]> Git Repo - qemu.git/blame - linux-user/elfload.c
Merge remote-tracking branch 'remotes/juanquintela/tags/pull-migration-pull-request...
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
76cad711 9#include "disas/disas.h"
f348b6d1 10#include "qemu/path.h"
dc5e9ac7 11#include "qemu/queue.h"
c6a2377f 12#include "qemu/guest-random.h"
6fd59449 13#include "qemu/units.h"
31e31b8a 14
e58ffeb3 15#ifdef _ARCH_PPC64
a6cc84f4 16#undef ARCH_DLINFO
17#undef ELF_PLATFORM
18#undef ELF_HWCAP
ad6919dc 19#undef ELF_HWCAP2
a6cc84f4 20#undef ELF_CLASS
21#undef ELF_DATA
22#undef ELF_ARCH
23#endif
24
edf8e2af
MW
25#define ELF_OSABI ELFOSABI_SYSV
26
cb33da57
BS
27/* from personality.h */
28
29/*
30 * Flags for bug emulation.
31 *
32 * These occupy the top three bytes.
33 */
34enum {
d97ef72e
RH
35 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
36 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
37 descriptors (signal handling) */
38 MMAP_PAGE_ZERO = 0x0100000,
39 ADDR_COMPAT_LAYOUT = 0x0200000,
40 READ_IMPLIES_EXEC = 0x0400000,
41 ADDR_LIMIT_32BIT = 0x0800000,
42 SHORT_INODE = 0x1000000,
43 WHOLE_SECONDS = 0x2000000,
44 STICKY_TIMEOUTS = 0x4000000,
45 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
46};
47
48/*
49 * Personality types.
50 *
51 * These go in the low byte. Avoid using the top bit, it will
52 * conflict with error returns.
53 */
54enum {
d97ef72e
RH
55 PER_LINUX = 0x0000,
56 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
57 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
58 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
59 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
60 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
61 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
62 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
64 PER_BSD = 0x0006,
65 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
66 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
67 PER_LINUX32 = 0x0008,
68 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
69 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
70 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
71 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
72 PER_RISCOS = 0x000c,
73 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
74 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
75 PER_OSF4 = 0x000f, /* OSF/1 v4 */
76 PER_HPUX = 0x0010,
77 PER_MASK = 0x00ff,
cb33da57
BS
78};
79
80/*
81 * Return the base personality without flags.
82 */
d97ef72e 83#define personality(pers) (pers & PER_MASK)
cb33da57 84
3cb10cfa
CL
85int info_is_fdpic(struct image_info *info)
86{
87 return info->personality == PER_LINUX_FDPIC;
88}
89
83fb7adf
FB
90/* this flag is uneffective under linux too, should be deleted */
91#ifndef MAP_DENYWRITE
92#define MAP_DENYWRITE 0
93#endif
94
95/* should probably go in elf.h */
96#ifndef ELIBBAD
97#define ELIBBAD 80
98#endif
99
28490231
RH
100#ifdef TARGET_WORDS_BIGENDIAN
101#define ELF_DATA ELFDATA2MSB
102#else
103#define ELF_DATA ELFDATA2LSB
104#endif
105
a29f998d 106#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
107typedef abi_ullong target_elf_greg_t;
108#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
109#else
110typedef abi_ulong target_elf_greg_t;
111#define tswapreg(ptr) tswapal(ptr)
112#endif
113
21e807fa 114#ifdef USE_UID16
1ddd592f
PB
115typedef abi_ushort target_uid_t;
116typedef abi_ushort target_gid_t;
21e807fa 117#else
f8fd4fc4
PB
118typedef abi_uint target_uid_t;
119typedef abi_uint target_gid_t;
21e807fa 120#endif
f8fd4fc4 121typedef abi_int target_pid_t;
21e807fa 122
30ac07d4
FB
123#ifdef TARGET_I386
124
15338fd7
FB
125#define ELF_PLATFORM get_elf_platform()
126
127static const char *get_elf_platform(void)
128{
129 static char elf_platform[] = "i386";
a2247f8e 130 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
131 if (family > 6)
132 family = 6;
133 if (family >= 3)
134 elf_platform[1] = '0' + family;
135 return elf_platform;
136}
137
138#define ELF_HWCAP get_elf_hwcap()
139
140static uint32_t get_elf_hwcap(void)
141{
a2247f8e
AF
142 X86CPU *cpu = X86_CPU(thread_cpu);
143
144 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
145}
146
84409ddb
JM
147#ifdef TARGET_X86_64
148#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
149
150#define ELF_CLASS ELFCLASS64
84409ddb
JM
151#define ELF_ARCH EM_X86_64
152
153static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154{
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158}
159
9edc5d79 160#define ELF_NREG 27
c227f099 161typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
162
163/*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
05390248 170static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
171{
172 (*regs)[0] = env->regs[15];
173 (*regs)[1] = env->regs[14];
174 (*regs)[2] = env->regs[13];
175 (*regs)[3] = env->regs[12];
176 (*regs)[4] = env->regs[R_EBP];
177 (*regs)[5] = env->regs[R_EBX];
178 (*regs)[6] = env->regs[11];
179 (*regs)[7] = env->regs[10];
180 (*regs)[8] = env->regs[9];
181 (*regs)[9] = env->regs[8];
182 (*regs)[10] = env->regs[R_EAX];
183 (*regs)[11] = env->regs[R_ECX];
184 (*regs)[12] = env->regs[R_EDX];
185 (*regs)[13] = env->regs[R_ESI];
186 (*regs)[14] = env->regs[R_EDI];
187 (*regs)[15] = env->regs[R_EAX]; /* XXX */
188 (*regs)[16] = env->eip;
189 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190 (*regs)[18] = env->eflags;
191 (*regs)[19] = env->regs[R_ESP];
192 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199}
200
84409ddb
JM
201#else
202
30ac07d4
FB
203#define ELF_START_MMAP 0x80000000
204
30ac07d4
FB
205/*
206 * This is used to ensure we don't load something for the wrong architecture.
207 */
208#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209
210/*
211 * These are used to set parameters in the core dumps.
212 */
d97ef72e 213#define ELF_CLASS ELFCLASS32
d97ef72e 214#define ELF_ARCH EM_386
30ac07d4 215
d97ef72e
RH
216static inline void init_thread(struct target_pt_regs *regs,
217 struct image_info *infop)
b346ff46
FB
218{
219 regs->esp = infop->start_stack;
220 regs->eip = infop->entry;
e5fe0c52
PB
221
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
227
228 A value of 0 tells we have no such handler. */
229 regs->edx = 0;
b346ff46 230}
9edc5d79 231
9edc5d79 232#define ELF_NREG 17
c227f099 233typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
234
235/*
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
238 * those.
239 *
240 * See linux kernel: arch/x86/include/asm/elf.h
241 */
05390248 242static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
243{
244 (*regs)[0] = env->regs[R_EBX];
245 (*regs)[1] = env->regs[R_ECX];
246 (*regs)[2] = env->regs[R_EDX];
247 (*regs)[3] = env->regs[R_ESI];
248 (*regs)[4] = env->regs[R_EDI];
249 (*regs)[5] = env->regs[R_EBP];
250 (*regs)[6] = env->regs[R_EAX];
251 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255 (*regs)[11] = env->regs[R_EAX]; /* XXX */
256 (*regs)[12] = env->eip;
257 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258 (*regs)[14] = env->eflags;
259 (*regs)[15] = env->regs[R_ESP];
260 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261}
84409ddb 262#endif
b346ff46 263
9edc5d79 264#define USE_ELF_CORE_DUMP
d97ef72e 265#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
266
267#endif
268
269#ifdef TARGET_ARM
270
24e76ff0
PM
271#ifndef TARGET_AARCH64
272/* 32 bit ARM definitions */
273
b346ff46
FB
274#define ELF_START_MMAP 0x80000000
275
b597c3f7 276#define ELF_ARCH EM_ARM
d97ef72e 277#define ELF_CLASS ELFCLASS32
b346ff46 278
d97ef72e
RH
279static inline void init_thread(struct target_pt_regs *regs,
280 struct image_info *infop)
b346ff46 281{
992f48a0 282 abi_long stack = infop->start_stack;
b346ff46 283 memset(regs, 0, sizeof(*regs));
99033cae 284
167e4cdc
PM
285 regs->uregs[16] = ARM_CPU_MODE_USR;
286 if (infop->entry & 1) {
287 regs->uregs[16] |= CPSR_T;
288 }
289 regs->uregs[15] = infop->entry & 0xfffffffe;
290 regs->uregs[13] = infop->start_stack;
2f619698 291 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
292 get_user_ual(regs->uregs[2], stack + 8); /* envp */
293 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 294 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 295 regs->uregs[0] = 0;
e5fe0c52 296 /* For uClinux PIC binaries. */
863cf0b7 297 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 298 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
299
300 /* Support ARM FDPIC. */
301 if (info_is_fdpic(infop)) {
302 /* As described in the ABI document, r7 points to the loadmap info
303 * prepared by the kernel. If an interpreter is needed, r8 points
304 * to the interpreter loadmap and r9 points to the interpreter
305 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
306 * r9 points to the main program PT_DYNAMIC info.
307 */
308 regs->uregs[7] = infop->loadmap_addr;
309 if (infop->interpreter_loadmap_addr) {
310 /* Executable is dynamically loaded. */
311 regs->uregs[8] = infop->interpreter_loadmap_addr;
312 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
313 } else {
314 regs->uregs[8] = 0;
315 regs->uregs[9] = infop->pt_dynamic_addr;
316 }
317 }
b346ff46
FB
318}
319
edf8e2af 320#define ELF_NREG 18
c227f099 321typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 322
05390248 323static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 324{
86cd7b2d
PB
325 (*regs)[0] = tswapreg(env->regs[0]);
326 (*regs)[1] = tswapreg(env->regs[1]);
327 (*regs)[2] = tswapreg(env->regs[2]);
328 (*regs)[3] = tswapreg(env->regs[3]);
329 (*regs)[4] = tswapreg(env->regs[4]);
330 (*regs)[5] = tswapreg(env->regs[5]);
331 (*regs)[6] = tswapreg(env->regs[6]);
332 (*regs)[7] = tswapreg(env->regs[7]);
333 (*regs)[8] = tswapreg(env->regs[8]);
334 (*regs)[9] = tswapreg(env->regs[9]);
335 (*regs)[10] = tswapreg(env->regs[10]);
336 (*regs)[11] = tswapreg(env->regs[11]);
337 (*regs)[12] = tswapreg(env->regs[12]);
338 (*regs)[13] = tswapreg(env->regs[13]);
339 (*regs)[14] = tswapreg(env->regs[14]);
340 (*regs)[15] = tswapreg(env->regs[15]);
341
342 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
343 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
344}
345
30ac07d4 346#define USE_ELF_CORE_DUMP
d97ef72e 347#define ELF_EXEC_PAGESIZE 4096
30ac07d4 348
afce2927
FB
349enum
350{
d97ef72e
RH
351 ARM_HWCAP_ARM_SWP = 1 << 0,
352 ARM_HWCAP_ARM_HALF = 1 << 1,
353 ARM_HWCAP_ARM_THUMB = 1 << 2,
354 ARM_HWCAP_ARM_26BIT = 1 << 3,
355 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
356 ARM_HWCAP_ARM_FPA = 1 << 5,
357 ARM_HWCAP_ARM_VFP = 1 << 6,
358 ARM_HWCAP_ARM_EDSP = 1 << 7,
359 ARM_HWCAP_ARM_JAVA = 1 << 8,
360 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
361 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
362 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
363 ARM_HWCAP_ARM_NEON = 1 << 12,
364 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
365 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
366 ARM_HWCAP_ARM_TLS = 1 << 15,
367 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
368 ARM_HWCAP_ARM_IDIVA = 1 << 17,
369 ARM_HWCAP_ARM_IDIVT = 1 << 18,
370 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
371 ARM_HWCAP_ARM_LPAE = 1 << 20,
372 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
373};
374
ad6919dc
PM
375enum {
376 ARM_HWCAP2_ARM_AES = 1 << 0,
377 ARM_HWCAP2_ARM_PMULL = 1 << 1,
378 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
379 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
380 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
381};
382
6b1275ff
PM
383/* The commpage only exists for 32 bit kernels */
384
806d1021
MI
385/* Return 1 if the proposed guest space is suitable for the guest.
386 * Return 0 if the proposed guest space isn't suitable, but another
387 * address space should be tried.
388 * Return -1 if there is no way the proposed guest space can be
389 * valid regardless of the base.
390 * The guest code may leave a page mapped and populate it if the
391 * address is suitable.
392 */
c3637eaf
LS
393static int init_guest_commpage(unsigned long guest_base,
394 unsigned long guest_size)
97cc7560
DDAG
395{
396 unsigned long real_start, test_page_addr;
397
398 /* We need to check that we can force a fault on access to the
399 * commpage at 0xffff0fxx
400 */
401 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
402
403 /* If the commpage lies within the already allocated guest space,
404 * then there is no way we can allocate it.
955e304f
LS
405 *
406 * You may be thinking that that this check is redundant because
407 * we already validated the guest size against MAX_RESERVED_VA;
408 * but if qemu_host_page_mask is unusually large, then
409 * test_page_addr may be lower.
806d1021
MI
410 */
411 if (test_page_addr >= guest_base
e568f9df 412 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
413 return -1;
414 }
415
97cc7560
DDAG
416 /* Note it needs to be writeable to let us initialise it */
417 real_start = (unsigned long)
418 mmap((void *)test_page_addr, qemu_host_page_size,
419 PROT_READ | PROT_WRITE,
420 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
421
422 /* If we can't map it then try another address */
423 if (real_start == -1ul) {
424 return 0;
425 }
426
427 if (real_start != test_page_addr) {
428 /* OS didn't put the page where we asked - unmap and reject */
429 munmap((void *)real_start, qemu_host_page_size);
430 return 0;
431 }
432
433 /* Leave the page mapped
434 * Populate it (mmap should have left it all 0'd)
435 */
436
437 /* Kernel helper versions */
438 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
439
440 /* Now it's populated make it RO */
441 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
442 perror("Protecting guest commpage");
443 exit(-1);
444 }
445
446 return 1; /* All good */
447}
adf050b1
BC
448
449#define ELF_HWCAP get_elf_hwcap()
ad6919dc 450#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
451
452static uint32_t get_elf_hwcap(void)
453{
a2247f8e 454 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
455 uint32_t hwcaps = 0;
456
457 hwcaps |= ARM_HWCAP_ARM_SWP;
458 hwcaps |= ARM_HWCAP_ARM_HALF;
459 hwcaps |= ARM_HWCAP_ARM_THUMB;
460 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
461
462 /* probe for the extra features */
463#define GET_FEATURE(feat, hwcap) \
a2247f8e 464 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
465
466#define GET_FEATURE_ID(feat, hwcap) \
467 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
468
24682654
PM
469 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
470 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
471 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
472 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
473 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
474 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
475 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
476 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
477 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
7e0cf8b4
RH
478 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
479 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
24682654
PM
480 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
481 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
482 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
483 * to our VFP_FP16 feature bit.
