]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
85199474 | 24 | #include "qemu-barrier.h" |
05330448 | 25 | #include "sysemu.h" |
d33a1810 | 26 | #include "hw/hw.h" |
e22a25c9 | 27 | #include "gdbstub.h" |
05330448 AL |
28 | #include "kvm.h" |
29 | ||
f65ed4c1 AL |
30 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
31 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
32 | ||
05330448 AL |
33 | //#define DEBUG_KVM |
34 | ||
35 | #ifdef DEBUG_KVM | |
36 | #define dprintf(fmt, ...) \ | |
37 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
38 | #else | |
39 | #define dprintf(fmt, ...) \ | |
40 | do { } while (0) | |
41 | #endif | |
42 | ||
34fc643f AL |
43 | typedef struct KVMSlot |
44 | { | |
c227f099 AL |
45 | target_phys_addr_t start_addr; |
46 | ram_addr_t memory_size; | |
47 | ram_addr_t phys_offset; | |
34fc643f AL |
48 | int slot; |
49 | int flags; | |
50 | } KVMSlot; | |
05330448 | 51 | |
5832d1f2 AL |
52 | typedef struct kvm_dirty_log KVMDirtyLog; |
53 | ||
05330448 AL |
54 | int kvm_allowed = 0; |
55 | ||
56 | struct KVMState | |
57 | { | |
58 | KVMSlot slots[32]; | |
59 | int fd; | |
60 | int vmfd; | |
f65ed4c1 | 61 | int coalesced_mmio; |
62a2744c SY |
62 | #ifdef KVM_CAP_COALESCED_MMIO |
63 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
64 | #endif | |
e69917e2 | 65 | int broken_set_mem_region; |
4495d6a7 | 66 | int migration_log; |
a0fb002c | 67 | int vcpu_events; |
e22a25c9 AL |
68 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
69 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
70 | #endif | |
6f725c13 GC |
71 | int irqchip_in_kernel; |
72 | int pit_in_kernel; | |
05330448 AL |
73 | }; |
74 | ||
75 | static KVMState *kvm_state; | |
76 | ||
77 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
78 | { | |
79 | int i; | |
80 | ||
81 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
62d60e8c AL |
82 | /* KVM private memory slots */ |
83 | if (i >= 8 && i < 12) | |
84 | continue; | |
05330448 AL |
85 | if (s->slots[i].memory_size == 0) |
86 | return &s->slots[i]; | |
87 | } | |
88 | ||
d3f8d37f AL |
89 | fprintf(stderr, "%s: no free slot available\n", __func__); |
90 | abort(); | |
91 | } | |
92 | ||
93 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
c227f099 AL |
94 | target_phys_addr_t start_addr, |
95 | target_phys_addr_t end_addr) | |
d3f8d37f AL |
96 | { |
97 | int i; | |
98 | ||
99 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
100 | KVMSlot *mem = &s->slots[i]; | |
101 | ||
102 | if (start_addr == mem->start_addr && | |
103 | end_addr == mem->start_addr + mem->memory_size) { | |
104 | return mem; | |
105 | } | |
106 | } | |
107 | ||
05330448 AL |
108 | return NULL; |
109 | } | |
110 | ||
6152e2ae AL |
111 | /* |
112 | * Find overlapping slot with lowest start address | |
113 | */ | |
114 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
c227f099 AL |
115 | target_phys_addr_t start_addr, |
116 | target_phys_addr_t end_addr) | |
05330448 | 117 | { |
6152e2ae | 118 | KVMSlot *found = NULL; |
05330448 AL |
119 | int i; |
120 | ||
121 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
122 | KVMSlot *mem = &s->slots[i]; | |
123 | ||
6152e2ae AL |
124 | if (mem->memory_size == 0 || |
125 | (found && found->start_addr < mem->start_addr)) { | |
126 | continue; | |
127 | } | |
128 | ||
129 | if (end_addr > mem->start_addr && | |
130 | start_addr < mem->start_addr + mem->memory_size) { | |
131 | found = mem; | |
132 | } | |
05330448 AL |
133 | } |
134 | ||
6152e2ae | 135 | return found; |
05330448 AL |
136 | } |
137 | ||
5832d1f2 AL |
138 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
139 | { | |
140 | struct kvm_userspace_memory_region mem; | |
141 | ||
142 | mem.slot = slot->slot; | |
143 | mem.guest_phys_addr = slot->start_addr; | |
144 | mem.memory_size = slot->memory_size; | |
5579c7f3 | 145 | mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); |
5832d1f2 | 146 | mem.flags = slot->flags; |
4495d6a7 JK |
147 | if (s->migration_log) { |
148 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
149 | } | |
5832d1f2 AL |
150 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
151 | } | |
152 | ||
8d2ba1fb JK |
153 | static void kvm_reset_vcpu(void *opaque) |
154 | { | |
155 | CPUState *env = opaque; | |
156 | ||
caa5af0f | 157 | kvm_arch_reset_vcpu(env); |
8d2ba1fb JK |
158 | if (kvm_arch_put_registers(env)) { |
159 | fprintf(stderr, "Fatal: kvm vcpu reset failed\n"); | |
160 | abort(); | |
