]> Git Repo - qemu.git/blame - hw/net/ne2000.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[qemu.git] / hw / net / ne2000.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU NE2000 emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
e8d40465 24#include "qemu/osdep.h"
084e2b11 25#include "net/eth.h"
47b43a1f 26#include "ne2000.h"
9c17d615 27#include "sysemu/sysemu.h"
cd4479a9 28#include "trace.h"
80cabfad
FB
29
30/* debug NE2000 card */
31//#define DEBUG_NE2000
32
b41a2cd1 33#define MAX_ETH_FRAME_SIZE 1514
80cabfad
FB
34
35#define E8390_CMD 0x00 /* The command register (for all pages) */
36/* Page 0 register offsets. */
37#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
38#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
39#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
40#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
41#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
42#define EN0_TSR 0x04 /* Transmit status reg RD */
43#define EN0_TPSR 0x04 /* Transmit starting page WR */
44#define EN0_NCR 0x05 /* Number of collision reg RD */
45#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
46#define EN0_FIFO 0x06 /* FIFO RD */
47#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
48#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
49#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
50#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
51#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
52#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
53#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
089af991 54#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
80cabfad 55#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
089af991 56#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
80cabfad
FB
57#define EN0_RSR 0x0c /* rx status reg RD */
58#define EN0_RXCR 0x0c /* RX configuration reg WR */
59#define EN0_TXCR 0x0d /* TX configuration reg WR */
60#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
61#define EN0_DCFG 0x0e /* Data configuration reg WR */
62#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
63#define EN0_IMR 0x0f /* Interrupt mask reg WR */
64#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
65
66#define EN1_PHYS 0x11
67#define EN1_CURPAG 0x17
68#define EN1_MULT 0x18
69
a343df16
FB
70#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
71#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
72
089af991
FB
73#define EN3_CONFIG0 0x33
74#define EN3_CONFIG1 0x34
75#define EN3_CONFIG2 0x35
76#define EN3_CONFIG3 0x36
77
80cabfad
FB
78/* Register accessed at EN_CMD, the 8390 base addr. */
79#define E8390_STOP 0x01 /* Stop and reset the chip */
80#define E8390_START 0x02 /* Start the chip, clear reset */
81#define E8390_TRANS 0x04 /* Transmit a frame */
82#define E8390_RREAD 0x08 /* Remote read */
83#define E8390_RWRITE 0x10 /* Remote write */
84#define E8390_NODMA 0x20 /* Remote DMA */
85#define E8390_PAGE0 0x00 /* Select page chip registers */
86#define E8390_PAGE1 0x40 /* using the two high-order bits */
87#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
88
89/* Bits in EN0_ISR - Interrupt status register */
90#define ENISR_RX 0x01 /* Receiver, no error */
91#define ENISR_TX 0x02 /* Transmitter, no error */
92#define ENISR_RX_ERR 0x04 /* Receiver, with error */
93#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
94#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
95#define ENISR_COUNTERS 0x20 /* Counters need emptying */