484 */
485 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
486 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
487
488 return hwcaps;
489}
afce2927 490
ad6919dc
PM
491static uint32_t get_elf_hwcap2(void)
492{
493 ARMCPU *cpu = ARM_CPU(thread_cpu);
494 uint32_t hwcaps = 0;
495
962fcbf2
RH
496 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
497 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
498 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
499 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
500 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
501 return hwcaps;
502}
503
504#undef GET_FEATURE
962fcbf2 505#undef GET_FEATURE_ID
ad6919dc 506
13ec4ec3
RH
507#define ELF_PLATFORM get_elf_platform()
508
509static const char *get_elf_platform(void)
510{
511 CPUARMState *env = thread_cpu->env_ptr;
512
513#ifdef TARGET_WORDS_BIGENDIAN
514# define END "b"
515#else
516# define END "l"
517#endif
518
519 if (arm_feature(env, ARM_FEATURE_V8)) {
520 return "v8" END;
521 } else if (arm_feature(env, ARM_FEATURE_V7)) {
522 if (arm_feature(env, ARM_FEATURE_M)) {
523 return "v7m" END;
524 } else {
525 return "v7" END;
526 }
527 } else if (arm_feature(env, ARM_FEATURE_V6)) {
528 return "v6" END;
529 } else if (arm_feature(env, ARM_FEATURE_V5)) {
530 return "v5" END;
531 } else {
532 return "v4" END;
533 }
534
535#undef END
536}
537
24e76ff0
PM
538#else
539/* 64 bit ARM definitions */
540#define ELF_START_MMAP 0x80000000
541
b597c3f7 542#define ELF_ARCH EM_AARCH64
24e76ff0 543#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
544#ifdef TARGET_WORDS_BIGENDIAN
545# define ELF_PLATFORM "aarch64_be"
546#else
547# define ELF_PLATFORM "aarch64"
548#endif
24e76ff0
PM
549
550static inline void init_thread(struct target_pt_regs *regs,
551 struct image_info *infop)
552{
553 abi_long stack = infop->start_stack;
554 memset(regs, 0, sizeof(*regs));
555
556 regs->pc = infop->entry & ~0x3ULL;
557 regs->sp = stack;
558}
559
560#define ELF_NREG 34
561typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
562
563static void elf_core_copy_regs(target_elf_gregset_t *regs,
564 const CPUARMState *env)
565{
566 int i;
567
568 for (i = 0; i < 32; i++) {
569 (*regs)[i] = tswapreg(env->xregs[i]);
570 }
571 (*regs)[32] = tswapreg(env->pc);
572 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
573}
574
575#define USE_ELF_CORE_DUMP
576#define ELF_EXEC_PAGESIZE 4096
577
578enum {
579 ARM_HWCAP_A64_FP = 1 << 0,
580 ARM_HWCAP_A64_ASIMD = 1 << 1,
581 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
582 ARM_HWCAP_A64_AES = 1 << 3,
583 ARM_HWCAP_A64_PMULL = 1 << 4,
584 ARM_HWCAP_A64_SHA1 = 1 << 5,
585 ARM_HWCAP_A64_SHA2 = 1 << 6,
586 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
587 ARM_HWCAP_A64_ATOMICS = 1 << 8,
588 ARM_HWCAP_A64_FPHP = 1 << 9,
589 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
590 ARM_HWCAP_A64_CPUID = 1 << 11,
591 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
592 ARM_HWCAP_A64_JSCVT = 1 << 13,
593 ARM_HWCAP_A64_FCMA = 1 << 14,
594 ARM_HWCAP_A64_LRCPC = 1 << 15,
595 ARM_HWCAP_A64_DCPOP = 1 << 16,
596 ARM_HWCAP_A64_SHA3 = 1 << 17,
597 ARM_HWCAP_A64_SM3 = 1 << 18,
598 ARM_HWCAP_A64_SM4 = 1 << 19,
599 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
600 ARM_HWCAP_A64_SHA512 = 1 << 21,
601 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
602 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
603 ARM_HWCAP_A64_DIT = 1 << 24,
604 ARM_HWCAP_A64_USCAT = 1 << 25,
605 ARM_HWCAP_A64_ILRCPC = 1 << 26,
606 ARM_HWCAP_A64_FLAGM = 1 << 27,
607 ARM_HWCAP_A64_SSBS = 1 << 28,
608 ARM_HWCAP_A64_SB = 1 << 29,
609 ARM_HWCAP_A64_PACA = 1 << 30,
610 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
611
612 ARM_HWCAP2_A64_DCPODP = 1 << 0,
613 ARM_HWCAP2_A64_SVE2 = 1 << 1,
614 ARM_HWCAP2_A64_SVEAES = 1 << 2,
615 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
616 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
617 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
618 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
619 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
620 ARM_HWCAP2_A64_FRINT = 1 << 8,
24e76ff0
PM
621};
622
2041df4a
RH
623#define ELF_HWCAP get_elf_hwcap()
624#define ELF_HWCAP2 get_elf_hwcap2()
625
626#define GET_FEATURE_ID(feat, hwcap) \
627 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
628
629static uint32_t get_elf_hwcap(void)
630{
631 ARMCPU *cpu = ARM_CPU(thread_cpu);
632 uint32_t hwcaps = 0;
633
634 hwcaps |= ARM_HWCAP_A64_FP;
635 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 636 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
637
638 /* probe for the extra features */
962fcbf2
RH
639
640 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
641 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
642 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
643 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
644 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
645 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
646 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
647 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
648 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 649 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
650 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
651 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
652 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
653 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 654 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 655 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
656 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
657 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 658 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 659 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 660 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
962fcbf2 661
2041df4a
RH
662 return hwcaps;
663}
664
665static uint32_t get_elf_hwcap2(void)
666{
667 ARMCPU *cpu = ARM_CPU(thread_cpu);
668 uint32_t hwcaps = 0;
669
0d57b499 670 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
2041df4a
RH
671 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
672 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
24e76ff0
PM
673
674 return hwcaps;
675}
676
2041df4a
RH
677#undef GET_FEATURE_ID
678
24e76ff0
PM
679#endif /* not TARGET_AARCH64 */
680#endif /* TARGET_ARM */
30ac07d4 681
853d6f7a 682#ifdef TARGET_SPARC
a315a145 683#ifdef TARGET_SPARC64
853d6f7a
FB
684
685#define ELF_START_MMAP 0x80000000
cf973e46
AT
686#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
687 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 688#ifndef TARGET_ABI32
cb33da57 689#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
690#else
691#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
692#endif
853d6f7a 693
a315a145 694#define ELF_CLASS ELFCLASS64
5ef54116
FB
695#define ELF_ARCH EM_SPARCV9
696
d97ef72e 697#define STACK_BIAS 2047
a315a145 698
d97ef72e
RH
699static inline void init_thread(struct target_pt_regs *regs,
700 struct image_info *infop)
a315a145 701{
992f48a0 702#ifndef TARGET_ABI32
a315a145 703 regs->tstate = 0;
992f48a0 704#endif
a315a145
FB
705 regs->pc = infop->entry;
706 regs->npc = regs->pc + 4;
707 regs->y = 0;
992f48a0
BS
708#ifdef TARGET_ABI32
709 regs->u_regs[14] = infop->start_stack - 16 * 4;
710#else
cb33da57
BS
711 if (personality(infop->personality) == PER_LINUX32)
712 regs->u_regs[14] = infop->start_stack - 16 * 4;
713 else
714 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 715#endif
a315a145
FB
716}
717
718#else
719#define ELF_START_MMAP 0x80000000
cf973e46
AT
720#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
721 | HWCAP_SPARC_MULDIV)
a315a145 722
853d6f7a 723#define ELF_CLASS ELFCLASS32
853d6f7a
FB
724#define ELF_ARCH EM_SPARC
725
d97ef72e
RH
726static inline void init_thread(struct target_pt_regs *regs,
727 struct image_info *infop)
853d6f7a 728{
f5155289
FB
729 regs->psr = 0;
730 regs->pc = infop->entry;
731 regs->npc = regs->pc + 4;
732 regs->y = 0;
733 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
734}
735
a315a145 736#endif
853d6f7a
FB
737#endif
738
67867308
FB
739#ifdef TARGET_PPC
740
4ecd4d16 741#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
742#define ELF_START_MMAP 0x80000000
743
e85e7c6e 744#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
745
746#define elf_check_arch(x) ( (x) == EM_PPC64 )
747
d97ef72e 748#define ELF_CLASS ELFCLASS64
84409ddb
JM
749
750#else
751
d97ef72e 752#define ELF_CLASS ELFCLASS32
84409ddb
JM
753
754#endif
755
d97ef72e 756#define ELF_ARCH EM_PPC
67867308 757
df84e4f3
NF
758/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
759 See arch/powerpc/include/asm/cputable.h. */
760enum {
3efa9a67 761 QEMU_PPC_FEATURE_32 = 0x80000000,
762 QEMU_PPC_FEATURE_64 = 0x40000000,
763 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
764 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
765 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
766 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
767 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
768 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
769 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
770 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
771 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
772 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
773 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
774 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
775 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
776 QEMU_PPC_FEATURE_CELL = 0x00010000,
777 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
778 QEMU_PPC_FEATURE_SMT = 0x00004000,
779 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
780 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
781 QEMU_PPC_FEATURE_PA6T = 0x00000800,
782 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
783 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
784 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
785 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
786 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
787
788 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
789 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
790
791 /* Feature definitions in AT_HWCAP2. */
792 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
793 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
794 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
795 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
796 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
797 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
798 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
799 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 800 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
801 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
802 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
803 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
804 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
df84e4f3
NF
805};
806
807#define ELF_HWCAP get_elf_hwcap()
808
809static uint32_t get_elf_hwcap(void)
810{
a2247f8e 811 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
812 uint32_t features = 0;
813
814 /* We don't have to be terribly complete here; the high points are
815 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 816#define GET_FEATURE(flag, feature) \
a2247f8e 817 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
818#define GET_FEATURE2(flags, feature) \
819 do { \
820 if ((cpu->env.insns_flags2 & flags) == flags) { \
821 features |= feature; \
822 } \
823 } while (0)
3efa9a67 824 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
825 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
826 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
827 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
828 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
829 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
830 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
831 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
832 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
833 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
834 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
835 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
836 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 837#undef GET_FEATURE
0e019746 838#undef GET_FEATURE2
df84e4f3
NF
839
840 return features;
841}
842
a60438dd
TM
843#define ELF_HWCAP2 get_elf_hwcap2()
844
845static uint32_t get_elf_hwcap2(void)
846{
847 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
848 uint32_t features = 0;
849
850#define GET_FEATURE(flag, feature) \
851 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
852#define GET_FEATURE2(flag, feature) \
853 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
854
855 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
856 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
857 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
858 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
859 QEMU_PPC_FEATURE2_VEC_CRYPTO);
860 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
861 QEMU_PPC_FEATURE2_DARN);
a60438dd
TM
862
863#undef GET_FEATURE
864#undef GET_FEATURE2
865
866 return features;
867}
868
f5155289
FB
869/*
870 * The requirements here are:
871 * - keep the final alignment of sp (sp & 0xf)
872 * - make sure the 32-bit value at the first 16 byte aligned position of
873 * AUXV is greater than 16 for glibc compatibility.
874 * AT_IGNOREPPC is used for that.
