]> Git Repo - qemu.git/blame - linux-user/elfload.c
configure: integrate Meson in the build system
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
76cad711 9#include "disas/disas.h"
f348b6d1 10#include "qemu/path.h"
dc5e9ac7 11#include "qemu/queue.h"
c6a2377f 12#include "qemu/guest-random.h"
6fd59449 13#include "qemu/units.h"
ee947430 14#include "qemu/selfmap.h"
31e31b8a 15
e58ffeb3 16#ifdef _ARCH_PPC64
a6cc84f4 17#undef ARCH_DLINFO
18#undef ELF_PLATFORM
19#undef ELF_HWCAP
ad6919dc 20#undef ELF_HWCAP2
a6cc84f4 21#undef ELF_CLASS
22#undef ELF_DATA
23#undef ELF_ARCH
24#endif
25
edf8e2af
MW
26#define ELF_OSABI ELFOSABI_SYSV
27
cb33da57
BS
28/* from personality.h */
29
30/*
31 * Flags for bug emulation.
32 *
33 * These occupy the top three bytes.
34 */
35enum {
d97ef72e
RH
36 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
37 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
38 descriptors (signal handling) */
39 MMAP_PAGE_ZERO = 0x0100000,
40 ADDR_COMPAT_LAYOUT = 0x0200000,
41 READ_IMPLIES_EXEC = 0x0400000,
42 ADDR_LIMIT_32BIT = 0x0800000,
43 SHORT_INODE = 0x1000000,
44 WHOLE_SECONDS = 0x2000000,
45 STICKY_TIMEOUTS = 0x4000000,
46 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
47};
48
49/*
50 * Personality types.
51 *
52 * These go in the low byte. Avoid using the top bit, it will
53 * conflict with error returns.
54 */
55enum {
d97ef72e
RH
56 PER_LINUX = 0x0000,
57 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
58 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
59 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
60 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
61 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
62 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
63 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
65 PER_BSD = 0x0006,
66 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
67 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_LINUX32 = 0x0008,
69 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
70 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
71 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
72 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
73 PER_RISCOS = 0x000c,
74 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
75 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
76 PER_OSF4 = 0x000f, /* OSF/1 v4 */
77 PER_HPUX = 0x0010,
78 PER_MASK = 0x00ff,
cb33da57
BS
79};
80
81/*
82 * Return the base personality without flags.
83 */
d97ef72e 84#define personality(pers) (pers & PER_MASK)
cb33da57 85
3cb10cfa
CL
86int info_is_fdpic(struct image_info *info)
87{
88 return info->personality == PER_LINUX_FDPIC;
89}
90
83fb7adf
FB
91/* this flag is uneffective under linux too, should be deleted */
92#ifndef MAP_DENYWRITE
93#define MAP_DENYWRITE 0
94#endif
95
96/* should probably go in elf.h */
97#ifndef ELIBBAD
98#define ELIBBAD 80
99#endif
100
28490231
RH
101#ifdef TARGET_WORDS_BIGENDIAN
102#define ELF_DATA ELFDATA2MSB
103#else
104#define ELF_DATA ELFDATA2LSB
105#endif
106
a29f998d 107#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
108typedef abi_ullong target_elf_greg_t;
109#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
110#else
111typedef abi_ulong target_elf_greg_t;
112#define tswapreg(ptr) tswapal(ptr)
113#endif
114
21e807fa 115#ifdef USE_UID16
1ddd592f
PB
116typedef abi_ushort target_uid_t;
117typedef abi_ushort target_gid_t;
21e807fa 118#else
f8fd4fc4
PB
119typedef abi_uint target_uid_t;
120typedef abi_uint target_gid_t;
21e807fa 121#endif
f8fd4fc4 122typedef abi_int target_pid_t;
21e807fa 123
30ac07d4
FB
124#ifdef TARGET_I386
125
15338fd7
FB
126#define ELF_PLATFORM get_elf_platform()
127
128static const char *get_elf_platform(void)
129{
130 static char elf_platform[] = "i386";
a2247f8e 131 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
132 if (family > 6)
133 family = 6;
134 if (family >= 3)
135 elf_platform[1] = '0' + family;
136 return elf_platform;
137}
138
139#define ELF_HWCAP get_elf_hwcap()
140
141static uint32_t get_elf_hwcap(void)
142{
a2247f8e
AF
143 X86CPU *cpu = X86_CPU(thread_cpu);
144
145 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
146}
147
84409ddb
JM
148#ifdef TARGET_X86_64
149#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
150
151#define ELF_CLASS ELFCLASS64
84409ddb
JM
152#define ELF_ARCH EM_X86_64
153
154static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
155{
156 regs->rax = 0;
157 regs->rsp = infop->start_stack;
158 regs->rip = infop->entry;
159}
160
9edc5d79 161#define ELF_NREG 27
c227f099 162typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
163
164/*
165 * Note that ELF_NREG should be 29 as there should be place for
166 * TRAPNO and ERR "registers" as well but linux doesn't dump
167 * those.
168 *
169 * See linux kernel: arch/x86/include/asm/elf.h
170 */
05390248 171static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
172{
173 (*regs)[0] = env->regs[15];
174 (*regs)[1] = env->regs[14];
175 (*regs)[2] = env->regs[13];
176 (*regs)[3] = env->regs[12];
177 (*regs)[4] = env->regs[R_EBP];
178 (*regs)[5] = env->regs[R_EBX];
179 (*regs)[6] = env->regs[11];
180 (*regs)[7] = env->regs[10];
181 (*regs)[8] = env->regs[9];
182 (*regs)[9] = env->regs[8];
183 (*regs)[10] = env->regs[R_EAX];
184 (*regs)[11] = env->regs[R_ECX];
185 (*regs)[12] = env->regs[R_EDX];
186 (*regs)[13] = env->regs[R_ESI];
187 (*regs)[14] = env->regs[R_EDI];
188 (*regs)[15] = env->regs[R_EAX]; /* XXX */
189 (*regs)[16] = env->eip;
190 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
191 (*regs)[18] = env->eflags;
192 (*regs)[19] = env->regs[R_ESP];
193 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
194 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
195 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
196 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
197 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
198 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
199 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
200}
201
84409ddb
JM
202#else
203
30ac07d4
FB
204#define ELF_START_MMAP 0x80000000
205
30ac07d4
FB
206/*
207 * This is used to ensure we don't load something for the wrong architecture.
208 */
209#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
210
211/*
212 * These are used to set parameters in the core dumps.
213 */
d97ef72e 214#define ELF_CLASS ELFCLASS32
d97ef72e 215#define ELF_ARCH EM_386
30ac07d4 216
d97ef72e
RH
217static inline void init_thread(struct target_pt_regs *regs,
218 struct image_info *infop)
b346ff46
FB
219{
220 regs->esp = infop->start_stack;
221 regs->eip = infop->entry;
e5fe0c52
PB
222
223 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
224 starts %edx contains a pointer to a function which might be
225 registered using `atexit'. This provides a mean for the
226 dynamic linker to call DT_FINI functions for shared libraries
227 that have been loaded before the code runs.
228
229 A value of 0 tells we have no such handler. */
230 regs->edx = 0;
b346ff46 231}
9edc5d79 232
9edc5d79 233#define ELF_NREG 17
c227f099 234typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
235
236/*
237 * Note that ELF_NREG should be 19 as there should be place for
238 * TRAPNO and ERR "registers" as well but linux doesn't dump
239 * those.
240 *
241 * See linux kernel: arch/x86/include/asm/elf.h
242 */
05390248 243static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
244{
245 (*regs)[0] = env->regs[R_EBX];
246 (*regs)[1] = env->regs[R_ECX];
247 (*regs)[2] = env->regs[R_EDX];
248 (*regs)[3] = env->regs[R_ESI];
249 (*regs)[4] = env->regs[R_EDI];
250 (*regs)[5] = env->regs[R_EBP];
251 (*regs)[6] = env->regs[R_EAX];
252 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
253 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
254 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
255 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
256 (*regs)[11] = env->regs[R_EAX]; /* XXX */
257 (*regs)[12] = env->eip;
258 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
259 (*regs)[14] = env->eflags;
260 (*regs)[15] = env->regs[R_ESP];
261 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
262}
84409ddb 263#endif
b346ff46 264
9edc5d79 265#define USE_ELF_CORE_DUMP
d97ef72e 266#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
267
268#endif
269
270#ifdef TARGET_ARM
271
24e76ff0
PM
272#ifndef TARGET_AARCH64
273/* 32 bit ARM definitions */
274
b346ff46
FB
275#define ELF_START_MMAP 0x80000000
276
b597c3f7 277#define ELF_ARCH EM_ARM
d97ef72e 278#define ELF_CLASS ELFCLASS32
b346ff46 279
d97ef72e
RH
280static inline void init_thread(struct target_pt_regs *regs,
281 struct image_info *infop)
b346ff46 282{
992f48a0 283 abi_long stack = infop->start_stack;
b346ff46 284 memset(regs, 0, sizeof(*regs));
99033cae 285
167e4cdc
PM
286 regs->uregs[16] = ARM_CPU_MODE_USR;
287 if (infop->entry & 1) {
288 regs->uregs[16] |= CPSR_T;
289 }
290 regs->uregs[15] = infop->entry & 0xfffffffe;
291 regs->uregs[13] = infop->start_stack;
2f619698 292 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
293 get_user_ual(regs->uregs[2], stack + 8); /* envp */
294 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 295 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 296 regs->uregs[0] = 0;
e5fe0c52 297 /* For uClinux PIC binaries. */
863cf0b7 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 299 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
300
301 /* Support ARM FDPIC. */
302 if (info_is_fdpic(infop)) {
303 /* As described in the ABI document, r7 points to the loadmap info
304 * prepared by the kernel. If an interpreter is needed, r8 points
305 * to the interpreter loadmap and r9 points to the interpreter
306 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
307 * r9 points to the main program PT_DYNAMIC info.
308 */
309 regs->uregs[7] = infop->loadmap_addr;
310 if (infop->interpreter_loadmap_addr) {
311 /* Executable is dynamically loaded. */
312 regs->uregs[8] = infop->interpreter_loadmap_addr;
313 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
314 } else {
315 regs->uregs[8] = 0;
316 regs->uregs[9] = infop->pt_dynamic_addr;
317 }
318 }
b346ff46
FB
319}
320
edf8e2af 321#define ELF_NREG 18
c227f099 322typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 323
05390248 324static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 325{
86cd7b2d
PB
326 (*regs)[0] = tswapreg(env->regs[0]);
327 (*regs)[1] = tswapreg(env->regs[1]);
328 (*regs)[2] = tswapreg(env->regs[2]);
329 (*regs)[3] = tswapreg(env->regs[3]);
330 (*regs)[4] = tswapreg(env->regs[4]);
331 (*regs)[5] = tswapreg(env->regs[5]);
332 (*regs)[6] = tswapreg(env->regs[6]);
333 (*regs)[7] = tswapreg(env->regs[7]);
334 (*regs)[8] = tswapreg(env->regs[8]);
335 (*regs)[9] = tswapreg(env->regs[9]);
336 (*regs)[10] = tswapreg(env->regs[10]);
337 (*regs)[11] = tswapreg(env->regs[11]);
338 (*regs)[12] = tswapreg(env->regs[12]);
339 (*regs)[13] = tswapreg(env->regs[13]);
340 (*regs)[14] = tswapreg(env->regs[14]);
341 (*regs)[15] = tswapreg(env->regs[15]);
342
343 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
344 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
345}
346
30ac07d4 347#define USE_ELF_CORE_DUMP
d97ef72e 348#define ELF_EXEC_PAGESIZE 4096
30ac07d4 349
afce2927
FB
350enum
351{
d97ef72e
RH
352 ARM_HWCAP_ARM_SWP = 1 << 0,
353 ARM_HWCAP_ARM_HALF = 1 << 1,
354 ARM_HWCAP_ARM_THUMB = 1 << 2,
355 ARM_HWCAP_ARM_26BIT = 1 << 3,
356 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
357 ARM_HWCAP_ARM_FPA = 1 << 5,
358 ARM_HWCAP_ARM_VFP = 1 << 6,
359 ARM_HWCAP_ARM_EDSP = 1 << 7,
360 ARM_HWCAP_ARM_JAVA = 1 << 8,
361 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
362 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
363 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
364 ARM_HWCAP_ARM_NEON = 1 << 12,
365 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
366 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
367 ARM_HWCAP_ARM_TLS = 1 << 15,
368 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
369 ARM_HWCAP_ARM_IDIVA = 1 << 17,
370 ARM_HWCAP_ARM_IDIVT = 1 << 18,
371 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
372 ARM_HWCAP_ARM_LPAE = 1 << 20,
373 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
374};
375
ad6919dc
PM
376enum {
377 ARM_HWCAP2_ARM_AES = 1 << 0,
378 ARM_HWCAP2_ARM_PMULL = 1 << 1,
379 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
380 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
381 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
382};
383
6b1275ff
PM
384/* The commpage only exists for 32 bit kernels */
385
ee947430 386#define ARM_COMMPAGE (intptr_t)0xffff0f00u
806d1021 387
ee947430
AB
388static bool init_guest_commpage(void)
389{
390 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
391 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
5c3e87f3 392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 393
ee947430
AB
394 if (addr == MAP_FAILED) {
395 perror("Allocating guest commpage");
396 exit(EXIT_FAILURE);
97cc7560 397 }
ee947430
AB
398 if (addr != want) {
399 return false;
97cc7560
DDAG
400 }
401
ee947430
AB
402 /* Set kernel helper versions; rest of page is 0. */
403 __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
97cc7560 404
ee947430 405 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 406 perror("Protecting guest commpage");
ee947430 407 exit(EXIT_FAILURE);
97cc7560 408 }
ee947430 409 return true;
97cc7560 410}
adf050b1
BC
411
412#define ELF_HWCAP get_elf_hwcap()
ad6919dc 413#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
414
415static uint32_t get_elf_hwcap(void)
416{
a2247f8e 417 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
418 uint32_t hwcaps = 0;
419
420 hwcaps |= ARM_HWCAP_ARM_SWP;
421 hwcaps |= ARM_HWCAP_ARM_HALF;
422 hwcaps |= ARM_HWCAP_ARM_THUMB;
423 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
424
425 /* probe for the extra features */
426#define GET_FEATURE(feat, hwcap) \
a2247f8e 427 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
428
429#define GET_FEATURE_ID(feat, hwcap) \
430 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
431
24682654
PM
432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
434 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
435 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