161 | } | |
162 | } | |
5832d1f2 | 163 | |
6f725c13 GC |
164 | int kvm_irqchip_in_kernel(void) |
165 | { | |
166 | return kvm_state->irqchip_in_kernel; | |
167 | } | |
168 | ||
169 | int kvm_pit_in_kernel(void) | |
170 | { | |
171 | return kvm_state->pit_in_kernel; | |
172 | } | |
173 | ||
174 | ||
05330448 AL |
175 | int kvm_init_vcpu(CPUState *env) |
176 | { | |
177 | KVMState *s = kvm_state; | |
178 | long mmap_size; | |
179 | int ret; | |
180 | ||
181 | dprintf("kvm_init_vcpu\n"); | |
182 | ||
984b5181 | 183 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 AL |
184 | if (ret < 0) { |
185 | dprintf("kvm_create_vcpu failed\n"); | |
186 | goto err; | |
187 | } | |
188 | ||
189 | env->kvm_fd = ret; | |
190 | env->kvm_state = s; | |
191 | ||
192 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
193 | if (mmap_size < 0) { | |
194 | dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
195 | goto err; | |
196 | } | |
197 | ||
198 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
199 | env->kvm_fd, 0); | |
200 | if (env->kvm_run == MAP_FAILED) { | |
201 | ret = -errno; | |
202 | dprintf("mmap'ing vcpu state failed\n"); | |
203 | goto err; | |
204 | } | |
205 | ||
62a2744c SY |
206 | #ifdef KVM_CAP_COALESCED_MMIO |
207 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) | |
208 | s->coalesced_mmio_ring = (void *) env->kvm_run + | |
209 | s->coalesced_mmio * PAGE_SIZE; | |
210 | #endif | |
211 | ||
05330448 | 212 | ret = kvm_arch_init_vcpu(env); |
8d2ba1fb | 213 | if (ret == 0) { |
a08d4367 | 214 | qemu_register_reset(kvm_reset_vcpu, env); |
caa5af0f | 215 | kvm_arch_reset_vcpu(env); |
8d2ba1fb JK |
216 | ret = kvm_arch_put_registers(env); |
217 | } | |
05330448 AL |
218 | err: |
219 | return ret; | |
220 | } | |
221 | ||
5832d1f2 AL |
222 | /* |
223 | * dirty pages logging control | |
224 | */ | |
c227f099 AL |
225 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
226 | ram_addr_t size, int flags, int mask) | |
5832d1f2 AL |
227 | { |
228 | KVMState *s = kvm_state; | |
d3f8d37f | 229 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
4495d6a7 JK |
230 | int old_flags; |
231 | ||
5832d1f2 | 232 | if (mem == NULL) { |
d3f8d37f AL |
233 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
234 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
c227f099 | 235 | (target_phys_addr_t)(phys_addr + size - 1)); |
5832d1f2 AL |
236 | return -EINVAL; |
237 | } | |
238 | ||
4495d6a7 | 239 | old_flags = mem->flags; |
5832d1f2 | 240 | |
4495d6a7 | 241 | flags = (mem->flags & ~mask) | flags; |
5832d1f2 AL |
242 | mem->flags = flags; |
243 | ||
4495d6a7 JK |
244 | /* If nothing changed effectively, no need to issue ioctl */ |
245 | if (s->migration_log) { | |
246 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
247 | } | |
248 | if (flags == old_flags) { | |
249 | return 0; | |
250 | } | |
251 | ||
5832d1f2 AL |
252 | return kvm_set_user_memory_region(s, mem); |
253 | } | |
254 | ||
c227f099 | 255 | int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 256 | { |
d3f8d37f | 257 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
258 | KVM_MEM_LOG_DIRTY_PAGES, |
259 | KVM_MEM_LOG_DIRTY_PAGES); | |
260 | } | |
261 | ||
c227f099 | 262 | int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 263 | { |
d3f8d37f | 264 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
265 | 0, |
266 | KVM_MEM_LOG_DIRTY_PAGES); | |
267 | } | |
268 | ||
7b8f3b78 | 269 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
270 | { |
271 | KVMState *s = kvm_state; | |
272 | KVMSlot *mem; | |
273 | int i, err; | |
274 | ||
275 | s->migration_log = enable; | |
276 | ||
277 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
278 | mem = &s->slots[i]; | |
279 | ||
280 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
281 | continue; | |
282 | } | |
283 | err = kvm_set_user_memory_region(s, mem); | |
284 | if (err) { | |
285 | return err; | |
286 | } | |
287 | } | |
288 | return 0; | |
289 | } | |
290 | ||
96c1606b AG |
291 | static int test_le_bit(unsigned long nr, unsigned char *addr) |
292 | { | |
293 | return (addr[nr >> 3] >> (nr & 7)) & 1; | |
294 | } | |
295 | ||
5832d1f2 AL |
296 | /** |
297 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
298 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
299 | * This means all bits are set to dirty. | |
300 | * | |
d3f8d37f | 301 | * @start_add: start of logged region. |
5832d1f2 AL |
302 | * @end_addr: end of logged region. |