875 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
876 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
877 */
0bccf03d 878#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
879#define ARCH_DLINFO \
880 do { \
623e250a 881 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 882 /* \
82991bed
PM
883 * Handle glibc compatibility: these magic entries must \
884 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
885 */ \
886 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
887 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
888 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
889 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
890 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 891 } while (0)
f5155289 892
67867308
FB
893static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
894{
67867308 895 _regs->gpr[1] = infop->start_stack;
e85e7c6e 896#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 897 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
898 uint64_t val;
899 get_user_u64(val, infop->entry + 8);
900 _regs->gpr[2] = val + infop->load_bias;
901 get_user_u64(val, infop->entry);
902 infop->entry = val + infop->load_bias;
d90b94cd
DK
903 } else {
904 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
905 }
84409ddb 906#endif
67867308
FB
907 _regs->nip = infop->entry;
908}
909
e2f3e741
NF
910/* See linux kernel: arch/powerpc/include/asm/elf.h. */
911#define ELF_NREG 48
912typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
913
05390248 914static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
915{
916 int i;
917 target_ulong ccr = 0;
918
919 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 920 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
921 }
922
86cd7b2d
PB
923 (*regs)[32] = tswapreg(env->nip);
924 (*regs)[33] = tswapreg(env->msr);
925 (*regs)[35] = tswapreg(env->ctr);
926 (*regs)[36] = tswapreg(env->lr);
927 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
928
929 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
930 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
931 }
86cd7b2d 932 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
933}
934
935#define USE_ELF_CORE_DUMP
d97ef72e 936#define ELF_EXEC_PAGESIZE 4096
67867308
FB
937
938#endif
939
048f6b4d
FB
940#ifdef TARGET_MIPS
941
942#define ELF_START_MMAP 0x80000000
943
388bb21a
TS
944#ifdef TARGET_MIPS64
945#define ELF_CLASS ELFCLASS64
946#else
048f6b4d 947#define ELF_CLASS ELFCLASS32
388bb21a 948#endif
048f6b4d
FB
949#define ELF_ARCH EM_MIPS
950
f72541f3
AM
951#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
952
d97ef72e
RH
953static inline void init_thread(struct target_pt_regs *regs,
954 struct image_info *infop)
048f6b4d 955{
623a930e 956 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
957 regs->cp0_epc = infop->entry;
958 regs->regs[29] = infop->start_stack;
959}
960
51e52606
NF
961/* See linux kernel: arch/mips/include/asm/elf.h. */
962#define ELF_NREG 45
963typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
964
965/* See linux kernel: arch/mips/include/asm/reg.h. */
966enum {
967#ifdef TARGET_MIPS64
968 TARGET_EF_R0 = 0,
969#else
970 TARGET_EF_R0 = 6,
971#endif
972 TARGET_EF_R26 = TARGET_EF_R0 + 26,
973 TARGET_EF_R27 = TARGET_EF_R0 + 27,
974 TARGET_EF_LO = TARGET_EF_R0 + 32,
975 TARGET_EF_HI = TARGET_EF_R0 + 33,
976 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
977 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
978 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
979 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
980};
981
982/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 983static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
984{
985 int i;
986
987 for (i = 0; i < TARGET_EF_R0; i++) {
988 (*regs)[i] = 0;
989 }
990 (*regs)[TARGET_EF_R0] = 0;
991
992 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 993 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
994 }
995
996 (*regs)[TARGET_EF_R26] = 0;
997 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
998 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
999 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1000 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1001 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1002 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1003 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
1004}
1005
1006#define USE_ELF_CORE_DUMP
388bb21a
TS
1007#define ELF_EXEC_PAGESIZE 4096
1008
46a1ee4f
JC
1009/* See arch/mips/include/uapi/asm/hwcap.h. */
1010enum {
1011 HWCAP_MIPS_R6 = (1 << 0),
1012 HWCAP_MIPS_MSA = (1 << 1),
1013};
1014
1015#define ELF_HWCAP get_elf_hwcap()
1016
1017static uint32_t get_elf_hwcap(void)
1018{
1019 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1020 uint32_t hwcaps = 0;
1021
1022#define GET_FEATURE(flag, hwcap) \
1023 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
1024
1025 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1026 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1027
1028#undef GET_FEATURE
1029
1030 return hwcaps;
1031}
1032
048f6b4d
FB
1033#endif /* TARGET_MIPS */
1034
b779e29e
EI
1035#ifdef TARGET_MICROBLAZE
1036
1037#define ELF_START_MMAP 0x80000000
1038
0d5d4699 1039#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1040
1041#define ELF_CLASS ELFCLASS32
0d5d4699 1042#define ELF_ARCH EM_MICROBLAZE
b779e29e 1043
d97ef72e
RH
1044static inline void init_thread(struct target_pt_regs *regs,
1045 struct image_info *infop)
b779e29e
EI
1046{
1047 regs->pc = infop->entry;
1048 regs->r1 = infop->start_stack;
1049
1050}
1051
b779e29e
EI
1052#define ELF_EXEC_PAGESIZE 4096
1053
e4cbd44d
EI
1054#define USE_ELF_CORE_DUMP
1055#define ELF_NREG 38
1056typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1057
1058/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1059static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1060{
1061 int i, pos = 0;
1062
1063 for (i = 0; i < 32; i++) {
86cd7b2d 1064 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1065 }
1066
1067 for (i = 0; i < 6; i++) {
86cd7b2d 1068 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
1069 }
1070}
1071
b779e29e
EI
1072#endif /* TARGET_MICROBLAZE */
1073
a0a839b6
MV
1074#ifdef TARGET_NIOS2
1075
1076#define ELF_START_MMAP 0x80000000
1077
1078#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1079
1080#define ELF_CLASS ELFCLASS32
1081#define ELF_ARCH EM_ALTERA_NIOS2
1082
1083static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1084{
1085 regs->ea = infop->entry;
1086 regs->sp = infop->start_stack;
1087 regs->estatus = 0x3;
1088}
1089
1090#define ELF_EXEC_PAGESIZE 4096
1091
1092#define USE_ELF_CORE_DUMP
1093#define ELF_NREG 49
1094typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1095
1096/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1097static void elf_core_copy_regs(target_elf_gregset_t *regs,
1098 const CPUNios2State *env)
1099{
1100 int i;
1101
1102 (*regs)[0] = -1;
1103 for (i = 1; i < 8; i++) /* r0-r7 */
1104 (*regs)[i] = tswapreg(env->regs[i + 7]);
1105
1106 for (i = 8; i < 16; i++) /* r8-r15 */
1107 (*regs)[i] = tswapreg(env->regs[i - 8]);
1108
1109 for (i = 16; i < 24; i++) /* r16-r23 */
1110 (*regs)[i] = tswapreg(env->regs[i + 7]);
1111 (*regs)[24] = -1; /* R_ET */
1112 (*regs)[25] = -1; /* R_BT */
1113 (*regs)[26] = tswapreg(env->regs[R_GP]);
1114 (*regs)[27] = tswapreg(env->regs[R_SP]);
1115 (*regs)[28] = tswapreg(env->regs[R_FP]);
1116 (*regs)[29] = tswapreg(env->regs[R_EA]);
1117 (*regs)[30] = -1; /* R_SSTATUS */
1118 (*regs)[31] = tswapreg(env->regs[R_RA]);
1119
1120 (*regs)[32] = tswapreg(env->regs[R_PC]);
1121
1122 (*regs)[33] = -1; /* R_STATUS */
1123 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1124
1125 for (i = 35; i < 49; i++) /* ... */
1126 (*regs)[i] = -1;
1127}
1128
1129#endif /* TARGET_NIOS2 */
1130
d962783e
JL
1131#ifdef TARGET_OPENRISC
1132
1133#define ELF_START_MMAP 0x08000000
1134
d962783e
JL
1135#define ELF_ARCH EM_OPENRISC
1136#define ELF_CLASS ELFCLASS32
1137#define ELF_DATA ELFDATA2MSB
1138
1139static inline void init_thread(struct target_pt_regs *regs,
1140 struct image_info *infop)
1141{
1142 regs->pc = infop->entry;
1143 regs->gpr[1] = infop->start_stack;
1144}
1145
1146#define USE_ELF_CORE_DUMP
1147#define ELF_EXEC_PAGESIZE 8192
1148
1149/* See linux kernel arch/openrisc/include/asm/elf.h. */
1150#define ELF_NREG 34 /* gprs and pc, sr */
1151typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1152
1153static void elf_core_copy_regs(target_elf_gregset_t *regs,
1154 const CPUOpenRISCState *env)
1155{
1156 int i;
1157
1158 for (i = 0; i < 32; i++) {
d89e71e8 1159 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1160 }
86cd7b2d 1161 (*regs)[32] = tswapreg(env->pc);
84775c43 1162 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1163}
1164#define ELF_HWCAP 0
1165#define ELF_PLATFORM NULL
1166
1167#endif /* TARGET_OPENRISC */
1168
fdf9b3e8
FB
1169#ifdef TARGET_SH4
1170
1171#define ELF_START_MMAP 0x80000000
1172
fdf9b3e8 1173#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1174#define ELF_ARCH EM_SH
1175
d97ef72e
RH
1176static inline void init_thread(struct target_pt_regs *regs,
1177 struct image_info *infop)
fdf9b3e8 1178{
d97ef72e
RH
1179 /* Check other registers XXXXX */
1180 regs->pc = infop->entry;
1181 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1182}
1183
7631c97e
NF
1184/* See linux kernel: arch/sh/include/asm/elf.h. */
1185#define ELF_NREG 23
1186typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1187
1188/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1189enum {
1190 TARGET_REG_PC = 16,
1191 TARGET_REG_PR = 17,
1192 TARGET_REG_SR = 18,
1193 TARGET_REG_GBR = 19,
1194 TARGET_REG_MACH = 20,
1195 TARGET_REG_MACL = 21,
1196 TARGET_REG_SYSCALL = 22
1197};
1198
d97ef72e 1199static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1200 const CPUSH4State *env)
7631c97e
NF
1201{
1202 int i;
1203
1204 for (i = 0; i < 16; i++) {
72cd500b 1205 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1206 }
1207
86cd7b2d
PB
1208 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1209 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1210 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1211 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1212 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1213 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1214 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1215}
1216
1217#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1218#define ELF_EXEC_PAGESIZE 4096
1219
e42fd944
RH
1220enum {
1221 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1222 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1223 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1224 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1225 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1226 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1227 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1228 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1229 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1230 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1231};
1232
1233#define ELF_HWCAP get_elf_hwcap()
1234
1235static uint32_t get_elf_hwcap(void)
1236{
1237 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1238 uint32_t hwcap = 0;
1239
1240 hwcap |= SH_CPU_HAS_FPU;
1241
1242 if (cpu->env.features & SH_FEATURE_SH4A) {
1243 hwcap |= SH_CPU_HAS_LLSC;
1244 }
1245
1246 return hwcap;
1247}
1248
fdf9b3e8
FB
1249#endif
1250
48733d19
TS
1251#ifdef TARGET_CRIS
1252
1253#define ELF_START_MMAP 0x80000000
1254
48733d19 1255#define ELF_CLASS ELFCLASS32
48733d19
TS
1256#define ELF_ARCH EM_CRIS
1257
d97ef72e
RH
1258static inline void init_thread(struct target_pt_regs *regs,
1259 struct image_info *infop)
48733d19 1260{
d97ef72e 1261 regs->erp = infop->entry;
48733d19
TS
1262}
1263
48733d19
TS
1264#define ELF_EXEC_PAGESIZE 8192
1265
1266#endif
1267
e6e5906b
PB
1268#ifdef TARGET_M68K
1269
1270#define ELF_START_MMAP 0x80000000
1271
d97ef72e 1272#define ELF_CLASS ELFCLASS32
d97ef72e 1273#define ELF_ARCH EM_68K
e6e5906b
PB
1274
1275/* ??? Does this need to do anything?
d97ef72e 1276 #define ELF_PLAT_INIT(_r) */
e6e5906b 1277
d97ef72e
RH
1278static inline void init_thread(struct target_pt_regs *regs,
1279 struct image_info *infop)
e6e5906b
PB
1280{
1281 regs->usp = infop->start_stack;
1282 regs->sr = 0;
1283 regs->pc = infop->entry;
1284}
1285
7a93cc55
NF
1286/* See linux kernel: arch/m68k/include/asm/elf.h. */
1287#define ELF_NREG 20
1288typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1289
05390248 1290static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1291{
86cd7b2d
PB
1292 (*regs)[0] = tswapreg(env->dregs[1]);
1293 (*regs)[1] = tswapreg(env->dregs[2]);
1294 (*regs)[2] = tswapreg(env->dregs[3]);
1295 (*regs)[3] = tswapreg(env->dregs[4]);
1296 (*regs)[4] = tswapreg(env->dregs[5]);
1297 (*regs)[5] = tswapreg(env->dregs[6]);
1298 (*regs)[6] = tswapreg(env->dregs[7]);
1299 (*regs)[7] = tswapreg(env->aregs[0]);
1300 (*regs)[8] = tswapreg(env->aregs[1]);
1301 (*regs)[9] = tswapreg(env->aregs[2]);
1302 (*regs)[10] = tswapreg(env->aregs[3]);
1303 (*regs)[11] = tswapreg(env->aregs[4]);
1304 (*regs)[12] = tswapreg(env->aregs[5]);
1305 (*regs)[13] = tswapreg(env->aregs[6]);
1306 (*regs)[14] = tswapreg(env->dregs[0]);
1307 (*regs)[15] = tswapreg(env->aregs[7]);
1308 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1309 (*regs)[17] = tswapreg(env->sr);
1310 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1311 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1312}
1313
1314#define USE_ELF_CORE_DUMP
d97ef72e 1315#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1316
1317#endif
1318
7a3148a9
JM
1319#ifdef TARGET_ALPHA
1320
1321#define ELF_START_MMAP (0x30000000000ULL)
1322
7a3148a9 1323#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1324#define ELF_ARCH EM_ALPHA
1325
d97ef72e
RH
1326static inline void init_thread(struct target_pt_regs *regs,
1327 struct image_info *infop)
7a3148a9
JM
1328{
1329 regs->pc = infop->entry;
1330 regs->ps = 8;
1331 regs->usp = infop->start_stack;
7a3148a9
JM
1332}
1333
7a3148a9
JM
1334#define ELF_EXEC_PAGESIZE 8192
1335
1336#endif /* TARGET_ALPHA */
1337
a4c075f1
UH
1338#ifdef TARGET_S390X
1339
1340#define ELF_START_MMAP (0x20000000000ULL)
1341
a4c075f1
UH
1342#define ELF_CLASS ELFCLASS64
1343#define ELF_DATA ELFDATA2MSB
1344#define ELF_ARCH EM_S390
1345
6d88baf1
DH
1346#include "elf.h"
1347
1348#define ELF_HWCAP get_elf_hwcap()
1349
1350#define GET_FEATURE(_feat, _hwcap) \
1351 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1352
1353static uint32_t get_elf_hwcap(void)
1354{
1355 /*
1356 * Let's assume we always have esan3 and zarch.
1357 * 31-bit processes can use 64-bit registers (high gprs).