436 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 437 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 438 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
439 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
440 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
441 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
442
443 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
444 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
445 hwcaps |= ARM_HWCAP_ARM_VFPv3;
446 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPD32;
448 } else {
449 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
450 }
451 }
452 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
453
454 return hwcaps;
455}
afce2927 456
ad6919dc
PM
457static uint32_t get_elf_hwcap2(void)
458{
459 ARMCPU *cpu = ARM_CPU(thread_cpu);
460 uint32_t hwcaps = 0;
461
962fcbf2
RH
462 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
463 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
464 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
465 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
466 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
467 return hwcaps;
468}
469
470#undef GET_FEATURE
962fcbf2 471#undef GET_FEATURE_ID
ad6919dc 472
13ec4ec3
RH
473#define ELF_PLATFORM get_elf_platform()
474
475static const char *get_elf_platform(void)
476{
477 CPUARMState *env = thread_cpu->env_ptr;
478
479#ifdef TARGET_WORDS_BIGENDIAN
480# define END "b"
481#else
482# define END "l"
483#endif
484
485 if (arm_feature(env, ARM_FEATURE_V8)) {
486 return "v8" END;
487 } else if (arm_feature(env, ARM_FEATURE_V7)) {
488 if (arm_feature(env, ARM_FEATURE_M)) {
489 return "v7m" END;
490 } else {
491 return "v7" END;
492 }
493 } else if (arm_feature(env, ARM_FEATURE_V6)) {
494 return "v6" END;
495 } else if (arm_feature(env, ARM_FEATURE_V5)) {
496 return "v5" END;
497 } else {
498 return "v4" END;
499 }
500
501#undef END
502}
503
24e76ff0
PM
504#else
505/* 64 bit ARM definitions */
506#define ELF_START_MMAP 0x80000000
507
b597c3f7 508#define ELF_ARCH EM_AARCH64
24e76ff0 509#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
510#ifdef TARGET_WORDS_BIGENDIAN
511# define ELF_PLATFORM "aarch64_be"
512#else
513# define ELF_PLATFORM "aarch64"
514#endif
24e76ff0
PM
515
516static inline void init_thread(struct target_pt_regs *regs,
517 struct image_info *infop)
518{
519 abi_long stack = infop->start_stack;
520 memset(regs, 0, sizeof(*regs));
521
522 regs->pc = infop->entry & ~0x3ULL;
523 regs->sp = stack;
524}
525
526#define ELF_NREG 34
527typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
528
529static void elf_core_copy_regs(target_elf_gregset_t *regs,
530 const CPUARMState *env)
531{
532 int i;
533
534 for (i = 0; i < 32; i++) {
535 (*regs)[i] = tswapreg(env->xregs[i]);
536 }
537 (*regs)[32] = tswapreg(env->pc);
538 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
539}
540
541#define USE_ELF_CORE_DUMP
542#define ELF_EXEC_PAGESIZE 4096
543
544enum {
545 ARM_HWCAP_A64_FP = 1 << 0,
546 ARM_HWCAP_A64_ASIMD = 1 << 1,
547 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
548 ARM_HWCAP_A64_AES = 1 << 3,
549 ARM_HWCAP_A64_PMULL = 1 << 4,
550 ARM_HWCAP_A64_SHA1 = 1 << 5,
551 ARM_HWCAP_A64_SHA2 = 1 << 6,
552 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
553 ARM_HWCAP_A64_ATOMICS = 1 << 8,
554 ARM_HWCAP_A64_FPHP = 1 << 9,
555 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
556 ARM_HWCAP_A64_CPUID = 1 << 11,
557 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
558 ARM_HWCAP_A64_JSCVT = 1 << 13,
559 ARM_HWCAP_A64_FCMA = 1 << 14,
560 ARM_HWCAP_A64_LRCPC = 1 << 15,
561 ARM_HWCAP_A64_DCPOP = 1 << 16,
562 ARM_HWCAP_A64_SHA3 = 1 << 17,
563 ARM_HWCAP_A64_SM3 = 1 << 18,
564 ARM_HWCAP_A64_SM4 = 1 << 19,
565 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
566 ARM_HWCAP_A64_SHA512 = 1 << 21,
567 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
568 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
569 ARM_HWCAP_A64_DIT = 1 << 24,
570 ARM_HWCAP_A64_USCAT = 1 << 25,
571 ARM_HWCAP_A64_ILRCPC = 1 << 26,
572 ARM_HWCAP_A64_FLAGM = 1 << 27,
573 ARM_HWCAP_A64_SSBS = 1 << 28,
574 ARM_HWCAP_A64_SB = 1 << 29,
575 ARM_HWCAP_A64_PACA = 1 << 30,
576 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
577
578 ARM_HWCAP2_A64_DCPODP = 1 << 0,
579 ARM_HWCAP2_A64_SVE2 = 1 << 1,
580 ARM_HWCAP2_A64_SVEAES = 1 << 2,
581 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
582 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
583 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
584 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
585 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
586 ARM_HWCAP2_A64_FRINT = 1 << 8,
24e76ff0
PM
587};
588
2041df4a
RH
589#define ELF_HWCAP get_elf_hwcap()
590#define ELF_HWCAP2 get_elf_hwcap2()
591
592#define GET_FEATURE_ID(feat, hwcap) \
593 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
594
595static uint32_t get_elf_hwcap(void)
596{
597 ARMCPU *cpu = ARM_CPU(thread_cpu);
598 uint32_t hwcaps = 0;
599
600 hwcaps |= ARM_HWCAP_A64_FP;
601 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 602 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
603
604 /* probe for the extra features */
962fcbf2
RH
605
606 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
607 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
608 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
609 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
610 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
611 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
612 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
613 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
614 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 615 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
616 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
617 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
618 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
619 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 620 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 621 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
622 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
623 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 624 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 625 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 626 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 627 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 628 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 629
2041df4a
RH
630 return hwcaps;
631}
632
633static uint32_t get_elf_hwcap2(void)
634{
635 ARMCPU *cpu = ARM_CPU(thread_cpu);
636 uint32_t hwcaps = 0;
637
0d57b499 638 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
2041df4a
RH
639 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
640 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
24e76ff0
PM
641
642 return hwcaps;
643}
644
2041df4a
RH
645#undef GET_FEATURE_ID
646
24e76ff0
PM
647#endif /* not TARGET_AARCH64 */
648#endif /* TARGET_ARM */
30ac07d4 649
853d6f7a 650#ifdef TARGET_SPARC
a315a145 651#ifdef TARGET_SPARC64
853d6f7a
FB
652
653#define ELF_START_MMAP 0x80000000
cf973e46
AT
654#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 656#ifndef TARGET_ABI32
cb33da57 657#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
658#else
659#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
660#endif
853d6f7a 661
a315a145 662#define ELF_CLASS ELFCLASS64
5ef54116
FB
663#define ELF_ARCH EM_SPARCV9
664
d97ef72e 665#define STACK_BIAS 2047
a315a145 666
d97ef72e
RH
667static inline void init_thread(struct target_pt_regs *regs,
668 struct image_info *infop)
a315a145 669{
992f48a0 670#ifndef TARGET_ABI32
a315a145 671 regs->tstate = 0;
992f48a0 672#endif
a315a145
FB
673 regs->pc = infop->entry;
674 regs->npc = regs->pc + 4;
675 regs->y = 0;
992f48a0
BS
676#ifdef TARGET_ABI32
677 regs->u_regs[14] = infop->start_stack - 16 * 4;
678#else
cb33da57
BS
679 if (personality(infop->personality) == PER_LINUX32)
680 regs->u_regs[14] = infop->start_stack - 16 * 4;
681 else
682 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 683#endif
a315a145
FB
684}
685
686#else
687#define ELF_START_MMAP 0x80000000
cf973e46
AT
688#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
689 | HWCAP_SPARC_MULDIV)
a315a145 690
853d6f7a 691#define ELF_CLASS ELFCLASS32
853d6f7a
FB
692#define ELF_ARCH EM_SPARC
693
d97ef72e
RH
694static inline void init_thread(struct target_pt_regs *regs,
695 struct image_info *infop)
853d6f7a 696{
f5155289
FB
697 regs->psr = 0;
698 regs->pc = infop->entry;
699 regs->npc = regs->pc + 4;
700 regs->y = 0;
701 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
702}
703
a315a145 704#endif
853d6f7a
FB
705#endif
706
67867308
FB
707#ifdef TARGET_PPC
708
4ecd4d16 709#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
710#define ELF_START_MMAP 0x80000000
711
e85e7c6e 712#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
713
714#define elf_check_arch(x) ( (x) == EM_PPC64 )
715
d97ef72e 716#define ELF_CLASS ELFCLASS64
84409ddb
JM
717
718#else
719
d97ef72e 720#define ELF_CLASS ELFCLASS32
84409ddb
JM
721
722#endif
723
d97ef72e 724#define ELF_ARCH EM_PPC
67867308 725
df84e4f3
NF
726/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
727 See arch/powerpc/include/asm/cputable.h. */
728enum {
3efa9a67 729 QEMU_PPC_FEATURE_32 = 0x80000000,
730 QEMU_PPC_FEATURE_64 = 0x40000000,
731 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
732 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
733 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
734 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
735 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
736 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
737 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
738 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
739 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
740 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
741 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
742 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
743 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
744 QEMU_PPC_FEATURE_CELL = 0x00010000,
745 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
746 QEMU_PPC_FEATURE_SMT = 0x00004000,
747 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
748 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
749 QEMU_PPC_FEATURE_PA6T = 0x00000800,
750 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
751 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
752 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
753 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
754 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
755
756 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
757 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
758
759 /* Feature definitions in AT_HWCAP2. */
760 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
761 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
762 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
763 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
764 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
765 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
766 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
767 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 768 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
769 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
770 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
771 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
772 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
df84e4f3
NF
773};
774
775#define ELF_HWCAP get_elf_hwcap()
776
777static uint32_t get_elf_hwcap(void)
778{
a2247f8e 779 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
780 uint32_t features = 0;
781
782 /* We don't have to be terribly complete here; the high points are
783 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 784#define GET_FEATURE(flag, feature) \
a2247f8e 785 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
786#define GET_FEATURE2(flags, feature) \
787 do { \
788 if ((cpu->env.insns_flags2 & flags) == flags) { \
789 features |= feature; \
790 } \
791 } while (0)
3efa9a67 792 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
793 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
794 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
795 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
796 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
797 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
798 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
799 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
800 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
801 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
802 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
803 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
804 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 805#undef GET_FEATURE
0e019746 806#undef GET_FEATURE2
df84e4f3
NF
807
808 return features;
809}
810
a60438dd
TM
811#define ELF_HWCAP2 get_elf_hwcap2()
812
813static uint32_t get_elf_hwcap2(void)
814{
815 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
816 uint32_t features = 0;
817
818#define GET_FEATURE(flag, feature) \
819 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
820#define GET_FEATURE2(flag, feature) \
821 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
822
823 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
824 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
825 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
826 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
827 QEMU_PPC_FEATURE2_VEC_CRYPTO);
828 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
829 QEMU_PPC_FEATURE2_DARN);
a60438dd
TM
830
831#undef GET_FEATURE
832#undef GET_FEATURE2
833
834 return features;
835}
836
f5155289
FB
837/*
838 * The requirements here are:
839 * - keep the final alignment of sp (sp & 0xf)
840 * - make sure the 32-bit value at the first 16 byte aligned position of
841 * AUXV is greater than 16 for glibc compatibility.
842 * AT_IGNOREPPC is used for that.