96#define ENISR_RDC 0x40 /* remote dma complete */
97#define ENISR_RESET 0x80 /* Reset completed */
98#define ENISR_ALL 0x3f /* Interrupts we will enable */
99
100/* Bits in received packet status byte and EN0_RSR*/
101#define ENRSR_RXOK 0x01 /* Received a good packet */
102#define ENRSR_CRC 0x02 /* CRC error */
103#define ENRSR_FAE 0x04 /* frame alignment error */
104#define ENRSR_FO 0x08 /* FIFO overrun */
105#define ENRSR_MPA 0x10 /* missed pkt */
106#define ENRSR_PHY 0x20 /* physical/multicast address */
107#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
108#define ENRSR_DEF 0x80 /* deferring */
109
110/* Transmitted packet status, EN0_TSR. */
111#define ENTSR_PTX 0x01 /* Packet transmitted without error */
112#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
113#define ENTSR_COL 0x04 /* The transmit collided at least once. */
114#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
115#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
116#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
117#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
118#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
119
9453c5bc 120void ne2000_reset(NE2000State *s)
80cabfad
FB
121{
122 int i;
123
124 s->isr = ENISR_RESET;
93db6685 125 memcpy(s->mem, &s->c.macaddr, 6);
80cabfad
FB
126 s->mem[14] = 0x57;
127 s->mem[15] = 0x57;
128
129 /* duplicate prom data */
130 for(i = 15;i >= 0; i--) {
131 s->mem[2 * i] = s->mem[i];
132 s->mem[2 * i + 1] = s->mem[i];
133 }
134}
135
136static void ne2000_update_irq(NE2000State *s)
137{
138 int isr;
a343df16 139 isr = (s->isr & s->imr) & 0x7f;
a541f297 140#if defined(DEBUG_NE2000)
d537cf6c 141 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
7d37435b 142 isr ? 1 : 0, s->isr, s->imr);
a541f297 143#endif
d537cf6c 144 qemu_set_irq(s->irq, (isr != 0));
80cabfad
FB
145}
146
d861b05e 147static int ne2000_buffer_full(NE2000State *s)
80cabfad 148{
80cabfad 149 int avail, index, boundary;
d861b05e 150
415ab35a
PP
151 if (s->stop <= s->start) {
152 return 1;
153 }
154
80cabfad
FB
155 index = s->curpag << 8;
156 boundary = s->boundary << 8;
28c1c656 157 if (index < boundary)
80cabfad
FB
158 avail = boundary - index;
159 else
160 avail = (s->stop - s->start) - (index - boundary);
161 if (avail < (MAX_ETH_FRAME_SIZE + 4))
d861b05e
PB
162 return 1;
163 return 0;
164}
165
b41a2cd1
FB
166#define MIN_BUF_SIZE 60
167
4e68f7a0 168ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
80cabfad 169{
cc1f0f45 170 NE2000State *s = qemu_get_nic_opaque(nc);
fdc89e90 171 size_t size = size_;
80cabfad 172 uint8_t *p;
0ae045ae 173 unsigned int total_len, next, avail, len, index, mcast_idx;
b41a2cd1 174 uint8_t buf1[60];
5fafdf24 175 static const uint8_t broadcast_macaddr[6] =
7c9d8e07 176 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3b46e624 177
80cabfad 178#if defined(DEBUG_NE2000)
fdc89e90 179 printf("NE2000: received len=%zu\n", size);
80cabfad
FB
180#endif
181
d861b05e 182 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
4f1c942b 183 return -1;
3b46e624 184
7c9d8e07
FB
185 /* XXX: check this */
186 if (s->rxcr & 0x10) {
187 /* promiscuous: receive all */
188 } else {
189 if (!memcmp(buf, broadcast_macaddr, 6)) {
190 /* broadcast address */
191 if (!(s->rxcr & 0x04))
4f1c942b 192 return size;
7c9d8e07
FB
193 } else if (buf[0] & 0x01) {
194 /* multicast */
195 if (!(s->rxcr & 0x08))
4f1c942b 196 return size;
084e2b11 197 mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