1358 */
1359 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1360
1361 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1362 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1363 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1364 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1365 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1366 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1367 hwcap |= HWCAP_S390_ETF3EH;
1368 }
1369 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1370
1371 return hwcap;
1372}
1373
a4c075f1
UH
1374static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1375{
1376 regs->psw.addr = infop->entry;
1377 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1378 regs->gprs[15] = infop->start_stack;
1379}
1380
1381#endif /* TARGET_S390X */
1382
b16189b2
CG
1383#ifdef TARGET_TILEGX
1384
1385/* 42 bits real used address, a half for user mode */
1386#define ELF_START_MMAP (0x00000020000000000ULL)
1387
1388#define elf_check_arch(x) ((x) == EM_TILEGX)
1389
1390#define ELF_CLASS ELFCLASS64
1391#define ELF_DATA ELFDATA2LSB
1392#define ELF_ARCH EM_TILEGX
1393
1394static inline void init_thread(struct target_pt_regs *regs,
1395 struct image_info *infop)
1396{
1397 regs->pc = infop->entry;
1398 regs->sp = infop->start_stack;
1399
1400}
1401
1402#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1403
1404#endif /* TARGET_TILEGX */
1405
47ae93cd
MC
1406#ifdef TARGET_RISCV
1407
1408#define ELF_START_MMAP 0x80000000
1409#define ELF_ARCH EM_RISCV
1410
1411#ifdef TARGET_RISCV32
1412#define ELF_CLASS ELFCLASS32
1413#else
1414#define ELF_CLASS ELFCLASS64
1415#endif
1416
1417static inline void init_thread(struct target_pt_regs *regs,
1418 struct image_info *infop)
1419{
1420 regs->sepc = infop->entry;
1421 regs->sp = infop->start_stack;
1422}
1423
1424#define ELF_EXEC_PAGESIZE 4096
1425
1426#endif /* TARGET_RISCV */
1427
7c248bcd
RH
1428#ifdef TARGET_HPPA
1429
1430#define ELF_START_MMAP 0x80000000
1431#define ELF_CLASS ELFCLASS32
1432#define ELF_ARCH EM_PARISC
1433#define ELF_PLATFORM "PARISC"
1434#define STACK_GROWS_DOWN 0
1435#define STACK_ALIGNMENT 64
1436
1437static inline void init_thread(struct target_pt_regs *regs,
1438 struct image_info *infop)
1439{
1440 regs->iaoq[0] = infop->entry;
1441 regs->iaoq[1] = infop->entry + 4;
1442 regs->gr[23] = 0;
1443 regs->gr[24] = infop->arg_start;
1444 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1445 /* The top-of-stack contains a linkage buffer. */
1446 regs->gr[30] = infop->start_stack + 64;
1447 regs->gr[31] = infop->entry;
1448}
1449
1450#endif /* TARGET_HPPA */
1451
ba7651fb
MF
1452#ifdef TARGET_XTENSA
1453
1454#define ELF_START_MMAP 0x20000000
1455
1456#define ELF_CLASS ELFCLASS32
1457#define ELF_ARCH EM_XTENSA
1458
1459static inline void init_thread(struct target_pt_regs *regs,
1460 struct image_info *infop)
1461{
1462 regs->windowbase = 0;
1463 regs->windowstart = 1;
1464 regs->areg[1] = infop->start_stack;
1465 regs->pc = infop->entry;
1466}
1467
1468/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1469#define ELF_NREG 128
1470typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1471
1472enum {
1473 TARGET_REG_PC,
1474 TARGET_REG_PS,
1475 TARGET_REG_LBEG,
1476 TARGET_REG_LEND,
1477 TARGET_REG_LCOUNT,
1478 TARGET_REG_SAR,
1479 TARGET_REG_WINDOWSTART,
1480 TARGET_REG_WINDOWBASE,
1481 TARGET_REG_THREADPTR,
1482 TARGET_REG_AR0 = 64,
1483};
1484
1485static void elf_core_copy_regs(target_elf_gregset_t *regs,
1486 const CPUXtensaState *env)
1487{
1488 unsigned i;
1489
1490 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1491 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1492 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1493 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1494 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1495 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1496 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1497 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1498 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1499 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1500 for (i = 0; i < env->config->nareg; ++i) {
1501 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1502 }
1503}
1504
1505#define USE_ELF_CORE_DUMP
1506#define ELF_EXEC_PAGESIZE 4096
1507
1508#endif /* TARGET_XTENSA */
1509
15338fd7
FB
1510#ifndef ELF_PLATFORM
1511#define ELF_PLATFORM (NULL)
1512#endif
1513
75be901c
PC
1514#ifndef ELF_MACHINE
1515#define ELF_MACHINE ELF_ARCH
1516#endif
1517
d276a604
PC
1518#ifndef elf_check_arch
1519#define elf_check_arch(x) ((x) == ELF_ARCH)
1520#endif
1521
15338fd7
FB
1522#ifndef ELF_HWCAP
1523#define ELF_HWCAP 0
1524#endif
1525
7c4ee5bc
RH
1526#ifndef STACK_GROWS_DOWN
1527#define STACK_GROWS_DOWN 1
1528#endif
1529
1530#ifndef STACK_ALIGNMENT
1531#define STACK_ALIGNMENT 16
1532#endif
1533
992f48a0 1534#ifdef TARGET_ABI32
cb33da57 1535#undef ELF_CLASS
992f48a0 1536#define ELF_CLASS ELFCLASS32
cb33da57
BS
1537#undef bswaptls
1538#define bswaptls(ptr) bswap32s(ptr)
1539#endif
1540
31e31b8a 1541#include "elf.h"
09bfb054 1542
09bfb054
FB
1543struct exec
1544{
d97ef72e
RH
1545 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1546 unsigned int a_text; /* length of text, in bytes */
1547 unsigned int a_data; /* length of data, in bytes */
1548 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1549 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1550 unsigned int a_entry; /* start address */
1551 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1552 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1553};
1554
1555
1556#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1557#define OMAGIC 0407
1558#define NMAGIC 0410
1559#define ZMAGIC 0413
1560#define QMAGIC 0314
1561
31e31b8a 1562/* Necessary parameters */
94894ff2
SB
1563#define TARGET_ELF_EXEC_PAGESIZE \
1564 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1565 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1566#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1567#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1568 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1569#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1570
444cd5c3 1571#define DLINFO_ITEMS 15
31e31b8a 1572
09bfb054
FB
1573static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1574{
d97ef72e 1575 memcpy(to, from, n);
09bfb054 1576}
d691f669 1577
31e31b8a 1578#ifdef BSWAP_NEEDED
92a31b1f 1579static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1580{
d97ef72e
RH
1581 bswap16s(&ehdr->e_type); /* Object file type */
1582 bswap16s(&ehdr->e_machine); /* Architecture */
1583 bswap32s(&ehdr->e_version); /* Object file version */
1584 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1585 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1586 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1587 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1588 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1589 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1590 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1591 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1592 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1593 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1594}
1595
991f8f0c 1596static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1597{
991f8f0c
RH
1598 int i;
1599 for (i = 0; i < phnum; ++i, ++phdr) {
1600 bswap32s(&phdr->p_type); /* Segment type */
1601 bswap32s(&phdr->p_flags); /* Segment flags */
1602 bswaptls(&phdr->p_offset); /* Segment file offset */
1603 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1604 bswaptls(&phdr->p_paddr); /* Segment physical address */
1605 bswaptls(&phdr->p_filesz); /* Segment size in file */
1606 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1607 bswaptls(&phdr->p_align); /* Segment alignment */
1608 }
31e31b8a 1609}
689f936f 1610
991f8f0c 1611static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1612{
991f8f0c
RH
1613 int i;
1614 for (i = 0; i < shnum; ++i, ++shdr) {
1615 bswap32s(&shdr->sh_name);
1616 bswap32s(&shdr->sh_type);
1617 bswaptls(&shdr->sh_flags);
1618 bswaptls(&shdr->sh_addr);
1619 bswaptls(&shdr->sh_offset);
1620 bswaptls(&shdr->sh_size);
1621 bswap32s(&shdr->sh_link);
1622 bswap32s(&shdr->sh_info);
1623 bswaptls(&shdr->sh_addralign);
1624 bswaptls(&shdr->sh_entsize);
1625 }
689f936f
FB
1626}
1627
7a3148a9 1628static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1629{
1630 bswap32s(&sym->st_name);
7a3148a9
JM
1631 bswaptls(&sym->st_value);
1632 bswaptls(&sym->st_size);
689f936f
FB
1633 bswap16s(&sym->st_shndx);
1634}
5dd0db52
SM
1635
1636#ifdef TARGET_MIPS
1637static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1638{
1639 bswap16s(&abiflags->version);
1640 bswap32s(&abiflags->ases);
1641 bswap32s(&abiflags->isa_ext);
1642 bswap32s(&abiflags->flags1);
1643 bswap32s(&abiflags->flags2);
1644}
1645#endif
991f8f0c
RH
1646#else
1647static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1648static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1649static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1650static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1651#ifdef TARGET_MIPS
1652static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1653#endif
31e31b8a
FB
1654#endif
1655
edf8e2af 1656#ifdef USE_ELF_CORE_DUMP
9349b4f9 1657static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1658#endif /* USE_ELF_CORE_DUMP */
682674b8 1659static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1660
9058abdd
RH
1661/* Verify the portions of EHDR within E_IDENT for the target.
1662 This can be performed before bswapping the entire header. */
1663static bool elf_check_ident(struct elfhdr *ehdr)
1664{
1665 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1666 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1667 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1668 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1669 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1670 && ehdr->e_ident[EI_DATA] == ELF_DATA
1671 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1672}
1673
1674/* Verify the portions of EHDR outside of E_IDENT for the target.
1675 This has to wait until after bswapping the header. */
1676static bool elf_check_ehdr(struct elfhdr *ehdr)
1677{
1678 return (elf_check_arch(ehdr->e_machine)
1679 && ehdr->e_ehsize == sizeof(struct elfhdr)
1680 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1681 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1682}
1683
31e31b8a 1684/*
e5fe0c52 1685 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1686 * memory to free pages in kernel mem. These are in a format ready
1687 * to be put directly into the top of new user memory.
1688 *
1689 */
59baae9a
SB
1690static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1691 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1692{
59baae9a 1693 char *tmp;
7c4ee5bc 1694 int len, i;
59baae9a 1695 abi_ulong top = p;
31e31b8a
FB
1696
1697 if (!p) {
d97ef72e 1698 return 0; /* bullet-proofing */
31e31b8a 1699 }
59baae9a 1700
7c4ee5bc
RH
1701 if (STACK_GROWS_DOWN) {
1702 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1703 for (i = argc - 1; i >= 0; --i) {
1704 tmp = argv[i];
1705 if (!tmp) {
1706 fprintf(stderr, "VFS: argc is wrong");
1707 exit(-1);
1708 }
1709 len = strlen(tmp) + 1;
1710 tmp += len;
59baae9a 1711
7c4ee5bc
RH
1712 if (len > (p - stack_limit)) {
1713 return 0;
1714 }
1715 while (len) {
1716 int bytes_to_copy = (len > offset) ? offset : len;
1717 tmp -= bytes_to_copy;
1718 p -= bytes_to_copy;
1719 offset -= bytes_to_copy;
1720 len -= bytes_to_copy;
1721
1722 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1723
1724 if (offset == 0) {
1725 memcpy_to_target(p, scratch, top - p);
1726 top = p;
1727 offset = TARGET_PAGE_SIZE;
1728 }
1729 }
d97ef72e 1730 }
7c4ee5bc
RH
1731 if (p != top) {
1732 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1733 }
7c4ee5bc
RH
1734 } else {
1735 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1736 for (i = 0; i < argc; ++i) {
1737 tmp = argv[i];
1738 if (!tmp) {
1739 fprintf(stderr, "VFS: argc is wrong");
1740 exit(-1);
1741 }
1742 len = strlen(tmp) + 1;
1743 if (len > (stack_limit - p)) {
1744 return 0;
1745 }
1746 while (len) {
1747 int bytes_to_copy = (len > remaining) ? remaining : len;
1748
1749 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1750
1751 tmp += bytes_to_copy;
1752 remaining -= bytes_to_copy;
1753 p += bytes_to_copy;
1754 len -= bytes_to_copy;
1755
1756 if (remaining == 0) {
1757 memcpy_to_target(top, scratch, p - top);
1758 top = p;
1759 remaining = TARGET_PAGE_SIZE;
1760 }
d97ef72e
RH
1761 }
1762 }
7c4ee5bc
RH
1763 if (p != top) {
1764 memcpy_to_target(top, scratch, p - top);
1765 }
59baae9a
SB
1766 }
1767
31e31b8a
FB
1768 return p;
1769}
1770
59baae9a
SB
1771/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1772 * argument/environment space. Newer kernels (>2.6.33) allow more,
1773 * dependent on stack size, but guarantee at least 32 pages for
1774 * backwards compatibility.
1775 */
1776#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1777
1778static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1779 struct image_info *info)
53a5960a 1780{
59baae9a 1781 abi_ulong size, error, guard;
31e31b8a 1782
703e0e89 1783 size = guest_stack_size;
59baae9a
SB
1784 if (size < STACK_LOWER_LIMIT) {
1785 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1786 }
1787 guard = TARGET_PAGE_SIZE;
1788 if (guard < qemu_real_host_page_size) {
1789 guard = qemu_real_host_page_size;
1790 }
1791
1792 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1793 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1794 if (error == -1) {
60dcbcb5 1795 perror("mmap stack");
09bfb054
FB
1796 exit(-1);
1797 }
31e31b8a 1798
60dcbcb5 1799 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1800 if (STACK_GROWS_DOWN) {
1801 target_mprotect(error, guard, PROT_NONE);
1802 info->stack_limit = error + guard;
1803 return info->stack_limit + size - sizeof(void *);
1804 } else {
1805 target_mprotect(error + size, guard, PROT_NONE);
1806 info->stack_limit = error + size;
1807 return error;
1808 }
31e31b8a
FB
1809}
1810
cf129f3a
RH
1811/* Map and zero the bss. We need to explicitly zero any fractional pages
1812 after the data section (i.e. bss). */
1813static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1814{
cf129f3a
RH
1815 uintptr_t host_start, host_map_start, host_end;
1816
1817 last_bss = TARGET_PAGE_ALIGN(last_bss);
1818
1819 /* ??? There is confusion between qemu_real_host_page_size and
1820 qemu_host_page_size here and elsewhere in target_mmap, which
1821 may lead to the end of the data section mapping from the file
1822 not being mapped. At least there was an explicit test and
1823 comment for that here, suggesting that "the file size must
1824 be known". The comment probably pre-dates the introduction
1825 of the fstat system call in target_mmap which does in fact
1826 find out the size. What isn't clear is if the workaround
1827 here is still actually needed. For now, continue with it,
1828 but merge it with the "normal" mmap that would allocate the bss. */
1829
1830 host_start = (uintptr_t) g2h(elf_bss);
1831 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1832 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1833
1834 if (host_map_start < host_end) {
1835 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1836 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1837 if (p == MAP_FAILED) {
1838 perror("cannot mmap brk");
1839 exit(-1);
853d6f7a 1840 }
f46e9a0b 1841 }
853d6f7a 1842
f46e9a0b
TM
1843 /* Ensure that the bss page(s) are valid */
1844 if ((page_get_flags(last_bss-1) & prot) != prot) {
1845 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1846 }
31e31b8a 1847
cf129f3a
RH
1848 if (host_start < host_map_start) {
1849 memset((void *)host_start, 0, host_map_start - host_start);
1850 }
1851}
53a5960a 1852
cf58affe
CL
1853#ifdef TARGET_ARM
1854static int elf_is_fdpic(struct elfhdr *exec)
1855{
1856 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1857}
1858#else
a99856cd
CL
1859/* Default implementation, always false. */
1860static int elf_is_fdpic(struct elfhdr *exec)
1861{
1862 return 0;
1863}
cf58affe 1864#endif
a99856cd 1865
1af02e83
MF
1866static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1867{
1868 uint16_t n;
1869 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1870
1871 /* elf32_fdpic_loadseg */
1872 n = info->nsegs;
1873 while (n--) {
1874 sp -= 12;
1875 put_user_u32(loadsegs[n].addr, sp+0);
1876 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1877 put_user_u32(loadsegs[n].p_memsz, sp+8);
1878 }
1879
1880 /* elf32_fdpic_loadmap */
1881 sp -= 4;
1882 put_user_u16(0, sp+0); /* version */
1883 put_user_u16(info->nsegs, sp+2); /* nsegs */
1884
1885 info->personality = PER_LINUX_FDPIC;
1886 info->loadmap_addr = sp;
1887
1888 return sp;
1889}
1af02e83 1890
992f48a0 1891static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1892 struct elfhdr *exec,
1893 struct image_info *info,
1894 struct image_info *interp_info)
31e31b8a 1895{
d97ef72e 1896 abi_ulong sp;
7c4ee5bc 1897 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1898 int size;
14322bad
LA
1899 int i;
1900 abi_ulong u_rand_bytes;
1901 uint8_t k_rand_bytes[16];
d97ef72e
RH
1902 abi_ulong u_platform;
1903 const char *k_platform;
1904 const int n = sizeof(elf_addr_t);
1905
1906 sp = p;
1af02e83 1907
1af02e83
MF
1908 /* Needs to be before we load the env/argc/... */
1909 if (elf_is_fdpic(exec)) {
1910 /* Need 4 byte alignment for these structs */
1911 sp &= ~3;
1912 sp = loader_build_fdpic_loadmap(info, sp);
1913 info->other_info = interp_info;
1914 if (interp_info) {
1915 interp_info->other_info = info;
1916 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1917 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1918 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1919 } else {
1920 info->interpreter_loadmap_addr = 0;
1921 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1922 }
1923 }
1af02e83 1924
d97ef72e
RH
1925 u_platform = 0;
1926 k_platform = ELF_PLATFORM;
1927 if (k_platform) {
1928 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1929 if (STACK_GROWS_DOWN) {
1930 sp -= (len + n - 1) & ~(n - 1);
1931 u_platform = sp;
1932 /* FIXME - check return value of memcpy_to_target() for failure */
1933 memcpy_to_target(sp, k_platform, len);
1934 } else {
1935 memcpy_to_target(sp, k_platform, len);
1936 u_platform = sp;
1937 sp += len + 1;
1938 }
1939 }
1940
1941 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1942 * the argv and envp pointers.