843 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
844 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
845 */
0bccf03d 846#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
847#define ARCH_DLINFO \
848 do { \
623e250a 849 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 850 /* \
82991bed
PM
851 * Handle glibc compatibility: these magic entries must \
852 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
853 */ \
854 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
856 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
857 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
858 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 859 } while (0)
f5155289 860
67867308
FB
861static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
862{
67867308 863 _regs->gpr[1] = infop->start_stack;
e85e7c6e 864#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 865 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
866 uint64_t val;
867 get_user_u64(val, infop->entry + 8);
868 _regs->gpr[2] = val + infop->load_bias;
869 get_user_u64(val, infop->entry);
870 infop->entry = val + infop->load_bias;
d90b94cd
DK
871 } else {
872 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
873 }
84409ddb 874#endif
67867308
FB
875 _regs->nip = infop->entry;
876}
877
e2f3e741
NF
878/* See linux kernel: arch/powerpc/include/asm/elf.h. */
879#define ELF_NREG 48
880typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
881
05390248 882static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
883{
884 int i;
885 target_ulong ccr = 0;
886
887 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 888 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
889 }
890
86cd7b2d
PB
891 (*regs)[32] = tswapreg(env->nip);
892 (*regs)[33] = tswapreg(env->msr);
893 (*regs)[35] = tswapreg(env->ctr);
894 (*regs)[36] = tswapreg(env->lr);
895 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
896
897 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
898 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
899 }
86cd7b2d 900 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
901}
902
903#define USE_ELF_CORE_DUMP
d97ef72e 904#define ELF_EXEC_PAGESIZE 4096
67867308
FB
905
906#endif
907
048f6b4d
FB
908#ifdef TARGET_MIPS
909
910#define ELF_START_MMAP 0x80000000
911
388bb21a
TS
912#ifdef TARGET_MIPS64
913#define ELF_CLASS ELFCLASS64
914#else
048f6b4d 915#define ELF_CLASS ELFCLASS32
388bb21a 916#endif
048f6b4d
FB
917#define ELF_ARCH EM_MIPS
918
f72541f3
AM
919#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
920
d97ef72e
RH
921static inline void init_thread(struct target_pt_regs *regs,
922 struct image_info *infop)
048f6b4d 923{
623a930e 924 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
925 regs->cp0_epc = infop->entry;
926 regs->regs[29] = infop->start_stack;
927}
928
51e52606
NF
929/* See linux kernel: arch/mips/include/asm/elf.h. */
930#define ELF_NREG 45
931typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
932
933/* See linux kernel: arch/mips/include/asm/reg.h. */
934enum {
935#ifdef TARGET_MIPS64
936 TARGET_EF_R0 = 0,
937#else
938 TARGET_EF_R0 = 6,
939#endif
940 TARGET_EF_R26 = TARGET_EF_R0 + 26,
941 TARGET_EF_R27 = TARGET_EF_R0 + 27,
942 TARGET_EF_LO = TARGET_EF_R0 + 32,
943 TARGET_EF_HI = TARGET_EF_R0 + 33,
944 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
945 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
946 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
947 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
948};
949
950/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 951static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
952{
953 int i;
954
955 for (i = 0; i < TARGET_EF_R0; i++) {
956 (*regs)[i] = 0;
957 }
958 (*regs)[TARGET_EF_R0] = 0;
959
960 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 961 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
962 }
963
964 (*regs)[TARGET_EF_R26] = 0;
965 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
966 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
967 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
968 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
969 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
970 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
971 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
972}
973
974#define USE_ELF_CORE_DUMP
388bb21a
TS
975#define ELF_EXEC_PAGESIZE 4096
976
46a1ee4f
JC
977/* See arch/mips/include/uapi/asm/hwcap.h. */
978enum {
979 HWCAP_MIPS_R6 = (1 << 0),
980 HWCAP_MIPS_MSA = (1 << 1),
981};
982
983#define ELF_HWCAP get_elf_hwcap()
984
985static uint32_t get_elf_hwcap(void)
986{
987 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
988 uint32_t hwcaps = 0;
989
990#define GET_FEATURE(flag, hwcap) \
991 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
992
993 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
994 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
995
996#undef GET_FEATURE
997
998 return hwcaps;
999}
1000
048f6b4d
FB
1001#endif /* TARGET_MIPS */
1002
b779e29e
EI
1003#ifdef TARGET_MICROBLAZE
1004
1005#define ELF_START_MMAP 0x80000000
1006
0d5d4699 1007#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1008
1009#define ELF_CLASS ELFCLASS32
0d5d4699 1010#define ELF_ARCH EM_MICROBLAZE
b779e29e 1011
d97ef72e
RH
1012static inline void init_thread(struct target_pt_regs *regs,
1013 struct image_info *infop)
b779e29e
EI
1014{
1015 regs->pc = infop->entry;
1016 regs->r1 = infop->start_stack;
1017
1018}
1019
b779e29e
EI
1020#define ELF_EXEC_PAGESIZE 4096
1021
e4cbd44d
EI
1022#define USE_ELF_CORE_DUMP
1023#define ELF_NREG 38
1024typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1025
1026/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1027static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1028{
1029 int i, pos = 0;
1030
1031 for (i = 0; i < 32; i++) {
86cd7b2d 1032 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1033 }
1034
1035 for (i = 0; i < 6; i++) {
86cd7b2d 1036 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
1037 }
1038}
1039
b779e29e
EI
1040#endif /* TARGET_MICROBLAZE */
1041
a0a839b6
MV
1042#ifdef TARGET_NIOS2
1043
1044#define ELF_START_MMAP 0x80000000
1045
1046#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1047
1048#define ELF_CLASS ELFCLASS32
1049#define ELF_ARCH EM_ALTERA_NIOS2
1050
1051static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1052{
1053 regs->ea = infop->entry;
1054 regs->sp = infop->start_stack;
1055 regs->estatus = 0x3;
1056}
1057
1058#define ELF_EXEC_PAGESIZE 4096
1059
1060#define USE_ELF_CORE_DUMP
1061#define ELF_NREG 49
1062typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1063
1064/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1065static void elf_core_copy_regs(target_elf_gregset_t *regs,
1066 const CPUNios2State *env)
1067{
1068 int i;
1069
1070 (*regs)[0] = -1;
1071 for (i = 1; i < 8; i++) /* r0-r7 */
1072 (*regs)[i] = tswapreg(env->regs[i + 7]);
1073
1074 for (i = 8; i < 16; i++) /* r8-r15 */
1075 (*regs)[i] = tswapreg(env->regs[i - 8]);
1076
1077 for (i = 16; i < 24; i++) /* r16-r23 */
1078 (*regs)[i] = tswapreg(env->regs[i + 7]);
1079 (*regs)[24] = -1; /* R_ET */
1080 (*regs)[25] = -1; /* R_BT */
1081 (*regs)[26] = tswapreg(env->regs[R_GP]);
1082 (*regs)[27] = tswapreg(env->regs[R_SP]);
1083 (*regs)[28] = tswapreg(env->regs[R_FP]);
1084 (*regs)[29] = tswapreg(env->regs[R_EA]);
1085 (*regs)[30] = -1; /* R_SSTATUS */
1086 (*regs)[31] = tswapreg(env->regs[R_RA]);
1087
1088 (*regs)[32] = tswapreg(env->regs[R_PC]);
1089
1090 (*regs)[33] = -1; /* R_STATUS */
1091 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1092
1093 for (i = 35; i < 49; i++) /* ... */
1094 (*regs)[i] = -1;
1095}
1096
1097#endif /* TARGET_NIOS2 */
1098
d962783e
JL
1099#ifdef TARGET_OPENRISC
1100
1101#define ELF_START_MMAP 0x08000000
1102
d962783e
JL
1103#define ELF_ARCH EM_OPENRISC
1104#define ELF_CLASS ELFCLASS32
1105#define ELF_DATA ELFDATA2MSB
1106
1107static inline void init_thread(struct target_pt_regs *regs,
1108 struct image_info *infop)
1109{
1110 regs->pc = infop->entry;
1111 regs->gpr[1] = infop->start_stack;
1112}
1113
1114#define USE_ELF_CORE_DUMP
1115#define ELF_EXEC_PAGESIZE 8192
1116
1117/* See linux kernel arch/openrisc/include/asm/elf.h. */
1118#define ELF_NREG 34 /* gprs and pc, sr */
1119typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1120
1121static void elf_core_copy_regs(target_elf_gregset_t *regs,
1122 const CPUOpenRISCState *env)
1123{
1124 int i;
1125
1126 for (i = 0; i < 32; i++) {
d89e71e8 1127 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1128 }
86cd7b2d 1129 (*regs)[32] = tswapreg(env->pc);
84775c43 1130 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1131}
1132#define ELF_HWCAP 0
1133#define ELF_PLATFORM NULL
1134
1135#endif /* TARGET_OPENRISC */
1136
fdf9b3e8
FB
1137#ifdef TARGET_SH4
1138
1139#define ELF_START_MMAP 0x80000000
1140
fdf9b3e8 1141#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1142#define ELF_ARCH EM_SH
1143
d97ef72e
RH
1144static inline void init_thread(struct target_pt_regs *regs,
1145 struct image_info *infop)
fdf9b3e8 1146{
d97ef72e
RH
1147 /* Check other registers XXXXX */
1148 regs->pc = infop->entry;
1149 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1150}
1151
7631c97e
NF
1152/* See linux kernel: arch/sh/include/asm/elf.h. */
1153#define ELF_NREG 23
1154typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1155
1156/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1157enum {
1158 TARGET_REG_PC = 16,
1159 TARGET_REG_PR = 17,
1160 TARGET_REG_SR = 18,
1161 TARGET_REG_GBR = 19,
1162 TARGET_REG_MACH = 20,
1163 TARGET_REG_MACL = 21,
1164 TARGET_REG_SYSCALL = 22
1165};
1166
d97ef72e 1167static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1168 const CPUSH4State *env)
7631c97e
NF
1169{
1170 int i;
1171
1172 for (i = 0; i < 16; i++) {
72cd500b 1173 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1174 }
1175
86cd7b2d
PB
1176 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1177 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1178 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1179 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1180 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1181 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1182 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1183}
1184
1185#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1186#define ELF_EXEC_PAGESIZE 4096
1187
e42fd944
RH
1188enum {
1189 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1190 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1191 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1192 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1193 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1194 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1195 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1196 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1197 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1198 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1199};
1200
1201#define ELF_HWCAP get_elf_hwcap()
1202
1203static uint32_t get_elf_hwcap(void)
1204{
1205 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1206 uint32_t hwcap = 0;
1207
1208 hwcap |= SH_CPU_HAS_FPU;
1209
1210 if (cpu->env.features & SH_FEATURE_SH4A) {
1211 hwcap |= SH_CPU_HAS_LLSC;
1212 }
1213
1214 return hwcap;
1215}
1216
fdf9b3e8
FB
1217#endif
1218
48733d19
TS
1219#ifdef TARGET_CRIS
1220
1221#define ELF_START_MMAP 0x80000000
1222
48733d19 1223#define ELF_CLASS ELFCLASS32
48733d19
TS
1224#define ELF_ARCH EM_CRIS
1225
d97ef72e
RH
1226static inline void init_thread(struct target_pt_regs *regs,
1227 struct image_info *infop)
48733d19 1228{
d97ef72e 1229 regs->erp = infop->entry;
48733d19
TS
1230}
1231
48733d19
TS
1232#define ELF_EXEC_PAGESIZE 8192
1233
1234#endif
1235
e6e5906b
PB
1236#ifdef TARGET_M68K
1237
1238#define ELF_START_MMAP 0x80000000
1239
d97ef72e 1240#define ELF_CLASS ELFCLASS32
d97ef72e 1241#define ELF_ARCH EM_68K
e6e5906b
PB
1242
1243/* ??? Does this need to do anything?
d97ef72e 1244 #define ELF_PLAT_INIT(_r) */
e6e5906b 1245
d97ef72e
RH
1246static inline void init_thread(struct target_pt_regs *regs,
1247 struct image_info *infop)
e6e5906b
PB
1248{
1249 regs->usp = infop->start_stack;
1250 regs->sr = 0;
1251 regs->pc = infop->entry;
1252}
1253
7a93cc55
NF
1254/* See linux kernel: arch/m68k/include/asm/elf.h. */
1255#define ELF_NREG 20
1256typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1257
05390248 1258static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1259{
86cd7b2d
PB
1260 (*regs)[0] = tswapreg(env->dregs[1]);
1261 (*regs)[1] = tswapreg(env->dregs[2]);
1262 (*regs)[2] = tswapreg(env->dregs[3]);
1263 (*regs)[3] = tswapreg(env->dregs[4]);
1264 (*regs)[4] = tswapreg(env->dregs[5]);
1265 (*regs)[5] = tswapreg(env->dregs[6]);
1266 (*regs)[6] = tswapreg(env->dregs[7]);
1267 (*regs)[7] = tswapreg(env->aregs[0]);
1268 (*regs)[8] = tswapreg(env->aregs[1]);
1269 (*regs)[9] = tswapreg(env->aregs[2]);
1270 (*regs)[10] = tswapreg(env->aregs[3]);
1271 (*regs)[11] = tswapreg(env->aregs[4]);
1272 (*regs)[12] = tswapreg(env->aregs[5]);
1273 (*regs)[13] = tswapreg(env->aregs[6]);
1274 (*regs)[14] = tswapreg(env->dregs[0]);
1275 (*regs)[15] = tswapreg(env->aregs[7]);
1276 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1277 (*regs)[17] = tswapreg(env->sr);
1278 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1279 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1280}
1281
1282#define USE_ELF_CORE_DUMP
d97ef72e 1283#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1284
1285#endif
1286
7a3148a9
JM
1287#ifdef TARGET_ALPHA
1288
1289#define ELF_START_MMAP (0x30000000000ULL)
1290
7a3148a9 1291#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1292#define ELF_ARCH EM_ALPHA
1293
d97ef72e
RH
1294static inline void init_thread(struct target_pt_regs *regs,
1295 struct image_info *infop)
7a3148a9
JM
1296{
1297 regs->pc = infop->entry;
1298 regs->ps = 8;
1299 regs->usp = infop->start_stack;
7a3148a9
JM
1300}
1301
7a3148a9
JM
1302#define ELF_EXEC_PAGESIZE 8192
1303
1304#endif /* TARGET_ALPHA */
1305
a4c075f1
UH
1306#ifdef TARGET_S390X
1307
1308#define ELF_START_MMAP (0x20000000000ULL)
1309
a4c075f1
UH
1310#define ELF_CLASS ELFCLASS64
1311#define ELF_DATA ELFDATA2MSB
1312#define ELF_ARCH EM_S390
1313
6d88baf1
DH
1314#include "elf.h"
1315
1316#define ELF_HWCAP get_elf_hwcap()
1317
1318#define GET_FEATURE(_feat, _hwcap) \
1319 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1320
1321static uint32_t get_elf_hwcap(void)
1322{
1323 /*
1324 * Let's assume we always have esan3 and zarch.
1325 * 31-bit processes can use 64-bit registers (high gprs).