303 | */ | |
7b8f3b78 MT |
304 | static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
305 | target_phys_addr_t end_addr) | |
5832d1f2 AL |
306 | { |
307 | KVMState *s = kvm_state; | |
151f7749 | 308 | unsigned long size, allocated_size = 0; |
c227f099 AL |
309 | target_phys_addr_t phys_addr; |
310 | ram_addr_t addr; | |
151f7749 JK |
311 | KVMDirtyLog d; |
312 | KVMSlot *mem; | |
313 | int ret = 0; | |
5832d1f2 | 314 | |
151f7749 JK |
315 | d.dirty_bitmap = NULL; |
316 | while (start_addr < end_addr) { | |
317 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
318 | if (mem == NULL) { | |
319 | break; | |
320 | } | |
5832d1f2 | 321 | |
151f7749 JK |
322 | size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8; |
323 | if (!d.dirty_bitmap) { | |
324 | d.dirty_bitmap = qemu_malloc(size); | |
325 | } else if (size > allocated_size) { | |
326 | d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); | |
327 | } | |
328 | allocated_size = size; | |
329 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 330 | |
151f7749 | 331 | d.slot = mem->slot; |
5832d1f2 | 332 | |
6e489f3f | 333 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
151f7749 JK |
334 | dprintf("ioctl failed %d\n", errno); |
335 | ret = -1; | |
336 | break; | |
337 | } | |
5832d1f2 | 338 | |
151f7749 JK |
339 | for (phys_addr = mem->start_addr, addr = mem->phys_offset; |
340 | phys_addr < mem->start_addr + mem->memory_size; | |
341 | phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
96c1606b | 342 | unsigned char *bitmap = (unsigned char *)d.dirty_bitmap; |
151f7749 | 343 | unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS; |
151f7749 | 344 | |
96c1606b | 345 | if (test_le_bit(nr, bitmap)) { |
151f7749 JK |
346 | cpu_physical_memory_set_dirty(addr); |
347 | } | |
348 | } | |
349 | start_addr = phys_addr; | |
5832d1f2 | 350 | } |
5832d1f2 | 351 | qemu_free(d.dirty_bitmap); |
151f7749 JK |
352 | |
353 | return ret; | |
5832d1f2 AL |
354 | } |
355 | ||
c227f099 | 356 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
357 | { |
358 | int ret = -ENOSYS; | |
359 | #ifdef KVM_CAP_COALESCED_MMIO | |
360 | KVMState *s = kvm_state; | |
361 | ||
362 | if (s->coalesced_mmio) { | |
363 | struct kvm_coalesced_mmio_zone zone; | |
364 | ||
365 | zone.addr = start; | |
366 | zone.size = size; | |
367 | ||
368 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
369 | } | |
370 | #endif | |
371 | ||
372 | return ret; | |
373 | } | |
374 | ||
c227f099 | 375 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
376 | { |
377 | int ret = -ENOSYS; | |
378 | #ifdef KVM_CAP_COALESCED_MMIO | |
379 | KVMState *s = kvm_state; | |
380 | ||
381 | if (s->coalesced_mmio) { | |
382 | struct kvm_coalesced_mmio_zone zone; | |
383 | ||
384 | zone.addr = start; | |
385 | zone.size = size; | |
386 | ||
387 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
388 | } | |
389 | #endif | |
390 | ||
391 | return ret; | |
392 | } | |
393 | ||
ad7b8b33 AL |
394 | int kvm_check_extension(KVMState *s, unsigned int extension) |
395 | { | |
396 | int ret; | |
397 | ||
398 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
399 | if (ret < 0) { | |
400 | ret = 0; | |
401 | } | |
402 | ||
403 | return ret; | |
404 | } | |
405 | ||
7b8f3b78 MT |
406 | static void kvm_set_phys_mem(target_phys_addr_t start_addr, |
407 | ram_addr_t size, | |
408 | ram_addr_t phys_offset) | |
46dbef6a MT |
409 | { |
410 | KVMState *s = kvm_state; | |
411 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
412 | KVMSlot *mem, old; | |
413 | int err; | |
414 | ||
415 | if (start_addr & ~TARGET_PAGE_MASK) { | |
416 | if (flags >= IO_MEM_UNASSIGNED) { | |
417 | if (!kvm_lookup_overlapping_slot(s, start_addr, | |
418 | start_addr + size)) { | |
419 | return; | |
420 | } | |
421 | fprintf(stderr, "Unaligned split of a KVM memory slot\n"); | |
422 | } else { | |
423 | fprintf(stderr, "Only page-aligned memory slots supported\n"); | |
424 | } | |
425 | abort(); | |
426 | } | |
427 | ||
428 | /* KVM does not support read-only slots */ | |
429 | phys_offset &= ~IO_MEM_ROM; | |
430 | ||
431 | while (1) { | |
432 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
433 | if (!mem) { | |
434 | break; | |
435 | } | |
436 | ||
437 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && | |
438 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
439 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | |
440 | /* The new slot fits into the existing one and comes with | |
441 | * identical parameters - nothing to be done. */ | |
442 | return; | |
443 | } | |
444 | ||
445 | old = *mem; | |
446 | ||
447 | /* unregister the overlapping slot */ | |
448 | mem->memory_size = 0; | |
449 | err = kvm_set_user_memory_region(s, mem); | |
450 | if (err) { | |
451 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
452 | __func__, strerror(-err)); | |
453 | abort(); | |
454 | } | |
455 | ||
456 | /* Workaround for older KVM versions: we can't join slots, even not by | |
457 | * unregistering the previous ones and then registering the larger | |
458 | * slot. We have to maintain the existing fragmentation. Sigh. | |
459 | * | |
460 | * This workaround assumes that the new slot starts at the same | |
461 | * address as the first existing one. If not or if some overlapping | |
462 | * slot comes around later, we will fail (not seen in practice so far) | |
463 | * - and actually require a recent KVM version. */ | |
464 | if (s->broken_set_mem_region && | |
465 | old.start_addr == start_addr && old.memory_size < size && | |
466 | flags < IO_MEM_UNASSIGNED) { | |
467 | mem = kvm_alloc_slot(s); | |
468 | mem->memory_size = old.memory_size; | |
469 | mem->start_addr = old.start_addr; | |
470 | mem->phys_offset = old.phys_offset; | |
471 | mem->flags = 0; | |
472 | ||
473 | err = kvm_set_user_memory_region(s, mem); | |
474 | if (err) { | |
475 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
476 | strerror(-err)); | |
477 | abort(); | |
478 | } | |
479 | ||
480 | start_addr += old.memory_size; | |
481 | phys_offset += old.memory_size; | |
482 | size -= old.memory_size; | |
483 | continue; | |
484 | } | |
485 | ||
486 | /* register prefix slot */ | |
487 | if (old.start_addr < start_addr) { | |
488 | mem = kvm_alloc_slot(s); | |
489 | mem->memory_size = start_addr - old.start_addr; | |
490 | mem->start_addr = old.start_addr; | |
491 | mem->phys_offset = old.phys_offset; | |
492 | mem->flags = 0; | |
493 | ||
494 | err = kvm_set_user_memory_region(s, mem); | |
495 | if (err) { | |
496 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
497 | __func__, strerror(-err)); | |
498 | abort(); | |
499 | } | |
500 | } | |
501 | ||
502 | /* register suffix slot */ | |
503 | if (old.start_addr + old.memory_size > start_addr + size) { | |
504 | ram_addr_t size_delta; | |
505 | ||
506 | mem = kvm_alloc_slot(s); | |
507 | mem->start_addr = start_addr + size; | |
508 | size_delta = mem->start_addr - old.start_addr; | |
509 | mem->memory_size = old.memory_size - size_delta; | |
510 | mem->phys_offset = old.phys_offset + size_delta; | |
511 | mem->flags = 0; | |
512 | ||
513 | err = kvm_set_user_memory_region(s, mem); | |
514 | if (err) { | |
515 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
516 | __func__, strerror(-err)); | |
517 | abort(); | |
518 | } | |
519 | } | |
520 | } | |
521 | ||
522 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
523 | if (!size) | |
524 | return; | |
525 | ||
526 | /* KVM does not need to know about this memory */ | |
527 | if (flags >= IO_MEM_UNASSIGNED) | |
528 | return; | |
529 | ||
530 | mem = kvm_alloc_slot(s); | |
531 | mem->memory_size = size; | |
532 | mem->start_addr = start_addr; | |
533 | mem->phys_offset = phys_offset; | |
534 | mem->flags = 0; | |
535 | ||
536 | err = kvm_set_user_memory_region(s, mem); | |
537 | if (err) { | |
538 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
539 | strerror(-err)); | |
540 | abort(); | |
541 | } | |
542 | } | |
543 | ||
7b8f3b78 MT |
544 | static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, |
545 | target_phys_addr_t start_addr, | |
546 | ram_addr_t size, | |
547 | ram_addr_t phys_offset) | |
548 | { | |
549 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
550 | } | |
551 | ||
552 | static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, | |
553 | target_phys_addr_t start_addr, | |
554 | target_phys_addr_t end_addr) | |
555 | { | |
556 | return kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
557 | } | |
558 | ||
559 | static int kvm_client_migration_log(struct CPUPhysMemoryClient *client, | |
560 | int enable) | |
561 | { | |
562 | return kvm_set_migration_log(enable); | |
563 | } | |
564 | ||
565 | static CPUPhysMemoryClient kvm_cpu_phys_memory_client = { | |
566 | .set_memory = kvm_client_set_memory, | |
567 | .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap, | |
568 | .migration_log = kvm_client_migration_log, | |