1943 */
1944 if (STACK_GROWS_DOWN) {
1945 sp = QEMU_ALIGN_DOWN(sp, 16);
1946 } else {
1947 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1948 }
14322bad
LA
1949
1950 /*
c6a2377f 1951 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 1952 */
c6a2377f 1953 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
1954 if (STACK_GROWS_DOWN) {
1955 sp -= 16;
1956 u_rand_bytes = sp;
1957 /* FIXME - check return value of memcpy_to_target() for failure */
1958 memcpy_to_target(sp, k_rand_bytes, 16);
1959 } else {
1960 memcpy_to_target(sp, k_rand_bytes, 16);
1961 u_rand_bytes = sp;
1962 sp += 16;
1963 }
14322bad 1964
d97ef72e
RH
1965 size = (DLINFO_ITEMS + 1) * 2;
1966 if (k_platform)
1967 size += 2;
f5155289 1968#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1969 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1970#endif
1971#ifdef ELF_HWCAP2
1972 size += 2;
f5155289 1973#endif
f516511e
PM
1974 info->auxv_len = size * n;
1975
d97ef72e 1976 size += envc + argc + 2;
b9329d4b 1977 size += 1; /* argc itself */
d97ef72e 1978 size *= n;
7c4ee5bc
RH
1979
1980 /* Allocate space and finalize stack alignment for entry now. */
1981 if (STACK_GROWS_DOWN) {
1982 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1983 sp = u_argc;
1984 } else {
1985 u_argc = sp;
1986 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1987 }
1988
1989 u_argv = u_argc + n;
1990 u_envp = u_argv + (argc + 1) * n;
1991 u_auxv = u_envp + (envc + 1) * n;
1992 info->saved_auxv = u_auxv;
1993 info->arg_start = u_argv;
1994 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1995
1996 /* This is correct because Linux defines
1997 * elf_addr_t as Elf32_Off / Elf64_Off
1998 */
1999#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2000 put_user_ual(id, u_auxv); u_auxv += n; \
2001 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2002 } while(0)
2003
82991bed
PM
2004#ifdef ARCH_DLINFO
2005 /*
2006 * ARCH_DLINFO must come first so platform specific code can enforce
2007 * special alignment requirements on the AUXV if necessary (eg. PPC).
2008 */
2009 ARCH_DLINFO;
2010#endif
f516511e
PM
2011 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2012 * on info->auxv_len will trigger.
2013 */
8e62a717 2014 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2015 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2016 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2017 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2018 /* Target doesn't support host page size alignment */
2019 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2020 } else {
2021 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2022 qemu_host_page_size)));
2023 }
8e62a717 2024 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2025 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2026 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2027 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2028 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2029 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2030 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2031 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2032 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2033 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2034 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 2035
ad6919dc
PM
2036#ifdef ELF_HWCAP2
2037 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2038#endif
2039
7c4ee5bc 2040 if (u_platform) {
d97ef72e 2041 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2042 }
7c4ee5bc 2043 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2044#undef NEW_AUX_ENT
2045
f516511e
PM
2046 /* Check that our initial calculation of the auxv length matches how much
2047 * we actually put into it.
2048 */
2049 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2050
2051 put_user_ual(argc, u_argc);
2052
2053 p = info->arg_strings;
2054 for (i = 0; i < argc; ++i) {
2055 put_user_ual(p, u_argv);
2056 u_argv += n;
2057 p += target_strlen(p) + 1;
2058 }
2059 put_user_ual(0, u_argv);
2060
2061 p = info->env_strings;
2062 for (i = 0; i < envc; ++i) {
2063 put_user_ual(p, u_envp);
2064 u_envp += n;
2065 p += target_strlen(p) + 1;
2066 }
2067 put_user_ual(0, u_envp);
edf8e2af 2068
d97ef72e 2069 return sp;
31e31b8a
FB
2070}
2071
dce10401
MI
2072unsigned long init_guest_space(unsigned long host_start,
2073 unsigned long host_size,
2074 unsigned long guest_start,
2075 bool fixed)
2076{
30ab9ef2
RH
2077 /* In order to use host shmat, we must be able to honor SHMLBA. */
2078 unsigned long align = MAX(SHMLBA, qemu_host_page_size);
293f2060 2079 unsigned long current_start, aligned_start;
dce10401
MI
2080 int flags;
2081
2082 assert(host_start || host_size);
2083
2084 /* If just a starting address is given, then just verify that
2085 * address. */
2086 if (host_start && !host_size) {
8756e136 2087#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 2088 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
2089 return (unsigned long)-1;
2090 }
8756e136
LS
2091#endif
2092 return host_start;
dce10401
MI
2093 }
2094
2095 /* Setup the initial flags and start address. */
30ab9ef2 2096 current_start = host_start & -align;
dce10401
MI
2097 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2098 if (fixed) {
2099 flags |= MAP_FIXED;
2100 }
2101
2102 /* Otherwise, a non-zero size region of memory needs to be mapped
2103 * and validated. */
2a53535a
LS
2104
2105#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2106 /* On 32-bit ARM, we need to map not just the usable memory, but
2107 * also the commpage. Try to find a suitable place by allocating
2108 * a big chunk for all of it. If host_start, then the naive
2109 * strategy probably does good enough.
2110 */
2111 if (!host_start) {
2112 unsigned long guest_full_size, host_full_size, real_start;
2113
2114 guest_full_size =
2115 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2116 host_full_size = guest_full_size - guest_start;
2117 real_start = (unsigned long)
2118 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2119 if (real_start == (unsigned long)-1) {
2120 if (host_size < host_full_size - qemu_host_page_size) {
2121 /* We failed to map a continous segment, but we're
2122 * allowed to have a gap between the usable memory and
2123 * the commpage where other things can be mapped.
2124 * This sparseness gives us more flexibility to find
2125 * an address range.
2126 */
2127 goto naive;
2128 }
2129 return (unsigned long)-1;
2130 }
2131 munmap((void *)real_start, host_full_size);
30ab9ef2
RH
2132 if (real_start & (align - 1)) {
2133 /* The same thing again, but with extra
2a53535a
LS
2134 * so that we can shift around alignment.
2135 */
2136 unsigned long real_size = host_full_size + qemu_host_page_size;
2137 real_start = (unsigned long)
2138 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2139 if (real_start == (unsigned long)-1) {
2140 if (host_size < host_full_size - qemu_host_page_size) {
2141 goto naive;
2142 }
2143 return (unsigned long)-1;
2144 }
2145 munmap((void *)real_start, real_size);
30ab9ef2 2146 real_start = ROUND_UP(real_start, align);
2a53535a
LS
2147 }
2148 current_start = real_start;
2149 }
2150 naive:
2151#endif
2152
dce10401 2153 while (1) {
293f2060
LS
2154 unsigned long real_start, real_size, aligned_size;
2155 aligned_size = real_size = host_size;
806d1021 2156
dce10401
MI
2157 /* Do not use mmap_find_vma here because that is limited to the
2158 * guest address space. We are going to make the
2159 * guest address space fit whatever we're given.
2160 */
2161 real_start = (unsigned long)
2162 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2163 if (real_start == (unsigned long)-1) {
2164 return (unsigned long)-1;
2165 }
2166
aac362e4
LS
2167 /* Check to see if the address is valid. */
2168 if (host_start && real_start != current_start) {
2169 goto try_again;
2170 }
2171
806d1021 2172 /* Ensure the address is properly aligned. */
30ab9ef2 2173 if (real_start & (align - 1)) {
293f2060
LS
2174 /* Ideally, we adjust like
2175 *
2176 * pages: [ ][ ][ ][ ][ ]
2177 * old: [ real ]
2178 * [ aligned ]
2179 * new: [ real ]
2180 * [ aligned ]
2181 *
2182 * But if there is something else mapped right after it,
2183 * then obviously it won't have room to grow, and the
2184 * kernel will put the new larger real someplace else with
2185 * unknown alignment (if we made it to here, then
2186 * fixed=false). Which is why we grow real by a full page
2187 * size, instead of by part of one; so that even if we get
2188 * moved, we can still guarantee alignment. But this does
2189 * mean that there is a padding of < 1 page both before
2190 * and after the aligned range; the "after" could could
2191 * cause problems for ARM emulation where it could butt in
2192 * to where we need to put the commpage.
2193 */
806d1021 2194 munmap((void *)real_start, host_size);
91c8bdb1 2195 real_size = aligned_size + align;
806d1021
MI
2196 real_start = (unsigned long)
2197 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2198 if (real_start == (unsigned long)-1) {
2199 return (unsigned long)-1;
2200 }
30ab9ef2 2201 aligned_start = ROUND_UP(real_start, align);
293f2060
LS
2202 } else {
2203 aligned_start = real_start;
806d1021
MI
2204 }
2205
8756e136 2206#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2207 /* On 32-bit ARM, we need to also be able to map the commpage. */
2208 int valid = init_guest_commpage(aligned_start - guest_start,
2209 aligned_size + guest_start);
2210 if (valid == -1) {
2211 munmap((void *)real_start, real_size);
2212 return (unsigned long)-1;
2213 } else if (valid == 0) {
2214 goto try_again;
dce10401 2215 }
7ad75eea
LS
2216#endif
2217
2218 /* If nothing has said `return -1` or `goto try_again` yet,
2219 * then the address we have is good.
2220 */
2221 break;
dce10401 2222
7ad75eea 2223 try_again:
dce10401
MI
2224 /* That address didn't work. Unmap and try a different one.
2225 * The address the host picked because is typically right at
2226 * the top of the host address space and leaves the guest with
2227 * no usable address space. Resort to a linear search. We
2228 * already compensated for mmap_min_addr, so this should not
2229 * happen often. Probably means we got unlucky and host
2230 * address space randomization put a shared library somewhere
2231 * inconvenient.
8c17d862
LS
2232 *
2233 * This is probably a good strategy if host_start, but is
2234 * probably a bad strategy if not, which means we got here
2235 * because of trouble with ARM commpage setup.
dce10401 2236 */
293f2060 2237 munmap((void *)real_start, real_size);
30ab9ef2 2238 current_start += align;
dce10401
MI
2239 if (host_start == current_start) {
2240 /* Theoretically possible if host doesn't have any suitably
2241 * aligned areas. Normally the first mmap will fail.
2242 */
2243 return (unsigned long)-1;
2244 }
2245 }
2246
13829020 2247 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2248
293f2060 2249 return aligned_start;
dce10401
MI
2250}
2251
f3ed1f5d
PM
2252static void probe_guest_base(const char *image_name,
2253 abi_ulong loaddr, abi_ulong hiaddr)
2254{
2255 /* Probe for a suitable guest base address, if the user has not set
2256 * it explicitly, and set guest_base appropriately.
2257 * In case of error we will print a suitable message and exit.
2258 */
f3ed1f5d
PM
2259 const char *errmsg;
2260 if (!have_guest_base && !reserved_va) {
2261 unsigned long host_start, real_start, host_size;
2262
2263 /* Round addresses to page boundaries. */
2264 loaddr &= qemu_host_page_mask;
2265 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2266
2267 if (loaddr < mmap_min_addr) {
2268 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2269 } else {
2270 host_start = loaddr;
2271 if (host_start != loaddr) {
2272 errmsg = "Address overflow loading ELF binary";
2273 goto exit_errmsg;
2274 }
2275 }
2276 host_size = hiaddr - loaddr;
dce10401
MI
2277
2278 /* Setup the initial guest memory space with ranges gleaned from
2279 * the ELF image that is being loaded.
2280 */
2281 real_start = init_guest_space(host_start, host_size, loaddr, false);
2282 if (real_start == (unsigned long)-1) {
2283 errmsg = "Unable to find space for application";
2284 goto exit_errmsg;
f3ed1f5d 2285 }
dce10401
MI
2286 guest_base = real_start - loaddr;
2287
13829020
PB
2288 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2289 TARGET_ABI_FMT_lx " to 0x%lx\n",
2290 loaddr, real_start);
f3ed1f5d
PM
2291 }
2292 return;
2293
f3ed1f5d
PM
2294exit_errmsg:
2295 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2296 exit(-1);
f3ed1f5d
PM
2297}
2298
2299
8e62a717 2300/* Load an ELF image into the address space.
31e31b8a 2301
8e62a717
RH
2302 IMAGE_NAME is the filename of the image, to use in error messages.
2303 IMAGE_FD is the open file descriptor for the image.
2304
2305 BPRM_BUF is a copy of the beginning of the file; this of course
2306 contains the elf file header at offset 0. It is assumed that this
2307 buffer is sufficiently aligned to present no problems to the host
2308 in accessing data at aligned offsets within the buffer.