1326 */
1327 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1328
1329 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1330 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1331 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1332 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1333 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1334 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1335 hwcap |= HWCAP_S390_ETF3EH;
1336 }
1337 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1338
1339 return hwcap;
1340}
1341
a4c075f1
UH
1342static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1343{
1344 regs->psw.addr = infop->entry;
1345 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1346 regs->gprs[15] = infop->start_stack;
1347}
1348
1349#endif /* TARGET_S390X */
1350
b16189b2
CG
1351#ifdef TARGET_TILEGX
1352
1353/* 42 bits real used address, a half for user mode */
1354#define ELF_START_MMAP (0x00000020000000000ULL)
1355
1356#define elf_check_arch(x) ((x) == EM_TILEGX)
1357
1358#define ELF_CLASS ELFCLASS64
1359#define ELF_DATA ELFDATA2LSB
1360#define ELF_ARCH EM_TILEGX
1361
1362static inline void init_thread(struct target_pt_regs *regs,
1363 struct image_info *infop)
1364{
1365 regs->pc = infop->entry;
1366 regs->sp = infop->start_stack;
1367
1368}
1369
1370#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1371
1372#endif /* TARGET_TILEGX */
1373
47ae93cd
MC
1374#ifdef TARGET_RISCV
1375
1376#define ELF_START_MMAP 0x80000000
1377#define ELF_ARCH EM_RISCV
1378
1379#ifdef TARGET_RISCV32
1380#define ELF_CLASS ELFCLASS32
1381#else
1382#define ELF_CLASS ELFCLASS64
1383#endif
1384
1385static inline void init_thread(struct target_pt_regs *regs,
1386 struct image_info *infop)
1387{
1388 regs->sepc = infop->entry;
1389 regs->sp = infop->start_stack;
1390}
1391
1392#define ELF_EXEC_PAGESIZE 4096
1393
1394#endif /* TARGET_RISCV */
1395
7c248bcd
RH
1396#ifdef TARGET_HPPA
1397
1398#define ELF_START_MMAP 0x80000000
1399#define ELF_CLASS ELFCLASS32
1400#define ELF_ARCH EM_PARISC
1401#define ELF_PLATFORM "PARISC"
1402#define STACK_GROWS_DOWN 0
1403#define STACK_ALIGNMENT 64
1404
1405static inline void init_thread(struct target_pt_regs *regs,
1406 struct image_info *infop)
1407{
1408 regs->iaoq[0] = infop->entry;
1409 regs->iaoq[1] = infop->entry + 4;
1410 regs->gr[23] = 0;
1411 regs->gr[24] = infop->arg_start;
1412 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1413 /* The top-of-stack contains a linkage buffer. */
1414 regs->gr[30] = infop->start_stack + 64;
1415 regs->gr[31] = infop->entry;
1416}
1417
1418#endif /* TARGET_HPPA */
1419
ba7651fb
MF
1420#ifdef TARGET_XTENSA
1421
1422#define ELF_START_MMAP 0x20000000
1423
1424#define ELF_CLASS ELFCLASS32
1425#define ELF_ARCH EM_XTENSA
1426
1427static inline void init_thread(struct target_pt_regs *regs,
1428 struct image_info *infop)
1429{
1430 regs->windowbase = 0;
1431 regs->windowstart = 1;
1432 regs->areg[1] = infop->start_stack;
1433 regs->pc = infop->entry;
1434}
1435
1436/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1437#define ELF_NREG 128
1438typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1439
1440enum {
1441 TARGET_REG_PC,
1442 TARGET_REG_PS,
1443 TARGET_REG_LBEG,
1444 TARGET_REG_LEND,
1445 TARGET_REG_LCOUNT,
1446 TARGET_REG_SAR,
1447 TARGET_REG_WINDOWSTART,
1448 TARGET_REG_WINDOWBASE,
1449 TARGET_REG_THREADPTR,
1450 TARGET_REG_AR0 = 64,
1451};
1452
1453static void elf_core_copy_regs(target_elf_gregset_t *regs,
1454 const CPUXtensaState *env)
1455{
1456 unsigned i;
1457
1458 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1459 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1460 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1461 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1462 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1463 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1464 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1465 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1466 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1467 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1468 for (i = 0; i < env->config->nareg; ++i) {
1469 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1470 }
1471}
1472
1473#define USE_ELF_CORE_DUMP
1474#define ELF_EXEC_PAGESIZE 4096
1475
1476#endif /* TARGET_XTENSA */
1477
15338fd7
FB
1478#ifndef ELF_PLATFORM
1479#define ELF_PLATFORM (NULL)
1480#endif
1481
75be901c
PC
1482#ifndef ELF_MACHINE
1483#define ELF_MACHINE ELF_ARCH
1484#endif
1485
d276a604
PC
1486#ifndef elf_check_arch
1487#define elf_check_arch(x) ((x) == ELF_ARCH)
1488#endif
1489
15338fd7
FB
1490#ifndef ELF_HWCAP
1491#define ELF_HWCAP 0
1492#endif
1493
7c4ee5bc
RH
1494#ifndef STACK_GROWS_DOWN
1495#define STACK_GROWS_DOWN 1
1496#endif
1497
1498#ifndef STACK_ALIGNMENT
1499#define STACK_ALIGNMENT 16
1500#endif
1501
992f48a0 1502#ifdef TARGET_ABI32
cb33da57 1503#undef ELF_CLASS
992f48a0 1504#define ELF_CLASS ELFCLASS32
cb33da57
BS
1505#undef bswaptls
1506#define bswaptls(ptr) bswap32s(ptr)
1507#endif
1508
31e31b8a 1509#include "elf.h"
09bfb054 1510
09bfb054
FB
1511struct exec
1512{
d97ef72e
RH
1513 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1514 unsigned int a_text; /* length of text, in bytes */
1515 unsigned int a_data; /* length of data, in bytes */
1516 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1517 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1518 unsigned int a_entry; /* start address */
1519 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1520 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1521};
1522
1523
1524#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1525#define OMAGIC 0407
1526#define NMAGIC 0410
1527#define ZMAGIC 0413
1528#define QMAGIC 0314
1529
31e31b8a 1530/* Necessary parameters */
94894ff2
SB
1531#define TARGET_ELF_EXEC_PAGESIZE \
1532 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1533 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1534#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1535#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1536 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1537#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1538
e0d1673d 1539#define DLINFO_ITEMS 16
31e31b8a 1540
09bfb054
FB
1541static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1542{
d97ef72e 1543 memcpy(to, from, n);
09bfb054 1544}
d691f669 1545
31e31b8a 1546#ifdef BSWAP_NEEDED
92a31b1f 1547static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1548{
d97ef72e
RH
1549 bswap16s(&ehdr->e_type); /* Object file type */
1550 bswap16s(&ehdr->e_machine); /* Architecture */
1551 bswap32s(&ehdr->e_version); /* Object file version */
1552 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1553 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1554 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1555 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1556 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1557 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1558 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1559 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1560 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1561 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1562}
1563
991f8f0c 1564static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1565{
991f8f0c
RH
1566 int i;
1567 for (i = 0; i < phnum; ++i, ++phdr) {
1568 bswap32s(&phdr->p_type); /* Segment type */
1569 bswap32s(&phdr->p_flags); /* Segment flags */
1570 bswaptls(&phdr->p_offset); /* Segment file offset */
1571 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1572 bswaptls(&phdr->p_paddr); /* Segment physical address */
1573 bswaptls(&phdr->p_filesz); /* Segment size in file */
1574 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1575 bswaptls(&phdr->p_align); /* Segment alignment */
1576 }
31e31b8a 1577}
689f936f 1578
991f8f0c 1579static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1580{
991f8f0c
RH
1581 int i;
1582 for (i = 0; i < shnum; ++i, ++shdr) {
1583 bswap32s(&shdr->sh_name);
1584 bswap32s(&shdr->sh_type);
1585 bswaptls(&shdr->sh_flags);
1586 bswaptls(&shdr->sh_addr);
1587 bswaptls(&shdr->sh_offset);
1588 bswaptls(&shdr->sh_size);
1589 bswap32s(&shdr->sh_link);
1590 bswap32s(&shdr->sh_info);
1591 bswaptls(&shdr->sh_addralign);
1592 bswaptls(&shdr->sh_entsize);
1593 }
689f936f
FB
1594}
1595
7a3148a9 1596static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1597{
1598 bswap32s(&sym->st_name);
7a3148a9
JM
1599 bswaptls(&sym->st_value);
1600 bswaptls(&sym->st_size);
689f936f
FB
1601 bswap16s(&sym->st_shndx);
1602}
5dd0db52
SM
1603
1604#ifdef TARGET_MIPS
1605static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1606{
1607 bswap16s(&abiflags->version);
1608 bswap32s(&abiflags->ases);
1609 bswap32s(&abiflags->isa_ext);
1610 bswap32s(&abiflags->flags1);
1611 bswap32s(&abiflags->flags2);
1612}
1613#endif
991f8f0c
RH
1614#else
1615static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1616static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1617static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1618static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1619#ifdef TARGET_MIPS
1620static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1621#endif
31e31b8a
FB
1622#endif
1623
edf8e2af 1624#ifdef USE_ELF_CORE_DUMP
9349b4f9 1625static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1626#endif /* USE_ELF_CORE_DUMP */
682674b8 1627static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1628
9058abdd
RH
1629/* Verify the portions of EHDR within E_IDENT for the target.
1630 This can be performed before bswapping the entire header. */
1631static bool elf_check_ident(struct elfhdr *ehdr)
1632{
1633 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1634 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1635 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1636 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1637 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1638 && ehdr->e_ident[EI_DATA] == ELF_DATA
1639 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1640}
1641
1642/* Verify the portions of EHDR outside of E_IDENT for the target.
1643 This has to wait until after bswapping the header. */
1644static bool elf_check_ehdr(struct elfhdr *ehdr)
1645{
1646 return (elf_check_arch(ehdr->e_machine)
1647 && ehdr->e_ehsize == sizeof(struct elfhdr)
1648 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1649 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1650}
1651
31e31b8a 1652/*
e5fe0c52 1653 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1654 * memory to free pages in kernel mem. These are in a format ready
1655 * to be put directly into the top of new user memory.
1656 *
1657 */
59baae9a
SB
1658static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1659 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1660{
59baae9a 1661 char *tmp;
7c4ee5bc 1662 int len, i;
59baae9a 1663 abi_ulong top = p;
31e31b8a
FB
1664
1665 if (!p) {
d97ef72e 1666 return 0; /* bullet-proofing */
31e31b8a 1667 }
59baae9a 1668
7c4ee5bc
RH
1669 if (STACK_GROWS_DOWN) {
1670 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1671 for (i = argc - 1; i >= 0; --i) {
1672 tmp = argv[i];
1673 if (!tmp) {
1674 fprintf(stderr, "VFS: argc is wrong");
1675 exit(-1);
1676 }
1677 len = strlen(tmp) + 1;
1678 tmp += len;
59baae9a 1679
7c4ee5bc
RH
1680 if (len > (p - stack_limit)) {
1681 return 0;
1682 }
1683 while (len) {
1684 int bytes_to_copy = (len > offset) ? offset : len;
1685 tmp -= bytes_to_copy;
1686 p -= bytes_to_copy;
1687 offset -= bytes_to_copy;
1688 len -= bytes_to_copy;
1689
1690 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1691
1692 if (offset == 0) {
1693 memcpy_to_target(p, scratch, top - p);
1694 top = p;
1695 offset = TARGET_PAGE_SIZE;
1696 }
1697 }
d97ef72e 1698 }
7c4ee5bc
RH
1699 if (p != top) {
1700 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1701 }
7c4ee5bc
RH
1702 } else {
1703 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1704 for (i = 0; i < argc; ++i) {
1705 tmp = argv[i];
1706 if (!tmp) {
1707 fprintf(stderr, "VFS: argc is wrong");
1708 exit(-1);
1709 }
1710 len = strlen(tmp) + 1;
1711 if (len > (stack_limit - p)) {
1712 return 0;
1713 }
1714 while (len) {
1715 int bytes_to_copy = (len > remaining) ? remaining : len;
1716
1717 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1718
1719 tmp += bytes_to_copy;
1720 remaining -= bytes_to_copy;
1721 p += bytes_to_copy;
1722 len -= bytes_to_copy;
1723
1724 if (remaining == 0) {
1725 memcpy_to_target(top, scratch, p - top);
1726 top = p;
1727 remaining = TARGET_PAGE_SIZE;
1728 }
d97ef72e
RH
1729 }
1730 }
7c4ee5bc
RH
1731 if (p != top) {
1732 memcpy_to_target(top, scratch, p - top);
1733 }
59baae9a
SB
1734 }
1735
31e31b8a
FB
1736 return p;
1737}
1738
59baae9a
SB
1739/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1740 * argument/environment space. Newer kernels (>2.6.33) allow more,
1741 * dependent on stack size, but guarantee at least 32 pages for
1742 * backwards compatibility.
1743 */
1744#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1745
1746static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1747 struct image_info *info)
53a5960a 1748{
59baae9a 1749 abi_ulong size, error, guard;
31e31b8a 1750
703e0e89 1751 size = guest_stack_size;
59baae9a
SB
1752 if (size < STACK_LOWER_LIMIT) {
1753 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1754 }
1755 guard = TARGET_PAGE_SIZE;
1756 if (guard < qemu_real_host_page_size) {
1757 guard = qemu_real_host_page_size;
1758 }
1759
1760 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1761 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1762 if (error == -1) {
60dcbcb5 1763 perror("mmap stack");
09bfb054
FB
1764 exit(-1);
1765 }
31e31b8a 1766
60dcbcb5 1767 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1768 if (STACK_GROWS_DOWN) {
1769 target_mprotect(error, guard, PROT_NONE);
1770 info->stack_limit = error + guard;
1771 return info->stack_limit + size - sizeof(void *);
1772 } else {
1773 target_mprotect(error + size, guard, PROT_NONE);
1774 info->stack_limit = error + size;
1775 return error;
1776 }
31e31b8a
FB
1777}
1778
cf129f3a
RH
1779/* Map and zero the bss. We need to explicitly zero any fractional pages
1780 after the data section (i.e. bss). */
1781static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1782{
cf129f3a
RH
1783 uintptr_t host_start, host_map_start, host_end;
1784
1785 last_bss = TARGET_PAGE_ALIGN(last_bss);
1786
1787 /* ??? There is confusion between qemu_real_host_page_size and
1788 qemu_host_page_size here and elsewhere in target_mmap, which
1789 may lead to the end of the data section mapping from the file
1790 not being mapped. At least there was an explicit test and
1791 comment for that here, suggesting that "the file size must
1792 be known". The comment probably pre-dates the introduction
1793 of the fstat system call in target_mmap which does in fact
1794 find out the size. What isn't clear is if the workaround
1795 here is still actually needed. For now, continue with it,
1796 but merge it with the "normal" mmap that would allocate the bss. */
1797
1798 host_start = (uintptr_t) g2h(elf_bss);
1799 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1800 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1801
1802 if (host_map_start < host_end) {
1803 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1804 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1805 if (p == MAP_FAILED) {
1806 perror("cannot mmap brk");
1807 exit(-1);
853d6f7a 1808 }
f46e9a0b 1809 }
853d6f7a 1810
f46e9a0b
TM
1811 /* Ensure that the bss page(s) are valid */
1812 if ((page_get_flags(last_bss-1) & prot) != prot) {
1813 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1814 }
31e31b8a 1815
cf129f3a
RH
1816 if (host_start < host_map_start) {
1817 memset((void *)host_start, 0, host_map_start - host_start);
1818 }
1819}
53a5960a 1820
cf58affe
CL
1821#ifdef TARGET_ARM
1822static int elf_is_fdpic(struct elfhdr *exec)
1823{
1824 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1825}
1826#else
a99856cd
CL
1827/* Default implementation, always false. */
1828static int elf_is_fdpic(struct elfhdr *exec)
1829{
1830 return 0;
1831}
cf58affe 1832#endif
a99856cd 1833
1af02e83
MF
1834static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1835{
1836 uint16_t n;
1837 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1838
1839 /* elf32_fdpic_loadseg */
1840 n = info->nsegs;
1841 while (n--) {
1842 sp -= 12;
1843 put_user_u32(loadsegs[n].addr, sp+0);
1844 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1845 put_user_u32(loadsegs[n].p_memsz, sp+8);
1846 }
1847
1848 /* elf32_fdpic_loadmap */
1849 sp -= 4;
1850 put_user_u16(0, sp+0); /* version */
1851 put_user_u16(info->nsegs, sp+2); /* nsegs */
1852
1853 info->personality = PER_LINUX_FDPIC;
1854 info->loadmap_addr = sp;
1855
1856 return sp;
1857}
1af02e83 1858
992f48a0 1859static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1860 struct elfhdr *exec,
1861 struct image_info *info,
1862 struct image_info *interp_info)
31e31b8a 1863{
d97ef72e 1864 abi_ulong sp;
7c4ee5bc 1865 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1866 int size;
14322bad
LA
1867 int i;
1868 abi_ulong u_rand_bytes;
1869 uint8_t k_rand_bytes[16];
d97ef72e
RH
1870 abi_ulong u_platform;
1871 const char *k_platform;
1872 const int n = sizeof(elf_addr_t);
1873
1874 sp = p;
1af02e83 1875
1af02e83
MF
1876 /* Needs to be before we load the env/argc/... */
1877 if (elf_is_fdpic(exec)) {
1878 /* Need 4 byte alignment for these structs */
1879 sp &= ~3;
1880 sp = loader_build_fdpic_loadmap(info, sp);
1881 info->other_info = interp_info;
1882 if (interp_info) {
1883 interp_info->other_info = info;
1884 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1885 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1886 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1887 } else {
1888 info->interpreter_loadmap_addr = 0;
1889 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1890 }
1891 }
1af02e83 1892
d97ef72e
RH
1893 u_platform = 0;
1894 k_platform = ELF_PLATFORM;
1895 if (k_platform) {
1896 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1897 if (STACK_GROWS_DOWN) {
1898 sp -= (len + n - 1) & ~(n - 1);
1899 u_platform = sp;
1900 /* FIXME - check return value of memcpy_to_target() for failure */
1901 memcpy_to_target(sp, k_platform, len);
1902 } else {
1903 memcpy_to_target(sp, k_platform, len);
1904 u_platform = sp;
1905 sp += len + 1;
1906 }
1907 }
1908
1909 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1910 * the argv and envp pointers.