7c9d8e07 198 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
4f1c942b 199 return size;
7c9d8e07 200 } else if (s->mem[0] == buf[0] &&
3b46e624
TS
201 s->mem[2] == buf[1] &&
202 s->mem[4] == buf[2] &&
203 s->mem[6] == buf[3] &&
204 s->mem[8] == buf[4] &&
7c9d8e07
FB
205 s->mem[10] == buf[5]) {
206 /* match */
207 } else {
4f1c942b 208 return size;
7c9d8e07
FB
209 }
210 }
211
212
b41a2cd1
FB
213 /* if too small buffer, then expand it */
214 if (size < MIN_BUF_SIZE) {
215 memcpy(buf1, buf, size);
216 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
217 buf = buf1;
218 size = MIN_BUF_SIZE;
219 }
220
80cabfad 221 index = s->curpag << 8;
9bbdbc66
PP
222 if (index >= NE2000_PMEM_END) {
223 index = s->start;
224 }
80cabfad
FB
225 /* 4 bytes for header */
226 total_len = size + 4;
227 /* address for next packet (4 bytes for CRC) */
228 next = index + ((total_len + 4 + 255) & ~0xff);
229 if (next >= s->stop)
230 next -= (s->stop - s->start);
231 /* prepare packet header */
232 p = s->mem + index;
8d6c7eb8
FB
233 s->rsr = ENRSR_RXOK; /* receive status */
234 /* XXX: check this */
235 if (buf[0] & 0x01)
236 s->rsr |= ENRSR_PHY;
237 p[0] = s->rsr;
80cabfad
FB
238 p[1] = next >> 8;
239 p[2] = total_len;
240 p[3] = total_len >> 8;
241 index += 4;
242
243 /* write packet data */
244 while (size > 0) {
0ae045ae
TS
245 if (index <= s->stop)
246 avail = s->stop - index;
247 else
737d2b3c 248 break;
80cabfad
FB
249 len = size;
250 if (len > avail)
251 len = avail;
252 memcpy(s->mem + index, buf, len);
253 buf += len;
254 index += len;
255 if (index == s->stop)
256 index = s->start;
257 size -= len;
258 }
259 s->curpag = next >> 8;
8d6c7eb8 260
9f083493 261 /* now we can signal we have received something */
80cabfad
FB
262 s->isr |= ENISR_RX;
263 ne2000_update_irq(s);
4f1c942b
MM
264
265 return size_;
80cabfad
FB
266}
267
1ec4e1dd 268static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 269{
b41a2cd1 270 NE2000State *s = opaque;
40545f84 271 int offset, page, index;
80cabfad
FB
272
273 addr &= 0xf;
a816b625 274 trace_ne2000_ioport_write(addr, val);
80cabfad
FB
275 if (addr == E8390_CMD) {
276 /* control register */
277 s->cmd = val;
a343df16 278 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
ee9dbb29 279 s->isr &= ~ENISR_RESET;
e91c8a77 280 /* test specific case: zero length transfer */
80cabfad
FB
281 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
282 s->rcnt == 0) {
283 s->isr |= ENISR_RDC;
284 ne2000_update_irq(s);
285 }
286 if (val & E8390_TRANS) {
40545f84 287 index = (s->tpsr << 8);
5fafdf24 288 /* XXX: next 2 lines are a hack to make netware 3.11 work */
40545f84
FB
289 if (index >= NE2000_PMEM_END)
290 index -= NE2000_PMEM_SIZE;
291 /* fail safe: check range on the transmitted length */
292 if (index + s->tcnt <= NE2000_PMEM_END) {
b356f76d
JW
293 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
294 s->tcnt);
40545f84 295 }
e91c8a77 296 /* signal end of transfer */
80cabfad
FB
297 s->tsr = ENTSR_PTX;
298 s->isr |= ENISR_TX;
5fafdf24 299 s->cmd &= ~E8390_TRANS;
80cabfad
FB
300 ne2000_update_irq(s);
301 }
302 }
303 } else {
304 page = s->cmd >> 6;
305 offset = addr | (page << 4);
306 switch(offset) {
307 case EN0_STARTPG:
9bbdbc66
PP
308 if (val << 8 <= NE2000_PMEM_END) {
309 s->start = val << 8;
310 }
80cabfad
FB
311 break;
312 case EN0_STOPPG:
9bbdbc66
PP
313 if (val << 8 <= NE2000_PMEM_END) {
314 s->stop = val << 8;
315 }
80cabfad
FB
316 break;
317 case EN0_BOUNDARY:
9bbdbc66
PP
318 if (val << 8 < NE2000_PMEM_END) {
319 s->boundary = val;
320 }
80cabfad
FB
321 break;
322 case EN0_IMR:
323 s->imr = val;
324 ne2000_update_irq(s);
325 break;
326 case EN0_TPSR:
327 s->tpsr = val;
328 break;
329 case EN0_TCNTLO:
330 s->tcnt = (s->tcnt & 0xff00) | val;
331 break;
332 case EN0_TCNTHI:
333 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
334 break;
335 case EN0_RSARLO:
336 s->rsar = (s->rsar & 0xff00) | val;
337 break;
338 case EN0_RSARHI:
339 s->rsar = (s->rsar & 0x00ff) | (val << 8);
340 break;
341 case EN0_RCNTLO:
342 s->rcnt = (s->rcnt & 0xff00) | val;
343 break;
344 case EN0_RCNTHI:
345 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
346 break;
7c9d8e07
FB
347 case EN0_RXCR:
348 s->rxcr = val;
349 break;
80cabfad
FB
350 case EN0_DCFG:
351 s->dcfg = val;
352 break;
353 case EN0_ISR:
ee9dbb29 354 s->isr &= ~(val & 0x7f);
80cabfad
FB
355 ne2000_update_irq(s);
356 break;
357 case EN1_PHYS ... EN1_PHYS + 5:
358 s->phys[offset - EN1_PHYS] = val;
359 break;
360 case EN1_CURPAG:
9bbdbc66
PP
361 if (val << 8 < NE2000_PMEM_END) {
362 s->curpag = val;
363 }
80cabfad
FB
364 break;
365 case EN1_MULT ... EN1_MULT + 7:
366 s->mult[offset - EN1_MULT] = val;
367 break;
368 }
369 }
370}
371
1ec4e1dd 372static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
80cabfad 373{
b41a2cd1 374 NE2000State *s = opaque;
80cabfad
FB
375 int offset, page, ret;
376
377 addr &= 0xf;
378 if (addr == E8390_CMD) {
379 ret = s->cmd;
380 } else {
381 page = s->cmd >> 6;
382 offset = addr | (page << 4);
383 switch(offset) {
384 case EN0_TSR:
385 ret = s->tsr;
386 break;
387 case EN0_BOUNDARY:
388 ret = s->boundary;
389 break;
390 case EN0_ISR:
391 ret = s->isr;
392 break;
7d37435b
PB
393 case EN0_RSARLO:
394 ret = s->rsar & 0x00ff;
395 break;
396 case EN0_RSARHI:
397 ret = s->rsar >> 8;
398 break;
80cabfad
FB
399 case EN1_PHYS ... EN1_PHYS + 5:
400 ret = s->phys[offset - EN1_PHYS];
401 break;
402 case EN1_CURPAG:
403 ret = s->curpag;
404 break;
405 case EN1_MULT ... EN1_MULT + 7:
406 ret = s->mult[offset - EN1_MULT];
407 break;
8d6c7eb8
FB
408 case EN0_RSR:
409 ret = s->rsr;
410 break;
a343df16
FB
411 case EN2_STARTPG:
412 ret = s->start >> 8;
413 break;
414 case EN2_STOPPG:
415 ret = s->stop >> 8;
416 break;
7d37435b
PB
417 case EN0_RTL8029ID0:
418 ret = 0x50;
419 break;
420 case EN0_RTL8029ID1:
421 ret = 0x43;
422 break;
423 case EN3_CONFIG0:
424 ret = 0; /* 10baseT media */
425 break;
426 case EN3_CONFIG2:
427 ret = 0x40; /* 10baseT active */
428 break;
429 case EN3_CONFIG3:
430 ret = 0x40; /* Full duplex */
431 break;
80cabfad
FB
432 default:
433 ret = 0x00;
434 break;
435 }
436 }
a816b625 437 trace_ne2000_ioport_read(addr, ret);
80cabfad
FB
438 return ret;
439}
440
5fafdf24 441static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
69b91039 442 uint32_t val)
ee9dbb29 443{
5fafdf24 444 if (addr < 32 ||
ee9dbb29
FB
445 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
446 s->mem[addr] = val;
447 }
448}
449
5fafdf24 450static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
ee9dbb29
FB
451 uint32_t val)
452{
453 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 454 if (addr < 32 ||
ee9dbb29 455 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039
FB
456 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
457 }
458}
459
5fafdf24 460static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
69b91039
FB
461 uint32_t val)
462{
57ccbabe 463 addr &= ~1; /* XXX: check exact behaviour if not even */