2309
2310 On return: INFO values will be filled in, as necessary or available. */
2311
2312static void load_elf_image(const char *image_name, int image_fd,
bf858897 2313 struct image_info *info, char **pinterp_name,
8e62a717 2314 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2315{
8e62a717
RH
2316 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2317 struct elf_phdr *phdr;
2318 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2319 int i, retval;
2320 const char *errmsg;
5fafdf24 2321
8e62a717
RH
2322 /* First of all, some simple consistency checks */
2323 errmsg = "Invalid ELF image for this architecture";
2324 if (!elf_check_ident(ehdr)) {
2325 goto exit_errmsg;
2326 }
2327 bswap_ehdr(ehdr);
2328 if (!elf_check_ehdr(ehdr)) {
2329 goto exit_errmsg;
d97ef72e 2330 }
5fafdf24 2331
8e62a717
RH
2332 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2333 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2334 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2335 } else {
8e62a717
RH
2336 phdr = (struct elf_phdr *) alloca(i);
2337 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2338 if (retval != i) {
8e62a717 2339 goto exit_read;
9955ffac 2340 }
d97ef72e 2341 }
8e62a717 2342 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2343
1af02e83
MF
2344 info->nsegs = 0;
2345 info->pt_dynamic_addr = 0;
1af02e83 2346
98c1076c
AB
2347 mmap_lock();
2348
682674b8
RH
2349 /* Find the maximum size of the image and allocate an appropriate
2350 amount of memory to handle that. */
2351 loaddr = -1, hiaddr = 0;
33143c44 2352 info->alignment = 0;
8e62a717
RH
2353 for (i = 0; i < ehdr->e_phnum; ++i) {
2354 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2355 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2356 if (a < loaddr) {
2357 loaddr = a;
2358 }
ccf661f8 2359 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2360 if (a > hiaddr) {
2361 hiaddr = a;
2362 }
1af02e83 2363 ++info->nsegs;
33143c44 2364 info->alignment |= phdr[i].p_align;
682674b8
RH
2365 }
2366 }
2367
6fd59449
RH
2368 if (pinterp_name != NULL) {
2369 /*
2370 * This is the main executable.
2371 *
2372 * Reserve extra space for brk.
2373 * We hold on to this space while placing the interpreter
2374 * and the stack, lest they be placed immediately after
2375 * the data segment and block allocation from the brk.
2376 *
2377 * 16MB is chosen as "large enough" without being so large
2378 * as to allow the result to not fit with a 32-bit guest on
2379 * a 32-bit host.
2380 */
2381 info->reserve_brk = 16 * MiB;
2382 hiaddr += info->reserve_brk;
2383
2384 if (ehdr->e_type == ET_EXEC) {
2385 /*
2386 * Make sure that the low address does not conflict with
2387 * MMAP_MIN_ADDR or the QEMU application itself.
2388 */
2389 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2390 }
6fd59449
RH
2391 }
2392
2393 /*
2394 * Reserve address space for all of this.
2395 *
2396 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2397 * exactly the address range that is required.
2398 *
2399 * Otherwise this is ET_DYN, and we are searching for a location
2400 * that can hold the memory space required. If the image is
2401 * pre-linked, LOADDR will be non-zero, and the kernel should
2402 * honor that address if it happens to be free.
2403 *
2404 * In both cases, we will overwrite pages in this range with mappings
2405 * from the executable.
2406 */
2407 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2408 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2409 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2410 -1, 0);
2411 if (load_addr == -1) {
2412 goto exit_perror;
d97ef72e 2413 }
682674b8 2414 load_bias = load_addr - loaddr;
d97ef72e 2415
a99856cd 2416 if (elf_is_fdpic(ehdr)) {
1af02e83 2417 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2418 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2419
2420 for (i = 0; i < ehdr->e_phnum; ++i) {
2421 switch (phdr[i].p_type) {
2422 case PT_DYNAMIC:
2423 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2424 break;
2425 case PT_LOAD:
2426 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2427 loadsegs->p_vaddr = phdr[i].p_vaddr;
2428 loadsegs->p_memsz = phdr[i].p_memsz;
2429 ++loadsegs;
2430 break;
2431 }
2432 }
2433 }
1af02e83 2434
8e62a717 2435 info->load_bias = load_bias;
dc12567a
JK
2436 info->code_offset = load_bias;
2437 info->data_offset = load_bias;
8e62a717
RH
2438 info->load_addr = load_addr;
2439 info->entry = ehdr->e_entry + load_bias;
2440 info->start_code = -1;
2441 info->end_code = 0;
2442 info->start_data = -1;
2443 info->end_data = 0;
2444 info->brk = 0;
d8fd2954 2445 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2446
2447 for (i = 0; i < ehdr->e_phnum; i++) {
2448 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2449 if (eppnt->p_type == PT_LOAD) {
94894ff2 2450 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2451 int elf_prot = 0;
d97ef72e
RH
2452
2453 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2454 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2455 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2456
682674b8
RH
2457 vaddr = load_bias + eppnt->p_vaddr;
2458 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2459 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2460 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2461
d87146bc
GM
2462 /*
2463 * Some segments may be completely empty without any backing file
2464 * segment, in that case just let zero_bss allocate an empty buffer
2465 * for it.
2466 */
2467 if (eppnt->p_filesz != 0) {
2468 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2469 MAP_PRIVATE | MAP_FIXED,
2470 image_fd, eppnt->p_offset - vaddr_po);
2471
2472 if (error == -1) {
2473 goto exit_perror;
2474 }
09bfb054 2475 }
09bfb054 2476
682674b8
RH
2477 vaddr_ef = vaddr + eppnt->p_filesz;
2478 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2479
cf129f3a 2480 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2481 if (vaddr_ef < vaddr_em) {
2482 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2483 }
8e62a717
RH
2484
2485 /* Find the full program boundaries. */
2486 if (elf_prot & PROT_EXEC) {
2487 if (vaddr < info->start_code) {
2488 info->start_code = vaddr;
2489 }
2490 if (vaddr_ef > info->end_code) {
2491 info->end_code = vaddr_ef;
2492 }
2493 }
2494 if (elf_prot & PROT_WRITE) {
2495 if (vaddr < info->start_data) {
2496 info->start_data = vaddr;
2497 }
2498 if (vaddr_ef > info->end_data) {
2499 info->end_data = vaddr_ef;
2500 }
2501 if (vaddr_em > info->brk) {
2502 info->brk = vaddr_em;
2503 }
2504 }
bf858897
RH
2505 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2506 char *interp_name;
2507
2508 if (*pinterp_name) {
2509 errmsg = "Multiple PT_INTERP entries";
2510 goto exit_errmsg;
2511 }
2512 interp_name = malloc(eppnt->p_filesz);
2513 if (!interp_name) {
2514 goto exit_perror;
2515 }
2516
2517 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2518 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2519 eppnt->p_filesz);
2520 } else {
2521 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2522 eppnt->p_offset);
2523 if (retval != eppnt->p_filesz) {
2524 goto exit_perror;
2525 }
2526 }
2527 if (interp_name[eppnt->p_filesz - 1] != 0) {
2528 errmsg = "Invalid PT_INTERP entry";
2529 goto exit_errmsg;
2530 }
2531 *pinterp_name = interp_name;
5dd0db52
SM
2532#ifdef TARGET_MIPS
2533 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2534 Mips_elf_abiflags_v0 abiflags;
2535 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2536 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2537 goto exit_errmsg;
2538 }
2539 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2540 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2541 sizeof(Mips_elf_abiflags_v0));
2542 } else {
2543 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2544 eppnt->p_offset);
2545 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2546 goto exit_perror;
2547 }
2548 }
2549 bswap_mips_abiflags(&abiflags);
c94cb6c9 2550 info->fp_abi = abiflags.fp_abi;
5dd0db52 2551#endif
d97ef72e 2552 }
682674b8 2553 }
5fafdf24 2554
8e62a717
RH
2555 if (info->end_data == 0) {
2556 info->start_data = info->end_code;
2557 info->end_data = info->end_code;
2558 info->brk = info->end_code;
2559 }
2560
682674b8 2561 if (qemu_log_enabled()) {
8e62a717 2562 load_symbols(ehdr, image_fd, load_bias);
682674b8 2563 }
31e31b8a 2564
98c1076c
AB
2565 mmap_unlock();
2566
8e62a717
RH
2567 close(image_fd);
2568 return;
2569
2570 exit_read:
2571 if (retval >= 0) {
2572 errmsg = "Incomplete read of file header";
2573 goto exit_errmsg;
2574 }
2575 exit_perror:
2576 errmsg = strerror(errno);
2577 exit_errmsg:
2578 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2579 exit(-1);
2580}
2581
2582static void load_elf_interp(const char *filename, struct image_info *info,
2583 char bprm_buf[BPRM_BUF_SIZE])
2584{
2585 int fd, retval;
2586
2587 fd = open(path(filename), O_RDONLY);
2588 if (fd < 0) {
2589 goto exit_perror;
2590 }
31e31b8a 2591
8e62a717
RH
2592 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2593 if (retval < 0) {
2594 goto exit_perror;
2595 }
2596 if (retval < BPRM_BUF_SIZE) {
2597 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2598 }
2599
bf858897 2600 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2601 return;
2602
2603 exit_perror:
2604 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2605 exit(-1);
31e31b8a
FB
2606}
2607
49918a75
PB
2608static int symfind(const void *s0, const void *s1)
2609{
c7c530cd 2610 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2611 struct elf_sym *sym = (struct elf_sym *)s1;
2612 int result = 0;
c7c530cd 2613 if (addr < sym->st_value) {
49918a75 2614 result = -1;
c7c530cd 2615 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2616 result = 1;
2617 }
2618 return result;
2619}
2620
2621static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2622{
2623#if ELF_CLASS == ELFCLASS32
2624 struct elf_sym *syms = s->disas_symtab.elf32;
2625#else
2626 struct elf_sym *syms = s->disas_symtab.elf64;
2627#endif
2628
2629 // binary search
49918a75
PB
2630 struct elf_sym *sym;
2631
c7c530cd 2632 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2633 if (sym != NULL) {
49918a75
PB
2634 return s->disas_strtab + sym->st_name;
2635 }
2636
2637 return "";
2638}
2639
2640/* FIXME: This should use elf_ops.h */
2641static int symcmp(const void *s0, const void *s1)
2642{
2643 struct elf_sym *sym0 = (struct elf_sym *)s0;
2644 struct elf_sym *sym1 = (struct elf_sym *)s1;
2645 return (sym0->st_value < sym1->st_value)
2646 ? -1
2647 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2648}
2649
689f936f 2650/* Best attempt to load symbols from this ELF object. */
682674b8 2651static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2652{
682674b8 2653 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2654 uint64_t segsz;
682674b8 2655 struct elf_shdr *shdr;
b9475279
CV
2656 char *strings = NULL;
2657 struct syminfo *s = NULL;
2658 struct elf_sym *new_syms, *syms = NULL;
689f936f 2659
682674b8
RH
2660 shnum = hdr->e_shnum;
2661 i = shnum * sizeof(struct elf_shdr);
2662 shdr = (struct elf_shdr *)alloca(i);
2663 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2664 return;
2665 }
2666
2667 bswap_shdr(shdr, shnum);
2668 for (i = 0; i < shnum; ++i) {
2669 if (shdr[i].sh_type == SHT_SYMTAB) {
2670 sym_idx = i;
2671 str_idx = shdr[i].sh_link;
49918a75
PB
2672 goto found;
2673 }
689f936f 2674 }
682674b8
RH
2675
2676 /* There will be no symbol table if the file was stripped. */
2677 return;
689f936f
FB
2678
2679 found:
682674b8 2680 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2681 s = g_try_new(struct syminfo, 1);
682674b8 2682 if (!s) {
b9475279 2683 goto give_up;
682674b8 2684 }
5fafdf24 2685
1e06262d
PM
2686 segsz = shdr[str_idx].sh_size;
2687 s->disas_strtab = strings = g_try_malloc(segsz);
2688 if (!strings ||
2689 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2690 goto give_up;
682674b8 2691 }
49918a75 2692
1e06262d
PM
2693 segsz = shdr[sym_idx].sh_size;
2694 syms = g_try_malloc(segsz);
2695 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2696 goto give_up;
682674b8 2697 }
31e31b8a 2698
1e06262d
PM
2699 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2700 /* Implausibly large symbol table: give up rather than ploughing
2701 * on with the number of symbols calculation overflowing
2702 */
2703 goto give_up;
2704 }
2705 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2706 for (i = 0; i < nsyms; ) {
49918a75 2707 bswap_sym(syms + i);
682674b8
RH
2708 /* Throw away entries which we do not need. */
2709 if (syms[i].st_shndx == SHN_UNDEF
2710 || syms[i].st_shndx >= SHN_LORESERVE
2711 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2712 if (i < --nsyms) {
49918a75
PB
2713 syms[i] = syms[nsyms];
2714 }
682674b8 2715 } else {
49918a75 2716#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2717 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2718 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2719#endif
682674b8
RH
2720 syms[i].st_value += load_bias;
2721 i++;
2722 }
0774bed1 2723 }
49918a75 2724
b9475279
CV
2725 /* No "useful" symbol. */
2726 if (nsyms == 0) {
2727 goto give_up;
2728 }
2729
5d5c9930
RH
2730 /* Attempt to free the storage associated with the local symbols
2731 that we threw away. Whether or not this has any effect on the
2732 memory allocation depends on the malloc implementation and how
2733 many symbols we managed to discard. */
0ef9ea29 2734 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2735 if (new_syms == NULL) {
b9475279 2736 goto give_up;
5d5c9930 2737 }
8d79de6e 2738 syms = new_syms;
5d5c9930 2739
49918a75 2740 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2741
49918a75
PB
2742 s->disas_num_syms = nsyms;
2743#if ELF_CLASS == ELFCLASS32
2744 s->disas_symtab.elf32 = syms;
49918a75
PB
2745#else
2746 s->disas_symtab.elf64 = syms;
49918a75 2747#endif
682674b8 2748 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2749 s->next = syminfos;
2750 syminfos = s;
b9475279
CV
2751
2752 return;
2753
2754give_up:
0ef9ea29
PM
2755 g_free(s);
2756 g_free(strings);
2757 g_free(syms);
689f936f 2758}
31e31b8a 2759
768fe76e
YS
2760uint32_t get_elf_eflags(int fd)
2761{
2762 struct elfhdr ehdr;
2763 off_t offset;
2764 int ret;
2765
2766 /* Read ELF header */
2767 offset = lseek(fd, 0, SEEK_SET);
2768 if (offset == (off_t) -1) {
2769 return 0;
2770 }
2771 ret = read(fd, &ehdr, sizeof(ehdr));
2772 if (ret < sizeof(ehdr)) {
2773 return 0;
2774 }
2775 offset = lseek(fd, offset, SEEK_SET);
2776 if (offset == (off_t) -1) {
2777 return 0;
2778 }
2779
2780 /* Check ELF signature */
2781 if (!elf_check_ident(&ehdr)) {
2782 return 0;
2783 }
2784
2785 /* check header */
2786 bswap_ehdr(&ehdr);
2787 if (!elf_check_ehdr(&ehdr)) {
2788 return 0;
2789 }
2790
2791 /* return architecture id */
2792 return ehdr.e_flags;
2793}
2794
f0116c54 2795int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2796{
8e62a717 2797 struct image_info interp_info;
31e31b8a 2798 struct elfhdr elf_ex;
8e62a717 2799 char *elf_interpreter = NULL;
59baae9a 2800 char *scratch;
31e31b8a 2801
abcac736
DS
2802 memset(&interp_info, 0, sizeof(interp_info));
2803#ifdef TARGET_MIPS
2804 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2805#endif
2806
bf858897 2807 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2808
2809 load_elf_image(bprm->filename, bprm->fd, info,
2810 &elf_interpreter, bprm->buf);
31e31b8a 2811
bf858897
RH
2812 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2813 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2814 when we load the interpreter. */
2815 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2816
59baae9a
SB
2817 /* Do this so that we can load the interpreter, if need be. We will
2818 change some of these later */
2819 bprm->p = setup_arg_pages(bprm, info);
2820
2821 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2822 if (STACK_GROWS_DOWN) {
2823 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2824 bprm->p, info->stack_limit);
2825 info->file_string = bprm->p;
2826 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2827 bprm->p, info->stack_limit);
2828 info->env_strings = bprm->p;
2829 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2830 bprm->p, info->stack_limit);
2831 info->arg_strings = bprm->p;
2832 } else {
2833 info->arg_strings = bprm->p;
2834 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2835 bprm->p, info->stack_limit);
2836 info->env_strings = bprm->p;
2837 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2838 bprm->p, info->stack_limit);
2839 info->file_string = bprm->p;
2840 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2841 bprm->p, info->stack_limit);
2842 }
2843
59baae9a
SB
2844 g_free(scratch);
2845
e5fe0c52 2846 if (!bprm->p) {
bf858897
RH
2847 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2848 exit(-1);
379f6698 2849 }
379f6698 2850
8e62a717
RH
2851 if (elf_interpreter) {
2852 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2853
8e62a717
RH
2854 /* If the program interpreter is one of these two, then assume
2855 an iBCS2 image. Otherwise assume a native linux image. */
2856
2857 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2858 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2859 info->personality = PER_SVR4;
31e31b8a 2860
8e62a717
RH
2861 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2862 and some applications "depend" upon this behavior. Since
2863 we do not have the power to recompile these, we emulate
2864 the SVr4 behavior. Sigh. */
2865 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2866 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2867 }
c94cb6c9
SM
2868#ifdef TARGET_MIPS
2869 info->interp_fp_abi = interp_info.fp_abi;
2870#endif
31e31b8a
FB
2871 }
2872
8e62a717
RH
2873 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2874 info, (elf_interpreter ? &interp_info : NULL));
2875 info->start_stack = bprm->p;
2876
2877 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2878 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2879 point as a function descriptor. Do this after creating elf tables
2880 so that we copy the original program entry point into the AUXV. */
2881 if (elf_interpreter) {
8e78064e 2882 info->load_bias = interp_info.load_bias;
8e62a717 2883 info->entry = interp_info.entry;
bf858897 2884 free(elf_interpreter);
8e62a717 2885 }
31e31b8a 2886
edf8e2af
MW
2887#ifdef USE_ELF_CORE_DUMP
2888 bprm->core_dump = &elf_core_dump;
2889#endif
2890
6fd59449
RH
2891 /*
2892 * If we reserved extra space for brk, release it now.