1911 */
1912 if (STACK_GROWS_DOWN) {
1913 sp = QEMU_ALIGN_DOWN(sp, 16);
1914 } else {
1915 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1916 }
14322bad
LA
1917
1918 /*
c6a2377f 1919 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 1920 */
c6a2377f 1921 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
1922 if (STACK_GROWS_DOWN) {
1923 sp -= 16;
1924 u_rand_bytes = sp;
1925 /* FIXME - check return value of memcpy_to_target() for failure */
1926 memcpy_to_target(sp, k_rand_bytes, 16);
1927 } else {
1928 memcpy_to_target(sp, k_rand_bytes, 16);
1929 u_rand_bytes = sp;
1930 sp += 16;
1931 }
14322bad 1932
d97ef72e
RH
1933 size = (DLINFO_ITEMS + 1) * 2;
1934 if (k_platform)
1935 size += 2;
f5155289 1936#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1937 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1938#endif
1939#ifdef ELF_HWCAP2
1940 size += 2;
f5155289 1941#endif
f516511e
PM
1942 info->auxv_len = size * n;
1943
d97ef72e 1944 size += envc + argc + 2;
b9329d4b 1945 size += 1; /* argc itself */
d97ef72e 1946 size *= n;
7c4ee5bc
RH
1947
1948 /* Allocate space and finalize stack alignment for entry now. */
1949 if (STACK_GROWS_DOWN) {
1950 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1951 sp = u_argc;
1952 } else {
1953 u_argc = sp;
1954 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1955 }
1956
1957 u_argv = u_argc + n;
1958 u_envp = u_argv + (argc + 1) * n;
1959 u_auxv = u_envp + (envc + 1) * n;
1960 info->saved_auxv = u_auxv;
1961 info->arg_start = u_argv;
1962 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1963
1964 /* This is correct because Linux defines
1965 * elf_addr_t as Elf32_Off / Elf64_Off
1966 */
1967#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1968 put_user_ual(id, u_auxv); u_auxv += n; \
1969 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1970 } while(0)
1971
82991bed
PM
1972#ifdef ARCH_DLINFO
1973 /*
1974 * ARCH_DLINFO must come first so platform specific code can enforce
1975 * special alignment requirements on the AUXV if necessary (eg. PPC).
1976 */
1977 ARCH_DLINFO;
1978#endif
f516511e
PM
1979 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1980 * on info->auxv_len will trigger.
1981 */
8e62a717 1982 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1983 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1984 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1985 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1986 /* Target doesn't support host page size alignment */
1987 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1988 } else {
1989 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1990 qemu_host_page_size)));
1991 }
8e62a717 1992 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1993 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1994 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1995 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1996 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1997 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1998 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1999 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2000 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2001 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2002 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2003 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2004
ad6919dc
PM
2005#ifdef ELF_HWCAP2
2006 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2007#endif
2008
7c4ee5bc 2009 if (u_platform) {
d97ef72e 2010 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2011 }
7c4ee5bc 2012 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2013#undef NEW_AUX_ENT
2014
f516511e
PM
2015 /* Check that our initial calculation of the auxv length matches how much
2016 * we actually put into it.
2017 */
2018 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2019
2020 put_user_ual(argc, u_argc);
2021
2022 p = info->arg_strings;
2023 for (i = 0; i < argc; ++i) {
2024 put_user_ual(p, u_argv);
2025 u_argv += n;
2026 p += target_strlen(p) + 1;
2027 }
2028 put_user_ual(0, u_argv);
2029
2030 p = info->env_strings;
2031 for (i = 0; i < envc; ++i) {
2032 put_user_ual(p, u_envp);
2033 u_envp += n;
2034 p += target_strlen(p) + 1;
2035 }
2036 put_user_ual(0, u_envp);
edf8e2af 2037
d97ef72e 2038 return sp;
31e31b8a
FB
2039}
2040
ee947430
AB
2041#ifndef ARM_COMMPAGE
2042#define ARM_COMMPAGE 0
2043#define init_guest_commpage() true
8756e136 2044#endif
dce10401 2045
ee947430
AB
2046static void pgb_fail_in_use(const char *image_name)
2047{
2048 error_report("%s: requires virtual address space that is in use "
2049 "(omit the -B option or choose a different value)",
2050 image_name);
2051 exit(EXIT_FAILURE);
2052}
dce10401 2053
ee947430
AB
2054static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2055 abi_ulong guest_hiaddr, long align)
2056{
2057 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2058 void *addr, *test;
2a53535a 2059
ee947430
AB
2060 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2061 fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2062 "host minimum alignment (0x%lx)\n",
2063 guest_base, align);
2064 exit(EXIT_FAILURE);
2065 }
2066
2067 /* Sanity check the guest binary. */
2068 if (reserved_va) {
2069 if (guest_hiaddr > reserved_va) {
2070 error_report("%s: requires more than reserved virtual "
2071 "address space (0x%" PRIx64 " > 0x%lx)",
2072 image_name, (uint64_t)guest_hiaddr, reserved_va);
2073 exit(EXIT_FAILURE);
2a53535a 2074 }
ee947430 2075 } else {
a932eec4 2076#if HOST_LONG_BITS < TARGET_ABI_BITS
ee947430
AB
2077 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2078 error_report("%s: requires more virtual address space "
2079 "than the host can provide (0x%" PRIx64 ")",
2080 image_name, (uint64_t)guest_hiaddr - guest_base);
2081 exit(EXIT_FAILURE);
2a53535a 2082 }
a932eec4 2083#endif
2a53535a 2084 }
2a53535a 2085
ee947430
AB
2086 /*
2087 * Expand the allocation to the entire reserved_va.
2088 * Exclude the mmap_min_addr hole.
2089 */
2090 if (reserved_va) {
2091 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2092 : mmap_min_addr - guest_base);
2093 guest_hiaddr = reserved_va;
2094 }
806d1021 2095
ee947430
AB
2096 /* Reserve the address space for the binary, or reserved_va. */
2097 test = g2h(guest_loaddr);
2098 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2099 if (test != addr) {
2100 pgb_fail_in_use(image_name);
2101 }
2102}
2103
ad592e37
AB
2104/**
2105 * pgd_find_hole_fallback: potential mmap address
2106 * @guest_size: size of available space
2107 * @brk: location of break
2108 * @align: memory alignment
2109 *
2110 * This is a fallback method for finding a hole in the host address
2111 * space if we don't have the benefit of being able to access
2112 * /proc/self/map. It can potentially take a very long time as we can
2113 * only dumbly iterate up the host address space seeing if the
2114 * allocation would work.
2115 */
5c3e87f3
AB
2116static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2117 long align, uintptr_t offset)
ad592e37
AB
2118{
2119 uintptr_t base;
2120
2121 /* Start (aligned) at the bottom and work our way up */
2122 base = ROUND_UP(mmap_min_addr, align);
2123
2124 while (true) {
2125 uintptr_t align_start, end;
2126 align_start = ROUND_UP(base, align);
5c3e87f3 2127 end = align_start + guest_size + offset;
ad592e37
AB
2128
2129 /* if brk is anywhere in the range give ourselves some room to grow. */
2130 if (align_start <= brk && brk < end) {
2131 base = brk + (16 * MiB);
2132 continue;
2133 } else if (align_start + guest_size < align_start) {
2134 /* we have run out of space */
2135 return -1;
2136 } else {
2667e069
AB
2137 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2138 MAP_FIXED_NOREPLACE;
ad592e37
AB
2139 void * mmap_start = mmap((void *) align_start, guest_size,
2140 PROT_NONE, flags, -1, 0);
2141 if (mmap_start != MAP_FAILED) {
2142 munmap((void *) align_start, guest_size);
2667e069
AB
2143 if (MAP_FIXED_NOREPLACE || mmap_start == (void *) align_start) {
2144 return (uintptr_t) mmap_start + offset;
2145 }
ad592e37
AB
2146 }
2147 base += qemu_host_page_size;
2148 }
2149 }
2150}
2151
ee947430
AB
2152/* Return value for guest_base, or -1 if no hole found. */
2153static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
5c3e87f3 2154 long align, uintptr_t offset)
ee947430
AB
2155{
2156 GSList *maps, *iter;
2157 uintptr_t this_start, this_end, next_start, brk;
2158 intptr_t ret = -1;
2159
2160 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2161
2162 maps = read_self_maps();
dce10401 2163
ee947430
AB
2164 /* Read brk after we've read the maps, which will malloc. */
2165 brk = (uintptr_t)sbrk(0);
2166
ad592e37 2167 if (!maps) {
5c3e87f3 2168 return pgd_find_hole_fallback(guest_size, brk, align, offset);
ad592e37
AB
2169 }
2170
ee947430
AB
2171 /* The first hole is before the first map entry. */
2172 this_start = mmap_min_addr;
2173
2174 for (iter = maps; iter;
2175 this_start = next_start, iter = g_slist_next(iter)) {
2176 uintptr_t align_start, hole_size;
2177
2178 this_end = ((MapInfo *)iter->data)->start;
2179 next_start = ((MapInfo *)iter->data)->end;
5c3e87f3 2180 align_start = ROUND_UP(this_start + offset, align);
ee947430
AB
2181
2182 /* Skip holes that are too small. */
2183 if (align_start >= this_end) {
2184 continue;
2185 }
2186 hole_size = this_end - align_start;
2187 if (hole_size < guest_size) {
2188 continue;
aac362e4
LS
2189 }
2190
ee947430
AB
2191 /* If this hole contains brk, give ourselves some room to grow. */
2192 if (this_start <= brk && brk < this_end) {
2193 hole_size -= guest_size;
2194 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2195 align_start += 1 * GiB;
2196 } else if (hole_size >= 16 * MiB) {
2197 align_start += 16 * MiB;
2198 } else {
2199 align_start = (this_end - guest_size) & -align;
2200 if (align_start < this_start) {
2201 continue;
2202 }
806d1021 2203 }
806d1021
MI
2204 }
2205
ee947430
AB
2206 /* Record the lowest successful match. */
2207 if (ret < 0) {
2208 ret = align_start - guest_loaddr;
dce10401 2209 }
ee947430
AB
2210 /* If this hole contains the identity map, select it. */
2211 if (align_start <= guest_loaddr &&
2212 guest_loaddr + guest_size <= this_end) {
2213 ret = 0;
b859040d 2214 }
ee947430
AB
2215 /* If this hole ends above the identity map, stop looking. */
2216 if (this_end >= guest_loaddr) {
2217 break;
dce10401
MI
2218 }
2219 }
ee947430 2220 free_self_maps(maps);
dce10401 2221
ee947430 2222 return ret;
dce10401
MI
2223}
2224
ee947430
AB
2225static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2226 abi_ulong orig_hiaddr, long align)
f3ed1f5d 2227{
ee947430
AB
2228 uintptr_t loaddr = orig_loaddr;
2229 uintptr_t hiaddr = orig_hiaddr;
5c3e87f3 2230 uintptr_t offset = 0;
ee947430 2231 uintptr_t addr;
f3ed1f5d 2232
ee947430
AB
2233 if (hiaddr != orig_hiaddr) {
2234 error_report("%s: requires virtual address space that the "
2235 "host cannot provide (0x%" PRIx64 ")",
2236 image_name, (uint64_t)orig_hiaddr);
2237 exit(EXIT_FAILURE);
2238 }
f3ed1f5d 2239
ee947430
AB
2240 loaddr &= -align;
2241 if (ARM_COMMPAGE) {
2242 /*
2243 * Extend the allocation to include the commpage.
5c3e87f3
AB
2244 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2245 * need to ensure there is space bellow the guest_base so we
2246 * can map the commpage in the place needed when the address
2247 * arithmetic wraps around.
ee947430
AB
2248 */
2249 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
5c3e87f3 2250 hiaddr = (uintptr_t) 4 << 30;
f3ed1f5d 2251 } else {
5c3e87f3 2252 offset = -(ARM_COMMPAGE & -align);
f3ed1f5d 2253 }
ee947430 2254 }
dce10401 2255
5c3e87f3 2256 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
ee947430
AB
2257 if (addr == -1) {
2258 /*
2259 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2260 * that can satisfy both. But as the normal arm32 link base address
2261 * is ~32k, and we extend down to include the commpage, making the
2262 * overhead only ~96k, this is unlikely.
dce10401 2263 */
ee947430
AB
2264 error_report("%s: Unable to allocate %#zx bytes of "
2265 "virtual address space", image_name,
2266 (size_t)(hiaddr - loaddr));
2267 exit(EXIT_FAILURE);
2268 }
2269
2270 guest_base = addr;
2271}
dce10401 2272
ee947430
AB
2273static void pgb_dynamic(const char *image_name, long align)
2274{
2275 /*
2276 * The executable is dynamic and does not require a fixed address.
2277 * All we need is a commpage that satisfies align.
2278 * If we do not need a commpage, leave guest_base == 0.
2279 */
2280 if (ARM_COMMPAGE) {
2281 uintptr_t addr, commpage;
2282
2283 /* 64-bit hosts should have used reserved_va. */
2284 assert(sizeof(uintptr_t) == 4);
2285
2286 /*
2287 * By putting the commpage at the first hole, that puts guest_base
2288 * just above that, and maximises the positive guest addresses.
2289 */
2290 commpage = ARM_COMMPAGE & -align;
5c3e87f3 2291 addr = pgb_find_hole(commpage, -commpage, align, 0);
ee947430
AB
2292 assert(addr != -1);
2293 guest_base = addr;
2294 }
2295}
2296
2297static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2298 abi_ulong guest_hiaddr, long align)
2299{
c1f6ad79 2300 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
ee947430
AB
2301 void *addr, *test;
2302
2303 if (guest_hiaddr > reserved_va) {
2304 error_report("%s: requires more than reserved virtual "
2305 "address space (0x%" PRIx64 " > 0x%lx)",
2306 image_name, (uint64_t)guest_hiaddr, reserved_va);
2307 exit(EXIT_FAILURE);
f3ed1f5d 2308 }
f3ed1f5d 2309
ee947430
AB
2310 /* Widen the "image" to the entire reserved address space. */
2311 pgb_static(image_name, 0, reserved_va, align);
2312
2667e069 2313 /* osdep.h defines this as 0 if it's missing */
c1f6ad79 2314 flags |= MAP_FIXED_NOREPLACE;
c1f6ad79 2315
ee947430
AB
2316 /* Reserve the memory on the host. */
2317 assert(guest_base != 0);
2318 test = g2h(0);
2319 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2320 if (addr == MAP_FAILED) {
2321 error_report("Unable to reserve 0x%lx bytes of virtual address "
c1f6ad79 2322 "space (%s) for use as guest address space (check your "
ee947430 2323 "virtual memory ulimit setting or reserve less "
c1f6ad79 2324 "using -R option)", reserved_va, strerror(errno));
ee947430
AB
2325 exit(EXIT_FAILURE);
2326 }
2327 assert(addr == test);
f3ed1f5d
PM
2328}
2329
ee947430
AB
2330void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2331 abi_ulong guest_hiaddr)
2332{
2333 /* In order to use host shmat, we must be able to honor SHMLBA. */
2334 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2335
2336 if (have_guest_base) {
2337 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2338 } else if (reserved_va) {
2339 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2340 } else if (guest_loaddr) {
2341 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2342 } else {
2343 pgb_dynamic(image_name, align);
2344 }
2345
2346 /* Reserve and initialize the commpage. */
2347 if (!init_guest_commpage()) {
2348 /*
2349 * With have_guest_base, the user has selected the address and
2350 * we are trying to work with that. Otherwise, we have selected
2351 * free space and init_guest_commpage must succeeded.
2352 */
2353 assert(have_guest_base);
2354 pgb_fail_in_use(image_name);
2355 }
2356
2357 assert(QEMU_IS_ALIGNED(guest_base, align));
2358 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2359 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2360}
f3ed1f5d 2361
8e62a717 2362/* Load an ELF image into the address space.