aa7f9966
PP
464 if (addr < 32
465 || (addr >= NE2000_PMEM_START
466 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
6e931878 467 stl_le_p(s->mem + addr, val);
ee9dbb29
FB
468 }
469}
470
471static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
472{
5fafdf24 473 if (addr < 32 ||
ee9dbb29
FB
474 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
475 return s->mem[addr];
476 } else {
477 return 0xff;
478 }
479}
480
481static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
482{
483 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 484 if (addr < 32 ||
ee9dbb29 485 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039 486 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
ee9dbb29
FB
487 } else {
488 return 0xffff;
489 }
490}
491
69b91039
FB
492static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
493{
57ccbabe 494 addr &= ~1; /* XXX: check exact behaviour if not even */
aa7f9966
PP
495 if (addr < 32
496 || (addr >= NE2000_PMEM_START
497 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
f567656a 498 return ldl_le_p(s->mem + addr);
69b91039
FB
499 } else {
500 return 0xffffffff;
501 }
502}
503
3df3f6fd
FB
504static inline void ne2000_dma_update(NE2000State *s, int len)
505{
506 s->rsar += len;
507 /* wrap */
508 /* XXX: check what to do if rsar > stop */
509 if (s->rsar == s->stop)
510 s->rsar = s->start;
511
512 if (s->rcnt <= len) {
513 s->rcnt = 0;
e91c8a77 514 /* signal end of transfer */
3df3f6fd
FB
515 s->isr |= ENISR_RDC;
516 ne2000_update_irq(s);
517 } else {
518 s->rcnt -= len;
519 }
520}
521
1ec4e1dd 522static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 523{
b41a2cd1 524 NE2000State *s = opaque;
80cabfad
FB
525
526#ifdef DEBUG_NE2000
527 printf("NE2000: asic write val=0x%04x\n", val);
528#endif
ee9dbb29 529 if (s->rcnt == 0)
3df3f6fd 530 return;
80cabfad
FB
531 if (s->dcfg & 0x01) {
532 /* 16 bit access */
ee9dbb29 533 ne2000_mem_writew(s, s->rsar, val);
3df3f6fd 534 ne2000_dma_update(s, 2);
80cabfad
FB
535 } else {
536 /* 8 bit access */
ee9dbb29 537 ne2000_mem_writeb(s, s->rsar, val);
3df3f6fd 538 ne2000_dma_update(s, 1);
80cabfad
FB
539 }
540}
541
1ec4e1dd 542static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
80cabfad 543{
b41a2cd1 544 NE2000State *s = opaque;
80cabfad
FB
545 int ret;
546
80cabfad
FB
547 if (s->dcfg & 0x01) {
548 /* 16 bit access */
ee9dbb29 549 ret = ne2000_mem_readw(s, s->rsar);
3df3f6fd 550 ne2000_dma_update(s, 2);
80cabfad
FB
551 } else {
552 /* 8 bit access */
ee9dbb29 553 ret = ne2000_mem_readb(s, s->rsar);
3df3f6fd 554 ne2000_dma_update(s, 1);
80cabfad
FB
555 }
556#ifdef DEBUG_NE2000
557 printf("NE2000: asic read val=0x%04x\n", ret);
558#endif
559 return ret;
560}
561
69b91039
FB
562static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
563{
564 NE2000State *s = opaque;
565
566#ifdef DEBUG_NE2000
567 printf("NE2000: asic writel val=0x%04x\n", val);
568#endif
569 if (s->rcnt == 0)
3df3f6fd 570 return;
69b91039
FB
571 /* 32 bit access */
572 ne2000_mem_writel(s, s->rsar, val);
3df3f6fd 573 ne2000_dma_update(s, 4);
69b91039
FB
574}
575
576static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
577{
578 NE2000State *s = opaque;
579 int ret;
580
581 /* 32 bit access */
582 ret = ne2000_mem_readl(s, s->rsar);
3df3f6fd 583 ne2000_dma_update(s, 4);
69b91039
FB
584#ifdef DEBUG_NE2000
585 printf("NE2000: asic readl val=0x%04x\n", ret);
586#endif
587 return ret;
588}
589