2893 * The implementation of do_brk in syscalls.c expects to be able
2894 * to mmap pages in this space.
2895 */
2896 if (info->reserve_brk) {
2897 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
2898 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
2899 target_munmap(start_brk, end_brk - start_brk);
2900 }
2901
31e31b8a
FB
2902 return 0;
2903}
2904
edf8e2af 2905#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2906/*
2907 * Definitions to generate Intel SVR4-like core files.
a2547a13 2908 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2909 * tacked on the front to prevent clashes with linux definitions,
2910 * and the typedef forms have been avoided. This is mostly like
2911 * the SVR4 structure, but more Linuxy, with things that Linux does
2912 * not support and which gdb doesn't really use excluded.
2913 *
2914 * Fields we don't dump (their contents is zero) in linux-user qemu
2915 * are marked with XXX.
2916 *
2917 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2918 *
2919 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2920 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2921 * the target resides):
2922 *
2923 * #define USE_ELF_CORE_DUMP
2924 *
2925 * Next you define type of register set used for dumping. ELF specification
2926 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2927 *
c227f099 2928 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2929 * #define ELF_NREG <number of registers>
c227f099 2930 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2931 *
edf8e2af
MW
2932 * Last step is to implement target specific function that copies registers
2933 * from given cpu into just specified register set. Prototype is:
2934 *
c227f099 2935 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2936 * const CPUArchState *env);
edf8e2af
MW
2937 *
2938 * Parameters:
2939 * regs - copy register values into here (allocated and zeroed by caller)
2940 * env - copy registers from here
2941 *
2942 * Example for ARM target is provided in this file.
2943 */
2944
2945/* An ELF note in memory */
2946struct memelfnote {
2947 const char *name;
2948 size_t namesz;
2949 size_t namesz_rounded;
2950 int type;
2951 size_t datasz;
80f5ce75 2952 size_t datasz_rounded;
edf8e2af
MW
2953 void *data;
2954 size_t notesz;
2955};
2956
a2547a13 2957struct target_elf_siginfo {
f8fd4fc4
PB
2958 abi_int si_signo; /* signal number */
2959 abi_int si_code; /* extra code */
2960 abi_int si_errno; /* errno */
edf8e2af
MW
2961};
2962
a2547a13
LD
2963struct target_elf_prstatus {
2964 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2965 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2966 abi_ulong pr_sigpend; /* XXX */
2967 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2968 target_pid_t pr_pid;
2969 target_pid_t pr_ppid;
2970 target_pid_t pr_pgrp;
2971 target_pid_t pr_sid;
edf8e2af
MW
2972 struct target_timeval pr_utime; /* XXX User time */
2973 struct target_timeval pr_stime; /* XXX System time */
2974 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2975 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2976 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2977 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2978};
2979
2980#define ELF_PRARGSZ (80) /* Number of chars for args */
2981
a2547a13 2982struct target_elf_prpsinfo {
edf8e2af
MW
2983 char pr_state; /* numeric process state */
2984 char pr_sname; /* char for pr_state */
2985 char pr_zomb; /* zombie */
2986 char pr_nice; /* nice val */
ca98ac83 2987 abi_ulong pr_flag; /* flags */
c227f099
AL
2988 target_uid_t pr_uid;
2989 target_gid_t pr_gid;
2990 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 2991 /* Lots missing */
d7eb2b92 2992 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
2993 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2994};
2995
2996/* Here is the structure in which status of each thread is captured. */
2997struct elf_thread_status {
72cf2d4f 2998 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2999 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3000#if 0
3001 elf_fpregset_t fpu; /* NT_PRFPREG */
3002 struct task_struct *thread;
3003 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3004#endif
3005 struct memelfnote notes[1];
3006 int num_notes;
3007};
3008
3009struct elf_note_info {
3010 struct memelfnote *notes;
a2547a13
LD
3011 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3012 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3013
b58deb34 3014 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3015#if 0
3016 /*
3017 * Current version of ELF coredump doesn't support
3018 * dumping fp regs etc.
3019 */
3020 elf_fpregset_t *fpu;
3021 elf_fpxregset_t *xfpu;
3022 int thread_status_size;
3023#endif
3024 int notes_size;
3025 int numnote;
3026};
3027
3028struct vm_area_struct {
1a1c4db9
MI
3029 target_ulong vma_start; /* start vaddr of memory region */
3030 target_ulong vma_end; /* end vaddr of memory region */
3031 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3032 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3033};
3034
3035struct mm_struct {
72cf2d4f 3036 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3037 int mm_count; /* number of mappings */
3038};
3039
3040static struct mm_struct *vma_init(void);
3041static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3042static int vma_add_mapping(struct mm_struct *, target_ulong,
3043 target_ulong, abi_ulong);
edf8e2af
MW
3044static int vma_get_mapping_count(const struct mm_struct *);
3045static struct vm_area_struct *vma_first(const struct mm_struct *);
3046static struct vm_area_struct *vma_next(struct vm_area_struct *);
3047static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3048static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3049 unsigned long flags);
edf8e2af
MW
3050
3051static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3052static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3053 unsigned int, void *);
a2547a13
LD
3054static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3055static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3056static void fill_auxv_note(struct memelfnote *, const TaskState *);
3057static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3058static size_t note_size(const struct memelfnote *);
3059static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3060static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3061static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3062static int core_dump_filename(const TaskState *, char *, size_t);
3063
3064static int dump_write(int, const void *, size_t);
3065static int write_note(struct memelfnote *, int);
3066static int write_note_info(struct elf_note_info *, int);
3067
3068#ifdef BSWAP_NEEDED
a2547a13 3069static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3070{
ca98ac83
PB
3071 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3072 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3073 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3074 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3075 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3076 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3077 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3078 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3079 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3080 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3081 /* cpu times are not filled, so we skip them */
3082 /* regs should be in correct format already */
3083 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3084}
3085
a2547a13 3086static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3087{
ca98ac83 3088 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3089 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3090 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3091 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3092 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3093 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3094 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3095}
991f8f0c
RH
3096
3097static void bswap_note(struct elf_note *en)
3098{
3099 bswap32s(&en->n_namesz);
3100 bswap32s(&en->n_descsz);
3101 bswap32s(&en->n_type);
3102}
3103#else
3104static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3105static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3106static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3107#endif /* BSWAP_NEEDED */
3108
3109/*
3110 * Minimal support for linux memory regions. These are needed
3111 * when we are finding out what memory exactly belongs to
3112 * emulated process. No locks needed here, as long as
3113 * thread that received the signal is stopped.
3114 */
3115
3116static struct mm_struct *vma_init(void)
3117{
3118 struct mm_struct *mm;
3119
7267c094 3120 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3121 return (NULL);
3122
3123 mm->mm_count = 0;
72cf2d4f 3124 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3125
3126 return (mm);
3127}
3128
3129static void vma_delete(struct mm_struct *mm)
3130{
3131 struct vm_area_struct *vma;
3132
3133 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3134 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3135 g_free(vma);
edf8e2af 3136 }
7267c094 3137 g_free(mm);
edf8e2af
MW
3138}
3139
1a1c4db9
MI
3140static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3141 target_ulong end, abi_ulong flags)
edf8e2af
MW
3142{
3143 struct vm_area_struct *vma;
3144
7267c094 3145 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3146 return (-1);
3147
3148 vma->vma_start = start;
3149 vma->vma_end = end;
3150 vma->vma_flags = flags;
3151
72cf2d4f 3152 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3153 mm->mm_count++;
3154
3155 return (0);
3156}
3157
3158static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3159{
72cf2d4f 3160 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3161}
3162
3163static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3164{
72cf2d4f 3165 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3166}
3167
3168static int vma_get_mapping_count(const struct mm_struct *mm)
3169{
3170 return (mm->mm_count);
3171}
3172
3173/*
3174 * Calculate file (dump) size of given memory region.
3175 */
3176static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3177{
3178 /* if we cannot even read the first page, skip it */
3179 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3180 return (0);
3181
3182 /*
3183 * Usually we don't dump executable pages as they contain
3184 * non-writable code that debugger can read directly from
3185 * target library etc. However, thread stacks are marked
3186 * also executable so we read in first page of given region
3187 * and check whether it contains elf header. If there is
3188 * no elf header, we dump it.
3189 */
3190 if (vma->vma_flags & PROT_EXEC) {
3191 char page[TARGET_PAGE_SIZE];
3192
3193 copy_from_user(page, vma->vma_start, sizeof (page));
3194 if ((page[EI_MAG0] == ELFMAG0) &&
3195 (page[EI_MAG1] == ELFMAG1) &&
3196 (page[EI_MAG2] == ELFMAG2) &&
3197 (page[EI_MAG3] == ELFMAG3)) {
3198 /*
3199 * Mappings are possibly from ELF binary. Don't dump
3200 * them.
3201 */
3202 return (0);
3203 }
3204 }
3205
3206 return (vma->vma_end - vma->vma_start);
3207}
3208
1a1c4db9 3209static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3210 unsigned long flags)
edf8e2af
MW
3211{
3212 struct mm_struct *mm = (struct mm_struct *)priv;
3213
edf8e2af
MW
3214 vma_add_mapping(mm, start, end, flags);
3215 return (0);
3216}
3217
3218static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3219 unsigned int sz, void *data)
edf8e2af
MW
3220{
3221 unsigned int namesz;
3222
3223 namesz = strlen(name) + 1;
3224 note->name = name;
3225 note->namesz = namesz;
3226 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3227 note->type = type;
80f5ce75
LV
3228 note->datasz = sz;
3229 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3230
edf8e2af
MW
3231 note->data = data;
3232
3233 /*
3234 * We calculate rounded up note size here as specified by
3235 * ELF document.