31e31b8a 2363
8e62a717
RH
2364 IMAGE_NAME is the filename of the image, to use in error messages.
2365 IMAGE_FD is the open file descriptor for the image.
2366
2367 BPRM_BUF is a copy of the beginning of the file; this of course
2368 contains the elf file header at offset 0. It is assumed that this
2369 buffer is sufficiently aligned to present no problems to the host
2370 in accessing data at aligned offsets within the buffer.
2371
2372 On return: INFO values will be filled in, as necessary or available. */
2373
2374static void load_elf_image(const char *image_name, int image_fd,
bf858897 2375 struct image_info *info, char **pinterp_name,
8e62a717 2376 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2377{
8e62a717
RH
2378 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2379 struct elf_phdr *phdr;
2380 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2381 int i, retval;
2382 const char *errmsg;
5fafdf24 2383
8e62a717
RH
2384 /* First of all, some simple consistency checks */
2385 errmsg = "Invalid ELF image for this architecture";
2386 if (!elf_check_ident(ehdr)) {
2387 goto exit_errmsg;
2388 }
2389 bswap_ehdr(ehdr);
2390 if (!elf_check_ehdr(ehdr)) {
2391 goto exit_errmsg;
d97ef72e 2392 }
5fafdf24 2393
8e62a717
RH
2394 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2395 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2396 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2397 } else {
8e62a717
RH
2398 phdr = (struct elf_phdr *) alloca(i);
2399 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2400 if (retval != i) {
8e62a717 2401 goto exit_read;
9955ffac 2402 }
d97ef72e 2403 }
8e62a717 2404 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2405
1af02e83
MF
2406 info->nsegs = 0;
2407 info->pt_dynamic_addr = 0;
1af02e83 2408
98c1076c
AB
2409 mmap_lock();
2410
682674b8
RH
2411 /* Find the maximum size of the image and allocate an appropriate
2412 amount of memory to handle that. */
2413 loaddr = -1, hiaddr = 0;
33143c44 2414 info->alignment = 0;
8e62a717
RH
2415 for (i = 0; i < ehdr->e_phnum; ++i) {
2416 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2417 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2418 if (a < loaddr) {
2419 loaddr = a;
2420 }
ccf661f8 2421 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2422 if (a > hiaddr) {
2423 hiaddr = a;
2424 }
1af02e83 2425 ++info->nsegs;
33143c44 2426 info->alignment |= phdr[i].p_align;
682674b8
RH
2427 }
2428 }
2429
6fd59449
RH
2430 if (pinterp_name != NULL) {
2431 /*
2432 * This is the main executable.
2433 *
2434 * Reserve extra space for brk.
2435 * We hold on to this space while placing the interpreter
2436 * and the stack, lest they be placed immediately after
2437 * the data segment and block allocation from the brk.
2438 *
2439 * 16MB is chosen as "large enough" without being so large
2440 * as to allow the result to not fit with a 32-bit guest on
2441 * a 32-bit host.
2442 */
2443 info->reserve_brk = 16 * MiB;
2444 hiaddr += info->reserve_brk;
2445
2446 if (ehdr->e_type == ET_EXEC) {
2447 /*
2448 * Make sure that the low address does not conflict with
2449 * MMAP_MIN_ADDR or the QEMU application itself.
2450 */
2451 probe_guest_base(image_name, loaddr, hiaddr);
ee947430
AB
2452 } else {
2453 /*
2454 * The binary is dynamic, but we still need to
2455 * select guest_base. In this case we pass a size.
2456 */
2457 probe_guest_base(image_name, 0, hiaddr - loaddr);
d97ef72e 2458 }
6fd59449
RH
2459 }
2460
2461 /*
2462 * Reserve address space for all of this.
2463 *
2464 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2465 * exactly the address range that is required.
2466 *
2467 * Otherwise this is ET_DYN, and we are searching for a location
2468 * that can hold the memory space required. If the image is
2469 * pre-linked, LOADDR will be non-zero, and the kernel should
2470 * honor that address if it happens to be free.
2471 *
2472 * In both cases, we will overwrite pages in this range with mappings
2473 * from the executable.
2474 */
2475 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2476 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2477 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2478 -1, 0);
2479 if (load_addr == -1) {
2480 goto exit_perror;
d97ef72e 2481 }
682674b8 2482 load_bias = load_addr - loaddr;
d97ef72e 2483
a99856cd 2484 if (elf_is_fdpic(ehdr)) {
1af02e83 2485 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2486 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2487
2488 for (i = 0; i < ehdr->e_phnum; ++i) {
2489 switch (phdr[i].p_type) {
2490 case PT_DYNAMIC:
2491 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2492 break;
2493 case PT_LOAD:
2494 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2495 loadsegs->p_vaddr = phdr[i].p_vaddr;
2496 loadsegs->p_memsz = phdr[i].p_memsz;
2497 ++loadsegs;
2498 break;
2499 }
2500 }
2501 }
1af02e83 2502
8e62a717 2503 info->load_bias = load_bias;
dc12567a
JK
2504 info->code_offset = load_bias;
2505 info->data_offset = load_bias;
8e62a717
RH
2506 info->load_addr = load_addr;
2507 info->entry = ehdr->e_entry + load_bias;
2508 info->start_code = -1;
2509 info->end_code = 0;
2510 info->start_data = -1;
2511 info->end_data = 0;
2512 info->brk = 0;
d8fd2954 2513 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2514
2515 for (i = 0; i < ehdr->e_phnum; i++) {
2516 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2517 if (eppnt->p_type == PT_LOAD) {
94894ff2 2518 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2519 int elf_prot = 0;
d97ef72e
RH
2520
2521 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2522 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2523 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2524
682674b8
RH
2525 vaddr = load_bias + eppnt->p_vaddr;
2526 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2527 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2528 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2529
d87146bc
GM
2530 /*
2531 * Some segments may be completely empty without any backing file
2532 * segment, in that case just let zero_bss allocate an empty buffer
2533 * for it.
2534 */
2535 if (eppnt->p_filesz != 0) {
2536 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2537 MAP_PRIVATE | MAP_FIXED,
2538 image_fd, eppnt->p_offset - vaddr_po);
2539
2540 if (error == -1) {
2541 goto exit_perror;
2542 }
09bfb054 2543 }
09bfb054 2544
682674b8
RH
2545 vaddr_ef = vaddr + eppnt->p_filesz;
2546 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2547
cf129f3a 2548 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2549 if (vaddr_ef < vaddr_em) {
2550 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2551 }
8e62a717
RH
2552
2553 /* Find the full program boundaries. */
2554 if (elf_prot & PROT_EXEC) {
2555 if (vaddr < info->start_code) {
2556 info->start_code = vaddr;
2557 }
2558 if (vaddr_ef > info->end_code) {
2559 info->end_code = vaddr_ef;
2560 }
2561 }
2562 if (elf_prot & PROT_WRITE) {
2563 if (vaddr < info->start_data) {
2564 info->start_data = vaddr;
2565 }
2566 if (vaddr_ef > info->end_data) {
2567 info->end_data = vaddr_ef;
2568 }
2569 if (vaddr_em > info->brk) {
2570 info->brk = vaddr_em;
2571 }
2572 }
bf858897
RH
2573 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2574 char *interp_name;
2575
2576 if (*pinterp_name) {
2577 errmsg = "Multiple PT_INTERP entries";
2578 goto exit_errmsg;
2579 }
2580 interp_name = malloc(eppnt->p_filesz);
2581 if (!interp_name) {
2582 goto exit_perror;
2583 }
2584
2585 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2586 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2587 eppnt->p_filesz);
2588 } else {
2589 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2590 eppnt->p_offset);
2591 if (retval != eppnt->p_filesz) {
2592 goto exit_perror;
2593 }
2594 }
2595 if (interp_name[eppnt->p_filesz - 1] != 0) {
2596 errmsg = "Invalid PT_INTERP entry";
2597 goto exit_errmsg;
2598 }
2599 *pinterp_name = interp_name;
5dd0db52
SM
2600#ifdef TARGET_MIPS
2601 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2602 Mips_elf_abiflags_v0 abiflags;
2603 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2604 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2605 goto exit_errmsg;
2606 }
2607 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2608 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2609 sizeof(Mips_elf_abiflags_v0));
2610 } else {
2611 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2612 eppnt->p_offset);
2613 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2614 goto exit_perror;
2615 }
2616 }
2617 bswap_mips_abiflags(&abiflags);
c94cb6c9 2618 info->fp_abi = abiflags.fp_abi;
5dd0db52 2619#endif
d97ef72e 2620 }
682674b8 2621 }
5fafdf24 2622
8e62a717
RH
2623 if (info->end_data == 0) {
2624 info->start_data = info->end_code;
2625 info->end_data = info->end_code;
2626 info->brk = info->end_code;
2627 }
2628
682674b8 2629 if (qemu_log_enabled()) {
8e62a717 2630 load_symbols(ehdr, image_fd, load_bias);
682674b8 2631 }
31e31b8a 2632
98c1076c
AB
2633 mmap_unlock();
2634
8e62a717
RH
2635 close(image_fd);
2636 return;
2637
2638 exit_read:
2639 if (retval >= 0) {
2640 errmsg = "Incomplete read of file header";
2641 goto exit_errmsg;
2642 }
2643 exit_perror:
2644 errmsg = strerror(errno);
2645 exit_errmsg:
2646 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2647 exit(-1);
2648}
2649
2650static void load_elf_interp(const char *filename, struct image_info *info,
2651 char bprm_buf[BPRM_BUF_SIZE])
2652{
2653 int fd, retval;
2654
2655 fd = open(path(filename), O_RDONLY);
2656 if (fd < 0) {
2657 goto exit_perror;
2658 }
31e31b8a 2659
8e62a717
RH
2660 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2661 if (retval < 0) {
2662 goto exit_perror;
2663 }
2664 if (retval < BPRM_BUF_SIZE) {
2665 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2666 }
2667
bf858897 2668 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2669 return;
2670
2671 exit_perror:
2672 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2673 exit(-1);
31e31b8a
FB
2674}
2675
49918a75
PB
2676static int symfind(const void *s0, const void *s1)
2677{
c7c530cd 2678 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2679 struct elf_sym *sym = (struct elf_sym *)s1;
2680 int result = 0;
c7c530cd 2681 if (addr < sym->st_value) {
49918a75 2682 result = -1;
c7c530cd 2683 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2684 result = 1;
2685 }
2686 return result;
2687}
2688
2689static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2690{
2691#if ELF_CLASS == ELFCLASS32
2692 struct elf_sym *syms = s->disas_symtab.elf32;
2693#else
2694 struct elf_sym *syms = s->disas_symtab.elf64;
2695#endif
2696
2697 // binary search
49918a75
PB
2698 struct elf_sym *sym;
2699
c7c530cd 2700 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2701 if (sym != NULL) {
49918a75
PB
2702 return s->disas_strtab + sym->st_name;
2703 }
2704
2705 return "";
2706}
2707
2708/* FIXME: This should use elf_ops.h */
2709static int symcmp(const void *s0, const void *s1)
2710{
2711 struct elf_sym *sym0 = (struct elf_sym *)s0;
2712 struct elf_sym *sym1 = (struct elf_sym *)s1;
2713 return (sym0->st_value < sym1->st_value)
2714 ? -1
2715 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2716}
2717
689f936f 2718/* Best attempt to load symbols from this ELF object. */
682674b8 2719static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2720{
682674b8 2721 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2722 uint64_t segsz;
682674b8 2723 struct elf_shdr *shdr;
b9475279
CV
2724 char *strings = NULL;
2725 struct syminfo *s = NULL;
2726 struct elf_sym *new_syms, *syms = NULL;
689f936f 2727
682674b8
RH
2728 shnum = hdr->e_shnum;
2729 i = shnum * sizeof(struct elf_shdr);
2730 shdr = (struct elf_shdr *)alloca(i);
2731 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2732 return;
2733 }
2734
2735 bswap_shdr(shdr, shnum);
2736 for (i = 0; i < shnum; ++i) {
2737 if (shdr[i].sh_type == SHT_SYMTAB) {
2738 sym_idx = i;
2739 str_idx = shdr[i].sh_link;
49918a75
PB
2740 goto found;
2741 }
689f936f 2742 }
682674b8
RH
2743
2744 /* There will be no symbol table if the file was stripped. */
2745 return;
689f936f
FB
2746
2747 found:
682674b8 2748 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2749 s = g_try_new(struct syminfo, 1);
682674b8 2750 if (!s) {
b9475279 2751 goto give_up;
682674b8 2752 }
5fafdf24 2753
1e06262d
PM
2754 segsz = shdr[str_idx].sh_size;
2755 s->disas_strtab = strings = g_try_malloc(segsz);
2756 if (!strings ||
2757 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2758 goto give_up;
682674b8 2759 }
49918a75 2760
1e06262d
PM
2761 segsz = shdr[sym_idx].sh_size;
2762 syms = g_try_malloc(segsz);
2763 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2764 goto give_up;
682674b8 2765 }
31e31b8a 2766
1e06262d
PM
2767 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2768 /* Implausibly large symbol table: give up rather than ploughing
2769 * on with the number of symbols calculation overflowing
2770 */
2771 goto give_up;
2772 }
2773 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2774 for (i = 0; i < nsyms; ) {
49918a75 2775 bswap_sym(syms + i);
682674b8
RH
2776 /* Throw away entries which we do not need. */
2777 if (syms[i].st_shndx == SHN_UNDEF
2778 || syms[i].st_shndx >= SHN_LORESERVE
2779 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2780 if (i < --nsyms) {
49918a75
PB
2781 syms[i] = syms[nsyms];
2782 }
682674b8 2783 } else {
49918a75 2784#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2785 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2786 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2787#endif
682674b8
RH
2788 syms[i].st_value += load_bias;
2789 i++;
2790 }
0774bed1 2791 }
49918a75 2792
b9475279
CV
2793 /* No "useful" symbol. */
2794 if (nsyms == 0) {
2795 goto give_up;
2796 }
2797
5d5c9930
RH
2798 /* Attempt to free the storage associated with the local symbols
2799 that we threw away. Whether or not this has any effect on the
2800 memory allocation depends on the malloc implementation and how
2801 many symbols we managed to discard. */
0ef9ea29 2802 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2803 if (new_syms == NULL) {
b9475279 2804 goto give_up;
5d5c9930 2805 }
8d79de6e 2806 syms = new_syms;
5d5c9930 2807
49918a75 2808 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2809
49918a75
PB
2810 s->disas_num_syms = nsyms;
2811#if ELF_CLASS == ELFCLASS32
2812 s->disas_symtab.elf32 = syms;
49918a75
PB
2813#else
2814 s->disas_symtab.elf64 = syms;
49918a75 2815#endif
682674b8 2816 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2817 s->next = syminfos;
2818 syminfos = s;
b9475279
CV
2819
2820 return;
2821
2822give_up:
0ef9ea29
PM
2823 g_free(s);
2824 g_free(strings);
2825 g_free(syms);
689f936f 2826}
31e31b8a 2827
768fe76e
YS
2828uint32_t get_elf_eflags(int fd)
2829{
2830 struct elfhdr ehdr;
2831 off_t offset;
2832 int ret;
2833
2834 /* Read ELF header */
2835 offset = lseek(fd, 0, SEEK_SET);
2836 if (offset == (off_t) -1) {
2837 return 0;
2838 }
2839 ret = read(fd, &ehdr, sizeof(ehdr));
2840 if (ret < sizeof(ehdr)) {
2841 return 0;
2842 }
2843 offset = lseek(fd, offset, SEEK_SET);
2844 if (offset == (off_t) -1) {
2845 return 0;
2846 }
2847
2848 /* Check ELF signature */
2849 if (!elf_check_ident(&ehdr)) {
2850 return 0;
2851 }
2852
2853 /* check header */
2854 bswap_ehdr(&ehdr);
2855 if (!elf_check_ehdr(&ehdr)) {
2856 return 0;
2857 }
2858
2859 /* return architecture id */
2860 return ehdr.e_flags;
2861}
2862
f0116c54 2863int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2864{
8e62a717 2865 struct image_info interp_info;
31e31b8a 2866 struct elfhdr elf_ex;
8e62a717 2867 char *elf_interpreter = NULL;
59baae9a 2868 char *scratch;
31e31b8a 2869
abcac736
DS
2870 memset(&interp_info, 0, sizeof(interp_info));
2871#ifdef TARGET_MIPS
2872 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2873#endif
2874
bf858897 2875 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2876
2877 load_elf_image(bprm->filename, bprm->fd, info,
2878 &elf_interpreter, bprm->buf);
31e31b8a 2879
bf858897
RH
2880 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2881 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2882 when we load the interpreter. */
2883 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2884
59baae9a
SB
2885 /* Do this so that we can load the interpreter, if need be. We will
2886 change some of these later */
2887 bprm->p = setup_arg_pages(bprm, info);
2888
2889 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2890 if (STACK_GROWS_DOWN) {
2891 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2892 bprm->p, info->stack_limit);
2893 info->file_string = bprm->p;
2894 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2895 bprm->p, info->stack_limit);
2896 info->env_strings = bprm->p;
2897 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2898 bprm->p, info->stack_limit);
2899 info->arg_strings = bprm->p;
2900 } else {
2901 info->arg_strings = bprm->p;
2902 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2903 bprm->p, info->stack_limit);
2904 info->env_strings = bprm->p;
2905 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2906 bprm->p, info->stack_limit);
2907 info->file_string = bprm->p;
2908 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2909 bprm->p, info->stack_limit);
2910 }
2911
59baae9a
SB
2912 g_free(scratch);
2913
e5fe0c52 2914 if (!bprm->p) {
bf858897
RH
2915 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2916 exit(-1);
379f6698 2917 }
379f6698 2918
8e62a717
RH
2919 if (elf_interpreter) {
2920 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2921
8e62a717
RH
2922 /* If the program interpreter is one of these two, then assume
2923 an iBCS2 image. Otherwise assume a native linux image. */
2924
2925 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2926 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2927 info->personality = PER_SVR4;
31e31b8a 2928
8e62a717
RH
2929 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2930 and some applications "depend" upon this behavior. Since
2931 we do not have the power to recompile these, we emulate
2932 the SVr4 behavior. Sigh. */
2933 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2934 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2935 }
c94cb6c9
SM
2936#ifdef TARGET_MIPS
2937 info->interp_fp_abi = interp_info.fp_abi;
2938#endif
31e31b8a
FB
2939 }
2940
8e62a717
RH
2941 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2942 info, (elf_interpreter ? &interp_info : NULL));
2943 info->start_stack = bprm->p;
2944
2945 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2946 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2947 point as a function descriptor. Do this after creating elf tables
2948 so that we copy the original program entry point into the AUXV. */
2949 if (elf_interpreter) {
8e78064e 2950 info->load_bias = interp_info.load_bias;
8e62a717 2951 info->entry = interp_info.entry;
bf858897 2952 free(elf_interpreter);
8e62a717 2953 }
31e31b8a 2954
edf8e2af
MW
2955#ifdef USE_ELF_CORE_DUMP
2956 bprm->core_dump = &elf_core_dump;
2957#endif
2958
6fd59449
RH
2959 /*
2960 * If we reserved extra space for brk, release it now.