569 | }; | |
570 | ||
05330448 AL |
571 | int kvm_init(int smp_cpus) |
572 | { | |
168ccc11 JK |
573 | static const char upgrade_note[] = |
574 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
575 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 AL |
576 | KVMState *s; |
577 | int ret; | |
578 | int i; | |
579 | ||
9f8fd694 MM |
580 | if (smp_cpus > 1) { |
581 | fprintf(stderr, "No SMP KVM support, use '-smp 1'\n"); | |
05330448 | 582 | return -EINVAL; |
9f8fd694 | 583 | } |
05330448 AL |
584 | |
585 | s = qemu_mallocz(sizeof(KVMState)); | |
05330448 | 586 | |
e22a25c9 | 587 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 588 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 589 | #endif |
05330448 AL |
590 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
591 | s->slots[i].slot = i; | |
592 | ||
593 | s->vmfd = -1; | |
40ff6d7e | 594 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
595 | if (s->fd == -1) { |
596 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
597 | ret = -errno; | |
598 | goto err; | |
599 | } | |
600 | ||
601 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
602 | if (ret < KVM_API_VERSION) { | |
603 | if (ret > 0) | |
604 | ret = -EINVAL; | |
605 | fprintf(stderr, "kvm version too old\n"); | |
606 | goto err; | |
607 | } | |
608 | ||
609 | if (ret > KVM_API_VERSION) { | |
610 | ret = -EINVAL; | |
611 | fprintf(stderr, "kvm version not supported\n"); | |
612 | goto err; | |
613 | } | |
614 | ||
615 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
616 | if (s->vmfd < 0) | |
617 | goto err; | |
618 | ||
619 | /* initially, KVM allocated its own memory and we had to jump through | |
620 | * hooks to make phys_ram_base point to this. Modern versions of KVM | |
5579c7f3 | 621 | * just use a user allocated buffer so we can use regular pages |
05330448 AL |
622 | * unmodified. Make sure we have a sufficiently modern version of KVM. |
623 | */ | |
ad7b8b33 AL |
624 | if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { |
625 | ret = -EINVAL; | |
168ccc11 JK |
626 | fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", |
627 | upgrade_note); | |
05330448 AL |
628 | goto err; |
629 | } | |
630 | ||
d85dc283 AL |
631 | /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
632 | * destroyed properly. Since we rely on this capability, refuse to work | |
633 | * with any kernel without this capability. */ | |
ad7b8b33 AL |
634 | if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { |
635 | ret = -EINVAL; | |
d85dc283 AL |
636 | |
637 | fprintf(stderr, | |
168ccc11 JK |
638 | "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", |
639 | upgrade_note); | |
d85dc283 AL |
640 | goto err; |
641 | } | |
642 | ||
62a2744c | 643 | s->coalesced_mmio = 0; |
f65ed4c1 | 644 | #ifdef KVM_CAP_COALESCED_MMIO |
ad7b8b33 | 645 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
62a2744c | 646 | s->coalesced_mmio_ring = NULL; |
f65ed4c1 AL |
647 | #endif |
648 | ||
e69917e2 JK |
649 | s->broken_set_mem_region = 1; |
650 | #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS | |
651 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
652 | if (ret > 0) { | |
653 | s->broken_set_mem_region = 0; | |
654 | } | |
655 | #endif | |
656 | ||
a0fb002c JK |
657 | s->vcpu_events = 0; |
658 | #ifdef KVM_CAP_VCPU_EVENTS | |
659 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
660 | #endif | |
661 | ||
05330448 AL |
662 | ret = kvm_arch_init(s, smp_cpus); |
663 | if (ret < 0) | |
664 | goto err; | |
665 | ||
666 | kvm_state = s; | |
7b8f3b78 | 667 | cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client); |
05330448 AL |
668 | |
669 | return 0; | |
670 | ||
671 | err: | |
672 | if (s) { | |
673 | if (s->vmfd != -1) | |
674 | close(s->vmfd); | |
675 | if (s->fd != -1) | |
676 | close(s->fd); | |
677 | } | |
678 | qemu_free(s); | |
679 | ||
680 | return ret; | |
681 | } | |
682 | ||
afcea8cb BS |
683 | static int kvm_handle_io(uint16_t port, void *data, int direction, int size, |
684 | uint32_t count) | |
05330448 AL |
685 | { |
686 | int i; | |
687 | uint8_t *ptr = data; | |
688 | ||
689 | for (i = 0; i < count; i++) { | |
690 | if (direction == KVM_EXIT_IO_IN) { | |
691 | switch (size) { | |
692 | case 1: | |
afcea8cb | 693 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
694 | break; |
695 | case 2: | |
afcea8cb | 696 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
697 | break; |
698 | case 4: | |