3236 */
3237 note->notesz = sizeof (struct elf_note) +
80f5ce75 3238 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3239}
3240
3241static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3242 uint32_t flags)
edf8e2af
MW
3243{
3244 (void) memset(elf, 0, sizeof(*elf));
3245
3246 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3247 elf->e_ident[EI_CLASS] = ELF_CLASS;
3248 elf->e_ident[EI_DATA] = ELF_DATA;
3249 elf->e_ident[EI_VERSION] = EV_CURRENT;
3250 elf->e_ident[EI_OSABI] = ELF_OSABI;
3251
3252 elf->e_type = ET_CORE;
3253 elf->e_machine = machine;
3254 elf->e_version = EV_CURRENT;
3255 elf->e_phoff = sizeof(struct elfhdr);
3256 elf->e_flags = flags;
3257 elf->e_ehsize = sizeof(struct elfhdr);
3258 elf->e_phentsize = sizeof(struct elf_phdr);
3259 elf->e_phnum = segs;
3260
edf8e2af 3261 bswap_ehdr(elf);
edf8e2af
MW
3262}
3263
3264static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3265{
3266 phdr->p_type = PT_NOTE;
3267 phdr->p_offset = offset;
3268 phdr->p_vaddr = 0;
3269 phdr->p_paddr = 0;
3270 phdr->p_filesz = sz;
3271 phdr->p_memsz = 0;
3272 phdr->p_flags = 0;
3273 phdr->p_align = 0;
3274
991f8f0c 3275 bswap_phdr(phdr, 1);
edf8e2af
MW
3276}
3277
3278static size_t note_size(const struct memelfnote *note)
3279{
3280 return (note->notesz);
3281}
3282
a2547a13 3283static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3284 const TaskState *ts, int signr)
edf8e2af
MW
3285{
3286 (void) memset(prstatus, 0, sizeof (*prstatus));
3287 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3288 prstatus->pr_pid = ts->ts_tid;
3289 prstatus->pr_ppid = getppid();
3290 prstatus->pr_pgrp = getpgrp();
3291 prstatus->pr_sid = getsid(0);
3292
edf8e2af 3293 bswap_prstatus(prstatus);
edf8e2af
MW
3294}
3295
a2547a13 3296static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3297{
900cfbca 3298 char *base_filename;
edf8e2af
MW
3299 unsigned int i, len;
3300
3301 (void) memset(psinfo, 0, sizeof (*psinfo));
3302
3303 len = ts->info->arg_end - ts->info->arg_start;
3304 if (len >= ELF_PRARGSZ)
3305 len = ELF_PRARGSZ - 1;
3306 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3307 return -EFAULT;
3308 for (i = 0; i < len; i++)
3309 if (psinfo->pr_psargs[i] == 0)
3310 psinfo->pr_psargs[i] = ' ';
3311 psinfo->pr_psargs[len] = 0;
3312
3313 psinfo->pr_pid = getpid();
3314 psinfo->pr_ppid = getppid();
3315 psinfo->pr_pgrp = getpgrp();
3316 psinfo->pr_sid = getsid(0);
3317 psinfo->pr_uid = getuid();
3318 psinfo->pr_gid = getgid();
3319
900cfbca
JM
3320 base_filename = g_path_get_basename(ts->bprm->filename);
3321 /*
3322 * Using strncpy here is fine: at max-length,
3323 * this field is not NUL-terminated.
3324 */
edf8e2af 3325 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3326 sizeof(psinfo->pr_fname));
edf8e2af 3327
900cfbca 3328 g_free(base_filename);
edf8e2af 3329 bswap_psinfo(psinfo);
edf8e2af
MW
3330 return (0);
3331}
3332
3333static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3334{
3335 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3336 elf_addr_t orig_auxv = auxv;
edf8e2af 3337 void *ptr;
125b0f55 3338 int len = ts->info->auxv_len;
edf8e2af
MW
3339
3340 /*
3341 * Auxiliary vector is stored in target process stack. It contains
3342 * {type, value} pairs that we need to dump into note. This is not
3343 * strictly necessary but we do it here for sake of completeness.
3344 */
3345
edf8e2af
MW
3346 /* read in whole auxv vector and copy it to memelfnote */
3347 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3348 if (ptr != NULL) {
3349 fill_note(note, "CORE", NT_AUXV, len, ptr);
3350 unlock_user(ptr, auxv, len);
3351 }
3352}
3353
3354/*
3355 * Constructs name of coredump file. We have following convention
3356 * for the name:
3357 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3358 *
3359 * Returns 0 in case of success, -1 otherwise (errno is set).
3360 */
3361static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3362 size_t bufsize)
edf8e2af
MW
3363{
3364 char timestamp[64];
edf8e2af
MW
3365 char *base_filename = NULL;
3366 struct timeval tv;
3367 struct tm tm;
3368
3369 assert(bufsize >= PATH_MAX);
3370
3371 if (gettimeofday(&tv, NULL) < 0) {
3372 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3373 strerror(errno));
edf8e2af
MW
3374 return (-1);
3375 }
3376
b8da57fa 3377 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3378 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3379 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3380 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3381 base_filename, timestamp, (int)getpid());
b8da57fa 3382 g_free(base_filename);
edf8e2af
MW
3383
3384 return (0);
3385}
3386
3387static int dump_write(int fd, const void *ptr, size_t size)
3388{
3389 const char *bufp = (const char *)ptr;
3390 ssize_t bytes_written, bytes_left;
3391 struct rlimit dumpsize;
3392 off_t pos;
3393
3394 bytes_written = 0;
3395 getrlimit(RLIMIT_CORE, &dumpsize);
3396 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3397 if (errno == ESPIPE) { /* not a seekable stream */
3398 bytes_left = size;
3399 } else {
3400 return pos;
3401 }
3402 } else {
3403 if (dumpsize.rlim_cur <= pos) {
3404 return -1;
3405 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3406 bytes_left = size;
3407 } else {
3408 size_t limit_left=dumpsize.rlim_cur - pos;
3409 bytes_left = limit_left >= size ? size : limit_left ;
3410 }
3411 }
3412
3413 /*
3414 * In normal conditions, single write(2) should do but
3415 * in case of socket etc. this mechanism is more portable.
3416 */
3417 do {
3418 bytes_written = write(fd, bufp, bytes_left);
3419 if (bytes_written < 0) {
3420 if (errno == EINTR)
3421 continue;
3422 return (-1);
3423 } else if (bytes_written == 0) { /* eof */
3424 return (-1);
3425 }
3426 bufp += bytes_written;
3427 bytes_left -= bytes_written;
3428 } while (bytes_left > 0);
3429
3430 return (0);
3431}
3432
3433static int write_note(struct memelfnote *men, int fd)
3434{
3435 struct elf_note en;
3436
3437 en.n_namesz = men->namesz;
3438 en.n_type = men->type;
3439 en.n_descsz = men->datasz;
3440
edf8e2af 3441 bswap_note(&en);
edf8e2af
MW
3442
3443 if (dump_write(fd, &en, sizeof(en)) != 0)
3444 return (-1);
3445 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3446 return (-1);
80f5ce75 3447 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3448 return (-1);
3449
3450 return (0);
3451}
3452
9349b4f9 3453static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3454{
29a0af61 3455 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3456 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3457 struct elf_thread_status *ets;
3458
7267c094 3459 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3460 ets->num_notes = 1; /* only prstatus is dumped */
3461 fill_prstatus(&ets->prstatus, ts, 0);
3462 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3463 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3464 &ets->prstatus);
edf8e2af 3465
72cf2d4f 3466 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3467
3468 info->notes_size += note_size(&ets->notes[0]);
3469}
3470
6afafa86
PM
3471static void init_note_info(struct elf_note_info *info)
3472{
3473 /* Initialize the elf_note_info structure so that it is at
3474 * least safe to call free_note_info() on it. Must be
3475 * called before calling fill_note_info().
3476 */
3477 memset(info, 0, sizeof (*info));
3478 QTAILQ_INIT(&info->thread_list);
3479}
3480
edf8e2af 3481static int fill_note_info(struct elf_note_info *info,
9349b4f9 3482 long signr, const CPUArchState *env)
edf8e2af
MW
3483{
3484#define NUMNOTES 3
29a0af61 3485 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3486 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3487 int i;
3488
c78d65e8 3489 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3490 if (info->notes == NULL)
3491 return (-ENOMEM);
7267c094 3492 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3493 if (info->prstatus == NULL)
3494 return (-ENOMEM);
7267c094 3495 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3496 if (info->prstatus == NULL)
3497 return (-ENOMEM);
3498
3499 /*
3500 * First fill in status (and registers) of current thread
3501 * including process info & aux vector.
3502 */
3503 fill_prstatus(info->prstatus, ts, signr);
3504 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3505 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3506 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3507 fill_psinfo(info->psinfo, ts);
3508 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3509 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3510 fill_auxv_note(&info->notes[2], ts);
3511 info->numnote = 3;
3512
3513 info->notes_size = 0;
3514 for (i = 0; i < info->numnote; i++)
3515 info->notes_size += note_size(&info->notes[i]);
3516
3517 /* read and fill status of all threads */
3518 cpu_list_lock();
bdc44640 3519 CPU_FOREACH(cpu) {
a2247f8e 3520 if (cpu == thread_cpu) {
edf8e2af 3521 continue;
182735ef
AF
3522 }
3523 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3524 }
3525 cpu_list_unlock();
3526
3527 return (0);
3528}
3529
3530static void free_note_info(struct elf_note_info *info)
3531{
3532 struct elf_thread_status *ets;
3533
72cf2d4f
BS
3534 while (!QTAILQ_EMPTY(&info->thread_list)) {
3535 ets = QTAILQ_FIRST(&info->thread_list);
3536 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3537 g_free(ets);
edf8e2af
MW
3538 }
3539
7267c094
AL
3540 g_free(info->prstatus);
3541 g_free(info->psinfo);
3542 g_free(info->notes);
edf8e2af
MW
3543}
3544
3545static int write_note_info(struct elf_note_info *info, int fd)
3546{
3547 struct elf_thread_status *ets;
3548 int i, error = 0;
3549
3550 /* write prstatus, psinfo and auxv for current thread */
3551 for (i = 0; i < info->numnote; i++)
3552 if ((error = write_note(&info->notes[i], fd)) != 0)
3553 return (error);
3554
3555 /* write prstatus for each thread */
52a53afe 3556 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3557 if ((error = write_note(&ets->notes[0], fd)) != 0)
3558 return (error);
3559 }
3560
3561 return (0);
3562}
3563
3564/*
3565 * Write out ELF coredump.
3566 *
3567 * See documentation of ELF object file format in:
3568 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3569 *
3570 * Coredump format in linux is following:
3571 *
3572 * 0 +----------------------+ \
3573 * | ELF header | ET_CORE |
3574 * +----------------------+ |
3575 * | ELF program headers | |--- headers
3576 * | - NOTE section | |
3577 * | - PT_LOAD sections | |
3578 * +----------------------+ /
3579 * | NOTEs: |
3580 * | - NT_PRSTATUS |
3581 * | - NT_PRSINFO |
3582 * | - NT_AUXV |
3583 * +----------------------+ <-- aligned to target page
3584 * | Process memory dump |
3585 * : :
3586 * . .
3587 * : :
3588 * | |
3589 * +----------------------+
3590 *
3591 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3592 * NT_PRSINFO -> struct elf_prpsinfo
3593 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3594 *
3595 * Format follows System V format as close as possible. Current
3596 * version limitations are as follows:
3597 * - no floating point registers are dumped
3598 *
3599 * Function returns 0 in case of success, negative errno otherwise.
3600 *
3601 * TODO: make this work also during runtime: it should be
3602 * possible to force coredump from running process and then
3603 * continue processing. For example qemu could set up SIGUSR2
3604 * handler (provided that target process haven't registered
3605 * handler for that) that does the dump when signal is received.
3606 */
9349b4f9 3607static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3608{
29a0af61 3609 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3610 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3611 struct vm_area_struct *vma = NULL;
3612 char corefile[PATH_MAX];
3613 struct elf_note_info info;
3614 struct elfhdr elf;
3615 struct elf_phdr phdr;
3616 struct rlimit dumpsize;
3617 struct mm_struct *mm = NULL;
3618 off_t offset = 0, data_offset = 0;
3619 int segs = 0;
3620 int fd = -1;
3621
6afafa86
PM
3622 init_note_info(&info);
3623
edf8e2af
MW
3624 errno = 0;
3625 getrlimit(RLIMIT_CORE, &dumpsize);
3626 if (dumpsize.rlim_cur == 0)
d97ef72e 3627 return 0;
edf8e2af
MW
3628
3629 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3630 return (-errno);
3631
3632 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3633 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3634 return (-errno);
3635
3636 /*
3637 * Walk through target process memory mappings and
3638 * set up structure containing this information. After
3639 * this point vma_xxx functions can be used.
3640 */
3641 if ((mm = vma_init()) == NULL)
3642 goto out;
3643
3644 walk_memory_regions(mm, vma_walker);
3645 segs = vma_get_mapping_count(mm);
3646
3647 /*
3648 * Construct valid coredump ELF header. We also
3649 * add one more segment for notes.
3650 */
3651 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3652 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3653 goto out;
3654
b6af0975 3655 /* fill in the in-memory version of notes */
edf8e2af
MW
3656 if (fill_note_info(&info, signr, env) < 0)
3657 goto out;
3658
3659 offset += sizeof (elf); /* elf header */
3660 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3661
3662 /* write out notes program header */
3663 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3664
3665 offset += info.notes_size;
3666 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3667 goto out;
3668
3669 /*
3670 * ELF specification wants data to start at page boundary so
3671 * we align it here.
3672 */
80f5ce75 3673 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3674
3675 /*
3676 * Write program headers for memory regions mapped in
3677 * the target process.
3678 */
3679 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3680 (void) memset(&phdr, 0, sizeof (phdr));
3681
3682 phdr.p_type = PT_LOAD;
3683 phdr.p_offset = offset;
3684 phdr.p_vaddr = vma->vma_start;
3685 phdr.p_paddr = 0;
3686 phdr.p_filesz = vma_dump_size(vma);
3687 offset += phdr.p_filesz;
3688 phdr.p_memsz = vma->vma_end - vma->vma_start;
3689 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3690 if (vma->vma_flags & PROT_WRITE)
3691 phdr.p_flags |= PF_W;
3692 if (vma->vma_flags & PROT_EXEC)
3693 phdr.p_flags |= PF_X;
3694 phdr.p_align = ELF_EXEC_PAGESIZE;
3695
80f5ce75 3696 bswap_phdr(&phdr, 1);
772034b6
PM
3697 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3698 goto out;
3699 }
edf8e2af
MW
3700 }
3701
3702 /*
3703 * Next we write notes just after program headers. No
3704 * alignment needed here.
3705 */
3706 if (write_note_info(&info, fd) < 0)
3707 goto out;
3708
3709 /* align data to page boundary */
edf8e2af
MW
3710 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3711 goto out;
3712
3713 /*
3714 * Finally we can dump process memory into corefile as well.
3715 */
3716 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3717 abi_ulong addr;
3718 abi_ulong end;
3719
3720 end = vma->vma_start + vma_dump_size(vma);
3721
3722 for (addr = vma->vma_start; addr < end;
d97ef72e 3723 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3724 char page[TARGET_PAGE_SIZE];
3725 int error;
3726
3727 /*
3728 * Read in page from target process memory and
3729 * write it to coredump file.
3730 */
3731 error = copy_from_user(page, addr, sizeof (page));
3732 if (error != 0) {
49995e17 3733 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3734 addr);
edf8e2af
MW
3735 errno = -error;
3736 goto out;
3737 }
3738 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3739 goto out;
3740 }
3741 }
3742
d97ef72e 3743 out:
edf8e2af
MW
3744 free_note_info(&info);
3745 if (mm != NULL)
3746 vma_delete(mm);
3747 (void) close(fd);
3748
3749 if (errno != 0)
3750 return (-errno);
3751 return (0);
3752}
edf8e2af
MW
3753#endif /* USE_ELF_CORE_DUMP */
3754
e5fe0c52
PB
3755void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3756{
3757 init_thread(regs, infop);
3758}
This page took 1.436103 seconds and 4 git commands to generate.