2961 * The implementation of do_brk in syscalls.c expects to be able
2962 * to mmap pages in this space.
2963 */
2964 if (info->reserve_brk) {
2965 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
2966 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
2967 target_munmap(start_brk, end_brk - start_brk);
2968 }
2969
31e31b8a
FB
2970 return 0;
2971}
2972
edf8e2af 2973#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2974/*
2975 * Definitions to generate Intel SVR4-like core files.
a2547a13 2976 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2977 * tacked on the front to prevent clashes with linux definitions,
2978 * and the typedef forms have been avoided. This is mostly like
2979 * the SVR4 structure, but more Linuxy, with things that Linux does
2980 * not support and which gdb doesn't really use excluded.
2981 *
2982 * Fields we don't dump (their contents is zero) in linux-user qemu
2983 * are marked with XXX.
2984 *
2985 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2986 *
2987 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2988 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2989 * the target resides):
2990 *
2991 * #define USE_ELF_CORE_DUMP
2992 *
2993 * Next you define type of register set used for dumping. ELF specification
2994 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2995 *
c227f099 2996 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2997 * #define ELF_NREG <number of registers>
c227f099 2998 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2999 *
edf8e2af
MW
3000 * Last step is to implement target specific function that copies registers
3001 * from given cpu into just specified register set. Prototype is:
3002 *
c227f099 3003 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3004 * const CPUArchState *env);
edf8e2af
MW
3005 *
3006 * Parameters:
3007 * regs - copy register values into here (allocated and zeroed by caller)
3008 * env - copy registers from here
3009 *
3010 * Example for ARM target is provided in this file.
3011 */
3012
3013/* An ELF note in memory */
3014struct memelfnote {
3015 const char *name;
3016 size_t namesz;
3017 size_t namesz_rounded;
3018 int type;
3019 size_t datasz;
80f5ce75 3020 size_t datasz_rounded;
edf8e2af
MW
3021 void *data;
3022 size_t notesz;
3023};
3024
a2547a13 3025struct target_elf_siginfo {
f8fd4fc4
PB
3026 abi_int si_signo; /* signal number */
3027 abi_int si_code; /* extra code */
3028 abi_int si_errno; /* errno */
edf8e2af
MW
3029};
3030
a2547a13
LD
3031struct target_elf_prstatus {
3032 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3033 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3034 abi_ulong pr_sigpend; /* XXX */
3035 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3036 target_pid_t pr_pid;
3037 target_pid_t pr_ppid;
3038 target_pid_t pr_pgrp;
3039 target_pid_t pr_sid;
edf8e2af
MW
3040 struct target_timeval pr_utime; /* XXX User time */
3041 struct target_timeval pr_stime; /* XXX System time */
3042 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3043 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3044 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3045 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3046};
3047
3048#define ELF_PRARGSZ (80) /* Number of chars for args */
3049
a2547a13 3050struct target_elf_prpsinfo {
edf8e2af
MW
3051 char pr_state; /* numeric process state */
3052 char pr_sname; /* char for pr_state */
3053 char pr_zomb; /* zombie */
3054 char pr_nice; /* nice val */
ca98ac83 3055 abi_ulong pr_flag; /* flags */
c227f099
AL
3056 target_uid_t pr_uid;
3057 target_gid_t pr_gid;
3058 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3059 /* Lots missing */
d7eb2b92 3060 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3061 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3062};
3063
3064/* Here is the structure in which status of each thread is captured. */
3065struct elf_thread_status {
72cf2d4f 3066 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3067 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3068#if 0
3069 elf_fpregset_t fpu; /* NT_PRFPREG */
3070 struct task_struct *thread;
3071 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3072#endif
3073 struct memelfnote notes[1];
3074 int num_notes;
3075};
3076
3077struct elf_note_info {
3078 struct memelfnote *notes;
a2547a13
LD
3079 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3080 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3081
b58deb34 3082 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3083#if 0
3084 /*
3085 * Current version of ELF coredump doesn't support
3086 * dumping fp regs etc.
3087 */
3088 elf_fpregset_t *fpu;
3089 elf_fpxregset_t *xfpu;
3090 int thread_status_size;
3091#endif
3092 int notes_size;
3093 int numnote;
3094};
3095
3096struct vm_area_struct {
1a1c4db9
MI
3097 target_ulong vma_start; /* start vaddr of memory region */
3098 target_ulong vma_end; /* end vaddr of memory region */
3099 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3100 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3101};
3102
3103struct mm_struct {
72cf2d4f 3104 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3105 int mm_count; /* number of mappings */
3106};
3107
3108static struct mm_struct *vma_init(void);
3109static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3110static int vma_add_mapping(struct mm_struct *, target_ulong,
3111 target_ulong, abi_ulong);
edf8e2af
MW
3112static int vma_get_mapping_count(const struct mm_struct *);
3113static struct vm_area_struct *vma_first(const struct mm_struct *);
3114static struct vm_area_struct *vma_next(struct vm_area_struct *);
3115static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3116static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3117 unsigned long flags);
edf8e2af
MW
3118
3119static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3120static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3121 unsigned int, void *);
a2547a13
LD
3122static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3123static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3124static void fill_auxv_note(struct memelfnote *, const TaskState *);
3125static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3126static size_t note_size(const struct memelfnote *);
3127static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3128static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3129static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3130static int core_dump_filename(const TaskState *, char *, size_t);
3131
3132static int dump_write(int, const void *, size_t);
3133static int write_note(struct memelfnote *, int);
3134static int write_note_info(struct elf_note_info *, int);
3135
3136#ifdef BSWAP_NEEDED
a2547a13 3137static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3138{
ca98ac83
PB
3139 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3140 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3141 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3142 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3143 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3144 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3145 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3146 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3147 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3148 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3149 /* cpu times are not filled, so we skip them */
3150 /* regs should be in correct format already */
3151 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3152}
3153
a2547a13 3154static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3155{
ca98ac83 3156 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3157 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3158 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3159 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3160 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3161 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3162 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3163}
991f8f0c
RH
3164
3165static void bswap_note(struct elf_note *en)
3166{
3167 bswap32s(&en->n_namesz);
3168 bswap32s(&en->n_descsz);
3169 bswap32s(&en->n_type);
3170}
3171#else
3172static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3173static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3174static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3175#endif /* BSWAP_NEEDED */
3176
3177/*
3178 * Minimal support for linux memory regions. These are needed
3179 * when we are finding out what memory exactly belongs to
3180 * emulated process. No locks needed here, as long as
3181 * thread that received the signal is stopped.
3182 */
3183
3184static struct mm_struct *vma_init(void)
3185{
3186 struct mm_struct *mm;
3187
7267c094 3188 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3189 return (NULL);
3190
3191 mm->mm_count = 0;
72cf2d4f 3192 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3193
3194 return (mm);
3195}
3196
3197static void vma_delete(struct mm_struct *mm)
3198{
3199 struct vm_area_struct *vma;
3200
3201 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3202 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3203 g_free(vma);
edf8e2af 3204 }
7267c094 3205 g_free(mm);
edf8e2af
MW
3206}
3207
1a1c4db9
MI
3208static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3209 target_ulong end, abi_ulong flags)
edf8e2af
MW
3210{
3211 struct vm_area_struct *vma;
3212
7267c094 3213 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3214 return (-1);
3215
3216 vma->vma_start = start;
3217 vma->vma_end = end;
3218 vma->vma_flags = flags;
3219
72cf2d4f 3220 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3221 mm->mm_count++;
3222
3223 return (0);
3224}
3225
3226static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3227{
72cf2d4f 3228 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3229}
3230
3231static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3232{
72cf2d4f 3233 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3234}
3235
3236static int vma_get_mapping_count(const struct mm_struct *mm)
3237{
3238 return (mm->mm_count);
3239}
3240
3241/*
3242 * Calculate file (dump) size of given memory region.
3243 */
3244static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3245{
3246 /* if we cannot even read the first page, skip it */
3247 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3248 return (0);
3249
3250 /*
3251 * Usually we don't dump executable pages as they contain
3252 * non-writable code that debugger can read directly from
3253 * target library etc. However, thread stacks are marked
3254 * also executable so we read in first page of given region
3255 * and check whether it contains elf header. If there is
3256 * no elf header, we dump it.
3257 */
3258 if (vma->vma_flags & PROT_EXEC) {
3259 char page[TARGET_PAGE_SIZE];
3260
3261 copy_from_user(page, vma->vma_start, sizeof (page));
3262 if ((page[EI_MAG0] == ELFMAG0) &&
3263 (page[EI_MAG1] == ELFMAG1) &&
3264 (page[EI_MAG2] == ELFMAG2) &&
3265 (page[EI_MAG3] == ELFMAG3)) {
3266 /*
3267 * Mappings are possibly from ELF binary. Don't dump
3268 * them.
3269 */
3270 return (0);
3271 }
3272 }
3273
3274 return (vma->vma_end - vma->vma_start);
3275}
3276
1a1c4db9 3277static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3278 unsigned long flags)
edf8e2af
MW
3279{
3280 struct mm_struct *mm = (struct mm_struct *)priv;
3281
edf8e2af
MW
3282 vma_add_mapping(mm, start, end, flags);
3283 return (0);
3284}
3285
3286static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3287 unsigned int sz, void *data)
edf8e2af
MW
3288{
3289 unsigned int namesz;
3290
3291 namesz = strlen(name) + 1;
3292 note->name = name;
3293 note->namesz = namesz;
3294 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3295 note->type = type;
80f5ce75
LV
3296 note->datasz = sz;
3297 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3298
edf8e2af
MW
3299 note->data = data;
3300
3301 /*
3302 * We calculate rounded up note size here as specified by
3303 * ELF document.