afcea8cb | 699 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
700 | break; |
701 | } | |
702 | } else { | |
703 | switch (size) { | |
704 | case 1: | |
afcea8cb | 705 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
706 | break; |
707 | case 2: | |
afcea8cb | 708 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
709 | break; |
710 | case 4: | |
afcea8cb | 711 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
712 | break; |
713 | } | |
714 | } | |
715 | ||
716 | ptr += size; | |
717 | } | |
718 | ||
719 | return 1; | |
720 | } | |
721 | ||
62a2744c | 722 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 AL |
723 | { |
724 | #ifdef KVM_CAP_COALESCED_MMIO | |
725 | KVMState *s = kvm_state; | |
62a2744c SY |
726 | if (s->coalesced_mmio_ring) { |
727 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
728 | while (ring->first != ring->last) { |
729 | struct kvm_coalesced_mmio *ent; | |
730 | ||
731 | ent = &ring->coalesced_mmio[ring->first]; | |
732 | ||
733 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 734 | smp_wmb(); |
f65ed4c1 AL |
735 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
736 | } | |
737 | } | |
738 | #endif | |
739 | } | |
740 | ||
4c0960c0 AK |
741 | void kvm_cpu_synchronize_state(CPUState *env) |
742 | { | |
9ded2744 | 743 | if (!env->kvm_vcpu_dirty) { |
4c0960c0 | 744 | kvm_arch_get_registers(env); |
9ded2744 | 745 | env->kvm_vcpu_dirty = 1; |
4c0960c0 AK |
746 | } |
747 | } | |
748 | ||
05330448 AL |
749 | int kvm_cpu_exec(CPUState *env) |
750 | { | |
751 | struct kvm_run *run = env->kvm_run; | |
752 | int ret; | |
753 | ||
754 | dprintf("kvm_cpu_exec()\n"); | |
755 | ||
756 | do { | |
6312b928 | 757 | #ifndef CONFIG_IOTHREAD |
be214e6c | 758 | if (env->exit_request) { |
05330448 AL |
759 | dprintf("interrupt exit requested\n"); |
760 | ret = 0; | |
761 | break; | |
762 | } | |
6312b928 | 763 | #endif |
05330448 | 764 | |
9ded2744 | 765 | if (env->kvm_vcpu_dirty) { |
4c0960c0 | 766 | kvm_arch_put_registers(env); |
9ded2744 | 767 | env->kvm_vcpu_dirty = 0; |
4c0960c0 AK |
768 | } |
769 | ||
8c14c173 | 770 | kvm_arch_pre_run(env, run); |
d549db5a | 771 | qemu_mutex_unlock_iothread(); |
05330448 | 772 | ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
d549db5a | 773 | qemu_mutex_lock_iothread(); |
05330448 AL |
774 | kvm_arch_post_run(env, run); |
775 | ||
776 | if (ret == -EINTR || ret == -EAGAIN) { | |
cc84de95 | 777 | cpu_exit(env); |
05330448 AL |
778 | dprintf("io window exit\n"); |
779 | ret = 0; | |
780 | break; | |
781 | } | |
782 | ||
783 | if (ret < 0) { | |
784 | dprintf("kvm run failed %s\n", strerror(-ret)); | |
785 | abort(); | |
786 | } | |
787 | ||
62a2744c | 788 | kvm_flush_coalesced_mmio_buffer(); |
f65ed4c1 | 789 | |
05330448 AL |
790 | ret = 0; /* exit loop */ |
791 | switch (run->exit_reason) { | |
792 | case KVM_EXIT_IO: | |
793 | dprintf("handle_io\n"); | |
afcea8cb | 794 | ret = kvm_handle_io(run->io.port, |
05330448 AL |
795 | (uint8_t *)run + run->io.data_offset, |
796 | run->io.direction, | |
797 | run->io.size, | |
798 | run->io.count); | |
799 | break; | |
800 | case KVM_EXIT_MMIO: | |
801 | dprintf("handle_mmio\n"); | |
802 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
803 | run->mmio.data, | |
804 | run->mmio.len, | |
805 | run->mmio.is_write); | |
806 | ret = 1; | |
807 | break; | |
808 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
809 | dprintf("irq_window_open\n"); | |
810 | break; | |
811 | case KVM_EXIT_SHUTDOWN: | |
812 | dprintf("shutdown\n"); | |
813 | qemu_system_reset_request(); | |
814 | ret = 1; | |
815 | break; | |
816 | case KVM_EXIT_UNKNOWN: | |
817 | dprintf("kvm_exit_unknown\n"); | |
818 | break; | |
819 | case KVM_EXIT_FAIL_ENTRY: | |
820 | dprintf("kvm_exit_fail_entry\n"); | |
821 | break; | |
822 | case KVM_EXIT_EXCEPTION: | |
823 | dprintf("kvm_exit_exception\n"); | |
824 | break; | |
825 | case KVM_EXIT_DEBUG: | |
826 | dprintf("kvm_exit_debug\n"); | |
e22a25c9 AL |
827 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
828 | if (kvm_arch_debug(&run->debug.arch)) { | |
829 | gdb_set_stop_cpu(env); | |
830 | vm_stop(EXCP_DEBUG); | |
831 | env->exception_index = EXCP_DEBUG; | |
832 | return 0; | |
833 | } | |
834 | /* re-enter, this exception was guest-internal */ | |
835 | ret = 1; | |
836 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
05330448 AL |
837 | break; |
838 | default: | |
839 | dprintf("kvm_arch_handle_exit\n"); | |