1ec4e1dd 590static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad
FB
591{
592 /* nothing to do (end of reset pulse) */
593}
594
1ec4e1dd 595static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
80cabfad 596{
b41a2cd1 597 NE2000State *s = opaque;
80cabfad
FB
598 ne2000_reset(s);
599 return 0;
600}
601
7c131dd5 602static int ne2000_post_load(void* opaque, int version_id)
30ca2aab 603{
7c131dd5 604 NE2000State* s = opaque;
a60380a5 605
7c131dd5
JQ
606 if (version_id < 2) {
607 s->rxcr = 0x0c;
608 }
609 return 0;
a60380a5
JQ
610}
611
7c131dd5
JQ
612const VMStateDescription vmstate_ne2000 = {
613 .name = "ne2000",
614 .version_id = 2,
615 .minimum_version_id = 0,
7c131dd5 616 .post_load = ne2000_post_load,
d49805ae 617 .fields = (VMStateField[]) {
7c131dd5
JQ
618 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
619 VMSTATE_UINT8(cmd, NE2000State),
620 VMSTATE_UINT32(start, NE2000State),
621 VMSTATE_UINT32(stop, NE2000State),
622 VMSTATE_UINT8(boundary, NE2000State),
623 VMSTATE_UINT8(tsr, NE2000State),
624 VMSTATE_UINT8(tpsr, NE2000State),
625 VMSTATE_UINT16(tcnt, NE2000State),
626 VMSTATE_UINT16(rcnt, NE2000State),
627 VMSTATE_UINT32(rsar, NE2000State),
628 VMSTATE_UINT8(rsr, NE2000State),
629 VMSTATE_UINT8(isr, NE2000State),
630 VMSTATE_UINT8(dcfg, NE2000State),
631 VMSTATE_UINT8(imr, NE2000State),
632 VMSTATE_BUFFER(phys, NE2000State),
633 VMSTATE_UINT8(curpag, NE2000State),
634 VMSTATE_BUFFER(mult, NE2000State),
635 VMSTATE_UNUSED(4), /* was irq */
636 VMSTATE_BUFFER(mem, NE2000State),
637 VMSTATE_END_OF_LIST()
638 }
639};
a60380a5 640
a8170e5e 641static uint64_t ne2000_read(void *opaque, hwaddr addr,
1ec4e1dd
AK
642 unsigned size)
643{
644 NE2000State *s = opaque;
cd4479a9 645 uint64_t val;
69b91039 646
1ec4e1dd 647 if (addr < 0x10 && size == 1) {
cd4479a9 648 val = ne2000_ioport_read(s, addr);
1ec4e1dd
AK
649 } else if (addr == 0x10) {
650 if (size <= 2) {
cd4479a9 651 val = ne2000_asic_ioport_read(s, addr);
1ec4e1dd 652 } else {
cd4479a9 653 val = ne2000_asic_ioport_readl(s, addr);
1ec4e1dd
AK
654 }
655 } else if (addr == 0x1f && size == 1) {
cd4479a9
PMD
656 val = ne2000_reset_ioport_read(s, addr);
657 } else {
658 val = ((uint64_t)1 << (size * 8)) - 1;
1ec4e1dd 659 }
cd4479a9
PMD
660 trace_ne2000_read(addr, val);
661
662 return val;
1ec4e1dd
AK
663}
664
a8170e5e 665static void ne2000_write(void *opaque, hwaddr addr,
1ec4e1dd 666 uint64_t data, unsigned size)
69b91039 667{
1ec4e1dd
AK
668 NE2000State *s = opaque;
669
cd4479a9 670 trace_ne2000_write(addr, data);
1ec4e1dd 671 if (addr < 0x10 && size == 1) {
0ed8b6f6 672 ne2000_ioport_write(s, addr, data);
1ec4e1dd
AK
673 } else if (addr == 0x10) {
674 if (size <= 2) {
0ed8b6f6 675 ne2000_asic_ioport_write(s, addr, data);
1ec4e1dd 676 } else {
0ed8b6f6 677 ne2000_asic_ioport_writel(s, addr, data);
1ec4e1dd
AK
678 }
679 } else if (addr == 0x1f && size == 1) {
0ed8b6f6 680 ne2000_reset_ioport_write(s, addr, data);
1ec4e1dd
AK
681 }
682}
69b91039 683
1ec4e1dd
AK
684static const MemoryRegionOps ne2000_ops = {
685 .read = ne2000_read,
686 .write = ne2000_write,
45d883dc 687 .endianness = DEVICE_LITTLE_ENDIAN,
1ec4e1dd 688};
69b91039 689
1ec4e1dd
AK
690/***********************************************************/
691/* PCI NE2000 definitions */
69b91039 692
dcb117bf 693void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
1ec4e1dd 694{
dcb117bf 695 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
69b91039 696}
This page took 1.042918 seconds and 4 git commands to generate.