3304 */
3305 note->notesz = sizeof (struct elf_note) +
80f5ce75 3306 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3307}
3308
3309static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3310 uint32_t flags)
edf8e2af
MW
3311{
3312 (void) memset(elf, 0, sizeof(*elf));
3313
3314 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3315 elf->e_ident[EI_CLASS] = ELF_CLASS;
3316 elf->e_ident[EI_DATA] = ELF_DATA;
3317 elf->e_ident[EI_VERSION] = EV_CURRENT;
3318 elf->e_ident[EI_OSABI] = ELF_OSABI;
3319
3320 elf->e_type = ET_CORE;
3321 elf->e_machine = machine;
3322 elf->e_version = EV_CURRENT;
3323 elf->e_phoff = sizeof(struct elfhdr);
3324 elf->e_flags = flags;
3325 elf->e_ehsize = sizeof(struct elfhdr);
3326 elf->e_phentsize = sizeof(struct elf_phdr);
3327 elf->e_phnum = segs;
3328
edf8e2af 3329 bswap_ehdr(elf);
edf8e2af
MW
3330}
3331
3332static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3333{
3334 phdr->p_type = PT_NOTE;
3335 phdr->p_offset = offset;
3336 phdr->p_vaddr = 0;
3337 phdr->p_paddr = 0;
3338 phdr->p_filesz = sz;
3339 phdr->p_memsz = 0;
3340 phdr->p_flags = 0;
3341 phdr->p_align = 0;
3342
991f8f0c 3343 bswap_phdr(phdr, 1);
edf8e2af
MW
3344}
3345
3346static size_t note_size(const struct memelfnote *note)
3347{
3348 return (note->notesz);
3349}
3350
a2547a13 3351static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3352 const TaskState *ts, int signr)
edf8e2af
MW
3353{
3354 (void) memset(prstatus, 0, sizeof (*prstatus));
3355 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3356 prstatus->pr_pid = ts->ts_tid;
3357 prstatus->pr_ppid = getppid();
3358 prstatus->pr_pgrp = getpgrp();
3359 prstatus->pr_sid = getsid(0);
3360
edf8e2af 3361 bswap_prstatus(prstatus);
edf8e2af
MW
3362}
3363
a2547a13 3364static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3365{
900cfbca 3366 char *base_filename;
edf8e2af
MW
3367 unsigned int i, len;
3368
3369 (void) memset(psinfo, 0, sizeof (*psinfo));
3370
3371 len = ts->info->arg_end - ts->info->arg_start;
3372 if (len >= ELF_PRARGSZ)
3373 len = ELF_PRARGSZ - 1;
3374 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3375 return -EFAULT;
3376 for (i = 0; i < len; i++)
3377 if (psinfo->pr_psargs[i] == 0)
3378 psinfo->pr_psargs[i] = ' ';
3379 psinfo->pr_psargs[len] = 0;
3380
3381 psinfo->pr_pid = getpid();
3382 psinfo->pr_ppid = getppid();
3383 psinfo->pr_pgrp = getpgrp();
3384 psinfo->pr_sid = getsid(0);
3385 psinfo->pr_uid = getuid();
3386 psinfo->pr_gid = getgid();
3387
900cfbca
JM
3388 base_filename = g_path_get_basename(ts->bprm->filename);
3389 /*
3390 * Using strncpy here is fine: at max-length,
3391 * this field is not NUL-terminated.
3392 */
edf8e2af 3393 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3394 sizeof(psinfo->pr_fname));
edf8e2af 3395
900cfbca 3396 g_free(base_filename);
edf8e2af 3397 bswap_psinfo(psinfo);
edf8e2af
MW
3398 return (0);
3399}
3400
3401static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3402{
3403 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3404 elf_addr_t orig_auxv = auxv;
edf8e2af 3405 void *ptr;
125b0f55 3406 int len = ts->info->auxv_len;
edf8e2af
MW
3407
3408 /*
3409 * Auxiliary vector is stored in target process stack. It contains
3410 * {type, value} pairs that we need to dump into note. This is not
3411 * strictly necessary but we do it here for sake of completeness.
3412 */
3413
edf8e2af
MW
3414 /* read in whole auxv vector and copy it to memelfnote */
3415 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3416 if (ptr != NULL) {
3417 fill_note(note, "CORE", NT_AUXV, len, ptr);
3418 unlock_user(ptr, auxv, len);
3419 }
3420}
3421
3422/*
3423 * Constructs name of coredump file. We have following convention
3424 * for the name:
3425 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3426 *
3427 * Returns 0 in case of success, -1 otherwise (errno is set).
3428 */
3429static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3430 size_t bufsize)
edf8e2af
MW
3431{
3432 char timestamp[64];
edf8e2af
MW
3433 char *base_filename = NULL;
3434 struct timeval tv;
3435 struct tm tm;
3436
3437 assert(bufsize >= PATH_MAX);
3438
3439 if (gettimeofday(&tv, NULL) < 0) {
3440 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3441 strerror(errno));
edf8e2af
MW
3442 return (-1);
3443 }
3444
b8da57fa 3445 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3446 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3447 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3448 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3449 base_filename, timestamp, (int)getpid());
b8da57fa 3450 g_free(base_filename);
edf8e2af
MW
3451
3452 return (0);
3453}
3454
3455static int dump_write(int fd, const void *ptr, size_t size)
3456{
3457 const char *bufp = (const char *)ptr;
3458 ssize_t bytes_written, bytes_left;
3459 struct rlimit dumpsize;
3460 off_t pos;
3461
3462 bytes_written = 0;
3463 getrlimit(RLIMIT_CORE, &dumpsize);
3464 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3465 if (errno == ESPIPE) { /* not a seekable stream */
3466 bytes_left = size;
3467 } else {
3468 return pos;
3469 }
3470 } else {
3471 if (dumpsize.rlim_cur <= pos) {
3472 return -1;
3473 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3474 bytes_left = size;
3475 } else {
3476 size_t limit_left=dumpsize.rlim_cur - pos;
3477 bytes_left = limit_left >= size ? size : limit_left ;
3478 }
3479 }
3480
3481 /*
3482 * In normal conditions, single write(2) should do but
3483 * in case of socket etc. this mechanism is more portable.
3484 */
3485 do {
3486 bytes_written = write(fd, bufp, bytes_left);
3487 if (bytes_written < 0) {
3488 if (errno == EINTR)
3489 continue;
3490 return (-1);
3491 } else if (bytes_written == 0) { /* eof */
3492 return (-1);
3493 }
3494 bufp += bytes_written;
3495 bytes_left -= bytes_written;
3496 } while (bytes_left > 0);
3497
3498 return (0);
3499}
3500
3501static int write_note(struct memelfnote *men, int fd)
3502{
3503 struct elf_note en;
3504
3505 en.n_namesz = men->namesz;
3506 en.n_type = men->type;
3507 en.n_descsz = men->datasz;
3508
edf8e2af 3509 bswap_note(&en);
edf8e2af
MW
3510
3511 if (dump_write(fd, &en, sizeof(en)) != 0)
3512 return (-1);
3513 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3514 return (-1);
80f5ce75 3515 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3516 return (-1);
3517
3518 return (0);
3519}
3520
9349b4f9 3521static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3522{
29a0af61 3523 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3524 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3525 struct elf_thread_status *ets;
3526
7267c094 3527 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3528 ets->num_notes = 1; /* only prstatus is dumped */
3529 fill_prstatus(&ets->prstatus, ts, 0);
3530 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3531 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3532 &ets->prstatus);
edf8e2af 3533
72cf2d4f 3534 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3535
3536 info->notes_size += note_size(&ets->notes[0]);
3537}
3538
6afafa86
PM
3539static void init_note_info(struct elf_note_info *info)
3540{
3541 /* Initialize the elf_note_info structure so that it is at
3542 * least safe to call free_note_info() on it. Must be
3543 * called before calling fill_note_info().
3544 */
3545 memset(info, 0, sizeof (*info));
3546 QTAILQ_INIT(&info->thread_list);
3547}
3548
edf8e2af 3549static int fill_note_info(struct elf_note_info *info,
9349b4f9 3550 long signr, const CPUArchState *env)
edf8e2af
MW
3551{
3552#define NUMNOTES 3
29a0af61 3553 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3554 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3555 int i;
3556
c78d65e8 3557 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3558 if (info->notes == NULL)
3559 return (-ENOMEM);
7267c094 3560 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3561 if (info->prstatus == NULL)
3562 return (-ENOMEM);
7267c094 3563 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3564 if (info->prstatus == NULL)
3565 return (-ENOMEM);
3566
3567 /*
3568 * First fill in status (and registers) of current thread
3569 * including process info & aux vector.
3570 */
3571 fill_prstatus(info->prstatus, ts, signr);
3572 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3573 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3574 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3575 fill_psinfo(info->psinfo, ts);
3576 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3577 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3578 fill_auxv_note(&info->notes[2], ts);
3579 info->numnote = 3;
3580
3581 info->notes_size = 0;
3582 for (i = 0; i < info->numnote; i++)
3583 info->notes_size += note_size(&info->notes[i]);
3584
3585 /* read and fill status of all threads */
3586 cpu_list_lock();
bdc44640 3587 CPU_FOREACH(cpu) {
a2247f8e 3588 if (cpu == thread_cpu) {
edf8e2af 3589 continue;
182735ef
AF
3590 }
3591 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3592 }
3593 cpu_list_unlock();
3594
3595 return (0);
3596}
3597
3598static void free_note_info(struct elf_note_info *info)
3599{
3600 struct elf_thread_status *ets;
3601
72cf2d4f
BS
3602 while (!QTAILQ_EMPTY(&info->thread_list)) {
3603 ets = QTAILQ_FIRST(&info->thread_list);
3604 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3605 g_free(ets);
edf8e2af
MW
3606 }
3607
7267c094
AL
3608 g_free(info->prstatus);
3609 g_free(info->psinfo);
3610 g_free(info->notes);
edf8e2af
MW
3611}
3612
3613static int write_note_info(struct elf_note_info *info, int fd)
3614{
3615 struct elf_thread_status *ets;
3616 int i, error = 0;
3617
3618 /* write prstatus, psinfo and auxv for current thread */
3619 for (i = 0; i < info->numnote; i++)
3620 if ((error = write_note(&info->notes[i], fd)) != 0)
3621 return (error);
3622
3623 /* write prstatus for each thread */
52a53afe 3624 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3625 if ((error = write_note(&ets->notes[0], fd)) != 0)
3626 return (error);
3627 }
3628
3629 return (0);
3630}
3631
3632/*
3633 * Write out ELF coredump.
3634 *
3635 * See documentation of ELF object file format in:
3636 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3637 *
3638 * Coredump format in linux is following:
3639 *
3640 * 0 +----------------------+ \
3641 * | ELF header | ET_CORE |
3642 * +----------------------+ |
3643 * | ELF program headers | |--- headers
3644 * | - NOTE section | |
3645 * | - PT_LOAD sections | |
3646 * +----------------------+ /
3647 * | NOTEs: |
3648 * | - NT_PRSTATUS |
3649 * | - NT_PRSINFO |
3650 * | - NT_AUXV |
3651 * +----------------------+ <-- aligned to target page
3652 * | Process memory dump |
3653 * : :
3654 * . .
3655 * : :
3656 * | |
3657 * +----------------------+
3658 *
3659 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3660 * NT_PRSINFO -> struct elf_prpsinfo
3661 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3662 *
3663 * Format follows System V format as close as possible. Current
3664 * version limitations are as follows:
3665 * - no floating point registers are dumped
3666 *
3667 * Function returns 0 in case of success, negative errno otherwise.
3668 *
3669 * TODO: make this work also during runtime: it should be
3670 * possible to force coredump from running process and then
3671 * continue processing. For example qemu could set up SIGUSR2
3672 * handler (provided that target process haven't registered
3673 * handler for that) that does the dump when signal is received.
3674 */
9349b4f9 3675static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3676{
29a0af61 3677 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3678 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3679 struct vm_area_struct *vma = NULL;
3680 char corefile[PATH_MAX];
3681 struct elf_note_info info;
3682 struct elfhdr elf;
3683 struct elf_phdr phdr;
3684 struct rlimit dumpsize;
3685 struct mm_struct *mm = NULL;
3686 off_t offset = 0, data_offset = 0;
3687 int segs = 0;
3688 int fd = -1;
3689
6afafa86
PM
3690 init_note_info(&info);
3691
edf8e2af
MW
3692 errno = 0;
3693 getrlimit(RLIMIT_CORE, &dumpsize);
3694 if (dumpsize.rlim_cur == 0)
d97ef72e 3695 return 0;
edf8e2af
MW
3696
3697 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3698 return (-errno);
3699
3700 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3701 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3702 return (-errno);
3703
3704 /*
3705 * Walk through target process memory mappings and
3706 * set up structure containing this information. After
3707 * this point vma_xxx functions can be used.
3708 */
3709 if ((mm = vma_init()) == NULL)
3710 goto out;
3711
3712 walk_memory_regions(mm, vma_walker);
3713 segs = vma_get_mapping_count(mm);
3714
3715 /*
3716 * Construct valid coredump ELF header. We also
3717 * add one more segment for notes.
3718 */
3719 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3720 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3721 goto out;
3722
b6af0975 3723 /* fill in the in-memory version of notes */
edf8e2af
MW
3724 if (fill_note_info(&info, signr, env) < 0)
3725 goto out;
3726
3727 offset += sizeof (elf); /* elf header */
3728 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3729
3730 /* write out notes program header */
3731 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3732
3733 offset += info.notes_size;
3734 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3735 goto out;
3736
3737 /*
3738 * ELF specification wants data to start at page boundary so
3739 * we align it here.
3740 */
80f5ce75 3741 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3742
3743 /*
3744 * Write program headers for memory regions mapped in
3745 * the target process.
3746 */
3747 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3748 (void) memset(&phdr, 0, sizeof (phdr));
3749
3750 phdr.p_type = PT_LOAD;
3751 phdr.p_offset = offset;
3752 phdr.p_vaddr = vma->vma_start;
3753 phdr.p_paddr = 0;
3754 phdr.p_filesz = vma_dump_size(vma);
3755 offset += phdr.p_filesz;
3756 phdr.p_memsz = vma->vma_end - vma->vma_start;
3757 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3758 if (vma->vma_flags & PROT_WRITE)
3759 phdr.p_flags |= PF_W;
3760 if (vma->vma_flags & PROT_EXEC)
3761 phdr.p_flags |= PF_X;
3762 phdr.p_align = ELF_EXEC_PAGESIZE;
3763
80f5ce75 3764 bswap_phdr(&phdr, 1);
772034b6
PM
3765 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3766 goto out;
3767 }
edf8e2af
MW
3768 }
3769
3770 /*
3771 * Next we write notes just after program headers. No
3772 * alignment needed here.
3773 */
3774 if (write_note_info(&info, fd) < 0)
3775 goto out;
3776
3777 /* align data to page boundary */
edf8e2af
MW
3778 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3779 goto out;
3780
3781 /*
3782 * Finally we can dump process memory into corefile as well.
3783 */
3784 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3785 abi_ulong addr;
3786 abi_ulong end;
3787
3788 end = vma->vma_start + vma_dump_size(vma);
3789
3790 for (addr = vma->vma_start; addr < end;
d97ef72e 3791 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3792 char page[TARGET_PAGE_SIZE];
3793 int error;
3794
3795 /*
3796 * Read in page from target process memory and
3797 * write it to coredump file.
3798 */
3799 error = copy_from_user(page, addr, sizeof (page));
3800 if (error != 0) {
49995e17 3801 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3802 addr);
edf8e2af
MW
3803 errno = -error;
3804 goto out;
3805 }
3806 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3807 goto out;
3808 }
3809 }
3810
d97ef72e 3811 out:
edf8e2af
MW
3812 free_note_info(&info);
3813 if (mm != NULL)
3814 vma_delete(mm);
3815 (void) close(fd);
3816
3817 if (errno != 0)
3818 return (-errno);
3819 return (0);
3820}
edf8e2af
MW
3821#endif /* USE_ELF_CORE_DUMP */
3822
e5fe0c52
PB
3823void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3824{
3825 init_thread(regs, infop);
3826}
This page took 1.451377 seconds and 4 git commands to generate.