840 | ret = kvm_arch_handle_exit(env, run); | |
841 | break; | |
842 | } | |
843 | } while (ret > 0); | |
844 | ||
be214e6c AJ |
845 | if (env->exit_request) { |
846 | env->exit_request = 0; | |
becfc390 AL |
847 | env->exception_index = EXCP_INTERRUPT; |
848 | } | |
849 | ||
05330448 AL |
850 | return ret; |
851 | } | |
852 | ||
984b5181 | 853 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
854 | { |
855 | int ret; | |
984b5181 AL |
856 | void *arg; |
857 | va_list ap; | |
05330448 | 858 | |
984b5181 AL |
859 | va_start(ap, type); |
860 | arg = va_arg(ap, void *); | |
861 | va_end(ap); | |
862 | ||
863 | ret = ioctl(s->fd, type, arg); | |
05330448 AL |
864 | if (ret == -1) |
865 | ret = -errno; | |
866 | ||
867 | return ret; | |
868 | } | |
869 | ||
984b5181 | 870 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
871 | { |
872 | int ret; | |
984b5181 AL |
873 | void *arg; |
874 | va_list ap; | |
875 | ||
876 | va_start(ap, type); | |
877 | arg = va_arg(ap, void *); | |
878 | va_end(ap); | |
05330448 | 879 | |
984b5181 | 880 | ret = ioctl(s->vmfd, type, arg); |
05330448 AL |
881 | if (ret == -1) |
882 | ret = -errno; | |
883 | ||
884 | return ret; | |
885 | } | |
886 | ||
984b5181 | 887 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
888 | { |
889 | int ret; | |
984b5181 AL |
890 | void *arg; |
891 | va_list ap; | |
892 | ||
893 | va_start(ap, type); | |
894 | arg = va_arg(ap, void *); | |
895 | va_end(ap); | |
05330448 | 896 | |
984b5181 | 897 | ret = ioctl(env->kvm_fd, type, arg); |
05330448 AL |
898 | if (ret == -1) |
899 | ret = -errno; | |
900 | ||
901 | return ret; | |
902 | } | |
bd322087 AL |
903 | |
904 | int kvm_has_sync_mmu(void) | |
905 | { | |
a9c11522 | 906 | #ifdef KVM_CAP_SYNC_MMU |
bd322087 AL |
907 | KVMState *s = kvm_state; |
908 | ||
ad7b8b33 AL |
909 | return kvm_check_extension(s, KVM_CAP_SYNC_MMU); |
910 | #else | |
bd322087 | 911 | return 0; |
ad7b8b33 | 912 | #endif |
bd322087 | 913 | } |
e22a25c9 | 914 | |
a0fb002c JK |
915 | int kvm_has_vcpu_events(void) |
916 | { | |
917 | return kvm_state->vcpu_events; | |
918 | } | |
919 | ||
6f0437e8 JK |
920 | void kvm_setup_guest_memory(void *start, size_t size) |
921 | { | |
922 | if (!kvm_has_sync_mmu()) { | |
923 | #ifdef MADV_DONTFORK | |
924 | int ret = madvise(start, size, MADV_DONTFORK); | |
925 | ||
926 | if (ret) { | |
927 | perror("madvice"); | |
928 | exit(1); | |
929 | } | |
930 | #else | |
931 | fprintf(stderr, | |
932 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
933 | exit(1); | |
934 | #endif | |
935 | } | |
936 | } | |
937 | ||
e22a25c9 | 938 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
fc5d642f LC |
939 | static void on_vcpu(CPUState *env, void (*func)(void *data), void *data) |
940 | { | |
828566bc | 941 | #ifdef CONFIG_IOTHREAD |
a2eebe88 AS |
942 | if (env != cpu_single_env) { |
943 | abort(); | |
fc5d642f | 944 | } |
828566bc | 945 | #endif |
a2eebe88 | 946 | func(data); |
fc5d642f LC |
947 | } |
948 | ||
e22a25c9 AL |
949 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, |
950 | target_ulong pc) | |
951 | { | |
952 | struct kvm_sw_breakpoint *bp; | |
953 | ||
72cf2d4f | 954 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
e22a25c9 AL |
955 | if (bp->pc == pc) |
956 | return bp; | |
957 | } | |
958 | return NULL; | |
959 | } | |
960 | ||
961 | int kvm_sw_breakpoints_active(CPUState *env) | |
962 | { | |
72cf2d4f | 963 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
964 | } |
965 | ||
452e4751 GC |
966 | struct kvm_set_guest_debug_data { |
967 | struct kvm_guest_debug dbg; | |
968 | CPUState *env; | |
969 | int err; | |
970 | }; | |
971 | ||
972 | static void kvm_invoke_set_guest_debug(void *data) | |
973 | { | |
974 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 JK |
975 | CPUState *env = dbg_data->env; |
976 | ||
9ded2744 | 977 | if (env->kvm_vcpu_dirty) { |
b3807725 | 978 | kvm_arch_put_registers(env); |
9ded2744 | 979 | env->kvm_vcpu_dirty = 0; |
b3807725 JK |
980 | } |
981 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); | |
452e4751 GC |
982 | } |
983 | ||
e22a25c9 AL |
984 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
985 | { | |
452e4751 | 986 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 987 | |
452e4751 | 988 | data.dbg.control = 0; |
e22a25c9 | 989 | if (env->singlestep_enabled) |
452e4751 | 990 | data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
e22a25c9 | 991 | |
452e4751 GC |
