return float32_ ## name (a, b, &env->vfp.fp_status); \
2331} \
2332float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2333{ \
2334 return float64_ ## name (a, b, &env->vfp.fp_status); \
2335}
2336VFP_BINOP(add)
2337VFP_BINOP(sub)
2338VFP_BINOP(mul)
2339VFP_BINOP(div)
2340#undef VFP_BINOP
2341
2342float32 VFP_HELPER(neg, s)(float32 a)
2343{
2344 return float32_chs(a);
2345}
2346
2347float64 VFP_HELPER(neg, d)(float64 a)
2348{
66230e0d 2349 return float64_chs(a);
4373f3ce
PB
2350}
2351
2352float32 VFP_HELPER(abs, s)(float32 a)
2353{
2354 return float32_abs(a);
2355}
2356
2357float64 VFP_HELPER(abs, d)(float64 a)
2358{
66230e0d 2359 return float64_abs(a);
4373f3ce
PB
2360}
2361
2362float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2363{
2364 return float32_sqrt(a, &env->vfp.fp_status);
2365}
2366
2367float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2368{
2369 return float64_sqrt(a, &env->vfp.fp_status);
2370}
2371
2372/* XXX: check quiet/signaling case */
2373#define DO_VFP_cmp(p, type) \
2374void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2375{ \
2376 uint32_t flags; \
2377 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2378 case 0: flags = 0x6; break; \
2379 case -1: flags = 0x8; break; \
2380 case 1: flags = 0x2; break; \
2381 default: case 2: flags = 0x3; break; \
2382 } \
2383 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2384 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2385} \
2386void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2387{ \
2388 uint32_t flags; \
2389 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2390 case 0: flags = 0x6; break; \
2391 case -1: flags = 0x8; break; \
2392 case 1: flags = 0x2; break; \
2393 default: case 2: flags = 0x3; break; \
2394 } \
2395 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2396 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2397}
2398DO_VFP_cmp(s, float32)
2399DO_VFP_cmp(d, float64)
2400#undef DO_VFP_cmp
2401
2402/* Helper routines to perform bitwise copies between float and int. */
2403static inline float32 vfp_itos(uint32_t i)
2404{
2405 union {
2406 uint32_t i;
2407 float32 s;
2408 } v;
2409
2410 v.i = i;
2411 return v.s;
2412}
2413
2414static inline uint32_t vfp_stoi(float32 s)
2415{
2416 union {
2417 uint32_t i;
2418 float32 s;
2419 } v;
2420
2421 v.s = s;
2422 return v.i;
2423}
2424
2425static inline float64 vfp_itod(uint64_t i)
2426{
2427 union {
2428 uint64_t i;
2429 float64 d;
2430 } v;
2431
2432 v.i = i;
2433 return v.d;
2434}
2435
2436static inline uint64_t vfp_dtoi(float64 d)
2437{
2438 union {
2439 uint64_t i;
2440 float64 d;
2441 } v;
2442
2443 v.d = d;
2444 return v.i;
2445}
2446
2447/* Integer to float conversion. */
2448float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2449{
2450 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2451}
2452
2453float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2454{
2455 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2456}
2457
2458float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2459{
2460 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2461}
2462
2463float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2464{
2465 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2466}
2467
2468/* Float to integer conversion. */
2469float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2470{
2471 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2472}
2473
2474float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2475{
2476 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2477}
2478
2479float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2480{
2481 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2482}
2483
2484float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2485{
2486 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2487}
2488
2489float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2490{
2491 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2492}
2493
2494float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2495{
2496 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2497}
2498
2499float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2500{
2501 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2502}
2503
2504float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2505{
2506 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2507}
2508
2509/* floating point conversion */
2510float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2511{
2512 return float32_to_float64(x, &env->vfp.fp_status);
2513}
2514
2515float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2516{
2517 return float64_to_float32(x, &env->vfp.fp_status);
2518}
2519
2520/* VFP3 fixed point conversion. */
2521#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2522ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2523{ \
2524 ftype tmp; \
2525 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2526 &env->vfp.fp_status); \
644ad806 2527 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
4373f3ce
PB
2528} \
2529ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2530{ \
2531 ftype tmp; \
2532 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2533 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2534 &env->vfp.fp_status)); \
2535}
2536
2537VFP_CONV_FIX(sh, d, float64, int16, )
2538VFP_CONV_FIX(sl, d, float64, int32, )
2539VFP_CONV_FIX(uh, d, float64, uint16, u)
2540VFP_CONV_FIX(ul, d, float64, uint32, u)
2541VFP_CONV_FIX(sh, s, float32, int16, )
2542VFP_CONV_FIX(sl, s, float32, int32, )
2543VFP_CONV_FIX(uh, s, float32, uint16, u)
2544VFP_CONV_FIX(ul, s, float32, uint32, u)
2545#undef VFP_CONV_FIX
2546
2547float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2548{
2549 float_status *s = &env->vfp.fp_status;
2550 float32 two = int32_to_float32(2, s);
2551 return float32_sub(two, float32_mul(a, b, s), s);
2552}
2553
2554float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2555{
2556 float_status *s = &env->vfp.fp_status;
2557 float32 three = int32_to_float32(3, s);
2558 return float32_sub(three, float32_mul(a, b, s), s);
2559}
2560
8f8e3aa4
PB
2561/* NEON helpers. */
2562
4373f3ce
PB
2563/* TODO: The architecture specifies the value that the estimate functions
2564 should return. We return the exact reciprocal/root instead. */
2565float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2566{
2567 float_status *s = &env->vfp.fp_status;
2568 float32 one = int32_to_float32(1, s);
2569 return float32_div(one, a, s);
2570}
2571
2572float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2573{
2574 float_status *s = &env->vfp.fp_status;
2575 float32 one = int32_to_float32(1, s);
2576 return float32_div(one, float32_sqrt(a, s), s);
2577}
2578
2579uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2580{
2581 float_status *s = &env->vfp.fp_status;
2582 float32 tmp;
2583 tmp = int32_to_float32(a, s);
2584 tmp = float32_scalbn(tmp, -32, s);
2585 tmp = helper_recpe_f32(tmp, env);
2586 tmp = float32_scalbn(tmp, 31, s);
2587 return float32_to_int32(tmp, s);
2588}
2589
2590uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2591{
2592 float_status *s = &env->vfp.fp_status;
2593 float32 tmp;
2594 tmp = int32_to_float32(a, s);
2595 tmp = float32_scalbn(tmp, -32, s);
2596 tmp = helper_rsqrte_f32(tmp, env);
2597 tmp = float32_scalbn(tmp, 31, s);
2598 return float32_to_int32(tmp, s);
2599}
fe1479c3
PB
2600
2601void HELPER(set_teecr)(CPUState *env, uint32_t val)
2602{
2603 val &= 1;
2604 if (env->teecr != val) {
2605 env->teecr = val;
2606 tb_flush(env);
2607 }
2608}
This page took 0.525731 seconds and 4 git commands to generate.