992 | kvm_arch_update_guest_debug(env, &data.dbg); |
993 | data.dbg.control |= reinject_trap; | |
994 | data.env = env; | |
e22a25c9 | 995 | |
452e4751 GC |
996 | on_vcpu(env, kvm_invoke_set_guest_debug, &data); |
997 | return data.err; | |
e22a25c9 AL |
998 | } |
999 | ||
1000 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1001 | target_ulong len, int type) | |
1002 | { | |
1003 | struct kvm_sw_breakpoint *bp; | |
1004 | CPUState *env; | |
1005 | int err; | |
1006 | ||
1007 | if (type == GDB_BREAKPOINT_SW) { | |
1008 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1009 | if (bp) { | |
1010 | bp->use_count++; | |
1011 | return 0; | |
1012 | } | |
1013 | ||
1014 | bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | |
1015 | if (!bp) | |
1016 | return -ENOMEM; | |
1017 | ||
1018 | bp->pc = addr; | |
1019 | bp->use_count = 1; | |
1020 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1021 | if (err) { | |
1022 | free(bp); | |
1023 | return err; | |
1024 | } | |
1025 | ||
72cf2d4f | 1026 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1027 | bp, entry); |
1028 | } else { | |
1029 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
1030 | if (err) | |
1031 | return err; | |
1032 | } | |
1033 | ||
1034 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1035 | err = kvm_update_guest_debug(env, 0); | |
1036 | if (err) | |
1037 | return err; | |
1038 | } | |
1039 | return 0; | |
1040 | } | |
1041 | ||
1042 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1043 | target_ulong len, int type) | |
1044 | { | |
1045 | struct kvm_sw_breakpoint *bp; | |
1046 | CPUState *env; | |
1047 | int err; | |
1048 | ||
1049 | if (type == GDB_BREAKPOINT_SW) { | |
1050 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1051 | if (!bp) | |
1052 | return -ENOENT; | |
1053 | ||
1054 | if (bp->use_count > 1) { | |
1055 | bp->use_count--; | |
1056 | return 0; | |
1057 | } | |
1058 | ||
1059 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
1060 | if (err) | |
1061 | return err; | |
1062 | ||
72cf2d4f | 1063 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
1064 | qemu_free(bp); |
1065 | } else { | |
1066 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1067 | if (err) | |
1068 | return err; | |
1069 | } | |
1070 | ||
1071 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1072 | err = kvm_update_guest_debug(env, 0); | |
1073 | if (err) | |
1074 | return err; | |
1075 | } | |
1076 | return 0; | |
1077 | } | |
1078 | ||
1079 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1080 | { | |
1081 | struct kvm_sw_breakpoint *bp, *next; | |
1082 | KVMState *s = current_env->kvm_state; | |
1083 | CPUState *env; | |
1084 | ||
72cf2d4f | 1085 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
e22a25c9 AL |
1086 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
1087 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1088 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1089 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) | |
1090 | break; | |
1091 | } | |
1092 | } | |
1093 | } | |
1094 | kvm_arch_remove_all_hw_breakpoints(); | |
1095 | ||
1096 | for (env = first_cpu; env != NULL; env = env->next_cpu) | |
1097 | kvm_update_guest_debug(env, 0); | |
1098 | } | |
1099 | ||
1100 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1101 | ||
1102 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1103 | { | |
1104 | return -EINVAL; | |
1105 | } | |
1106 | ||
1107 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1108 | target_ulong len, int type) | |
1109 | { | |
1110 | return -EINVAL; | |
1111 | } | |
1112 | ||
1113 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1114 | target_ulong len, int type) | |
1115 | { | |
1116 | return -EINVAL; | |
1117 | } | |
1118 | ||
1119 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1120 | { | |
1121 | } | |
1122 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 MT |
1123 | |
1124 | int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) | |
1125 | { | |
1126 | struct kvm_signal_mask *sigmask; | |
1127 | int r; | |
1128 | ||
1129 | if (!sigset) | |
1130 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); | |
1131 | ||
1132 | sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset)); | |
1133 | ||
1134 | sigmask->len = 8; | |
1135 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1136 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
1137 | free(sigmask); | |
1138 | ||
1139 | return r; | |
1140 | } |